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Abstract 
The emergence of infectious agents with pandemic potential present scientific challenges from 
detection to data interpretation to understanding determinants of risk and forecasts. 
Mathematical models could play an essential role in how we prepare for future emergent 
pathogens. Here, we describe core directions for expansion of the existing tools and knowledge 
base, including using mathematical models to identify critical directions and paths for 
strengthening data collection; expanding basic theory to identify infectious agents that present 
the greatest risks, over both the short and longer term; by strengthening estimation tools that 
make the most use of the likely range and uncertainties in existing data; and by expanding 
access to effective, transparent tools to harness modelling for increased public health benefit. 
 
Keywords: immune landscape, genotype to phenotype map, big data, data integration, 
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Introduction 
In 2020, the emergence of novel pathogens, or the successful spread of a pathogen into a new 
host environment, sprung to unwanted prominence. The previously unknown coronavirus, 
SARS-CoV-2 made the jump to humans from a zoonotic reservoir in China, and it rapidly 
achieved global reach (Kissler et al. 2020). Mathematical models were deployed at every stage 
of this trajectory and continue to be an important part of scientific and political conversations 
regarding how to best contain the spread of SARS-CoV-2 and other pathogens with pandemic 
potential. But with the zoonotic virome diverse and rich with both known and unknown 
pathogens, key challenges remain in the effort to understand and mitigate the emergence of 
future zoonotic epidemics. Although there have been striking advances in some of the 
challenges laid out in previous overviews (Lloyd-Smith et al. 2015), for example in viral genomic 
epidemiology (Grubaugh et al. 2019) and characterizing host competence (Mollentze et al. 
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2020), other challenges remain relatively neglected, such as the potential roles of intermediate 
hosts in spillover into people or “spillback” into wildlife (Glennon et al. 2018, Fagre et al. 2021). 
In addition to these familiar challenges in mathematical modeling for pathogen emergence, new 
ones have emerged in the wake of SARS-CoV-2. Here we provide an overview of some of 
these major remaining challenges.  
 
For a pathogen to emerge within a new host population two steps are involved: introduction and 
emergence. Although these two steps can be further divided into ecologically distinct substeps 
(Plowright et al. 2017), these two stages are crucially driven by distinct underlying dynamic 
processes. First, the infectious agent must be introduced into the new host population from 
either a zoonotic reservoir or intermediate species such as a domesticated animal (i.e., 
spillover), or an infected conspecific from another population, noting that this might happen 
several times, as is the case for MERS-CoV. This process is driven both by the circulation of a 
pathogen in the reservoir and contact patterns at the human-wildlife interface. Second, the 
pathogen must become established within the new host population (requiring sustained local 
transmission between hosts, commonly summarised by a value of 𝑅𝑡, or the number of 
secondary infections per infected individual, greater than 1; Figure 1). Models may make 
contributions to advancing our understanding of both steps, and critical challenges remain to 
effectively modelling both stages.  
 
Here, we consider challenges in the ways in which models can contribute to strengthening data 
collection in the context of future pandemics; identify major challenges in refining the theoretical 
framing around pathogen emergence; and detail important questions in estimation of critical 
pandemic related parameters. While the emergence of a novel pathogen might occur with 
devastating impact in any host species (evidenced, for example, by devastation of the citrus 
industry by the virus Citrus tristeza (Lee, Baker, and Roche-Peña 1994)), our focus is 
predominantly on spillover into human populations,and emergence following such spillovers. 
 
Data challenges of emergence of future pandemics 
Two of the major questions around data in the context of future pandemics are: What data need 
to be collected to detect pathogen emergence? And, what can we do with (and what are the 
limits of) data that already exists? Models may contribute to answering both questions.  
 
