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Abstract. The transporter systems of Oliver and Ventura and the localities of Chermak are

classes of algebraic structures that model the p-local structures of finite groups. Other than

the transporter categories and localities of finite groups, important examples include centric,

quasicentric, and subcentric linking systems for saturated fusion systems. These examples are

however not defined in general on the full collection of subgroups of the Sylow group. We study

here punctured groups, a short name for transporter systems or localities on the collection of

nonidentity subgroups of a finite p-group. As an application of the existence of a punctured

group, we show that the subgroup homology decomposition on the centric collection is sharp for

the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it

to show that the smallest Benson-Solomon exotic fusion system at the prime 2 has a punctured

group, while the others do not. As for exotic fusion systems at odd primes p, we survey several

classes and find that in almost all cases, either the subcentric linking system is a punctured group

for the system, or the system has no punctured group because the normalizer of some subgroup

of order p is exotic. Finally, we classify punctured groups restricting to the centric linking system

for certain fusion systems on extraspecial p-groups of order p3.

1. Introduction

Let F be a fusion system over the finite p-group S. Thus, F is a category with objects

the subgroups of S, and with morphisms injective group homomorphisms which contain among

them the conjugation homomorphisms induced by elements of S plus one more weak axiom. A

fusion system is said to be saturated if it satisfies two stronger “saturation” axioms which were

originally formulated by L. Puig [Pui06] and rediscovered by Broto, Levi, and Oliver [BLO03b].

Those axioms hold whenever G is a finite group, S is a Sylow p-subgroup of G, and HomF (P,Q) =

HomG(P,Q) is the set of conjugation maps cg from P to Q that are induced by elements g ∈ G.

The fusion system of a finite group is denoted FS(G).

A saturated fusion system F is said to be exotic if it is not of the form FS(G) for any finite

group G with Sylow p-subgroup S. The Benson-Solomon fusion systems at p = 2 form one family

of examples of exotic fusion systems [LO02,AC10]. They are essentially the only known examples

at the prime 2, and they are in some sense the oldest known examples, having been studied in

the early 1970s by Solomon in the course of the classification of finite simple groups (although

not with the more recent categorical framework in mind) [Sol74]. In contrast with the case p = 2,

a fast-growing literature describes many exotic fusion systems on finite p-groups when p is odd.

In replacing a group by its fusion system at a prime, one retains information about conjugation

homomorphisms between p-subgroups, but otherwise loses information about the group elements

themselves. It is therefore natural that a recurring theme throughout the study of saturated fusion
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systems is the question of how to “enhance” or “rigidify” a saturated fusion system to make it

again more group-like, and also to study which fusion systems have such rigidifications.

The study of the existence and uniqueness of centric linking systems was a first instantiation

of this theme of rigidifying saturated fusion systems. A centric linking system is an important

extension category of a fusion system F which provides just enough algebraic information to

recover a p-complete classifying space. For example, it recovers the homotopy type of the p-

completion of BG in the case where F = FS(G). Centric linking systems of finite groups are easily

defined, and Oliver proved that the centric linking systems of finite groups are unique [Oli04,Oli06].

Then, Chermak proved that each saturated fusion system, possibly exotic, has a unique associated

centric linking system [Che13]. A proof which does not rely on the classification of finite simple

groups can be obtained through [Oli13,GL16].

More generally, there are at least two frameworks for considering extensions, or rigidifications, of

saturated fusion systems: the transporter systems of Oliver and Ventura [OV07] and the localities

of Chermak [Che13]. In particular, one can consider centric linking systems in either setting.

While centric linking systems in either setting have a specific set of objects, the object sets in

transporter systems and localities can be any conjugation-invariant collection of subgroups which

is closed under passing to overgroups. The categories of transporter systems and isomorphisms

and of localities and isomorphisms are equivalent [Che13, Appendix] and [GL21, Theorem 2.11].

However, depending on the intended application, it is sometimes advantageous to work in the

setting of transporter systems, and sometimes in localities. The reader is referred to Section 2 for

an introduction to localities and transporter systems.

In this paper we study punctured groups. These are transporter systems, or localities, with

objects the nonidentity subgroups of a finite p-group S. To motivate the terminology, recall that

every finite group G with Sylow p-subgroup S admits a transporter system TS(G) whose objects

are all subgroups of S and MorT (P,Q) = NG(P,Q), the transporter set consisting of all g ∈ G
which conjugate P into Q. Conversely, [OV07, Proposition 3.11] shows that a transporter system

T whose set of objects consists of all the subgroups of S is necessarily the transporter system

TS(G) where G = AutT (1), and the fusion system F with which T is associated is FS(G). Thus,

a punctured group T is a transporter system whose object set is missing the trivial subgroup, an

object whose inclusion forces T to be the transporter system of a finite group.

If we consider localities rather than transporter systems, then the punctured group of G is the

locality LS ∗(S)(G) ⊆ G consisting of those elements g ∈ G which conjugate a nonidentity subgroup

of S back into S. This is equipped with the multivariable partial product w := (g1, . . . , gn) 7→
g1 · · · gn, defined only when each initial subword of the word w conjugates some fixed nonidentity

subgroup of S back into S. Thus, the product is defined on words which correspond to sequences

of composable morphisms in the transporter category T ∗S (G). See Definition 2.6 for more details.

By contrast with the existence and uniqueness of linking systems, we will see that punctured

groups for exotic fusion systems do not necessarily exist. The existence of a punctured group for

an exotic fusion system seems to indicate that the fusion system is “close to being realizable” in

some sense. Therefore, considering punctured groups might provide some insight into how exotic

systems arise.

It is also not reasonable to expect that a punctured group is unique when it does exist. To

give one example, the fusion systems PSL2(q) with q ≡ 9 (mod 16) all have a single class of
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involutions and equivalent fusion systems at the prime 2. On the other hand, the centralizer of an

involution is dihedral of order 2(q−1), so the associated punctured groups are distinct for distinct

q. Examples like this one occur systematically in groups of Lie type in nondefining characteristic.

Later will give examples of realizable fusion systems with punctured groups which do not occur

as a full subcategory of the punctured group of a finite group.

We will now describe our results in detail. To start, we present a result which gives some

motivation for studying punctured groups.

1.1. Sharpness of the subgroup homology decomposition. As an application of the ex-

istence of the structure of a punctured group for a saturated fusion system F , we prove that

it implies the sharpness of the subgroup homology decomposition for that system. Recall from

[BLO03b, Definition 1.8] that given a p-local finite group (S,F ,L) its classifying space is the

Bousfield-Kan p-completion of the geometric realisation of the category L. This space is denoted

by |L|∧p .

The orbit category of F , see [BLO03b, Definition 2.1], is the category O(F) with the same

objects as F and whose morphism sets MorO(F)(P,Q) is the set of orbits of F(P,Q) under the

action of Inn(Q). The full subcategory of the F-centric subgroups is denoted O(Fc). For every

j > 0 there is a functor Hj : O(Fc)op → Z(p)-mod:

Hj : P 7→ Hj(P ;Fp), (P ∈ O(Fc)).

The stable element theorem for p-local finite groups [BLO03b, Theorem B, see also Theorem 5.8]

asserts that for every j > 0,

Hj(|L|∧p ;Fp) ∼= lim←−
O(Fc)

Hj = lim←−
P∈O(Fc)

Hj(P ;Fp).

The proof of this theorem in [BLO03b] is indirect and requires heavy machinery such as Lannes’s

T -functor theory. From the conceptual point of view, the stable element theorem is only a shadow

of a more general phenomenon. By [BLO03b, Proposition 2.2] there is a functor

B̃ : O(Fc)→ Top

with the property that B̃(P ) is homotopy equivalent to the classifying space of P (denoted BP )

and moreover there is a natural homotopy equivalence

|L| ' hocolim
O(Fc)

B̃.

The Bousfield-Kan spectral sequence for this homotopy colimit [BK72, Ch. XII, Sec. 4.5] takes

the form

Ei,j2 = lim←−
i

O(Fc)op

Hj ⇒ H i+j(|L|∧p ;Fp)

and is called the subgroup decomposition of (S,F ,L). We call the subgroup decomposition sharp,

see [Dwy98], if the spectral sequence collapses to the vertical axis, namely Ei,j2 = 0 for all i > 0.

When this is the case, the stable element theorem is a direct consequence. Indeed, whenever F is

induced from a finite group G with a Sylow p-subgroup S, the subgroup decomposition is sharp

(and the stable element theorem goes back to Cartan-Eilenberg [CE56, Theorem XII.10.1]). This
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follows immediately from Dwyer’s work [Dwy98, Sec. 1.11] and [BLO03a, Lemma 1.3], see for

example [DP15, Theorem B].

It is still an open question as to whether the subgroup decomposition is sharp for every saturated

fusion system. We will prove the following theorem.

Theorem 1.1. Let F be a saturated fusion system which affords the structure of a punctured

group. Then the subgroup decomposition on the F-centric subgroups is sharp. In other words,

lim←−
i

O(Fc)op

Hj = 0

for every i > 1 and j > 0.

We will prove this theorem in Section 3 below. We remark that our methods apply to any

functor H which in the language of [DP15] is the pullback of a Mackey functor on the orbit

category of F denoted O(F) such that H(e) = 0 where e 6 S is the trivial subgroup. In the

absence of applications in sight for this level of generality we have confined ourselves to the

functors H = Hj .

1.2. Signalizer functor theorem for punctured groups. It is natural to ask for which exotic

fusion systems punctured groups exist. We will answer this question for specific families of exotic

fusion systems. As a tool for proving the non-existence of punctured groups we define and study

signalizer functors for punctured groups thus mirroring a concept from finite group theory.

Definition 1.2. Let (L,∆, S) be a punctured group. If P is a subgroup of S, write Ip(P ) for

the set of elements of P of order p. A signalizer functor of (L,∆, S) (on elements of order p) is

a map θ from Ip(S) to the set of subgroups of L, which associates to each element a ∈ Ip(S) a

normal p′-subgroup θ(a) of CL(a) such that the following two conditions hold:

• (Conjugacy condition) θ(ag) = θ(a)g for any g ∈ L and a ∈ Ip(S) such that ag is defined

and an element of S.

• (Balance condition) θ(a) ∩ CL(b) 6 θ(b) for all a, b ∈ Ip(S) with [a, b] = 1.

Notice in the above definition that, since (L,∆, S) is a punctured group, for any a ∈ S, the

normalizer NL(〈a〉) and thus also the centralizer CL(a) is a subgroup.

Theorem 1.3 (Signalizer functor theorem for punctured groups). Let (L,∆, S) be a punctured

group and suppose θ is a signalizer functor of (L,∆, S) on elements of order p. Then

Θ̂ :=
⋃

x∈Ip(S)

θ(x)

is a partial normal subgroup of L with Θ̂ ∩ S = 1. In particular, the canonical projection ρ : L →
L/Θ̂ restricts to an isomorphism S → Sρ. Upon identifying S with Sρ, the following properties

hold:

(a) (L/Θ̂,∆, S) is a locality and FS(L/Θ̂) = FS(L).

(b) For each P ∈ ∆, the projection ρ restricts to an epimorphism NL(P ) → NL/Θ̂(P ) with

kernel Θ(P ) and thus induces an isomorphism NL(P )/Θ(P ) ∼= NL/Θ̂(P ).
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1.3. Punctured groups for families of exotic fusion systems. Let F be a saturated fusion

system on the p-group S. If L is a locality or transporter system associated with F , then for each

fully F-normalized object P of L, the normalizer fusion system NF (P ) is the fusion system of the

group NL(P ) if L is a locality, and of the group AutL(P ) if L is a transporter system. This gives

an easy necessary condition for the existence of a punctured group: for each fully F-normalized

nonidentity subgroup P 6 S, the normalizer NF (P ) is realizable.

Conversely, there is a sufficient condition for the existence of a punctured group: F is of

characteristic p-type, i.e. for each fully F-normalized nonidentity subgroup P 6 S, the normalizer

NF (P ) is constrained. This follows from the existence of linking systems (or similarly linking

localities) of a very general kind, a result which was shown in [Hen19, Theorem A] building on

the existence and uniqueness of centric linking systems.

The Benson-Solomon fusion systems FSol(q) at the prime 2 have the property that the normal-

izer fusion system of each nonidentity subgroup P is realizable, and moreover, CF (Z(S)) is the

fusion system at p = 2 of Spin7(q), and hence not constrained. So FSol(q) satisfies the obvious

necessary condition for the existence of a punctured group, and does not satisfy the sufficient one.

Building on results of Solomon [Sol74], Levi and Oliver showed that FSol(q) is exotic [LO02,

Theorem 3.4], i.e., it has no locality with objects all subgroups of a Sylow 2-group. In Section 4,

we show the following theorem.

Theorem 1.4. For any odd prime power q, the Benson-Solomon fusion system FSol(q) has a

punctured group if and only if q ≡ ±3 (mod 8).

If l is the nonnegative integer with the property that 2l+3 is the 2-part of q2−1, then FSol(q) ∼=
FSol(3

2l). So the theorem says that only the smallest Benson-Solomon system, FSol(3), has a

punctured group, and the larger ones do not. Further details and a uniqueness statement are

given in Theorem 4.1.

When showing the non-existence of a punctured group in the case q ≡ ±1 (mod 8), the Signal-

izer Functor Theorem 1.3 plays an important role in showing that a putative minimal punctured

group has no partial normal p′-subgroups. To construct a punctured group in the case q ≡ ±3

(mod 8), we turn to a procedure we call Chermak descent. It is an important tool in Chermak’s

proof of the existence and uniqueness of centric linking systems [Che13, Section 5] and allows us

(under some assumptions) to “expand” a given locality to produce a new locality with a larger

object set. Starting with a linking locality, we use Chermak descent to construct a punctured

group L for FSol(q) in which the centralizer of an involution is CL(Z(S)) ∼= Spin7(3).

It is possible that there could be other examples of punctured groups for FSol(3) in which the

centralizer of an involution is Spin7(q) for certain q = 31+6a; a necessary condition for existence

is that each prime divisor of q2 − 1 is a square modulo 7. However, given this condition, we can

neither prove or disprove the existence of an example with the prescribed involution centralizer.

In Section 5, we survey a few families of known exotic fusion systems at odd primes to deter-

mine whether or not they have a punctured group. A summary of the findings is contained in

Theorem 5.2. For nearly all the exotic systems we consider, either the system is of characteristic

p-type, or the centralizer of some p-element is exotic and a punctured group does not exist.
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In particular, when considering the family of Clelland-Parker systems [CP10] in which each

essential subgroup is special, we find that Op
′
(CF (Z(S))/Z(S)) is simple, exotic, and had not ap-

peared elsewhere in the literature as of the time of our writing. We dedicate part of Subsection 5.3

to describing these systems and to proving that they are exotic.

Applying Theorem 1.1 to the results of Sections 4 and 5 establish the sharpness of the subgroup

decomposition for new families of exotic fusion systems, notably

• Benson-Solomon’s system FSol(3) [LO02],

• all Parker-Stroth systems [PS15],

• all Clelland-Parker systems [CP10] in which each essential subgroup is abelian.

It also recovers the sharpness for certain fusion systems on p-groups with an abelian subgroup of

index p, a result that was originally established in full generality by Dıaz and Park [DP15].

1.4. Classification of punctured groups over p1+2
+ . In general, it seems difficult to classify all

the punctured groups associated to a given saturated fusion system. However, for fusion systems

over an extraspecial p-group of exponent p, which by [RV04] are known to contain among them

three exotic fusion systems at the prime 7, we are able to work out such an example. There is

always a punctured group L associated to such a fusion system, and when F has one class of

subgroups of order p and the full subcategory of L with objects the F-centric subgroups is the

centric linking system, a classification is obtained in Theorem 6.3. Conversely, the cases we list

in that theorem all occur in an example for a punctured group. This demonstrates on the one

hand that there can be more than one punctured group associated to the same fusion system and

indicates on the other hand that examples for punctured groups are still somewhat limited.

Outline of the paper and notation. The paper proceeds as follows. In Section 2 we recall

the definitions and basic properties of transporter systems and localities, and we prove the Sig-

nalizer Functor Theorem in Subsection 2.8. In Section 3, we prove sharpness of the subgroup

decomposition for fusion systems with associated punctured groups. Section 4 examines punc-

tured groups for the Benson-Solomon fusion systems, while Section 5 looks at several families of

exotic fusion systems at odd primes. Finally, in Section 6 classifies certain punctured groups over

an extraspecial p-group of order p3 and exponent p. An Appendix A sets notation and provides

certain general results on finite groups of Lie type that are needed in Section 4.

Throughout most of the paper we write conjugation like maps on the right side of the argument

and compose from left to right. There are two exceptions: when working with transporter systems,

such as in Section 3, we compose morphisms from right to left. Also, we apply certain maps in

Section 4 on the left of their arguments (e.g. roots, when viewed as characters of a torus). The

notation for Section 4 is outlined in more detail in the appendix.
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2. Localities and transporter systems

As already mentioned in the introduction, transporter systems as defined by Oliver and Ven-

tura [OV07] and localities in the sense of Chermak [Che13] are algebraic structures which carry

essentially the same information. In this section, we will give an introduction to both subjects and

outline briefly the connection between localities and transporter systems. At the end we present

some signalizer functor theorems for localities.

2.1. Partial groups. We refer the reader to Chermak’s papers [Che13] or [Che15] for a detailed

introduction to partial groups and localities. However, we will briefly summarize the most im-

portant definitions and results here. Following Chermak’s notation, we write W(L) for the set of

words in a set L, and ∅ for the empty word. The concatenation of words u1, . . . , uk ∈W(L) is

denoted by u1 ◦ u2 ◦ · · · ◦ uk.

Definition 2.1 (Partial Group). Let L be a non-empty set, let D be a subset of W(L), let

Π: D→ L be a map and let (−)−1 : L → L be an involutory bijection, which we extend to a map

(−)−1 : W(L)→W(L), w = (g1, . . . , gk) 7→ w−1 = (g−1
k , . . . , g−1

1 ).

We say that L is a partial group with product Π and inversion (−)−1 if the following hold:

• L ⊆ D (i.e. D contains all words of length 1), and

u ◦ v ∈ D =⇒ u, v ∈ D;

(so in particular, ∅ ∈ D.)

• Π restricts to the identity map on L;

• u ◦ v ◦ w ∈ D =⇒ u ◦ (Π(v)) ◦ w ∈ D, and Π(u ◦ v ◦ w) = Π(u ◦ (Π(v)) ◦ w);

• w ∈ D =⇒ w−1 ◦ w ∈ D and Π(w−1 ◦ w) = 1 where 1 := Π(∅).

Note that any group G can be regarded as a partial group with product defined in D = W(G)

by extending the “binary” product to a map W(G)→ G, (g1, g2, . . . , gn) 7→ g1g2 · · · gn.

For the remainder of this section let L be a partial group with product Π: D → L
defined on the domain D ⊆W(L).

Because of the group-like structure of partial groups, the product XY of two subsets X and Y
of L is naturally defined by

XY := {Π(x, y) : x ∈ X , y ∈ Y such that (x, y) ∈ D}.

Similarly, there is a natural notion of conjugation, which we consider next.

Definition 2.2. For every g ∈ L we define

D(g) = {x ∈ L | (g−1, x, g) ∈ D}.

The map cg : D(g) → L, x 7→ xg = Π(g−1, x, g) is the conjugation map by g. If H is a subset of

L and H ⊆ D(g), then we set

Hg = {hg | h ∈ H}.
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Whenever we write xg (or Hg), we mean implicitly that x ∈ D(g) (or H ⊆ D(g), respectively).

Moreover, if M and H are subsets of L, we write NM(H) for the set of all g ∈ M such that

H ⊆ D(g) and Hg = H. Similarly, we write CM(H) for the set of all g ∈M such that H ⊆ D(g)

and hg = h for all h ∈ H. If M⊆ L and h ∈ L, set CM(h) := CM({h}).

Definition 2.3. Let H be a non-empty subset of L. The subset H is a partial subgroup of L if

• g ∈ H =⇒ g−1 ∈ H; and

• w ∈ D ∩W(H) =⇒ Π(w) ∈ H.

If H is a partial subgroup of L with W(H) ⊆ D, then H is called a subgroup of L.

A partial subgroup N of L is called a partial normal subgroup of L (denoted N E L) if for all

g ∈ L and n ∈ N ,

n ∈ D(g) =⇒ ng ∈ N .

We remark that a subgroup H of L is always a group in the usual sense with the group

multiplication defined by hg = Π(h, g) for all h, g ∈ H.

2.2. Localities. Roughly speaking, localities are partial groups with some some extra structure,

in particular with a “Sylow p-subgroup” and a set ∆ of “objects” which in a certain sense deter-

mines the domain of the product. This is made more precise in Definition 2.5 below. We continue

to assume that L is a partial group with product Π: D→ L. We will use the following notation.

Notation 2.4. If S is a subset of L and g ∈ L, set

Sg := {s ∈ S ∩D(g) : sg ∈ S}.

More generally, if w = (g1, . . . , gn) ∈ W(L) with n > 1, define Sw to be the set of elements

s ∈ S for which there exists a sequence of elements s = s0, s1, . . . , sn ∈ S with si−1 ∈ D(gi) and

sgii−1 = si for all i = 1, . . . , n.

Definition 2.5. We say that (L,∆, S) is a locality if the partial group L is finite as a set, S is a

p-subgroup of L, ∆ is a non-empty set of subgroups of S, and the following conditions hold:

(L1) S is maximal with respect to inclusion among the p-subgroups of L.

(L2) For any word w = (f1, . . . , fn) ∈ W(L), we have w ∈ D if and only if there exist

P0, . . . , Pn ∈ ∆ with

(∗) Pi−1 ⊆ D(fi) and P fii−1 = Pi for all i = 1, . . . , n.

(L3) The set ∆ is closed under passing to L-conjugates and overgroups in S, i.e. ∆ is overgroup-

closed in S and, for every P ∈ ∆ and g ∈ L such that P ⊆ Sg, we have P g ∈ ∆.

If (L,∆, S) is a locality, w = (f1, . . . , fn) ∈ W(L), and P0, . . . , Pn are elements of ∆ such that

(∗) holds, then we say that w ∈ D via P0, . . . , Pn (or w ∈ D via P0).

It is argued in [Hen19, Remark 5.2] that Definition 2.5 is equivalent to the definition of a

locality given by Chermak [Che15, Definition 2.8] (which is essentially the same as the one given

in [Che13, Definition 2.9]).

Example 2.6. Let M be a finite group and S ∈ Sylp(M). Set F = FS(M) and let ∆ be a

non-empty collection of subgroups of S, which is closed under F-conjugacy and overgroup-closed

in S. Set

L∆(M) := {g ∈ G : S ∩ Sg ∈ ∆} = {g ∈ G : ∃P ∈ ∆ with P g 6 S}
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and let D be the set of tuples (g1, . . . , gn) ∈ W(M) such that there exist P0, P1, . . . , Pn ∈ ∆

with P gii−1 = Pi. Then L∆(M) forms a partial group whose product is the restriction of the

multivariable product on M to D, and whose inversion map is the restriction of the inversion map

on the group M to L∆(M). Moreover, (L∆(M),∆, S) forms a locality.

In the next lemma we summarize the most important properties of localities which we will use

throughout, most of the time without reference.

Lemma 2.7 (Important properties of localities). Let (L,∆, S) be a locality. Then the following

hold:

(a) NL(P ) is a subgroup of L for each P ∈ ∆.

(b) Let P ∈ ∆ and g ∈ L with P ⊆ Sg. Then Q := P g ∈ ∆, NL(P ) ⊆ D(g) and

cg : NL(P )→ NL(Q), x 7→ xg

is an isomorphism of groups.

(c) Let w = (g1, . . . , gn) ∈ D via (X0, . . . , Xn). Then

cg1 ◦ · · · ◦ cgn = cΠ(w)

is a group isomorphism NL(X0)→ NL(Xn).

(d) For every g ∈ L, we have Sg ∈ ∆. In particular, Sg is a subgroup of S. Moreover,

Sgg = Sg−1 and cg : Sg → S, x 7→ xg is an injective group homomorphism.

(e) For every g ∈ L, cg : D(g)→ D(g−1), x 7→ xg is a bijection with inverse map cg−1.

(f) For any w ∈W(L), Sw is a subgroup of S with Sw ∈ ∆ if and only if w ∈ D. Moreover,

w ∈ D implies Sw 6 SΠ(w).

Proof. Properties (a),(b) and (c) correspond to the statements (a),(b) and (c) in [Che15, Lemma 2.3]

except for the fact stated in (b) that Q ∈ ∆, which is however clearly true if one uses the definition

of a locality given above. Property (d) holds by [Che15, Proposition 2.6(a),(b)] and property (e)

is stated in [Che13, Lemma 2.5(c)]. Property (f) corresponds to Corollary 2.7 in [Che15]. �

Let (L,∆, S) be a locality. Then it follows from Lemma 2.7(d) that, for every P ∈ ∆ and every

g ∈ L with P ⊆ Sg, the map cg : P → P g, x 7→ xg is an injective group homomorphism. The

fusion system FS(L) is the fusion system over S generated by such conjugation maps. Equivalently,

FS(L) is generated by the conjugation maps between subgroups of S, or by the conjugation maps

of the form cg : Sg → S, x 7→ xg with g ∈ L.

Definition 2.8. If F is a fusion system, then we say that the locality (L,∆, S) is a locality over

F if F = FS(L).

If (L,∆, S) is a locality over F , then notice that the set ∆ is always overgroup-closed in S and

closed under F-conjugacy.

Lemma 2.9. Let (L,∆, S) be a locality over a fusion system F and P ∈ ∆. Then the following

hold:

(a) For every ϕ ∈ HomF (P, S), there exists g ∈ L such that P 6 Sg and ϕ(x) = xg for all

x ∈ P .

(b) NF (P ) = FNS(P )(NL(P )).
9



Proof. For (a) see Lemma 5.6 and for (b) see Lemma 5.4 in [Hen19]. �

Suppose (L+,∆+, S) is a locality with partial product Π+ : D+ → L+. If ∆ is a non-empty

subset of ∆+ which is closed under taking L+-conjugates and overgroups in S, we set

L+|∆ := {f ∈ L+ : ∃P ∈ ∆ such that P ⊆ D+(f) and P f 6 S}

and write D for the set of words w = (f1, . . . , fn) such that w ∈ D+ via P0, . . . , Pn for some

P0, . . . , Pn ∈ ∆. Note that D is a set of words in L+|∆ which is contained in D+. It is easy

to check that L+|∆ forms a partial group with partial product Π+|D : D → L+|∆, and that

(L+|∆,∆, S) forms a locality; see [Che13, Lemma 2.21] for details. We call L+|∆ the restriction

of L+ to ∆.

2.3. Morphisms of localities. Throughout this subsection let L and L′ be partial groups with

products Π: D→ L and Π′ : D′ → L′ respectively.

Definition 2.10. Let β : L → L′, g 7→ gβ be a map. By abuse of notation, we denote by β also

the induced map on words

W(L)→W(L′), w = (f1, . . . , fn) 7→ wβ = (fβ1 , . . . , f
β
n )

and set Dβ = {wβ : w ∈ D}. We say that β is a homomorphism of partial groups if

(1) Dβ ⊆ D′; and

(2) Π(w)β = Π′(wβ) for every w ∈ D.

If moreover Dβ = D′ (and thus β is in particular surjective), then we say that β is a projection

of partial groups. If β is a bijective projection of partial groups, then β is called an isomorphism.

