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Abstract 
COVID-19 has shown that the consequences of a pandemic are more wide- reaching than 
cases and deaths. Morbidity and mortality are important direct costs, but infectious diseases 
both generate other direct and indirect benefits and costs and produce changes in behaviour 
that modify and relocate these benefits and costs. These additional effects can, in turn, 
feedback on health outcomes to create a complicated interdependent system of health and 
non-health outcomes. As a result, interventions primarily intended to reduce burden of 
disease can have wider societal and economic effects and more complicated, and possibly 
unexpected system level influences on the epidemiological dynamics themselves. To capture 
these effects requires a systems approach that encompasses more the direct health 
outcomes. Towards this end, we discuss in this article the importance of integrating 
epidemiology and economic models and we set out the key challenges which merging 
epidemiology and economics presents. We conclude that understanding behaviour is key to 
developing a more complete and integrated economic-epidemiological approach to help 
society understand how best to respond to future pandemics. 
 
Introduction 
 
Pandemics do more than make people sick. Pandemics lead to changes in peoples’ behaviour, 
changes in income, and changes in demand for public services, amongst other impacts. 
Changes in economic and health incentives alter behaviour, which creates feedbacks to the 
infectious disease dynamics that make people sick and cost lives. For policy makers to identify 
better strategies to manage future pandemics it is important to take into account these 
complex (often non-linear) interactions among different systems. Quantitative models help 
analysts keep track of interactions and feedbacks and provide decision makers with a more 
complete picture. This is why integrating economics into the analysis of epidemiological 
problems is of first-order importance both to predict the effects of epidemics and epidemic 
policy (referred to as positive analysis), and to evaluate preferred strategies to tackle 
epidemics (known as normative analysis). This integration of economic behaviour into 
epidemiology, and then into models informing general economic policy is critical. By doing so, 
now it will be more like that models used by health officials will be more consistent with 
models used by central banks, labour and education ministers, and housing authorities.  



 
How the scope of an epidemic is defined matters. Consider, as an illustration, how different 
possible behavioural (non-pharmaceutical) interventions such as social distancing, closing 
schools, and banning non-essential travel might affect both health and economic outcomes 
during a pandemic. Both direct and indirect channels of influence need to be considered.  The 
direct effects on health and economic outcomes might be captured by separate 
epidemiological and economic models: e.g., closure of schools reduces the disease 
transmission rate in an epidemiological model and restricts labour supply due to increased 
childcare burden in an economic model. But key indirect effects arise from the 
interdependence between health and economic outcomes: a health-care worker may need 
to reduce the time spent on patient care to meet increased demands of childcare, and this 
affects health outcomes. These indirect effects can only be captured by integrating 
epidemiological with economic models, as illustrated in Figure 1. This is the challenge not just 
for positive analysis (“what will happen if we do x?”), but also for normative analysis of policy 
options (“is x the best choice of policy decisions?”). Normative economic analysis is concerned 
with how to evaluate these combinations of economic and health outcomes so as to assess 
which policy interventions should be undertaken. This requires giving consideration to values 
and preferences within society and the trade-offs revealed by the positive analysis. 
 

 
Figure 1. Illustration of how economic processes are affected by and effect epidemiological outcomes for the 
example of school closure measures. The grey region is the domain of traditional epidemiological models and 
how these might analyse a school closure intervention.   
 
 
 



In what follows, we discuss challenges in applying both positive and normative approaches to 
understand the implications of alternative policy choices during a pandemic. For example, in 
the positive analysis of policy, there is what economists refer to as the Lucas Critique: it is 
naïve to presume you can predict the future based on the stable past performance of 
‘parameters’ of health and economic models used to assess policy interventions, when they 
are highly aggregated, because they can change when a policy intervention occurs. Whilst a 
policy intervention affects current constraints on behaviour it also influences people’s 
expectations about the future state of the world, so that the relation between individual 
behaviour and an intervention has a new and less predictable element: i.e., how the 
intervention affects expectations. Likewise, in normative analysis, there is the challenge of 
how to compare what many will regard as incommensurable impacts. For example, how can 
we compare a life lost, with an increase in domestic violence, with a loss of earnings? A second 
comparison challenge is that it is difficult to measure avoided bad outcomes.  
 
In the our section, we reflect on a different policy problem—the challenge associated with 
preventative policy formation. For example, how might society overcome a natural bias 
towards focusing resources on dealing with current problems, rather than those that might 
arise in the future? What would an economically sensible programme of investment in 
prevention look like, given the likelihood of new diseases arriving in the future? 
 
 
 
Challenge 1: How to Capture the Range of Impacts of an Intervention when 
Evaluating Policy? 
 
