
RIGID AUTOMORPHISMS OF LINKING SYSTEMS

GEORGE GLAUBERMAN AND JUSTIN LYND

Abstract. A rigid automorphism of a linking system is an automorphism which restricts to the

identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the

center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric

linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at

the prime 2 is elementary abelian, and that it splits over the subgroup of rigid inner automorphisms.

In a second result, we show that if an automorphism of a finite group G restricts to the identity on

the centric linking system for G, then it is of p′-order modulo the group of inner automorphisms,

provided G has no nontrivial normal p′-subgroups. We present two applications of this last result,

one to tame fusion systems.

1. Introduction

A saturated fusion system F is a category in which the objects are the subgroups of a fixed finite

p-group S, and the morphisms are injective group homomorphisms between subgroups which are

subject to axioms first outlined by Puig [Pui06, AKO11]. When G is a finite group with Sylow

p-subgroup S, there is a saturated fusion system F = FS(G) in which the morphisms are the

G-conjugation maps between subgroups. One of the important properties of this category is that it

keeps precisely the data required to recover the homotopy type of the Bousfield-Kan p-completion

BG∧p of the classifying space of G, as shown in the Martino-Priddy Conjecture, proved by Oliver

[Oli04, Oli06]. Recovery of BG∧p , or a p-complete space denoted BF when no group G is associated

with F , is based on the construction of a centric linking system L for F , an extension category

of F whose existence and uniqueness up to rigid isomorphism was first established in general by

Chermak [Che13]. From a group theoretic point of view, centric linking systems, or more generally

the transporter systems of Oliver-Ventura [OV07] and the localities of Chermak [Che13], provide

finer approximations to p-local structure. They abstract the transporter categories of finite groups,

and form structures appearing in new recent approaches to revising the classification of finite simple

groups.

We study here in more detail the comparison maps between automorphism groups of finite groups,

linking systems, and fusion systems. When L is a centric linking system associated to the fusion

system F , there are groups of automorphisms Aut(L) and Aut(F), and a map µ̃ : Aut(L)→ Aut(F)

given essentially by restriction to the Sylow group S. When L = LcS(G) and F = FS(G) for some
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finite group G, there is also a comparison map κ̃G : NAut(G)(S) → Aut(L), where NAut(G)(S)

consists of those automorphisms of G which leave S invariant. These induce a pair of maps

Out(G)
κG−−→ Out(L)

µL−−→ Out(F)

on outer automorphism groups. We write Aut0(L) for the group of rigid automorphisms of L,

namely ker(µ̃L). Similarly, Out0(L) is short for ker(µL).

It follows from the exact sequence of [AKO11, III.5.12] and Chermak’s Theorem that µL is an

isomorphism if p is odd, and is surjective with kernel an abelian 2-group when p = 2. Moreover,

the surjectivity of κG has been studied intensively in articles by Andersen, Oliver, and Ventura,

and by Broto, Moller, and Oliver.

Our first result extends the consequences of unique existence of centric linking systems to show

that the kernel of µL is in fact of exponent at most 2, in general, when p = 2. To make it easier to

apply, we state and prove this in the slightly more general setting of a linking locality (defined just

below), and in three equivalent ways. Set k(p) = 1 if p is odd, and k(p) = 2 if p = 2. In particular,

a group of exponent k(p) is the trivial group if p is odd and is elementary abelian if p = 2.

Theorem 1.1 (Linking locality version). If (L,∆, S) is a linking locality at the prime p, then the

group Out0(L) of rigid outer automorphisms of L is abelian of exponent at most k(p). Moreover,

the exact sequence

1→ AutZ(S)(L)→ Aut0(L)→ Out0(L)→ 1

splits.

Theorem 1.2 (Linking system version). If L is a linking system at the prime p (in the general

sense of [Hen19]), then the group Out0(L) of rigid outer automorphisms of L is abelian of exponent

at most k(p). Moreover, the exact sequence

1→ AutZ(S)(L)→ Aut0(L)→ Out0(L)→ 1

splits.

Theorem 1.3 (Cohomological version). Let F be a saturated fusion system over the finite p-group

S, let O(Fc) be the orbit category of F-centric subgroups, and let ZF : O(Fc)op → Ab denote the

center functor. Then lim1ZF is of exponent at most k(p). Moreover, the exact sequence

1→ B̂(O(Fc),ZF )→ Ẑ1(O(Fc),ZF )→ lim1ZF → 1

splits.

Here, a linking locality in the sense of [Hen19] (also called a proper locality in [Che15]), is a

locality (L,∆, S) such that ∆ contains all subgroups of S which are centric and radical in F =

FS(L), the fusion system of L, and such that CNL(P )(Op(NL(P ))) 6 Op(NL(P )) for each P ∈ ∆.

Similarly, a linking system is a transporter system L associated with a saturated fusion system F
such that Ob(L) contains all F-centric radical subgroups and such that CAutL(P )(Op(AutL(P ))) 6
Op(AutL(P )) for each P ∈ Ob(L). Other definitions of the term “linking system” without further

qualification, such as in [AKO11, Definition III.4.1], are special cases of this one.

An automorphism of a locality L is inner if it is induced by conjugation by an element of NL(S),

and a similar remark applies to transporter systems. In the case of a linking locality or linking

system, a rigid inner automorphism is conjugation by an element of the center of S. We have

denoted the group of rigid inner automorphisms by AutZ(S)(L). This helps to explain some of the
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terminology and notation in Theorems 1.1-1.2. We explain in more detail in Section 2. Terminology

used in Theorem 1.3 is recalled in Section 3.

When p is odd and L is a centric linking system, Theorems 1.1-1.3 follow from either of the

alternative proofs of existence and uniqueness of centric linking systems as given in [Oli13] or

[GL16]. The latter is based in part on the former, but removes the dependence of the former on the

Classification of Finite Simple Groups (CFSG). The connection between existence and uniqueness

and the higher limits of the center functor ZF over the orbit category O(Fc) of F-centric subgroups

is described by [AKO11, Proposition III.5.12]. In particular, this result identifies Out0(L) with the

first derived limit lim1
O(Fc)ZF of the center functor. So when p is odd the theorems follow from

[Oli13, Theorem 3.4] or [GL16, Theorem 1.1] and an argument, provided in Section 4, which uses

Chermak’s iterative procedure for extending a given locality to a new locality on a larger object

set.

We shall prove Theorem 1.1 first in the case of a centric linking locality, i.e., when ∆ is the

collection of F-centric subgroups. The proof is applicable for all primes p, and so we obtain an

alternative, somewhat simpler proof of the triviality of Out0(L) for p odd, independent of the main

result of [GL16]. We then deduce Theorem 1.2 in the same special case, along with Theorem 1.3.

Afterward, we shall prove in Section 4 that this implies the seemingly more general statements in

Theorems 1.1 and 1.2.

Along the way, we extend to transporter systems a result of Oliver on isomorphisms of (quasi-

centric) linking systems (Proposition 2.5), and we interpret Chermak’s work in the Appendix of

[Che13] as an equivalence of groupoids between localities and transporter systems (Theorem 2.11).

Besides their use in deducing Theorem 1.2 from 1.1, one motivation for these extensions is to make

clear that the results of [Oli13, GL16] give existence and uniqueness of centric linking localities

up to rigid isomorphism in the same way as the main theorem of [Che13]. That this is not clear

at first is caused by an ambiguity in which the notion of “isomorphism” of a transporter system

commonly in use does not restrict to the notion of “automorphism” commonly in use, but rather

to what should be called “rigid automorphism”.

Automorphisms of a finite group that centralize a Sylow subgroup have been studied by Glauber-

man, Gross, and others. The main result here can be seen as a generalization to linking systems

of [Gla68, Theorem 10]. The current work bears the same relationship to [Gla68, Theorem 10] as

the proof of existence and uniqueness of centric linking systems outlined above does to the work

of Gross [Gro82] and to the recent work of the authors with Guralnick and Navarro [GGLN20].

Our proof of Theorem 1.1 is very different from the proof of [Gla68, Theorem 10], however, in part

because not all subgroups of S need be objects.

Recall that for a finite group G with Sylow p-subgroup S and centric linking system LcS(G),

there is a comparison homomorphism κG : Out(G) → Out(LcS(G)). It is induced essentially by

restriction to p-local structure modulo p′-cores, at the level of centric subgroups. In the course of

trying to recover from the above theorems the corresponding results about finite groups, we were

led to the following result, which seems to be of independent interest.

Theorem 1.4. Let p be a prime and G a finite group with Sylow p-subgroup S. If Op′(G) = 1,

then the kernel of the map κG : Out(G)→ Out(LcS(G)) is a p′-group.

The proof of Theorem 1.4 relies on the Z∗p -theorem, namely the statement that an element x ∈ S
whose only G-conjugate in S is x itself must lie in the center of G modulo Op′(G). Thus, our proof
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of Theorem 1.4 depends on the CFSG if p is odd. (This result and its corollaries in Section 5 for p

odd are the only results in the paper that depend on the CFSG.)

When G is simple, the cokernel of κG has been studied extensively in [AOV12], [BMO19], and

elsewhere. In particular, it has now been shown that the fusion system of each finite simple

group G is tame in the sense of [AOV12], namely, there is a possibly different finite group G′

with Sylow subgroup S such that FS(G) ∼= FS(G′) such that the map κG′ is split surjective.