Definition 2.11. Let (L,∆, S) and (L′,∆′, S′) be localities and let β : L → L′ be a projection of

partial groups. We say that β is a projection of localities from (L,∆, S) to (L′,∆′, S′) if, setting

∆β = {P β | P ∈ ∆}, we have ∆β = ∆′ (and thus Sβ = S′).

If β is in addition bijective, then β is a called an isomorphism of localities. If S = S′, then an

isomorphism of localities from (L,∆, S) to (L′,∆′, S) is called a rigid isomorphism if it restricts

to the identity on S.

The notion of a rigid isomorphism will be important later on when talking about the uniqueness

of certain localities attached to a given fusion system. We will now describe some naturally

occurring projections of localities. Suppose (L,∆, S) is a locality and N is a partial normal

subgroup of L. A coset of N in L is a subset of the form

N f := {Π(n, f) : n ∈ N such that (n, f) ∈ D}

for some f ∈ L. Unlike in groups, the set of cosets does not form a partition of L in general.

Instead, one needs to focus on the maximal cosets, i.e. the elements of the set of cosets of N in

L which are maximal with respect to inclusion. The set L/N of maximal cosets of N in L forms

a partition of L. Thus, there is a natural map

β : L → L/N

sending each element g ∈ L to the unique maximal coset of N in L containing g. Set L := L/N
and D := Dβ := {wβ : w ∈ D}. By [Che15, Lemma 3.16], there is a unique map Π: D→ L and a

10



unique involutory bijection L → L, f 7→ f
−1

such that L with these structures is a partial group,

and such that β is a projection of partial groups. Moreover, setting S := Sβ and ∆ := {P β : P ∈
∆}, the triple (L,∆, S) is by [Che15, Corollary 4.5] a locality, and β is a projection from (L,∆, S)

to (L,∆, S). The map β is called the natural projection from L → L.

The notation used above suggests already that we will use a “bar notation” similar to the one

commonly used in finite groups. Namely, if we set L := L/N , then for every subset or element P

of L, we will denote by P the image of P under the natural projection β : L → L. We conclude

this section with a little lemma needed later on.

Lemma 2.12. Let (L,∆, S) be a locality with partial normal subgroup N . Setting L := L/N , the

preimage of S under the natural projection equals NS.

Proof. For every s ∈ S, the coset N s is by Lemma 3.7(a) and Proposition 3.14(c) in [Che15]

maximal. Thus, for every s ∈ S, we have s = N s. Hence, the preimage of S = {s : s ∈ S} equals⋃
s∈S N s = NS. �

2.4. Transporter systems. Throughout this section, fix a finite p-group S, a fusion system F
over S, and a collection ∆ of nonidentity subgroups of S which is overgroup-closed in S and closed

under F-conjugacy. As the literature about transporter systems is written in left-hand notation,

in this section, we will also write our maps on the left hand side of the argument. Accordingly we

will conjugate from the left.

The transporter category TS(G) (at the prime p) of a finite group G with Sylow p-subgroup

S is the category with objects the nonidentity subgroups of S and with morphisms given by the

transporter sets NG(P,Q) = {g ∈ G | gP 6 Q}. More precisely, the morphisms in TS(G) between

P and Q are the triples (g, P,Q) with g ∈ NG(P,Q). We also write T∆(G) for the full subcategory

of TS(G) with objects in ∆.

Since we conjugate in this section from the left, for P,Q 6 S and g ∈ NG(P,Q), we write cg
for the conjugation map from P to Q given by left conjugation, i.e.

cg : P → Q, x 7→ gx.

Definition 2.13. [OV07] A transporter system associated to F is a nonempty finite category T
having object set ∆ together with functors

T∆(S)
ε−−−−→ T ρ−−−−→ F

satisfying the following axioms.

(A1) ε is the identity on objects and ρ is the inclusion on objects;

(A2) For each P,Q ∈ ∆, the kernel

E(P ) := ker(ρP,P : AutT (P ) −→ AutF (P ))

acts freely on MorT (P,Q) by right composition, and ρP,Q is the orbit map for this action.

Also, E(Q) acts freely on MorT (P,Q) by left composition.

(B) For each P,Q ∈ ∆, εP,Q : NS(P,Q) → MorT (P,Q) is injective, and the composite ρP,Q ◦
εP,Q sends s ∈ NS(P,Q) to cs ∈ HomF (P,Q).

11



(C) For all ϕ ∈ MorT (P,Q) and all g ∈ P , the diagram

P

εP,P (g)

��

ϕ // Q

εQ,Q(ρ(ϕ)(g))

��
P

ϕ
// Q

commutes in T .

(I) εS,S(S) is a Sylow p-subgroup of AutT (S).

(II) Let ϕ ∈ IsoT (P,Q), let P E P̄ 6 S, and let Q E Q̄ 6 S be such that ϕ ◦ εP,P (P̄ ) ◦ ϕ−1 6
εQ,Q(Q̄). Then there exists ϕ̄ ∈ MorT (P̄ , Q̄) such that ϕ̄ ◦ εP,P̄ (1) = εQ,Q̄(1) ◦ ϕ.

If we want to be more precise, we say that (T , ε, ρ) is a transporter system.

A centric linking system in the sense of [BLO03b] is a transporter system in which ∆ is the set

of F-centric subgroups and E(P ) is precisely the center Z(P ) viewed as a subgroup of NS(P ) via

the map εP,P . A more general notion of linking systems will be introduced in Subsection 2.6.

Definition 2.14. Let (T , ε, ρ) and (T ′, ε′, ρ′) be transporter systems. An equivalence of categories

α : T → T ′ is called an isomorphism if

• αP,P (εP,P (P )) = ε′α(P ),α(P )(α(P )) for all objects P of T , and

• αP,Q(εP,Q(1)) = ε′α(P ),α(Q)(1) for all objects P,Q of T .

2.5. The correspondence between transporter systems and localities. Throughout this

subsection let F be a fusion system over S.

Every locality (L,∆, S) over F leads to a transporter system associated to F . To see that we

need to consider conjugation from the left. If f, x ∈ L such that (f, x, f−1) ∈ D (or equivalently

x ∈ D(f−1)), then we set fx := Π(f, x, f−1) = xf
−1

. Similarly, if f ∈ L and H ⊆ D(f−1), then

set

fH := Hf−1
:= {fx : x ∈ H}.

Define T∆(L) to be the category whose object set is ∆ with the morphism set MorT∆(L)(P,Q)

between two objects P,Q ∈ ∆ given as the set of triples (f, P,Q) with f ∈ L such that P ⊆ D(f−1)

and fP 6 Q. This leads to a transporter system (T∆(L), ε, ρ), where for all P,Q ∈ ∆, εP,Q is the

inclusion map and ρP,Q sends (f, P,Q) to the conjugation map P → Q, x 7→ fx.

Conversely, Chermak showed in [Che13, Appendix] essentially that every transporter system

leads to a locality. More precisely, it is proved in [GL21, Theorem 2.11] that there is an equivalence

of categories between the category of transporter systems with morphisms the isomorphisms and

the category of localities with morphisms the rigid isomorphisms. The definition of a locality

in [GL21] differs slightly from the one given in this paper, but the two definitions can be seen to

be equivalent if one uses firstly that conjugation by f ∈ L from the left corresponds to conjugation

by f−1 from the right, and secondly that for every partial group L with product Π: D → L the

axioms of a partial group yield D = {w ∈W(L) : w−1 ∈ D}.
We will consider punctured groups in either setting thus using the term “punctured group”

slightly abusively.
12



Definition 2.15. We call a transporter system T over F a punctured group if the object set of

T equals the set of all non-identity subgroups. Similarly, a locality (L,∆, S) over F is said to be

a punctured group if ∆ is the set of all non-identity subgroups of S.

Observe that a transporter system over F which is a punctured group exists if and only if a

locality over F which is a punctured group exists. If it matters it will always be clear from the

context whether we mean by a punctured group a transporter system or a locality.

2.6. Linking localities and linking systems. As we have seen in the previous subsection,

localities correspond to transporter systems. Of fundamental importance in the theory of fusion

systems are (centric) linking systems, which are special cases of transporter systems. It is therefore

natural to look at localities corresponding to linking systems. Thus, we will introduce special

kinds of localities called linking localities. We will moreover introduce a (slightly non-standard)

definition of linking systems and summarize some of the most important results about the existence

and uniqueness of linking systems and linking localities. Throughout this subsection let F be a

saturated fusion system over S.

We refer the reader to [AKO11] for the definitions of F-centric and F-centric radical subgroups

denoted by Fc and Fcr respectively. Moreover, we will use the following definition which was

introduced in [Hen19].

Definition 2.16. A subgroup P 6 S is called F-subcentric if Op(NF (Q)) is centric for every

fully F-normalized F-conjugate Q of P . The set of subcentric subgroups is denoted by Fs.

Recall that F is called constrained if there is an F-centric normal subgroup of F . It is shown

in [Hen19, Lemma 3.1] that a subgroup P 6 S is F-subcentric if and only if for some (and thus

for every) fully F-normalized F-conjugate Q of P , the normalizer NF (Q) is constrained.

Definition 2.17. • A finite group G is said to be of characteristic p if CG(Op(G)) 6 Op(G).

• Define a locality (L,∆, S) to be of objective characteristic p if, for any P ∈ ∆, the group

NL(P ) is of characteristic p.

• A locality (L,∆, S) over F is called a linking locality, if Fcr ⊆ ∆ and (L,∆, S) is of

objective characteristic p.

• A subcentric linking locality over F is a linking locality (L,Fs, S) over F . Similarly, a

centric linking locality over F is a linking locality (L,Fc, S) over F .

If (L,∆, S) is a centric linking locality, then it is shown in [Hen19, Proposition 1] that the

corresponding transporter system T∆(L) is a centric linking system. Also, if (L,∆, S) is a centric

linking locality, then it is a centric linking system in the sense of Chermak [Che13], i.e. we have

the property that CL(P ) 6 P for every P ∈ ∆.

The term linking system is used in [Hen19] for all transporter systems coming from linking

localities, as such transporter systems have properties similar to the ones of linking systems in

Oliver’s definition [Oli10] and can be seen as a generalization of such linking systems. We adapt

this slightly non-standard definition here.

Definition 2.18. A linking system over F is a transporter system T over F such that Fcr ⊆
obj(T ) and AutT (P ) is of characteristic p for every P ∈ obj(T ). A subcentric linking system over

F is a linking system T whose set of objects is the set Fs of subcentric subgroups.
13



Proving the existence and uniqueness of centric linking systems was a long-standing open

problem, which was solved by Chermak [Che13]. Building on a basic idea in Chermak’s proof,

Oliver [Oli13] gave a new one via an earlier developed cohomological obstruction theory. Both

proofs depend a priori on the classification of finite simple groups, but work of Glauberman and the

third author of this paper [GL16] removes the dependence of Oliver’s proof on the classification.

The precise theorem proved is the following.

Theorem 2.19 (Chermak [Che13], Oliver [Oli13], Glauberman–Lynd [GL16]). There exists a cen-

tric linking system associated to F which is unique up to an isomorphism of transporter systems.

Similarly, there exists a centric linking locality over F which is unique up to a rigid isomorphism.

Using the existence and uniqueness of centric linking systems one can relatively easily prove

the following theorem.

Theorem 2.20 (Henke [Hen19]). The following hold:

(a) If Fcr ⊆ ∆ ⊆ Fs such that ∆ is overgroup-closed in S and closed under F-conjugacy,

then there exists a linking locality over F with object set ∆, and such a linking locality is

unique up to a rigid isomorphism. Similarly, there exists a linking system T associated to

F whose set of objects is ∆, and such a linking system is unique up to an isomorphism

of transporter systems. Moreover, the nerve |T | is homotopy equivalent to the nerve of a

centric linking system associated to F .

(b) The set Fs is overgroup-closed in S and closed under F-conjugacy. In particular, there

exists a subcentric linking locality over F which is unique up to a rigid isomorphism,

and there exists a subcentric linking system associated to F which is unique up to an

isomorphism of transporter systems.

The existence of subcentric linking systems stated in part (b) of the above theorem gives often

a way of proving the existence of a punctured group. The fusion system F is said to be of

characteristic p-type, if NF (Q) is constrained for every non-trivial fully F-normalized subgroup

Q of S. Equivalently, F is of characteristic p-type, if Fs contains the set of all non-identity

subgroups of S. Indeed, if F is of characteristic p-type but not constrained, then the set Fs
equals the set of all non-identity subgroups. So in this case there exists a “canonical” punctured

group over F , namely the subcentric linking locality (or the subcentric linking system if one uses

the language of transporter systems).

2.7. Partial normal p′-subgroups. Normal p′-subgroups are often considered in finite group

theory. We will now introduce a corresponding notion in localities and prove some basic properties.

Throughout this subsection let (L,∆, S) be a locality.

Definition 2.21. A partial normal p′-subgroup of L is a partial normal subgroup N of L such

that N ∩ S = 1. The locality (L,∆, S) is said to be p′-reduced if there is no non-trivial partial

normal p′-subgroup of L.

Remark 2.22. If (L,∆, S) is a locality over a fusion system F , then for any p′-group N , the

direct product (L × N,∆, S) is a locality over F such that N is a partial normal p′-subgroup

of L × N and (L × N)/N ∼= L; see [Hen17] for details of the construction of direct products of
14



localities. Thus, if we want to prove classification theorems for localities, it is actually reasonable

to restrict attention to p′-reduced localities.

Recall that, for a finite group G, the largest normal p′-subgroup is denoted by Op′(G). Indeed,

a similar notion can be defined for localities. Namely, it is a special case of [Che15, Theorem 5.1]

that the product of two partial normal p′-subgroups is again a partial normal p′-subgroup. Thus,

the following definition makes sense.

Definition 2.23. The largest normal p′-subgroup of L is denoted by Op′(L).

We will now prove some properties of partial normal p′-subgroups. To start, we show two

lemmas which generalize corresponding statements for groups. The first of these lemmas gives a

way of passing from an arbitrary locality to a p′-reduced locality.

Lemma 2.24. Set L := L/Op′(L). Then (L,∆, S) is p′-reduced.

Proof. Let N be the preimage of Op′(L) under the natural projection L → L. Then by [Che15,

Proposition 4.7], N is a partial normal subgroup of L containing Op′(L). Moreover, N ∩ S ⊆
N ∩ S = 1, which implies N ∩ S ⊆ Op′(L) and thus N ∩ S ⊆ Op′(L) ∩ S = 1. Thus, N
is a partial normal p′ subgroup of L and so by definition contained in Op′(L). This implies

Op′(L) = N = 1. �

Lemma 2.25. Given a partial normal p′-subgroup N of L, the image of Op′(L) in L/N under the

canonical projection is a partial normal p′-subgroup of L/N . In particular, if L/N is p′-reduced,

then N = Op′(L).

Proof. Set L := L/N . Then by [Che15, Proposition 4.7], Op′(L) is a partial normal subgroup of

L. By Lemma 2.12, the preimage of S equals NS. As N ⊆ Op′(L), the preimage of Op′(L) ∩ S
is thus contained in Op′(L) ∩ (NS). By the Dedekind Lemma [Che15, Lemma 1.10], we have

Op′(L)∩ (NS) = N (Op′(L)∩S) = N . Hence, Op′(L)∩S = 1 and Op′(L) is a normal p′-subgroup

of L. If L = L/N is p′-reduced, it follows that Op′(L) = 1 and so Op′(L) = N . �

We now proceed to prove some technical results which are needed in the next subsection.

Lemma 2.26. If N is a partial normal p′-subgroup of L, then f ∈ CN (Sf ) for every f ∈ N .

Proof. Let f ∈ N , set P := Sf and let s ∈ P . Then P f 6 S and thus P fs 6 S. Moreover,

P s = P . Thus, w = (s−1, f−1, s, f) ∈ D via P fs. Now Π(w) = (f−1)sf = s−1sf ∈ N ∩ S = 1

and hence sf = s. As s ∈ P was arbitrary, this proves f ∈ CN (P ). �

Lemma 2.27. If N is a non-trivial partial normal p′ subgroup of L, then there exists P ∈ ∆ such

that NN (P ) = CN (P ) 6= 1. In particular, if Op′(NL(P )) = 1 for all P ∈ ∆, then Op′(L) = 1.

Proof. Let N be a non-trivial partial normal p′-subgroup and pick 1 6= f ∈ N . Then P := Sf ∈ ∆

by Lemma 2.7(e), and it follows from Lemma 2.26 that 1 6= f ∈ CN (P ). As NN (P ) is a normal

p′-subgroup of NL(P ) and P is a normal p-subgroup of NL(P ), we have CN (P ) = NN (P ). Hence,

CN (P ) = NN (P ) 6= 1 is a normal p′-subgroup of NL(P ) and the assertion follows. �

Corollary 2.28. If (L,∆, S) is a linking locality or, more generally, a locality of objective char-

acteristic p, then Op′(L) = 1.
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Proof. If, for every P ∈ ∆, the group NL(P ) is of characteristic p, then it is in particular p′-

reduced. Thus, the assertion follows from Corollary 2.27. �

2.8. A signalizer functor theorem for punctured groups. In this section we provide some

tools for showing that a locality has a non-trivial partial normal p′-subgroup. Corresponding

problems for groups are typically treated using signalizer functor theory. A similar language will be

used here for localities. We will start by investigating how a non-trivial partial normal p′-subgroup

can be produced if some information is known on the level of normalizers of objects. We will then

use this to show a theorem for punctured groups which looks similar to the signalizer functor

theorem for finite groups, but is much more elementary to prove. Throughout this subsection let

(L,∆, S) be a locality.

Definition 2.29. A signalizer functor of (L,∆, S) on objects is a map from ∆ to the set of

subgroups of L, which associates to P ∈ ∆ a normal p′-subgroup Θ(P ) of NL(P ) such that the

following conditions hold:

• (Conjugacy condition) Θ(P )g = Θ(P g) for all P ∈ ∆ and all g ∈ L with P 6 Sg.
• (Balance condition) Θ(P ) ∩ CL(Q) = Θ(Q) for all P,Q ∈ ∆ with P 6 Q.

As seen in Lemma 2.27, given a locality (L,∆, S) with Op′(L) 6= 1, there exists P ∈ ∆ with

Op′(NL(P )) 6= 1. The next theorem says basically that, under suitable extra conditions, the

converse holds.

Proposition 2.30. If Θ is a signalizer functor of (L,∆, S) on objects, then

Θ̂ :=
⋃
P∈∆

Θ(P )

is a partial normal p′-subgroup of L. In particular, the canonical projection ρ : L → L/Θ̂ restricts

to an isomorphism S → Sρ. Upon identifying S with Sρ, the following properties hold:

(a) (L/Θ̂,∆, S) is a locality and FS(L/Θ̂) = FS(L).

(b) For each P ∈ ∆, the restriction NL(P )→ NL/Θ̂(P ) of ρ has kernel Θ(P ) and induces an

isomorphism NL(P )/Θ(P ) ∼= NL/Θ̂(P ).

Proof. We proceed in three steps, where in the first step, we prove a technical property, which

allows us in the second step to show that Θ̂ is a partial normal p′-subgroup, and in the third step

to conclude that the remaining properties hold.

Step 1: We show x ∈ Θ(Sx) for any x ∈ Θ̂. Let x ∈ Θ̂. Then by definition of Θ̂, the element

x lies in Θ(P ) for some P ∈ ∆. Choose such P maximal with respect to inclusion. Notice that

[P, x] = 1. In particular, P 6 Sx and [NSx(P ), x] 6 Θ(P )∩NS(P ) = 1. Hence, using the balance

condition, we conclude x ∈ Θ(P ) ∩ CL(NSx(P )) = Θ(NSx(P )). So the maximality of P yields

P = NSx(P ) and thus P = Sx. Hence, x ∈ Θ(Sx) as required.

Step 2: We show that Θ̂ is a partial normal p′-subgroup of L. Clearly Θ̂ is closed under inversion,

since Θ(P ) is a group for every P ∈ ∆. Note also that Π(∅) = 1 ∈ Θ̂ as 1 ∈ Θ(P ) for

any P ∈ ∆. Let now (x1, . . . , xn) ∈ D ∩W(Θ) with n > 1. Then R := S(x1,...,xn) ∈ ∆ by

Lemma 2.7(f). Induction on i together with the balance condition and Step 1 shows R 6 Sxi
and xi ∈ Θ(Sxi) 6 Θ(R) 6 CL(R) for each i = 1, . . . , n. Hence, Π(x1, x2, . . . , xn) ∈ Θ(R) ⊆ Θ̂.
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Thus, Θ̂ is a partial subgroup of L. Let x ∈ Θ̂ and f ∈ L with (f−1, x, f) ∈ D. Then X :=

S(f−1,x,f) ∈ ∆ by Lemma 2.7(f). Moreover, Xf−1
6 Sx. By Step 1, we have x ∈ Θ(Sx), and

then by the balance condition, x ∈ Θ(Xf−1
). It follows now from the conjugacy condition that

xf ∈ Θ(Xf−1
)f = Θ(X) ⊆ Θ̂. Hence, Θ̂ is a partial normal subgroup of L. Notice that Θ̂∩S = 1,

as Θ(P )∩ S = Θ(P )∩NS(P ) = 1 for each P ∈ ∆. Thus, Θ̂ is a partial normal p′-subgroup of L.

Step 3: We are now in a position to complete the proof. By [Che15, Corollary 4.5], the quotient

map ρ : L → L/Θ̂ is a homomorphism of partial groups with ker(ρ) = Θ̂. Moreover, setting ∆ρ :=

{P ρ : P ∈ ∆}, the triple (L/Θ̂,∆ρ, Sρ) is a locality. Notice that ρ|S : S → Sρ is a homomorphism

of groups with kernel S ∩ Θ̂ = 1 and thus an isomorphism of groups. Upon identifying S with

Sρ, it follows now that (L/Θ̂,∆, S) is a locality. Moreover, by [Hen19, Theorem 5.7(b)], we have

FS(L) = FS(L/Θ̂). So (a) holds. Let P ∈ ∆. By [Che15, Theorem 4.3(c)], the restriction of ρ to

a map NL(P ) → NL/Θ̂(P ) is an epimorphism with kernel NL(P ) ∩ Θ̂. For any x ∈ NL(P ) ∩ Θ̂,

we have P 6 Sx and then x ∈ Θ(Sx) 6 Θ(P ) by the balance condition and Step 1. This shows

NL(P ) ∩ Θ̂ = Θ(P ) and so (b) holds. �

Remark 2.31. If P,Q,R ∈ ∆ such that P 6 Q 6 R and the balance condition in Definition 2.29

holds for the pairs P 6 Q and Q 6 R, then

Θ(P ) ∩ CL(R) = Θ(P ) ∩ CL(Q) ∩ CL(R) = Θ(Q) ∩ CL(R) = Θ(R),

i.e. the balance condition holds for the pair P 6 R.

The following proposition is essentially a restatement of [Hen19, Proposition 6.4], but we will

give an independent proof building on the previous proposition.

Proposition 2.32. Let (L,∆, S) be a locality such that, setting

Θ(P ) := Op′(NL(P )) for every P ∈ ∆,

the group NL(P )/Θ(P ) is of characteristic p for every P ∈ ∆. Then the assignment Θ is a

signalizer functor of (L,∆, S) on objects and Op′(L) equals Θ̂ :=
⋃
{Θ(P ) : P ∈ ∆}. In particular,

the canonical projection ρ : L → L/Θ̂ restricts to an isomorphism S → Sρ. Upon identifying S

with Sρ, the following properties hold:

(a) (L/Θ̂,∆, S) is a locality of objective characteristic p.

(b) FS(L/Θ̂) = FS(L).

(c) For every P ∈ ∆, the restriction NL(P ) → NL/Θ̂(P ) of ρ has kernel Θ(P ) and induces

an isomorphism NL(P )/Θ(P ) ∼= NL/Θ̂(P ).

Proof. We remark first that, as any normal p′-subgroup of NL(P ) centralizes P and Op′(CL(P ))

is characteristic in CL(P )ENL(P ), we have Θ(P ) = Op′(CL(P )) for every P ∈ ∆.

We show now that the assignment Θ is a signalizer functor of L on objects. It follows from

Lemma 2.7(b) that the conjugacy condition holds. Thus, it remains to show the balance condition,

i.e. that Θ(Q) = Θ(P ) ∩ CL(Q) for any P,Q ∈ ∆ with P 6 Q. For the proof note that P

is subnormal in Q. So by induction on the subnormal length and by Remark 2.31, we may

assume that P E Q. Set G := NL(P ). Then Q 6 G and CL(Q) = CG(Q). As G/Θ(P ) =

G/Op′(G) has characteristic p, it follows from [KS04, 8.2.12] that Op′(NG(Q)) = Op′(G)∩NG(Q) =

Op′(G) ∩CG(Q). Hence, Θ(Q) = Op′(CL(Q)) = Op′(CG(Q)) = Op′(NG(Q)) = Op′(G) ∩CG(Q) =
17



Θ(P ) ∩CL(Q). This proves that the assignment Θ is a signalizer functor of (L,∆, S) on objects.

In particular, by Proposition 2.30, the subset

Θ̂ :=
⋃
P∈∆

Θ(P )

is a partial normal p′-subgroup of L. Moreover, upon identifying S with its image in L/Θ̂, the

triple (L/Θ̂,∆, S) is a locality and properties (b) and (c) hold. Part (c) and our assumption yield

(a). Hence, by Corollary 2.28, we have Op′(L/Θ̂) = 1. So by Lemma 2.25, we have Θ̂ = Op′(L)

and the proof is complete. �

The next purely group theoretical lemma will be useful for applying Proposition 2.32. Recall

that a finite group G with Sylow p-subgroup T is called p-constrained if CT (Op(G)) 6 Op(G).

Lemma 2.33. If G is a p-constrained finite group, then G/Op′(G) is of characteristic p.

Proof. Writing T for a Sylow p-subgroup of G and setting P := Op(G), the centralizer CT (P )

equals Z(P ) and is thus a central Sylow p-subgroup of CG(P ). So e.g. by the Schur-Zassenhaus

Theorem [KS04, 6.2.1], we have CG(P ) = Z(P ) × Op′(CG(P )) = Z(P ) × Op′(G). Set G =

G/Op′(G), write C for the preimage of CG(P ) in G and N for the preimage of NG(P ) in G. As

POp′(G) is a normal subgroup of N with Sylow p-subgroup P , a Frattini argument yields N =

NN (P )POp′(G) = NN (P )Op′(G). As Op′(G) 6 C 6 N , it follows now from a Dedekind argument

that C = NC(P )Op′(G). Observe now that [P,NC(P )] 6 P ∩ Op′(G) = 1. So NC(P ) 6 CG(P )

and C = NC(P ) 6 CG(P ) 6 P . Thus, G has characteristic p. �

We now turn attention to the case that (L,∆, S) is a punctured group and we are given a

signalizer functor on elements of order p in the sense of Definition 1.2 in the introduction. We

show first that, if θ is such a signalizer functor on elements of order p and a ∈ Ip(S), the subgroup

θ(a) depends only on 〈a〉.

Lemma 2.34. Let (L,∆, S) be a punctured group and let θ be a signalizer functor of (L,∆, S)

on elements of order p. Then θ(a) = θ(b) for all a, b ∈ Ip(S) with 〈a〉 = 〈b〉.

Proof. If 〈a〉 = 〈b〉, then [a, b] = 1 and θ(a) ⊆ CL(a) = CL(b). So the balance condition implies

θ(a) = θ(a) ∩ CL(b) ⊆ θ(b). A symmetric argument gives the converse inclusion θ(b) ⊆ θ(a), so

the assertion holds. �

Theorem 1.3 in the introduction follows directly from the following theorem, which explains at

the same time how a signalizer functor on objects can be constructed from a signalizer functor on

elements of order p.

