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Abstract

Since the beginning of the COVID-19 pandemic, the reproduction number R has become a popular epidemiological

metric used by policy makers and the media to communicate the state of the epidemic across countries. At its most

basic, R is defined as the average number of secondary infections caused by one primary infected individual. R seems

convenient and easy to use, because the epidemic is expanding if R > 1 and contracting if R < 1. The magnitude of

R indicates by how much transmission needs to be reduced to control the epidemic. However, using R in a naı̈ve way

can cause new problems. The reasons for this are threefold. 1) There is not just one definition of R but many, and the

precise definition of R affects both its estimated value and how it should be interpreted. 2) Even with a particular clearly

defined R, there may be different statistical methods used to estimate its value, and the choice of method will affect the

estimate. 3) The availability and type of data used to estimate R vary, and it is not always clear what data should be

included in the estimation. For example, should imported cases that are immediately quarantined count towards R, or

should the data used to estimate R capture the potential of the local population to transmit the infection? In this review,

we discuss when R is useful, when it may be of use but needs to be interpreted with care, and when it may be an

inappropriate indicator of the progress of the epidemic. We also argue that careful definition of R, and the data and

methods used to estimate it, can make R a more useful metric for future management of the epidemic.
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What is the reproduction number R?

Since the start of the novel coronavirus (SARS-CoV-2)
pandemic, the reproduction number R has become a popular
summary statistic, used by policy makers to assess the state
of the epidemic and the efficacy of interventions, and by the
media to communicate the progress of the epidemic to the
general public. The primary appeal of R is that it offers a
single number that indicates whether the transmission of the
pathogen is increasing or decreasing, depending on whether
R is above or below one. Early R estimates for SARS-CoV-
2 in different countries were in the range of 2.0 - 6.5 [1, 2].
However, the use of R can be problematic in terms of both
its definition and its estimation. Its usefulness is precisely
because it is a summary statistic rather than a basic parameter
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describing the dynamic processes of infection, transmission
and recovery. To understand how R is calculated and how it
can be affected by interventions, the epidemic process needs
to be considered in more detail. When epidemic numbers
are small or concentrated in possibly atypical parts of a
population, R may be an unreliable descriptor of the state
of the outbreak.

In this paper, we discuss these issues and determine the
situations when the reproduction number R is most useful
for assessing and communicating the state of an outbreak
(see Figure 1). We focus on the definitions of different
types of R, for example, the basic reproduction number or
the effective reproduction number, that can be considered
different quantities and their applicability to different phases
of an epidemic. However, as we explain below, care must
also be taken with subtly different definitions of the same
type of R, for example, when using different models to
analyse the progress of an epidemic.

The beginning of a pandemic - R0

In the early stages of a new outbreak of an infectious
disease we can define an initial R value, known as the
basic reproduction number R0, that is the average number
of individuals infected by each infectious individual in a
fully susceptible population [3, 4, 5]. An outbreak resulting
from one infected individual may die out within a few
infection generations by chance [6, 7]. Otherwise, if R0 >

1, the incidence of cases will grow exponentially, with
on average Rn

0 cases in the nth generation. Already, this
simple description introduces a number of concepts and
assumptions. An individual’s infection generation specifies
their position in the chain of infections, the (n− 1)th

generation infects the nth generation, and so on. It also
assumes an underlying scenario (model) in which the average
number of susceptibles infected by each infective stays the
same over successive infection generations, and ignores the
depletion of susceptibles. (We refer to those members of the
population who are uninfected and susceptible to infection
as susceptibles, and those that are infected and infectious as
infectives.) The potential importance of these assumptions
depends on the contact structure of the population, to which
we return below.

Thus, R0 (and other R values to be defined later) is not
just a property of the infectious agent (pathogen). It depends
on demography, and whatever human behaviour is associated
with the possibility of infectious contact (an effective contact

is one that results in transmission if made with a susceptible,
while a contact in the common sense of the word has a
certain probability of transmission). For the simplest models,

R0 > 1 implies that an introduction of infection will result in
an epidemic. Furthermore, if there were no interventions or
changes in behaviour, then the proportion of the population
infected during the entire course of an epidemic would be
approximately the non-zero solution of the equation P =

1− e−R0P (for example, if R0 = 2, then P ≈ 0.8). This
result is referred to as the final size equation, and underscores
the fact that during an epidemic it is not generally true that
everybody will be infected at some point.