Theorem 1.4 has been shown in several special cases in the context of those works, cf. [BMO19,

Lemma 5.9,Theorem 5.16].

Theorem 1.4 is proved as Theorem 5.1 in Section 5, and we give two applications of it: we show

that the splitting condition in the definition of a tame fusion system may be removed, and we give

an interesting reinterpretation of the first author’s work on the Schreier conjecture [Gla66b].

Terminology and notation. When G is a group and g ∈ G, we write cg for the left-handed

conjugation homomorphism x 7→ gxg−1 and its restrictions. The image of a subgroup P under cg
is sometimes written in left-handed exponential notation gP . We write HomG(P,Q) for the set

{cg | g ∈ G, gP 6 Q} of conjugation homomorphisms between P and Q induced in G. Given a

finite group G with Sylow p-subgroup S, the fusion system FS(G) is the category with objects the

subgroups of S and with morphism sets HomFS(G)(P,Q) := HomG(P,Q) := {cg | g ∈ G, gP 6 Q}.
Our terminology for fusion systems follows [AKO11]. For example, Fc denotes the set of F-centric

subgroups, Fr denotes the set of F-radical subgroups, Ff denotes the set of fully F-normalized

subgroups, and concatenation in the superscript denotes the intersection of the relevant sets.

2. Transporter systems and localities

Throughout this section, F is a saturated fusion system over a p-group S, and ∆ is a nonempty

collection of subgroups of S which is closed under F-conjugacy and passing to overgroups. Fix also

another triple F ′, S′, and ∆′ of this type.

2.1. Transporter systems. In the case where F = FS(G) for some finite group G with Sylow p-

subgroup S, the transporter category T∆(G) of G with object set ∆ is the category with morphisms

MorT∆(G)(P,Q) = NG(P,Q) = {g ∈ G | gP 6 Q} where composition is given by multiplication in

G. There is an inclusion functor δ : T∆(S)→ T∆(G), as well as a functor π : T∆(G)→ FS(G) which

is the inclusion on objects and which sends g ∈ NG(P,Q) to cg ∈ HomG(P,Q), conjugation by g.

This is the standard example of a transporter system associated with FS(G).

Definition 2.1 ([OV07, Definition 3.1]). A transporter system associated with F is a nonempty

category T with object set ∆ ⊆ Ob(F), together with structural functors

T∆(S)
δ−→ T π−→ F

which satisfy the following axioms.

(A1) ∆ is closed under F-conjugacy and upon passing to overgroups, δ is the identity on objects,

and π is the inclusion on objects.

(A2) For each P,Q ∈ ∆, the kernel

E(P ) := ker(πP,P : AutT (P )→ AutF (P ))
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acts freely on MorT (P,Q) by right composition, and πP,Q is the orbit map for this action.

In particular, πP,Q is surjective. Also, E(Q) acts freely on MorT (P,Q) by left composition.

Here, AutT (P ) denotes MorT (P, P ).

(B) For each P,Q ∈ ∆, δP,Q : NS(P,Q)→ MorT (P,Q) is injective, and the composite πP,Q◦δP,Q
sends g ∈ NS(P,Q) to cg ∈ HomF (P,Q).

(C) For each ϕ ∈ MorT (P,Q) and each g ∈ P , the diagram

P
ϕ // Q

P

δP,P (g)

OO

ϕ
// Q

δQ,Q(π(ϕ)(g))

OO

commutes in T .

(I) δS,S(S) is a Sylow p-subgroup of AutT (S).

(II) Let ϕ ∈ IsoT (P,Q), P / P̄ 6 S, and Q / Q̄ 6 S be such that ϕ ◦ δP,P (P̄ ) ◦ ϕ−1 6 δQ,Q(Q̄).

Then there is ϕ̄ ∈ MorT (P̄ , Q̄) such that ϕ̄ ◦ δP,P̄ (1) = δQ,Q̄(1) ◦ ϕ.

From now on, we abbreviate δP,P to δP , πP,P to πP , and use similar notation when considering

the application of an arbitrary functor on morphism sets. Also, any future reference to axioms

(A1)-(II) should be interpreted as reference to the axioms given in Definition 2.1. The following

lemma collects some basic properties of morphisms in a transporter system.

Lemma 2.2. Fix a transporter system (T , δ, π) associated with F .

(a) Each morphism in T is both a monomorphism and an epimorphism in the categorical sense.

(b) (Restrictions are unique) Given objects P0 6 P , Q0 6 Q, and two morphisms ϕ0, ϕ′0 making

the diagram

P
ϕ // Q

P0

δP0,P
(1)

OO

ϕ0,ϕ′0

// Q0

δQ0,Q
(1)

OO

commute, one has ϕ0 = ϕ′0.

(c) (Extensions are unique) Given objects P0 6 P , Q0 6 Q, and two morphisms ϕ, ϕ′ making

the diagram

P
ϕ,ϕ′ // Q

P0

δP0,P
(1)

OO

ϕ0

// Q0

δQ0,Q
(1)

OO

commute, one has ϕ = ϕ′.

Proof. Parts (a) and (b) are contained in [OV07, Lemma 3.2], while part (c) is proved in [Che13,

Lemma A.5(c)]. �

By a morphism of fusion systems F → F ′, it is meant a pair (α,Φ) where α : S → S′ is a group

homomorphism and Φ: F → F ′ is a functor which together satisfy α(P ) = Φ(P ) on objects and

Φ(ϕ) ◦α = α ◦ϕ for each morphism ϕ in F . If α is an isomorphism, then Φ is determined uniquely
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by α. So an isomorphism of fusion systems may be regarded as an isomorphism of the underlying

p-groups which “preserves fusion”.

Definition 2.3 (Isomorphisms of transporter systems). Let (T , δ, π) and (T ′, δ′, π′) be transporter

systems with object sets ∆ and ∆′, for the saturated fusion systems F and F ′, respectively.

(1) Let α : T → T ′ be an equivalence of categories. It is said that

• α is isotypical if α(δP (P )) = δ′α(P )(α(P )) for each subgroup P ∈ ∆, and that

• α sends inclusions to inclusions if α(δP,Q(1)) = δ′α(P ),α(Q)(1) for each P,Q ∈ ∆.

(2) An isomorphism is an equivalence T → T ′ which is isotypical and sends inclusions to

inclusions. An automorphism is an isomorphism of a transporter system onto itself.

(3) An isomorphism α : T → T ′ is said to be rigid if S = S′ and αS◦δS = δ′S as homomorphisms

S → AutT ′(S). Here, as before, αS means αS,S .

(4) An automorphism α of T is inner if there is an element ϕ ∈ AutT (S) such that α is given

on objects by P 7→ cϕ(P ) := π(ϕ)(P ) and on morphisms by mapping ψ : P → Q to

cϕ(ψ) := ϕ|Q,cϕ(Q) ◦ ψ ◦ (ϕ|P,cϕ(P ))
−1,

where, for example, ϕ|Q,cϕ(Q) is the unique morphism from Q to cϕ(Q) in T such that

ϕ◦ δQ,S(1) = δcϕ(Q),S(1)◦ϕ, as given by Lemma 2.2(b). We refer to cϕ as conjugation by ϕ.

Write AutZ(S)(T ) for the group of rigid inner automorphisms of T which are conjugation

by elements of δS(Z(S)) 6 AutT (S).

Denote by Aut(T ) := Aut(T , δ, π) the group of automorphisms of T . Denote by T the category of

transporter systems and isomorphisms.

Remark 2.4. An isomorphism of transporter systems is in particular an invertible functor, and so one

sees that Aut(T ) is indeed a group. This was shown for linking systems in [AOV12, Lemma 1.14(a)],

and the same argument applies for an arbitrary transporter system.

We have defined isomorphism here in analogy with the definition of an automorphism of a centric

linking system [AKO11, III.4.3], but more generally than is usually done. The usual definition of

an isomorphism of transporter systems is a functor α : T → T ′ which commutes with the structural

functors: α ◦ δ = δ′ and π′ ◦ α = π. See for example [BLO03, p.799], [OV07, Proposition 3.11],

[AKO11, p.146], or [Che13, Definition A.2]. Rather, Definition 2.3 specializes to the definition of

an automorphism of a linking system in [AKO11, Section III.4.3].

The following proposition extends Proposition 4.11 of [AKO11] in two ways, but the proof follows

the same basic outline. It helps explain that an isomorphism between transporter systems is equiv-

alent to a triple of functors commuting with the structural functors, and that the usual definition

of isomorphism of transporter systems is the same as what we are calling a rigid isomorphism.

Proposition 2.5. Fix transporter systems (T , δ, π) and (T ′, δ′, π′) associated to F and F ′ with

object sets ∆ and ∆′ which contain Fcr and F ′cr. Given an isomorphism α : T → T ′ in the

sense of Definition 2.3, there is a unique associated isomorphism β : S → S′, a unique functor

β∗ : T∆(S) → T∆′(S
′), and a unique isomorphism cβ : : F → F ′ of fusion systems such that the

6



diagram

T∆(S)
δ //

β∗
��

T π //

α

��

F

cβ

��
T∆′(S

′)
δ′ // T ′ π′ // F ′.

