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 The study presents how to obtain the solutions of the 𝑛𝑡ℎ-order ordinary differential equations with varying 
delay proportional to the independent variable, where n belongs to the set of natural number, ℕ. These are 
equations that are often used in Mathematics to characterize real life problems such as optimizing profits, 
minimizing costs, and improving individuals' health. Economic models can help to understand and predict 
the economic behaviours of different countries. The results of this study are applied to certain economic 
models. Under the assumption that the market is in equilibrium, the study considers price adjustment models 
and proposes an adjustment model by introducing a proportional delay into the formulation, which improves 
the suitability of the models. The study displays the solutions of the models by using Matlab to present their 
graphs and compare them.  
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1. INTRODUCTION 

The study of the hereditary properties of linear and nonlinear systems has 
a lot of applications in real-life. Hereditary properties describe a situation 
when the rate of change of a system is considered to depend on both the 
state of the system at a given time and previous evolution of the process. 
Such studies play an important role in economics, natural science and 
engineering. Delay systems refer to the situation where the state of a 
system is determined not by its entire history, but by the current state and 
some in the past. Delays are inherently bonded with several dynamical 
systems. Consider a first-order linear Ordinary Differential Equation 
(ODE) that is associated with varying delay proportional to the 
independent variable, 

𝑦′(𝑡) = 𝑓(𝑡, 𝑦𝑖(𝑡), 𝑦𝑖(𝜆𝑡)),                                                                               (1.1) 

where 𝑖 = 1, 2,3, … , , 𝑛 and 0 < 𝜆 < 1. This is a typical delay equation with 
varying delay 𝜏(𝑡) = (1 − 𝜆)𝑡. Equation (1.1) models the dynamics of a 
current collection system for an electric locomotive (Ockendon  and 
Tayler,  1551/1971). Solving delay equations with constant delay by using 
approximate analytical and numerical methods can be considered fairly 
well developed. Studies on the construction of approximate analytical 
solutions of delay equations with constant delay and their analysis are 
contained, for example, in (Cui et al., 2021; Bohner et al., 2021; Valliammal 
et al., 2020). Obtaining the solutions of delay equations with constant 
delay by using the numerical methods are carried out in (Mahmudov, 
2019; Guirao et al., 2020; El-Dib, 2018). Those methods are fine if 
obtaining an approximate solution is the objective because they rarely 
give exact solutions. For an improvement in the solutions of differential 
equations, contemporary studies have considered the use of some new 
numerical and analytical techniques (Yel et al., 2022; Yavuz,  2022; Duran 
et al., 2023; Pak,  2009; Aibinu, 2023). The notion of delay equations with 

varying delay has great importance in obtaining exact optimal solutions 
(see, e.g., (Cai et al., 2012). The notion of delay equations with varying 
delay has not fared well in the literature.  Studies on solutions and 
stability of delay equations with varying delay are an active area of 
research (Long and Gong, 2020; Cao et al., 2022; Ali et al., 2020; Xia et al., 
2022; Aibinu  and  Momoniat,  2023; Aibinu et al., 2023; Aibinu et al., 
2022). 

In this paper, an approximate, an approximate analytic technique that is 
efficient in accuracy and computational time is presented for 𝑛𝑡ℎ-order 
ODEs. The importance of ODEs cuts across almost all fields of science, 
engineering and economics.  This paper considers delay equations with 
varying delay due to their wide applications in obtaining the exact optimal 
solutions of mathematical models. The results are applied to a model 
arising in economics. Under the assumption that the market is in 
equilibrium, the study considers Price Adjustment Models (PAMs) and 
proposes an adjusted model by introducing a proportional delay into the 
formulation of the PAM. Using the approximate analytic technique that is 
presented in this study, we obtain the solution of the PAM with a 
proportional delay. Using Matlab, graphs of the solution of the PAM with 
a proportional delay are displayed and compared to the solutions of the 
PAMs without a delay. 

2.   PRELIMINARIES 

In this section, we give some definitions and propositions that are 
essential in establishing the main results of this paper. Throughout this 
paper, ℕ and ℝ will denote the sets of natural and real numbers, 
respectively. 

