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Abstract

The first part of this paper develops a geometric setting for differential-difference equations that
resolves an open question about the extent to which continuous symmetries can depend on discrete
independent variables. For general mappings, differentiation and differencing fail to commute.
We prove that there is no such failure for structure-preserving mappings, and identify a class of
equations that allow greater freedom than is typical.

For variational symmetries, the above results lead to a simple proof of the differential-difference
version of Noether’s Theorem. We state and prove the differential-difference version of Noether’s
Second Theorem, together with a Noether-type theorem that spans the gap between the analogues
of Noether’s two theorems. These results are applied to various equations from physics.
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1 Introduction
In 1918, Emmy Noether’s celebrated paper ‘Invariante Variationsprobleme’ [23] introduced gener-
alized symmetries of variational problems and established two fundamental theorems. The first of
these (known as Noether’s Theorem) explains the connection between finite-dimensional Lie alge-
bras of variational symmetry generators and conservation laws of the underlying Euler–Lagrange
equations. In classical mechanics, for instance, Noether’s Theorem links invariance under transla-
tions in time to conservation of energy, while invariance under rotations corresponds to conserva-
tion of angular momentum. If the Euler–Lagrange equations are of Kovalevskaya form, there is a
bijection between (equivalence classes of) variational symmetries and conservation laws [24].

Noether’s Second Theorem applies to the other extreme: the variational problem has gauge
symmetries depending on arbitrary functions of all independent variables (and their derivatives) if
and only if there exist differential relations between the Euler–Lagrange equations. For a compre-
hensive history of Noether’s two theorems and their generalizations (up to the end of the twentieth
century), see Kosmann-Schwarzbach [14].

In early 1980s, Maeda [19] extended Noether’s Theorem to a simple class of ordinary difference
equations. Kupershmidt [15] introduced the formal approach to difference variational principles,
including the inverse problem of the calculus of variations. Noether’s Theorem for finite difference
equations on a computational mesh was proposed by Dorodnitsyn (e.g. [4,5]); unlike the continuous
case, variational symmetries are not necessarily symmetries of the underlying meshed difference
Euler–Lagrange equations. Building on Kupershmidt’s work, Hydon & Mansfield [12] constructed
the difference variational complex, leading to a general form of Noether’s Theorem. For methods
of constructing Noether’s conservation laws for difference equations and finite element methods,
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see [11, 20–22]. Recently, Hydon & Mansfield [13] derived Noether’s Second Theorem for differ-
ence equations and bridged the gap between Noether’s theorems (for differential and difference
equations) by treating variational symmetries that depend on constrained functions.

Differential-difference equations (D∆Es ) can be used to model mechanical and other systems.
They also arise as semi-discretizations of partial differential equations (PDEs) and conversely, as
(partial) continuum limits of partial difference equations. There have been various approaches to
adapting symmetry methods to D∆Es (see [16, 17, 28, 29, 32]). In 2010, Levi et al. [18] used a
limiting argument to show that the obvious adaptation of Lie point symmetry methods to D∆Es
needs modification when the transformation of a continuous independent variable, x ∈ R, depends
on a discrete independent variable, n ∈ Z. However, further difficulties arise in this case, as
the transformed difference and differential operators do not commute [27]. This has raised a key
question: are there any circumstances in which the transformation of x can depend on n?

The current paper answers this question by establishing the geometric conditions for a mapping
to be a well-defined point transformation of a D∆E. These lead immediately to constraints on Lie
point symmetries (see Section 2) that were known previously only in special cases. We identify an
exceptional class of D∆Es whose symmetries appear to violate these constraints, and show how
this phenomenon is consistent with the geometric framework for generic D∆Es.

The second half of the paper addresses D∆Es with variational symmetries. Section 3 deals with
Noether’s Theorem. Section 4 proves Noether’s Second Theorem for D∆Es whose variational sym-
metries depend on arbitrary functions of all independent variables. A generalization to variational
symmetries that depend on constrained functions is given in Section 5.

2 Transformations and symmetries of D∆Es
A solution of a differential or difference equation can be written (locally) as the graph of a function.
The distinction between independent and dependent variables leads to a geometric structure (based
on prolongation) that determines the class of transformations, a transformation being a structure-
preserving bijection whose inverse is also structure-preserving. A symmetry of a given equation is
a transformation that preserves the set of solutions of the equation.

For D∆Es, the corresponding structure is obtained by combining the differential and difference
structures. For simplicity, we restrict attention to D∆Es that are defined on Rp × Zm, with con-
tinuous independent variables x = (x1, . . . , xp), discrete independent variables n = (n1, . . . , nm),
and dependent variables u = (u1, . . . , uq) ∈ Rq. (Domains other than Rp × Zm can be dealt with
by treating these variables as local coordinates.) The space T = Rp × Zm ×Rq of all independent
and dependent variables is called the total space.

From here on, all functions are assumed to be locally smooth in each of their continuous
arguments, for every n. (This avoids the need to discuss technicalities associated with singularities
and other discontinuities.) The Einstein summation convention is used throughout.