(2.6)

commutes and β = (β∗)S. Moreover, α is a rigid isomorphism if and only if both β∗ and cβ are the

identity functors.

Proof. Let α : T → T ′ be an isomorphism. As S is the only object of T with the property that

MorT (P, S) 6= ∅ for each object P of T , and the same is true for S′ with respect to T ′, it follows that

α(S) = S′. So αS(δS(S)) = δ′S′(S
′) since α is isotypical. By axiom (B) for a transporter system,

the map δ′S′ : S
′ → δ′S′(S

′) is an isomorphism, so there is a unique map β from S = AutT∆(S)(S) to

S′ = AutT∆′ (S′)(S
′) such that

αS(δS(s)) = δ′S′(β(s))(2.7)

for each s ∈ S. Then β = (δ′)−1
S′ ◦ αS ◦ δS is an isomorphism from S to S′. Now α sends inclusions

to inclusions, so commutes with restrictions. Hence, for each P ∈ ∆, as α(δP (P )) = δ′α(P )(α(P )),

we have αS(δS(P )) = δ′S′(α(P )), and this shows with (2.7) and injectivity of δ′ that β(P ) = α(P )

for each P .

Let β∗ : T∆(S) → T∆′(S
′) be the functor induced by β. Namely, β∗ sends an object P to β(P ),

and it sends a morphism P
s−→ Q to β(P )

β(s)−−→ β(Q). Then δ′ ◦ β∗ = α ◦ δ by construction.

Next, we wish to define a functor cβ : F → F ′ via a mapping on objects sending P to β(P ), and

on morphisms sending P
ϕ−→ Q to β(P )

β◦ϕ◦β−1

−−−−−→ β(Q). This is an isomorphism of fusion systems

(the one corresponding to the isomorphism β from S to S′) with inverse cβ−1 , if well-defined. In

order to show the assignment is well-defined, we must prove that each β ◦ϕ ◦ β−1 is a morphism in

F ′. This will be done by showing that cβ(ϕ) = π′(α(ϕ̃)) for each ϕ̃ ∈ MorT (P,Q) with π(ϕ̃) = ϕ,

thus simultaneously showing that the right square in (2.6) commutes.

Fix such a lift ϕ̃ of ϕ, and let s ∈ P . Consider the following diagrams:

P
ϕ̃ //

δP (s)

��

Q

δQ(ϕ(s)) ,

��
P

ϕ̃
// Q

α(P )
α(ϕ̃)

//

α(δP (s))
��

α(Q)

α(δQ(ϕ(s))) ,

��
α(P )

α(ϕ̃)
// α(Q)

β(P )
α(ϕ̃)

//

δ′
β(P )

(β(s))

��

β(Q)

δ′
β(Q)

(β(ϕ(s)))

��
β(P )

α(ϕ̃)
// β(Q)

By axiom (C) for T , the first diagram commutes, and the second is α applied to the first. As shown

above, β(P ) = α(P ) and α ◦ δ = δ′ ◦ β∗, so the third diagram is the same as the second. By axiom

(C) for T ′ with α(ϕ̃) and β(s) in the roles of ϕ and g, the morphism δ′β(Q)(π
′(α(ϕ̃))(β(s))) in place

of δ′β(Q)(β(ϕ(s))) also makes the third diagram commute, so we have

δ′β(Q)(β(ϕ(s))) ◦ α(ϕ̃) = δ′β(Q)(π
′(α(ϕ̃))(β(s))) ◦ α(ϕ̃)

as morphisms between β(P ) and β(Q) in T . Since each morphism in a transporter system is an

epimorphism (Lemma 2.2(a)) and δ′β(Q) is injective (axiom (B)), it follows that

β(ϕ(s)) = π′(α(ϕ̃))(β(s)), for s ∈ P .
7



Hence, after replacing s by β−1(s), we see that cβ(ϕ) = π′(α(ϕ̃)) as claimed, and this completes

the proof of existence of the functors β∗ and cβ.

It remains to prove uniqueness. Observe that uniqueness of β would follow from that of β∗.

Suppose γ : T∆(S)→ T∆′(S
′) is a functor such that γ in place of β∗ makes the left square in (2.6)

commute. Since δ and δ′ are the identity on objects by axiom (A1), γ agrees with β∗ on objects.

Similarly they agree on morphisms, given commutativity of the diagram, since δ′P,Q is injective

by axiom (B) for each P,Q ∈ ∆. Hence, γ = β∗. Next, suppose in addition that η : F → F ′ is

another functor such that right square in (2.6) commutes with η in place of cβ. By axiom (A1), the

functors cβ and η agree with α on the objects ∆. For each morphism ϕ in T between subgroups in

∆, we have η(π(ϕ)) = cβ(π(ϕ)), so by axiom (A2) on the surjectivity of π on morphism sets, we see

that η and cβ agree on morphisms in F between subgroups in ∆. By assumption Fcr ⊆ ∆, so the

Alperin-Goldschmidt fusion theorem [BLO03, Proposition A.10] or [AKO11, I.3.5] gives equality.

If α is a rigid isomorphism, then by definition S = S′. By commutativity of the left square in

(2.6), δ′S ◦ β = αS ◦ δS = δ′S . So β = idS as δ′S is injective. It was shown above that β∗ and cβ are

uniquely determined by β, so β∗ and cβ are the identity. Conversely, if β∗ is the identity functor,

then S = S′, and by commutativity of the left square, we have αS ◦ δS = δ′S ◦ idS = δ′S , so α is

rigid. �

As in the setting of (quasicentric) linking systems [AOV12, p.197], one can define a group homo-

morphism relating automorphisms of a transporter system with automorphisms of the associated

fusion system in this more general setting, using Proposition 2.5. Let (T , δ, π) be a transporter sys-

tem with object set ∆ associated with the saturated fusion system F on S. Assume that Fcr ⊆ ∆.

Define

µ̃T : Aut(T )→ Aut(F)

to be the map which sends α ∈ Aut(T ) to the automorphism δ−1
S ◦αS◦δS of S = AutT∆(S)(S). Thus,

µ̃T (α) is the automorphism β in Proposition 2.5. This is a group homomorphism (using uniqueness

of cβ) which maps AutT (S) onto AutF (S) and has kernel Aut0(T ). It induces a homomorphism

µT : Out(T )→ Out(F)

with kernel Out0(T ). When T = T∆(G) for some finite group G with Sylow p-subgroup S, we

sometimes write µ̃G for µ̃T and µG for µT , provided T is understood from the context.

2.2. Localities. In his proof of the existence and uniqueness of centric linking systems, Chermak

introduced localities and showed in [Che13, Appendix] they are essentially equivalent to transporter

systems. The purpose of this section is to explain how Chermak’s results give an equivalence of

categories between transporter systems and localities, with morphisms isomorphisms, while setting

up notation.

Let L be a finite set (we shall consider only finite localities). Write W(L) for the monoid of

words (fn, . . . , f1) in the elements of L, where the multiplication is concatenation ◦. A partial

group is a set L together with a subset D := D(L) ⊆ W(L), a multivariable product Π: D → L
defined on words in D, and an inversion map (−)−1 : L → L, subject to certain axioms which may

be found in [Che13, Definition 2.1]. The product fn · · · f1 is defined if (fn, . . . , f1) ∈ D, and in this

case we set fn · · · f1 = Π(fn, . . . , f1). A partial group is a group if and only if D = W(L), that is,

all products are defined. A partial subgroup is a subset L0 of L with domain D0 ⊆ W(L0) ∩D,

such that the restriction of the product Π to D0 is the product Π0 for L0. The subgroups of L are

the partial subgroups L0 with W(L0) ⊆ D(L). A homomorphism of partial groups is a function
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γ : L →M such that γ∗(D(L)) ⊆ D(M) and Π(γ∗(w)) = γ(Π(w)) for any word w ∈ D(L). Here,

γ∗ : W(L) → W(M) is the map on words determined by γ. Partial groups and partial group

homomorphisms form a category, so there is the usual notion of isomorphism in this category. A

homomorphism γ as above is an isomorphism if and only if it is a bijective homomorphism satisfying

γ∗(D(L)) = D(M).

There is a natural notion of conjugation in a partial group when defined. Given f ∈ L, write

D(f) for the set of x ∈ L such that (f, x, f−1) ∈ D. The product fxf−1 = Π(f, x, f−1) is the

conjugate of x by f , sometimes written fx. A usual convention, which we adopt, is that any

such expression carries the tacit assumption that x ∈ D(f). Likewise, for any subset X ⊆ L, the

expression fX has a similar meaning, including that X ⊆ D(f).

Definition 2.8. Let L be a finite partial group, let S be a p-subgroup of L, and let ∆ be a collection

of subgroups of S. The triple (L,∆, S) is a locality if

(L1a) D(L) is equal to the set of those (fn, . . . , f1) ∈ W(L) such that there is (X0, . . . , Xn) ∈
W(∆) with fi+1Xi = Xi+1 for each 0 6 i < n.

(L1b) If P ∈ ∆ and f ∈ L with P 6 D(f) and fP 6 S, then Q ∈ ∆ for each fP 6 Q 6 S.

