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Abstract 
When a novel pathogen emerges there may be opportunities to eliminate transmission - locally 
or globally - whilst case numbers are low. However, the effort required to push a disease to 
elimination may come at a high cost at a time when uncertainty is high. Models currently inform 
policy discussions on this question, but there are a number of open challenges, particularly 
given unknown aspects of the pathogen biology, the effectiveness and feasibility of 
interventions, and the intersecting political, economic, sociological and behavioural complexities 
for a novel pathogen. In this overview, we detail how models might identify directions for better 
leveraging or expanding the scope of data available, for bounding the theoretical context of 
emergence relative to prospects for elimination, and for framing the larger economic, 
behavioural and social context.  
 
 
Introduction 
In the extremes, there are two possible fates for a novel pathogen: elimination, or endemicity. 
The coronavirus that emerged in 2003, SARS-CoV, is an example of global elimination, or 
‘eradication’ (Klepac et al. 2013). Stringent international control and containment efforts, aided 
by clear symptomatic presentation combined with extremely limited asymptomatic transmission 
allowed the number of human infections with SARS-CoV to be driven down to zero. The last 
known case was caused by spillover from a palm civet in 2004 (Wang et al. 2005). At the other 
extreme, currently circulating influenza A viruses derive from the strain that emerged during the 
2009 influenza pandemic (Bedford et al. 2015), and are endemic, or present for at least part of 
the year most years, all around the globe. Such continuous presence, or endemicity, has been 
suggested as a possible fate from the SARS-CoV-2 pandemic, although many countries with 
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strong, early public health responses have achieved local elimination (Lavine, Bjornstad, and 
Antia 2021).  
 
There is room for considerable nuance between these two extremes: local elimination at one 
spatial scale may vanish under aggregation, while endemicity expands (Figure 1), and control 
efforts may result in ‘endemicity’ that corresponds to extremely low incidence levels. Maintaining 
complete freedom from an infectious agent when it is circulating elsewhere is always 
challenging (illustrated by many pathogens (Durrheim, Crowcroft, and Strebel 2014) including 
SARS-CoV-2 (Eichler et al. n.d.)). Elimination is sometimes used to refer to elimination of 
disease rather than elimination of the pathogen. For example, the World Health Organization 
(WHO) has a rabies mortality elimination goal by 2030 (Abela-Ridder et al. 2016), but not a 
rabies infection elimination goal. Similarly, for some neglected diseases (e.g., leprosy, 
schistosomiasis, trachoma) WHO has a goal of Elimination as a Public Health Problem (EPHP), 
corresponding to prevalence and/or incidence falling below a threshold such that morbidity or 
mortality is considered acceptable at the population level (Toor et al. 2020; Bodimeade, Marks, 
and Mabey 2019). Finally, pathogens whose characteristics have shifted as a result of evolution 
(e.g., via antigenic drift as for influenza) might or might not be still classified alongside the 
original emergent strain, leading to different conclusions with regard to endemicity.  
 
Theoretically, the deterministic requirements for driving an infection to elimination are well 
established: the net reproductive number, R0 or the number of new infections per infectious 
individual must be pushed to below 1. This often translates into susceptibles accounting for less 
than 1/R0 of the population, which could be the result of immunization by natural infection, or by 
vaccination. Alternatively, the effective reproduction number, R0 x S (where S is the proportion 
of the population that is susceptible) can be reduced to below 1 by reducing transmission, 
potentially via non-pharmaceutical interventions such as physical distancing, or vector control, 
etc. The absence of an effective vaccine, rapidly waning immunity, or high birth rates eroding 
immunity in the population, or intense transmission that is hard to diminish, can all make 
elimination impossible in these deterministic terms (Anderson and May 1992). Thus, these basic 
theoretical results provide useful guidance in terms of whether elimination is an achievable 
policy goal. However, deterministic predictions only provide a partial guide to outcomes in more 
realistic stochastic and heterogeneous settings - elimination may occur earlier than anticipated 
by chance; or may be extremely hard to achieve as a result of recurrent reintroductions and 
metapopulation rescue effects, all of which present important open questions in considering the 
trajectory and appropriate policy responses to novel emergent pathogens (Figure 1), especially 
when the range of uncertainties around the characteristics of a novel emergent pathogen are 
considered.   
 