In the face of a novel pandemic, governments confront difficult policy decisions regarding 
how best to control and mitigate the impacts of a pandemic. Economists focus on “trying to 
achieve the most good for the most people” given constraints including infectious disease 
burdens, money and time (Roughgarden 2001). In contrast, epidemiologists are typically 
more narrowly focused on minimizing adverse health outcomes. Both are challenging at the 
start of a novel pandemic as decisions need to be made quickly under great uncertainty about 
the short (and longer) term impacts of the pathogen and potential control measures. In the 
early phases of a pandemic, the spillover effects are assumed to be small, so focus is on a 
single health outcome which is, at the time, deemed of primary concern. For example, in the 
case of COVID-19, the focus of many governments was to ensure health systems were not 
overwhelmed, whatever the societal or economic costs of achieving this. In this section we 
focus more broadly on how we might better evaluate policy decisions in the broader context, 
whilst noting that this may be difficult to achieve in the early phases due to the inherent 
constraints of real-time decision making under uncertainty. 
 
Traditionally, health economists have used cost-effectiveness analysis to evaluate health care 
interventions such as vaccination programmes. Cost effectiveness typically focusses on how 
to achieve a pre-defined target at least cost. This pre-specified target does not account for 
the full range of benefits or costs of interventions and is unconcerned with the path to 
achieving the target. As a result, it can miss out many impacts which are relevant for well-
being. Experience with the COVID-19 pandemic has illustrated that such side-benefits (and 
costs) can be extensive, which means they are important to take into consideration when 



evaluating policy decisions regarding interventions. Cost benefit analysis (CBA) (also referred 
to as benefit-cost analysis) is a framework used by economists for this purpose that takes into 
consideration both the direct and indirect impacts of an intervention, and which asks: thinking 
about all of the quantifiable impacts of an intervention, do the benefits outweigh the costs? 
For cost-benefit analysis, we do not take as given the target that should be achieved, since 
we need to evaluate how social benefits and costs change as both the target and the means 
to achieve it are altered. 
 
CBA is used worldwide to evaluate public policies, including policies on public health and 
development (Hanley and Barbier, 2009)1. Thunström et al. (2020) is an early example of using 
CBA to understand the trade-offs of social distancing to reduce COVID risks. CBA identifies 
how an intervention (e.g. a lockdown) affects individuals, and the related repercussions of the 
intervention on firms’ opportunities and decisions, market performance, government 
revenues and expenditures and environmental outcomes. Economy-wide benefits and costs 
of the intervention are quantified relative to the status quo (no lockdown). What counts as a 
benefit or cost within CBA is any positive or negative change in well-being for an individual, 
or performance of an institution (firm, government), whether these are typically thought of 
as “economic” (valued by markets) or not. If, from the perspective of society as a whole, the 
aggregate benefits exceed the aggregate costs (i.e., there are positive net benefits), the 
intervention is a potential improvement to overall well-being in the sense that, in principle 
with scope for compensations, there is the possibility to make some people better-off without 
making anyone worse-off. This is the so-called “Kaldor-Hicks Compensation Test”—do the 
winners win more than the losers lose?  
 
The ‘potential’ qualification is important for three reasons. Firstly, in practice, the benefit of 
an intervention may not exceed the cost for everyone. For example, suppose the key benefit 
of a lockdown is the prevention of COVID-19 deaths, while the costs are loss of income from 
the interruption to work. In broad brush terms, the benefits are largely enjoyed by the old 
who are more at risk, whereas the costs are mainly incurred by those who are younger and in 
the work force: i.e., the old gain but the young lose on this simple reckoning. However, when 
benefits exceed the costs in the aggregate, the policy maker knows that, in principle, those 
who gain (the old in this example) could compensate the losers (the young) and still be better-
off than they would be without the intervention because benefits in the aggregate exceed the 
costs. Second, governments may have no intention of actually compensating those who lose 
out, undermining the ethical basis of the Kaldor-Hicks test (Sen, 2000). Finally, some kinds of 
costs may be impossible to compensate for, even in principle. 
 
Nevertheless, CBA provides a framework within which (a) all types of benefits and costs 
(market and non-market) associated with a policy intervention can be considered and (b) the 
distributional consequences of alternative actions can be identified (e.g., is it really the old 
that gain from a lockdown and the young that lose once the full range of benefits and costs 
are considered? What are the differential impacts of lockdown on above-average income 
households compared to below-average income households?). The CBA framework allows 
policy makers to estimate whether a policy change will add to net social well-being; and 
provides a consistent structure and criterion that allows the implications of alternative policy 

 
1 See, for example, https://sites.sph.harvard.edu/bcaguidelines/. 



interventions to be evaluated and ranked. True, profound conceptual issues have been 
identified with equating “passing the CBA test” with “adding to net social well-being over 
time” (e.g., Jones, 2016; Addicott et al., 2020), and in knowing how best to aggregate gains 
and losses to different parties over time. Yet CBA remains, in most economists’ eyes, the most 
useful framework to help guide complex public policy appraisal. 
 