Focusing on the first question, what surveillance tools could most effectively be leveraged to 
detect that pathogen emergence is (or was) occurring? Models could be used to probe what 
scope (temporal, spatial), types of data (individual measurements, clinical convenience 
samples, designed cohort studies), and types of measurements (symptoms, antibody 
responses, sequencing), and samping intensity are needed to reliably detect anomalies 
indicative of a pathogen emergence event. For example, a sudden uptick in cross-reactive 
antibodies to coronaviruses relative to baseline in a convenience sample (e.g., from a blood 
bank) might have provided a useful early warning of an emergent coronavirus (Mina et al. 
2020), but the scale and scope of sampling required for a relevant anomaly to be reliably 
detected remains an open question, especially in light of recent evidence for cross-reactivity 
against SARS-CoV-2 in pre-pandemic sera in Southern Sudan, for example (Wiens et al. 2021). 
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Similarly, genetic sequencing clearly has the potential to identify pathogen emergence events, 
but whether the required frequency of sampling, or range of reservoir or spillover host 
individuals sampled, is likely to be tractable is unknown, and should not be oversold (“From 
PREDICT to Prevention, One Pandemic Later” 2020).  Models could be designed to explore this 
issue, for example exploring the degree to which pathogen life histories might require different 
sampling designs, or whether existing convenience samples (e.g., blood banks) or unexpected 
clusters of large case reports might be adequate. For pathogens that are already circulating 
within a focal population, emergence could take the form of the appearance and establishment 
of novel variants (e.g., greater transmission, or immune escape, or greater virulence, as for 
SARS-CoV-2  (McCormick, Jacobs, and Mellors 2021); or features such as artemisinin 
resistance for malaria (Miotto et al. 2013)). Curtailing the spread of such variants has clear 
public health benefits. Characterising the degree of surveillance required to detect novel 
sequences at a fast enough rate to enable containment could be addressed via modeling. For 
poorly characterized or unknown pathogens, predicting potential geographical ‘hotspots’ for 
future emergence events could facilitate more efficient and targeted surveillance. Overall, a first 
challenge for models in addressing the data around emergence events is thus in informing the 
utility and best designs for curation of wide-scale, regularly collected data on pathogen (or 
variant) presence via direct detection or immune measurement.  
 
Moving to the second question, a second major set of issues associated with data on pathogen 
emergence is the variation in data quality and completeness that emerges from global resource 
inequalities. Ebola outbreaks, for example, can easily evade detection in places where access 
to care or availability of confirmatory diagnostics are limited (Jephcott, Wood, and Cunningham 
2017; Glennon et al. 2019). Data on emerging outbreaks inherently reflects those outbreaks 
which have successfully been detected and pathogens conclusively identified. Available data 
therefore reflects extensive but difficult-to-quantify biases toward larger, more syndromically 
distinct outbreaks in places with well-resourced health systems and effective disease 
surveillance programs (Glennon et al. 2020). Furthermore, as much pathogen prevalence data 
is collected in clinical settings, surveillance represents a low priority relative to providing direct 
care in many situations (Kim, Farmer, and Porter 2013). Models that characterize relevant data 
biases and feedback loops, as well as models that identify approaches to correct or account for 
such challenges, will clearly be of value for planning exercises. Awareness of these limitations 
will be key to effective and just prioritization of disease prevention efforts. A second challenge 
for modeling is therefore in appropriately addressing these imbalances in the data, e.g., via 
integration of data collected by different systems (including qualitative study and 
local/Indigenous knowledge) or quantitative estimation of underreporting and other observation 
biases.  
 
Relatedly, beyond direct or indirect measures of pathogen presence and abundance, modeling 
might also be used to ask the question of whether existing non-traditional data-streams (such as 
contact patterns from mobile devices (Chang et al. 2021; Wesolowski et al. 2016), global 
connectivity from integrated global data sources (Tatem, Hay, and Rogers 2006), population 
heterogeneity by integrating satellite images to census data (Worldpop n.d.), digital trend data) 
could contribute to anticipating the trajectory that will follow pathogen emergence. Suggestive 
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use cases exist. For example, mobility data from mobile devices contributed to understanding 
the early phases of spread (and effects of containment) of SARS-CoV-2 (Lai et al. 2020). 
However, such data does not directly measure transmission events, and, for example, only 
limited predictability could be obtained from mobile phone data for the spatial spread of a 
measles outbreak in Pakistan (Wesolowski et al. 2018). In the context of future pandemics, 
models could evaluate the characteristics of data that would most powerfully refine inference 
into future pandemic trajectories (temporal scale? spatial scale? demographic features?) to 
identify a critical set of extensions that could be requested of the technology companies and 
should be included in data use agreements (bearing in mind ethical and privacy constraints).  