Establishing the likely trajectory of an emerging pathogen relative to the extremes of endemicity 
(which may technically include EPHP) or elimination is of fundamental interest, but also has 
both short term and longer term implications for public health. An emerging pathogen in the 
context of a pandemic demands a ‘vertical’ response - highly targeted efforts across the medical 
and public health sectors - which will need to be maintained and potentially intensified if the goal 
is elimination (Klepac et al. 2013). However, if the pathogen’s trajectory tends towards 
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endemicity, pandemic responses will need to be integrated horizontally, within the wider health 
system as part of routine services. This will have consequences in terms of resource allocation, 
and investment in either broad or narrow health system capacity. 
 
Here, we outline challenges for modeling around pathogen emergence in the context of 
distinguishing between endemicity/elimination in i) contributing to extracting the most 
information from existing data-streams, or identifying critical areas for expanding data-streams, 
ii) developing a larger theoretical foundation for characterizing emergent pathogen fate, iii) 
estimating core epidemiological quantities that provide information about an emergent 
pathogen’s likely trajectory (including both classic quantities such as R0, but also more elusive 
features such as connectivity), and iv) the larger context of economics, behavior and policy that 
impact trajectories towards elimination or endemicity for emergent pathogens. 
 
Data challenges of future pandemics in the context of endemicity/elimination 
The nature of pathogen emergence means, at least initially, considerable unknowns and rapid 
change, often under crisis conditions. The 2020 pandemic drove many advances in systems for 
collection of data and improvement of data quality, but gaps clearly remain. Here, we explore 
how models might contribute to filling these gaps in the context of future pandemics. 
 
Data cleaning  
Around the world, the infrastructure for surveillance proved one of the many aspects of public 
health that struggled when confronted with the SARS-CoV-2 pandemic. With data-entry reliant 
on either paper, or unrestricted digital fields, and often little opportunity for training surveillance 
agents, the opportunity for spelling and other errors proved vast. Rapid deployment of data-
cleaning algorithms to resolve, for example the thousands of district names reported in 
Madagascar into the 114 that actually exist, would have freed up considerable human 
resources. Development of swiftly deployable probabilistic or fuzzy matching tools (Bradley et 
al. 2010) across erratic platforms in diverse settings is an important challenge ahead of 
improvements of surveillance infrastructure.  
 
Limits of currently available surveillance data  
With clean(er) data in hand, the next set of issues that models can contribute to is in 
characterizing the limits of surveillance. How appropriate are current data-streams for deriving 
the distance from elimination (perhaps simply in terms of numbers of cases above zero cases)? 
Can current data-streams identify whether and where transmission is occurring, with the latter 
being of particular relevance in establishing whether infection is endemic (e.g., can you identify 
the original contact of a case) or results from re-introductions  (Parag, Cowling, and Donnelly 
2021) or novel spillover (Dudas et al. 2018)? Is undetected transmission likely to be a barrier to 
elimination (Martinez-Bakker, King, and Rohani 2015)? Models may be useful in helping to 
identify or bound the presence of undetected populations where transmission is ongoing 
(asymptomatics, hard-to-reach populations, etc), and potential reservoir hosts, by integrating 
across the range of available data (cases, genetic sequences, serology, etc, see Table 1), and 
identifying contradictions or discrepancies.  
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Novel metrics for elimination 
Models might also contribute to extracting the most information possible from available data by 
development of novel metrics for characterizing distance to elimination. Where cases are hard 
to track (e.g., for acute infections where the window of opportunity for recording cases is short) 
an alternative metric for proximity to elimination is the proportion of the population that is 
susceptible (Metcalf et al. 2020). However, considering either case numbers or proportion 
susceptible as the target metric neglects the importance of fluctuations over space and time, 
heterogeneity across populations, and the nuances of the biology of many pathogens. There is 
considerable scope for the development of pragmatic metrics that take into account core 
elements of the biology (e.g., seasonal fluctuations in transmission (Churcher et al. 2014)) to 
strengthen evaluation of progress towards elimination, leveraging existing data-streams (Table 
1). For example, measles case numbers are reported to the WHO annually by every country in 
the world. As measles vaccination coverage has increased, numbers of cases have fallen, 
indicating progress towards elimination. However, this progress appears erratic: sudden spikes 
in cases occur alongside deep troughs. The biology of measles indicates that such ‘post-
honeymoon outbreaks’ are expected (McLean and Anderson 1988). Acknowledging this, the 
case data can be leveraged to define a canonical pathway towards elimination, and map 
countries progress towards elimination in a more detailed way -  a decline in incidence occurs 
alongside initially increasing, and then declining variance (Graham et al. 2019). Similar 
combined metrics (incidence but also variance in incidence) building on expectations for 
dynamics built around mathematical models might prove useful across a broader array of 
pathogen life histories. Importantly, an added challenge in the context of emerging infections is 
that data is likely to be sparse and uncertain (many cases may not be counted, case definitions 
may change (Tsang et al. 2020), etc) and metrics must be designed that are robust to this. 
 