Theorem 2.35 (Signalizer functor theorem for punctured groups). Let (L,∆, S) be a punctured

group and suppose θ is a signalizer functor of (L,∆, S) on elements of order p. Then a signalizer

functor Θ of (L,∆, S) on objects is defined by

Θ(P ) :=

 ⋂
x∈Ip(P )

θ(x)

 ∩ CL(P ) for all P ∈ ∆.
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In particular,

Θ̂ :=
⋃
P∈∆

Θ(P ) =
⋃

x∈Ip(S)

θ(x)

is a partial normal p′ subgroup of L and the other conclusions in Proposition 2.30 hold.

Proof. Since θ(x) is a p′-subgroup for each x ∈ Ip(S), the subgroup Θ(P ) is a p′-subgroup for

each object P ∈ ∆. Moreover, it follows from the conjugacy condition for θ (as stated in Defi-

nition 1.2) that Θ(P ) is a normal subgroup of NL(P ), and that the conjugacy condition stated

in Definition 2.29 holds for Θ; to obtain the latter conclusion notice that Lemma 2.7(b) implies

CL(P )g = CL(P g) for every P ∈ Θ and every g ∈ L with P 6 Sg.
To prove that Θ is a signalizer functor on objects, it remains to show that the balance condition

Θ(P )∩CL(Q) = Θ(Q) holds for every pair P 6 Q with P ∈ ∆. Notice that P is subnormal in Q

whenever P 6 Q. Hence, if the balance condition for Θ fails for some pair P 6 Q with P ∈ ∆,

then by Remark 2.31, it fails for some pair P EQ with P ∈ ∆. Suppose this is the case. Among

all pairs P E Q such that P ∈ ∆ and the balance condition fails, choose one such that Q is of

minimal order.

Notice that P < Q, as the balance condition would otherwise trivially hold. So as 1 6= P0 :=

CP (Q) ∈ ∆ and P0EP , the minimality of |Q| yields that the balance condition holds for the pair

P0 6 P , i.e. Θ(P0) ∩ CL(P ) = Θ(P ). If the balance condition holds also for P0 EQ, then

Θ(Q) = Θ(P0) ∩ CL(Q) = Θ(P0) ∩ CL(P ) ∩ CL(Q) = Θ(P ) ∩ CL(Q)

and thus the balance condition holds for P 6 Q contradicting our assumption. So the balance

condition does not hold for P0 6 Q. Therefore, replacing P by P0, we can and will assume from

now on that P 6 Z(Q).

It is clear from the definition that Θ(Q) 6 Θ(P ) ∩ CL(Q). Hence it remains to prove the

converse inclusion. By definition of Θ(Q), this means that we need to show Θ(P )∩CL(Q) 6 θ(b)
for all b ∈ Ip(Q). To show this fix b ∈ Ip(Q). As P ∈ ∆, we have P 6= 1 and so we can pick

a ∈ Ip(P ). Since P 6 Z(Q), the elements a and b commute. Hence, the balance condition for θ

yields

Θ(P ) ∩ CL(Q) 6 θ(a) ∩ CL(b) 6 θ(b).

This completes the proof that Θ is a signalizer functor on objects.

Given P ∈ ∆, we can pick any x ∈ Ip(P ) and have Θ(P ) ⊆ θ(x). Hence, Θ̂ :=
⋃
P∈∆ Θ(P ) is

contained in
⋃
x∈Ip(S) θ(x). The converse inclusion holds as well, as Lemma 2.34 implies θ(x) =

Θ(〈x〉) for every x ∈ Ip(S). The assertion follows now from Proposition 2.30. �

3. Sharpness of the subgroup decomposition

3.1. Additive extensions of categories. Let C be a (small) category. Define a category Cq
as follows, see [JM92, Sec. 4]. The objects of Cq are pairs (I,X) where I is a finite set and

X : I → obj(C) is a function. A morphisms (I,X) → (J,Y) is a pair (σ, f) where σ : I → J is a

function and f : I → mor(C) is a function such that f(i) ∈ C(X(i),Y(σ(i)). We leave it to the

reader to check that this defines a category.

There is a fully faithful inclusion C ⊆ Cq by sending X ∈ C to the function X : {∅} → obj(C)
with X(∅) = X. We will write X (not boldface) to denote these objects in Cq.
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The category Cq has a monoidal structure
∐

where (I,X)
∐

(J,Y)
def
= (I

∐
J,X

∐
Y). One

checks that this is the categorical coproduct in Cq. For this reason we will often write objects of

Cq in the form
∐
i∈I Xi where Xi ∈ C. Also, when the indexing set I is understood we will simply

write X instead of (I,X).

When (I,X) is an object and J ⊆ I we will refer to (J,X|J) as a “subobject” of (I,X) and

we leave it to the reader to check that the inclusion is a monomorphism, namely for any two

morphisms f ,g : Y → X|J , if inclXX|J ◦ f = inclXX|J ◦ g then f = g. One also checks that

Cq(
∐
i∈I

Xi, Y ) =
∏
i∈I
C(Xi, Y ),(3.1)

Cq(X,
∐
i∈I

Yi) =
∐
i∈I
C(X,Yi).

Definition 3.1 (Compare [JM92, p. 123]). We say that C satisfies (PB ×q) if the product of

each pair of objects in C exists in Cq and if the pullback of each diagram c→ e← d of objects in

C exists in Cq.

Definition 3.2 (Compare [JM92, p. 124 and Lemma 5.13]). Assume that C is a small category

satisfying (PB ×q). A functor M : Cop → Ab is called a proto-Mackey functor if there is a functor

M∗ : C → Ab such that the following hold.

(a) M(C) = M∗(C) for any C ∈ obj(C).
(b) For any isomorphism ϕ ∈ C, M∗(ϕ) = M(ϕ−1).

(c) By applying M and M∗ to a pullback diagram in Cq of the form∐
i∈I Bi

∑
i ϕi //

∑
i ψi
��

D

β

��
C

α // E

where Bi, C,E ∈ C, there results the following commutative square in Ab⊕
i∈IM(Bi)

∑
iM∗(ϕi) // M(D)

M(C)

⊕iM(ψi)

OO

M∗(α)
// M(E)

M(β)

OO

We remark that every pullback diagram in Cq defined by objects in C is isomorphic in Cq to a

commutative square as in (c) in this definition.

Given a small category D and a functor M : D→ Ab, we write

H∗(D;M)
def
= lim←−

∗

D

M.

for the derived functors of M . We say that M is acyclic if H i(D;M) = 0 for all i > 0.

Proposition 3.3 (See [JM92, Corollary 5.16]). Fix a prime p. Let C be a small category which

satisfies (PB ×q) and in addition
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(B1) C has finitely many isomorphism classes of objects, all morphism sets are finite and all

self maps in C are isomorphisms.

(B2) For every object C ∈ C there exists an object D such that |C(C,D)| 6= 0 mod p.

Then any proto-Mackey functor M : Cop → Z(p)-mod is acyclic, namely H i(Cop,M) = 0 for all

i > 0.

3.2. Transporter categories. Let F be a saturated fusion system over S and let T be a trans-

porter system associated with F (Definition 2.13). By [OV07, Lemmas 3.2(b) and 3.8] every

morphism in T is both a monomorphism and an epimorphism. For any P,Q ∈ obj(T ) such

that P 6 Q denote ιQP = εP,Q(e) ∈ MorT (P,Q). We think of these as “inclusion” morphisms in

T . We obtain a notion of “extension” and “restriction” of morphisms in T as follows. Suppose

ϕ ∈ MorT (P,Q) and P ′ 6 P and Q′ 6 Q and ψ ∈ MorT (P ′, Q′) are such that ϕ ◦ ιPP ′ = ιQQ′ ◦ ψ.

Then we say that ψ is a restriction of ϕ and that ϕ is an extension of ψ. Notice that since

ιQQ′ is a monomorphism, given ϕ then its restriction ψ if it exists, is unique and we will write

ψ = ϕ|Q
′

P ′ . Similarly, since ιPP ′ is an epimorphism, given ψ, if an extension ϕ exists then it is

unique. By [OV07, Lemma 3.2(c)], given ϕ ∈ MorT (P,Q) and subgroups P ′ 6 P and Q′ 6 Q

such that ρ(ϕ)(P ′) 6 Q′, then ϕ restricts to a (unique morphism) ϕ′ ∈ MorT (P ′, Q′). We will use

this fact repeatedly. In particular, every morphism ϕ : P → Q in T factors uniquely P
ϕ̄−→ P̄

ιQ
P̄−→ Q

where ϕ̄ is an isomorphism in T and P̄ = ρ(ϕ)(P ).

For any P,Q ∈ obj(T ) set

KP,Q = {(A,α) : A 6 P, A ∈ obj(T ), α ∈ MorT (A,Q)}.

This set is partially ordered where (A,α) � (B, β) if A 6 B and α = β|A. Since KP,Q is finite we

may consider the set Kmax
P,Q of the maximal elements.

For any x ∈ NS(P,Q) we write x̂ instead of εP,Q(x). There is an action of Q × P on KP,Q

defined by

(y, x) · (A,α) = (xAx−1, ŷ ◦ α ◦ x̂−1), (x ∈ P, y ∈ Q).

This action is order preserving and therefore it leaves Kmax
P,Q invariant. We will write Kmax

P,Q for

the set of orbits. For any P,Q ∈ T we will choose once and for all a subset

Kmax
P,Q ⊆ Kmax

P,Q

of representatives for the orbits of Q× P on Kmax
P,Q .

Lemma 3.4. For any (A,α) ∈ KP,Q there exists a unique (B, β) ∈ Kmax
P,Q such that (A,α) �

(B, β).

Proof. We use induction on [S : A]. Fix (A,α) ∈ KP,Q and (B1, β1) and (B2, β2) in Kmax
P,Q such

that (A,α) � (Bi, βi). Thus, β1|A = α = β2|A. We may assume that A � Bi since if say A = B1

then (B1, β1) � (B2, β2) and maximality implies (B1, β1) = (B2, β2).

For i = 1, 2 set Ni = NBi(A). Then Ni contain A properly and we set D = 〈N1, N2〉. Then

A E D. Set T = α(A) and T = NQ(T ). For i = 1, 2, if x ∈ Ni then Axiom (C) of [OV07, Def.

3.1] implies

α ◦ x̂|AA = ((βi|Ni) ◦ x̂|
Ni
Ni

)|A = β̂i(x)|QQ ◦ βi|A = β̂i(x)|QQ ◦ α.
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Notice that βi(x) ∈ NQ(T ), so Axiom (II) of Definition 2.13 implies that α extends to δ ∈
MorT (D,Q). Since for i = 1, 2 the morphisms ιNiA : A→ Ni are epimorphisms in T , the equality

βi|Ni ◦ ι
Ni
A = α = δ|A = (δ|Ni) ◦ ι

Ni
A shows that δ|Ni = βi|Ni . Now we have (Ni, βi|Ni) � (D, δ)

and (Ni, βi|Ni) � (Bi, βi) in KP,Q. Since |A| < |Ni| the induction hypothesis implies that (Bi, βi)

is the unique maximal extension of (Ni, βi|Ni) for each i = 1, 2, and both must coincide with the

unique maximal extension of (D, δ). It follows that (B1, β1) = (B2, β2). �

The orbit category of T is the category OT with the same set of objects as T . For any

P,Q ∈ OT the morphism set MorOT (P,Q) is the set of orbits of MorT (P,Q) under the action

of Q̂ = εQ,Q(Q) ⊆ MorT (Q,Q) via postcomposition. See [OV07, Section 4, p. 1010]. Axiom (C)

guarantees that composition in OT is well defined. Given ϕ ∈ MorT (P,Q) we will denote its

image in MorOT (P,Q) by [ϕ].

We notice that every morphism in OT is an epimorphism, namely for every [α] ∈ MorOT (P,Q)

and [β], [γ] ∈ MorOT (Q,R), if [β] ◦ [α] = [γ] ◦ [α] then [β] = [γ]. This follows from the fact that

every morphism in T is an epimorphism.

Consider P,Q ∈ obj(OT ) such that P E Q. Precomposition with [ιQP ] gives a “restriction” map

MorOT (Q,S)
res−−→ MorOT (P, S).

Observe that Q acts on MorOT (P, S) by precomposing morphisms with [x̂|PP ] for any x ∈ Q. This

action has P in its kernel by Axiom (C) of transporter systems.

Lemma 3.5. (a) For any P,Q ∈ obj(OT ) such that P E Q the map MorOT (Q,S) →
MorOT (P, S) induced by the restriction [ϕ] 7→ [ϕ|P ], gives rise to a bijection

(3.2) res : MorOT (Q,S)→ MorOT (P, S)Q/P

(b) For any P ∈ OT we have |MorOT (P, S)| 6= 0 mod p.

Proof. (a) First, observe that if [ϕ] ∈ MorOT (Q,S) then [ϕ|P ] is fixed by Q/P by Axiom (C),

hence the image of res is contained in MorOT (P, S)Q/P . Now suppose that [ϕ] ∈ MorOT (P, S)Q/P

and set P̄ = ρ(ϕ)(P ). Since [ϕ] is fixed by Q/P this exactly means that for every x ∈ Q there

exists y ∈ NS(P̄ ) such that ϕ ◦ x̂|PP = ŷ|NS(P̄ )

NS(P̄ )
◦ ϕ and Axiom (II) implies that ϕ extends to

ψ : Q→ S. This shows that the map res in (3.2) is onto MorOT (P, S)Q/P . It is injective because

[ιQP ] is an epimorphism in OT .

(b) Use induction on [S : P ]. If P = S then εS,S(S) is a Sylow p-subgroup of AutT (S) =

MorT (S, S) and therefore |MorOT (S, S)| 6= 0 mod p. Suppose P < S and set Q = NS(P ). Then

Q > P and since Q/P is a finite p-group, |MorOT (P, S)| = |MorOT (P, S)Q/P | mod p. It follows

from part (a) and the induction hypothesis on [S : Q] that |MorOT (P, S)| 6= 0 mod p. �

In the remainder of this subsection we will prove that OT satisfies (PB ×q).

Definition 3.6. For P,Q ∈ OT let P �Q be the following object of OTq
P �Q =

∐
(L,λ)∈Kmax

P,Q

L.

Let π1 : P � Q → P and π2 : P � Q → Q be the morphisms in OTq defined by π1 =
∑

(L,λ)[ι
P
L ]

and π2 =
∑

(L,λ)[λ].
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Proposition 3.7. P �Q is the product in OTq of P,Q ∈ obj(OT ).

Proof. It follows from (3.1) that it suffices to show that

OTq(R,P �Q)
(π1∗,π2∗)−−−−−−−→ MorOT (R,P )×MorOT (R,Q)

is a bijection for any R ∈ obj(OT ). Write π = (π1∗, π2∗).

Surjectivity of π: Consider [ϕ] ∈ MorOT (R,P ) and [ψ] ∈ MorOT (R,Q). Set A = ρ(ϕ)(R).

Then A 6 P and there exists an isomorphism ϕ̄ ∈ MorT (R,A) such that ϕ = ιPA ◦ ϕ̄.

Set α = ψ ◦ (ϕ̄)−1 ∈ MorT (A,Q). Then (A,α) ∈ KP,Q. Choose (B, β) ∈ Kmax
P,Q such that

(A,α) � (B, β). There exists a unique (L, λ) ∈ Kmax
P,Q and some x ∈ P and y ∈ Q such that

(L, λ) = (y, x) · (B, β) = (xBx−1, ŷ ◦ β ◦ (x̂|LB)−1).

Set µ = (x̂|LB) ◦ ιBA ◦ ϕ̄ ∈ MorT (R,L). It defines a morphism [µ] : R → P � Q in OTq via the

inclusion (L, λ) ⊆ P�Q. We claim that π([µ]) = ([ϕ], [ψ]), completing the proof of the surjectivity

of π. By definition of π1 : P �Q→ P and π2 : P �Q→ Q,

π1∗([µ]) = [ιPL ] ◦ [µ] = [ιPL ◦ (x̂|LB) ◦ ιBA ◦ ϕ̄] = [(x̂|PA) ◦ ϕ̄] = [(x̂|PP ) ◦ ϕ] = [ϕ]

π2∗([µ]) = [λ] ◦ [µ] = [ŷ−1 ◦ λ ◦ µ] = [ŷ−1 ◦ λ ◦ (x̂|LB) ◦ ιBA ◦ ϕ̄] =

= [β ◦ ιBA ◦ ϕ̄] = [α ◦ ϕ̄] = [ψ].

Injectivity of π: Suppose that h, h′ ∈ OTq(R,P � Q) are such that π(h) = π(h′). From (3.1)

there are (L, λ), (L′, λ′) ∈ Kmax
P,Q and ϕ ∈ MorT (R,L) and ϕ′ ∈ MorT (R,L′) such that h = [ϕ]

and h′ = [ϕ′] via the inclusions L,L′ ⊆ P � Q. The hypothesis π(h) = π(h′) then becomes

[ιPL ◦ ϕ] = [ιPL′ ◦ ϕ′] and [λ ◦ ϕ] = [λ′ ◦ ϕ′]. Thus,

ιPL′ ◦ ϕ′ = x̂ ◦ ιPL ◦ ϕ for some x ∈ P(3.3)

λ′ ◦ ϕ′ = ŷ ◦ λ ◦ ϕ for some y ∈ Q.

Set A = ρ(ϕ)(R) and A′ = ρ(ϕ′)(R). There are factorizations ϕ = ιLA ◦ ϕ̄ and ϕ′ = ιL
′

A′ ◦ ϕ̄′ for

isomorphisms ϕ̄ ∈ MorT (R,A) and ϕ̄′ ∈ MorT (R,A′) in T . We get from (3.3) that ιPA′ ◦ ϕ̄′ =

x̂|PA ◦ ϕ̄. From this we deduce that A′ = xAx−1 and that ϕ̄′ = x̂|A′A ◦ ϕ̄. The second equation in

(3.3) gives

λ′ ◦ ιL′A′ = ŷ ◦ λ ◦ ιLA ◦ x̂−1|AA′ .
We deduce that (A′, λ′|A′) = (y, x) · (A, λ|A). Clearly (A′, λ′|A′) � (L′, λ′) and (A, λ|A) � (L, λ)

so Lemma 3.4 implies that (L′, λ′) = (y, x) · (L, λ). Since (L, λ) and (L′, λ′) are elements of Kmax
P,Q

and are in the same orbit of Q× P it follows that (L, λ) = (L′, λ′). In particular x ∈ NP (L), and

it follows from (3.3) that ϕ′ = x̂ ◦ ϕ and that λ = ŷ ◦ λ ◦ x̂−1 (since ϕ is an epimorphism in T ).

By Axiom (II) of Definition 2.13, there exists an extension of λ to a morphism λ̃ : 〈L, x〉 → Q in

T . Notice that 〈L, x〉 ⊆ P so the maximality of (L, λ) implies that x ∈ L. Since ϕ′ = x̂ ◦ ϕ we

deduce [ϕ′] = [ϕ] namely h = h′ as needed. �

Definition 3.8. Let P
f−→ R

g←− Q be morphisms in OT . Let U(f, g) be the subobject of P �Q

obtained by restriction of P �Q : Kmax
P,Q

(L,λ)7→L−−−−−→ obj(OT ) to the set

I = {(L, λ) ∈ Kmax
P,Q : f ◦ [ιPL ] = g ◦ [λ]}.
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Let π1 : U(f, g) → P and π2 : U(f, g) → Q denote the restrictions of π1 : P � Q → P and

π2 : P �Q→ Q to U(f, g).

Proposition 3.9. Given any P
f−→ R

g←− Q in OT the construction of U(f, g) in Definition 3.8

is the pullback of P and Q along f and g in OTq. Moreover, the pullback of P
ιRP−→ R

ιRQ←− Q is∐
x∈(Q\R/P )T

Qx ∩ P

where x runs through representatives of the double cosets such that Qx ∩ P = x−1Qx ∩ P is an

object of T .

Proof. It follows from (3.1) that in order to check the universal property of U = U(f, g) it suffices

to test objects T ∈ OT . Suppose that we are given morphisms T
[ϕ]−→ P and T

[ψ]−−→ Q which

satisfy f ◦ [ϕ] = g ◦ [ψ]. We obtain T
([ϕ],[ψ])−−−−−→ P � Q which factors T

h̄−→ L ⊆ P � Q for some

(L, λ) ∈ Kmax
P,Q . Then

f ◦ π1|L ◦ h̄ = f ◦ π1 ◦ ([ϕ], [ψ]) = f ◦ [ϕ]

g ◦ π2|L ◦ h̄ = g ◦ π2 ◦ ([ϕ], [ψ]) = g ◦ [ψ].

Since h̄ is an epimorphism in OT and since f ◦ [ϕ] = g ◦ [ψ] by assumption, it follows that

f ◦ π1|L = g ◦ π2|L which is the statement f ◦ [ιPL ] = g ◦ [λ]. This precisely means that (L, λ) ∈ I
where I is defined in 3.8, hence h = ([ϕ], [ψ]) factors through U and clearly π1 ◦ h = [ϕ] and

π2 ◦ h = [ψ]. Since the inclusion U ⊆ P �Q is a monomorphism in OTq, there can be only one

morphism h : T → U such that π1 ◦ h = [ϕ] and π2 ◦ h = [ψ]. This shows that U = U(f, g) is the

pullback.

Now assume we are given P
ι−→ R

ι←− Q. The indexing set of the object U(f, g) consists of

(L, λ) ∈ Kmax
P,Q such that [ιRL ] = [ιRQ ◦ λ], namely ιRQ ◦ λ = x̂|RL for some x ∈ NR(L,Q), which

is furthermore unique. Since ιRQ is a monomorphism, this implies that λ = x̂|QL . Since (L, λ) is

maximal, L = Qx∩P . We obtain a map U(ιRP , ι
R
Q)→ (Q\R/P )T which sends (L, λ) to PxQ with

x ∈ NR(L,Q) described above. This map is injective because if QxP = Qx′P are the images

of (L, λ) and (L′, λ′) then x′ = qxp for some p ∈ P and q ∈ Q and it follows that L′ = p−1Lp

and that λ = x̂|QL and λ′ = x̂′|QL′ and therefore λ = q̂ ◦ λ′ ◦ p̂|L′L , so (L, λ) and (L′, λ′) are in the

same orbit of Q× P , hence they must be equal. It is surjective since for any PxQ ∈ (Q\R/P )T
we obtain a summand in U(ιRP , ι

R
Q) which is equivalent in KP,Q to (L, λ) with L = Qx ∩ P and

λ = x̂|QL . �

3.3. The Λ-functors. Let Γ be a finite group and M a (right) Γ-module. Let p be a fixed prime

and let Op(Γ) be the full subcategory of the category of Γ-sets whose objects are the transitive

Γ-sets whose isotropy groups are p-groups. Let FM : Op(Γ)op → Ab be the functor which assigns

M to the free orbit Γ/1 and 0 to all orbits with non-trivial isotropy. Define ( [JMO95, Definition

5.3])

Λ∗(Γ,M)
def
= lim←−

∗

Op(Γ)op

FM

(
= H∗(Op(Γ)op;FM )

)
.

These functors have the following important properties.
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Lemma 3.10. Suppose that M is a Z(p)[Γ]-module.

(a) If CΓ(M) contains an element of order p then Λ∗(Γ;M) = 0.

(b) If Γ/CΓ(M) has order prime to p then Λ∗(Γ;M) = 0 for all ∗ > 1.

Proof. Point (a) is [JMO95, Proposition 6.1(ii)]. Point (b) follows from [JMO95, Proposition

6.1(ii)] when p divides |CΓ(M)| and from [JMO95, Proposition 6.1(i) and (iii)] when p does not

divide |CΓ(M)|. �

Observe that ρ : T → F reflects isomorphisms. Hence the isomorphism classes of objects of T
and of OT are F-conjugacy classes.

A functor Φ: OT op → Ab is called atomic if there exists Q ∈ obj(T ) such that Φ vanishes

outside the F-conjugacy class of Q. The fundamental property of Λ-functors is that they calculate

the higher limits of atomic functors:

Lemma 3.11 ( [OV07, Lemma 4.3]). Let T be a transporter system associated with a fusion system

F over S. Let Φ: OT op → Z(p)-mod be an atomic functor concentrated on the F-conjugacy class

of Q. Then there is a natural isomorphism

H∗(OT op; Φ) ∼= Λ∗(AutOT (Q); Φ(Q)).

We remark that the result holds, in fact, for any functor Φ into the category of abelian groups

(indeed, the proof given by Oliver and Ventura only uses [OV07, Proposition A.2]).

Notice that ρ : T → F induces a functor ρ̄ : OT → O(F). We will write OT c for the full

subcategory of T spanned by P ∈ T which are F-centric.

Corollary 3.12. Let T be a transporter category for F . Let Φ̄ : O(F)op → Z(p)-mod be a functor

and set Φ = Φ̄ ◦ ρ̄. Then Φ is a functor OT op → Z(p)-mod and let Ψ be the restriction of Φ to

OT c. Then the restriction induces an isomorphism

H∗(OT op,Φ)
∼=−−→ H∗((OT c)op; Ψ).

Proof. Let Φ′ : OT op → Z(p)-mod be the functor obtained from Φ by setting Φ′(Q) = 0 for all

Q ∈ obj(T \ T c) and Φ′(Q) = Φ(Q) otherwise. This is a well defined functor since the F-

centric subgroups are closed to overgroups. It is a standard check that the bar constructions

REFERENCE of Φ′ and that of Ψ are equal. It follows that

H∗(OT op,Φ′) ∼= H∗((OT c)op,Ψ).

It remains to show that H∗(OT op,Φ) ∼= H∗(OT op,Φ′).

Suppose that Q ∈ obj(T \T c) has minimal order. Set M = Φ(Q) and let FM : OT op → Z(p)-mod

be the induced atomic functor. The minimality of Q implies that there is an injective natural

transformation FM → Φ. By possibly replacing it with an F-conjugate, we may assume that

Q is fully centralised in F . Since Q is not F-centric, choose some x ∈ CS(Q) \ Q. Its image

in Γ = AutOT (Q) is a non-trivial element (since x /∈ Q) of order p-power. It acts trivially on

Φ(Q) because its image in OutF (Q) is trivial (since the image of CS(Q) in AutF (Q) is trivial)

and because Φ = Φ̄ ◦ ρ̄. Lemma 3.10(a) implies that Λ∗(AutOT (Q),Φ(Q)) = 0. It follows from

Lemma 3.11 and the long exact sequence in derived limits associated with the short exact sequence

0→ FM → Φ→ Φ/FM → 0 that H∗(OT op,Φ) ∼= H∗(OT op,Φ/FM ). But Φ/FM is obtained from
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Φ by annihilating the groups Φ(Q′) for all Q′ in the F-conjugacy class of Q. We may now apply

the same process to Φ/FM and continue inductively (on the number of F-conjugacy classes in

T \ T c) to show that H∗(OT op,Φ) ∼= H∗(OT op,Φ′) as needed. �

Proof of Theorem 1.1. Let F be a saturated fusion system over S which affords a punctured

group T . That is, T is a transporter system associated to F with object set ∆ containing all the

non-trivial subgroups of S.

Let Hj : O(F)op → Z(p)-mod be the functor

Hj : P 7→ Hj(P ;Fp)

and let M j : OT op → Z(p)-mod be the pullback of Hj along OT ρ̄−→ O(F). Our goal is to show

that for every j > 0,

H i(O(Fc)op;Hj) = 0 for all i > 1.