However, there are many challenges in the application of the CBA test to infection control 
interventions during a pandemic. First, relevant benefits and costs are broadly defined as any 
positive or negative impact, now and in the future, on individual well-being to any member 
of society. These must be rendered comparable in any calculation of a net-benefit, which 
requires a common unit of account for valuing the different benefits and costs. Today’s £s or 
$s are used for this purpose. If a person is willing to pay a particular price, for instance, for 
something beneficial like a vaccine, this action is taken to reveal the minimum marginal 
benefit that a person attaches to that item. This makes it possible to calculate policy impacts 
on marketed goods and services because they have market prices. For non-market impacts 
such as changes in health, traffic noise and air pollution, or increases in anxiety, market values 
do not exist. However, economists have developed a variety of techniques to estimate the 
marginal costs or benefits of such impacts. We discuss one specific non-market value - the 
economic benefits of protecting lives – in detail below, as we consider in the specific 
challenges of applying CBA to infection control interventions during a pandemic.  
 
 
Challenge 1a: Measuring Long Term Impacts in the Face of Uncertainty 
We begin with the costs to the economy in terms of foregone output resulting from 
imposition of a lockdown. These costs are in some ways the least problematic to value, in the 
sense that the goods and services that are not produced as a result of an intervention such as 
lockdown have readily identifiable prices. However, a significant challenge arises because CBA 
requires all costs, present and future, to be entered into the calculation. For example, analysts 
have used macroeconomic estimates of expected GDP changes to quantify the economic 
costs of lockdown measures bought in to control the spread of COVID-19 (see Thunström et 
al., 2020, and Miles et al., 2020). The longer/more intense the lockdown, the smaller is GDP 
now than it otherwise would have been. But how is future GDP affected by the 
duration/intensity of a lockdown implemented now? (Keogh-Brown et al., 2010; Smith et al., 
2009; Bayham et al., 2020).  A further complication is GDP is not a measure of net benefits to 
start with, it is better described as marketable production (Coyle 2015; Stiglitz et al. 2010), 
with measurement of healthcare, education, public services, finance and insurance all highly 
problematic.2 Moreover, GDP does not include changes to in-home services that might rise 
(i.e., childcare), carbon emissions that might be avoided, or innovations that are spurred by 
the change in people’s circumstances. Answering questions like this related to the long-term 
economic costs of interventions is difficult with a new virus. This is in part because of the huge 
uncertainty, particularly at the start of the pandemic, in the properties of a novel virus, and 
how economic activity will respond to different control actions. Moreover, the highly non-
linear nature of pandemics makes predicting future benefits and costs difficult, since it 
becomes hard to determine the effects of interventions on disease outcomes. 

 
2 GDP is good a measuring production of relatively homogeneous physical goods that do not experience rapid 
innovation. This was useful in the middle part of the 20th century.  



 
COVID-19 illustrates this problem well. At the start of the pandemic, scientific advice to the 
UK government presented two behaviour interventions: mitigation and suppression3. 
Mitigation was deemed impractical because epidemiology models predicted health systems 
quickly would become overwhelmed.  The only option considered was suppression until 
pharmaceutical interventions became available: either through an indefinite lockdown or 
intermittently through cycles of lockdown/relaxation/lockdown. The future GDP costs of a 
lockdown are uncertain because the duration of initial lockdown or the number of stop-go 
lockdown cycles depends on the date at which pharmaceutical interventions become 
available and the evolution of the virus, which are both uncertain. Innovations that occur in 
response to lockdowns (e.g., changes to home-working technologies) are also uncertain, 
which is problematic if such innovations affect benefits and costs.  
 
The future uncertainty over how a pandemic will evolve is challenging when trying to quantify 
the future economic costs of interventions, and because of the problem of identifying which 
interventions to include within a CBA. For example, Gollier (2020) found that uncertainty 
about the rate of spread of the virus reduces the optimal intensity of a lockdown in the early 
(learning) phase of an epidemic. In contrast, Giannitsarou et al. (2021) found that for diseases 
with waning immunity, the initial intensity of lockdowns should be higher than when 
immunity is permanent. Yet at early stages of a novel disease like COVID-19, it is difficult to 
ascertain whether immunity will eventually wane. Bayham et al. (2021) find that the arrival 
rate of vaccines has large impact on optimal school closures.  
 