2.1 Differential structure
For any n ∈ Zm, the slice Tn = Rp × {n} × Rq is a continuous space. Every function u = f(x,n),
restricted to this slice, can be prolonged by differentiation as many times as is needed. This gives
rise to the infinite jet space, J∞(Tn), whose ‘vertical’ coordinates uαJ;0 represent the values of the
derivatives of the dependent variables. (The index after the semicolon is used later to indicate
values of jet space variables on different slices, the slice at a given n being denoted by 0.) Each
component ji of the index J = (j1, . . . , jp) denotes the number of derivatives with respect to xi. In
particular, uα0;0 = uα and the first derivatives of uα = fα(x,n) are represented by the coordinate
values

uα1i;0 =
∂fα(x,n)

∂xi
, i = 1, . . . , p,

where 1i has 1 in the i-th entry and zeros elsewhere. More generally, the action of the first derivative
with respect to xi on any differentiable function defined on J∞(Tn) is given by the operator

Di

∣∣
J∞(Tn)

:=
∂

∂xi
+ uαJ+1i;0

∂

∂uαJ;0
.

(For further details on jet space, see [2, 25].)
So far, we have considered only the jet space over a single (arbitrary) slice. This is sufficient:

a copy of the same jet space is generated from the slice over every n, as x and n are mutually
independent. Together, these constitute the total jet space J∞(T ) ∼= Zm × J∞(Tn).
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2.2 Difference structure
The difference structure arises from the fact that the total space T is preserved by all translations

TK : T → T , TK : (x,n,u) 7→ (x,n+K,u).

Note that TL ◦TK = TK+L for all K,L ∈ Zm.
The total space is disconnected, but has a representation as a connected space over each n,

as follows. Each slice is prolonged to include the values of the coordinates on all other slices as
coordinates in a Cartesian product, using the pullback of each uα with respect to each TK ∈ Zm.
The resulting prolongation space over n is denoted P (Tn); it has vertical coordinates uα0;K, where

uα0;K = T∗
K

(
uα0;0

∣∣
n+K

)
.

It is straightforward to combine the differential and difference structures, as follows. The action
of TK extends immediately to the total jet space:

TK : J∞(T ) → J∞(T ), TK : (x,n, . . . , uαJ;0, . . . ) 7→ (x,n+K, . . . , uαJ;0, . . . ).

Similarly to the difference case, one can prolong the jet space over each n by pulling back the jet
space coordinates over all n+K. This gives the space P (J∞(Tn)) whose vertical coordinates are

uαJ;K = T∗
K

(
uαJ;0

∣∣
n+K

)
;

this is the connected component on n of the total prolongation space P (J∞(T )) ∼= Zm×P (J∞(Tn)).
The composition rule for translations gives the identities

uαJ;K+L = T∗
K

(
uαJ;L

∣∣
n+K

)
.

More generally, let f be a (locally smooth) function on P (J∞(T )) and denote its restriction to
P (J∞(Tn)) by

fn(x, . . . , u
α
J;L, . . . ) := f(x,n, . . . , uαJ;L, . . . ).

The pullback to P (J∞(Tn)) of fn+K(x, . . . , uαJ;L, . . . ) is the function

T∗
K fn+K = f(x,n+K, . . . , uαJ;K+L, . . . ).

Therefore, the action of the translation TK on the space of locally smooth functions is represented
on P (J∞(Tn)) by the shift operator SK, defined by SKfn = T∗

K fn+K, which gives

SK : f(x,n, . . . , uαJ;L, . . . ) 7→ f(x,n+K, . . . , uαJ;K+L, . . . ). (2.1)

Consequently, the derivative with respect to xi on J∞(T ) is represented on P (J∞(Tn)) by the
total derivative

Di =
∂

∂xi
+ uαJ+1i;K

∂

∂uαJ;K
. (2.2)

Crucially, all total derivatives and shift operators commute:

DiDj = DjDi, Di SK = SKDi, SK SL = SL SK . (2.3)

It is convenient to use the following shorthand notation for products of total derivatives:

DJ = Dj1

1 · · ·Djp

p , where J = (j1, . . . , jp).

Difference operators on the continuous space P (J∞(Tn)) arise from the ordering of each ni. For
any index K = (k1, . . . , km), the corresponding shift operator is SK = Sk11 · · · Skmm , where Si := S1i

denotes the forward shift with respect to ni. Then the forward difference in the ni-direction is
represented on P (J∞(Tn)) by the operator

Dni := Si− id,

where id is the identity mapping. A difference divergence is an expression C such that C = DniGi;
similarly, a differential-difference divergence is an expression C of the form

C = DiF
i +DniGi. (2.4)
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The formal adjoint of a linear operator O is the unique operator O† such that fOg− (O†f)g is
a (differential-difference) divergence for all functions f and g defined on P (J∞(Tn)). In particular,

D†
i = −Di, S†i = S−1

i , id† = id, D†
ni = −(id† −S†i ) = −S−1

i Dni ;

the composition rule (O1O2)
† = O†

2O
†
1 determines the adjoint of a product of linear operators.

Thus
S†K = S−K , D†

J = (−D)J := (−1)j
1+···+jpDJ .

The following useful result was proved in [27].

Theorem 2.1. A function on P (J∞(Tn)) is a differential-difference divergence if and only if it
belongs to the kernel of each Euler–Lagrange operator,

Euα = (−D)J S−K
∂

∂uαJ;K
, α = 1, . . . , q. (2.5)

2.3 Lie point transformations for D∆Es
Having established the prolongation structure that underpins D∆Es, we are now in a position to
identify the constraints that must be satisfied by transformations of D∆Es. The passive viewpoint
is used throughout this section, in which a transformation is treated as a change of coordinates.

A point transformation is a transformation of the total space,

Γ : T → T , Γ : (x,n,u) 7→ (x̂, n̂, û).