 
Challenges in developing the theoretical framework for understanding pathogen 
emergence  
 
Detecting pathogen emergence is clearly, in itself, ambitious. An even more ambitious goal 
would be to identify pathogens within their zoonotic reservoir before they have had the 
opportunity to spill over into people, as well as to understand and mitigate the risk of emergence 
after spillover. There are many possible threads by which models could contribute to this.  
 
Sequencing important pathogen reservoirs, such as the ‘virome’ is increasingly tractable on 
large scales, and has certainly deepened our understanding of the community ecology of 
viruses (Wille et al. 2019). Nevertheless, vast numbers of species remain undescribed. It has 
been estimated that more than 600,000 viral species with zoonotic potential remain to be 
characterised (Carroll et al. 2018). As the vast majority of sequenced viruses will be irrelevant to 
human health, identifying ways to target sampling to more relevant parts of the biome is an 
important question, for viruses, but also beyond (bacteria, protozoa), and with potential to 
contribute to monitoring of zoonotic reservoirs (Lloyd-Smith et al. 2015). This question links to 
the important theoretical challenge of pinpointing characteristics of pathogens with spillover 
potential.  
 
A series of theoretical approaches have evaluated the degree to which very general 
characteristics (e.g., mutation rate, degree of clustering in host contacts, pathogen related 
mortality) shape risks of pathogen emergence (reviewed in (Gandon et al. 2013)). Another way 
to tackle this question is to use a comparative approach: models are used to leverage 
knowledge and trait characteristics of hosts and pathogens that have historically spilled over to 
identify features of future pandemic pathogens (Olival et al. 2017; Wells et al. 2020; Shaw et al. 
2020). Remaining key challenges in this area are to more realistically link species-level 
predictions to real-world landscapes by accounting for fine-scale species distributions and 
exposure risk. This area of study may prove particularly important for the interdisciplinary 
challenge of understanding the effects of ecological and climatic change on disease emergence. 
A related approach, and which echoes a perennial and persisting challenge in biology is in 
generating a genotype to phenotype map (Visscher et al. 2017). This might require possibly 
unfeasible (at this stage) mechanistic understanding of features from cellular tropism to 
pathogen replication to interactions with existing immunity. Better calibrated and detailed 
models capturing within-host to between-host dynamics (Ke et al., n.d.) will contribute to this 
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effort. Arguably, a critical and as yet unresolved component will be a larger understanding of the 
landscape of immunity for the focal species and across the pathogen community, as cross-
reactivity among different pathogen species might constrain pathogen emergence. Engaging 
with this in turn requires engaging with the important modeling challenge of moving beyond a 
single pathogen perspective to encompass multiple species, a well recognized and persisting 
challenge in the study of infectious pathogens (Lipsitch et al. 2009; Wikramaratna et al. 2015; 
Kucharski, Andreasen, and Gog 2016).  
 
As the focal pathogen spreads, growing immunity within the population will elicit selection 
pressures on within-human replication and human to human transmission. For SARS-CoV-2, in 
early 2021, variants of concern feature combinations of traits encompassing receptor avidity, 
immune escape, transmissibility and virulence (Martin et al. 2021). Knowledge of correlations 
between these traits and trade-offs (implying a genotype to phenotype map) would open the 
way to better anticipating everything from immune escape to shifts in virulence, as well as a 
better understanding of how these evolutionary events might be driven by acquired immunity, 
therapeutics, or vaccination regimes (Saad-Roy et al. 2021).  While the potential for such 
mechanistic details to refine the predictions of  evolutionary models is clear, adequate 
characterization of mechanism remains an important frontier, to which more nuanced 
knowledge of molecular mechanisms through to better models of within-host spread could be 
brought to bear.  
 