In the UK and much of Europe, the focus at the start of the COVID-19 pandemic was on 
mitigation or suppression with little discussion of a third behavioural intervention strategy: 
elimination. This is probably because elimination is seldom economically optimal: Barrett and 
Hoel, 2007). For example, at the start of the pandemic, COVID-19 in the UK was treated more 
as a flu-like pandemic and the evidence suggests elimination in such cases is both difficult and 
expensive (Ferguson et al. 2006, Inglesby et al. 2006). Elimination was discounted as a 
potential strategy (for further discussions on the elimination versus endemicity strategy see 
the challenges paper on this topic also in this series). While the initial costs of an elimination 
strategy may be high, it was not considered whether these may be less than the long-term 
costs from multiple lockdowns needed under a suppression strategy. In the case of the COVID-
19 pandemic, some countries applied a lockdown until there were no recorded cases, and 
then relied on test, track and trace and local lockdowns to eliminate any future outbreaks. 
These economies have typically avoided the 2nd and 3rd waves that came with the intermittent 
version of the suppression strategy, and so these countries may have suffered lower losses in 
GDP than would otherwise have been the case (Fernandez-Villaverde and Jones, 2020). The 
point, however, is that, with a new virus, it is difficult to know what longer term health-wealth 
trade-offs might be available through different policy strategies, because these depend on 
the character of the virus which is poorly understood at the onset of a pandemic. A similar set 
of knowledge difficulties also attach to the detailed effects of specific elements in any 
lockdown strategy (e.g., social distancing, school closures, and the like), making the 
application of CBA more difficult.  

 
3 Full details of evidence presented to Scientific Advisory Group for Emergencies (SAGE) in the UK available 
here https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-
covid-19/ 



 
 
Challenge 1b: Quantifying the Wider Social and Health Costs of Interventions 
Typically, the cost of health interventions focuses on the direct economic costs, for example 
the cost of a vaccine or the loss to GDP from a lockdown. The experience of the COVID-19 
pandemic, however, has shown that interventions themselves can have negative effects on 
the health system and wider society. 
 
What are these “wider costs”? They can include:  

• The rise in domestic violence due to lock-down (Boserup et al., 2020; Hisham et al. 
2020). Domestic violence, like any other crime, imposes serious costs on the sufferer, 
but can such impacts be expressed in monetary terms to allow them to be included 
within a CBA? Domestic violence will reduce well-being, and there are well-founded 
approaches which link changes in self-reported (subjective) wellbeing (SWB) to 
monetary values (Ferreira and Moro, 2010), essentially by calculating the trade-off 
rates between those determinants that are positively related to well-being such as 
income to negative determinants (Mahuteau and Zhu, 2016). However, this has not 
been attempted for COVID-19. 

• Mental health effects of isolation (Rossi et al. 2020) and fear of unemployment; as 
Hisham et al. (2020) say “…epidemics such as SARS and COVID-19 adversely affect 
mental health in a multitude of ways, permeating at individual, communal and societal 
levels”. The effects of declines in mental well-being due to COVID-19 on SWB have 
been estimated for 1500 respondents in Germany, for example, although the authors 
do not then convert this into economic costs (Zacher and Rudolph, 2020). 

• Disruption of education (school closures) also leads to lower mental well-being 
amongst schoolkids, for example due to the reduction of regular contacts with their 
friends. Subjective well-being approaches have been successfully applied with 
children which link SWB to mental health indicators and to contacts with school 
friends (e.g., Moore et al., 2018). In principle, such linkages could again be used to 
generate economic cost estimates for use in a CBA of pandemic control options. 

• School closures, if these are part of lockdown, can also contribute to reduced future 
earnings due to disruption of education. The discounted lifetime earnings approach 
(Jorgensen and Fraumeni, 1992) can be used to estimate these costs due, for example, 
to lower university entrance, since we know that university degrees are associated on 
average with higher earnings (Dickson and Harmon, 2011). School closures can also 
reduce the hours that health care workers are able to supply: Bayham and Fenichel 
(2020) found a 15% decline in labour supply due to school closures in the US, which 
reduces the quality of treatment outcomes for COVID-19 patients. Another impact of 
school closures is rising inequality amongst parents and children. Women have seen 
greater wage losses than men (Alon et al., 2020). Even before the long-term school 
closures of the pandemic, children from lower income families show declines in math 
test scores over summer holidays (Cooper et al., 2000).  

• Impacts on non-COVID-19 medical outcomes (e.g. delay in cancer screening) of the re-
allocation of health care resources: cost-of-illness or Willingness To Pay-based 
approaches can be used to value increases in morbidity or mortality for non- COVID-
19  diseases which are attributable to the diverting of health care resources to COVID-
19 care. 