The added value of extended sampling schemes 
Resources available for surveillance are generally limited. Modeling could be deployed to 
characterise the added value of, e.g., active sampling in the context of clearly defined 
surveillance or public health goals, such as locating one case per 100,000 (Chen et al. 2001), 
targeted genetic sequencing (Holmes et al. 1995), serological surveillance (Mina et al. 2020), 
etc. Given the rapidly changing global context, characterising the density of sampling required to 
keep pace with expected changes in incidence associated with rapidly changing global 
conditions, from mobility (Tatem et al. 2012) to climate change (Metcalf et al. 2017), or the 
amount of contact tracing necessary to maintain elimination (Grantz et al. 2021) are also likely 
to be important goals. 
 
Common surveillance needs associated with pathogen characteristics 
Effective surveillance for elimination (or to detect cryptic endemicity) will be shaped by the 
biology of the focal pathogen - for some pathogens, zero-screens may or may not be adequate 
(Martinez-Bakker, King, and Rohani 2015), for others interpretation of seronegativity will be 
complicated by features such as cross-reactivity (Lembo et al. 2013; Rimoin et al. 2010; 
Lanciotti et al. 2008), for many the impact of contact tracing will be shaped by everything from 
asymptomatic rates to the distribution of serial intervals (Fraser et al. 2004). Nevertheless, 
within this diversity, there may be classes of characteristics that emerge as being associated 
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with particularly effective designs for surveillance. Modeling broad pathogen characteristics 
could illuminate these commonalities. This might, in turn, be valuable in considering how 
sampling schemes could be optimized across multiple pathogens, potentially of particular 
relevance as multiplex approaches to sampling (either for pathogens (Finkbeiner et al. 2008) or 
immune signatures (Mina et al. 2020)) become more tractable.  
 
Surveillance needs associated with metapopulation structure and temporal changes 
Elimination at one scale may turn to endemicity at another (Figure 1). Models to delineate the 
data required to establish whether and what forms of connectivity and metapopulation structure 
can allow persistence at larger spatial scales despite widespread local elimination is another 
important and still open question. Genomic sequence data could provide clues to pathogen 
sources via their relatedness (Worobey et al. 2020), travel/mobility data could establish likely 
links allowing persistence (Wesolowski et al. 2018), etc (Table 1). Finally, parameters that 
shape the likelihood of pathogen persistence can often vary, either spatially (e.g., via 
differences in environmental suitability (Messina et al. 2016)) or temporally (e.g., generation 
time may be changing in the context of control efforts (Ali et al. 2020)), and these local 
differences will intersect with the metapopulation context to shape the potential for persistence. 
Identifying surveillance designs that adequately reflect this variation is another possible and 
open challenge for modeling endemicity and elimination.  
 
Challenges in developing the theoretical framework for understanding the likely 
trajectories of pathogens towards endemicity or elimination 
Models have played a central role in establishing the conditions that lead to endemicity or 
enable elimination (described in the Introduction), but adding realism to this raises a set of 
challenges. 
 