Consider a set of functions 𝔸, defined as (Belgacem and Karaballi, 2006)  

𝔸 = {𝑦(𝑡): ∃𝑄, 𝜏1𝜏2 > 0, |𝑦(𝑡)| < 𝑄e
|𝑡|𝜏𝑗 , 𝑖𝑓 𝑡 ∊ (−1)𝑗ₓ [0,∞)}. 
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For all real 𝑡 > 0, 𝑦(𝑡) ∊ 𝔸. The Sumudu Transform (ST) of a given 
function 𝑦(𝑡) is defined as 

𝒮[𝑦(𝑡)] = ∫ 𝑦(𝑡𝑢)𝑒−𝑡𝑑𝑡,
∞

0
 𝑢 ∊ (−𝜏1, 𝜏2),                                     (2.1) 

which will be denoted by 𝒮[𝑦(𝑡)] ≔ 𝑌(𝑢). The function 𝑦(𝑡) is the inverse 
ST of Y(u) and the relation is denoted by 𝑦(𝑡) = 𝒮−1[𝑌(𝑢)]. Recall that the 
Laplace transform of 𝑦(𝑡) is defined as 

ℒ[𝑦(𝑡)] = ∫ 𝑦(𝑡)𝑒−𝑠𝑡𝑑𝑡,
∞

0
 𝑠 > 0,                                 (2.2) 

which can simply be denoted by ℒ[𝑦(𝑡)] ≔ 𝐿(𝑢).  By considering (2.1) and 
(2.2), one can express a relation between the Sumudu and Laplace 
transforms as follows: 

𝑌(1/𝑠) = 𝑠𝐿(𝑠),      𝐿(1/𝑢) = 𝑢𝑌(𝑢). 

Like the well-known Laplace transform, the ST is an integral method. ST 
is a simple modified form of the Laplace transform. Using ST technique is 
appealing as it yields an accurate result quickly and it does not impose 
any restricting assumptions about the results. It is a simple, effective and 
universal way by which one can obtain the Lagrange multiplier. The 
linearity property of ST is well known (Belgacem and Karaballi, 2006; 
Watugala, 1993; Belgacem et al. 2003, Moltot and Deresse, 2022), that is, 
for any two given functions 𝑦(𝑡), 𝑧(𝑡) ∊ 𝔸, and for arbitrary real 
constants 𝛼 and 𝛽, 

𝒮[𝛼𝑦(𝑡) +  𝛽𝑧(𝑡)] = 𝛼𝒮[𝑦(𝑡)] + 𝛽𝒮[𝑧(𝑡)]. 

The ST for the first order derivative is expressed as  

𝒮[𝑦′(𝑡)] = 1

𝑢
 [𝑌(𝑢) − 𝑦(0)].                                     (2.3) 

For the 𝑛𝑡ℎ-order derivative, the ST is given as  
 

𝒮[𝑦𝑛(𝑡)] =  
1

𝑢𝑛
[𝑌(𝑢) − ∑ 𝑢𝑘𝑦(𝑘)𝑛−1

𝑘=0 (𝑡)|𝑡=0],                                              (2.4) 

where 𝑦(𝑘)(𝑡) =
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
. Table 1 gives some selected and frequently used 

Sumudu Transforms (Belgacem and  Karaballi, 2006; Watugala, 1993; 
Belgacem et al., 2003; Moltot and Deresse,  2022). 

3.    MAIN RESULTS 

This paper presents a blend of the variational iterative method with the 
ST for solving 𝑛𝑡ℎ-order ODEs with varying delay proportional to the 
independent variable. Then PAMs is presented as an illustration and 
Matlab is used to compute and display the graphs of the solutions of the 
models. 

3.1   Approximate Analytic Technique.  

An approximate analytic technique that is a blend of ST with the 
variational iterative method is presented in this section of the paper. 
When compared with other well-known methods, the flexibility, 
consistency and effectiveness of the variational iterative method (Wu, 
2013; Wu and Baleanu,  2013) and references there in motivated its 
selection for amalgamation with the ST. Consider the 𝑛𝑡ℎ-ODE with a 
proportional delay 

𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
+ 𝑅[𝑦(𝑡)] + 𝑁[𝑦(𝜆𝑡)] = 𝜔(𝑡),                                       (3.1) 

subject to the initial conditions 

𝑦(𝑘)(0) = 𝑎𝑘 , 

where 𝑦(𝑘)(0) =
𝑑𝑘𝑦(0)

𝑑𝑡𝑘
, 𝑘 = 0, 1, … , 𝑛 − 1, 𝑅 is a linear operator, N is a 

nonlinear operator, 𝜔(𝑡) is a given continuous function and the highest 

order derivative is 
𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
. 