Choose a fully normalised P ∈ obj(T ). Since NS(P ) is a Sylow p-subgroup of AutT (P ),

see [OV07, Proposition 3.4(a)], it follows that CS(P ) is a Sylow p-subgroup of the kernel of

AutT (P )→ AutF (P ) and hence CS(P )/Z(P ) is a Sylow p-subgroup of the kernel of AutOT (P )→
OutF (P ). Thus, if P is F-centric this kernel has order prime to p so [BLO03a, Lemma 1.3] implies

the first isomorphism in the display below, while Corollary 3.12 gives the second.

H∗(O(Fc)op;Hj) ∼= H∗((OT c)op;M j) ∼= H∗(OT op;M j).

It remains to show that H∗(OT op;M j) = 0 for all j > 0 and all ∗ > 1.

Assume first that j > 1. We will show that M j is a proto-Mackey functor for OT .

The transfer homomorphisms give rise to a (covariant) functor Hj∗ : O(F) → Z(p)-mod where

P 7→ Hj(P ;Fp) and to any ϕ ∈ F(P,Q) we assign tr(ϕ) : Hj(P ;Fp)→ Hj(Q;Fp). Its pullback to

OT via ρ̄ gives a covariant functor M j
∗ : OT → Z(p)-mod.

Now, OT satisfies (PB ×q) by Propositions 3.7 and 3.9. Clearly, M j and M j
∗ have the same

values on objects; this is the first condition in Definition 3.2. The transfer homomorphisms have

the property that if ϕ : P → Q is an isomorphism then trQP (ϕ) = Hj(ϕ−1;Fp). This is the second

condition in Definition 3.2. The factorisation of morphisms in T as isomorphisms followed by

inclusions imply that any pullback diagram P ′
f−→ R

g←− Q′ in OT is isomorphic to one of the

form P
[ιRP ]
−−→ R

[ιRQ]
←−− Q. If U = U([ιRP ], [ιRQ]) is the pullback (Definition 3.8), then, by Proposition

3.9, U =
∐
x∈(Q\R/P )T

Qx ∩ P where x runs through representatives of double cosets such that

Qx ∩ P 6= 1 (since obj(T ) is the set of all non-trivial subgroups of S). Since j > 1 we have that

Hj({1};Fp) = 0 so
⊕

x∈(Q\R/P )T
Hj(Qx ∩P ;Fp) =

⊕
x∈Q\R/P H

j(Qx ∩P ;Fp). Mackey’s formula

gives the commutativity of the diagram

⊕
x∈(Q\R/P )T

Hj(Qx ∩ P ;Fp)
∑
x trPQx∩P (cx)

// Q

Hj(P ;Fp)

∑
x resPQx∩P

OO

resRP

// R

trRQ

OO
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This shows that the third condition in Definition 3.2 also holds and that M j is a proto-Mackey

functor. Now, Condition (B1) in Proposition 3.3 clearly holds for OT and (B2) holds by Lemma

3.5. It follows that H i(OT op;M j) = 0 for all i > 1 as needed.

It remains to deal with the case j = 0. In this case H0 is the constant functor with value Fp.
Thus, OutF (P ) acts trivially on Fp for any P ∈ Fc. It follows from Lemma 3.10(b) that if P = S

then Λi(OutF (S),Fp) = 0 for all i > 0, and if P < S then OutF (P ) contains an element of order

p so Λ∗(OutF (P ),Fp) = 0. Now [BLO03b, Proposition 3.2] together with a filtration of H0 by

atomic functors show that H0 is acyclic. �

4. Punctured groups for FSol(q)

The Benson-Solomon systems were predicted to exist by Benson [Ben94], and were later con-

structed by Levi and Oliver [LO02,LO05]. They form a family of exotic fusion systems at the prime

2 whose isomorphism types are parametrized by the nonnegative integers. Later, Aschbacher and

Chermak gave a different construction as the fusion system of an amalgamated free product of

finite groups [AC10]. The main result of this section is the following theorem.

Theorem 4.1. A Benson-Solomon system FSol(q) over the 2-group S has a punctured group if

and only if q ≡ ±3 (mod 8). If q = ±3 (mod 8), there is a punctured group L for FSol(q) which

is unique up to rigid isomorphism with the following two properties:

(1) CL(Z(S)) = Spin7(3), and

(2) L|∆ is a linking locality, where ∆ is the set of F-subcentric subgroups of S of 2-rank at

least 2.

4.1. Notation for Spin7 and Sol. It will be usually be most convenient to work with a Lie

theoretic description of Spin7. The notational conventions that we use in this section for algebraic

groups and finite groups of Lie type are summarized in Appendix A.

4.1.1. The maximal torus and root system. Let p be an odd prime, and set

H = Spin7(Fp).

Fix a maximal torus T of H, let X(T ) = Hom(T ,F×p ) ∼= Z3 be the character group (of algebraic

homomorphisms), and denote by V = R⊗Z X(T ) the ambient Euclidean space which we regard

as containing X(T ). Let Σ(T ) ⊆ X(T ) be the set of T -roots. Denote a T -root subgroup for the

root α by

Xα = {xα(λ) | λ ∈ Fp}.
As H is semisimple, it is generated by its root subgroups [GLS98, Theorem 1.10.1(a)]. We assume

that the implicit parametrization xα(λ) of the root subgroups is one like that given by Chevalley,

so that the Chevalley relations hold with respect to certain signs cα,β ∈ {±1} associated to each

pair of roots [GLS98, Theorem 1.12.1].

We often identify Σ(T ) with the abstract root system

Σ = {±ei ± ej ,±ei | 1 6 i, j 6 3} ⊆ R3

of type B3, having base Π = {α1, α2, α3} with

α1 = e1 − e2, α2 = e2 − e3, α3 = e3,
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where the ei are standard vectors. Write Σ∨ = {α∨ | α ∈ Σ} for the dual root system, where

α∨ = 2α/(α, α).

Instead of working with respect to the αi, it is sometimes convenient to work instead with a

different set of roots {βi} ⊆ Σ:

β1 = α1, β2 = α1 + 2α2 + 2α3 = e1 + e2, β3 = α3.

This is an orthogonal basis of V with respect to the standard inner product ( , ) on R3. An

important feature of this basis is that for each i and j,

Σ ∩ {kβi + lβj | k, l ∈ Z} = {±βi,±βj},(4.1)

a feature not enjoyed, for example, by an orthogonal basis consisting of short roots. In particular,

the βj-root string through βi consists of βi only. This implies via Lemma A.1(4), that the

corresponding signs involving the βi that appear in the Chevalley relations for H are

cβi,βj = 1 if i 6= j, and cβi,βi = −1.(4.2)

4.1.2. The torus and the lattice of coroots. We next set up notation and state various relations

for elements of T . Let

hα(λ) ∈ T and nα(λ) ∈ N
H

(T )

be as given in Appendix A as words in the generators xα(λ). By Lemma A.2 and since H is of

universal type, there is an isomorphism ZΣ∨ ⊗ F×p → T which on simple tensors sends α∨ ⊗ λ to

hα(λ), and the homomorphisms hαi : F×p → T are injective. In particular, as Π∨ = {α∨1 , α∨2 , α∨3 }
is a basis for ZΣ∨, we have T = hα1(F×p )× hα2(F×p )× hα3(F×p ). Define elements z and z1 ∈ T by

z1 = hα1(−1) and z = hα3(−1)

Thus, z and z1 are involutions. Similar properties hold with respect to the βi’s. Recall that

βi = αi for i = 1, 3. Since β∨2 = α∨1 + 2α∨2 + α∨3 , Lemma A.2(3) yields

hβ2(−1) = hα1(−1)hα2((−1)2)hα3(−1) = z1z.

In particular,

hβ1(−1)hβ2(−1)hβ3(−1) = z1z1zz = 1.(4.3)

However, as Z-span of the β∨i ’s is of index 2 in ZΣ∨ and every element of F×p is a square, we still

have

T = hβ1(F×p )hβ2(F×p )hβ3(F×p ).(4.4)

So the hβi(Fp)× generate T , but the product is no longer direct.
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4.1.3. The normalizer of the torus and Weyl group. The subgroup

Ŵ := 〈nα1(1), nα2(1), nα3(1)〉 6 N
H

(T )

projects onto the Weyl group

W = 〈wα1 , wα2 , wα3〉 ∼= C2 o S3
∼= C2 × S4

of type B3 in which the wαi are fundamental reflections. Also, Ŵ ∩ T is the 2-torsion subgroup

{t ∈ T | t2 = 1} of T . A subgroup similar to Ŵ was denoted “W” in [AC10, Lemma 4.3]. It is

sometimes called the Tits subgroup [GLS98, Remark 1.12.11].

Let

γ = cα1,α2+α3 ∈ {±1},
and fix a fourth root i ∈ F×p of 1. (This notation will hopefully not cause confusion with the use

of i as an index.) Define elements w0, τ ∈ NH
(T ) by

w0 = nβ1(−γ)nβ2(1)nβ3(1) and τ = nα2+α3(1)hβ1(−i)hβ2(i)hβ3(i).

It will be shown in Lemma 4.2 that w0 and τ are commuting involutions and that w0 inverts T .

4.1.4. Three commuting SL2’s. Let

Li = 〈Xβi , X−βi〉,

for i = 1, 2, 3. Thus, Li ∼= SL2(Fp) for each i by the Chevalley relations, again using that H is

of universal type when i = 3. A further consequence of (4.1) is that the Chevalley commutator

formula [GLS98, 1.12.1(b)] yields

[Li, Lj ] = 1 for all i 6= j.

For each i, Li has unique involution hβi(−1) which generates the center of Li. By (4.3), the center

of the commuting product L1L2L3 is 〈z, z1〉, of order 4. By (4.4), T 6 L1L2L3.

4.1.5. The Steinberg endomorphism and Spin7(q). We next set up notation for the Steinberg

endomorphism we use to descend from H to the finite versions. Let q = pa be a power of p. Let

ε ∈ {±1} be such that q ≡ ε (mod 4), and let k be the 2-adic valuation of q − ε.
The standard Frobenius endomorphism ζ of H is determined by its action xα(λ)ζ = xα(λp) on

the root groups, and so from the definition of the nα and hα in (A.1), also nα(λ)ζ = nα(λp) and

hα(λ)ζ = hα(λp). Write cw0 conjugation map induced by w0, as usual, and define

σ =

{
ζa if ε = 1

ζacw0 if ε = −1.

Then σ is a Steinberg endomorphism of H in the sense of [GLS98, Definition 1.15.1], and we set

H := C
H

(σ) = Spin7(q).

Given that w0 inverts T , the action of σ on T is given for each t ∈ T by

tσ = tεq,

and hence

C
T

(σ) = {t ∈ T | tεq = t} ∼= (Cq−ε)
3
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Likewise,

C
T

(σcw0) ∼= (Cq+ε)
3.

Finally, let µ = µq ∈ F×p be a fixed element of 2-power order satisfying µεq = −µ and powering

to the fourth root i, and we set

c = hβ1(µ)hβ2(µ)hβ3(µ) ∈ T .

4.1.6. A Sylow 2-subgroup. We next set up notation for Sylow 2-subgroups of H and H along

with various important subgroups of them. Let

S = T 2∞ŴS
,

where T 2∞ denotes the 2-power torsion in T and where Ŵ
S

= 〈nα1(1), nα2+α3(1), nα3(1)〉. Set

S = C
S

(σ).

Define subgroups

Z < U < E < A 6 S

by

Z = 〈z〉, U = 〈z, z1〉, E = 〈z, z1, e〉, and A = E〈w0〉.

Then Z = Z(S), U is the unique four subgroup normal in S, and E = {t ∈ T | t2 = 1} = {t ∈ T |
t2 = 1}. It will be shown in Lemma 4.2 that w0 ∈ S, and hence A 6 S.

We also write

TS = T ∩ S;

thus, TS = O2(T ) ∼= (C2k)3 is the 2k-torsion in T , a Sylow 2-subgroup of T .

4.2. Conjugacy classes of elementary abelian subgroups of H and H. We state and prove

here several lemmas on conjugacy classes of elementary abelian subgroups of H and H, and on

the structure of various 2-local subgroups. Much of the material here is written down elsewhere,

for example in [LO02] and [AC10]. Our setup is a little different because of the emphasis on the

Lie theoretic approach, so we aim to give more detail in order to make the treatment here as

self-contained as possible.

The first lemma is elementary and records several initial facts about the elements we have

defined in the previous section. Its proof is mainly an exercise in applying the various Chevalley

relations defining H.

Lemma 4.2. Adopting the notation from §§4.1, we have

(1) Z(H) = Z = 〈z〉;
(2) the elements w0 and τ are involutions in NS(T ) − T , and c ∈ TS has order 2l, powering

into E − U ;

(3) w0 inverts T ; and

(4) [w0, τ ] = [c, τ ] = 1.
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Proof. (1): It is well known that Z(H) has order 2. We show here for the convenience of the

reader that the involution generating Z(H) is z = hα3(−1). We already observed in §§4.1.3 that

z is an involution. For each root α ∈ Σ, the inner product of α with α3 is an integer, and so

〈α, α3〉 = 2(α, α3) ∈ 2Z. By Lemma A.2(1), hα3(−1) lies in the kernel of α. Thus, the centralizer

in H of hα3(−1) contains all root groups by Proposition A.3, and hence C
H

(hβ3(−1)) = H.

(2): We show that w0 is an involution. Using equations (A.6) and (4.2), we see that

[nβi(±1), nβj (±1)] = 1 for each i, j ∈ {1, 2, 3}.(4.5)

So w2
0 = 1 by (A.7) and (4.3).

We next prove that τ is an involution. Recall

τ = nα2+α3(1)hβ1(−i)hβ2(i)hβ3(i).

First, note that nα2+α3(1)2 = z. To see this, use (A.7) to get nα2+α3(1)2 = hα2+α3(−1). Then

use (α2 + α3)∨ = 2α2 + 2α3 = 2α∨2 + α∨3 and Lemma A.2(3) to get

nα2+α3(1)2 = hα2+α3(−1)2 = hα2(−1)2hα3(−1) = hα3(−1) = z

as desired. Next, the fundamental reflection wα2+α3 interchanges β1 and β2 and fixes β3, so

nα2+α3(1) inverts hβ1(−i)hβ2(i) by conjugation and centralizes hβ3(i) by (A.5). Hence,

τ2 = nα2+α3(1)2(hβ1(−i)hβ2(i)hβ3(i))nα2+α3 (1)(hβ1(−i)hβ2(i)hβ3(i))

= nα2+α3(1)2hβ3(i)2 = zz = 1.

We show c is of order 2l and powers into E − U . Recall that k is the 2-adic valuation of q − ε,
and that C

T
(σ) = (Cq−ε)

3. The latter has Sylow 2-subgroup of exponent 2k. But c ∈ C
T

(σ) since

cσ = hβ1(µεq)hβ2(µεq)hβ3(µεq) = hβ1(−µ)hβ2(−µ)hβ3(−µ)
(4.3)
= hβ1(µ)hβ2(µ)hβ3(µ) = c.

So c has order at most 2l. On the other hand,

c2l−1
= hβ1(i)hβ2(i)hβ3(i).

As in §§4.1.4, we have hβ2(i) = hα1(i)hα2(i2)hα3(i), and so

c2l−1
= hα1(−1)hα2(−1)hα3(−1).

Since H is of universal type and U = 〈hα1(−1), hα3(−1)〉, it follows from Lemma A.2(2) that

c2l−1 ∈ E − U , and hence c has order 2l as claimed. In particular, this shows c ∈ TS .

It remains to show that w0, τ ∈ S in order to complete the proof of (2). For each α ∈ Σ, we

have [nα(±1), ζ] = 1 by (A.1), while [nβi(±1), w0] = 1 for i = 1, 2, 3 by (A.6) and (4.2). Also,

hβ1(±i)hβ2(±i)hβ3(±i) ∈ E 6 H by (4.3). These points combine to give w0 ∈ H, τ ζ = τ , and

τ ∈ S. As [w0, τ ] = 1 by (4) below, we see τ ∈ H, so indeed τ ∈ H ∩ S = S. Finally,

nβ1(1)nβ2(γ)nβ3(1) = nβ1(1)nβ1(1)nα2+α3 (1)nβ3(1) ∈ S

and this element represents the same coset modulo E as w0 does by (A.7) and (4.5). Since E 6 S,

it follows that w0 ∈ S.
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(3): Since {β1, β2, β3} is an orthogonal basis of V , the image wβ1wβ2wβ3 in W of w0 acts as minus

the identity on V . In particular, it acts as minus the identity on the lattice of coroots ZΣ∨ ⊆ V .

This implies via Lemma A.2(4) that w0 inverts T , and so (3) holds.

(4): Showing [w0, τ ] = 1 requires some information about the signs appearing in our fixed Cheval-

ley presentation. First,

〈β1, α2 + α3〉 =
2(α1, α2 + α3)

(α2 + α3, α2 + α3)
= −2.

So by Lemma A.1(3),

cβ1,α2+α3cβ2,α2+α3 = (−1)〈β1,α2+α3〉 = (−1)−2 = 1,

and hence cβ2,α2+α3 = γ
def
= cβ1,α2+α3 . The root string of α2 + α3 = e2 through β3 = e3 is

e3 − e2, e3, e3 + e2 so

cβ3,α2+α3 = (−1)1 = −1

by Lemma A.1(4). So nα2+α3(1) inverts each of nβ1(−γ)nβ2(1) and nβ3(1), by (A.6). Using

[w0, nα2+α3(1)] ∈ E, hβ1(±i)hβ2(±i)hβ3(±i) ∈ E, and (4.5), we thus have

[w0, τ ] = [w0, hβ1(−i)hβ2(i)hβ3(i)][w0, nα2+α3(1)]hβ1
(−i)hβ2

(i)hβ3
(i)

= [w0, hβ1(−i)hβ2(i)hβ3(i)][w0, nα2+α3(1)]

= [w0, nα2+α3(1)]

= [nβ1(−γ)nβ2(1), nα2+α3(1)]nβ3
(1)[nβ3(1), nα2+α3(1)]

= (nβ1(−γ)2nβ2(1)2)nβ3
(1)nβ3(1)2

= nβ1(γ)2nβ2(−1)2nβ3(1)2

= z1z1zz

= 1.

Finally, since [c, nα2+α3(1)] = 1 by (A.5), we have [c, τ ] = 1. �

For any group X, write Ek(X) for the elementary abelian subgroups of X of order 2k and

Ek(X,Y ) for the subset of Ek(X) consisting of those members containing the subgroup Y . Denote

by X◦ the connected component of X.

We next record information about the conjugacy classes and normalizers of four subgroups

containing Z.

Lemma 4.3. Let B = N
H

(U) and B = NH(U). Write B◦ for the connected component of B.

(1) E2(H,Z) = UH , and

B = (L1L2L3)〈τ〉 and B◦ = C
H

(U) = L1L2L3,

where τ interchanges L1 and L2 by conjugation and centralizes L3. Moreover Z(B◦) = U .

(2) E2(H,Z) = UH , and

B = (L1L2L3)〈c, τ〉 and CH(U) = (L1L2L3)〈c〉,

where Li = C
Li

(σ), and where c ∈ N
T

(L1L2L3) acts as a diagonal automorphism on each

Li.
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Proof. Viewing H classically, an involution in H/Z has involutory preimage in H if and only if

it has −1-eigenspace of dimension 4 on the natural orthogonal module (see, for example, [AC10,

Lemma 4.2] or [LO02, Lemma A.4(b)]). It follows that all noncentral involutions are H-conjugate

into U , and hence that all four subgroups containing Z are conjugate. Viewing H Lie theoretically

gives another way to see this: let V be a four subgroup of H containing Z, and let v ∈ V −Z. By

e.g. [Spr09, 6.4.5(ii)], v lies in a maximal torus, and all maximal tori are conjugate. So we may

conjugate in H and take v ∈ E. Using Lemma 4.4(1) below for example, N
H

(T )/C
N
H

(T )
(E) ∼= S4

acts faithfully on E and centralizes Z, so as a subgroup of GL(E) it is the full stabilizer of the

chain 1 < Z < E. This implies N
H

(T ) acts transitively on the nonidentity elements of the

quotient E/Z, so v is N
H

(T )-conjugate into U .

We next use Proposition A.3 to compute B. Recall that

U = 〈z, z1〉 = 〈hα3(−1), hα1(−1)〉

and that z = hα3(−1) is central in H by Lemma 4.2(1). So C
H

(U) = C
H

(hα1(−1)). By Proposi-

tion A.3 and inspection of Σ,

C
H

(U)◦ = 〈T ,Xα | 〈α, α1〉 is even〉

= 〈T ,X±α | α ∈ {β1, β2, β3}〉.

Further, T 6 L1L2L3 by (4.4), so

C
H

(U)◦ = 〈Xβi , X−βi | i ∈ {1, 2, 3}〉 = L1L2L3(4.6)

as claimed.

We next prove that C
H

(U) is connected. Since C
H

(U) = C
H

(z1), this follows directly from

a theorem of Steinberg to the effect that the centralizer of a semisimple element in a simply

connected reductive group is connected, but it is possible to give a more direct argument in this

special case. By Proposition A.3,

C
H

(U) = C
H

(U)◦C
N
H

(T )
(U),

and we claim that C
N
H

(T )
(U) 6 C

H
(U)◦. By (4.6), NC

H
(U)◦(T )/T is elementary abelian of order

8. On the other hand, C
N
H

(T )
(U)/T stabilizes the flag 1 < Z < U < E, and so induces a group

of transvections on E of order 4 with center Z and axis U . The element w0 of N
H

(T ) inverts T

and is trivial on E by Lemma 4.2(3). It follows that |NC
H

(U)(T )/T | = |NC
H

(U)◦(T )/T |, and so

NC
H

(U)(T ) = NC
H

(U)◦(T ). Thus,

C
N
H

(T )
(U) = NC

H
(U)(T ) = NC

H
(U)◦(T ) 6 C

H
(U)◦,

completing the proof of the claim. By (4.6)

C
H

(U) = L1L2L3.(4.7)
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For each λ ∈ Fp, we have

xβ3(λ)τ = xβ3(λ)nα2+α3 (1)hβ1
(−i)hβ2

(i)hβ3
(i)

= xβ3(−λ)hβ3
(i)

= xβ3(i〈β3,β3〉(−λ))

= xβ3(i2(−λ))

= xβ3(λ)

Similarly, x−β3(λ)τ = x−β3(i−2(−λ)) = x−β3(λ). So as L3 = 〈x±β3(λ)〉, we have [L3, τ ] =

1. Finally, since wα2+α3 interchanges β1 and β2, and since T normalizes all root groups, τ

interchanges L1 and L2. In particular, τ interchanges the central involutions hβ1(−1) = z1 and

hβ2(−1) = zz1 of L1 and L2. This shows τ acts nontrivially on U , and hence

B = (L1L2L3)〈τ〉,

completing the proof of (1).

By (1), C
H

(U) is connected, so [GLS98, Theorem 2.1.5] applies to give E2(H,Z) = UH . Let

Li = C
Li

(σ) for i = 1, 2, 3, and set B◦ = L1L2L3 6 H. Since w ∈ NH(U) − CH(U), we

have CH(U) = C
B◦

(σ). Let B̃ denote the direct product of the Li, and let σ̃ be the Steinberg

endomorphism lifting σ|
B◦

along the isogeny B̃ → B◦ given by quotienting by 〈(−1,−1,−1)〉 (see,

e.g. [GLS98, Lemma 2.1.2(d,e)]). Then CB̃(σ̃) = L1 × L2 × L3. So by [GLS98, Theorem 2.1.8]

applied with the pair B̃, 〈(−1,−1,−1)〉 in the role of K, Z, we see that B◦ is of index 2 in

CH(U) with CH(U) = B◦(CH(U) ∩ T ) = B◦T . The element c = hβ1(µ)hβ2(µ)hβ3(µ) ∈ T lifts

to an element c̃ ∈ B̃ with [c̃, σ̃] = (−1,−1,−1) by definition of µ, and so c ∈ CH(U) − B◦

by [GLS98, Theorem 2.1.8]. Finally as each Li is generated by root groups on which c acts

nontrivially, c acts as a diagonal automorphism on each Li. �

Next we consider the H-conjugacy classes of elementary abelian subgroups of order 8 which

contain Z.

Lemma 4.4. The following hold.

(1) N
H

(E) = N
H

(T ) and C
H

(E) = T 〈w0〉.
(2) NH(E) = NH(T ) and CH(E) = T 〈w0〉.
(3) N

H
(T )/T ∼= C2 × S4

∼= NH(T )/T .

Proof. Given that w0 inverts T (Lemma 4.2(3)) part (1) is proved in Proposition A.4.

By (1),

NH(E) = N
H

(E) ∩H = N
H

(T ) ∩H = NH(T ),

while NH(T ) 6 NH(H ∩ T ) = NH(T ). These combine to show the inclusion NH(E) 6 NH(T ).

But NH(T ) 6 NH(E) since E = Ω1(O2(T )) is characteristic in T . Next, by (1),

CH(E) = C
H

(E) ∩H = T 〈w0〉 ∩H = (T ∩H)〈w0〉

with the last equality as w0 ∈ H by Lemma 4.2(2). This shows CH(E) = T 〈w0〉.
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For part (3) in the case of H, see Section 4.1.3. We show part (3) for H. First, by (1) and (2),

NH(T ) = C
N
H

(T )
(σ) = CN

H
(E)(σ) = NH(E) = NH(T ).(4.8)

In the special case ε = 1, σ centralizes Ŵ , which covers W = N
H

(T )/T . Using (4.8), this shows

NH(T ) = NH(T ) projects onto W with kernel T ∩ C
N
H

(T )
(σ) = T . So NH(T )/T ∼= W in this

case.

In any case, Tw0 generates the center of N
H

(T )/T , so gσg−1 ∈ T for each g ∈ N
H

(T ). Since T

is connected, for each such g there is t ∈ T with t−σt = gσg−1 by the Lang-Steinberg Theorem,

and hence tg ∈ C
N
H

(T )
(σ). This shows each coset Tg contains an element centralized by σ, and

so arguing as in the previous paragraph, we have NH(T )/T ∼= W . �

Lemma 4.5. Let d = cw0 and E′ = U〈d〉 6 S. Then E3(H,Z) is the disjoint union of EH and

E′H . Moreover, there is a σ-invariant maximal torus T ′ of H with E′ = {t ∈ T ′ | t2 = 1} such

that the following hold.

(1) O2′(CH(E)) = O2′(T ) ∼= (C(q−ε)/2k)3, and NH(T )/T ∼= C2 × S4 acts faithfully on the

r-torsion subgroup of T for each odd prime r dividing q − ε;
(2) O2′(CH(E′)) = O2′(T

′) ∼= (C(q+ε)/2)3, and NH(T ′)/T ′ ∼= C2 × S4 acts faithfully on the

r-torsion subgroup of T ′ for each odd prime r dividing q + ε; and

(3) CH(E′) = T ′〈w′0〉 for some involution w′0 inverting T ′.

Proof. By Lemma 4.2, w0 is an involution inverting T and hence inverting c. So d is an involution,

and indeed, E′ is elementary abelian of order 8.