(L2) S is a maximal member of the poset of p-subgroups of L.

We next set up some notation when working with a locality (L,∆, S). A word w = (fn, . . . , f1) ∈
W(L) is in D(L) via X0 if fi···f1X0 ∈ ∆ for each 1 6 i 6 n, compare (L1a). For f ∈ L, denote by

Sf the set of s ∈ S such that fs ∈ S. By [Che13, Proposition 2.11], Sf ∈ ∆. In particular, Sf is a

subgroup of L which plays the role of a Sylow intersection. For an object P ∈ ∆, the normalizer

NL(P ) = {f ∈ L | fP = P}, and centralizer CL(P ) = {f ∈ L | fx = x for all x ∈ P} are subgroups

of L.

The fusion system FS(L) of L is the fusion system on S with morphisms being those group

monomorphisms between subgroups of S which can be written as compositions of restrictions of

the conjugation homomorphisms cf : P → Q, x 7→ fx between objects P,Q ∈ ∆. It is said that L
is a locality on FS(L).

Example 2.9 ([Che13, Example/Lemma 2.10]). Let G be a finite group, let S be a Sylow p-subgroup

of G, and let ∆ be a collection of subgroups of S which is closed under FS(G)-conjugacy and

upon passing to overgroups, and which contains all FS(G)-centric radical subgroups. Let L be

the subset of G consisting of those g ∈ G such that there exists P ∈ ∆ with gP 6 S (so that
gP ∈ ∆). Let D ⊆W(L) denote the collection of all words (gn, . . . , g1) ∈W(L) such that there is

(X0, . . . , Xn) ∈W(∆) with gi···g1X0 ∈ ∆ for each 0 6 i 6 n. Whenever (gn, . . . , g1) is a word in D,

define Π(gn, . . . , g1) = gn · · · g1, the product in G. Then (L,∆, S) is a locality on FS(G), written

L∆(G).

Definition 2.10 (Isomorphisms of localities). Let (L,∆, S) and (L′,∆′, S′) be localities.

(1) An isomorphism from (L,∆, S) to (L′,∆′, S′) is an isomorphism of partial groups β : L → L′
such that β(∆) = ∆′ (hence, β(S) = S′). An automorphism of (L,∆, S) is an isomorphism

of (L,∆, S) to itself.

(2) An isomorphism β is rigid if S = S′, and β is the identity on S.

(3) An automorphism α of L is inner if it is given by conjugation by an element of NL(S),

namely, there is f ∈ NL(S) such that α(x) = fxf−1 for all x ∈ L. (Note that the product

fxf−1 is always defined when f ∈ NL(S).)
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Write Aut(L) := Aut(L,∆, S) for the group of automorphisms of L, Aut0(L) for the subgroup of

rigid automorphisms, and AutZ(S)(L) for the subgroup of Aut0(L) consisting of automorphisms

which are conjugation by elements in Z(S). Denote by L the category of localities with isomor-

phisms.

2.3. Equivalence between transporter systems and localities. In [Che13, Appendix], Cher-

mak goes most of the way toward proving that there is an equivalence between the category of

transporter systems with rigid isomorphisms (in the sense of Definition 2.3) and the category of

localities with rigid isomorphisms. Here, we suggest a mild extension of Chermak’s results to an

equivalence of the slightly larger categories T and L with the same objects. First, we briefly review

how to pass from a locality to a transporter system and vice versa. More details are given in [Che13,

Appendix A].

2.3.1. From localities to transporter systems. Given a locality (L,∆, S), one can make a transporter

system (T∆(L), δ, π) associated with FS(L) in the following way. Let T∆(L) have object set ∆, and

for each P,Q ∈ ∆, take

MorT∆(L)(P,Q) = {(f, P,Q) | f ∈ L, fP 6 Q}.

Composition is given by multiplication in L. The functor δ is the identity on objects, and sends

P
s−→ Q to (s, P,Q). The functor π is the inclusion on objects and sends (f, P,Q) to the conjugation

homomorphism cf : P → Q.

2.3.2. From transporter systems to localities. Conversely, to make a locality given a transporter

system (T , δ, π), consider the collection of isomorphisms Iso(T ) in T and the following relation on

the set Mor(T ) of morphisms in T : the morphism ϕ : P → Q is an extension of ϕ0 : P0 → Q0,

written ϕ0 ↑ ϕ, if the diagram

P
ϕ // Q

P0

δP0,P
(1)

OO

ϕ0

// Q0

δQ0,Q
(1)

OO

commutes in T . This is a partial order, and the equivalence relation on Iso(T ) generated by

its restriction to Iso(T ) is denoted ≡. It is shown in [Che13, Lemma A.8(a)] that each ≡-class

has a unique maximal member with respect to ↑. Write [ϕ] for the equivalence class of ϕ, and

set (L,∆, S) = (Iso(T )/≡,∆, S), where by abuse of notation, S is identified with the set of

equivalence classes {[δS(s)] | s ∈ S} of elements in δS(S) ⊆ AutT (S) ⊆ Iso(T ). The domain

D(L∆(T )) for the product is the set of all words (fn, . . . , f1) ∈ W(L∆(T )) such that there exist

objects P0, . . . , Pn ∈ ∆ and isomorphisms ϕi : Pi−1 → Pi in T such that ϕi ∈ fi for each i. The

product Π: D(L∆(T )) → L∆(T ) is defined by Π(fn, . . . , f1) = [ϕn ◦ · · · ◦ ϕ1]. The inversion map

−−1 : L∆(T ) → L∆(T ) is given by [ϕ]−1 = [ϕ−1] for each ϕ ∈ Iso(T ). It can be shown that these

operations on L are well-defined and that L∆(T ) is a locality [Che13, Lemmas A.7,A.9,A.13].

Recall that T denotes the category of transporter systems with isomorphisms and L denotes the

category of localities with isomorphisms. We write T0 and L0 for the categories of transporter

systems and localities with rigid isomorphisms.

Theorem 2.11 (cf. Chermak [Che13, Appendix]). The categories T and L are equivalent via a

functor which restricts to an equivalence between T0 and L0.
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Remark 2.12. Strictly speaking, in order for the restriction of the functor T→ L (to be constructed

in the proof) to induce an equivalence between T0 and L0, we must make two canonical identifica-

tions of S with other incarnations of S. It is possible that a more precise statement could be made

involving a category of S-rigid localities, where an S-rigid locality is a locality L together with an

embedding S ↪→ L of partial groups which satisfies natural conditions. But we do not pursue that,

since our interest here is mainly in Corollary 2.13.

Proof of Theorem 2.11. Define functors Θ: L → T and Λ: T → L as follows. On objects, the

functors are as described in Subsections 2.3.1 and 2.3.2. Let γ : L → L′ be an isomorphism between

the two localities (L,∆, S) and (L′,∆′, S′). Define a functor Θ(γ) : T∆(L)→ T∆′(L′) by the rule

P 7→ γ(P ),

(f, P,Q) 7→ (γ(f), γ(P ), γ(Q)).

Θ(γ) is an invertible functor with inverse Θ(γ−1), it is clearly isotypical, it sends inclusions to

inclusions because γ(1) = 1, and hence it is an isomorphism of transporter systems. Observe that

if ∆ = ∆′ (so S = S′) and γ is a rigid isomorphism, then Θ(γ)(δS(s)) = (s, S, S) = δ′S(s) for each

s ∈ S, so Θ(γ) is a rigid isomorphism of transporter systems. It is then clear that Θ determines a

functor L→ T, which restricts to send L0 → T0.

Conversely, given an isomorphism α : T → T ′, form the associated localities (L∆(T ),∆, S) and

(L∆′(T ′),∆′, S′) and define a function Λ(α) : L∆(T ) → L∆′(T ′) via Λ(α)([ϕ]) = [α(ϕ)]
′
, where

here we write [−]
′

for equivalence classes in Iso(T ′). As α is invertible, it induces a bijection

∆→ ∆′ sending S 7→ S′ and a bijection Iso(T )→ Iso(T ′). Since α sends inclusions to inclusions, it

preserves ↑ and ≡, and hence Λ(α) is a well-defined bijection. Given that α is a functor, it follows

from the definition of multiplication in L∆(T ) and [Che13, Lemma A.7(b)] that Λ(α) is a partial

group homomorphism. Then Λ(α) restricts to a homomorphism from S to S′ (if we identify these

with {[δS(s)] | s ∈ S} and {[δ′S′(s′)] | s′ ∈ S′} via δ and δ′, respectively), because α is isotypical.

Further, if α is rigid, then this translates directly to the condition that Λ(α) is a rigid isomorphism

of localities. Again, Λ(α−1) is the inverse of Λ(α), and so Λ(α) is an isomorphism of localities.

Thus Λ is a functor which restricts to send T0 → L0.