An important component in developing models to project the impacts of such pathogen traits 
and trade-offs (or the genotype to phenotype map) is that they may differ from host to host. Sex 
differences in immune function, for example, are ubiquitous (Klein and Flanagan 2016); and 
older individuals generally have less efficient immunity as a result of immunosenescence 
(Simon, Hollander, and McMichael 2015). The feedback driven nature of immunity may also 
mean that very small differences may escalate into highly variable outcomes (e.g., along the 
lines described in ecological terms by ‘alternative stable states’ ( Metcalf, Grenfell, and Graham 
2020)). Such population heterogeneities may have important consequences for both the 
prospects for pathogen spillover, initial pathogen spread (i.e., the effective reproductive number 
(Lloyd-Smith et al. 2005; Metcalf et al. 2015)), and selection on pathogen traits, such as 
virulence (Miller and Metcalf 2019). However, such heterogeneities remain relatively rarely 
modeled, in part as they are generally extremely hard to quantify in practice (see next section), 
especially when one considers that individual variation in important traits such as immunity, 
behavior, and mobility may all compound to produce highly complex patterns. Nevertheless, 
efforts to evaluate the purely theoretical impact of such heterogeneities, rooted in broadly known 
differences (by sex, age) could significantly advance understanding of variation in transmisison 
dynamics and disease outcomes within and between host populations.  
 
Challenges in estimation around pathogen emergence  
 
While many spillover events may rapidly go extinct in human populations, sometimes primary 
infections (i.e., people infected directly from the reservoir or entering the local population from 
elsewhere) will go on to infect other people. Branching process models are commonly used to 

https://paperpile.com/c/5hphWU/JVGB+j5OF+hiMt
https://paperpile.com/c/5hphWU/JVGB+j5OF+hiMt
https://paperpile.com/c/5hphWU/muIy
https://paperpile.com/c/5hphWU/UYR7
https://paperpile.com/c/5hphWU/Tg2O
https://paperpile.com/c/5hphWU/tztc
https://paperpile.com/c/5hphWU/lhsj
https://paperpile.com/c/5hphWU/lhsj
https://paperpile.com/c/5hphWU/0x4F+XkRg
https://paperpile.com/c/5hphWU/eBCD


estimate the risk that initial cases of disease will establish sustained chains of transmission 
(Althaus et al., n.d.; Guzzetta et al. 2016; Thompson, Gilligan, and Cunniffe 2016; Abdullah et 
al. 2018; Thompson, Jalava, and Obolski 2019; Thompson, Gilligan, and Cunniffe 2020). These 
models were applied early in the COVID-19 pandemic, when cases had only been observed in 
China, to assess the risk the cases exported to other countries would establish local epidemics 
and to investigate how control measures affect this risk (Hellewell et al. 2020; Thompson 2020). 
Modeling approaches have also been developed to extract key epidemiological measures such 
as R0 from observations of early  ‘stuttering chains’ of transmission (Blumberg and Lloyd-Smith 
2013). Expanding this work to explore how models might be used to estimate R0 and other core 
parameters such as the incubation period, or proportion symptomatic in the very early phases 
prior to a spillover establishing using other sources of data (immunological information, etc) 
might help identify pathogens that might make the leap to establish ongoing transmission. 
However, stuttering chains can be recurrent but not necessarily transition to a larger threat (as 
is the case for MERS-CoV, for example), and it is important to note that there are still large 
questions as to where investigations should be focussed.  
 
For events that follow this phase, the classical modeling toolkit was perhaps first defined during 
the emergence of HIV (May and Anderson 1987). This work established a roadmap for 
estimating the range of core parameters required to delineate the trajectory that an emerging 
pathogen will take from the early growth in cases (R0, generation time, incubation period, 
overdispersion, infection fatality ratio (Metcalf and Lessler 2017)). This toolkit has been 
expanded by use of genetic data-streams to infer incidence or pathogen population growth 
(Vaughan et al. 2019), or innovative use of cross-sectional data on viral copy numbers across 
individuals population to capture whether pathogen populations are growing or shrinking (Hay et 
al. 2020). There are presumably an array of further innovations in this space that might further 
enhance this set of approaches; building around elements listed in previous sections, and 
grappling with key features such as how to address variability (e.g., presence of 
superspreading) but also uncertainty in critical transmission parameters (e.g., incubation time, 
quantities such as R0 in human populations once spillover has occurred) and grounding them 
mechanistically (e.g., in heterogeneity in contact patterns or distributions of co-morbidities).  
 