Preservation of Zm requires a lattice transformation, n̂ = An+ n0, where A ∈ GLm(Z) and n0 is
constant. (See [11] for an overview of lattice transformations of Zm.) For simplicity, we restrict
attention to Lie groups of point transformations. Every one-parameter Lie group of mappings from
T to itself can be expressed in the form

x̂i = xi + εξi(x,n,u) +O(ε2), n̂i = ni, ûα = uα + εφα(x,n,u) +O(ε2). (2.6)

As such mappings change only x and u, they are represented on P (J∞(Tn)) by using the same
shift operators SK in both the original and transformed coordinates.

Proposition 2.2. A one-parameter Lie group of mappings (2.6) prolongs to a transformation
group for P (J∞(Tn)) if and only if each ξi is independent of n and u.

Proof. For each K ∈ Zm\{0}, the mapping (2.6) yields

SK xi − xi =
{
SK x̂i − εξi(SK x̂,n+K, û0;K)

}
−
{
x̂i − εξi(x̂,n, û0;0)

}
+O(ε2)

=SK x̂i − x̂i + ε
{
ξi(x̂,n, û0;0)− ξi(x̂,n+K, û0;K)

}
+O(ε2).

For the mapping to preserve the structure of P (J∞(Tn)), it must satisfy SK x̂i = x̂i for all K, just
as SK xi = xi. This gives the condition

ξi(x̂,n+K, û0;K) = ξi(x̂,n, û0;0), (2.7)

for all K. The coordinates û0;K and û0;0 are distinct, so ξi does not depend on u. Therefore, from
(2.7), ξi is also independent of n.

Conversely, every mapping of total space,

x̂i = xi + εξi(x) +O(ε2), n̂i = ni, ûα = uα + εφα(x,n,u) +O(ε2), (2.8)

that belongs to a one-parameter Lie group has the same transformed total derivatives, denoted
D̂i, on each jet space, because x̂ depends on x only (by the standard method for constructing each
x̂i from ξi). Therefore, each D̂i commutes with every shift operator. So the prolongation of the
(invertible) mapping (2.8) preserves the structure of P (J∞(Tn)), and is thus a transformation.

The prolongation formula for the transformation group determined by (2.8) can be written
most concisely in terms of the characteristic, Q := (Q1, . . . , Qq), where

Qα = φα(x,n,u)− ξi(x)uα1i;0 .
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Figure 1: A local Lie point transformation (left) and its evolutionary representative (right).

The standard differential prolongation formula (see [24]) applied to the jet space J∞(Tn) gives

ûαJ;0 = uαJ;0 + εφαJ;0 +O(ε2), where φαJ;0 = DJQ
α + ξi(x)uαJ+1i;0 .

This prolongs to P (J∞(Tn)) as follows:

ûαJ;K = uαJ;K + εφαJ;K +O(ε2), where φαJ;K = SKDJQ
α + ξi(x)uαJ+1i;K . (2.9)

Then the infinitesimal generator of the one-parameter Lie group of point transformations (2.8),
that is, the vector field

v = ξi(x)
∂

∂xi
+ φα(x,n,u)

∂

∂uα
,

prolongs to the following infinitesimal generator on P (J∞(Tn)):

prv = ξi(x)
∂

∂xi
+ φαJ;K

∂

∂uαJ;K
= ξi(x)Di + (SKDJQ

α)
∂

∂uαJ;K
. (2.10)

The characteristic Q has its origin in the transformation of graphs. On each slice Tn, the graph
defined by u = f(n,u) transforms as follows:

ûα =fα(x,n) + εφα(x,n, f(x,n)) +O(ε2)

= fα(x̂,n) + ε

(
φα(x̂,n, f(x̂,n))− ξi(x̂)

∂fα(x̂,n)

∂x̂i

)
+O(ε2).

From the active viewpoint (obtained by dropping the carets), the transformation maps u = f(x,n)
to u = h(x,n), where

hα(x,n) = fα(x,n) + εQα
∣∣
[u=f(x,n)]

+O(ε2). (2.11)

(Here and henceforth, square brackets around an expression denotes the expression and a finite
number of its prolongations, as needed.) In the same way, every prolongation of u = f(x,n) is
mapped to the corresponding prolongation of (2.11), giving rise to the terms SKDJQ

α at first
order in ε. This action on graphs leads to the evolutionary representative of the transformation
on P (J∞(Tn)), which is the prolongation of the mapping

(x,n,u) 7−→
(
x,n,u+ εQ+O(ε2)

)
.

The infinitesimal generator for the evolutionary representative is

prvQ = (SKDJQ
α)

∂

∂uαJ;K
. (2.12)

Figure 1 illustrates (for p = m = q = 1) the distinction between the action on a graph of a point
transformation that changes x, and the corresponding action of its evolutionary representative. A
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graph on T is invariant under the transformation if the restriction of Q to the prolonged graph is
zero (on every slice). Equivalently, the graph prolonged to P (J∞(Tn)) is invariant if its restriction
to every SKQ is zero. If Q = 0, all graphs are invariant; the transformation is trivial (on graphs),
merely moving points along each graph. From (2.10), every one-parameter Lie group of trivial
transformations has a generator of the form ξi(x)Di. To summarize, prvQ determines the local
action of the transformation group on graphs, whereas prv determines the action on points. For
most purposes, including Noether’s theorems, it is enough to know the action on graphs.

Any generator of the form (2.12), where Q depends on (x,n, [u]), is called a generalized trans-
formation. Noether introduced such transformations for differential equations (see [23, 26]); they
are central to Noether’s Theorem.