 
Challenge 1c: Determining the Economic Value of Lives Saved 
The valuation of lives (or life years or quality adjusted life years) is the key driver of any 
pandemic benefit calculation (see for example Robinson, Sullivan and Shogren, 2020, Evans 
and Taylor 2020 and Hall, Jones, and Klenow, 2020). There a variety of ways in which 
economists impute a £ or $ value to a life saved. The most common in many policy contexts 
(e.g., pollution interventions) involves determining how people trade-off higher wages for 
riskier jobs, or by asking people questions like ‘how much would you pay for an environmental 
intervention that reduce your chances of dying from air pollution by 3 in 100000 to 2 in 
100000?’. Suppose the average answer were $30, then in a population of 100,000 where 1 
life is saved through then intervention, the value that is placed on this one statistical life (what 
economists call the Value of a Statistical Life, or VSL) is $3m (i.e., 100000x$30). This is the 
baseline figure recommended by the OECD in more usual policy evaluations where lives are 
affected (e.g., air pollution reductions). Some estimate for the VSL must be used if different 
interventions with different profiles of costs and benefits are to be compared.  
 
The problem, however, with the use of VSL calculations for a pandemic is that the standard 
questions used to elicit values are too focused on the individual’s own chances of death. Yet 
people care about how an intervention also affects the chances of other people dying. For 
example, an individual may not only care about how a lockdown affects their own chances of 
dying from COVID-19, but also that the lockdown influences their chances of transmitting the 
virus to an elderly relative.  This is unlike an air pollution intervention, because pollution-
based respiratory diseases are not infectious in the way that COVID-19 is.  Of course, a selfish 
person will not be concerned about this difference, but anyone who cares about others will 
be; and the elicitation question should allow for this possibility (Gersovitz, 2011; Geoffard and 
Philipson, 1996). When it does, estimates of the VSL appear to be much higher (see 
Hargreaves Heap et al., 2020). 
 
One might argue there are other reasons why contemporaneous elicitations of VSL may lead 
to extraordinarily high values and should perhaps be downplayed or even ignored by policy 
makers. For example, it is well known that people are more likely to take out earthquake 
insurance after a major earthquake has been in the news, and it is difficult to see why this 
temporary psychological sensitivity to recent events should guide policy making, especially 
when policies have long run effects. However, even some part of the high COVID-19 VSLs 
cannot easily be ignored for this reason. This is because there is evidence that people are 
more likely to comply with policies that they agree with. Naturally, a positive net benefit may 
not be the only way that people come to agree with a lockdown policy, but in so far, for 
example, as a high VSL counts against an early relaxation of a lockdown, then it is possible 
that when the effects of such a relaxation are modelled the modellers will have to take 
account of the way any diminished agreement with the relaxation will impair compliance. 
Suddenly, a high COVID-19 VSL not only complicates CBA, it also complicates modelling of 
disease control. The modelling and the evaluation of a policy can no longer be treated as 
separate exercises. 
 
 
Challenge 1d: Valuing the Indirect Benefits from Interventions 



Focus health lockdown benefits comprise deaths avoided, lower incidence of non-lethal 
health impacts like ‘long-COVID’, and the reduction in anxiety that comes from reducing the 
threats of COVID-19 to those who are not yet infected.  With a new virus like COVID-19, the 
modelling of lives saved and occurrence of non-lethal health outcomes involves obvious 
challenges because data are emerging as policy is being enacted. For example, it only became 
apparent in the course of the pandemic that the incidence of death was concentrated among 
the old and those with co-morbidities, so that the years of life lost were smaller than would 
have been the case had the incidence of death been uniformly distributed across the 
population (Hanlon et al. 2020)  
 
However, ancillary benefits from lockdowns such as reductions in urban air pollution and 
noise, reduced vehicle collisions, and reductions in influenza are also potentially important. 
These can be valued using a range of non-market valuation approaches (Hanley and Barbier, 
2009). There is now a great deal of research on what these Willingness to Pay values look like 
for many different measures of air pollution, for instance, using techniques such as contingent 
valuation and hedonic pricing; whilst the Subjective Well-Being approach can also be used to 
value changes in air pollution (Dolan and Laffan, 2016). 
 
 
Challenge 2: Interactions Between Health Risks and Economic Behaviour 

 
Health risks impact behaviour; behaviour affects health risks. Understanding these impacts 
and feedback loops between health and economic systems is critical for better predictions 
about the likely health and economic risks posed by a pandemic like COVID-19. Furthermore, 
understanding these feedbacks is important for understanding the likelihood that a given 
intervention will alter the course of the epidemic in a particular manner. Integrating insights 
from epidemiology and economics into one coherent framework provides a way to 
understand these feedbacks between the two systems.  
 