Integrating diverse data sources is likely to prove important both in the very early phases when 
stuttering chains are occurring, and once important spread has occurred. For example, 
phylodynamic approaches can provide another window onto how a virus moves through space 
(Bedford et al. 2020; Deng et al. 2020). Such integration will also provide a means to triangulate 
on core measures such as R0 (Vaughan et al., n.d.) using a different source of data (noting that 
this approach may have limited power to resolve the issue of pinning down transmission for a 
pathogen like SARS-CoV-2 where the genome evolves relatively slowly, time to onset of 
symptoms, as well as incubation and infection periods are variable, and the rate of 
asymptomatics is high). Expanding models to estimate critical aspects of within-host dynamics 
(using data on viral load, immune parameters, etc) but also to translate these estimates into 
parameters relevant to population scale transmission remains very much in its early phases.  
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There are also very important required modelling extensions of the classical toolkit to use new 
data sources. There is arguably more data than ever before on aspects of human contact and 
risk. Since every model of pathogen emergence arguably involves a contact rate, such data has 
clear potential. However, there are still gaps in thinking about how best to harness these data. 
Transmission events remain frustratingly unspecified; they are only ‘observed’ (and even then, 
indirectly) in extraordinarily detailed data such as contact tracing (e.g., (Bi et al. 2020)). Thus, 
we do not know whether the ‘medium’ or ‘big’ data sources we have access to at the population 
scale, be they diary studies of contacts, or mobile phone call data records (Grantz et al. 2020) 
actually capture transmission relevant contacts. A challenge is finding a principled way to 
grapple with these issues of model mis-specification that remains tractable, and also sensibly 
reflects uncertainty. Multi-model comparisons (Reich et al. 2019) may make important 
contributions here.  
 
Models of early pathogen spread following emergence that better account for logistics and 
health systems, relevant to both understanding reporting, but also to potential for intervention 
and containment at early phases is another important gap. Spatial mechanistic models that 
include population connectivity networks, socioeconomic factors and distribution of potential 
reservoir species as recently employed to model Ebola emergence (Redding et al. 2019) may 
provide crucial insights into spatial aspects of disease emergence. Such mechanistic models 
can be also used to explore a wide range of possible scenarios in order to explore the model 
behaviour across a large array of combinations of transmission parameters or narrow down 
intractable parameter values through likelihood-free approximation methods. Challenges to be 
tackled in this area include sensible choices of model complexity, efficient sampling of large 
unknown parameter spaces, accounting for transient dynamics, as well as accurate model 
validation amid the generally sparse empirical evidence available for emerging diseases. 
 
Challenges in harnessing models for public health benefit 
 
Beyond developing methods and theory, there are important challenges in implementing models 
to effectively contribute to outbreak prevention and response. Such challenges are cross-
cutting, affecting every stage and scale of emergence and of model development. Broadly, 
these challenges include assessment and communication of uncertainty; clear contextualization 
of short- and long-term disease prevention and control strategies; development of infrastructure 
for effective and responsive modelling in cooperation with public health bodies; and equitable 
access to epidemiological tools and insights provided by modelling. 
 
Effectively assessing and communicating the uncertainty involved in model predictions is crucial 
to meeting the needs of public health decision makers and policy makers, as well as facilitating 
informed decision-making by the general public in the face of misinformation. Clear 
communication is especially difficult in the early stages of an epidemic, when basic data such as 
infection rates, infection fatality ratios, and risk factors may be unavailable or strongly skewed 
by the chance circumstances of early cases. Careless or overconfident communication of 
modelling predictions during this stage risks losing the trust and cooperation of public health 
decision makers and the general public. Nonetheless, the early stages of an outbreak, while 
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case counts are still low, offer the best opportunity for effective intervention to minimize direct 
and indirect costs. Waiting for more accurate data risks foregoing the chance to intervene while 
an outbreak is still manageable. There is therefore an urgent need to develop strategies to 
balance communication of urgency and uncertainty in presenting modelling results as a disease 
begins to emerge, as well as to effectively communicate changes in strategy as modelling 
approaches evolve with new data (Becker et al. 2021). 
 