Developing theory relating to metapopulation context 
For many pathogens, at some spatial scale, metapopulation dynamics are likely to play an 
important role in permitting the transition to endemicity in the face of local extinctions, or 
facilitating extinction (Figure 1). Building on core theoretical results (Keeling 2000; Fox et al. 
2017) to reflect synoptic yet realistic features of known systems, such as the structure of 
connectivity across the hubs of a metapopulation (Mahmud et al. 2021), alongside the pattern of 
sizes of the connected hubs (from villages to cities, with smaller sizes running a higher risk of 
extinction by chance (Bjørnstad and Grenfell 2007)), or the characteristics of travel (Giles et al. 
2020) is one important challenge. The importance of these components will be modulated as a 
function of features of pathogen life history, such as duration of infection (with e.g., little 
connectivity necessary to guarantee persistence of chronic infections), or potential for 
recrudescence for apparently recovered individuals (Mbala-Kingebeni et al. 2021), or spill-over 
from hidden (or known) non-human hosts (Dudas et al. 2018); all of which will reduce the 
likelihood of local extinction, in ways that could be formally established.  
 
Developing theory relating to unknown biological features towards endemicity 
One important aspect in establishing the trajectory of an emerging pathogen is establishing the 
probability and characteristics of secondary infection - whether they be rare, associated with 
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little clinical disease, etc. If a vaccine is available, information about the risks and characteristics 
of infection following vaccination is of similar importance. Since establishing the answers to 
these questions necessarily takes time (Accorsi et al. 2021) (until sufficient numbers have run 
the risk of being secondarily infected, little can be said) and is often logistically challenging, one 
important contribution that theoretical models may provide is a way to explore the potential 
range of scenarios (Saad-Roy et al. 2020; Lavine, Bjornstad, and Antia 2021) before data is 
available. More broadly, the longer term consequences of any features of the biology of the 
pathogen that are hard to pin down during the early phases of the outbreak can be explored 
using such sensitivity analyses. A particularly important broad set of unknowns that the SARS-
CoV-2 outbreaks has revealed is how the landscape of immunity has the prospect to shape 
immune escape, and, particularly, vaccine escape; alongside selection for increased 
transmission (Saad-Roy et al. 2021). The development of models that remain tractable, while 
also formally capturing pathogen phylodynamics within a metapopulation and in the context of 
shifting selection pressures on immune escape as a function of both vaccination and infection 
(and potentially even spillback from secondary hosts (Larsen et al. 2021)) is a critical challenge 
for future work (see also the Chapter on Emergence).  
  
Challenges for theory relating to tractability and desirability of elimination 
The mortality and morbidity burden of an emergent pathogen, and how these manifest across 
demographics and environments are likely to determine the degree to which resources are 
mobilized for elimination. Pathogens with high case fatality rates are likely to be nationally 
prioritized for elimination in countries that have sufficient resources, because the consequences 
of endemic circulation will be deemed unacceptable (how this plays out in the global health 
funding landscape is regrettably less straightforward). Conversely, pathogens that cause only 
mild disease are less likely to be prioritized, and as a consequence may become endemic. 
Other pathogen characteristics (e.g., the proportion of transmission that occurs amongst 
asymptomatic persons, the degree to which transmission can be limited by tractable and 
acceptable interventions), will shape how tractable and desirable elimination is. Models can play 
an important role in characterizing these aspects shaping tractability of local elimination by 
formally framing aspects of the the logistics of control (time scale for vaccine development, 
logistics of roll out, lags in deployment (Townsend et al. 2013) and the underlying biology 
(duration of immunity, nature of immunity and landscape of selection in the context of immune 
escape), as well as the extent to which elimination can be maintained (Prada et al. 2017) 
(Figure 2). The latter is important because, even if evidence suggests that the speed required in 
the response to prevent the establishment of local endemicity is, in fact, tractable, this may not 
be the most effective public health strategy if elimination is likely to be very easily lost, a 
question which instantly raises the question of the international context. The development of 
models that establish tractability and potential for maintenance of local elimination can 
importantly contribute to discussion around the degree to which elimination (of cases, or 
infections) is an appropriate goal, but a vital issue here is in framing models that accurately 
reflect the inevitably vast range of uncertainties yet contribute to the discussion.   
 