Part of this Lemma is proved by Aschbacher and Chermak [AC10, Lemma 7.8]. We give

an essentially complete proof for the convenience of the reader. Let X ∈ {B◦, H}, and write

X = C
X

(σ). The centralizer C
X

(E) = T 〈w0〉 is not connected, but has the two connected

components T and Tw0. Thus, there are two C
X

(σ)-conjugacy classes of subgroups of X conjugate

to E in H [GLS98, 2.1.5]. A representative of the other X-class can be obtained as follows. Since

X is connected, we may fix by the Lang-Steinberg Theorem g ∈ X such that w0 = gσg−1. Then

gσ = w0g. In the semidirect product X〈σ〉, we have σg = σw0. Now as T 〈w0〉 is invariant under

σw0, it follows that (T 〈w0〉)g is σ-invariant. Indeed by choice of g, we have tgσ = tσw0g for each

t ∈ T , i.e., the conjugation isomorphism T 〈w0〉
cg−→ T g〈wg0〉 intertwines the actions of σw0 on

T 〈w0〉 and σ on T g〈wg0〉. Then E and Eg are representatives for the X-classes of subgroups of X

conjugate in X to E, and

X ∩ T g = C
T g

(σ) ∼= C
T

(σw0) = {t ∈ T | t−εq = t} ∼= (Cq+ε)
3.(4.9)

The above argument shows we may take g ∈ B◦ even when X = H. By Lemma 4.3, B◦ is

a commuting product L1L2L3 with Li ∼= SL2(Fp) and Z(B◦) = U . Also, B◦ ∼= J/〈j〉 where J

is a direct product of the Li’s and j the product of the unique involutions of the direct factors

(Section 4.1.4). Thus, each involution in B◦−U is of the form f1f2f3 for elements fi ∈ Li of order

4. But Li is transitive on its elements of order 4. Hence, all elementary abelian subgroups of B◦

of order 8 containing U are B◦-conjugate. Now E is contained in the normal subgroup L1L2L3 of

CH(U), while E′ is not since d lies in the coset L1L2L3c. It follows that Eg is CH(U)-conjugate
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to E′. Hence, E and E′ are representatives for the X-conjugacy classes of elementary abelian

subgroups of X of order 8 containing Z.

Fix b ∈ CH(U) with Egb = E′. Set T ′ = T gb and T ′ = C
T gb

(σ), and w′0 = wgb0 . By (4.9),

O2′(T
′) is as described in (a)(ii), and w′0 inverts T ′. Now NH(T )/T ∼= C2 × S4 by Lemma 4.4(3).

Since Tw0 generates the center of N
H

(T )/T , it follows by choice of g and [Car85, 3.3.6] that

NH(T g)/T g ∼= NH(T )/T , and hence NH(T ′)/T ′ ∼= NH(T )/T because b ∈ H.

Fix an odd prime r dividing q− ε (resp. q+ ε), and let Tr (resp. T ′r) be the r-torsion subgroup

of T (resp. T gb). Then Tr 6 T (resp. T ′r 6 T ′). Since N
H

(T )/T (resp. N
H

(T gb)/T gb) acts

faithfully on Tr (resp. T ′r) by Proposition A.4, it follows that the same is true for NH(T )/T (resp.

NH(T ′)/T ′). This completes the proof of (1) and (2), and part (3) then follows. �

4.3. Conjugacy classes of elementary abelian subgroups in a Benson-Solomon system.

In this subsection we look at the conjugacy classes and automizers of elementary abelian subgroups

of the Benson-Solomon systems. We adopt the notation from the first part of this section, so S is

a Sylow 2-subgroup of H = Spin7(q), Z = Z(S) is of order 2, and E is the 2-torsion in the fixed

maximal torus T of H.

Lemma 4.6. Let F = FSol(q) be a Benson-Solomon fusion system over S. Then

(1) E1(S) = ZF , and NF (Z) = CF (Z) ∼= FS(H).

(2) For TS = T ∩ S, OutF (TS) = AutF (TS) ∼= C2 × GL3(2), and OutF (TS〈w0〉) ∼= GL3(2)

acts naturally on TS/Φ(TS) and on E.

Proof. Part (1) follows from the construction of FSol(q). The structure of OutF (TS) also follows

by the construction, especially the one of Aschbacher and Chermak [AC10, Section 5]. For a proof

of the structure of OutF (TS〈w0〉), we refer to Lemma 2.38(c) of [HL18]. �

We saw in Lemma 4.5 that H has two conjugacy classes of elementary abelian subgroups

of order 8 containing Z. As far as we can tell, Aschbacher and Chermak do not discuss the

possible F-conjugacy of E and E′ explicitly, but this can be gathered from their description of

the conjugacy classes of elementary abelian subgroups of order 16. Since we need to show that E

and E′ are in fact not F-conjugate, we provide an account of that description.

On p.935 of [AC10], TS is denoted R0. As on pg.935-936, write R1 = N
T

(TS〈w0〉) ∼= (C2k+1)3.

Thus, TS has index 8 in R1, and R1/TS is elementary abelian of order 8. Fix a set

{xe | e ∈ E}

of coset representatives for TS in R1, with notation chosen so that x1 = 1 and x2k
e = e ∈ E for

each e ∈ E − {1}, and write

Ae = Axe .

Since w0 inverts T , Ae = E〈tew0〉 where te := x−2
e = [xe, w0] ∈ TS also powers to e ∈ E. Since

E 6 TS and [TS , w0] = Φ(TS) there are bijections

{ATSe | e ∈ E} −→ TS/Φ(TS) −→ E

given by ATSe 7→ teΦ(TS) 7→ e = t2
k−1

e . These maps are AutF (TS〈w0〉)-equivariant, Inn(TS〈w0〉)
acts trivially, and hence by Lemma 4.6(2), AutF (TS〈w0〉) has two orbits on E4(TS〈w0〉) =

⋃
e∈E A

TS
e

with representatives A = A1 and Ae with e 6= 1.
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Lemma 4.7. E4(S) is the disjoint union of AF1 and AFe , where e is any nonidentity element of

E. All Ae with e 6= 1 are AutF (TS〈w0〉)-conjugate, and AutF (Ae) = CAut(Ae)(e) for each e ∈ E.

Proof. This is Lemma 7.12(c) of [AC10], except for the statement on AutF (TS〈w0〉)-conjugacy,

which is contained in the setup on p.936 of that paper and observed above. �

Lemma 4.8. E3(S) is the disjoint union of EF and E′F , and we have AutF (E) = Aut(E) and

AutF (E′) = Aut(E′).

Proof. Assume to get a contradiction that E and E′ are FSol(q)-conjugate. Since E is normal in S,

it is fully FSol(q)-normalized, so there is ϕ ∈ HomFSol(q)(CS(E′), CS(E)) with E′ϕ = E by [AKO11,

I.2.6]. By Lemma 4.7, post-composing with an element AutF (TS〈w0〉), which normalizes E, we

may take ϕ with Aϕe = Ae. But then Uϕ 6 E and eϕ = e by Lemma 4.7, so Eϕ = E a

contradiction. Now we appeal to [AC10, Lemma 7.8] for the structure of the F-automorphism

groups. �

4.4. Proof of Theorem 4.1. We now turn to the proof of Theorem 4.1. As an initial observation,

note that if L is a punctured group for FSol(q
′) for some q′ ≡ 3 (mod 8), then CL(Z) is a group

whose 2-fusion system is isomorphic to that of Spin7(q′). With the help of a result of Levi and

Oliver, it follows that O2′(CL(Z)/O2′(CL(Z))) ∼= Spin7(q) for some odd prime power q ≡ ±3

(mod 8) (Lemma 4.9). Lemma 4.10 below then gives strong restrictions on q. Ultimately it

implies that q = 31+6a for some a > 0 with the property that q2 − 1 is divisible only by primes

which are squares modulo 7. Although there are at least several such nonnegative integers a with

this property (the first few are 0, 1, 2, 3, 5, 7, 8, 13, 15, . . . ), we are unable to to determine whether

a punctured group for FSol(q) exists when a > 0.

Lemma 4.9. Let G be a finite group whose 2-fusion system is isomorphic to that of Spin7(q′) for

some odd q′. Then G/O2′(G) ∼= Spin7(q)〈ϕ〉 for some odd q with v2(q2 − 1) = v2(q′2 − 1), and

where ϕ induces a field automorphism of odd order.

Proof. It was shown by Levi and Oliver in the course of proving FSol(q) is exotic thatO2′(G/O2′(G))

is isomorphic to Spin7(q) for some odd q [LO02, Proposition 3.4]. If S′ and S are the corresponding

Sylow 2-subgroups, then S′ and S are isomorphic by definition of an isomorphism of a fusion sys-

tem. If k and k′ are one less than the valuations of q2−1 and q′2−1, then the orders of S and S′ are

24+3k and 24+3k′ , so k = k′. The description of G/O2′(G) follows, since Out(Spin7(q)) ∼= Cn×C2,

where q = pn and Cn is generated by a field automorphism. �

The extension of Spin7(q) by a group of field automorphisms of odd order has the same 2-fusion

system as Spin7(q), but we will not need this.

Lemma 4.10. Let q be an odd prime power with the property that GL3(2) has a faithful 3-

dimensional representation over Fr for each prime divisor r of q2 − 1. Then each such r is a

square modulo 7, and q = 31+6a for some a > 0. In particular, q = 3 (mod 8).

Proof. Set G = GL3(2) for short. We first show that GL3(2) has a faithful 3-dimensional repre-

sentation over Fr if and only if r is a square modulo 7. If r = 2, 3, or 7, then as |SL3(3)| is not

divisible by 7 and G ∼= PSL2(7) ∼= Ω3(7), the statement holds. So we may assume that p does

not divide |G|, so that FrGL3(2) is semisimple. Let V be a faithful 3-dimensional module with
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character ϕ, necessarily irreducible. From the character table for GL3(2), we see that ϕ takes

values in Fr((1 +
√
−7)/2). By [Fei82, I.19.3], a modular representation is writable over its field

of character values, so this extension is a splitting field for V . Thus, V is writeable over Fr if and

only if −7 is a square modulo r, which by quadratic reciprocity is the case if and only if r is a

square modulo 7.

Now fix an odd prime power q with the property that q2 − 1 is divisible only by primes which

are squares modulo 7. Since q(q− 1)(q+ 1) is divisible by 3 and 3 is not a square, we have q = 3l

for some l. Now q − 1 and q + 1 are squares, so q = 1 or 3 (mod 7). Assume the former. Then 6

divides l, so q = 3l = ±1 (mod 5). But then q2−1 is divisible by the nonsquare 5, a contradiction.

So the latter holds, l = 1 + 6a for some a > 0, and hence q = 3 (mod 8). �

Lemma 4.11. Let H = Spin7(3) and Z = Z(H). If P > Z is a 2-subgroup of H of 2-rank at

least 2, then NH(P ) is of characteristic 2.

Proof. Let P 6 S with Z 6 V 6 P and V a four group. By Lemma 4.3(2), we may conjugate in

H and take V = U , and CH(U) = L1L2L3〈c〉, where c induces a diagonal automorphism on each

Li ∼= SL2(3). Thus, O2(CH(U)) is a commuting product of three quaternion subgroups of order

8 which contains its centralizer in CH(U), and hence CH(U) is of characteristic 2.

Recall that NH(P ) is of characteristic 2 if and only if CH(P ) is of characteristic 2 and that the

normalizer of any 2-subgroup in a group of characteristic 2 is of characteristic 2 (see, e.g. [Hen19,

Lemma 2.2]). It follows that NCH(U)(P ) is of characteristic 2, so CH(P ) = CCH(U)(P ) is of

characteristic 2, so NH(P ) is of characteristic 2. �

We may now prove the main theorem of this section.

Proof of Theorem 4.1. ( =⇒ ) : Let F := FSol(q
′) for some odd prime power q′. Suppose first

that q′ = ±1 (mod 8), where we argue by contradiction. Fix a locality (L,∆, S) on F with ∆

the set of nonidentity subgroups of S. Among all such localities, take one where L is of minimum

cardinality. Write Z = Z(S) as before, and set G := NL(Z) = CL(Z) for short.

Consider the case O2′(G) = 1. Set H = O2′(G). As L is a locality on FSol(q
′), FS(G) =

FS(NL(Z)) is isomorphic to the 2-fusion system of NF (Z), namely to the fusion system of

Spin7(q′). By Lemma 4.9, H ∼= Spin7(q) for some odd prime power q ≡ ±1 (mod 8). We

identify H with the group defined in Section 4.1.5 and we adopt the notation of Sections 4.1-4.3.

In particular H has Sylow 2-subgroup S, ε ∈ {±1} is such that q ≡ ε (mod 4), and E1 := E

and E−1 := E′ are the representatives for F-conjugacy classes of elementary abelian subgroups

of order 8 in S (Lemmas 4.5 and 4.8). For δ = ±1, let Tδ be the maximal torus containing Eδ of

Lemma 4.5. For each positive integer r dividing q−δε, write Tδ,r for the r-torsion in Tδ. Moreover,

set Tδ,S = Tδ ∩ S. Thus, T1,S = TS = T1,2k is homocyclic of order 23k, and T−1,S = E−1.

Now fix δ and let N = NL(Tδ,S). By Lemmas 4.4(2) and 4.5(3),

CH(Eδ) = Tδ〈w〉,

where w is an involution inverting Tδ. In particular, since

O2′(Tδ) = [O2′(Tδ), 〈w〉] 6 [CH(Eδ), CH(Eδ)]

and O2′(G) = H, we have

CH(Eδ) = O2′(CH(Eδ)) = O2′(CG(Eδ))
38



Also, CL(Eδ) = CG(Eδ) as Eδ contains Z. It follows that CH(Eδ) = O2′(CL(Eδ)) is normal in

NL(Eδ), so

O2′(CH(Eδ)) is normal in NL(Eδ).(4.10)

Next we show

N = NL(Eδ).(4.11)

We may assume Tδ,S > Eδ, and so δ = 1, Tδ,S = TS , and Eδ = E. Certainly NL(TS) 6 NL(E).

For the other inclusion, note NL(E) acts on CH(E) by (4.10) so it acts on TS since TS is the

unique abelian 2-subgroup of maximum order in CH(E). Thus, NL(E) 6 NL(TS), completing the

proof (4.11).

Let r be a prime divisor of q − δε. By (4.11) and (4.10), Tδ,r is normal in N , so CN (Tδ,r) is

normal in N . Set N̄ = N/CN (Tδ,S). Then as L is a locality on FSol(q), we have N̄ ∼= AutF (Tδ,S) ∼=
C2 × GL3(2) when δ = 1 by Lemma 4.6(2), while N̄ ∼= AutF (Tδ,S) ∼= GL3(2) when δ = −1 by

Lemma 4.8 (because T−1,S = E−1). By Lemma 4.5, for a parabolic subgroup X̄ ∼= C2 × S4 or

S4 of N̄ at the prime 2, we have X̄ ∩ CN (Tδ,r) = 1. So CN (Tδ,S) = 1 as this subgroup is normal

in N̄ , and thus CN (Tδ,r) = CN (Tδ,S). It follows that GL3(2) 6 N̄ acts faithfully on Tδ,r ∼= C3
r .

Since this holds for each δ = ±1 and prime r, Lemma 4.10 implies that q ≡ 3 (mod 8), and this

contradicts our original assumption.

We are reduced to showing O2′(G) = 1. Set θ(a) = O2′(CL(a)) for each involution a ∈ S.

By Lemma 2.7(b), θ is conjugacy invariant. Let a, b ∈ S be two distinct commuting involutions.

By conjugacy invariance, to verify balance, we can assume b = z and a = u ∈ U − Z. Set X =

O2′(CL(u))∩G, an odd order normal subgroup of CL(U), and use bars for images modulo O2′(G).

By a Frattini argument CL(U) = CG(U) = CḠ(Ū), so X̄ is normal in the latter group. However,

Ḡ is an extension of H by a cyclic group generated by a field automorphism ϕ of odd order by

Lemma 4.9. We may take ϕ to be standard, that is, acting on the root groups via xα(λ) 7→ xα(λr)

with r odd. Each component Li ∼= SL2(q) of CḠ(Ū) is generated by a root group and its opposite

(Section 4.1.4), it follows that ϕ acts nontrivially as a field automorphism on each such Li, and

hence X̄ 6 O2′(CḠ(Ū)) 6 O2′(L1L2L3) = 1. Equivalently, X = O2′(CL(u)) ∩ G 6 O2′(G). This

shows that the balance condition holds. For each P ∈ ∆, set

Θ(P ) =

 ⋂
x∈I2(P )

θ(x)

 ∩ CL(P ).

Then by Theorem 2.35, Θ defines a signalizer functor on subgroups. By Theorem 2.32, Θ =⋃
P∈∆ Θ(P ) is a partial normal subgroup of L, and L/Θ is again a punctured group for FSol(q).

By minimality of |L|, we have Θ = 1, and in particular O2′(G) = 1. This completes the proof of

the forward direction of the theorem.

(⇐= ) : Let now F = FSol(3) and H = CF (Z) = FS(H) with H = Spin7(3). Set

∆ = {P ∈ Fs | P is of 2-rank at least 2},

and ∆Z = {P ∈ ∆ | P > Z}. Then ∆ is closed under F-conjugacy and passing to overgroups

by [Hen19]. So it is also closed under H-conjugacy.
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Neither Hcr nor Fcr contains a subgroup Q of S of 2-rank 1. Indeed, assume Q is such. Suppose

first that Q is cyclic, or generalized quaternion of order at least 16. Then Aut(Q) is a 2-group.

So since Q is centric, NS(Q)/Q = AutS(Q) = AutF (Q), for example, has a normal 2-subgroup,

so Q is not radical. Assume Q is quaternion of order 8. As U is a normal subgroup of S, we have

[Q,U ] 6 Z = Z(S) 6 Q, so U 6 NS(Q). But NS(Q) is a 2-group containing Q self-centralizing

with index 2, and so NS(Q) is quaternion or semidihedral of order 16. But neither of these groups

has a normal four subgroup, a contradiction.

Each element of Fcr ∪Hcr contains Z. Also Fs ⊆ Hs by [Hen19, Lemma 3.16]. Thus, we have

shown

Fcr ∪Hcr ⊆ ∆Z ⊆ ∆ ⊆ Fs ⊆ Hs.(4.12)

The hypotheses of [Hen19, Theorem A] are thus satisfied, so we may fix a linking locality L on F
with object set ∆, and this L is unique up to rigid isomorphism.

We shall verify the conditions (1)-(5) of [Che13, Hypothesis 5.3] with Z in the role of “T” and

H in the role of “M”. Conditions (1), (2) hold by construction. Condition (4) holds since Z

is normal in H and FS(NL(Z)) ∼= H by [LO02]. To see condition (3), first note that Z is fully

normalized in F because it is central in S. Let Z ′, Z ′′ be distinct F-conjugates of Z. Then 〈Z ′, Z ′′〉
contains a four group V . By Lemma 4.3(2), V is F-conjugate to U , and O2(NF (U)) ∈ Fc is a

commuting product of three quaternion groups of order 8. Thus, V ∈ ∆, and hence 〈Z ′, Z ′′〉 ∈ ∆.

So Condition (3) holds. It remains to verify Condition (5), namely that NL(Z) and L∆Z
(H) are

rigidly isomorphic. By (4.12) and Lemma 4.11, L∆Z
(H) is a linking locality over H with ∆Z as

its set of objects.

On the other hand, by [Che13, Lemma 2.19], NL(Z) is a locality on H with object set ∆Z , in

which NNL(Z)(P ) = CNL(P )(Z) for each P ∈ ∆Z . As L a linking locality, NL(P ) is of characteristic

2, and hence the 2-local subgroup NNL(Z)(P ) of NL(P ) is also of characteristic 2. So again this

together with (4.12) gives that NL(Z) is a linking locality over H with object set ∆Z . Thus,

by [Hen19, Theorem A], we may fix a rigid isomorphism λ : L∆Z
(H)→ NL(Z) and complete the

proof of (5).

So by [Che13, Theorem 5.14], there is a locality L+ over F with object set

∆+ := {P 6 S | Zϕ 6 P for some ϕ ∈ HomF (Z, S)},

such that L+|∆ = L, and L+ is unique up to rigid isomorphism with this property. Since each

subgroup of S contains an involution, and all involutions in S are F-conjugate (by Lemma 4.6(1)),

∆+ is the collection of all nontrivial subgroups of S. Thus, L+ is a punctured group for F . �

5. Punctured groups for exotic fusion systems at odd primes

In this section, we survey some of the known examples of exotic fusion systems at odd primes

in the literature, and determine which ones have associated punctured groups.

Let F be a saturated fusion system over the p-group S. A subgroup Q of S is said to be F-

subcentric if Q is F-conjugate to a subgroup P for which Op(NF (P )) is F-centric. Equivalently,

by [Hen19, Lemma 3.1], Q is F-subcentric if, for any fully F-normalized F-conjugate P of Q, the

normalizer NF (P ) is constrained. Write Fs for the set of subcentric subgroups of F . Thus, Fs
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contains the set of nonidentity subgroups of S if and only if F is of characteristic p-type (and Fs
is the set of all subgroups of S if and only if F is constrained).

A finite group G is said to be of characteristic p if CG(Op(G)) 6 Op(G). A subcentric linking

system is a transporter system Ls associated to F such that Obj(Ls) = Fs and AutLs(P ) is of

characteristic p for every P ∈ Obj(Ls). By a theorem of Broto, Castellana, Grodal, Levi and

Oliver [BCG+05], the constrained fusion systems are precisely the fusion systems of finite groups

of characteristic p. The finite groups of characteristic p, which realize the normalizers of fully

normalized subcentric subgroups, can be “glued together” to build a subcentric linking systems

associated with F . More precisely, building on the unique existence of centric linking systems, the

first author has used Chermak descent to show that each saturated fusion system has a unique

associated subcentric linking system.

For each of the exotic systems F considered in this section, it will turn out that either F is of

characteristic p-type, or S has a fully F-normalized subgroup X of order p such that NF (X) is

exotic. In the latter case, there is the following elementary observation.

Lemma 5.1. Let F be a saturated fusion system over S. Assume there is some nontrivial fully

F-normalized subgroup X such that NF (X) is exotic. Then a punctured group for F does not

exist.

Proof. If there were a transporter system L associated with F having object set containing X,

then AutL(X) would be a finite group whose fusion system is NF (X). �

We restrict attention here to the following families of exotic systems at odd primes, considered

in order: the Ruiz-Viruel systems [RV04], the Oliver systems [Oli14], the Clelland-Parker systems

[CP10], and the Parker-Stroth systems [PS15]. The results are summarized in the following

theorem.

Theorem 5.2. Let F be a saturated fusion system over a finite p-group S.

(a) If F is a Ruiz-Viruel system at the prime 7, then F is of characteristic 7-type, so has a

punctured group.

(b) If F is an exotic Oliver system, then F has a punctured group if and only if F occurs in

cases (a)(i), (a)(iv), or (b) of [Oli14, Theorem 2.8].

(c) If F is an exotic Clelland-Parker system, then F has a punctured group if and only if each

essential subgroup is abelian. Moreover, if so then F is of characteristic p-type.

(d) If F is a Parker-Stroth system, then F is of characteristic p-type, so has a punctured

group.

Proof. This follows upon combining Theorem 2.20 or Lemma 5.1 with Lemma 5.4, Proposition 5.7,

Propositions 5.9 and 5.11, and Proposition 5.12, respectively. �

When showing that a fusion system is of characteristic p-type, we will often use the following

elementary lemma.

Lemma 5.3. Let X be a fully F-normalized subgroup of S such that CS(X) is abelian. Then

NF (X) is constrained.
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Proof. Using Alperin’s Fusion Theorem [AKO11, Theorem I.3.6], one sees that CS(X) is normal

in CF (X). In particular, CF (X) is constrained. Therefore, by [Hen19, Lemma 2.13], NF (X) is

constrained. �

5.1. The Ruiz-Viruel systems. Three exotic fusion systems at the prime 7 were discovered by

Ruiz and Viruel, two of which are simple. The other contains one of the simple ones with index

2.

Lemma 5.4. Let F be a saturated fusion system over an extraspecial p-group S of order p3 and

exponent p. Then NF (Z(S)) = NF (S). In particular, F is of characteristic p-type.

Proof. Clearly NF (S) ⊆ NF (Z(S)). Note that NF (Z(S)) is a saturated fusion system over S

as well. So by [RV04, Lemma 3.2], if a subgroup of S is centric and radical in NF (Z(S)), then

it is either elementary abelian of order p2 or equal to S. Moreover, by [RV04, Lemma 4.1], an

elementary abelian subgroup V of order p2 is radical in NF (Z(S)) if and only if AutF (V ) contains

SL2(p). However, if AutF (V ) contains SL2(p), then it does not normalize Z(S). This implies that

S is the only subgroup of S which is centric and radical in NF (Z(S)). Hence, by Alperin’s Fusion

Theorem [AKO11, Theorem I.3.6], we have NF (Z(S)) ⊆ NF (S) and thus NF (Z(S)) = NF (S).

In particular, NF (Z(S)) is constrained. If X is a non-trivial subgroup of F with X 6= Z(S), then

CS(X) is abelian. So it follows from Lemma 5.3 that F is of characteristic p-type. �

In Section 6, it is shown that for the three exotic Ruiz-Viruel systems, the subcentric linking

system is the unique associated punctured group whose full subcategory on the centric subgroups

is the centric linking system.

5.2. Oliver’s systems. A classification of the simple fusion systems F on p-groups with a unique

abelian subgroup A of index p is given in [Oli14, COS17, OR20a]. Here we consider only those

exotic fusion systems in which A is not essential in F , namely those fusion systems appearing in

the statement of [Oli14, Theorem 2.8].

Whenever F is a saturated fusion system F on a p-group S with a unique abelian subgroup A

of index p, we adopt Notation 2.2 of [Oli14]. For example,

Z = Z(S), Z2 = Z2(S), S′ = [S, S], Z0 = Z ∩ S′, and A0 = ZS′,

and also

H = {Z〈x〉 | x ∈ S −A} and B = {Z2〈x〉 | x ∈ S −A}.

Lemma 5.5. Let F be a saturated fusion system on a finite p-group S having a unique abelian

subgroup A of index p.

(a) If P 6 S is F-essential, then P ∈ {A} ∪ H ∪ B, |NS(P )/P | = p, and each α ∈
NAutF (P )(AutS(P )) extends to an automorphism of S.

Assume now in addition that A is not essential in F .

(b) If Op(F) = 1, then Fe ∩ H 6= ∅, Z0 = Z is of order p, S′ = A0 is of index p2 in S, and

S has maximal class.

(c) If P ∈ H ∪ B is F-essential, then P ∼= C2
p or p1+2

+ according to whether P ∈ H or P ∈ B,

and Op
′
(OutF (P )) ∼= SL2(p) acts naturally on P/[P, P ].

(d) If P ∈ Fe ∩H, then each α ∈ NAutF (P )(Z) extends to an automorphism of S.
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(e) A subgroup P 6 S is essential in NF (Z) if and only if P ∈ Fe ∩ B.

(f) There is x ∈ S −A such that A0〈x〉 is AutF (S)-invariant.

Proof. Parts (a), (b), and (f) are shown in [Oli14, Lemma 2.3,2.4], and (c) follows from [Oli14,

Lemma 2.7]. Suppose as in (d) that P ∈ Fe ∩ H. By (c), AutF (P ) is a subgroup of GL2(p)

containing SL2(p), and the stabilizer of Z in this action normalizes Op
′
(CAutF (P )(Z)) = AutS(P ).

So (d) follows from (a).

It remains to prove (e). If P ∈ Fe ∩ B, then as Z = [P, P ] is AutF (P )-invariant in this case,

OutNF (Z)(P ) = OutF (P ) has a strongly p-embedded subgroup, and so P is essential in NF (Z).