There is ample empirical evidence that people respond to infectious pathogen risk by 
changing their behaviours (Bayham et al., 2015; Fenichel et al., 2013; Malik et al., 2020; Villas-
Boas et al., 2020; Yan et al., 2021).  This has led to  numerous calls and some efforts to create 
behavioural epidemic models (Funk et al., 2015; Funk et al., 2010; Kremer, 1996; Manfredi 
and D'Onofrio, 2013; Perrings et al., 2014). Most attention has focused on the transmission 
function or the propensity to vaccinate (Francis, 1997; Chen and Toxvaerd, 2014; Ward, 2014). 
Fenichel et al. (2011) argue in favour of embedding a model of utility maximization based on 
adaptive expectations, in which a representative individual maximizes the private net present 
value of utility flows from contacting others to provide a description of behavioural adaption. 
The key parameter is the elasticity of behavioural response to prevalence (Philipson 2000; 
Fenichel 2013).   

 
To illustrate this we briefly discuss how the transmission term in an epidemiology model can 
be altered to include behaviour directly into the modelling framework.  The transmission term 
in a standard epidemiology model takes the following form 𝐶(⋅)𝛽(⋅)𝑆𝐼/𝑁, where the number 
of contacts is independent of population size (N), as is typically the case for human infectious 
diseases (frequency-dependent transmission), 𝐶(⋅) is the rate that susceptibles contact other 
individuals, and 𝐶(⋅)𝐼/𝑁 is the rate susceptible individuals contact infectious individuals, and 



𝛽(⋅) represents the likelihood that contact with an infectious individual results in 
transmission. Traditional, analysts have treated 𝛽 as fixed and driven by host-pathogen 
biology. However, it is increasingly clear that 𝛽 must also capture “the quality” of the contact, 
which can be modulated by choices such as physical distancing and mask wearing, (Jarvis et 
al. 2020; Stutt et al. 2020). Moreover, 𝛽 could also change over time as the pathogen evolves, 
e.g., as new variants emerge. In Fenichel et al. (2011) the contact function 𝐶(⋅) is a function 
of the choices of susceptible, infectious, and recovered individuals.4 These choices are 
modelled based on behavioural economic theory so that they adapt to the state of the world 
leading 𝐶	(⋅) to be time varying. Each class or compartment of like individuals solves a class-
specific expected utility maximization problem, where location, mixing choices and health 
outcomes matter to the decision maker, but the decision maker does not have lexicographic 
preferences for health. The representative agents solve their respective problems, use the 
first period solution, and iterate forward (the adaptive expectations assumption). Fenichel 
(2013) used this approach to consider the optimal sequence of contacts for each group that 
minimizes social welfare losses from an epidemic. Other algorithms and expectations models 
are possible (Acemoglu et al., 2020; Fenichel, 2013; Fenichel and Wang, 2013). Recent 
extensions have mapped contacts into economic transactions or consumption and avoiding 
welfare lose from expected infection (e.g., Acemoglu et al., 2020). Others, using similar 
economic-epidemiology principles, have moved from traditional mean-field analyses to 
network-based analyses (Akbarpour et al. 2020).  
 
Incorporating behaviour directly into models is important to understand the potential 
unintended consequences of an intervention. For example, Bayham and Fenichel (2020) show 
that while school closures could reduce contacts and cases, they can potentially increase 
disease-induced mortality per infection by reducing the health care labour force due to 
childcare responsibilities of healthcare workers in the absence of schools. Aadland et al. 
(2013) demonstrate the difficulty in managing the spread of an infectious disease in the face 
of heterogeneous populations. While low activity individuals react to the risk of infection and 
attenuate the oscillations of a disease through the population, high activity individuals react 
to the risk in the opposite direction and exacerbate the oscillations. Further unintended 
consequences are found in Aadland et al. (2020) who make the point that when merging 
epidemiological details into economic modelling, nonconvexities are introduced into human 
decision rules. Policies that lower the transmission probability (e.g., preventative therapies) 
or policies that raise quality-of- life following infection (e.g., curative therapies) may push 
endemic equilibria from being stable to exhibiting instability or indeterminacy, which can 
contribute to the volatility and unpredictability of the system. Toxvaerd (2019) considers the 
possibility that policies backfire due to behavioural disinhibition. In particular, the 
introduction of pre-exposure prophylaxis, which reduces the probability of disease 
transmission for each unprotected contact between infected and at-risk individuals, may 
increase overall contacts in the population and thereby increasing aggregate disease 
transmission and make everyone worse off. 

 
4 If 𝐶 = 1, we have shown frequency dependent transmission; if 𝐶 = 𝑁, we have shown density dependent 
transmission; there are many variations in between since 𝐶 is a function of all individuals in society including 
mixing patterns (see McCallum et al. 2001 for further generalized forms of 𝐶(⋅)). There has been substantial 
work expanding health states as vectors of observable characteristics (e.g., age, gender, income, household 
size). There has been considerable work using various data sources, e.g., surveys, administrative data, and 
smart device data to measure and parameterized behavioral responses.  