Challenges in estimating core quantities around endemicity / elimination 
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Models are clearly crucial in estimating core quantities around pathogen emergence and 
pandemic response (Metcalf, Morris, and Park 2020). Many features of estimation relevant to 
endemicity and elimination are covered elsewhere in this special issue (e.g., Chapter XX, YY). 
Here we focus on two features most relevant to endemicity vs. elimination, estimation of 
parameters relating to emergence and/or elimination, and estimation of parameters during the 
rapidly shifting phases at the start of an outbreak and in terms of a transition towards 
endemicity.  
 
Estimating core parameters for elimination and resurgence  
In a situation where a novel pathogen has been detected, but its range and potential for spread 
remain unclear, obtaining rapid yet robust estimates of parameters that will govern rates of local 
emergence is a critical question (e.g., R0, the degree of superspreading, etc.). Minimalist 
modeling approaches that leverage the most basic of data (e.g., screens for zero cases, or zero 
infections, deaths (Jombart et al. 2020)) are likely to be important components of an effort in this 
phase. Extending existing minimalist approaches (for example using hazard based framing to 
establish risks of introduction (Bjørnstad and Grenfell 2007) or branching process analyses to 
evaluate rates of local spread or probabilities of local elimination (Blumberg, Funk, and Pulliam 
2014)) might provide a fruitful direction, alongside extensions that encompass uncertainty in 
reporting, time-lines likely required for detection of introduction or resurgence (Parag, Cowling, 
and Donnelly 2021), etc. Relatedly, where theoretical work might establish, for example, 
patterns of connectivity that make elimination hard to achieve, there will often still be a question 
of estimating patterns of movement (especially of infected individuals) or recrudescence, or 
spill-over from reservoir hosts, as these will define the risks of loss of elimination. Efforts to 
integrate diverse data sources (cases, genetics, mobility, etc) may be a key part of these efforts 
(Table 1).  
 
Estimating parameters relating to rapidly shifting ground 
In the early phases of emergence of a novel pathogen, many things may alter from behavior, to 
the public health response, to the distribution of immunity within the population. These changes 
may be crucial to establishing whether elimination is a possible outcome, but by their nature, 
estimation may be very complex, since many processes with similar effects will be occurring 
simultaneously. Identifying ways to leverage existing and diverse data-streams, perhaps across 
a range of different spatial and temporal frames could be an important future challenge and 
direction here. The converse difficulty of estimating consequences of interventions not yet 
implemented, especially those with heterogeneous accessibility/uptake across populations is 
another important challenge, and one that links to the issue of development of models to 
estimate changing costs of the disease, alongside changing costs of interventions programs 
along a spectrum from emergent to endemic or elimination (e.g., estimating costs of `last mile’ 
(Klepac et al. 2013)). 
 
Challenges in addressing politics, economics, and behavior around endemicity / 
elimination 
The intersection between politics, economics, behaviours and modeling over the course of the 
2020 SARS-CoV-2 outbreak threw up some particularly redoubtable challenges that relate 
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closely to Chapters XX in this Special Issue. An important contribution that modeling might 
make is to inform decision makers as to the costs and burden of endemicity versus the costs 
and tractability of achieving elimination, especially in the context of necessary and achievable 
behaviour change.  
 
Economics 
Obtaining accurate estimates of the economic costs of policy decisions and disease impacts is 
not necessarily straightforward (Metcalf, Morris, and Park 2020). However, if such costs can be 
reasonably bounded, models should be able to quantify the outcomes of counterfactual 
scenarios of elimination versus endemicity (Sandmann et al., n.d.). Cost-effectiveness of 
interventions is typically an important and often challenging component of these framings - for 
an emerging pandemic the costs of endemic circulation may be outweighed by the detrimental 
cost of interventions (e.g. school closures (Levinson, Cevik, and Lipsitch 2020)) or their 
disruption to other health services and consequent burden (e.g. other vaccine-preventable 
diseases (Gaythorpe et al., n.d.) or mass drug administration (Hollingsworth et al. 2021)). 
However, although trade-offs between health and economics were often invoked in the context 
of policy responses to SARS-CoV-2, robustly characterizing these trade-offs has been elusive, 
and is likely to be rather context specific. In some settings, political interests and lobbying 
coloured the discussion, arguably tilting policies in the direction of false economies (Dorn et al., 
n.d.).  
 