Individuals may vary considerably in their susceptibility
to infection and in their propensity to pass it on through their
biology or behaviour. Age is often an important determinant.
If the population is grouped in some way, so that for instance
some groups have higher R values than others, then the
overall outbreak is expected to grow as described by an R0

that depends on all of these values, and also depends on how
each group infects the others, i.e. on the R values between
groups as well as within them (R0 is then the dominant
eigenvalue of the matrix of R values [3, 5, 8]). The first few
stages of the outbreak may be atypical, depending on which
group is first infected.

For the simplest mathematical model of the beginning of
an outbreak, it is assumed that because only a small fraction
of the population has been infected, all potential contacts
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Are we in the early 
phase of the 
epidemic?

Yes

No

Is the epidemic 
widely established 
in the population?

Yes

No

Is the epidemic 
fragmented?

Yes

Estimate 𝑹𝟎 from early outbreak data (See The beginning of a pandemic - 𝑅0)
Estimate the Critical Vaccination Threshold (See 𝑅, vaccination and herd immunity)
Points to consider:
Early transmitters may not be typical for the whole population. Therefore, the 
estimated value of 𝑅0 may not be representative.
The optimal vaccination strategy may depend on population structure.

Estimate 𝑹𝒕 to track progress of epidemic in a population and the effectiveness of 
interventions (See The second simplest case: where an outbreak is widespread - 𝑅𝑡)
Points to consider:
𝑅𝑡 may not only change because of interventions and rising herd immunity but also 
because the epidemic successively affects different subpopulations with varying 
potentials to transmit the virus.
The generation time distribution used to estimate 𝑅𝑡 may also vary in different 
subpopulations and because of interventions.

Estimate 𝑹𝒕 to track progress of epidemic in a population and the effectiveness of 
interventions (See When the outbreak is at a low level or fragmented)
Compare the severity of local outbreaks
Points to consider:
Quarantined imported cases and contained outbreaks do not contribute to the 
transmission potential of the whole population.
Contextual measures, such as the daily number of new cases per capita, the number 
of hospitalisations and spare ICU capacity, should be combined to assess the epidemic.

Figure 1. Flow chart summarising the main points explained in the main text depending on the state of the epidemic.

are with susceptibles. This may be an unrealistic assumption
because human interaction networks tend to be clustered
(for example, through households, workplaces or schools).
Growth through successive generations of infection, which
is the basis for defining R0, does not translate simply
into time because the generation interval of an infection
(the time interval back from the instant when a susceptible
is infected, to that when their infector was infected) is
variable, and infection generations may overlap temporally.
Typically, growth in the early stages is faster than the simple
assumption of a fixed average generation time would suggest
and this is a major problem in estimating R0 from early
outbreak data. In addition, the implicit assumption is that
all infectives are identifiable as such. If there is a significant
proportion of asymptomatic cases, an estimate of R0 may be
affected by the time from when an asymptomatic infective
has become infected to when he/she is expected to infect
susceptibles. If this timing is the same for asymptomatic
and symptomatic cases, then the estimate for R0 will be
unaffected.

The second simplest case: where an outbreak
is widespread - Rt

When the pandemic is well-established in a country (or
region), with large numbers of cases most of which are
internal to the country, an ‘effective reproduction number’
at time t, Rt (sometimes denoted Re or Reff ), is a useful

descriptor of the progress of the outbreak (Figure 1). Again,
the concept is of an average of how many new cases each
infectious case causes. The value of Rt may be affected by
interventions: typically the aim is to reduce Rt below one and
to as small a value as possible. For models including detailed,
and therefore complex, contact networks there may be more
than one way of defining Rt; however, definitions should
always agree that the value of Rt is 1 when the expected
number of new infections is constant.