Define η : idT → Θ ◦ Λ as follows. For any transporter system T , ηT : T → Θ(Λ(T )) sends each

object to itself, and it sends a morphism ϕ : P → Q in T to the triple ([ϕ0], P,Q), where ϕ0 is the

unique morphism from P to Q0 := π(ϕ)(P ) in T such that δQ0,Q(1) ◦ ϕ0 = ϕ. We will show that

η is a natural isomorphism of functors. By [Che13, Lemma A.15], ηT is a rigid isomorphism of

transporter systems, provided we make the identification of S with the group of equivalence classes

{([δS(s)], S, S) | s ∈ S} via the canonical isomorphism. Let now α : T → T ′ be any isomorphism of

transporter systems, and consider the naturality diagram:

T
ηT //

α

��

Θ(Λ(T ))

Θ(Λ(α))
��

T ′
ηT ′
// Θ(Λ(T ′)).

Fix a morphism ϕ : P → Q in T . Then

Θ(Λ(α))([ϕ0], P,Q) = ([α(ϕ0)], α(P ), α(Q))
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while

ηT ′(α(ϕ)) = ([α(ϕ)0], α(P ), α(Q)).

where α(ϕ)0 is the unique morphism from α(P ) to Q1 := π′(α(ϕ))(α(P )) such that α(ϕ) =

δQ1,α(Q)(1) ◦ α(ϕ)0. Note also that α(ϕ) = δα(Q0),α(Q)(1) ◦ α(ϕ0) as α sends inclusions to in-

clusions. Thus, to show that η is natural, it suffices by uniqueness of restrictions, Lemma 2.2(b),

to show that Q1 = α(Q0). To this end, let β be the isomorphism from S to S′ associated with α

in Proposition 2.5. By Proposition 2.5, α(P ) = β(P ) for each P ∈ ∆, and we have

π′(α(ϕ))(α(P )) = cβ(π(ϕ))(β(P )) = β(π(ϕ)(P )) = α(π(ϕ)(P )),

as required. This completes the proof that η is a natural isomorphism.

Next, given a locality (L,∆, S) define ζL : L → (Λ ◦Θ)(L) by

ζL(f) = [(f, Sf ,
fSf )].

We will show that ζ = (ζL) : idL → Λ ◦ Θ is a natural isomorphism. Let (fn, . . . , f1) ∈ D(L),

and set f = Π(fn, . . . , f1). By Definition 2.8(L1a), there are objects P0, . . . , Pn ∈ ∆ such that

Pi−1 6 Sfi and fiPi−1 = Pi for i = 1, . . . , n. Then [(fi, Sfi ,
fiSfi)] = [(fi, Pi−1, Pi)] by definition of

the equivalence class [−], and this implies that ζ∗L(fn, . . . , f1) := (ζL(fn), . . . , ζL(f1)) ∈ D(Λ(Θ(L))).

By definition of the product in Λ(Θ(L)), we have

Π(ζ∗L(fn, . . . , f1)) = [(Π(fn, . . . , f1), P0, Pn)] = [(f, P0, Pn)] = [(f, Sf ,
fSf )] = ζL(Π(fn, . . . , f1)),

so ζL is a partial group homomorphism.

There is an extension of Lemma 3.6 of [Che13] in which S and S′ (and ∆ and ∆′) need not

be equal, and for which Chermak’s proof remains valid. This will be used to show that ζL is

an isomorphism of localities. The typical element of Λ(Θ(L)) has the form [(f, P,Q)] for f ∈ L,

P 6 Sf , and Q > fP . It is the image of f under ζL, since ζL(f) = [(f, Sf ,
fSf )] = [(f, P,Q)] by the

commutative diagram

Sf
(f,Sf ,

fSf )
// fSf

P
(f,P,Q)

//

(1,P,Sf )

OO

Q

(1,Q,fSf )

OO

in Θ(L), so ζL is surjective.

Set S′ = {[(s, S, S)] | s ∈ S} 6 Λ(Θ(L)), and fix s ∈ S and f ∈ L. Then (f, s, f−1) ∈ D(L) via

X ∈ ∆ if and only if

([(f, sf
−1
X, fsf

−1
X)], [(s, f

−1
X, sf

−1
X)], [(f−1, X, f

−1
X)]) ∈ D(Λ(Θ(L)))

by definition of the domain of the locality built out of the transporter system Θ(L). Moreover, in

this case, fsf−1 ∈ S via X ∈ ∆ if and only if

[(fsf−1, X, fsf
−1
X)] = [(f, sf

−1
X, fsf

−1
X) ◦ (s, f

−1
X, sf

−1
X) ◦ (f−1, X, f

−1
X)] ∈ S′

This shows that ζL(Sf ) = S′ζL(f).

Let h ∈ ker(ζL). Then [(h, Sh,
hSh)] = 1Λ(Θ(L)) = [(1, S, S)]. This means (h, Sh,

hSh) is a

restriction of (1, S, S), that is (1, Sh, S) = (h, Sh, S), and hence h = 1. This completes the check

of the hypotheses of the extension of [Che13, Lemma 3.6], and so ζL is an isomorphism by that
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lemma. Moreover, ζL is a rigid isomorphism of localities, provided we make the identification of S

with the group of equivalence classes {[(s, S, S)] | s ∈ S} via the canonical isomorphism.

Finally, it remains to verify naturality of ζ. Given another locality (L′,∆′, S′) and isomorphism

γ : L → L′ mapping S onto S′, we have for each f ∈ L that

Λ(Θ(γ))(ζL(f)) = [(γ(f), γ(Sf ), γ(fSf ))]′

while

ζL(γ(f)) = [(γ(f), Sγ(f),
γ(f)Sγ(f))]

′

As γ is an isomorphism mapping S onto S′, γ∗(DL(f)) = DL′(γ(f)), and hence γ(Sf ) = Sγ(f).

Also, γ(fP ) = γ(f)γ(P ) for each P ∈ ∆ and f ∈ L. This establishes naturality and completes the

proof of the theorem. �

Corollary 2.13. Fix a transporter system (T , π, δ) and let L∆(T ) be the associated locality. Then

the map

Φ: Aut(T ) −→ Aut(L∆(T ))

given by sending an automorphism α ∈ Aut(T ) to the map L∆(T ) → L∆(T ) which sends a class

[ϕ] to [α(ϕ)], for each ϕ ∈ Iso(T ), is an isomorphism of groups. Moreover, Φ maps Aut0(T ) onto

Aut0(L∆(T )).

Proof. This follows directly from Theorem 2.11. �

Remark 2.14. The obstruction theory for the existence and uniqueness of centric linking systems

“up to isomorphism” as given by Broto, Levi, and Oliver [BLO03, Theorem 3.1], see also [AKO11,

III.5.11], holds of course with respect to the notion of isomorphism of centric linking systems used

there. By Proposition 2.5 and Corollary 2.13, this definition coincides with the notion of “rigid

isomorphism” of the associated localities. Thus, Theorem 3.4 of [Oli13] and Theorem 1.1 of [GL16]

imply that any two centric linking localities (i.e., ∆-linking systems with ∆ = Fc in the terminology

of [Che13, p.49]) associated to a given saturated fusion system are rigidly isomorphic in the sense

of [Che13].

2.4. Linking systems and linking localities. Theorems 1.1 and 1.2 do not hold for arbitrary

localities and transporter systems, as can be seen by considering an appropriate finite group G of

the form Op′(G)×H, with Op′(G) supporting an automorphism of order p2, and forming a locality

as in the standard Example 2.9.

Definition 2.15. A finite group N is of characteristic p if CN (Op(N)) 6 Op(N). A linking locality

is a locality (L,∆, S) such that FS(L) is saturated, FS(L)cr ⊆ ∆, and NL(P ) is of characteristic

p for each P ∈ ∆. A linking system is a transporter system (T , δ, π) associated with a saturated

fusion system F having object set ∆ such that Fcr ⊆ ∆ and AutT (P ) is of characteristic p for each

P ∈ ∆.

The assumption that L is a linking locality (in Theorem 1.1) or a linking system (in Theorem 1.2)

is necessary when applying [GL16, Lemma 8.2], which says that a rigid automorphism of a finite

group of characteristic p is conjugation by an element of the center of a Sylow p-subgroup.

The definition of linking system appearing in Definition 2.15 was given by Henke [Hen19]. It

is more general than the usual definition in [AKO11, Definition III.4.1], which forces each object

to be F-quasicentric. In Henke’s definition, the objects are forced merely to be a subset of the

larger collection of F-subcentric subgroups of S, namely the subgroups P of S with the property
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that Op(NF (Q)) is F-centric for each fully F-normalized conjugate Q of P . The term “linking

locality” also appears first in [Hen19] and refers to the same thing as a “proper locality” in [Che15].

By [Hen19, Proposition 1], the equivalence between localities and transporter systems given in

Theorem 2.11 restricts to an equivalence between linking localities and linking systems.

Examples of linking localities include localities of finite groups of Lie type in characteristic p,

where, by the Borel-Tits theorem, one may take ∆ to be the set of nonidentity subgroups of a

Sylow subgroup. On the other hand, every finite group G gives rise to a linking locality on the set

∆ of FS(G)-subcentric subgroups of a Sylow subgroup S, the main theorem of [Hen19].

3. Rigid outer automorphisms of centric linking systems

In this section, we prove Theorems 1.1 and 1.2 in the case ∆ = Fc, and we prove Theorem 1.3.

Throughout, we fix a saturated fusion system F over the finite p-group S and a linking locality

(L,∆, S) on F .