Taking the ST of (3.1) transforms its linear part into an algebraic equation 
of the form 

1

𝑢𝑛
𝑌(𝑢) −∑

1

𝑢𝑛−𝑘

𝑛−1

𝑘=0

𝑦(𝑘)(0) = 𝒮[𝜔(𝑡) − 𝑅[𝑦(𝑡)] − 𝑁[𝑦(𝜆𝑡)]]. 

 Thus, the corresponding iteration procedure is given by   

𝑌𝑛+1(𝑢) = 𝑌𝑛(𝑢) 

+𝛼(𝑢) (
1

𝑢𝑛
𝑃𝑛(𝑢) − ∑

1

𝑢𝑛−𝑘
𝑛−1
𝑘=0 𝑦(𝑘)(0) − 𝒮[𝜔(𝑡) − 𝑅[𝑦𝑛(𝑡)] − 𝑁[𝑦𝑛(𝜆𝑡)]]) 

(3.2) 

Table 1: Selected Sumudu Transforms 

𝑦(𝑡) 𝑌(𝑢) = 𝒮[𝑦(𝑡)] 

1 1 

𝑡 u 

𝑡𝑛

𝑛!
=

𝑡𝑛

Г(𝑛 + 1)
 𝑢𝑛 

𝑒𝑎𝑡 
1

1 − 𝑎𝑢
 

sin𝑎𝑡 
𝑢

1 + 𝑎2𝑢2
 

cos𝑎𝑡 
1

1 + 𝑎2𝑢2
 

𝑒𝑏𝑡 − 𝑒𝑎𝑡

𝑏 − 𝑎
, 𝑏 ≠ 𝑎 

1

(1 − 𝑏𝑢)(1 − 𝑎𝑢)
 

where 𝛼(𝑢) is the Lagrange multiplier. Taking the classical variation 
operator of (3.2) and considering 𝒮[𝑅[𝑦(𝑡)] + 𝑁[𝑦(𝜆𝑡)]] as the restricted 
terms yields 

𝛿𝑌𝑛+1(𝑢) = 𝛿𝑌𝑛(𝑢) +  𝛼(𝑢)
1

𝑢𝑛
𝑌𝑛(𝑢), 

which gives  

𝛼(𝑢) = −𝑢𝑛 .                                                                                                           (3.3) 

Substituting (3.3) into (3.2) and taking the inverse of Sumudu Transform 
𝒮−1 of (3.2) yields the explicit iterative procedure,  

 𝑦𝑛+1(𝑡) = 𝑦𝑛(𝑡) + 𝒮
−1 [−𝑢𝑛 (

1

𝑢𝑛
𝑌𝑛(𝑢) − ∑

1

𝑢𝑛−𝑘
𝑛−1
𝑘=0 𝑦(𝑘)(0) − 𝒮[𝜔(𝑡) −

𝑅[𝑦𝑛(𝑡)] − 𝑁[𝑦𝑛(𝜆𝑡)]])] 

= 𝑦1(𝑡) + 𝒮
−1 [𝑢𝑛𝒮[𝜔(𝑡) − 𝑅[𝑦𝑛(𝑡)] − 𝑁[𝑦𝑛(𝜆𝑡)]]], 

where  

𝑦1(𝑡) =  𝒮
−1 [∑𝑢𝑘𝑦(𝑘)(0)

𝑛−1

𝑘=0

] = 𝑦(0) + 𝑦′(0) + ⋯+
𝑦𝑛−1(0)𝑡𝑛−1

(𝑛 − 1)!
. 

3.2   Application to Economic Models.  

Economic models can help to understand and predict the economic 
behaviour  (Ellis et al., 2014). The economy concerning a commodity 
determines the trend of its price, which may increase or decrease rapidly. 
Through economic models, economists can predict the optimal profit to 
show the link between demand and supply.  Mathematical models of 
economic processes can give insight into the interaction that exists 
between the price, demand and supply, dependence of supply and 
demand on price and how to estimate the equilibrium point on the supply 
and demand curves (Cohen-Vernika and  Pazgal,  2017). Market 
equilibrium refers to a state in which the quantity demand and the 
quantity supply of a commodity are equivalent. Both market equilibrium 
and economic growth occupy important positions in the description of 
real world problems. Using the demand and supply functions, this paper 
refers to the quantity demand and supply as functions of price, 
respectively. These functions are respectively given as: 

𝑓𝑑(𝑡) = 𝑑0 − 𝑑1𝑝(𝑡)   𝑎𝑛𝑑   𝑓𝑠(𝑡) = 𝑠0 + 𝑠1𝑝(𝑡),                (3.4) 

where 𝑝(𝑡)  is the price of the commodities, while 𝑑0, 𝑑1, 𝑠0 𝑎𝑛𝑑 𝑠1 are 
positive constants (see, e.g, [30]). Figure 1 shows the graph of the quantity 
demand and quantity supply at a given price.  At equilibrium, 𝑓𝑑(𝑡) =
𝑓𝑠(𝑡), which means that the quantity demand and quantity supply are 
equal and the equilibrium price is obtained as 

𝑝∗ =
𝑑0 + 𝑠0
𝑑1 + 𝑠1

. 