 
 
We now examine six key challenges to this “bio-economic” modelling of interventions.   

 
Challenge 2a: Utility Functions 
First, utility functions, constraints, and expectations models must be specified in a way that 
avoids the time varying problem that leads to Lucas critique. This is important for making 
projections under novel conditions. As a first step this means that expected utility must be a 
function of the probability of future health states. The approach above is strictly selfish-
utilitarian, in which the representative individual only has preferences over his or her own 
contacts and health, but it is possible to specify functions with a degree of preferences over 
the state of the system or over the health of others (Fehr and Schmidt, 1999).    

 
Challenge 2b: Constraints 
Second, constraints that influence behaviour also need to be a function of future health 
outcomes, economic states, and constraints such as income, policies and associated penalties 
for violating regulations. For example, the contact choice may be a function of income and 
savings, employment opportunities, and child care demands (Bayham et al., 2021). 
Furthermore, social distancing policy that is not enforceable creates different behavioural 
responses than policies that have strong enforcement mechanisms (Becker, 1968). 

 
Challenge 2c: Modelling the Formation of Expectations 
Fenichel and Wang (2013) discuss three approaches to modelling people’s expectations: 
adaptive expectations, which assume the world will stay as it is but update continuously, 
scientific expectations, which are an extension of adaptive expectations that use a forecasting 
model to predict future states but update continuously as new information arrives, and 
rational expectations that result from solving the dynamic equilibrium. Yet, COVID-19 has 
illustrated the role of information provision is critical in this process, implying that explicit 
information processing models may be important to develop appropriate behavioural 
epidemiological models. Expectation models can lead to caution or fatalism, so understanding 
how people form expectations is critical (Kremer 1996).  
 
Challenge 2d: Behavioural departures from rationality 
COVID-19 poses risks to private health. These risks are defined by the combination of (a) the 
probability a person becomes infected/ill, and (b) the severity of the illness if realized. Like 
nuclear power and environmental accidents, these pandemic health risks fall into the classic 
category of a low-probability/high-consequence event, e.g., small chance of a big problem 
(death).  If people reacted rationally to these low probability/high consequence risks, their 
decisions would account for the expected damages associated with different actions. They 
would invest resources either to reduce the odds they will get ill or to reducing the severity if 
they become ill, or both. But herein lies the challenge—experience tells people little about 
how to react to these low-probability, high-consequence risks. People who have low odds of 
confronting a catastrophe seek information to help them judge the likelihood that a bad event 
will actually occur (see, e.g., Viscusi, 1998; Shogren and Taylor, 2008). This information can 
be vague or ambiguous. Behavioural studies reveal that under these circumstances, people 
do not react rationally to the expected damages; rather they tend to have a bimodal 
response—either ignore these risks completely or overestimate the chance they might suffer 



from such a risk. Both reactions could render policy ineffective if it was designed presuming 
that citizens would respond rationally to health risks.  Policymakers must presume people will 
react to the risk, but they could benefit from more guidance on the nature of the distribution 
of the likely reactions of their citizens—they need information on how many would do nothing 
relative to those who would over-invest in protection. Incorporating this information on how 
people react to risk into the epi-econ models is a challenge that if mastered would help better 
define their predictions.   
 

 
Challenge 2e: Time-Invariant Parameters 
Estimating the time-invariant parameters associated with utility functions, expectation 
functions, and constraints is a non-trivial challenge. This is made more difficult because 
parameters that could have been taken as non-time varying outside an epidemic such as the 
prices of personal protective equipment, the probability of becoming unemployed, or mean 
household size, may shift as a result of interventions and/or the progress of the outbreak. For 
some policy questions, behavioural epidemic models may need to consider these general 
equilibrium effects. 
 
Challenge 2f: Heterogeneity 
The epidemiology community has rightfully identified heterogeneity in personal traits, e.g., 
age and gender, as a key challenge in modelling behaviour (see Funk et al. (2015)). In a 
simulation context it is relatively straightforward and common to extend the compartment 
structure to other classes, including age and gender. Bayham et al. (2021) argue that 
household size and income are also important classes. Household size is especially important 
when considering policies that encourage individuals to stay home (Bayham and Fenichel, 
2016), but likely also matter for consideration of the role of economic and housing support 
during a pandemic. As compartments expand, the model starts to look more like an agent-
based model or network model, and assigning parameter values associated with each 
compartment becomes more and more challenging.  Some progress in integrating economics 
and epidemiology is being made on this front (Akbarpour et al. 2020). An alternative that 
balances the elegance of the compartmental model approach and agent-based modelling 
approach is the distributed or micro-parameters model (Hochman and Zilberman, 1978). 
Rather than using a mean-field approach, the micro-parameters approach integrates over a 
distribution continuously. Veliov (2005) applied this approach to infectious disease models. 
The challenge is that equations of motions are required for the sufficient moments of the 
distributions (e.g., mean and variance). Furthermore, if behaviour is assortative by type, then 
mixtures may become intractable.  An insight from distributed parameters models is that the 
average behaviour, average wellbeing, and average physical impacts are unlikely to accrue to 
the same “average” individual (Fenichel and Abbott, 2014). Beyond the challenge of building 
and parameterizing such models, there is the challenge of determining the aggregation rules 
with which to undertake policy evaluation.  
 