2.4 Symmetries of D∆Es
Given a system of D∆Es,

A := (A1(x,n, [u]), . . . ,A`(x,n, [u])) = 0, (2.13)

one can find Lie point and generalized symmetries by solving the linearized symmetry condition
(LSC),

prv(Al) = 0 on all solutions of A = 0, l = 1, . . . , `. (2.14)

Here and for the rest of the paper, we use v for all generators, whether or not they are in evolution-
ary form. Given the restriction to solutions (each of which defines a graph), any trivial component
ξi(x)Di contributes nothing to the LSC.

To calculate symmetries, it is necessary to recast the LSC as an equation. For most scalar D∆Es,
it is obvious how to do this. However, complications occur for some systems. To address these, we
adapt the concept of a positive ranking from differential algebra to the differential-difference case.

Definition 2.3. A positive ranking of the variables uαJ;K is a total order ≺ satisfying (for each i):
1. uαJ;K ≺ Diu

α
J;K (= uαJ+1i;K

),

2. uαJ;K ≺ Siu
α
J;K (= uαJ;K+1i

),

3. uαJ;K ≺ uβI;L =⇒ Diu
α
J;K ≺ Diu

β
I;L ,

4. uαJ;K ≺ uβI;L =⇒ Siu
α
J;K ≺ Siu

β
I;L .

The leading variable in Al = 0 is its highest-ranked variable, which we denote by Ul. The
equation is solved for that variable if Al = Ul − ωl and the leading variable in ωl is ranked lower
than Ul. By the defining properties of a positive ranking, every prolongation of Al = 0 has the
corresponding prolongation of Ul as its leading variable.

Suppose that every equation Al = 0 is solved for its leading variable with respect to a given
positive ranking, and that none of the ` leading variables coincide with (or are derivatives or shifts
of) any other leading variable. Then ω = (ω1, . . . , ω`) and its prolongations can be substituted
for U = (U1, . . . , U`) and its prolongations in (2.14), turning the LSC into the following system of
equations:

prv(Al)
∣∣∣
[U=ω]

= 0, l = 1, . . . , `. (2.15)

For point symmetries, the form of Q is highly restricted, making (2.15) an overdetermined linear
system that can be solved by a combination of differential elimination and methods for linear
equations. Generalized symmetries are found by the same approach, after restricting Q as needed.

There is considerable freedom to choose a positive ranking that is appropriate for a given system.
Systems that are in generalized Kovalevskaya form (see [11, 24, 27]) have a positive ranking based
on derivatives or shifts with respect to one independent variable. Systems with gauge symmetries
typically do not have a preferred direction, so a positive ranking based on the overall differential
and/or difference order should be used.

Symmetries have many uses. Generalized symmetries have been used to classify integrable
D∆Es (see [6,7,32]). Both point and generalized symmetries can be used to derive group-invariant
solutions, which are solutions satisfying the additional condition Q = 0.

Example 2.4. The nonlinear Schrödinger (NLS) equation,

i Ψt +Ψxx + |Ψ|2Ψ = 0,
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has a well-known (non-integrable) spatial semi-discretization (with step size h) that amounts to
the following system of D∆Es for u = Re{Ψ}, v = Im{Ψ} as functions of (t, n):

u′ + h−2 (v1 − 2v + v−1) +
(
u2 + v2

)
v = 0,

v′ − h−2 (u1 − 2u+ u−1)−
(
u2 + v2

)
u = 0;

(2.16)

here u′ = Dtu, the j-th forward shift of u is denoted uj , and similarly for v. This system is solved
for its leading variables in any positive ranking that ranks derivatives higher than shifts. So the
LSC can be solved; its Lie algebra of point symmetry generators is spanned by

v1 =
∂

∂t
, v2 = v

∂

∂u
− u

∂

∂v
.

Let us seek solutions that are invariant under the group generated byX1−γX2, whose characteristic
is

Q = (−γv − u′, γu− v′).

The general solution of the invariance condition Q = 0 is

u = g(n) cos(γt+ f(n)), v = g(n) sin(γt+ f(n)), (2.17)

where f and g are arbitrary functions. Substituting (2.17) into (2.16) gives a system of linear
ordinary difference equations for f and g. The solution process is messy and has several branches,
each of which simplifies to the following family of invariant solutions:

u =
{
γ +

(
2h−1 sinα

)2}1/2

cos(γt+ 2αn+ β), v =
{
γ +

(
2h−1 sinα

)2}1/2

sin(γt+ 2αn+ β).

Here β is an arbitrary constant, and α and γ are constrained only by the requirement for u and
v to be real-valued. When h is sufficiently small, such solutions are a good approximation to the
corresponding group-invariant solutions of the NLS equation (which have the same modulus), but
for larger h, the phase error grows linearly with n.

2.5 Lie point symmetries of partitioned D∆Es
Proposition 2.2 establishes that Lie point transformations preserve P (J∞(Tn)) if and only if the
transformation of the continuous independent variables does not depend on n, either explicitly or
implicitly through u. For most D∆Es, P (J∞(Tn)) is the appropriate prolongation space. However,
there is an exceptional class of D∆Es for which this is not so; these are related to partitioned
difference equations (see [11]). Symmetries of such D∆Es include transformations of x that are
periodic in n.

Definition 2.5. A partitioned system of D∆Es on Zm is a system that can be defined on a periodic
sublattice Lr = (r1Z)× · · · × (rmZ), rµ ∈ N, where at least one rµ is not 1.

From here on, we assume that the sublattice is aligned with the discrete coordinates ni; this
can be achieved by applying a lattice transformation (if necessary) at the outset. Then the µ-th
component of any translation between the points on Lr is an integer multiple of rµ.