A version of the Alperin-Goldschmidt fusion theorem for linking localities was proved by Chermak

and is needed in the proof of Theorem 1.1. We state a special case of it in a flexible form.

Proposition 3.1. Let C be any conjugation family for F and let g ∈ L. Then there are Qi ∈ C ∩∆

and elements gi ∈ NL(Qi) such that g = gn · · · g1.

Proof. Recall, by definition of a linking locality (proper locality), that Fcr ⊆ ∆. Further, the

collection A(F) defined in [Che16, Notation 3.3] is a subset of Fcr and coincides with the collection

of F-essential subgroups [AKO11, Definition I.3.2]. So the assertion is a special case of [Che16,

Theorem 3.5], given that the collection of F-essential subgroups is contained in any conjugation

family, cf. [AKO11, Proposition I.3.3(b)]. �

Proposition 3.1 has the immediate consequence that an automorphism which is the identity

on NL(Q) for each Q ∈ C ∩ ∆ is the identity automorphism of L. We take the opportunity to

prove below a more general statement which generalizes Lemma 5.4 of [GL16] to the setting of

linking localities. We refer to [Cra11, Definition 7.14] for the definition of a positive characteristic

p-functor W , which we call a conjugacy functor for short. There is a mistake in the proof of [GL16,

Lemma 5.4], in which W (Q) is claimed to be well-placed, given that Q is. This seems unlikely to be

true. It is true that W (Q) is conjugate to a well-placed subgroup, and we give a correct argument

in the proof of Lemma 3.2.

Lemma 3.2. Let τ be an automorphism of L. Fix a conjugacy functor W for F , let C be the

associated conjugation family consisting of those subgroups of S which are well-placed with respect

to W , and set

W = {Q ∈ C ∩∆ |W (Q) = Q}.
Assume that W (Q) ∈ ∆ and W (W (Q)) = W (Q) whenever Q ∈ ∆. If τ is the identity on NL(Q)

for each Q ∈ W, then τ is the identity automorphism of L.

Proof. Assume first that W is the identity functor. Then W = C ∩∆. Let τ ∈ Aut(L), and assume

that τ is the identity on NL(Q) for all Q ∈ W = C ∩ ∆. For g ∈ L, there are Qi ∈ C ∩ ∆ and

gi ∈ NL(Qi) such that g = gn · · · g1 by Proposition 3.1. Then τ(g) = τ(gn) · · · τ(g1) = gn · · · g1 = g

by assumption. Thus, τ is the identity automorphism.

Next, we prove the result for general W satisfying the hypotheses. By the previous case with

the identity functor in place of W , it suffices to show that τ is the identity on NL(Q) for each
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Q ∈ C ∩ ∆. Proceed by induction on the index of Q in S. Assume first that Q = S. Since

S ∈ C (it is contained in every conjugation family), W (Q) = W (S) ∈ C ∩ ∆ by assumption on

W . Hence, as τ |NL(W (S)) = idNL(W (S)) and NL(S) 6 NL(W (S)), τ is the identity on NL(Q). Fix

now Q < S and assume that τ is the identity on NL(R) for all R ∈ ∆ with |R| > |Q|. Let g ∈ L
with gNS(W (Q)) 6 S and gW (Q) well-placed by [Cra11, Lemma 7.23]. We claim that τ fixes

g. Write g = gn · · · g1 for subgroups Ri ∈ C ∩ ∆ and gi ∈ NL(Ri) with Ri > gi···g1NS(W (Q)).

So |Ri| > |NS(W (Q))| > |NS(Q)| > |Q|. The claim now follows from the inductive hypothesis.

As gW (Q) is well-placed and ∆ is closed under L-conjugation, we have gW (Q) ∈ C ∩ ∆. Now

NL(gQ) 6 NL(gW (Q)) by the axioms for a conjugacy functor. Since τ is the identity onNL(gW (Q))

by hypothesis, we see that τ is the identity on NL(gQ). Finally, since τ(g) = g, τ is the identity

on NL(Q), as desired. �

Proof of Theorem 1.1 in the case ∆ = Fc. Recall that k(p) = 1 if p is odd, and k(p) = 2 if p = 2.

Fix τ ∈ Aut0(L). For any finite p-group P , we take the abelian version of the Thompson subgroup

J(P ), namely, J(P ) is the subgroup generated by the abelian subgroups of P of order d(P ), where

d(P ) is the maximum of the orders of the abelian subgroups of P .

We proceed in several steps to complete the proof. The main part of the proof consists in showing

that if the automorphism τ is the identity on NL(J(S)), then τk(p) = idL. This is carried out in

Steps 2-6.

Step 1. We first arrange that τ restricts to the identity automorphism of NL(J(S)). The restriction

τ to NL(J(S)) is an automorphism of NL(J(S)) which is identity on S 6 NL(J(S)). Since L is

a linking locality and J(S) ∈ ∆ = Fc, the normalizer NL(J(S)) is of characteristic p. Thus, by

[GL16, Lemma 8.2], we may fix z ∈ Z(S) such that τ is conjugation by z on NL(J(S)). Then upon

replacing τ by c−1
z τ , where cz : L → L denotes the rigid inner automorphism which is (everywhere-

defined) conjugation by z, we complete the proof of Step 1.

Consider the following ordering on Fc:

Q <J P ⇐⇒ d(Q) < d(P ) or d(Q) = d(P ) and |J(Q)| < |J(P )|.

We claim that τk(p) is the identity on L. Assume the contrary, and, using Lemma 3.2 with W the

identity functor, choose Q maximal under <J with the property that NL(Q) is not fixed by τk(p).

Step 2. We show that Q may be taken to be well-placed with respect to J . Let C be the collection

of subgroups of S which are well-placed with respect to the Thompson subgroup functor J . Then C
forms a conjugation family for F by [Cra11, Corollary 7.26]. Let g ∈ NL(Q) not fixed by τk(p). By

Proposition 3.1, we may write g as a product of elements gi ∈ NL(Ri) with Ri ∈ C ∩∆, and where

Q = Q0 = Qn, Qi = giQi−1, and Ri > 〈Qi−1, Qi〉 for each i. Since g is not fixed by τk(p), some

gi is not fixed by τk(p). Now as Q is isomorphic to a subgroup of Ri, we see that d(Q) 6 d(Ri).

Therefore, equality holds by maximality of Q under <J . Then |J(Q)| 6 |J(Ri)|, so again equality

holds by maximality of Q. Hence, upon replacing Q by Ri, we may assume that Q ∈ C.

Step 3. Set H = NL(Q) and T = NS(Q). We next show that J(Q) = J(QJ(T )). As Q ∈ ∆, H is

of characteristic p. By [GL16, Lemma 8.2], we may fix z ∈ Z(T ) such that τ is conjugation by z on

H. Then τ2 is conjugation by z2 on H. Since τk(p) is not the identity on H, we have that zk(p) is

not centralized by H. Applying [Gla68, Theorem A], we conclude that zk(p) is not centralized by

NH(J(T )). Now NH(J(T )) 6 NH(QJ(T )) since H = NH(Q), so that τk(p) is not the identity on

NL(QJ(T )). As QJ(T ) ∈ Fc and d(Q) 6 d(QJ(T )), we have equality by maximality of Q under
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<J . Then J(Q) 6 J(QJ(T )), and so

J(Q) = J(QJ(T )),(3.3)

again by maximality of Q under <J .

Step 4. Here we show J(T ) = J(Q). As d(Q) 6 d(T ) = d(J(T )) 6 d(QJ(T )), we have equality by

Step 3. Thus, d(Q) = d(T ) and Q 6 T yield that J(Q) 6 J(T ) 6 J(QJ(T )), and again we have

equality by choice of Q. This completes the proof of Step 4.

Step 5. We next show that J(Q) is F-centric. Suppose on the contrary that J(Q) is not F-centric.

By Step 2, Q is well-placed. By definition of well-placed, J(T ) is fully F-normalized. Hence, J(Q)

is fully F-normalized by Step 4. Since J(Q) is fully F-normalized and not F-centric, we have

CS(J(Q)) � J(Q). Note that CS(J(Q)) � Q since J(Q) does contain its centralizer in Q. Hence,

QCS(J(Q)) > Q, so with R := NQCS(J(Q))(Q), we have

R > Q.

On the other hand, Step 4 shows that

R = QNCS(J(Q))(Q) = QCT (J(Q)) = QCT (J(T )) = QZ(J(T )) = QZ(J(Q)) = Q,

a contradiction.

Step 6. Lastly, we obtain a contradiction. Among all well-placed, F-centric subgroups maximal

under <J whose normalizer in L is not centralized by τk(p), choose Q of minimum order. By Step 4

and the definition of well-placed, J(Q) = J(T ) is well-placed. By Step 5, J(Q) is centric. Note τk(p)

is not the identity on NH(J(Q)) = H by choice of Q. Since d(Q) = d(J(Q)) and J(J(Q)) = J(Q),

we have that Q = J(Q) by minimality of |Q|. Therefore, by Step 4,

J(Q) = J(T ) = J(NS(Q)) = J(NS(J(Q))).

It now follows that Q = J(Q) = J(S) by [GL16, Lemma 8.5(b)]. Since NL(J(S)) is centralized by

τ by Step 1, this is a contradiction.