Conversely, suppose P is NF (Z)-essential. By (a) applied to NF (Z), P ∈ {A}∪H∪B and OutS(P )

is of order p, so by assumption NOutNF (Z)(P )(OutS(P )) is strongly p-embedded in OutNF (Z)(P )

by [AKO11, Proposition A.7]. Now each member of NAutF (P )(AutS(P )) extends to S by (a), so Z

is NAutF (P )(AutS(P ))-invariant. Thus, NOutF (P )(OutS(P )) = NOutNF (Z)(P )(OutS(P )) is a proper

subgroup of OutF (P ), and hence strongly p-embedded by [AKO11, Proposition A.7] again. So P

is essential in F . By assumption P 6= A, and P /∈ H by (d). So P ∈ B. �

For the remainder of this subsection, we let F be a saturated fusion system on a

p-group S with a unique abelian subgroup A of index p. Further, we assume that

Op(F) = 1 and A is not essential in F .

We next set up some additional notation. Fix an element x ∈ S − A such that A0〈x〉 is

AutF (S)-invariant, as in Lemma 5.5(f). Since Op(F) = 1, S is of maximal class by Lemma 5.5(b).

In particular Z = Z0 is of order p, A/A0 is of order p, and S′ = A0, so we can adopt [Oli14,

Notation 2.5]. As in [Oli14, Notation 2.5], define Hi and Bi to be the S-conjugacy classes of the

subgroups Z〈xai〉 and Z2〈xai〉 for i = 0, 1, . . . , p− 1, and set

H∗ = H1 ∪ · · · ∪ Hp and B∗ = B1 ∪ · · · ∪ Bp,

so that H = H0 ∪H∗ and B = B0 ∪ B∗.
Set

∆ = (Z/pZ)× × (Z/pZ)× and ∆i = {(r, ri) | r ∈ (Z/pZ)×}.

Define µ : AutF (S)→ ∆ and µ̂ : OutF (S)→ ∆ by µ̂([α]) = µ(α) = (r, s), where

(xA0)α = xrA0 and zα = zs.

The following lemma looks at the image of homomorphisms analogous to µ and µ̂ which are

defined instead with respect to NF (Z)/Z and CF (Z)/Z.

Lemma 5.6. Assume |S/Z| = pm with m > 4. Let E ∈ {NF (Z), CF (Z)}, and let µE be the

restriction of µ to AutE(S). Let µE/Z : AutE/Z(S/Z)→ ∆ be the map analogous to µ but defined

instead with respect to S/Z. Then

Im(µE/Z) = {(r, sr−1) | (r, s) ∈ Im(µE)}

In particular, if Im(µE) = ∆, then Im(µE/Z) = ∆. And if Im(µE) = ∆i for some i, then

Im(µE/Z) = ∆i−1, where the indices are taken modulo p− 1.
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Proof. This essentially follows from [COS17, Lemma 1.11(b)]. By assumption, E/Z is a fusion

system over a p-group S/Z of order at least p4. So A/Z is the unique abelian subgroup of S/Z of

index p by [Oli14, Lemma 1.9]. Since S is of maximal class, so is the quotient S/Z. In particular,

Z(S/Z) is of order p, so we can define µE/Z as suggested with xZ in the role of x and gZ in the

role of z, where g ∈ Z2 − Z is a fixed element.

Let α ∈ AutE(S) with µ(α) = (r, s), let ᾱ be the induced automorphism of S/Z, and let

t ∈ (Z/pZ)× be such that aαA0 = atA0 (which exists since A and A0 are AutF (S)-invariant

and |A/A0| = |Z0| = p). By [COS17, Lemma 1.11(b)], α acts on the i-th upper central quotient

Zi(S)/Zi−1(S) by raising a generator to the power trm−i for i = 1, . . . ,m − 1. Thus, s = trm−1

and (gZ)ᾱ = gαZ = gtr
m−2

Z. Hence, µE/Z(ᾱ) = (r, sr−1). Conversely if µE/Z(ᾱ) = (r, s̄), then

µE(α) = (r, s̄r). �

In the following proposition, we refer to Oliver’s systems according to the itemized list (a)(i-iv),

(b) given in [Oli14, Theorem 2.8].

Proposition 5.7. Assume F is one of the exotic systems appearing in Theorem 2.8 of [Oli14].

Write |S/Z| = pm with m > 3.

(a) F is of characteristic p-type whenever Fe ⊆ H. In particular, this holds if F occurs in

case (a)(i), (a)(iv), or (b).

(b) If F is in case (a)(ii) and m > 4, then NF (Z) is exotic. Moreover, F is of component

type, and CF (Z)/Z is simple, exotic, and occurs in (a)(iv) in this case. If F is in case

(a)(ii) with m = 3 (and hence p = 5), then NF (Z)/Z is the fusion system of 52GL2(5),

and F is of characteristic 5-type.

(c) If F is in case (a)(iii), then NF (Z) is exotic. Moreover, F is of component type with

CF (Z)/Z is simple, exotic, and of type (a)(i).

Proof. Each of Oliver’s systems is simple on S with a unique abelian subgroup A of index p which

is not essential, so it satisfies our standing assumptions and the hypotheses of Lemmas 5.5 and

5.6, and we can continue the notation from above. In particular, Z0 = Z is of order p, S′ = A0,

and S is of maximal class.

For each fully F-normalized subgroup X 6 S of order p and not equal to Z, CS(X) is abelian:

if X 6 A this follows since CS(X) = A (X is not central), while if X � A, this follows since

CA(X) = Z by Lemma 5.5(b). Thus NF (X) is constrained in this case by Lemma 5.3. Hence F
is of characteristic p-type if and only if NF (Z) is constrained. By Lemma 5.5(e), if Fe ⊆ H, then

NF (Z) has no essential subgroups. By the Alperin-Goldschmidt fusion theorem [AKO11, I.3.5],

each morphism in NF (Z) extends to S, and hence S is normal in NF (Z). So if Fe ⊆ H, then

NF (Z) is constrained.

Case: F occurs in (a)(i), (a)(iv), or (b) of [Oli14, Theorem 2.8]. We have Fe ⊆ H
precisely in these cases. So F is of characteristic p-type.

Case: F occurs in (a)(ii). Here, m ≡ −1 (mod p − 1), µ̂(OutF (S)) = ∆, and Fe = B0 ∪ H∗.
By assumption F is exotic, so as F is the fusion system of 3D4(q) when p = 3, we have p > 5.

Let E ∈ {NF (Z), CF (Z)} and set F̄ = NF (Z)/Z, F̄1 = CF (Z)/Z, and S̄ = S/Z, so that F̄1 E F̄
is a normal pair of fusion systems on S̄. By Lemma 5.5(e), the set of NF (Z)-essential subgroups

is Fe ∩ B. A straightforward argument shows that the set of CF (Z)-essential subgroups is then
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also Fe ∩B, and that factoring by Z induces a bijection between the set of essential subgroups of

E and of Ē . Thus, Ēe = B̄0, where B̄0 = {P̄ | P ∈ B0}.
Subcase: m > 4. Since S̄ has order p4, we know that Ā is the unique abelian subgroup of S̄ of

index p by [Oli14, Lemma 1.9].

We will prove that Ē is reduced. Since |S̄| > p4, the subgroup Z̄2〈x̄〉 is not normal in S̄.

Since Op(Ē) is contained in every Ē-essential subgroup, we have Op(Ē) 6
⋂
B̄0 = Z(S̄). By

Lemma 5.5(c), Z2 is not AutE(P )-invariant for any P ∈ B0, and hence Z̄2 = Z(S̄) is not AutĒ(P̄ )-

invariant for any P̄ ∈ B̄0. So Op(Ē) = 1.

Next, since Im(µ) = ∆ in the present case, we have Im(µE) = ∆ when E = NF (Z) since the

AutNF (Z)(S) = AutF (S). When E = CF (Z), the E-automorphism group of S is the centralizer of

Z in AutF (S). By definition of the map µ, this means

Im(µE) = {(r, 1) | r ∈ (Z/pZ)×} = ∆0

So in any case, Im(µĒ) > ∆−1 by Lemma 5.6.

We next show that Op(Ē) = Ē . By [Oli14, Proposition 1.3(c,d)], the focal subgroup of Ē is

generated by [P̄ ,AutĒ(P̄ )] for P̄ ∈ B̄0∪{S̄}, and Op(Ē) = Ē if and only if foc(Ē) = S̄. Since P̄ is a

natural module for Op
′
(AutĒ(P̄ )) ∼= SL2(p) for each P̄ ∈ B̄0 (Lemma 5.5(c)), the focal subgroup

of Ē contains 〈B̄0〉 = Ā0〈x̄〉. Thus, foc(Ē) = S̄ if and only if ā ∈ [S̄,AutĒ(S̄)]. But we just saw

that Im(µĒ) > ∆−1. Further, if ᾱ is an Ē-automorphism of S̄ with µĒ(ᾱ) = (r, r−1), then for the

class t ∈ (Z/pZ)× with (āĀ0)ᾱ = ātĀ0, we have r−1 = trm−2 by [COS17, Lemma 1.11(b)], and

hence t = r−(m−1). As m+ 1 ≡ 0 (mod p− 1) and p > 5, we have −(m− 1) 6≡ 0 (mod p− 1). So

AutĒ(S̄) acts nontrivially on Ā/Ā0, and hence foc(Ē) = S̄.

We next show that Op
′
(Ē) = F̄1 using Lemma 1.4 of [Oli14]. Since F̄1 is a normal subsystem

of F̄ on S̄, it follows from [AKO11, Theorem I.7.7] that Op
′
(Ē) is a subsystem of F̄1. So it

will be sufficient to show that Op
′
(F̄1) = F̄1. Set P̄ = Z(S̄)〈x̄〉 = Z̄2〈x̄〉 ∈ B̄0, and let ᾱ be

an F̄1-automorphism of S̄. Since Ā0〈x̄〉 is ᾱ-invariant, it follows that ᾱ preserves the S̄-class

B̄0 under conjugation, and so upon adjusting ᾱ by an inner automorphism of S̄ (which doesn’t

change the image of ᾱ under µF̄1
), we can assume that ᾱ normalizes P̄ . The restriction of ᾱ to

P̄ acts via an element of SL2(p) on P̄ since Im(µF̄1
) = ∆−1, and so this restriction is contained

in Op
′
(AutF̄1

(P̄ )). Thus, Op
′
(F̄1) = F̄1 by Lemma 1.4 of [Oli14].

Thus, F̄1 is reduced. Step 1 of the proof of [Oli14, Theorem 2.8] then shows that F̄1 is the

unique reduced fusion system with the given data, and then Step 2 shows that F̄1 is simple. So F̄1

is exotic and occurs in case (a)(iv) of Oliver’s classification, since m−1 = −2 6≡ 0,−1 (mod p−1).

It remains to show that NF (Z) is exotic. For this it suffices to show that NF (Z)/Z = F̄ is

exotic. For suppose NF (Z) is realizable by a group G with Sylow p-subgroup S. Then Z is

normal in the fusion system of G, and so NG(Z) also realizes NF (Z). Hence, NG(Z)/Z realizes

NF (Z)/Z.

Assume to get a contradiction that F̄ is realizable. We will verify the hypotheses of [DRV07,

Proposition 2.19] for F̄ . Let T̄ 6 S̄ be a nontrivial, strongly F̄-closed subgroup. Since F̄1 is a

subsystem of F̄ on S̄, T̄ is strongly F̄1-closed. By [Oli14, Theorem 2.8], either T̄ = Ā0〈x̄〉 or

T̄ = S̄. In particular, T̄ is nonabelian. Also, since Z(T̄ ) = Z(S̄) by Lemma 5.5(b), it follows

that T̄ is centric and does not split as a direct product of two of its proper subgroups. Thus,

by [DRV07, Proposition 2.19], F̄ = FS̄(Ḡ) for some finite group Ḡ with Sylow subgroup S̄ and
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with F ∗(Ḡ) simple. Let Ḡ0 = Op
′
(Ḡ). Then F̄0 := FS̄(Ḡ0) is normal subsystem of F̄ on S̄, so

F̄1 ⊆ F̄0 by [AKO11, Theorem I.7.7]. The hyperfocal subgroup of F̄0 contains the hyperfocal

subgroup of F̄1, which is S̄. Thus, Op(Ḡ0) = Ḡ0. Since Op
′
(Ḡ0) = Ḡ0 = Op(Ḡ0) and the outer

automorphism group of F ∗(Ḡ0) is solvable by the Schreier conjecture, it follows that Ḡ0 = F ∗(Ḡ0)

is simple.

Now set T̄ = Ā0〈x̄〉 = 〈B̄0〉. Then T̄ is indeed strongly F̄0-closed and proper in S̄. By a result

of Flores and Foote [FF09], stated as in [AKO11, II.12.12], we have p = 3 = |T̄ | = pm−2, and this

contradicts m > 4. Therefore, F̄ is exotic.

Subcase: m = 3. Since m ≡ −1 (mod p−1), we have p = 5. So S̄ is extraspecial of order 53 and

exponent 5. We saw above that F̄e = B̄0, which is of size 1 in this case. That is, there is a unique

essential subgroup, Z(S̄)〈x̄〉, which is therefore AutF̄ (S̄)-invariant. By the Alperin-Goldschmidt

fusion theorem, this subgroup is normal in F̄ . So F̄ is constrained, it is isomorphic to the fusion

system of 52GL2(5) by Lemma 5.6 and [Oli14, Lemma 2.6(c)], and F is of characteristic 5-type.

This completes the proof of (b).

Case: F occurs in (a)(iii). Then m ≡ 0 (mod p − 1), Fe = H0 ∪ B∗, and Im(µ) = ∆. Set

F̄ = NF (Z)/Z and F̄1 = CF (Z)/Z. Similarly to the previous case, we can show F̄e = F̄e1 = {P̄ |
P ∈ B∗}. Denote this set by B̄∗, and let Ē ∈ {F̄ , F̄1}. Since m > 3, we have p > 5, and hence

in fact m > 4. In particular, Ā is the unique abelian subgroup of S̄, Ā is not essential in Ē , and

Op(Ē) = 1 by the same argument as in the previous case.

We can see that Op
′
(F̄) = Op

′
(F̄) = F̄1 using Im(µF̄1

) = ∆−1 and Lemma 5.6 as in the previous

case. Also as the previous case, the focal subgroup of Ē contains 〈B̄∗〉, which this time is equal to

S̄. So Op(Ē) = Ē . We’ve shown F̄1 is reduced, and so F̄1 is simple by Steps 1 and 2 of the proof

of [Oli14, Theorem 2.8]. As |S̄/Z(S̄)| = pm−1 and m − 1 ≡ −1 (mod p − 1), it follows that F̄1

occurs in case (a)(i) of Oliver’s classification. In particular, F̄1 is exotic.

As in the previous case, to show NF (Z) is exotic it will be sufficient to show that F̄ is exotic.

Suppose instead that F̄ is realizable. As before, we use [DRV07, Proposition 2.19] to see that

F̄ is realizable by an almost simple group Ḡ, and then get that Ḡ0 = Op
′
(Ḡ) is simple. Let

F̄0 = FS̄(Ḡ0). Then F̄0 is a normal subsystem of F̄1 on S̄, so F̄1 = Op
′
(F̄0) ⊆ F̄0. Further,

F̄0 6= F̄1 since we saw earlier that F̄1 is exotic. We are thus in the situation of Theorem A

of [OR20b]. By that theorem, there is n > 2 and a prime power q with q 6= 0,±1 (mod p)

such that G ∼= PSL±n (q), PSp2n(q), Ω2n+1(q), or PΩ±2n+2(q). Since m > 4, no member of

B̄ = {P̄ | P ∈ B} is normal in S̄. So Ā is the unique F̄0-centric abelian subgroup which is normal

in S̄. By [OR20b, Proposition 4.5], we have AutF̄0
(Ā)/Op′(AutF̄0

(Ā)) ∼= Sκ, where κ is such that

Sκ has Sylow p-subgroup of order p. Hence, AutF̄0
(Ā) has a strongly p-embedded subgroup. This

contradicts the fact that Ā is not essential in F̄0 and completes the proof. �

5.3. The Clelland-Parker systems. We now describe the fusion systems constructed by Clel-

land and Parker in [CP10]. Throughout we fix a power q of the odd prime p and set k := Fq. Let

A := A(n, k) be the irreducible module of dimension 2 6 n+1 6 p over k for SL2(q); for example,

A can be taken to be the space of homogeneous polynomials of degree n with coefficients in k.

There is an action of D := k× × GL2(k) on A that extends that of SL2(k); we write G for the

semidirect product DA. Let U be a Sylow p-subgroup of D and let S := S(n, k) := UA be the

semidirect product of A by U .
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The center Z := Z(S) is a one-dimensional k-subspace of A and by [CP10, Lemma 4.2(iii)], we

have

CA(X) = Z(S) for each subgroup X not contained in A.(5.1)

The second center Z2(S) is a 2-dimension k-subspace of A. Let R = ZU and Q = Z2(S)U . Then

R ∼= q2 and Q is special of shape q1+2. Let HR be the stabilizer in GL3(k) of a one dimensional

subspace, and identify its unipotent radical with R. Let HQ be the stabilizer in GSp4(k) of a

one dimensional subspace and identify the corresponding unipotent radical with Q. It is shown

in [CP10] that NG(R) is isomorphic to a Borel subgroup GL3(k), and that NG(Q) is isomorphic

to a Borel subgroup of GSp4(k). This allows to form the free amalgamated products

F (1, n, k,R) := G ∗NG(R) HR

and

F (1, n, k,Q) := G ∗NG(Q) HQ.

Set

F(1, n, k,R) := FS(F (1, n, k,R))

and

F(1, n, k,Q) := FS(F (1, n, k,Q)).

More generally, for each X ∈ {R,Q} and each divisor r of q − 1, subgroup F (r, n, k,X) of

F (1, n, k,X) of index r, which contains Op
′
(G) and Op

′
(HX). They set then

F(r, n, k,X) = FS(F (r, n, k,X)).

As they show, distinct fusion systems are only obtained for distinct divisors r of (n + 2, q − 1)

when X = R, and for distinct divisors r of (n, q − 1) when X = Q. By [CP10, Theorem 4.9], for

all n > 1 and each divisor r of (n + 2, q − 1), F(r, n, k,R) is saturated. Similarly, F(r, n, k,Q)

is saturated for each n > 2 and each divisor r of (n, q − 1). It is determined in Theorem 5.1,

Theorem 5.2 and Lemma 5.3 of [CP10] which of these fusion systems are exotic. It turns out

that F(r, n, k,R) is exotic if and only if either n > 2 or n = 2 and q 6∈ {3, 5}. Furthermore,

F(r, n, k,Q) is exotic if and only if n > 3, in which case p 6= 3 as n 6 p− 1.

For the remainder of this subsection, except in Lemma 5.10, we use the notation

introduced above.

For the problems we will consider here, we will sometimes be able to reduce to the case r = 1

using the following lemma.

Lemma 5.8. For any divisor r of q − 1, the fusion system F(r, n, k,R) is a normal subsystem

of F(1, n, k,R) of index prime to p, and the fusion system F(r, n, k,Q) is a normal subsystem of

F(1, n, k,Q) of index prime to p.

Proof. For X ∈ {R,Q}, the fusion systems F(r, n, k,X) and F(1, n, k,X) are both saturated by

the results cited above, As F (r, n, k,X) is a normal subgroup of F (1, n, k,X), it is easy to check

that F(r, n, k,X) is F(1, n, k,X)-invariant. As both F(1, n, k,X) and F(r, n, k,X) are fusion

systems over S, the claim follows. �

Proposition 5.9. F(r, n, k,R) is of characteristic p-type for all 1 6 n 6 p−1 and for all divisors

r of (n+ 2, q − 1).
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Proof. Fix 1 6 n 6 p− 1 and a divisor r of (n+ 2, q − 1). Set F = F(1, n, k,R). By Lemma 5.8,

F(r, n, k,R) is a normal subsystem of F of index prime to p. So by [Hen19, Proposition 2(c)], it

suffices to show that F is of characteristic p-type. By [CP10, Lemma 5.3(i,ii)], F is of realizable

and of characteristic p-type when n = 1, so we may and do assume n > 2.

Using the notation above, set F1 = FS(G), S2 = NS(R), and F2 = FS2(HR). The fusion

system F is generated by F1 and F2 by [CP10, Theorem 3.1], and so as F1 and F2 are both

constrained with Op(F1) = A and Op(F2) = R, it follows that F is in turn generated by AutF1(A),

AutF1(S), AutF2(R), and AutF2(S2). However, the last automorphism group is redundant, since

NHR(S2) = NG(R) induces fusion in F1. Hence

F = 〈AutF1(S),AutF1(A),AutF2(R)〉.(5.2)

Observe also that the following property is a direct consequence of (5.1):

If X 6 S with X 66 Z, then either X 6 A and CS(X) = A, or |CS(X)| 6 q2.(5.3)

We can now show that F is of characteristic p-type. Let first X ∈ Ff such that X 66 Z. We

show that NF (X) is constrained. If X is not F-conjugate into A or into R, then every morphism

in NF (X) extends by (5.2) to an automorphism of S. So NF (X) = NNF (S)(X). As NF (S) is

constrained, it follows thus from [Hen19, Lemma 2.11] that NF (X) is constrained. So we may

assume that there exists an F-conjugate Y of X with Y 6 A or Y 6 R. We will show that CS(X)

is abelian so that NF (X) is constrained by Lemma 5.3. Note that |CS(X)| > |CS(Y )| as X is

fully normalized and thus fully centralized in F . Since X is not contained in Z = Z(S), we have

in particular Y 66 Z. If Y 6 A, then A 6 CS(Y ) and, since X is fully centralized and n > 2,

|CS(X)| > |CS(Y )| > |A| > q2. So by (5.3), CS(X) = A is abelian. Similarly, by (5.3), if X 6 A

then CS(X) = A is abelian. Thus we may assume Y 6 R and X 66 A. Then R 6 CS(Y ) and (5.3)

implies q2 > |CS(X)| > |CS(Y )| > |R| = q2. So the inequalities are equalities, CS(Y ) = R and

|CS(X)| = q2. By the extension axiom, there exists ϕ ∈ HomF (CS(Y ), CS(X)). So it follows that

CS(X) ∈ RF is abelian. This completes the proof that NF (X) is constrained for every X ∈ Ff
with X 66 Z.

Let now 1 6= X 6 Z. It remains to show that NF (X) is constrained. If NF (X) ⊆ NF (S), then

again by [Hen19, Lemma 2.11], NF (X) = NNF (S)(X) is constrained since NF (S) is constrained.

We will finish the proof by showing that indeed NF (X) ⊆ NF (S). Assume by contradiction that

NF (X) 6⊆ NF (S). Then there exists an essential subgroup E of NF (X). Observe that Z < E,

since E is NF (X)-centric. As AutS(E) is not normal in AutNF (Z)(E), there exists an element of

AutNF (Z)(E) which does not extend to an F-automorphism of S. So by (5.2), E is F-conjugate

into A or into R. Assume first that there exists an F-conjugate Ê of E such that Ê 6 A. Property

(5.1) yields that R ∩ A = Z. So E is conjugate to Ê 6 A via an element of AutF1(S) by (5.2).

Thus, as CS(E) 6 E, we have A 6 CS(Ê) 6 Ê. Hence A = Ê by (5.3). As A is AutF1(S)-

invariant, it follows E = A. Looking at the structure of G, we observe now that NG(X) = NG(S)

and so AutS(A) is normal in AutNF (X)(A) = NAutF (A)(X) = NAutF1
(A)(X). Hence, A cannot

be essential in NF (X) and we have derived a contradiction. Thus, E is not F-conjugate into A.

Therefore, again by (5.2), E is conjugate into R under an element of AutF1(S). Let α ∈ AutF1(S)
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such that Eα 6 R. As CS(E) 6 E, we have then CS(Eα) 6 Eα. Since R is abelian, it follows

Eα = R. Thus, we have

AutNF (X)(E)α = NAutF (E)(X)α = NAutF (R)(X
α).

As 1 6= Xα 6 Zα = Z 6 R and AutF (R) = AutF2(R) acts k-linearly on R, NAutF (R)(X
α)

has a normal Sylow p-subgroup. Thus, AutNF (X)(E) ∼= NAutF (R)(X
α) has a normal Sylow p-

subgroup, contradicting the fact that E is essential in NF (X). This final contradiction shows

that NF (X) ⊆ NF (S) is constrained. This completes the proof of the assertion. �

Our next goal will be to show that F := F(r, n, k,Q) does not have a punctured group for

n > 3 (i.e. in the case that F is exotic). For that we prove that, using the notation introduced

at the beginning of this subsection, NF (Z)/Z is exotic. The structure of NF (Z)/Z resembles the

structure of F(r, n−1, k, R) except that the elementary abelian normal subgroup of index q is not

essential. Indeed, it will turn out that the problem of showing that NF (Z)/Z is exotic reduces to

the situation treated in the following lemma, whose proof of part (c) depends on the classification

of finite simple groups.

Lemma 5.10. Fix a power q of p as before. Let S be an arbitrary p-group such that S = U nA
splits as a semidirect product of an elementary abelian subgroup A with an elementary abelian

subgroup U . Assume |U | = q, and |A| = qn for some 3 6 n 6 p − 1. Set P := Z(S)U ,

T := [S, S]U , and let F be a saturated fusion system over S. Assume the following conditions

hold:

(i) Z(S) has order q, [S, S] 66 Z(S), and Z(S) = CA(u) for every 1 6= u ∈ U .

(ii) Op
′
(AutF (P )) ∼= SL2(q) and P is a natural SL2(q)-module for Op

′
(AutF (P )),

(iii) F is generated by AutF (P ) and AutF (S),

(iv) AutF (S) acts irreducibly on A/[S, S], and

(v) there is a complement to Inn(S) in AutF (S) which normalizes U .

Then the following hold:

(a) The non-trivial strongly closed subgroups of F are precisely S and T .

(b) Neither S nor T can be written as the direct product of two non-trivial subgroups.

(c) F is exotic.

Proof. Observe first that (iii) implies that P is fully normalized. In particular, AutS(P ) ∈
Sylp(AutF (P )). As Z := Z(S) has order q, it follows from (ii) that Z(S) = CP (NS(P )) =

[P,NS(P )] 6 [S, S]. In particular, P 6 T . We note also that CS(P ) = P as CA(U) = Z(S) by

(i).

To prove (a), we argue first that T is strongly closed. Observe that T is normal in S, since T

contains [S, S]. As [S, S] is characteristic in S, it follows thus from (v) that T is AutF (S)-invariant.

Thus, as P 6 T , (iii) implies that T is strongly closed in F . Let now S0 be a non-trivial proper

subgroup of S strongly closed in F . Since S0 is normal in S, it follows 1 6= S0 ∩ Z(S) 6 P . By

(ii), AutF (P ) acts irreducibly on P . So P 6 S0. Hence, [S, S] = [A,U ] 6 [S, P ] 6 [S, S0] 6 S0

and thus T = [S, S]U = [S, S]P 6 S0. Suppose T < S0. As U 6 S0 6 S = AU , we have

S0 = (S0 ∩A)U and thus [S, S] < S0 ∩A < A. So AutF (S) does not act irreducibly on A/[S, S],

contradicting (iv). This shows (a).
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For the proof of (b) let S∗ ∈ {S, T} and assume by contradiction that S∗ = S1 × S2 where S1

and S2 are non-trivial subgroups of S∗. Notice that in either case Z = Z(S∗) by (i). Moreover,

again using (i), we note that [S1, S1] × [S2, S2] = [S, S] 66 Z = Z(S). So there exists in either

case i ∈ {1, 2} with [Si, Si] 66 Z and thus Si ∩ A 66 Z. We assume without loss of generality

that S1 ∩ A 66 Z. Setting S∗ = S∗/Z, we note that S1 ∩A is a non-trivial normal subgroup

of S∗, and intersects thus non-trivially with Z = Z(S∗). Hence, ((S1 ∩ A)Z) ∩ Z2(S∗) 66 Z

and so S1 ∩ A ∩ Z2(S∗) 66 Z. Choosing s ∈ (S1 ∩ A ∩ Z2(S∗))\Z, we have s ∈ NS(P )\P as

A ∩ P = Z and [s, P ] 6 [Z2(S∗), P ] 6 Z 6 P . Using (ii) and CS(P ) 6 P , it follows Z = [P, s].