The relevance of the assumptions here (large numbers
of cases, mostly internal to the region) is that in such
circumstances we expect Rt to have a fairly stable value that
changes substantially over time only when interventions are
introduced or cease. The definition of Rt here is in terms
of actual new infectious cases, i.e. excluding potentially
infectious contacts with individuals who have been infected
and are immune to reinfection. As the number of immune
individuals grows large compared to the entire population,
the spread of infections will gradually slow, because many
contacts will be with immune individuals, and hence the
value of Rt will be reduced. The level of immunity at which
Rt = 1 is the herd immunity threshold (see Section 2 on
vaccination and herd immunity below).
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When the outbreak is at a low level or
fragmented – the concept of R may be less
useful

If the outbreak is at a low level either because it has run its
course or because of successful interventions, the definition
and the use of an R value are problematic (Figure 1). At
low levels of prevalence there will (as in the early stages of
the outbreak) be greater statistical variability. Additionally,
there are likely to be heterogeneities associated with the
infection being unevenly spread among different subgroups
of the population (possibly dependent on age, behaviour or
geographical location [9]), with some parts of the population
having had more exposure than others. There may also be
local variability in interventions, and it may not be easy to
allow for the effect of some cases being introductions from
outside the population under consideration. If the outbreak
is fragmented, particularly when close to elimination, it will
make more sense to think of it as composed of separate local
outbreaks, which can be modelled separately, rather than
trying to specify an average R value overall.

Relating R to details of the infection process

If the population is heterogeneous or structured, defining
a reproduction number needs care, as the number of new
cases an infective is expected to cause will depend on both
their infectiousness and how well connected they are. It
has been shown that in the early stages of an epidemic,
when the relevant contact structures of a population are
not known and interventions are not targeted, assuming
a homogeneous contact structure results in conservative
estimates of R0 and the required control effort. However,
designing targeted intervention strategies requires reliable
information on infectious contact structures [10]. There are
several basic ways to use structured population models to
capture departures from the simplest epidemic models. The
four most common are (i) household models, (ii) multi-type
models, (iii) network models and (iv) spatial models.

In a household model, every person in the population is
assumed to be part of a single household, which is typically
small, and may even be of size one. Those in the same
household have a higher probability of infecting each other
than is the case for two people chosen randomly from the
population. In this model, reproduction numbers can still be
defined [11, 12]. The most commonly used is the household
reproduction number R∗, which is the expected number of
members of other households that are infected by people
from a primary infected household. It is still possible to
consider the average number of susceptibles infected by a

single infectious person. However, in order for this to be
useful, the average has to be computed in a sophisticated
way, because the number of people a person can infect will
depend on how many members of the same household are
still susceptible when s/he becomes infectious [13].

A second way of modelling heterogeneity in the
population is to assume that the population can be subdivided
into groups. The groups may be defined through age bands,
social activity levels, health status, type of job, place of
residence and so on. Characteristics such as susceptibility,
infectivity and frequency of contact may depend on an
individual’s group, but all those in a single group have the
same characteristics. It is often assumed that all these groups
are large. If there are regular inter-group contacts then the
largest eigenvalue of the so-called next generation matrix
[5, 8] has many similar properties to those of R0 for an
epidemic spreading in a homogeneously mixing population,
although the final size equation is generally not satisfied.

A third way of introducing heterogeneity is to represent
the population by a network, where transmission is only
possible between people sharing a link in the network.
For many network models it is still possible to define a
reproduction number [14]. It is important to note that the
person initially infected in a population is often atypical
and should be ignored in computing or estimating the
reproduction number. A useful extension is a mixture of
a network model and a homogeneous mixing model, in
which both regular and casual contacts are captured. In this
extension, a reproduction number with the desired threshold
properties can be defined [15].

Sometimes most transmission is restricted to people living
close to each other, and spatial models are useful when
physical location should be incorporated. For these, it is
often difficult to define a reproduction number because there
is no phase in which the number of infecteds is growing
exponentially [16, 17]. If standard estimation methods are
used where there is a considerable spatial component then the
estimates will be close to one, even when the spread is highly
supercritical and transmission needs to be much reduced in
order to control the epidemic.

R, vaccination and herd immunity

As immunity builds up in a population through infection
during the course of an epidemic, even when the contact
rate between individuals remains the same (assuming no
change in interventions), both the chance that a contact
is susceptible to infection, and the effective reproduction
number, Rt, will decrease. Herd immunity is achieved when
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enough individuals have become immune so that Rt falls
below the value 1 without the need to reduce contacts among
individuals by non-pharmaceutical interventions.