Step 7. We prove the splitting condition. Since Steps 1-6 show that Out0(L) = 1 if p is odd,

splitting is trivial in that case. So take p = 2. Let E be the subgroup of Aut0(L) consisting of those

automorphisms which restrict to the identity on NL(J(S)). Step 1 shows that E maps surjectively

onto Out0(L) via the quotient map Aut0(L) → Out0(L), while Steps 1-6 show that E is a vector

space over F2. There is therefore a subgroup E0 which is a complement to CAutZ(S)(L)(NL(J(S)))

in E and which maps isomorphically onto Out0(L). This proves the assertion. �

Proof of Theorem 1.2 when L is a centric linking system. This follows directly from Theorem 1.1

in the centric linking locality case, given Theorem 2.11. �

Remark 3.4. The method of proof of Theorems 1.1 and 1.2 in case ∆ = Fc shows the slightly

stronger conclusion: if τ is an automorphism of a centric linking locality (centric linking system)

which is the identity on NL(J(S)) (AutL(J(S)), then τk(p) = idL.

We next want to prove Theorem 1.3, but first recall certain definitions from [AKO11, Section

III.5]. Let O(Fc) be the category with objects the F-centric subgroups, and with morphism sets

MorO(Fc)(P,Q) = Inn(Q)\HomF (P,Q),

the set of orbits of Inn(Q) in its left action by composition. The center functor

ZF : O(Fc)→ Ab
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is the functor which sends a subgroup P to its center Z(P ), and sends a morphism [ϕ] : P → Q to

the composite Z(Q) ↪→ Z(ϕ(P ))
ϕ−1|Z(ϕ(P ))−−−−−−−→ Z(P ) induced by the restriction of ϕ−1 : ϕ(P )→ P to

Z(ϕ(P )).

We refer to Section III.5.1 of [AKO11] for a description of the bar resolution for functor coho-

mology and write d for the coboundary map. Recall that a 0-cochain for ZF sends an object P of

O(Fc) to an element in Z(P ). A 1-cochain sends a morphism P
[ϕ]−→ Q in the orbit category to an

element in Z(P ). A 1-cochain for ZF is said to be inclusion-normalized if it sends the class of each

inclusion ιQP to 1 ∈ Z(P ). Write Ẑ1(O(Fc),ZF ) for the group of inclusion-normalized 1-cocycles,

and write B̂1(O(Fc),ZF ) ⊆ Ẑ1(O(Fc),ZF ) for the group of inclusion-normalized 1-coboundaries.

By the proof of [AKO11, III.5.12], there is a group homomorphism

λ̃ : Ẑ1(O(Fc),ZF )→ Aut(L)

given by sending a 1-cocycle t to the automorphism of L which is the identity on objects, and which

sends a morphism ϕ : P → Q in L to ϕ ◦ δP (t([ϕ])). Next, consider the group homomorphisms

cnst : Z(S)→ C0(O(Fc),ZF ) and conj : Z(S)→ Aut0(L),

where cnst sends an element z ∈ Z(S) to the constant 0-cochain uz with value z on each centric

subgroup, and conj sends an element z to the conjugation automorphism cδS(z) ∈ Aut0(L).

Lemma 3.5. There is an isomorphism of short exact sequences

1 // B̂1(O(Fc),ZF ) //

du7→u(S)Z(F)

��

Ẑ1(O(Fc),ZF )

λ̃
��

// lim1ZF //

λ
��

1

1 // Z(S)/Z(F)
conj // Aut0(L) // Out0(L) // 1.

(3.6)

Proof. This is essentially contained in the proof of [AKO11, Proposition III.5.12]. There the groups

Aut(L) and Out(L) are denoted AutItyp(L) and Outtyp(L). The commutative diagram displayed on

[AKO11, p.186] is shown to have exact rows and columns. Thus, λ̃ : Ẑ1(O(Fc),ZF ) → Aut(L) is

injective with image ker(µ̃) = Aut0(L). Also, λ̃ induces an injective homomorphism λ : lim1ZF →
Out(L) with image ker(µ) = Out0(L), and so λ̃ and λ are isomorphisms after restricting to these

codomains. Thus, the commutativity of this diagram also gives that the right square in (3.6)

commutes.

Second, from the proof of [AKO11, III.5.12], the composite d ◦ cnst has image B̂1(O(Fc),ZF ),

where, for each z ∈ Z(S), the image duz of uz under the coboundary map is inclusion-normalized,

and λ̃(duz) is conjugation by δS(z) on L. The composite B̂1(O(Fc),ZF ) ↪→ Ẑ1(O(Fc),ZF )
λ̃−→

Aut0(L) is injective. Thus, the kernel of the composite d ◦ cnst is the same as the kernel of conj.

But ker(conj) = Z(F) by [AOV12, Lemma 1.14]. Therefore, the inverse du 7→ u(S)Z(F) of the

isomorphism Z(S)/Z(F) → B̂1(O(Fc),ZF ) induced by d ◦ cnst makes the left square in (3.6)

commute. �

Proof of Theorem 1.3. By Theorem 1.2 in the case ∆ = Fc, the sequence 1 → AutZ(S)(L) →
Aut0(L) → Out0(L) → 1 is split exact. As AutZ(S)(L) is the image of the conjugation map

Z(S)/Z(F) → Aut0(L), it follows from Lemma 3.5 that the sequence 1 → B̂1(O(Fc),ZF ) →
Ẑ1(O(Fc),ZF ) → lim1ZF → 1 is also split exact and that lim1ZF ∼= Out0(L) is elementary

abelian. �
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4. Extending to larger object sets

In this section, we observe via Chermak descent [Che13, Theorem 5.15] that the group of rigid

automorphisms does not change when a centric linking locality is expanded to a larger object set.

Recall from [Hen19] that a subgroup P of S is said to be F-subcentric if for each fully F-normalized

F-conjugate Q of P , the subgroup Op(NF (Q)) is F-centric. The set of F-subcentric subgroups is

denoted Fs.

Proposition 4.1. Let L+ be a linking locality with object set ∆+ and fusion system F over a p-

group S. Let ∆ ⊆ ∆+ be a subset which contains Fcr and is closed under F-conjugacy and passing

to overgroups. Assume that L+|∆ = L. Then restriction induces an isomorphism Aut0(L+) →
Aut0(L) which restricts to an isomorphism AutZ(S)(L+)→ AutZ(S)(L).

Proof. This follows from Corollary 5.16 of [Che13], applied in the same way as in [Hen19, Theo-

rem 7.2]. The proof is by induction on |∆+ −∆|. If ∆+ = ∆, then L+ = L and there is nothing

to prove. Let T ∈ ∆+ −∆ be maximal under inclusion. We claim that Hypothesis 5.3 of [Che13]

holds. Since ∆ and ∆+ are F-invariant and closed under passing to overgroups, we can replace T

by an F-conjugate if necessary and assume that T is fully F-normalized. By induction, we may

also assume that ∆+ = ∆ ∪ TF .

Let T̂ = Op(NF (T )). Then T 6 T̂ , and we claim the inclusion is proper. Assume otherwise.

As an object of a linking locality, T is F-subcentric by [Hen19, Proposition 1(b)]. So by [Hen19,

Proposition 3.18], it follows that T ∈ Fcr. But then T ∈ ∆, which contradicts the choice of T .

Thus, T < T̂ , so T̂ ∈ ∆ by choice of T .

Let M = NL(T ), and set

∆T := {NP (T ) | T 6 P ∈ ∆} = {P ∈ ∆ | T 6 P 6 NS(T )},

where the second equality comes from maximality of T in ∆+ −∆. By Lemma 7.1 of [Hen19], M

is a finite group which is a model for NF (T ). In particular T is normal in M and NS(T ) is a Sylow

p-subgroup of M . So indeed, taking the identity L → L as a rigid automorphism, Hypothesis 5.3 of

[Che13] holds. Recall the locality L∆T
(M) from Example 2.9, and note that L∆T

(M) = M in the

current situation, since each normal p-subgroup of the fusion system of M is normal in M [Hen19,

Theorem 2.1(b)]. By Corollary 5.16 of [Che13], there is a unique rigid isomorphism L+(idM )→ L+

which restricts to the identity on L, where the former is constructed in [Che13, Theorem 5.14] and

defined after the proof of [Che13, Theorem 5.14]. Identify L+(idM ) and L+ via this isomorphism.

The identity automorphism is then the unique rigid automorphism of L+ which is the identity on

L. This shows that the restriction map Aut0(L+)→ Aut0(L) is injective.

To see surjectivity of restriction, take an arbitrary rigid isomorphism β of L. Again by [Che13,

Corollary 5.16], there is a rigid isomorphism β+ : L+(β|M )→ L+ which restricts to β on L. Taking

now L+(βM ) in the role of L+, we see that there is also a rigid isomorphism id+ : L+ = L+(idM )→
L+(βM ) which is the identity on L. The composition β+ ◦ id+ ∈ Aut0(L+) restricts to β on L, and

this shows the restriction map is surjective. �

Proof of Theorems 1.1 and 1.2. Let (L,∆, S) be an arbitrary linking locality. Now ∆ ⊆ Fs by

Proposition 1(b) of [Hen19], so by Theorem 7.2 of [Hen19], there is a linking locality (L+,Fs, S)

which restricts to L on ∆. As Fc ⊆ Fs, two applications of Proposition 4.1 give an isomor-

phism of short exact sequences between 1 → AutZ(S)(L) → Aut0(L) → Out0(L) → 1 and
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1 → AutZ(S)(L+|Fc) → Aut0(L+|Fc) → Out0(L+|Fc) → 1. Theorem 1.1 now follows from the

proof in the case ∆ = Fc. Then Theorem 1.2 follows from Theorem 1.1 and Theorem 2.11. �

Remark 4.2. Given the results of this section, the stronger statement mentioned in Remark 3.4

applies verbatim to arbitrary linking localities (linking systems) with object set ∆ containing J(S).