Similarly, there is an urgent need to improve communication of model assumptions and 
limitations, including contextualization of short-term and narrowly disease-centered strategies 
(e.g., vaccination and behavior changes such as social distancing) within local context and long-
term or holistic strategies (e.g., broad improvements in sanitation, access to safe housing and 
work environments, and universalization of care). Models have been used to disentangle the 
influences of such factors on the dynamics of endemic and historical emerging diseases (e.g., 
Phillips et al. 2020), and recent efforts have retrospectively estimated the consequences of such 
fundamental causes of disease as structural racism on the emergence of COVID-19 in the 
United States (Richardson et al. 2021). Prospectively quantifying the impacts of health 
infrastructure and broad social change, however, remains a long-term challenge. As modellers 
work to advance our understanding of the local environment (e.g., climate, health infrastructure, 
structural inequality, and interactions with other diseases) on disease spread, it remains 
important to highlight the limitations of acting only on the proximate mechanisms and easily 
measured parameters most commonly captured by quantitative modelling. In particular, 
modellers can support systemic public health efforts by emphasising that parameters such as R0 
are emergent and changeable properties of a disease within a human social context, rather than 
inherent properties of pathogens themselves. 
 
Finally, additional efforts are needed to define and shape the role of modelling within broader 
public health efforts in disease prevention and outbreak response. More work is needed to build 
strong, open collaborations between modellers and public health decision makers, as well as to 
support additional infrastructure for data sharing and to develop accessible tools based on 
modelling that will enable insights from modelling to be distributed more equitably.  
 
Conclusions 
 
Detection, and even more ambitiously, anticipation of the emergence of an infectious agent into 
a new host population could importantly contribute to efforts to assess, prevent, control, and 
contain future pandemic risks. We have outlined here an array of ways that models have the 
potential to inform these questions, and important challenges ahead. A global health 
perspective underscores the enormous advantages in terms of speed and transparency for 
early reporting of potentially important spillover events. Both better fundamental understanding 
and expectations, alongside global data standards, transparency and sharing, informed by 
model framing, could contribute to this while also guarding against over-selling the potential of 
this research agenda.  
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Figure 1: Successful pathogen emergence in a population requires introduction from the 
reservoir population (here shown as bats, but might be a range of species, including humans 
where local emergence is being investigated) (phase 1) and then spread within the new host 
population (phase 2), potentially also via an intermediate host. Data challenges for models 
around these processes encompass identifying desirable data-streams, and identifying the best 
ways to leverage existing data. The table below classifies data and stages.  
 

 
 

 

Stage or aspect of zoonotic 
emergence 

Relevant data Modelling challenges 

A Environment and reservoir 
dynamics 

Pathogen sequences from 
reservoir; pathogen 
incidence, prevalence, and 
serology; reservoir host 
abundance and behavior, 
including contact mixing and 
migration 

Improving risk assessment in 
light of diverse and often 
unknown immunological 
processes in non-human 
hosts 

B Intermediate species Farm surveillance data (e.g., 
pathogen sequences, 
serological surveys); satellite 
imagery (density of 
domesticated animal 
populations); qualitative data 
on human-animal (and 
interspecific animal-animal) 
interactions across social and 
ecological contexts 

Risk assessment and 
prioritization of potential 
mechanisms of spillover 

C Spillover Satellite imagery (human-
wildlife interface; human 
population density); spillover 
case studies; ecological traits 

Risk assessment and 
prioritization of potential 
sources of spillover 
(pathogens and reservoir 



of potential reservoir species hosts) 

D Early-stage emergence 
(i.e., singletons and stuttering 
chains) 

Contact tracing, outbreak 
linelists, and other 
epidemiological data; case 
studies and histories of 
detected outbreaks; 
surveillance data (syndromic, 
active case-finding or 
serological surveys, passive 
reporting, etc) 

Improving detection of small 
and early-stage outbreaks; 
correcting surveillance biases 
for risk assessment and 
prioritization; estimating key 
parameters from early data 

E Secondary transmission 
and spread 

Human mobility and contact 
mixing (e.g., mobile phones); 
pathogen sequences; 
socioeconomic data (e.g., 
income, racial and other 
types of marginalization, 
baseline well-being, access 
to care); pathogen incidence, 
prevalence, and serology; 
clinical data (e.g., signs and 
symptoms, mortality) 

Estimating key parameters 
for effective risk assessment 
and forecasting; assessment 
and prioritization of 
interventions (including 
pharmaceutical, non-
pharmaceutical, and social-
structural) 

 