Without loss of generality, assume that each rµ is maximal, so that the system of D∆Es on Lr

is not partitioned. Then Zm is covered by r = r1r2 · · · rm copies of Lr, and solutions of the system
on any two copies are entirely unrelated. The prolongation space P (J∞(Tn)) includes shifts that
are not used in the copy of Lr that contains n, so a symmetry of the D∆E does not need to be a
transformation of P (J∞(Tn)). However, it must be a transformation of the reduced prolongation
space Pr(J

∞(Tn)) that is obtained by including only shifts that are the pullback of translations
between points in Lr; this is needed to preserve all prolongations of solutions of the D∆E.

Proposition 2.6. The prolongation to P (J∞(Tn)) of the one-parameter Lie group of mappings
(2.6) is a transformation of the reduced prolongation space Pr(J

∞(Tn)) if and only if each ξi is
independent of u and satisfies the periodicity condition

ξi

(
x,n+

m∑
µ=1

kµrµ1µ

)
= ξi(x,n), for all kµ ∈ Z. (2.18)
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Proof. The proof follows the proof of Proposition 2.2, except that K in the condition (2.7) is
replaced by

Kr =

m∑
µ=1

kµrµ1µ.

(Note that ξi can be changed by shifts SK on P (J∞(Tn)) for which K is not of the form Kr.) The
periodicity condition ensures that, in effect, the restriction of ξi to Pr(J

∞(Tn)) depends on x only.
Consequently, the mappings generated by ξi(x,n)Di act trivially on graphs on Pr(J

∞(Tn)).

Corollary 2.7. For a given partitioned system of D∆Es, A = 0, every infinitesimal generator v
of a one-parameter Lie group of point symmetries is of the form

v = ξi(x,n)
∂

∂xi
+ φα(x,n,u)

∂

∂uα
, (2.19)

and satisfies the LSC (2.14) subject to the periodicity condition (2.18), with

prv = ξi(x,n)
∂

∂xi
+φαJ;K

∂

∂uαJ;K
, φαJ;K = SKDJ

{
φα(x,n,u)− ξi(x,n)uα1i;0

}
+ξi(x,n)uαJ+1i;K.

(2.20)
The group action on solutions is determined by the evolutionary representative (2.12), where now
the characteristic has components

Qα = φα(x,n,u)− ξi(x,n)uα1i;0 . (2.21)

Example 2.8. Consider the D∆E
u′ =

u2
u
, (2.22)

where u′ = Dxu, which is partitioned and has r = 2. Every Lie point symmetry generator,

v = ξ(x, n)
∂

∂x
+ φ(x, n, u)

∂

∂u
,

is subject to the periodicity condition ξ(x, n + 2k) = ξ(n, k), k ∈ Z. The LSC, subject to the
periodicity condition, yields the Lie algebra of infinitesimal generators spanned by

v1 =
∂

∂x
, v2 = x

∂

∂x
+ u

∂

∂u
, v3 = 2bn/2cu

∂

∂u
,

v4 = (−1)n
∂

∂x
, v5 = (−1)n

(
x
∂

∂x
+ u

∂

∂u

)
, v6 = (−1)n2bn/2cu

∂

∂u
.

(2.23)

Here bn/2c is the greatest integer less than or equal to n/2. The prolonged Lie algebra is six-
dimensional on P (J∞(Tn)), but does not preserve the prolongation structure. To see this, it is
helpful to consider the one-parameter Lie subgroup generated by v5, namely

Γ : (x, n, u) 7−→ (x̂, n̂, û) = (exp{(−1)nε}x, n, exp{(−1)nε}u) , ε ∈ R.

On P (J∞(Tn)), the prolongation of Γ maps u′1 to

û′1 = T∗
1(û

′|n+1) = T∗
1(u

′|n+1).

However, this result is incompatible with the differential prolongation

Dx̂(û1) = Dx̂(exp{(−1)n+1ε}u1) =
Dx(exp{(−1)n+1ε}u1)
Dx(exp{(−1)nε}x)

= exp{2(−1)n+1ε}u′1,

reflecting the fact that, unlike Dx, the transformed derivative Dx̂ does not commute with the shift
operator S. A simpler way to see that the structure is not preserved is to note that (S− id)x = 0,
but (S− id)x̂ 6= 0, as in the proof of Proposition 2.2.

Indeed, the prolonged Lie algebra is only three-dimensional on the reduced space P2(J
∞(Tn)),

whose structure is preserved; it is isomorphic to the Lie algebra of point symmetry generators for
the D∆E u′ = u1/u.

Although partitioned D∆Es seem somewhat unnatural, their difference equation counterparts
do occur in practice. For instance, the discrete potential KdV and cross-ratio equations are each
embedded in a Toda-type partitioned Euler–Lagrange equation with r = 2 (see [1, 30]).

8



3 Noether’s Theorem
Noether’s Theorem connects symmetries of variational problems and conservation laws of the
underlying Euler–Lagrange equations. A restricted version of Noether’s Theorem for differential-
difference equations was proved in [27], with examples including the Volterra equation, the Toda
lattice and some semi-discretizations of the KdV equation. We now state Noether’s Theorem in
full generality, using the evolutionary representative; this applies whether or not the system is
partitioned (by Corollary 2.7). Each φα may depend on finitely many shifts and derivatives of u,
giving generalized symmetries whose characteristic is Q(x,n, [u]).