The challenge of estimating the costs of both the direct and indirect impacts of the disease and 
interventions in the shifting context of invasion by a novel pathogen compound the challenge of 
developing models capable of identifying when investing resources towards achieving 
elimination is ‘economic’ (Klepac, Laxminarayan, and Grenfell 2011), particularly, as this must 
include the costs of managing elimination (endpoints may be a moving target, reintroduction is 
always a risk, etc). There is likely to be particular value in models that discriminate between 
scenarios where elimination vs. repetitive near-elimination might be most cost effective. Over 
the longer-term the recurring future benefits of elimination almost always look attractive (Barrett 
2004), but the practical realities of elimination programmes and their projected time horizons 
can prolong to the point of fatigue. Meanwhile the burden of disease can be minimized through 
new medicines and tools, potentially making the impacts of infection negligible. Models can 
plausibly include sensitivity analyses around changes in the mortality rate, alongside the range 
of considered likely costs and benefits, but the ranges may be hard to bound. Meanwhile, 
decisions are needed in the near-term, in large part to coordinate global resources and mobilize 
collective action to enable a controlled trajectory either towards elimination or endemicity, but 
through choice rather than circumstance. Models have a role to play in laying the landscape to 
guide these decisions, but, as ever, a critical challenge is managing communication around the 
range of uncertainties.   
 
Behavior 
In the early phases of emergence, before availability of a vaccine, successful elimination for a 
directly transmitted infection like SARS-CoV-2 hinges on alterations in human behavior. This, in 
turn, requires policies or recommendations that guide acceptable behavior change. Acceptability 
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is driven by both individual decision-making but also flows of information. The role of feedbacks 
in shaping group behavior (self-reinforcing social norms, etc) or individual behavior in the face of 
the burden of infection (Weitz et al. 2020), suggests that developing quantitative and model-
grounded and data-informed (Salathé and Khandelwal 2011) treatments of these flows might 
considerably enhance our ability to understand and project pandemic-relevant behavioral 
changes.  
 
An unexpected challenge that emerged during the 2020 pandemic was intense politicization of 
epidemic outcomes: “Zero Covid” vs. “herd immunity” and “economic sacrifice” narratives, all of 
which altered the general population behaviours and norms (and thus strategic public health 
implementation). Feedback loops in behavior open the prospect of unstable mixed equilibria - 
for example, if collaboration promotes further collaboration the prospects for elimination are 
improved; conversely powerful narratives against elimination promote “cheating” behaviour and 
anti-elimination policies which further discourage and impede elimination strategies. This 
complex mix of dynamics rooted in the psychological, social and larger political context requires 
deeper collaboration between modellers and social scientists, as well as around expertise in 
public health communication, and this is an important remaining challenge.   
  
Identifying tractable policies nationally 
Some of the most important challenges for informing political decisions around targeting 
elimination occur upstream of model development. It is essential to identify what can be 
controlled (politically and economically) and what is beyond control (and thus irrelevant for 
modeling as an intervention strategy); what spatial scales are relevant, and who the key actors 
are; what will be acceptable targets for interventions (e.g., closure of borders? physical 
distancing?) and what will not. Introspection as to how prepared countries actually are in 
response to a public health crisis, and imagination relative to policies that can be successfully 
implemented, which could be informed by looking to successful countries for example (Patel 
and Sridhar 2020) will greatly enhance the utility of models constructed. Alongside this, 
acceptable levels of uncertainty in informing decisions, policy and practice must be defined; as 
well as effective tools for communicating both decisions and uncertainty with the public and 
understanding how this will translate into acceptability.   
 