In Figure 1, 𝑝∗ = 5.5 unit. The price tends to be invariant at equilibrium 
and there is neither a surplus nor shortage. Consider the price adjustment 
model which is given as 

𝑝′(𝑡) = 𝑞(𝑓𝑑 − 𝑓𝑠),                                                                                             (3.5) 

where 𝑞 > 0 denotes the speed of adjustment constant. This is a linear 
model, which indicates that the price rises when demand exceeds supply 
and the price falls when supply exceeds demand. Substituting (3.4) into 
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(3.5) gives 

𝑝′(𝑡) + 𝑞(𝑑1 + 𝑠1)𝑝(𝑡) = 𝑞(𝑑0 + 𝑠0).                                             (3.6) 

The solution of linear differential equation (3.6) is obtained as  

𝑝(𝑡) = 𝑝∗ + (𝑝(0) − 𝑝∗)𝑒(𝑑1+𝑠1), 

where 𝑝(0) denotes the price at time 𝑡 = 0. It is possible to consider a 
price adjustment equation that takes the expectations of agents into 
account. In such a case, the demand and supply functions admit additional 
factors 𝑑2 𝑎𝑛𝑑 𝑠2, respectively and take the form 

𝑓𝑑(𝑡) = 𝑑0 − 𝑑1𝑝(𝑡) + 𝑑2𝑝
′(𝑡)  𝑎𝑛𝑑   𝑓𝑠(𝑡) = 𝑠0 + 𝑠1𝑝(𝑡) − 𝑠2𝑝′(𝑡),  

where 𝑑0, 𝑑1, 𝑑2, 𝑠0, 𝑠1 𝑎𝑛𝑑 𝑠2 are positive constants. Equating 
𝑓𝑑(𝑡)𝑡𝑜 𝑓𝑠(𝑡) gives 

𝑝′(𝑡) −
𝑑1+𝑠1

𝑑2+𝑠2
𝑝(𝑡) = −

𝑑0+𝑠0

𝑑2+𝑠2
.                                                                             (3.7) 

The solution of linear differential equation (3.7) is obtained as 

𝑝(𝑡) = 𝑝∗ + (𝑝(0) − 𝑝∗)𝑒
(𝑑1+𝑠1)
(𝑑2+𝑠2). 

An increase in the price of a commodity will urge the buyers to buy more 
before prices increase further while the suppliers tend to offer less with 
the hope of earning more from higher prices in future (Nanware et al., 
2022; Bas et al., 2019). In addition, when 𝑝′(𝑡) = 0 for all 𝑡 > 0, this 
describes equilibrium in a changing economy, which implies that the 
market is in dynamic equilibrium. 

3.3   Price Adjustment Models with A Proportional Delay. 

 Consider introducing a proportional delay to formulate a new PAM 

𝑝′(𝑡) −
𝑑1+𝑠1

𝑑2+𝑠2
𝑝(𝜆𝑡) = −

𝑑0+𝑠0

𝑑2+𝑠2
,                   (3.8) 

where 𝑝(0) = 𝑝0. The ST of (3.8) takes the form 

𝒮[𝑝′(𝑡)] +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮[𝑝(𝜆𝑡)] =
𝑑0 + 𝑠0
𝑑2 + 𝑠2

, 

which leads to 

 

Figure 1: Demand and Supply. 

1

𝑢
[𝑃(𝑢) − 𝑝0] −

𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮[𝑝(𝜆𝑡)] =
𝑑0 + 𝑠0
𝑑2 + 𝑠2

, 

since 𝑝(0) = 𝑝0. Therefore, the Sumudu variational iteration formula is 
given as 

𝑃𝑛+1(𝑢) = 𝑃𝑛(𝑢) + 𝛼(𝑢) (
𝑃𝑛(𝑢)−𝑝0

𝑢
−

𝑑1+𝑠1

𝑑2+𝑠2
𝒮[𝑝𝑛(𝜆𝑡)] +

𝑑0+𝑠0

𝑑2+𝑠2
) , 𝑛 ∊ 𝑁.   (3.9) 

Taking the classical variation operator of (3.9) and considering 𝑝𝑛(𝜆𝑡) as 
the restricted term gives 

𝛿𝑃𝑛+1(𝑢) = 𝛿𝑃𝑛(𝑢) +  𝛼(𝑢)
1

𝑢𝑛
𝑌(𝑢), 

which gives  

𝛼(𝑢) = −𝑢.  