So Z = [P, s] 6 [P, S1] 6 S1 as P 6 S∗ and S1 is normal in S∗. Since S2 is a non-trivial normal

subgroup of S∗, we have S2 ∩ Z = S2 ∩ Z(S∗) 6= 1. This contradicts S1 ∩ S2 = 1. Thus, we have

shown that S∗ cannot be written as a direct product of two non-trivial subgroups, i.e., property

(b) holds.

Part (c) follows now from a combination of results in the literature, some of which use the

classification of finite simple groups. Most notably, we use the Schreier conjecture, Oliver’s work

on fusion systems over p-groups with an abelian subgroup of index p [Oli14], and the work of

Flores–Foote [FF09] determining the simple groups having a Sylow p-subgroup with a proper

non-trivial strongly closed subgroup. To argue in detail, assume that F is realizable. By (b),

neither S nor T can be written as a direct product of two non-trivial subgroups. By (a), S and

T are the only non-trivial strongly closed subgroups. The subgroup T is F-centric since T is

strongly closed and P 6 T is self-centralizing in S. Clearly, S is F-centric. So as F is realizable,

it follows from [DRV07, Proposition 2.19] that F = FS(G) for some almost simple group G

with S ∈ Sylp(G). Set G0 := Op
′
(G) and F0 := FS(G0). Notice that SL2(q) ∼= Op

′
(AutF (P ))

is contained in F0, so in particular, S is not normal in F0. As T is strongly closed in F , T

is also strongly closed in the subsystem F0 of F . Hence, if G0 were simple, then by the work

of [FF09], we would have p = 3 = |T |. (We refer the reader to [AKO11, Theorem 12.12], which

summarizes for us the relevant part of the work of Flores–Foote.) Clearly |T | > p, so G0 is not

simple. Observe that F ∗(G0) = F ∗(G) and G0 is almost simple, since G is almost simple. Since

the outer automorphism group of any simple group is solvable by the Schreier conjecture (see

e.g. [GLS98, Theorem 7.11(a)]), it follows that G0 has a normal subgroup of prime index. So

since G0 = Op
′
(G0), G0 has a normal subgroup N of index p. Then S ∩ N is strongly closed.

Hence S ∩ N = T and p = |G0/N | = |S/T | = q. Hence we are in the situation that S has an

abelian subgroup of index p. Since T is the only proper non-trivial strongly closed subgroup, we

have T = F ∗(G) ∩ S.

Set G1 := F ∗(G) and F1 := FT (G1). Notice that Z2(S) 6 NS(P ) and |NS(P )/P | = q = p by

(ii). As [S, S] is normal in S, we have Ẑ := Z2(S)∩ [S, S] 66 Z. As Z = P ∩A and Ẑ 6 [S, S] 6 A,

it follows that Ẑ 66 P and NS(P ) = ẐP 6 [S, S]P = T . Since T is strongly closed in F , this

implies that NS(P ∗) 6 T for every F-conjugate P ∗ of P . Let P ∗ be an F-conjugate of P . As

G1 = Op
′
(G1), the morphisms in Op

′
(AutF (P ∗)) = 〈AutS(P ∗)AutF (P ∗)〉 lie in F1. So AutF1(P ∗)

is isomorphic to a subgroup of GL2(p) containing SL2(p) and has thus a strongly p-embedded

subgroup. Since CS(P ) 6 P and PF = PAutF (S), the subgroup P ∗ is F1-centric. Hence, P ∗ is

essential in F1. Since NS(P ) 6 T and |S : T | = p, this shows PS splits into p T -conjugacy classes,

all of which are essential in F1. On the other hand, [S, S] is not essential in F by (iii), so [S, S]

is not essential in F1 either.
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Next we reach a contradiction when n > 4. Since we can choose P ∗ ∈ PS\P T , and since

[S, S] = T ∩ A is an abelian subgroup of T of index p and order pn−1 with n − 1 > 3, it follows

now from [Oli14, Lemma 2.7(a)] applied with F1 in place of F that n−1 ≡ −1 (mod p−1). Since

n 6 p− 1, this implies n− 1 = p− 2. However, since F1 is the fusion system of the simple group

G1 = F ∗(G), [Oli14, Lemma 1.6] gives p = 3. So n = 2 which contradicts our assumption.

Finally, suppose n = 3. Then T is extraspecial of order p3 and exponent p, and F1 has exactly

p essential subgroups of index p, namely the members of PS (the only other subgroup of index

p in T being [S, S], which is not essential). But there is no saturated fusion system over T with

exactly p essential subgroups by the classification of Ruiz and Viruel [RV04, Tables 1.1, 1.2]. This

contradiction completes the proof of (c) and the lemma. �

Recall that F(r, n, k,Q) is realizable in the case n = 2 and thus has a punctured group. So

the case n > 3, which we consider in the following proposition, is actually the only interesting

remaining case.

Proposition 5.11. Let 3 6 n 6 p − 1 (and thus p > 5), let r be a divisor of (n, q − 1), and

set F = F(r, n, k,Q). Then NF (Z) and NF (Z)/Z are exotic. In particular, F does not have a

punctured group.

Proof. By Lemma 5.1, F does not have a punctured group if NF (Z) is exotic. Moreover, if NF (Z)

is realized by a finite group G, then NF (Z) is also realized by NG(Z), and NF (Z)/Z is realized

by NG(Z)/Z. So it is sufficient to show that NF (Z)/Z is exotic.

Recall from above that S = S(n, k), A = A(n, k) and Z := Z(S). Set F1 = FS(G) and

F2 = FS2(HQ) with S2 = NS(Q). Suppose first r = 1. Then one argues similarly as in the

proof of Proposition 5.9 that F = 〈AutF1(S),AutF1(A),AutF2(Q)〉. Namely, F is generated by

F1 and F2 by [CP10, Theorem 3.1], and so as F1 and F2 are both constrained with Op(F1) = A

and Op(F2) = Q, it follows that F is in turn generated by AutF1(A), AutF1(S), AutF2(Q),

and AutF2(S2). However, the last automorphism group is redundant, since NHR(S2) = NG(Q)

induces fusion in F1. So indeed F = 〈AutF1(S),AutF1(A),AutF2(Q)〉 if r = 1. This implies

AutF1(S) = AutF (S), AutF (A) = AutF1(A) and (as NG(Q) = NHQ(S2)) AutF (Q) = AutF2(Q).

Moreover, the set of F-essential subgroups comprises A and all AutF (S)-conjugates of Q. On

easily checks that a normal subsystem of F of index prime to p has the same essential subgroups

as F itself, for any saturated fusion system F . So as, for arbitrary r, by Lemma 5.8, F is a

normal subsystem of F(1, n, k,Q) of index prime to p, it follows that, in any case, the F-essential

subgroups are A and the AutF1(S)-conjugates of Q. Since there is a complement to S in NG(S)

which normalizes U and thus Q, the AutF1(S)-conjugates of Q are precisely the S-conjugates of

Q. So, for arbitrary r, we have

F = 〈AutF (S),AutF (A),AutF (Q)〉.(5.4)

Moreover, AutF (S) 6 AutF1(S), AutF (A) 6 AutF1(A), and AutF (Q) 6 AutF2(Q). Recall also

that Op
′
(HQ) 6 F (r, n, k,Q) and thus SL2(q) ∼= Op

′
(AutF2(Q)) 6 AutF (Q).

Note that AutF (Q) normalizes Z and lies thus in NF (Z). We will show next that NF (Z) is

generated by AutF (S) and AutF (Q). By the Alperin–Goldschmidt fusion theorem, it suffices to

show that every essential subgroup of NF (Z) is an AutF (S)-conjugate of Q. So fix an essential
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subgroup E of NF (Z) and assume that E 6∈ QAutF (S). As CS(E) 6 E, we have Z < E. If E 6 A
then E = A. However, AutF (A) 6 AutF1(A) = AutG(A) and one observes that S is normal in

NG(Z). So AutNF (Z)(A) = NAutF (A)(Z) has a normal Sylow p-subgroup, which contradicts E

being essential. Assume now that E 6 Q. Suppose first Z < Z(E). The images of the maximal

abelian subgroups of Q are precisely the 1-dimensional k-subspaces of Q/Z. As AutF (Q) fixes Z

and acts transitively on the one-dimensional k-subspaces of Q/Z, we see that Z(E) is conjugate

into Z2(S) = A ∩ Q under an element of AutF (Q). So replacing E by a suitable AutF (Q)-

conjugate, we may assume Z(E) 6 A ∩Q. As Z < Z(E), it follows then from (5.1) that E 6 A.

As CS(E) 6 E and A 66 Q, this is a contradiction. So we have Z = Z(E). As [E,Q] 6 [Q,Q] 6 Z,

it follows AutQ(E) 6 C := CAutNF (Z)(E)(E/Z(E))∩CAutNF (Z)(E)(Z(E)). However, C is a normal

p-subgroup of AutNF (Z)(E). Thus, as E is radical in NF (Z), we have AutQ(E) 6 C 6 Inn(E). As

CS(E) 6 E, it follows E = Q contradicting the choice of E. So we have shown that E lies neither

in A nor in Q. Since the choice of E was arbitrary, this means that E is not AutF (S)-conjugate

into A or Q. So by (5.4), every F-automorphism of E extends to an F-automorphism of S. This

implies that AutS(E) is normal in AutF (E) and thus in AutNF (Z)(E). Again, this contradicts E

being essential. So we have shown that NF (Z) is generated by AutF (S) and AutF (Q).

Set S = S/Z and F = NF (Z)/Z. We will check that the hypothesis of Lemma 5.10 is fulfilled

with F , S, A, U and Q in place of F , S, A, U and P . Part (c) of this Lemma will then

imply that NF (Z)/Z is exotic as required. Notice that |U | = |U | = q, |A| = qn+1 and |A| =

qn. As Q = Z2(S)U , we have Q = Z(S)U . By [CP10, Lemma 4.2(i)&(iii)], hypothesis (i) of

Lemma 5.10 holds. Recall that Op
′
(AutHQ(Q)) ∼= SL2(q) lies in NF (Z). In particular, hypothesis

(ii) in Lemma 5.10 holds with F and Q in place of F and P . Since we have shown above

that NF (Z) is generated by AutF (S) and AutF (Q), it follows that F fulfills hypothesis (iii) of

Lemma 5.10. Observe that there exists a complement K of S in NG(S) which normalizes U .

Then AutF (S) 6 AutG(S) = Inn(S)AutK(S). Thus AutF (S) = Inn(S)(AutK(S)∩AutF (S)) and

AutK(S) ∩ AutF (S) is a complement to Inn(S) in AutF (S) which normalizes U . This implies

that hypothesis (v) of Lemma 5.10 holds for F .

It remains to show hypothesis (iv) of Lemma 5.10 for F . Equivalently, we need to show that

AutF (S) = AutNF (Z)(S) acts irreducibly on A/[S, S]. For the proof, we use the representations

Clelland and Parker give for G and HQ, and the way they construct the free amalgamated product;

see pp. 293 and pp. 296 in [CP10]. Let ξ be a generator of k×. We have

g :=


1 0 0 0

0 ξ−1 0 0

0 0 ξ 0

0 0 0 1

 ∈ Op′(HQ) 6 NF (r,n,k,Q)(Z).

In the free amalgamated product F (1, n, k,Q), the element g ∈ HQ is identified with(
1,

(
1 0

0 ξ

)
, 0A(n,k)

)
∈ NG(Q),

and this element can be seen to act by scalar multiplication with ξn on yn ∈ A = A(n, k) and

thus on A/[S, S]. As n 6 p − 1 and ξ has order q − 1, the action of g on A(n, k)/[S, S] is

thus irreducible. Hence, the action of AutF (S) on A/[S, S] is irreducible. This shows that the
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hypothesis of Lemma 5.10 is fulfilled with F in place of F , and thus F = NF (Z)/Z is exotic as

required. �

5.4. The Parker-Stroth systems. Let p > 5 be a prime and m = p − 4. Let A = A(m,Fp)

and D be as in §§5.3. The Parker-Stroth systems are fusion systems over the Sylow subgroup of

a semidirect product of Q by D, where Q is extraspecial of order p1+(p−3) and of exponent p, and

where Q/Z(Q) ∼= A as a FpD-module. Set Z := Z(S) and observe that Z = Z(Q) is of order p,

while Z2(S) 6 Q is elementary abelian of order p2.

The fusion systems are generated by AutF (Q), AutF (S) ∼= Inn(S)Cp−1, and AutF (W ) ∼=
SL2(p), where W is a certain elementary abelian subgroup of S of order p2. We refer to [PS15,

p.317] for more details on the embedding of W in S, where our W is denoted W0. For our

purposes, we just need to know that

W ∩Q = W ∩ Z2(S) = Z(S),(5.5)

and thus

W is not AutF (S)-conjugate into Q.(5.6)

which is deduced from the description of the embedding together with [PS15, Lemma 2.3(iii)].

Proposition 5.12. Each Parker-Stroth system is of characteristic p-type, and so has a punctured

group in the form of its subcentric linking system.

Proof. Let Y be a subgroup of order p in S. Fix an essential subgroup E of CF (Y ) and a CF (Y )-

automorphism α of E. Then E > Y Z(S), and hence if Y is not Z, then Ω1(Z(E)) is of rank at

least 2.

Assume first that Y � Q. Then CQ/Z(Y ) is of order p, so CQ(Y ) is elementary abelian (of

order p2). Hence CS(Y ) is abelian in this case, and so CF (Y ) is constrained, when saturated.

Assume next that Y 6 Q but Y � Z. Then CS(Y ) is abelian when p = 5 as then m = 1 and

Y/Z is its own orthogonal complement with respect to the symplectic form on Q/Z. We may

therefore assume p > 7. When p > 7, this centralizer is nonabelian. Indeed, when p > 7, we have

two cases. Either Y � Z2(S) and CS(Y ) = Y ×Q0 where Q0 is extraspecial of order p1+(p−5), or

Y 6 Z2(S) and CS(Y ) = Y ×Q0U , where U = S∩D. To see this, we refer to the definition of the

symplective form defining Q on [PS15, p.312] and note that Z2(S) = 〈(0, 1), (Xm, 0)〉 6 A × Fp

in the notation there.

Since Y is in Q but not in Q ∩W = Z(S) by (5.5) and assumption, we know that Y is not

in W . Now E contains Y Z(S) ∼= Cp × Cp and E is contained in CS(Y ) 6 Q. It follows that E

is not 〈AutF (S),AutF (Q)〉-conjugate into W . So each morphism in a decomposition of α lies in

AutF (Q) or AutF (S). Hence, since p > 7, Q is the Thompson subgroup of S and so is invariant

under AutF (S). We conclude that α extends to Q. So Q 6 E since α was chosen arbitrarily and

E is essential. It follows that E = Q since Q is of index p in S. Thus, Q is normal (and centric)

in CF (Y ). Therefore, CF (Y ) is constrained.

Assume finally that Y = Z. Suppose first that E is 〈AutF (S),AutF (Q)〉-conjugate into W . As

W is not contained in Q, neither is any 〈AutF (S),AutF (Q)〉-conjugate of E. Hence, in this case,

E is in fact AutF (S)-conjugate into W , and so conjugate to W , since as any AutF (S)-conjugate

of E contains its centralizer in S. We may therefore assume that E = W . As each member of
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AutF (S) fixes Y , there exists a 〈AutF (S),AutF (W )〉-decomposition of α each member of which

fixes Y . However, each member of NAutF (W )(Z) extends to S, whence α extends to S. Since α

was arbitrary, this contradicts the choice of E essential.

Thus in all cases, CF (Y ) is constrained. We conclude that the Parker-Stroth systems are of

characteristic p-type and therefore have a punctured group. �

6. Punctured groups over p1+2
+

The main purpose of this section is to illustrate that there can be several punctured groups

associated to the same fusion system, and that the nerves of such punctured groups (regarded as

transporter systems) might not be homotopy equivalent to the nerve of the centric linking system.

Indeed, working in the language of localities, we will see that there can be several punctured groups

extending the centric linking locality. This is the case even though we consider examples of fusion

systems of characteristic p-type, and so in each case, the subcentric linking locality exists as the

“canonical” punctured group extending the centric linking locality. On the other hand, we will

see that in many cases, the subcentric linking locality is indeed the only p′-reduced punctured

group over a given fusion system. Thus, “interesting” punctured groups seem still somewhat rare.

More concretely, we will look at fusion systems over a p-group S which is isomorphic to p1+2
+ .

Here p1+2
+ denotes the extraspecial group of order p3 and exponent p if p is an odd prime, and

(using a somewhat non-standard notation) we write p1+2
+ for the dihedral group of order 8 if p = 2.

Note that every subgroup of order at least p2 is self-centralizing in S and thus centric in every

fusion system over S. Thus, if F is a saturated fusion system over S with centric linking locality

(L,∆, S), we just need to add the cyclic groups of order p as objects to obtain a punctured group.

We will again use Chermak’s iterative procedure, which gives a way of expanding a locality by

adding one F-conjugacy class of new objects at the time. If all subgroups of order p are F-

conjugate, we thus only need to complete one step to obtain a punctured group. Conversely, we

will see in this situation that a punctured group extending the centric linking locality is uniquely

determined up to a rigid isomorphism by the normalizer of an element of order p. Therefore,

we will restrict attention to this particular case. More precisely, we will assume the following

hypothesis.

Hypothesis 6.1. Assume that p is a prime and S is a p-group such that S ∼= p1+2
+ (meaning

here S ∼= D8 if p = 2). Set Z := Z(S). Let F be a saturated fusion system over S such that all

subgroups of S of order p are F-conjugate.

It turns out that there is a fusion system F fulfilling Hypothesis 6.1 if and only if p ∈ {2, 3, 5, 7};
for odd p this can by seen from the classification theorem by Ruiz and Viruel [RV04] and for

p = 2 the 2-fusion system of A6 is known to be the only fusion system with one conjugacy class

of involutions. For p ∈ {5, 7} our two theorems below depend on the classification of finite simple

groups.

Assume Hypothesis 6.1. One easily observes that the 2-fusion system of A6 is of characteristic

2-type. Therefore, it follows from Lemma 5.4 that the fusion system F is always of characteristic

p-type and thus the associated subcentric linking locality is a punctured group. As discussed in

Remark 2.22, this leads to a host of examples for punctured groups L+ over F which are modulo

a partial normal p′-subgroup isomorphic to a subcentric linking locality over F . One can ask
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whether there are more examples. Indeed, the next theorem tells us that this is the case if and

only if p = 3.

Theorem 6.2. Under Hypothesis 6.1 there exists a punctured group (L+,∆+, S) over F such

that L+/Op′(L+) is not a subcentric linking locality if and only if p = 3.

It seems that for p = 3, the number of 3′-reduced punctured groups over F is probably also

severely limited. However, since we don’t want to get into complicated and lengthy combinatorial

arguments, we will not attempt to classify them all. Instead, we will prove the following theorem,

which leads already to the construction of interesting examples.

Theorem 6.3. Assume Hypothesis 6.1. Suppose that L+ is a punctured group over F such

that L+|Fc is a centric linking system over F . Then L+ is p′-reduced. Moreover, up to a rigid

isomorphism, L+ is uniquely determined by the isomorphism type of NL+(Z), and one of the

following holds.

(a) L+ is the subcentric linking system for F ; or

(b) p = 3, F is the 3-fusion system of the Tits group 2F4(2)′ and NL+(Z) ∼= 3S6; or

(c) p = 3, F is the 3-fusion system of Ru and of J4, and NL+(Z) ∼= 3#Aut(A6) or an

extension of 3L3(4) by a field or graph automorphism.

Conversely, each of the cases listed in (a)-(c) occurs in an example for L+.

Before beginning the proof, we make some remarks. The 3-fusion systems of Ru and J4 are

isomorphic. For G = Ru and S a Sylow 3-subgroup of G, one has NG(Z(S)) ∼= 3#Aut(A6)

[GLS98, Table 5.3r], so the punctured group L+ in Theorem 6.3(c) is the punctured group of

Ru at the prime 3 (for example, since our theorem tells us that L+ is uniquely determined

by the isomorphism type of NL+(Z)). Using the classification of finite simple groups, this can

be shown to be the only punctured group in (b) or (c) that is isomorphic to the punctured

group of a finite group. For example, when G = J4, one has NG(Z(S)) ∼= (6M22) · 2. The 3-

fusion system of 6M22 is constrained and isomorphic to that of 3M21 = 3L3(4) and also that of

3M10 = 3(A6.2), where the extension A6.2 is non-split (see [GLS98, Table 5.3c]). If we are in the

situation of Theorem 6.3(c) and NL+(Z(S)) is an extension of 3L3(4) by a field automorphism,

then NL+(Z(S)) is a section of NG(Z(S)). Also, for G = 2F4(2)′, the normalizer in G of a

subgroup of order 3 is solvable [Mal91, Proposition 1.2].

As remarked already above, for p ∈ {2, 5, 7}, there are also saturated fusion systems over S, in

which all subgroups of order p are conjugate. For p = 5, the only such fusion system is the fusion

system of the Thompson sporadic group. However, the Thompson group is of local characteristic

5, and thus its punctured group is just the subcentric linking locality. For p = 7, Ruiz and Viruel

discovered three exotic fusion systems of characteristic 7-type, in which all subgroups of order

7 are conjugate. As our theorem shows, for each of these fusion systems, the subcentric linking

locality is the only associated punctured group extending the centric linking system. We will now

start to prove Theorem 6.2 and Theorem 6.3 in a series of lemmas.

If Hypothesis 6.1 holds and L+ is a punctured group over F , then M0 := NL+(Z) is a finite

group containing S as a Sylow p-subgroup. Moreover, Z is normal in M0. These properties are

preserved if we replace M0 by M := M0/Op′(M0) and identify S with its image in M . Moreover,

we have Op′(M) = 1. We analyze the structure of such a finite group M in the following lemma.
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Most of our arguments are elementary. However, for p > 5, we need the classification of finite

simple groups in the form of knowledge about the Schur multipliers of finite simple groups to

show in case (b) that p = 3.

Lemma 6.4. Let M be a finite group with a Sylow p-subgroup S ∼= p1+2
+ . Assume that Z := Z(S)

is normal in M and Op′(M) = 1. Then one of the following holds.

(a) S EM and CM (S) 6 S, or

(b) p = 3, S 6 F ∗(M), and F ∗(M) is quasisimple with Z(F ∗(M)) = Z.

Proof. Assume first that S E M . In this case we have [S,E(M)] = 1 and thus S ∩ E(M) 6
Z(E(M)). So by [Asc93, 33.12], E(M) is a p′-group. Since we assume Op′(M) = 1, this implies

E(M) = 1 and F ∗(M) = Op(M) = S. Therefore (a) holds.

Thus, for the remainder of the proof, we will assume that S is not normal in M , and we will

show (b). First we prove

E(M) 6= 1.(6.1)

Suppose E(M) = 1 and set P = Op(M). Note that Z 6 P . As Op′(M) = 1, we have P = F ∗(M),

so CM (P ) 6 P and P 6= Z. As we assume that S is not normal in M , we have moreover P 6= S.

If P is elementary abelian of order p2, then M/P acts on P and normalizes Z, thus it embeds

into a Borel subgroup of GL2(p). If p = 2 and P is cyclic of order 4 then Aut(P ) is a 2-group.

So S is in any case normal in M and this contradicts our assumption. Thus (6.1) holds.

We can now show that

p divides |Z(K)| for some component K of M .(6.2)

First note that p divides |K| for each component K of M . For otherwise, if p doesn’t divide |K|
for some K, then 1 < K 6 Op′(E(M)) 6 Op′(M) = 1, a contradiction.

Supposing (6.2) is false, Z(E(M)) is a p′-group and thus by assumption trivial. Hence, E(M) is

a direct product of simple groups. Since Z is normal in M , [Z,E(M)] = 1 and thus Z∩E(M) = 1.

As the p-rank of M is two and p divides |K| for each component K, there can be at most one

component, call it J , which is then simple and normal in M . As p divides |J | and J is normal in

M , it follows that S ∩ J 6= 1. But then [S ∩ J, S] 6 J ∩Z = 1 and so S ∩ J = Z is normal in J , a

contradiction. Thus, (6.2) holds.

Next we will show that

K = F ∗(M) is quasisimple with S 6 K and Z(K) = Z.(6.3)

To prove this fix a component K of M such that p divides |Z(K)|. Then p divides |K|/|Z(K)|
by [Asc93, 33.12]. If S is not a subgroup of K, then K/Z(K) is a perfect group with cyclic Sylow

p-subgroups, so Z(K) is a p′-group by [Asc93, 33.14], a contradiction. Therefore S 6 K. If there

were a component L of M different from K, then we would have [S ∩ L,L] 6 [K,L] = 1, i.e. L

would have a central Sylow p-subgroup. However, we have seen above that p divides the order

of each component, so we would get a contradiction to [Asc93, 33.12]. Hence, K = F ∗(G) is the

unique component of M . Note that Op′(Z(K)) 6 Op′(M) = 1 and thus Z(K) is a p-group. Since

[Z,K] = 1, this implies Z = Z(K). Thus (6.3) holds.

To prove (b), it remains to show that p = 3. Assume first that p = 2 so that S ∼= D8. Then

Aut(S) is a 2-group and thus NK(S) = SCK(S). Hence, with K̄ = K/Z, we have NK̄(S̄) =
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CK̄(S̄). Therefore, K̄ has a normal p-complement by Burnside’s Theorem (see e.g. [KS04, 7.2.1]),

a contradiction which establishes p 6= 2.

For p > 5, we appeal to the account of the Schur multipliers of the finite simple groups given in

Chapter 6 of [GLS98] to conclude that, by the classification of the finite simple groups, K/Z(K)

must be isomorphic to Lm(q) with p dividing (m, q − 1), or to Um(q) with p dividing (m, q + 1).

But each group of this form has Sylow p-subgroups of order at least p4, a contradiction. �

Lemma 6.5. Assume Hypothesis 6.1 and let (L+,∆+, S) be a punctured group over F . Then the

following hold:

(a) If P ∈ ∆+ with |P | > p2, then NL+(P ) is p-constrained.

(b) If p 6= 3 then, upon identifying S with its image in L+/Op′(L+), the triple (L+/Op′(L+),∆+, S)

is a subcentric linking locality over F .

Proof. If P ∈ ∆+ with |P | > p2, then S = NS(P ) is a Sylow p-subgroup of NL+(P ). As P is

normal in NL+(P ) and CS(P ) 6 P , it follows that NL+(P ) is p-constrained. Thus (a) holds.

Assume now p 6= 3. As all subgroups of order p are by assumption F-conjugate, we have by

Lemma 2.7(b) and Lemma 2.9(a) that NL+(P ) ∼= M := NL+(Z) for every P ∈ ∆+ with |P | = p.