5. Comparing automorphisms of groups and linking systems

One may wonder whether it is possible to recover from Theorem 1.2 the analogous theorems

about groups, namely [Gla68, Theorem 10] for p = 2 and [GGLN20, Theorem 3.3] for p odd. This

is possible, but the only way we know how to do it goes through an argument similar to existing

arguments for establishing the group case anyway, so our way seems to have little additional value.

However, in the process of trying to construct a proof, we obtained Theorem 5.1 below, which

appears to be new and of independent interest. It depends for its proof on the Z∗p -theorem [Gla66a],

[GLS98, 7.8.2,7.8.3] that in a finite group with no normal p′-subgroups, any element which is weakly

closed in a Sylow p-subgroup is central.

First we need to set up some notation. Let p be a prime and let G be a finite group with Sylow

p-subgroup S. We write L = LcS(G) and F = FS(G) for the centric linking system and fusion

system of G. Thus, L has objects the F-centric subgroups, or equivalently, the p-centric subgroups

of G, i.e the subgroups P of S with CG(P ) = Z(P )×Op′(CG(P )). Morphisms are given by

MorL(P,Q) = NG(P,Q)/Op′(CG(P )).

where NG(P,Q) = {g ∈ G | gP 6 Q} is the transporter set, where composition is induced by

multiplication in G, and where Op′(CG(P )) acts on NG(P,Q) from the right. The structural

functor δ is the inclusion map, while π sends a coset gOp′(CG(P )) to conjugation by g.

By Sylow’s theorem, each outer automorphism of G is represented by an automorphism α ∈
NAut(G)(S). Such an automorphism induces an isomorphism from Op′(CG(P )) to Op′(CG(α(P )))

and a bijection NG(P,Q) → NG(α(P ), α(Q)), for each pair of centric subgroups P and Q. It is

then straightforward to check that α induces an automorphism of L by restriction in this way. Let

κ̃G : NAut(G)(S)→ Aut(L)

denote the resulting group homomorphism. This map sends AutG(S) onto {cγ | γ ∈ AutL(S)}, and

so there is an induced homomorphism

κG : Out(G)→ Out(L).

The composition µ̃G ◦ κ̃G : NAut(G)(S) → Aut(FS(G)) is just restriction to S. Here µ̃G is defined

just after Proposition 2.5.

Theorem 5.1. Fix a prime p, a finite group G, and a Sylow p-subgroup S of G. Let L be the

centric linking system for G. If Op′(G) = 1, then ker(κG) is a p′-group.

The proof uses the Z∗p -theorem only in the semidirect product of G by a p-power automorphism.

So if p = 2 or the composition factors of G are known, then this does not depend on the CFSG.

Proof. AssumeOp′(G) = 1. Fix a ∈ NAut(G)(S) with [a] ∈ ker(κG), and recall that µ̃G◦κ̃G sends a to

a|S . Since κ̃G maps NInn(G)(S) onto Inn(L) = {cγ | γ ∈ AutL(S)}, we may adjust a by an element of

NInn(G)(S) and take a ∈ CAut(G)(S). Then by choice of a, κ̃G(a) ∈ Inn(L)∩ ker(µ̃G) = AutZ(S)(L).

Choose z ∈ Z(S) such that κ̃G(a) = cz. Replacing a by acz−1 , we may take a ∈ ker(κ̃G). Finally,

replacing a by a p′-power, we may take a of p-power order.
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We will show that, if [a] 6= 1 in Out(G), then a normalizes but does not centralize H/Op′(H) for

some p-local subgroup H = NG(Q) with Q p-centric in G, that is, with Q ∈ FS(G)c. Thus, κ̃G(a)

does not centralize AutL(Q), and hence κ̃G(a) 6= 1, contrary to our choice of a.

So assume [a] 6= 1. Let Ĝ = G〈a〉 be the semidirect product, and set Ŝ = S〈a〉. Then Ŝ is Sylow

in Ĝ, and 〈a〉 6 Z(Ŝ). Also, Ŝ = S × 〈a〉 and Z(Ŝ) = Z(S) × 〈a〉. Note that if a is weakly closed

in Ŝ with respect to Ĝ, then by the Z∗p -theorem, we have a ∈ Z(Ĝ) since Op′(Ĝ) = Op′(G) = 1, so

that a = 1, contrary to assumption.

So a is not weakly closed in Ŝ with respect to Ĝ. By the Alperin-Goldschmidt fusion theorem in

Ĝ, there is a F
Ŝ

(Ĝ)-centric radical subgroup Q̂ 6 Ŝ and ĥ ∈ N
Ĝ

(Q̂) such that a ∈ Z(Ŝ) 6 Z(Q̂),

and a 6= ĥa ∈ Z(Q̂). By [LO02, Proposition A.11(c)],

Q := Q̂ ∩G is FS(G)-centric radical.(5.2)

Write ĥ = hak for some integer k and some h ∈ G. Since ak ∈ Q̂ and Q = Q̂ ∩ G, we have

h ∈ NG(Q̂) 6 NG(Q). Also, a 6= ĥa = ha. So [a, h] ∈ Ŝ. Note that a normalizes NG(Q), so

a normalizes Op′(NG(Q)). If a centralizes h modulo Op′(NG(Q)), then we would have [a, h] ∈
Op′(NG(Q)) ∩ Ŝ = 1, a contradiction. Hence, a does not centralize NG(Q)/Op′(NG(Q)). Together

with (5.2), this completes the proof of the proposition. �

A saturated fusion system F over S is said to be tame if F = FS(G) for some finite group G

with Sylow p-subgroup S such that the map κG is split surjective. Theorem 5.1 can be combined

with the following lemma of Broto, Møller, and Oliver to show that the splitting condition in the

definition of tame is unnecessary. The version we give of this lemma is a little different from the

corresponding statement in [BMO19, Lemma 1.5(b)]: two occurences of Op′(Z(G)) appearing there

(in the statement and proof) have been replaced by Op′(G). This change helps to make clearer the

step in the proof of [BMO19, Lemma 1.5(b)] which reduces to the case in which Z(G) is a p-group.

The proof of the lemma is otherwise the same.

Lemma 5.3. Let G be a finite group, p a prime, and S a Sylow p-subgroup of G. Assume κG is

surjective and ker(κG) is a p′-group. Then there is Ĝ > G/Op′(G) such that κ
Ĝ

is split surjective

and such that FS(Ĝ) = FS(G). In particular, FS(G) is tame, and it is tamely realized by Ĝ.

Proposition 5.4. Let F be a saturated fusion system over the p-group S. If F ∼= FS(G) for some

finite group G such that the map κG is surjective, then F is tame. Moreover, there is an extension

Ĝ > G/Op′(G) of G/Op′(G) which tamely realizes F .

Proof. Fix such a G, let Ḡ = G/Op′(G), and identify S also with its image in Ḡ. Write F =

FS(G), F̄ = FS(Ḡ), L = LcS(G), and L̄ = LcS(Ḡ). The canonical homomorphism G → Ḡ induces

isomorphisms L → L̄ and F → F̄ . As in the proof of [AOV12, Lemma 2.19], there is a resulting

commutative diagram

Out(G) //

κG
��

Out(Ḡ)

κḠ
��

Out(L)
∼= // Out(L̄)

As κG is surjective, also κḠ is surjective, so we may replace G by Ḡ and take Op′(G) = 1. The

result now follows from Theorem 5.1 and Lemma 5.3. �
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In [Gla66b], the first author showed, for a core-free group G with Sylow 2-subgroup S, that the

group CAut(G)(S) has abelian 2-subgroups and a normal 2-complement. The following proposition

gives further information and a reinterpretation of that situation.

Proposition 5.5. Let G be a finite group with Sylow p-subgroup S, let L be the centric linking

system for G, and set A = CAut(G)(S)/CInn(G)(S). If Op′(G) = 1, then A ∼= Op′(A) o B where

B = 1 if p is odd, and where B is an elementary abelian 2-group if p = 2. The normal p-

complement Op′(A) is the subgroup of NAut(G)(S)/NInn(G)(S) consisting of those classes which have

a representative that restricts to the identity on L. In particular, κG is injective upon restriction

to any Sylow p-subgroup of Out(G).

Proof. The group A is the kernel of the composite µG ◦ κG, which is induced by restriction to S.

By Theorem 1.2, the kernel of µG is either 1 or an elementary 2-group in the cases p odd or p = 2,

respectively. So ker(κG) = Op′(A) by Theorem 5.1. The last statement follows immediately. �
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