Vaccination provides another means of building up
immunity in a population. Depending on the coverage, it can
slow or halt the spread of an epidemic, preventing individual
infection or limiting experiences of disease. All vaccination
programmes aim to achieve sufficient immunity in the
population that Rt < 1 without modifying contact patterns
among individuals. In this situation, there are insufficient
susceptibles in the population for sustained transmission.
The susceptible proportion of a population for which Rt =

1 is known as the critical vaccination threshold (CVT).
When the susceptible proportion is below this threshold,
there is herd immunity, which means that the population is
protected from a major outbreak even though not everyone is
vaccinated or otherwise immune.

In simple mathematical models (e.g. models in which
the population is only subdivided into susceptible, infected
and recovered individuals), the CVT is determined by the
basic reproduction number R0. Specifically, vaccination
of a uniform randomly chosen proportion 1− 1

R0
of the

population is sufficient to create herd immunity and prevent
an epidemic, as long as the vaccine-induced immunity is
sufficiently long-lasting [18]. As a simple example, if R0 =

2 then 50% of a population would need to be vaccinated
or otherwise immune to prevent outbreaks. If R0 = 3, as
is approximately the case for COVID-19, then 67% of a
population would need to be vaccinated or immune. When
setting such vaccination targets, waning immunity needs to
be taken into account. The implementation and impact of a
vaccination programme depends on whether vaccination is
performed before or during an outbreak [19, 20].

As outlined above, population structure affects the
reproduction numbers R0 and Rt as well as the probability
that an epidemic will spread. Therefore, it has important
effects on the threshold for herd immunity and the optimal
vaccination strategy. For models with small mixing groups
such as households, the basic reproduction number R0, as
defined in Section 1.1, does not provide a good indicator of
whether or not an epidemic can take off because repeated
contacts within households are likely even in the early
stages of an outbreak. However, in the early stages of an
epidemic, between-household contacts are likely to be with
individuals in otherwise fully susceptible households, so
the reproduction number R∗ which is given by the average
number of between-household contacts that emanate from
a typical within-household epidemic [21, 22] can be used
instead. For household models, herd immunity is achieved

if a uniform randomly chosen proportion 1− 1
R∗

of all
households in a population is fully vaccinated.

For COVID-19, a toy model has been used to illustrate
the effect of population heterogeneity on herd immunity.
It showed [23] that age structure and variation in social
contacts among individuals could reduce the herd immunity
threshold to 43%, almost a third less than that for
a homogeneous population. Assuming a more extreme
variation in social contact rates and that the most exposed
individuals become infected first, another study estimates
that the herd immunity threshold in some populations could
be as low as 20% [24]. In addition, there is some indication
that immunity gained from infection by some common
cold coronavirus strains may provide cross immunity to
SARS-COV-2 [25, 26]. There have also been reports that
immunity gained from COVID-19 infection may wane,
reducing individual and population levels of immunity over
time. If these observations are indeed applicable here, the
herd immunity threshold could be further modified [26].

One important difference between immunisation by
vaccination and by infection is that, during an epidemic,
individuals with higher susceptibilities and/or larger numbers
of contacts are likely to be infected earlier. If herd immunity
is to be achieved by vaccination, optimal planning can
reduce the coverage required to achieve herd immunity. For
example, in an illustrative households model for variola
minor infections in Brazil, it is shown that under the optimal
vaccination strategy the proportion of the population that
needs to be vaccinated is a third less than under a strategy
that fully vaccinates randomly chosen households [27].
Although several COVID-19 vaccines have been developed,
global demand in the early phases of vaccine roll-out still
exceeds supply. Designing optimal vaccination strategies for
different settings that take into account population structure
alongside other public health concerns, e.g. protecting the
vulnerable, could greatly enhance the chances of achieving
herd immunity and the cost effectiveness of vaccination as
an intervention.

How can R be estimated?

Before estimating R, the purpose of the estimation needs
to be clarified. Is it intended simply to track the changes
in the trajectory of case numbers over time? Or is it
intended to assess the potential for pathogen transmission in
a specific population, perhaps in the context of considering
interventions? If the latter, the relevant population needs to
be defined. Depending on the purpose, different data sets and
statistical methods can be used.
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There are several approaches to estimating Rt from
epidemiological data. In the most direct method, high-quality
contact tracing data can be used, in theory at least, to estimate
both Rt and the generation time interval, and this has been
attempted for COVID-19 [28]. However, contact tracing of
SARS-CoV-2 infections is notoriously difficult because of
the high proportion of asymptomatic infections. Moreover,
effective contact tracing reduces the number of contacts of
traced individuals so that the corresponding estimates are
biased.