Addressing transboundary issues and the global context 
Whether elimination can be achieved at the country level, regionally or globally, depends upon 
coordination of interventions across political boundaries. Given vast inequities in resource 
availability, the willingness of rich countries to support control efforts in poorer countries is likely 
to be key, and there are many configurations where this will be to mutual advantage, given the 
ever present risk of pathogen introduction (Klepac et al. 2016). In a globalized world, 
metapopulation dynamics might be leveraged to rapidly and economically achieve elimination 
goals (Ruktanonchai et al. 2020). Models have a role to play in persuading policymakers that 
looking beyond their national boundaries in solidarity is actually in their self interest.  
 
Discussion 

https://paperpile.com/c/8u73J5/7Shy
https://paperpile.com/c/8u73J5/R2v3
https://paperpile.com/c/8u73J5/ntER
https://paperpile.com/c/8u73J5/ntER
https://paperpile.com/c/8u73J5/R2U1
https://paperpile.com/c/8u73J5/97b3
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In recent years, there has been considerable debate around the desirability of elimination 
targets for high burden endemic infections such as malaria (Feachem et al. 2019; WHO 
Strategic Advisory Group on Malaria Eradication 2020). The debate emerges from the 
intersection of uncertainties around logistics, burden, and the complications of perverse 
incentives (Lockwood, Shetty, and Penna 2014). Emerging pathogens manifest many of these 
challenges, with the added challenge of uncertainties around pathogen biology itself, as well as 
uncertainties around control options. As knowledge grows in the early phases of pathogen 
emergence, many core insights from mathematical modeling of pathogen control can be brought 
to bear (e.g., lower R0, or overlap between symptoms and transmission will facilitate control and 
potentially elimination (Fraser et al. 2004)) but vast uncertainties inevitably remain.  
 
The most tractable window for elimination is in the early stages of emergence, before a 
pathogen establishes transmission across large parts of the globe. Indeed countries that acted 
early with policies aiming for SARS-CoV-2 elimination reaped the benefits (Oliu-Barton et al. 
2021). Following the first epidemic waves however, elimination becomes a much greater 
technical, and perhaps more critically, political, challenge. Many pathogens today circulate 
endemically in the more impoverished parts of the world, and in many settings, despite the 
technical feasibility of elimination goals, decision makers with the power to deploy resources to 
these ends have yet to make commitments (Lembo et al. 2010). Such failures are also starkly 
illustrated by the pattern of commitments and investments around SARS-CoV-2 control. 
Although the speed with which a vaccine was developed and deployed was a remarkable 
product of global collaboration, equitable delivery to mitigate pandemic impacts (not necessarily 
aiming for elimination) is a much more complex societal challenge. If the opportunity for 
elimination is not taken early, steering the subsequent trajectory away from endemicity becomes 
increasingly hard, even if it remains the desired outcome. Whether modeling can be sufficiently 
fast, accurate and persuasive/believable (at least to policymakers and political leaders) to guide 
appropriate action in the event of future emerging pathogens is an open question (Sridhar and 
Majumder 2020). 
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Figure 1: Schematic of endemicity vs. elimination for an emerging pathogen across 
space (top panel) and through time (lower panel).  An emerging pathogen may be 
introduced to multiple locations during the early stage of an epidemic (black dots show spatial 
location, top panels; black line shows cumulative cases (y axis) over time (). In some locations, 
it may rapidly stochastically fade-out (brown line, lower panel; brown area) corresponding to 
elimination. Alternatively, the pathogen might establish continuous circulation (blue and green 
lines, top panel, blue and green areas, lower panel) . This early outbreak may still go extinct 
locally, but local elimination may be temporary with new transmission chains caused by 
reintroductions or the same but with establishment occurring after a delay.  The spatial and 
temporal scales of analysis will define conclusions as to whether the pathogen is endemic or 
has been eliminated. For example, focussing within the brown area, one might conclude a 
status of persistent elimination had been achieved. If the full spatial extent is considered, 
pathogen circulation is ongoing at the end of the time-series (black line shows cumulative 
numbers in all locations).  
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Table 1: Examples of data-sources, their uses and integration into models, and associated core 
challenges  
 