A conservation law for a system of D∆Es, A = 0, is a divergence,

C = DiF
i(x,n, [u]) + DniGi(x,n, [u]), (3.1)

that is zero on all solutions of the system. A conservation law is trivial if it can be written in the
form (3.1) with all components F i and Gi being zero when [A = 0]. Two conservation laws are
equivalent if their difference is trivial. Conservation laws are classified by finding a basis for the
vector space of equivalence classes.

For a functional of the form

L [u] =
∑
n

∫
L(x,n, [u]) dx, (3.2)

where L(x,n, [u]) is the differential-difference Lagrangian, the Euler–Lagrange equations obtained
by variational calculus are Euα(L) = 0. A generator v = Qα(x,n, [u])∂/∂uα is a variational
symmetry if there exist functions P i1(x,n, [u]) and P i2(x,n, [u]) such that

prv(L) = DiP
i
1 +DniP i2 . (3.3)

From Theorem 2.1, this condition amounts to

Euα(prv(L)) = 0, α = 1, . . . , q, (3.4)

which can be used to calculate the variational symmetries whose characteristic Q has a given
dependence on (x,n, [u]).

Theorem 3.1 (The differential-difference version of Noether’s Theorem). The generator v with
characteristic Q(x,n, [u]) is a variational symmetry generator for the functional (3.2) if and only
if QαEuα(L) is a conservation law for the Euler–Lagrange equations.

Proof. The key identity is

prv(L)−QαEuα(L) = (SKDJQ
α)

∂L

∂uαJ;K
−Qα(−D)J S−K

(
∂L

∂uαJ;K

)
. (3.5)

By the definition of the adjoint, the right-hand side of (3.5) is a divergence. From this identity
and (3.3), if v is a variational symmetry generator then QαEuα(L) is a divergence that is zero on
all solutions of the Euler–Lagrange equations.

Conversely, if QαEuα(L) is a conservation law, it is a divergence and hence so is

w(L) := (SKDJQ
α)

∂L

∂uαJ;K
.

The vector field w is the prolongation of v = Qα∂/∂uα, and therefore v is a variational symmetry
generator, whose characteristic is Q.

Example 3.2 (Modified Volterra equation). The modified Volterra equation (see [32])

u′ = u2(u1 − u−1), (3.6)

can be written as an Euler–Lagrange equation (see [27]) by writing u = 1/(v1 − v−1). The La-
grangian

L = v−1v
′ − ln(v2 − v) (3.7)

yields the Euler–Lagrange equation

Ev(L) := v′1 − v′−1 +
1

v2 − v
− 1

v − v−2
= 0. (3.8)
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From (3.4), the most general characteristic of variational Lie point symmetries for (3.7) is

Q = g1(x) + (−1)ng2(x), (3.9)

where g1(x) and g2(x) are arbitrary functions. In particular, when g1 and g2 are constant, Noether’s
Theorem yields two conservation laws of the modified Volterra equation:

Ev(L) =Dx

(
1

u

)
+Dn(u+ u−1),

(−1)nEv(L) =Dx

(
(−1)n

u

)
+Dn

(
(−1)n+1(u− u−1)

)
.

The remaining symmetries give nonlocal conservation laws of the modified Volterra equation. For
instance, Q = x gives

xEv(L) = Dx

(x
u

)
+Dn

(
x(u+ u−1)−D−1

n

(
1

u

))
;

this involves the antidifference operator D−1
n , as do the other nonlocal conservation laws.

4 Noether’s Second Theorem
Some differential-difference variational problems (3.2) have variational gauge symmetries, whose
characteristics are linear homogeneous in a set of arbitrary functions of all independent variables.
The differential-difference analogue of Noether’s Second Theorem applies to such symmetries.

To state and prove the theorem, some definitions are needed. A differential-difference operator
on P (J∞(Tn)) is an operator of the form

D = fJ;K(x,n, [u])DJ SK ,

for some coefficient functions fJ;K. A linear differential-difference relation (or syzygy) between
D∆Es Al = 0 is an identity of the following form (for some differential-difference operators Dl):

DlAl ≡ 0,

where the coefficient functions are independent of [A]. Without loss of generality, we restrict
attention from here on to characteristics Q that are independent of A, so that Q|[A=0] = Q.

Theorem 4.1 (Noether’s Second Theorem for D∆Es). The functional (3.2) admits a symmetry
generator whose characteristic, Q(x,n, [u; g]), is linear homogeneous in R independent arbitrary
functions,

g =
(
g1(x,n), . . . , gR(x,n)

)
, (4.1)

if and only if there are R independent linear differential-difference relations between the Euler–
Lagrange equations:

Dα
rEuα(L) ≡ 0, r = 1, 2, . . . , R. (4.2)

Proof. The proof is a simplified version of that used for the differential and difference cases in [13].
It is convenient to define an equivalence relation ∼ on the set of functions on P (J∞(Tn)) as follows:

F1 ∼ F2 ⇐⇒ F1 − F2 is a divergence.

For instance, the condition for v to be a variational symmetry generator is prv(L) ∼ 0.
First, suppose that the Euler–Lagrange equations are subject toR independent linear differential-

difference relations (4.2) and let g be an R-tuple of independent arbitrary functions (4.1). Then

0 ≡ grDα
rEuα(L) ∼

{
(Dα

r )
†gr
}
Euα(L) ∼

{
DJ SK(Dα

r )
†gr
} ∂L

∂uαJ;K
= pr

(
(Dα

r )
†gr

∂

∂uα

)
(L) ,

so each g yields a variational symmetry whose characteristic has components Qα = (Dα
r )

†gr.
Conversely, suppose that there exists a variational symmetry whose characteristic Q(x,n, [u; g])

is linear homogeneous in R independent arbitrary functions (4.1). By Noether’s Theorem,

QαEuα(L) ∼ 0.
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Now treat [u] as subsidiary variables and vary each gr in turn. Using Theorem 2.1 with g replacing
u, one obtains

Egr{Qα(x,n, [u; g])Euα(L)} ≡ 0, r = 1, 2, . . . , R. (4.3)
These are the differential-difference relations among Euler–Lagrange equations; they amount to

(−D)J S−K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}
≡ 0, r = 1, 2, . . . , R. (4.4)

As the functions gr are independent, so are the relations (4.4) (which are independent of g).