More commonly, Rt can be estimated by inferring the rate
of infection transmission within a dynamical model fitted to
observed cases, hospitalisations, deaths or a combination of
those [29, 30]. Dynamical models have been used widely
to forecast the spread of COVID-19 and the effect of
interventions. These models allow the impact of assumed
changes in specific interventions on Rt to be explored, so
estimating Rt in this way can be convenient. Dynamical
models can be described by systems of differential equations
and assume very large to infinite population sizes. In
completely deterministic dynamical models, the uncertainty
in estimated Rt values depends only on data and parameter
uncertainty, and not on stochastic uncertainty. However, if
the number of new infections is small, the value of Rt

is strongly affected by chance events, which increases the
uncertainty in the estimate. This situation can be addressed
by use of stochastic models or incorporating stochastic
assumptions in otherwise deterministic model frameworks.

But this approach is not without drawbacks. Not least,
Rt estimates from dynamical models depend critically on
assumptions (e.g. model structure and which parameter
values are estimated), and on data quality. Another potential
drawback is that many parameters of dynamical models
are often assumed to be fixed over time. These approaches
are therefore less suited to capture the effects of gradual,
continuous changes in behaviour, mobility or social network
structure. However, gradual changes in dynamic models can
be incorporated by assuming that transmission parameters
change over given intervals, while at the same time the
possible amount of change is constrained to avoid big jumps
caused by a small number of noisy data points [31]. In
this way, models that include change-points in the rate of
infection near specific interventions can infer the impact of
control policies, as well as the effect of susceptible depletion.

There is also a difference in how Rt is estimated between
compartmental and agent- or individual-based models. In an
agent-based model, it is possible simply to count exactly
how many secondary infections are caused by each primary

infection. Thus, all details of the epidemic – including time-
varying viral loads, population-level and localised immunity,
interventions, network factors, and other effects – are
automatically incorporated, and do not need to be considered
separately [32]. As agent-based models explicitly include
stochastic effects, the uncertainty in Rt estimates can be
greater than for those derived from deterministic dynamical
models. Because of the greater number of parameters
included in dynamical and particularly agent-based models,
they require more data and more different types of data than
the simpler statistical models described below to identify
estimates for all parameters.

A third approach uses statistical models to estimate
Rt, and continuous changes in it, empirically from case
notification data. These methods make minimal structural
assumptions about epidemic dynamics, and only require
users to specify the distribution of the generation interval.
They are agnostic to population susceptibility or epidemic
phase, but as we discuss below, care must still be taken to
avoid quantitative and temporal biases. The most common
empirical methods are the Cori method [33, 34] and the
Wallinga-Teunis method [35]. Drawbacks of some statistical
models include that they cannot be used to combine different
data streams into a coherent picture.

Where genome sequences from viral samples taken
from infected patients are available and the date of
sampling is known, Rt can also be estimated using
phylogenetic methods. An evolutionary model is fitted that
best explains the patterns of nucleotide substitution in the
dated samples. The fitted model parameters include the
nucleotide substitution rate and the population size of the
virus at a given time in the past. Using a metapopulation
analogy, the effective population size of a pathogen has
been shown to be proportional to the number of infected
individuals and inversely proportional to the transmission
rate from which the reproduction number can be determined
[36].

Statistical methods to estimate R

In this section we discuss two frequently used simple
statistical methods to estimate R and common issues
associated with them. The Cori and Wallinga-Teunis
methods estimate subtly different versions of Rt; the
Cori method generates estimates of the instantaneous
reproduction number and the Wallinga-Teunis method
generates estimates of the case reproduction number [33, 37].
The key difference is that the instantaneous reproduction
number gives an average Rt for a homogeneous population
at a single point in time, whereas the case reproduction
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number can accommodate individual heterogeneity, but
blurs over several dates of transmission. Furthermore, the
case reproduction number is a leading estimator of the
instantaneous reproduction number, i.e. it depends on data
from after the time for which the reproduction number is to
be estimated, and must be adjusted accurately to infer the
impact of time-specific interventions [38].