Type of data Uses Integration into 
models 

Challenges 

Routine surveillance for cases 
- laboratory confirmed 
- suspected 
- syndromic 
 
Examples sources: 
Healthmap, flutrackers, 
DHIS2, sentinel systems for 
ILI and SARI 

Estimate 
parameters (Rt, 
generation time); 
effectiveness of 
interventions; 
evidence of 
circulation 

Fit both biological  
parameters and 
estimates of the 
impact of 
interventions (e.g., 
trajectory 
matching); 
verification of 
elimination 

Collation, 
harmonization, 
Sensitivity and 
specificity 
(especially for 
syndromic 
surveillance)  

Genetic sequence data 
 
Example sources: Genbank, 
GISAID, Nextstrain, 
Microreact 

Infer 
transmission 
pathways, 
pathogen 
relatedness, 
distinguish 
cryptic 
transmission 
versus 
incursions; 
inferring 
dynamical/ 
immunological 
differences 
between variants 

Timing and number 
of introductions; 
using variant 
frequencies/ 
distribution to infer 
pathogen 
characteristics/ 
fitness 

Speed of pathogen 
evolution (limits 
inference of who 
infected whom e.g. 
in nosocomial 
transmission (Abbas 
et al., n.d.)); uneven 
sampling across 
populations 

Serology 
 
Example sources: 
serotrakcer.com (noting all 
SARS-CoV-2) 

Estimate attack 
rate/force of 
infection; 
susceptibility  

Landscape of 
immunity, i.e. 
retrospective or 
prospective 
pathogen spread 

Difficult to collect, 
variance among 
assays, waning at 
initially unknown 
rates (Takahashi, 
Greenhouse, and 
Rodríguez-
Barraquer, n.d.), 
uncertain (and often 
hard to resolve) 
relationship between 
serology and 
protection;  

Animal reservoir 
sequencing (or serology)  
 
Possible sources: Genbank, 

Spillover (and 
spillback) risk;  

Model frequency of 
spillover/ 
introductions 

Hard to sample a 
wide area 

https://paperpile.com/c/8u73J5/m7U9
https://paperpile.com/c/8u73J5/m7U9
https://paperpile.com/c/8u73J5/tGPg
https://paperpile.com/c/8u73J5/tGPg
https://paperpile.com/c/8u73J5/tGPg
https://paperpile.com/c/8u73J5/tGPg
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GISAID, etc 

Census based population 
density, structure by age, etc 
 
Possible sources: 
worldpop.org, GPW/SEDAC 

Case fatality, 
morbidity in 
different settings 

Burden, cost-
effectiveness, 
spread 

Unavailable in some 
resource poor 
settings 

Timing, location and scope of 
interventions  
 
Possible sources: Blavatnik 
School of Government 
COVID-19 Government 
Response Tracker  

Rt, and impact of 
interventions 

Cost-effectiveness Disentangling 
specific effects of 
interventions when 
deployed in 
combination in 
different 
populations/ 
intensities 

Remote sensing/ satellite 
imagery 
 
Possible sources: NASA (e.g. 
https://neo.sci.gsfc.nasa.gov/),  
ESA 
(https://earth.esa.int/eogateway
/) 

Populations at 
risk, suitable 
habitat, 
seasonality of 
transmission and 
global range 

 Climate role may be 
limited for emerging 
pathogens 

Mobile phone data, social 
media data  
 
Possible sources: google 
mobility 
(https://www.google.com/covi
d19/mobility/); 

Mobility Modulation of Rt, 
responses to policy 
information 

Not necessarily 
clear that it captures 
transmission 
relevant movement; 
may not be available 
for critical 
populations 

Social media related 
information providing a 
window onto sentiment 
dynamics 
 
Possible sources: twitter, 
facebook 
(https://dataforgood.fb.com/) 

Evolution of 
social norms, 
spread of 
misinformation 

Behavior 
feedbacks on 
transmission 

Mapping from social 
media to behavior 
not always 
straightforward 

 
 

https://neo.sci.gsfc.nasa.gov/
https://earth.esa.int/eogateway/
https://earth.esa.int/eogateway/
https://dataforgood.fb.com/