Corollary 4.2. Suppose that the functional (3.2) admits a symmetry generator whose character-
istic, Q(x,n, [u; g]), is linear homogeneous in R independent arbitrary functions (4.1). Then the
conservation laws C(g) = QαEuα(L) given by Noether’s Theorem are trivial for all g.

Proof. As Q is linear homogeneous in g and Noether’s Second Theorem gives the differential-
difference relations (4.4),

C(g) = grJ;K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}

= grJ;K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}
− gr(−D)J S−K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}
.

This is a divergence whose components are zero when [Euα(L) = 0], α = 1, . . . q.

Example 4.3. The interaction of a scalar particle of mass m and charge e with an electromagnetic
field is described by the Euler–Lagrange equations for the Lagrangian

L =
1

4
FµνF

µν + (∇µψ)(∇µψ)∗ +m2ψψ∗, (4.5)

where ∇µ = Dµ+ i eAµ. Here flat space-time coordinates (x0, x1, x2, x3) are used (x0 being time),
and indices are raised or lowered by the Minkowski metric η = diag{−1, 1, 1, 1}. The dependent
variables are the complex-valued scalar wave function ψ, its conjugate ψ∗, and the real-valued
electromagnetic 4-potential with components Aµ, from which one obtains the antisymmetric tensor

Fµν = DµAν −DνAµ. (4.6)

Adapting a finite difference method due to Christiansen & Halvorsen [3], one can semi-discretize
the Lagrangian (4.5) in the spatial variables xj , j = 1, 2, 3, leaving t = x0 as the only continuous
variable. (This facilitates a Hamiltonian formulation of the D∆Es and a method of lines numerical
solution.) Set each xj to be hjnj , where nj ∈ Z, and replace each Dj in (4.6) by the scaled
difference operator Dj = Dnj/hj , whose adjoint is D

†
j = −S−1

j Dj . The operators ∇µ are replaced
by

∇0 = Dt + i eA0, ∇j = Dj + (hj)−1
{
1− exp(− i ehjAj)

}
id .

Then the Euler–Lagrange equations are

0 = Eψ(L) = (∇µ)
†(∇µ

ψ)∗ +m2ψ∗,

0 = Eψ∗(L) = (∇ ∗
µ)

†(∇µ
ψ) +m2ψ,

0 = EA0(L) = Re
{
2 i eψ

(
∇0ψ

)∗}
+

3∑
j=1

D
†
j F

0j ,

0 = EAj (L) = Re
{
2 i e exp(− i ehjAj)ψ

(
∇jψ

)∗}−DtF
0j −

3∑
k=1

D
†
kF

kj .

There is a family of characteristics depending on an arbitrary real-valued function g(t, n1, n2, n3):

Qψ = − i eψg, Qψ
∗
= i eψ∗g, QA

0

= −Dtg, QA
j

= Djg.

By Theorem 4.1, the differential-difference identity among the Euler–Lagrange equations is

− i eψEψ(L) + i eψ∗Eψ∗(L) +Dt (EA0(L)) +

3∑
j=1

D
†
j (EAj (L)) = 0.
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5 An intermediate Noether-type theorem
Noether’s two theorems deal with two extremes. In Noether’s Theorem, a variational symmetry
generator is associated with a conservation law. In Noether’s Second Theorem, a family of genera-
tors depending on entirely arbitrary functions of all p+m independent variables is associated with
differential-difference relations between the Euler–Lagrange equations. However, many systems of
interest have variational symmetries that depend on arbitrary functions (of independent variables)
that have fewer than p +m arguments. For instance, the variational Lie point symmetries of the
Volterra equation discussed earlier depend on two arbitrary functions of x only. Such systems can
be treated by adapting the proof of Noether’s Second Theorem to incorporate differential-difference
constraints.

From here on, we consider variational symmetries whose characteristic depends on R functions,

g =
(
g1(x,n), g2(x,n), . . . , gR(x,n)

)
,

that are subject to a complete set of differential-difference constraints

D i
rg
r(x,n) = 0, i = 1, . . . , I. (5.1)

Here each D i
r is a linear differential-difference operator whose coefficient functions depend only on

(x,n); the set of constraints is complete if there are no integrability conditions and g is arbitrary
apart from the constraints.