The instantaneous reproduction number represents the
expected number of infections generated at time t by
currently infectious individuals [33]. For real-time analysis,
one of the benefits of estimating the instantaneous
reproduction number is that it does not require information
about future changes in transmissibility, and it reflects the
effectiveness of control measures in place at time t. But as an
aggregate measure of transmission by all individuals infected
in the past (who may now be shedding virus), it does not
easily consider heterogeneity in transmission. In contrast, the
case reproduction number represents the expected number of
infections generated by an individual who is first infected
at time t, and has yet to progress through the full course
of viral shedding. This leads to ‘right censoring’ when the
case reproduction number is estimated in real-time; if all
infections generated by individuals who were infected at
time t have not yet been observed, then the data must be
adjusted [39, 40, 41] or the case reproduction number will
be underestimated.

The Cori method and the Wallinga-Teunis method involve
inferring the values of Rt that are most consistent with
observed incidence data (for a review, see [38]). In the Cori
method, typically this inference is carried out by assuming
that Rt is constant over fixed time windows. Smoothing
windows are used to avoid spurious fluctuations in estimates
of Rt. These can occur if imperfect observation and reporting
effects, rather than actual bursts in transmission, are the
main source of noise in the data. Cross-validation and proper
scoring rules can be used to avoid under- or oversmoothing
Rt estimates [42].

An important concept, basic to both methods, is the
intrinsic generation time also referred to as the infectiousness
profile. The intrinsic generation interval is a theoretical
quantity derived from the renewal equation of Lotka
and Euler [30, 43]. It describes the time distribution of
potentially infectious contacts made by an index case, and
is independent of population susceptibility [44]. In practice,
the intrinsic generation interval is not observable, and it must
be estimated carefully from observed serial intervals within
contact tracing or household data [44, 45, 46, 47]. The serial
interval is generally defined as the duration of time between
onset of symptoms in an index case and in a secondary

case [48]. In the early stages of an outbreak, accurate
estimation should adjust for right truncation of observations,
for changes over time in population susceptibility, and for
interventions like case isolation, which may shorten the
generation interval by limiting transmission events late in the
course of infectiousness [44, 45, 49].

Both the Cori and Wallinga-Teunis methods are concep-
tually based on separating the infectiousness of an infective
into two components, total amount and timing. The timing
is expressed by the generation time distribution while the
total amount is expressed by Rt. The variation of (aver-
age) infectivity over time is ascribed, at least in practical
implementations of the methods, to changes in Rt, while the
intrinsic generation time is assumed to remain fixed. This
is a simplification that may lead to inaccurate estimation of
Rt, since, in reality, the observed generation time distribution
varies over time, both because of the epidemic dynamics
[48, 50, 51], because of the epidemic affecting different sub-
groups of the population, with possibly different generation
time distributions over time [52, 53], and, more importantly,
because of interventions that affect the length or efficacy of
the infectious period [49]. An additional complication is that
the ‘intrinsic’ generation interval of the Cori and Wallinga-
Teunis estimators includes potentially infectious contacts
with both susceptible and immune individuals, whereas only
contacts with susceptible individuals cause new infections,
and are observed in contact tracing [44, 45]. Even when using
an accurately estimated fixed generation time distribution,
both Rt estimators are numerically sensitive to the specified
mean and variance of the intrinsic generation interval [54].

Data used to estimate R

Fundamentally, Rt is a measure of transmission. Ideally,
it would be estimated from data on the total number of
incident infections (i.e. transmission events) occurring each
day. But in practice, only a small fraction of infections
are observed, and notifications do not occur until days or
weeks after the moment of infection. Temporally accurate Rt

estimation requires adjusting for lags to observation, which
can be estimated as the sum of the incubation period and
delays from symptom onset to case observation [54, 55].
Delays not only shift observations into the future, they
also blur infections incident on a particular date across
many dates of observation. This blurring can be particularly
problematic when working with long and variable delays
(e.g. from infection to death), and when Rt is changing.
Deconvolution [56, 57, 58, 59], or Rt estimation models that
include forward delays [60] can be used to adjust lagged
observations. Simpler approaches may be justifiable under
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some circumstances. If observation delays are relatively
short and not highly variable, and if Rt is not rapidly
changing, simply shifting unadjusted Rt estimates back
in time by the mean delay can provide a reasonable
approximation to the true value (see Challen et al., in
this volume, for an in-depth discussion [54]). The benefits
and disadvantages of each approach are reviewed in [38].
Changes over time in case ascertainment can also bias Rt

estimates, so ideally data should be drawn from structured
surveillance (see, for example, the REACT study [61]) or
adjusted for known changes in testing or reporting effort
[61, 62].