Moreover, by Lemma 6.4, M/Op′(M) has a normal Sylow p-subgroup and is thus in particular p-

constrained. Hence, using (a) and Lemma 2.33, we can conclude that NL+(P )/Op′(NL+(P )) is of

characteristic p for every P ∈ ∆+. Hence, by Proposition 2.32, the triple (L+/Op′(L+),∆+, S) is

a locality over F of objective characteristic p. Since ∆+ = Fs by Lemma 5.4, part (b) follows. �

Note that Lemma 6.5 proves one direction of Theorem 6.2, whereas the other direction would

follow from Theorem 6.3. Therefore, we will focus now on the proof of Theorem 6.3 and thus

consider punctured groups which restrict to the centric linking system. If L+ is such a punctured

group, then we will apply Lemma 6.4 to NL+(Z). In order to do this, we need the following two

lemmas.

Lemma 6.6. Let M be a finite group with a Sylow p-subgroup S ∼= p1+2
+ . Assume that Z := Z(S)

is normal in M and CM (V ) 6 V for every subgroup V of S of order at least p2. Then Op′(M) = 1.

Proof. Set U = Op′(M). As Z is normal in M , it centralizes U . So S̄ = S/Z acts on U . Let

x ∈ S − Z(S). Then setting V = 〈x, z〉, the centralizer CM (V ) contains the p′-group CU (x̄). So

our hypothesis implies CU (x̄) = 1. Hence, by [KS04, 8.3.4](b), U = 〈CU (x̄) : x̄ ∈ S̄#〉 = 1. �

Lemma 6.7. Assume Hypothesis 6.1 and let (L+,∆+, S) be a punctured group over F such that

L+|Fc is a centric linking locality over F . If we set M := NL+(Z) the following conditions hold:

(a) S is a Sylow p-subgroup of M and Z is normal in M ,

(b) FS(M) = NF (Z) = NF (S), and

(c) CM (V ) 6 V for each subgroup V of S of order p2.

Proof. Property (a) is clearly true. Moreover, by Lemma 2.9(b) and Lemma 5.4, we have FS(M) =

NF (Z) = NF (S), so (b) holds. Set ∆ = Fc. By assumption L := L+|∆ is a centric linking locality.

So by [Hen19, Proposition 1(d)], we have CL(V ) ⊆ V for every V ∈ ∆. Hence, for every subgroup

V ∈ ∆, we have CM (V ) ⊆ CL+(V ) = CL(V ) ⊆ V , where the equality follows from the definition

of L = L+|∆. As every subgroup of S of order at least p2 contains its centralizer in S, each such

subgroup is F-centric. Therefore (c) holds. �
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Lemma 6.8. Assume Hypothesis 6.1 and let (L+,∆+, S) be a punctured group over F such that

L := L+|Fc is a centric linking locality over F . Set M := NL+(Z). Then one of the following

conditions holds:

(a) S EM , the group M is a model for NF (Z) = NF (S), and (L+,∆+, S) is a subcentric

linking locality over F .

(b) p = 3, F is the 3-fusion system of the Tits group 2F4(2)′ and M ∼= 3S6; or

(c) p = 3, F is the 3-fusion system of Ru and of J4, and M ∼= 3#Aut(A6) or an extension

of 3L3(4) by a field or graph automorphism.

Moreover, in either of the cases (b) and (c), NOut(S)(OutF (S)) is a Sylow 2-subgroup of Out(S) ∼=
GL2(3), and every element of NAut(S)(AutF (S)) extends to an automorphism of M .

Proof. Set ∆ = Fc. By Lemma 6.6 and Lemma 6.7, we have Op′(M) = 1, FS(M) = NF (Z) =

NF (S) and CM (S) 6 S. In particular, if S EM , then M is a model for NF (Z) = NF (S). For

any P ∈ ∆, the group NL+(P ) = NL(P ) is of characteristic p. As ∆+ = ∆ ∪ ZF , if S EM , the

punctured group (L+,∆+, S) is of objective characteristic p and thus (a) holds.

So assume now that S is not normal in M . By Lemma 6.4, we have then p = 3, K := F ∗(M)

is quasisimple, S 6 K and Z = Z(K). Set M := M/Z and G := K. Let 1 6= x ∈ S. Then the

preimage V of 〈x〉 in S has order at least 32. Thus, by Lemma 6.7(c), we have CM (V ) 6 V . A

3′-element in the preimage of CG(x) = CG(V ) in K acts trivially on V and Z = Z(K). Thus, it

is contained in CM (V ) 6 V and therefore trivial. Hence, we have

CG(x) = S for every 1 6= x ∈ S.(6.4)

Notice also that G is a simple group with Sylow 3-subgroup S, which is elementary abelian of

order 32. Moreover, AutG(S) is contained in a Sylow 2-subgroup of Aut(S) ∼= GL2(3), and such

a Sylow 2-group is semidihedral of order 16. In particular, if AutG(S) has 2-rank at least 2, then

AutG(S) contains a conjugate of every involution in Aut(S), which is impossible because of (6.4).

Hence, AutG(S) has 2-rank one, and is thus either cyclic of order at most 8 or quaternion of order

8 (and certainly nontrivial by [KS04, 7.2.1]). By a result of Smith and Tyrer [ST73], AutG(S) is

not cyclic of order 2. Using (6.4), it follows from [Hig68, Theorem 13.3] that G ∼= L2(9) ∼= A6 if

AutG(S) is cyclic of order 4, and from a result of Fletcher [Fle71, Lemma 1] that G ∼= L3(4) (and

thus AutG(S) is quaternion) if AutG(S) is of order 8.

It follows from Lemma 6.7(b) that AutM (S) = AutF (S). Since CM (S) = Z and CG(S) = S by

(6.4), we have AutG(S) ∼= NG(S)/CG(S) = NK(S)/S ∼= AutK(S)/ Inn(S) = OutK(S). Hence,

OutG(S) ∼= AutG(S) ∼= OutK(S) 6 OutM (S) = OutF (S).

As p = 3 and F has one conjugacy class of subgroups of order 3, it follows from the classification

of Ruiz and Viruel that F is one of the two 3-fusion systems listed in [RV04, Table 1.2], i.e. the

3-fusion system of the Tits group or the 3 fusion system of J4.

Consider first the case that F is the 3-fusion system of the Tits group 2F4(2), which has

OutF (S) ∼= D8. Then OutG(S) cannot be quaternion, i.e. we have OutG(S) ∼= C4 and G = A6.

So conclusion (b) of the lemma holds, as S6 is the only two-fold extension of A6 whose Sylow

3-normalizer has dihedral Sylow 2-subgroups. By [RV04, Lemma 3.1], we have Out(S) ∼= GL2(3).

It follows from the structure of this group that NOut(S)(OutF (S)) ∼= SD16 is a Sylow 2-subgroup
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of Out(S). As M ∼= 3S6 has an outer automorphism group of order 2, it follows that every element

of NAut(S)(AutF (S)) extends to an automorphism of M .

Assume now that F is the 3-fusion system of J4, so that OutF (S) ∼= SD16. An extension of

3A6 with this data must be 3#Aut(A6). Suppose now AutG(S) ∼= Q8 and G ∼= L3(4). Then M

must be a two-fold extension of L3(4). However, a graph-field automorphism centralizes a Sylow

3-subgroup, and so M must be an extension of L3(4) by a field or a graph automorphism. Hence,

(c) holds in this case. If (c) holds, then OutM (S) = OutF (S) ∼= SD16 is always a self-normalizing

Sylow 2-subgroup in Out(S) ∼= GL2(3). In particular, every element of NAut(S)(AutF (S)) extends

to an inner automorphism of M . This proves the assertion. �

Note that the previous lemma shows basically that, for any punctured group (L+,∆+, S) over

F which restricts to a centric linking locality, one of the conclusions (a)-(c) in Theorem 6.3 holds.

To give a complete proof of Theorem 6.3, we will also need to show that each of these cases actually

occurs in an example. To construct the examples, we will need the following two lemmas. The

reader might want to recall the definition of L∆(M) from Example 2.6

Lemma 6.9. Let M be a finite group isomorphic to 3S6 or 3#Aut(A6) or an extension of 3L3(4)

by a field or graph automorphism. Let S be a Sylow 3-subgroup of M . Then S ∼= 31+2
+ and, writing

∆ for all subgroups of S of order 32, we have L∆(M) = NM (S). Moreover, FS(M) = FS(NM (S)).

Proof. It is well-known that M has in all cases a Sylow 3-subgroup isomorphic to 31+2
+ . By

definition of L∆(M), clearly NM (S) ⊆ L∆(M). Moreover, if g ∈ L∆(M), then there exists P ∈ ∆

such that P g 6 S. Note that Z := Z(S)EM and M := M/Z has a normal subgroup K isomorphic

to A6 or L3(4). Denote by K the preimage of K in M . Then S 6 K and by a Frattini argument,

M = KNM (S). Hence we can write g = kh with k ∈ K and h ∈ NM (S). In order to prove

that g ∈ NM (S) and thus L∆(M) ⊆ NM (S), it is sufficient to show that k ∈ NM (S). Note that

P k = (P g)h
−1
6 S. As S is abelian, fusion in K is controlled by NK(S). So there exists x ∈ K

such that kx−1 ∈ CK(P ). As K ∼= A6 of L3(4) and P is a non-trivial 3-subgroup of K, one sees

that CK(P ) = S. Hence kx−1 ∈ S and k ∈ NM (S). This shows L∆(M) = NM (S). By Alperin’s

fusion theorem, we have FS(M) = FS(L∆(M)) = FS(NM (S)). �

Lemma 6.10. Assume Hypothesis 6.1. If (L,∆, S) is a centric linking locality over F , then

NL(Z) = NL(S). In particular, NL(Z) is a group which is a model for NF (S).

Proof. By Lemma 5.4, we have NF (Z) = NF (S). So ZES is a fully F-normalized subgroup such

that every proper overgroup of Z is in ∆ and Op(NF (Z)) = S ∈ ∆. Hence, by [Hen19, Lemma 7.1],

NL(Z) is a subgroup of L which is a model for NF (Z) = NF (S). Since NL(S) ⊆ NL(Z) is by

Lemma 2.9(b) a model for NF (S), and a model for a constrained fusion system is by [AKO11,

Theorem III.5.10] unique up to isomorphism, it follows that NL(Z) = NL(S). �

We are now in a position to complete the proof of Theorem 6.3.

Proof of Theorem 6.3. Assume Hypothesis 6.1. By Lemma 6.8, for every punctured group (L+,∆+, S)

over F which restricts to a centric linking locality, one of the cases (a)-(c) of Theorem 6.3 holds.

It remains to show that each of these cases actually occurs in an example and that moreover the

isomorphism type of NL+(Z) determines (L+,∆+, S) uniquely up to a rigid isomorphism.
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By Lemma 5.4, we have NF (Z) = NF (S) and Fs is the set of non-trivial subgroups of S.

Hence, the subcentric linking locality (Ls,Fs, S) over F is always a punctured group over S.

Moreover, it follows from Lemma 2.9(b) that NLs(Z) is a model for NF (Z) = NF (S) and thus

S is normal in NLs(Z) by [AKO11, Theorem III.5.10]. So case (a) of Theorem 6.3 occurs in

an example. Moreover, if (L∗,∆+, S) is a punctured group such that L∗|∆ is a centric linking

locality and NL∗(Z) ∼= NLs(Z), then NL∗(Z) has a normal Sylow p-subgroup and is thus by

Lemma 6.8 a subcentric linking locality. Hence, by Theorem 2.20, (L∗,∆+, S) is rigidly isomorphic

to (Ls,Fs, S).

We are now reduced to the case that p = 3 and we are looking at punctured groups in which

the normalizer of Z is not 3-closed. So assume now p = 3. By the classification of Ruiz and

Viruel [RV04], F is the 3-fusion system of the Tits group or of J4. Let M always be a finite group

containing S as a Sylow 3-subgroup and assume that one of the following holds:

(b’) F is the 3-fusion system of the Tits group 2F4(2)′ and M ∼= 3S6; or

(c’) F is the 3-fusion system of J4, and M ∼= 3#Aut(A6) or an extension of 3L3(4) by a field

or graph automorphism.

In either case, one checks that CM (S) 6 S. Moreover, if (b’) holds, then OutF (S) ∼= D8 and

NM (S) ∼= 31+2
+ : D8. As Out(S) ∼= GL2(3) has Sylow 2-subgroups isomorphic to SD16 and

moreover, SD16 has a unique subgroup isomorphic to D8, it follows that OutM (S) and OutF (S)

are conjugate in Out(S). Similarly, if (c’) holds, then OutF (S) ∼= SD16 and OutM (S) are both

Sylow 2-sugroups of Out(S) and thus conjugate in Out(S). Hence, NM (S) is always isomorphic

to a model for NF (S) and, replacing M by a suitable isomorphic group, we can and will always

assume that NM (S) is a model for NF (S). We have then in particular that NF (S) = FS(NM (S)).

Pick now a centric linking system (L,∆, S) over S. By Lemma 6.10, NL(Z) is a model for

NF (S). Hence, by the model theorem [AKO11, Theorem III.5.10(c)], there exists a group iso-

morphism λ : NL(Z) → NM (S) which restricts to the identity on S. By Lemma 6.9, we have

NM (S) = L∆(M) and FS(M) = FS(NM (S)) = NF (S) = NF (Z). Note that NM (S) and L∆(M)

are actually equal as partial groups and the group isomorphism λ can be interpreted as a rigid

isomorphism from NL(Z) to L∆(M). So Hypothesis 5.3 in [Che13] holds with Z in place of T .

Since ∆ = Fc is the set of all subgroups of S of order at least 32 and as all subgroups of S of order

3 are F-conjugate, the set ∆+ of non-identity subgroups of S equals ∆∪ZF . So by [Che13, The-

orem 5.14], there exists a punctured group (L+(λ),∆+, S) over F with NL+(λ)(Z) ∼= M . Thus we

have shown that all the cases listed in (a)-(c) of Theorem 6.3 occur in an example.

Let now (L∗,∆+, S) be any punctured group over F such that L′ := L∗|∆ is a centric linking

locality and NL∗(Z) ∼= M . Pick a group homomorphism ϕ : M → M∗ := NL∗(Z) such that

Sϕ = S. Then ϕ|S is an automorphism of S with (ϕ|S)−1AutM (S)ϕ|S = AutM∗(S). Recall that

FS(M) = NF (S), Moreover, by Lemma 2.9(b), we have FS(M∗) = NF (Z) = NF (S). Hence,

AutM (S) = AutF (S) = AutM∗(S) and ϕ|S ∈ NAut(S)(AutF (S)). So by Lemma 6.8, there exists

ψ ∈ Aut(M) such that ψ|S = ϕ|S . Then µ := ψ−1ϕ is an isomorphism from M to M∗ = NL∗(Z)

which restricts to the identity on S = NS(Z). Moreover, by Theorem 2.19, there exists a rigid

isomorphism β : L → L′. Therefore by [Che13, Theorem 5.15(a)], there exists a rigid isomorphism

from (L+(λ),∆+, S) to (L∗,∆+, S). This shows that a punctured group (L+,∆+, S) over F ,
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which restricts to a centric linking locality, is up to a rigid isomorphism uniquely determined by

the isomorphism type of NL+(Z). �

Proof of Theorem 6.2. Assume Hypothesis 6.1. If p 6= 3, then it follows from Lemma 6.5 that

L+/Op′(L+) is a subcentric linking locality for every every punctured group (L+,∆+, S) over

S. On the other hand, if p = 3, then Theorem 6.3 gives the existence of a punctured group

(L+,∆+, S) over F such that Op′(L+) = 1 and NL+(Z) is not of characteristic p, i.e. such that

L+/Op′(L+) is not a subcentric linking locality. �

Appendix A. Notation and background on groups of Lie type

We record here some generalities on algebraic groups and finite groups of Lie type which

are needed in Section 4. Our main references are [Car72], [GLS98], and [BMO19], since these

references contain proofs for all of the background lemmas we need.

Fix a prime p and a semisimple algebraic group G over Fp. Let T be a maximal torus of

G, W = N
G

(T )/T the Weyl group, and let X(T ) = Hom(T ,F×p ) be the character group. Let

Xα = {xα(λ) | λ ∈ Fp} denote a root subgroup, namely a closed T -invariant subgroup isomorphic

Fp. The root subgroups are indexed by the roots of T , the characters α ∈ X(T ) with xα(λ)t =

xα(α(t)λ) for each t ∈ T . The character group X(T ) is written additively: for each α, β ∈ X(T )

and each t ∈ T , we write (α + β)(t) = α(t)β(t). For each n ∈ N
G

(T ), α ∈ X(T ), and t ∈ T we

write (nα)(t) = α(tn) for the induced action of N
G

(T ) action on X(T ).

Let Σ(T ) be the set of T -roots α ∈ X(T ), and let V = R⊗ZX(T ) be the associated real inner

product space with W -invariant inner product (, ). We regard X(T ) as a subset of V , and write

wα ∈W for the reflection in the hyperplane α⊥.

For each root α ∈ Σ(T ) and each λ ∈ F×p , let nα(λ), hα(λ) ∈ 〈Xα, X−α〉 be the images of the

elements [ 0 −λ−1

λ 0
], [ λ 0

0 λ−1 ] under the homomorphism SL2(Fp) → G which sends [ 1 0
u 1 ] to xα(u)

and [ 1 v
0 1 ] to x−α(v). Thus

nα(λ) = xα(λ)x−α(−λ−1)xα(λ) and hα(λ) = nα(1)−1nα(λ),(A.1)

and nα(1) represents wα for each α ∈ Σ. We assume throughout that parametrizations of the

root groups have been chosen so that the Chevalley relations of [GLS98, 1.12.1] hold.

Although Σ(T ) is defined in terms of characters of the maximal torus T , it will be convenient

to identify Σ(T ) with an abstract root system Σ inside some standard Euclidean space Rl, (, ),

via a W -equivariant bijection which preserves sums of roots [GLS98, 1.9.5]. We’ll write also V

for this Euclidean space. The symbol Π denotes a fixed but arbitrary base of Σ.

The maps hβ : F×p → T , defined above for each β ∈ Σ, are algebraic homomorphisms lying in

the group of cocharacters X∨(T ) := Hom(F×p , T ). Composition induces a W -invariant perfect

pairing X(T ) ⊗Z X∨(T ) → Z defined by α ⊗ h 7→ 〈α, h〉, where 〈α, h〉 is the unique integer such

that α(h(λ)) = λ〈α,h〉 for each λ ∈ F×p . Since Σ contains a basis of V , we can identify V ∗ with

R ⊗Z X∨(T ), and view X∨(T ) ⊆ V ∗ via this pairing. Under the identification of V with V ∗ via

v 7→ (−, v), for each β ∈ Σ there is β∨ ∈ V such that (−, β∨) = 〈−, hβ〉 in V ∗, namely the unique

element such that (β, β∨) = 2 and such that wβ is reflection in the hyperplane ker((−, β∨)). Thus,
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when viewed in V in this way (as opposed to in the dual space V ∗), β∨ = 2β/(β, β) is the abstract

coroot corresponding to β. Write Σ∨ = {β∨ | β ∈ Σ} ⊆ V for the dual root system of Σ.

If we set 〈α, β〉 = (α, β∨) = 2(α, β)/(β, β) for each pair of roots α, β ∈ Σ, then

〈α, β〉 = 〈α, hβ〉(A.2)

where the first is computed in Σ, and the second is the pairing discussed above. Equivalently,

xα(µ)hβ(λ) = xα(λ〈α,β〉µ)(A.3)

for each α, β ∈ Σ, each µ ∈ Fp, and each λ ∈ F×p .

Additional Chevalley relations we need are

xα(λ)nβ(1) = xwβ(α)(cα,βλ),(A.4)

hα(λ)nβ(1) = hwβ(α)(λ),(A.5)

nα(λ)nβ(1) = hwβ(α)(cα,βλ),(A.6)

nα(1)2 = hα(−1).(A.7)

where

wβ(α) = α− 〈α, β〉β,

is the usual reflection in the hyperplane β⊥, and where the cα,β ∈ {±1}, in the notation of [GLS98,

Theorem 1.12.1], are certain signs which depend on the choice of the Chevalley generators. This

notation is related to the signs ηα,β in [Car72, Chapter 6] by cα,β = ηβ,α.

Important tools for determining the signs cα,β in certain cases are proved in [Car72, Proposi-

tions 6.4.2, 6.4.3], and we record several of those results here.

Lemma A.1. Let α, β ∈ Σ be linearly independent roots.

(1) cα,α = −1 and c−α,α = −1.

(2) c−α,β = cα,β.

(3) cα,βcwβ(α),β = (−1)〈α,β〉.

(4) If the β-root string through α is of the form

α− sβ, . . . , α, . . . , α+ sβ

for some s > 0, that is, if α and β are orthogonal, then cα,β = (−1)s.

Proof. The first three listed properties are proved in Proposition 6.4.3 of [Car72]. By the proof

of that proposition, there are signs εi ∈ {±1} such that cα,β = (−1)s ε0···εs−1

ε0···εr−1
, whenever the β-root

string through α is of the form α− sβ, . . . , α, . . . , α+ rβ. When α and β are orthogonal, we have

r − s = 〈α, β〉 = 0, and hence cα,β = (−1)s. �

Lemma A.2. The following hold.

(1) For each α, β ∈ Σ, we have

α(hβ(λ)) = λ〈α,β〉.
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(2) The maximal torus T is generated by the hα(λ) for α ∈ Σ and λ ∈ F×p . If G is simply

connected, and λα ∈ F×p are such that
∏
α∈Π hα(λα) = 1, then λα = 1 for all α ∈ Π. Thus,

T =
∏
α∈Π

hα(F×p ),

and hα is injective for each α.

(3) If β, α1, . . . , αk ∈ Σ and n1, . . . , nk ∈ Z are such that β∨ = n1α
∨
1 + · · ·+ nkα

∨
k , then

hβ(λ) = hα1(λn1) · · ·hαk(λnk).

(4) Define

Φ: ZΣ∨ × F×p −→ T by Φ(α∨, λ) = hα(λ).

Then Φ is bilinear and Z[W ]-equivariant. It induces a surjective Z[W ]-module homomor-

phism ZΣ∨ ⊗Z F×p → T which is an isomorphism if G is of universal type.

Proof. (1) is the statement in (A.2) and is part of [GLS98, Remark 1.9.6]. We refer to [BMO19,

Lemma 2.4(c)] for a proof, which is based on the treatment in Carter [Car72, pp.97-100]. Part

(2) is proved in [BMO19, Lemma 2.4(b)], and part (3) is [BMO19, Lemma 2.4(d)]. Finally, part

(4) is proved in [BMO19, Lemma 2.6]. �

Proposition A.3. For each subgroup X 6 T ,

C
G

(X) = C
G

(X)◦C
N
G

(T )
(X).

The connected component C
G

(X)◦ is generated by T and the root groups Xα for those roots α ∈ Σ

whose kernel contains X. In particular, if X = 〈hβ(λ)〉 for some β ∈ Σ and some λ ∈ F×p having

multiplicative order r, then

C
G

(X)◦ = 〈T ,Xα | α ∈ Σ, r divides 〈α, β〉〉.

Proof. See [BMO19, Proposition 2.5], which is based on [Car85, Lemma 3.5.3]. The refer-

enced result covers all but the last statement, which then follows from the previous parts and

Lemma A.2(1), given the definition of r. �

Proposition A.4. Let G be a simply connected, simple algebraic group over Fp, let T be a

maximal torus of G, and let Tr = {t ∈ T | tr = 1} with r > 1 prime to p. Then one of the

following holds.

(a) C
G

(Tr) = T and N
G

(Tr) = N
G

(T ).

(b) r = 2, C
G

(Tr) = T 〈w0〉 for some element w0 ∈ NG
(T ) inverting T , and N

G
(Tr) = N

G
(T ),

(c) r = 2, and G = Sp2n(Fp) for some n > 1.

Proof. By Lemma A.2(2) and since G is simply connected, the torus is direct product of the

images of the coroots for fundamental roots:

T =
∏
α∈Π

hα(F×p ).(A.8)

Thus, if λ ∈ F×p is a fixed element of order r, then Tr is the direct product of 〈hα(λ)〉 as α ranges

over Π.
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We first look at C
G

(Tr)
◦, using Proposition A.3. By Lemma A.2(1), Tr is contained in the

kernel of a root β if and only if β(hα(λ)) = λ〈β,α〉 = 1 for all simple roots α, i.e., if 〈β, α〉 is

divisble by r for each fundamental root α. Let Σr be the set of all such roots β. For each α ∈ Π,

the reflection wα sends a root β to β − 〈β, α〉α. Hence β ∈ Σr if and only if wα(β) ∈ Σr since

〈−,−〉 is linear in the first component. Since the Weyl group is generated by wα, α ∈ Π, it follows

that Σr is invariant under the Weyl group. By [Hum72, Lemma 10.4C], and since G is simple,

W is transitive on all roots of a given length, and so either Σr = ∅, or Σr contains all long roots

or all short ones. Thus, by [Hum72, Table 1], we conclude that either Σr = ∅, or r = 2, each

root in Π ∩ Σr is long, and each α ∈ Π not orthogonal to β is short and has angle π/4 or 3π/4

with β. Now by inspection of the Dynkin diagrams corresponding to irreducible root systems, we

conclude that the latter is possible only if Σ = A1 = C1, C2, or C3. Thus, either C
G

(Tr)
◦ = T or

(c) holds.

So we may assume that C
G

(Tr)
◦ = T . Now N

G
(T ) 6 N

G
(Tr) since Tr is characteristic in T .

As C
G

(Tr)
◦ = T , also T is normalized by N

G
(Tr), so N

G
(T ) = N

G
(Tr). For r > 3, it follows

from [BMO19, Lemma 2.7] that C
N
G

(T )
(Tr) = T , completing the proof of (a) in this case.

Assume now that r = 2 and (a) does not hold. Let B := CW (T2) 6 W = N
G

(T )/T . To

complete the proof, we need to show B = 〈−1V 〉 or else (c) holds. Here we argue as in Case 1 of

the proof of [BMO19, Proposition 5.13].

Let Λ = ZΣ∨ be the lattice of coroots, and fix λ ∈ F×p of order 4. The map Φλ : Λ → T

defined by Φλ(α∨) = hα(λ) is a W -equivariant homomorphism by Lemma A.2(3). Since G is

simply connected, this homorphism has kernel 4Λ, image T4, and it identifies Λ/2Λ with T2, by

Lemma A.2(2).

Since B acts on T4 and centralizes T2, we have [T4, B] 6 T2 6 C
T

(B), so B acts quadratically

on T4. Since B acts faithfully on T4 by (a), it follows that B is a 2-group.

Assume that B 6= 〈−1V 〉. If B is of 2-rank 1 with center 〈−1V 〉 then by assumption there

is some b ∈ B with b2 = −1V . In this case, b endows V with the structure of a complex

vector space, and so b does not centralize Λ/2Λ, a contradiction. Thus, there is an involution

b ∈ B which is not −1V . Let V = V+ ⊕ V− be the decomposition of V into the sum of the

eigenspaces for b, and set Λ± = Λ ∩ V±. Fix v ∈ Λ, and write v = v+ + v− with v± ∈ V±.

Then 2v− = v − vb = [v, b] ∈ V− ∩ 2Λ = 2Λ−. So v− ∈ Λ−, and then v+ ∈ Λ+. This shows

that Λ = Λ+ ⊕ Λ− with Λ± 6= 0. The hypotheses of [BMO19, Lemma 2.8] thus hold, and so

G = Sp2n(Fp) for some n > 2 by that lemma. �
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