Theorem 5.1. Suppose that the functional (3.2) admits a symmetry generator whose characteristic
Q(x,n, [u; g]) is linear homogeneous in R independent functions, subject to the complete set of
constraints (5.1). Then there exists λ = (λ1(x,n, [u]), . . . , λI(x,n, [u])) such that

(−D)J S−K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}
+
(
D i
r

)†
λi = 0, r = 1, . . . , R. (5.2)

For any solution λ of (5.2), there is a corresponding family of conservation laws,

Cλ(g) := λiD
i
rg
r − gr

(
D i
r

)†
λi . (5.3)

For each set of linear differential-difference operators Dr such that Dr(D i
r)
†λi ≡ 0, there is a

corresponding differential-difference relation,

Dr(−D)J S−K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}
≡ 0. (5.4)

Proof. By Noether’s Theorem, QαEuα(L) is a divergence for each g satisfying the constraints, so
there exists an I-tuple of Lagrange multipliers λ such that

Egr
{
QαEuα(L) + λiD

i
sg
s
}
= 0;

this amounts to (5.2). By definition, Cλ(g) is a divergence. On solutions of (5.1) and (5.2),

Cλ(g) = gr(−D)J S−K

{
∂Qα(x,n, [u; g])

∂grJ;K
Euα(L)

}
,

which is zero on solutions of the Euler–Lagrange equations. So Cλ(g) is a conservation law.
Differential-difference relations (5.4) are obtained only if all λi can be eliminated from the sys-
tem (5.2). It suffices to find a generating set of linear relations, from which all others can be
obtained by applying linear differential-difference operators.

Example 5.2. The characteristic of the variational Lie point symmetries of the modified Volterra
equation (see Example 3.2) can be written as Q = g(x, n), subject to the constraint g1 − g−1 = 0.
The determining equation (5.2) for the Lagrange multiplier λ is

Eg{gEu(L) + λ(g1 − g−1)} := v′1 − v′−1 +
1

v2 − v
− 1

v − v−2
+ λ−1 − λ1 = 0.

An obvious solution is
λ = v′ +

1

v1 − v−1
,
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which leads to the conservation law

Cλ = Dn

{
g

(
v′−1 +

1

v − v−2

)
+ g−1

(
v′ +

1

v1 − v−1

)}
.

As Cλ = QEu(L) for all g satisfying the constraint, this is precisely the family of conservation laws
given by Noether’s Theorem.

Example 5.3. The Euler–Lagrange equations for the Lagrangian

L = (u1 − v − 1
2w

′)w′ + v(u1 − u)

constitute the following linear system for u(x, n), v(x, n) and w(x, n):

Eu(L) := w′
−1 + v−1 − v = 0, Ev(L) := −w′ + u1 − u = 0, Ew(L) := −u′1 + v′ + w′′ = 0.

This system has variational symmetries generated by

v = g1(x, n)
∂

∂u
+ g2(x, n)

∂

∂v
+ g3(x, n)

∂

∂w
,

subject to the complete set of constraints

Dxg
3 −Dng

1 = 0, Dx(g
2 − g1) = 0, Dn(g

2 − g1) = 0.

Then system (5.2) determining the Lagrange multipliers for these constraints is

0 = Eu(L) + S−1Dnλ1 +Dxλ2 + S−1Dnλ3 ,

0 = Ev(L)−Dxλ2 − S−1Dnλ3 ,

0 = Ew(L)−Dxλ1.

Eliminating all λi, we obtain a linear differential relation between the Euler–Lagrange equations
that generates all other such relations:

Dx(Eu(L)) +Dx(Ev(L)) + S−1Dn(Ew(L)) ≡ 0.

The determining system (5.2) has a solution,

λ1 = −u1 + v + w′, λ2 = −w, λ3 = u1,

which yields the family of conservation laws

Cλ(g) = Dx

{
(g1 − g2)w + g3(−u1 + v + w′)

}
+Dn

{
−g1(v−1 + w′

−1) + g2u
}
.

The constraints can be solved explicitly in terms of an arbitrary function f(x, n) and an arbitrary
constant c:

g1 = f ′, g2 = f ′ + c, g3 = Dnf.

Then the family of conservation laws Cλ(g) can be rewritten as

Cλ(g) = Dx{−cw + f(Eu(L) +Ev(L))}+Dn
{
cu+ f S−1 Ew(L)

}
.

Up to a trivial conservation law, every conservation law in this family is a multiple of the non-
trivial conservation law Ev(L) = Dx(−w) +Dn(u). (The family includes the obvious conservation
laws Eu(L) and Ew(L).) So the intermediate Noether-type theorem 5.1 reveals that this simple
example has both one generating differential-difference relation and a one-dimensional equivalence
class of conservation laws. Neither of these facts is immediately obvious from the Euler–Lagrange
equations.

6 Conclusions
By establishing the prolongation structure that must be preserved by a point transformation, we
have shown that for Lie point symmetries of a generic D∆E, the transformed continuous indepen-
dent variables cannot depend on the discrete independent variables. (By contrast, the transformed
dependent variables can depend on all dependent and independent variables.) There is an ex-
ceptional class, partitioned D∆Es, that allow such dependence, provided that it is compatibly
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periodic. These discoveries resolve the problem that differentiation and shifting do not commute
if a mapping is not structure-preserving.

It can be shown that the approach taken by Levi et al. in [18] amounts to fixing an arbitrary
point n, then using the transformed derivative for that n to calculate prolongations of the variables
u over all other discrete points, with a correction factor that accounts for the discrepancy between
the discrete points. This approach has the advantage of allowing the transformed x to depend
on n (at least, in principle). However, it turns out that the symmetries in all classes of equations
investigated in [18] do not exhibit such dependence, and the circumstances in which this dependence
can occur are unknown. Moreover, the transformed derivatives in [18] depend on which n is
chosen, so that, unlike the current paper, there is no well-defined total prolongation space (which
is foundational in both the differential and difference cases).

By factoring out trivial symmetries, we have proved differential-difference analogues of Noether’s
two theorems on variational symmetries, and have established an intermediate theorem that ap-
plies when the characteristic depends on functions that are subject to linear differential-difference
constraints.
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