In practice, Rt can be estimated from a time series of
new symptom onset reports, cases, hospitalisations or deaths.
Choosing an appropriate data stream involves weighing
representativeness, timeliness of reporting, consistency of
ascertainment, and length of lag. For example, reported
deaths may be reasonably unaffected by changes over
time in ascertainment, but adjusting for long lags to
observation can be challenging, and deaths may not be
representative of overall transmission (e.g. if the epidemic
shifts toward younger age groups) [63, 64]. Extensions
of existing statistical models for Rt estimation could
potentially integrate multiple kinds of data, by assuming
that (e.g.) cases, hospitalisations and deaths, arise from a
shared, latent infection process, with different delays [38].
A mechanistic model can also pull multiple data streams
together by modelling the different processes underlying
each data stream. Problems can arise if different data streams
disagree on the progress of the pandemic. However, if the
disagreement is caused by a shift in delays from events to
reporting in different data streams, a mechanistic model can
highlight these changes. Sometimes different data streams
can be used for model validation.

All methods used to estimate Rt must decide on the length
of the time window over which it is to be estimated. All data
used to estimate Rt are noisy. The shorter the time window
used for estimation, the higher will be the noise-to-signal
ratio and, therefore, the uncertainty in the estimate of Rt. In
contrast, longer time windows will produce estimates with
lower uncertainty, but sudden changes in transmission may
not be detected if the time window is too long.

Summary: Cautions and Recommendations

During the early phase of the epidemic:

• R0 estimates in the early phase may not be
representative for the population as a whole if the
group of initial transmitters is atypical.

• R0 may be incorrectly estimated in the early phase
if infected but asymptomatic individuals are not
counted or recognised, and their epidemiologically
relevant behaviour differs from that of symptomatic
individuals.

When the epidemic is established in the population:

• Rt can differ for different population groups, and
the value of Rt is dominated by the group in
which most transmission occurs. To improve targeted
containment measures, where possible additional
information should be reported alongside case
data, such as demographic, socio-economic and
occupational information.

• The estimated value of Rt and its associated
uncertainty depend on the data stream(s) used and
the time window over which Rt was estimated, and
these should be reported alongside the estimates. This
will make it possible to draw more robust conclusions
when considering results from different models.

• Model components that are likely to change over
the time course of the epidemic (e.g. the generation
time distribution) should be updated regularly, and
sensitivity to changing assumptions should be kept
under consideration.

When the ongoing epidemic is fragmented:

• Rt estimates from local outbreaks, if they can be
contained, cannot inform on the progress of the
epidemic and efficacy of interventions at the national
level. They may inform local interventions. Other
descriptors should be considered to assess the progress
of the epidemic, such as the number of new cases
per capita per day in a defined area, the number of
hospitalisations and the spare hospital and intensive
care capacity.

• Imported cases that are effectively quarantined should
not be counted towards Rt estimates as they do not
contribute to the local transmission potential in the
community.

Vaccination and herd immunity:

• If the available vaccine supply is limited, optimal
vaccination strategies should be designed that take
into account population structure and the transmission
potential within different groups and other public
health priorities, e.g. protection of the vulnerable
groups.
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In conclusion, estimated R values do not exactly correspond
to the theoretically defined quantities. In statistical terms,
model uncertainty, sampling variability, and data accuracy
affect the estimates. Nevertheless, R0 and Rt are useful
quantities to assess the potential and progress of an epidemic.
Their usefulness for decision making varies depending on
the phase of the epidemic (early, established, fragmented).
Clearly defining the context, the data streams and the
statistical methods used to estimate R can improve its value
for the management of an epidemic.
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[39] Cauchemez S, Boëlle PY, Thomas G et al. Estimating
in real time the efficacy of measures to control
emerging communicable diseases. American Journal

of Epidemiology 2006; 164(6): 591–597.
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