Substitute for 𝛼(𝑢) in (3.9) and take its inverse ST to obtain  

𝑝𝑛+1(𝑡) = 𝑝𝑛(𝑡) + 𝒮
−1 [−𝑢 (

𝑃𝑛(𝑢) − 𝑝0
𝑢

−
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮[𝑝𝑛(𝜆𝑡)] +
𝑑0 + 𝑠0
𝑑2 + 𝑠2

)] 

                = 𝑝1(𝑡) + 𝒮
−1 [𝑢 (

𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮[𝑝𝑛(𝜆𝑡)] −
𝑑0 + 𝑠0
𝑑2 + 𝑠2

)] 

                = 𝑝1(𝑡) +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝒮[𝑝𝑛(𝜆𝑡)] −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)], 

with the initial approximation which is given as 𝑝1(𝑡) = 𝒮
−1 [−𝑢(

−𝑝0

𝑢
)] =

𝑝0𝒮
−1[1] = 𝑝0.  Hence, the explicit iteration formula is derived as 

𝑝𝑛+1(𝑡) = 𝑝0 +
𝑑1+𝑠1

𝑑2+𝑠2
𝒮−1 [𝑢 (𝒮[𝑝𝑛(𝜆𝑡)] −

𝑑0+𝑠0

𝑑1+𝑠1
)] , 𝑝1(𝑡) = 𝑝0.                 (3.10) 

Observe that from (3.10), 𝑝1(𝜆𝑡) = 𝑝0. Therefore 

𝑝2(𝑡) = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝒮[𝑝1(𝜆𝑡)] −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

            = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

            = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑡. 

Notice that 𝑝2(𝜆𝑡) = 𝑝0 + 𝜆
𝑑1+𝑠1

𝑑2+𝑠2
(𝑝0 −

𝑑0+𝑠0

𝑑1+𝑠1
) 𝑡, therefore 

𝑝3(𝑡) = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝒮[𝑝2(𝜆𝑡)] −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

           = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝒮 [𝑝0 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑡]

−
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

           = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝑝0 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)𝑢 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

           = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)𝑢2] 

           = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑡 + 𝜆 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡2

2!
. 

Notice that 𝑝3(𝜆𝑡) = 𝑝0 + 𝜆
𝑑1+𝑠1

𝑑2+𝑠2
(𝑝0 −

𝑑0+𝑠0

𝑑1+𝑠1
) 𝑡 + 𝜆3 (

𝑑1+𝑠1

𝑑2+𝑠2
)
2

(𝑝0 −

𝑑0+𝑠0

𝑑1+𝑠1
)
𝑡2

2!
, therefore 

𝑝4(𝑡) = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝒮[𝑝3(𝜆𝑡)] −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

 = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1

[
 
 
 
 

𝑢

(

 
 
𝒮

[
 
 
 
 𝑝0 + 𝜆

𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑡

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡2

2!]
 
 
 
 

−
𝑑0 + 𝑠0
𝑑1 − 𝑠1

)

 
 

]
 
 
 
 

  

 = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1

[
 
 
 
 

𝑢

(

 
 
𝑝0 + 𝜆

𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)𝑢2
−
𝑑0 + 𝑠0
𝑑1 − 𝑠1

)

 
 

]
 
 
 
 

 

 = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1

[
 
 
 
 (𝑝0 −

𝑑0 + 𝑠0
𝑑1 − 𝑠1

) 𝑢 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢2

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢3
]
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= 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 − 𝑠1

) 𝑡 + 𝜆 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡2

2!

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
3

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡3

3!
.

  

Notice that 

𝑝(𝜆𝑡) = 𝑝0 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 − 𝑠1

) 𝑡 + 𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡2

2!

+𝜆6 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
3

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡3

3!
,

 

 therefore 

𝑝5(𝑡) = 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1 [𝑢 (𝒮[𝑝4(𝜆𝑡)] −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)] 

= 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1

[
 
 
 
 
 
 

𝑢

(

 
 
 
 

𝒮

[
 
 
 
 
 
  𝑝0 + 𝜆

𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 − 𝑠1

) 𝑡

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡2

2!

+𝜆6 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
3

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)
𝑡3

3!]
 
 
 
 
 
 

−
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)

 
 
 
 

]
 
 
 
 
 
 

    

= 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1

[
 
 
 
 
 
 

𝑢

(

 
 
 
 

 𝑝0 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 − 𝑠1

)𝑢

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)𝑢2

+𝜆6 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
3

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)𝑢3 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

 
)

 
 
 
 

]
 
 
 
 
 
 

  

= 𝑝0 +
𝑑1 + 𝑠1
𝑑2 + 𝑠2

𝒮−1

[
 
 
 
 
 
 (𝑝0 −

𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢 + 𝜆
𝑑1 + 𝑠1
𝑑2 + 𝑠2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 − 𝑠1

) 𝑢2

+𝜆3 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
2

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢3

+𝜆6 (
𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
3

(𝑝0 −
𝑑0 + 𝑠0
𝑑1 + 𝑠1

) 𝑢4
]
 
 
 
 
 
 

 

    = 𝑝0 +
𝑑1+𝑠1

𝑑2+𝑠2
(𝑝0 −

𝑑0+𝑠0

𝑑1+𝑠1
) 𝑡 + 𝜆 (

𝑑1+𝑠1

𝑑2+𝑠2
)
2

(𝑝0 −
𝑑0+𝑠0

𝑑1−𝑠1
)
𝑡2

2!
 

 

  +𝜆3 (
𝑑1+𝑠1

𝑑2+𝑠2
)
3

(𝑝0 −
𝑑0+𝑠0

𝑑1+𝑠1
)
𝑡3

3!
 + 𝜆6 (

𝑑1+𝑠1

𝑑2+𝑠2
)
4

(𝑝0 −
𝑑0+𝑠0

𝑑1+𝑠1
)
𝑡4

4!
. 

Hence, it can be deduced that  

{
 
 

 
 

𝑝1(𝑡) = 𝑝0,

𝑝𝑛(𝑡) = 𝑝0 + (𝑝0 +
𝑑0 + 𝑠0
𝑑1 + 𝑠1

)∑𝜆
𝑘
2(𝑘−1) (

𝑑1 + 𝑠1
𝑑2 + 𝑠2

)
𝑘−1

𝑡𝑘−1, 𝑛 > 1,

𝑛−1

𝑘=1

𝑝(𝑡) = lim
𝑛→∞

𝑝𝑛(𝑡),   𝑛 ∊ 𝑁.

  

We assign the real values to the constants as follow 𝑑0 = 10,  𝑑1 =
14,  𝑑2 = 16, 𝑠0 = 100, 𝑠1 = 97 𝑎𝑛𝑑 𝑠2 = 96, for the parameters of the 
PAMs. Figure 2 compares three different PAMs. It displays the graphs for 
the solutions of (3.5), (3.7) and (3.8) when 𝜆 = 1 2⁄ . The paper compares 
the iterations of (3.11) in Figure 3. It displays the iterations of PAM that 
involves delay and expectations of the agents. The paper shows how 
(3.11) varies with 𝜆 in Figure 4. It shows the trend of the PAM that 
involves delay and expectations of the agents as associated proportional 
delay ′𝜆′ varies. 

 

Figure 2: Comparison of three different price adjustment models. 

 

Figure 3: Iterations of price adjustment model that involves delay and 
expectations of the agents. 

 

Figure 4: Effects of variation of the proportional delay ′𝜆′ on (3.11). 

4.   CONCLUSION 

This paper has presented an approximate analytic technique, which is a 
blend of the variational iterative method with the ST for solving linear and 
nonlinear problems. It is an approximate analytic technique that is 
efficient in computational time and accuracy. The paper considered 𝑛𝑡ℎ-
order ODEs with varying delay proportional to the independent variable. 
The paper has presented a subtle way to obtain the Lagrange multipliers 
and subsequently the solutions of the mathematical models. Obtaining the 
optimal solutions is always the goal in mathematical modelling and the 
results of this study can be of great help in achieving the goal. An 
application is considered by applying the study to PAMs, where a new 
model is proposed by introducing a proportional delay into the 
formulation of PAM. The solution of the newly proposed PAM is obtainned 
and using Matlab, the paper compares the solution of the conventional 
PAM with the newly proposed PAM that is associated with delay by 
presenting their graphs. 
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