 
 
Challenge 3: The Prevention Paradox – Investment in Pandemic Prevention  
 



The prevention paradox captures the idea that how people respond to health risks cuts in two 
ways.  A person or policy maker confronting a health risk must address both (i) the risk posed 
by COVID-19 and (ii) the risk associated with the methods they use to reduce this risk. 
Intuitively, one might expect a risk averse person to choose prevention of the health impact 
rather than control of the realized health impact. But that is not always the case.  Prevention 
is technologically a riskier input relative to control. To a more risk averse manager, a pound 
spent on control is worth more than a pound spent on prevention because the expected 
marginal effectiveness of control exceeds that of prevention. Uncertainty in the application 
of control is lower since it addresses existing health impacts. More uncertainty exists for 
prevention because it only reduces the chance of getting sick, if it is realized at all; prevention 
does not eliminate the risk. Since prevention and control act as substitute risk reduction 
technologies, a risk averse person has incentive to choose the safer bet—control.  This is the 
paradox—one would think risk averse people would choose prevention, but they have more 
incentive to choose control since it is the less risky technology (Finnoff et al., 2007).  This 
paradox suggests that to protect human health as reflected by the probability of illness and 
death from infection by COVID-19, people should not be overly cautious—they must be 
willing to take a risk with prevention.  
 
Societal lack of a willingness to take a risk with prevention for crises such as COVID-19 has 
revealed a critical weakness in the global battle against the threat of pandemics – the lack of 
a well-funded, long-term strategy to pre-empt or quickly adapt to and control their 
emergence.  Public management of the risk of a pandemic is hampered by insufficient 
capacity to deal with rare yet devastating events, and the global commons nature of the 
problem, requiring global, national and local coordination of strategies and responses.  
 
While the importance of investments in vaccines and treatments (therapeutics) are well 
known, arguments for investments to increase the ability of public health managers to 
anticipate, detect, prevent, contain, mitigate and control a future disease outbreak so that it 
does not become epidemic or pandemic have not been as successful. Pike et al. (2014), Berry 
et al. (2015), and Berry et al. (2018) argue for the importance of investing in the near term to 
reduce the long-term risk of pandemics. Pike et al. (2014) noted the importance of investing 
in pandemic prevention sooner rather than later, and demonstrated the cost savings 
attainable by adopting a One Health policy focused on primary prevention of disease 
outbreaks in regions of the world in which they are more likely to emerge. Berry et al. (2015, 
2018) consider the need to build capacity that can help contain, pre-emptively protect, 
mitigate, control and insure society against the risk of future pandemics. This reflects the two 
components of economic risk in this context: the probability of an outbreak and the economic 
consequences of an outbreak, including loss of life. The structure of the investment in this 
work is key, requiring both the development of a standing stock of appropriate assets and a 
flow of investment to keep these adaptable and operational. However, the specific 
investments required are left in general terms, and the approach is restricted to a national 
level, neglecting the global nature of the problem.  
 
Recently, Dobson et al. (2020) demonstrate the significant cost savings that can be achieved 
from improved efforts to prevent zoonotic disease spillovers with primary prevention. 
However, this kind of primary prevention requires global cooperation and globally sourced 



funding, features subject to the global commons problem such as seen with the failure to 
agree adequate international policies in response to risks of climate change. 
  
Conclusions 
  
This paper has set out three ways in which economics helps society think about how best to 
respond to pandemics, both in the present and potential future ones. The paper has also 
made clear the many challenges in applying these approaches.  
 
The first is an evaluative or normative contribution and comes from the use of cost-benefit 
analysis (CBA). Interventions to manage pandemics create wide-ranging impacts on society, 
and cost-benefit analysis allows us to weigh up the benefits and costs to society of different 
actions, relative to some baseline. These benefits and costs stretch much wider than more 
obvious impacts on economic activity as measured by GDP to include, for example, impacts 
on environmental quality and crime; and mean that we consider what best to do by thinking 
about more than just the impacts of interventions on prevalence. However, a big question is 
how to draw the boundaries around such a CBA. These boundaries extend across time (how 
far into the future are benefits and costs added up when we appraise different prevention 
strategies?), across people (how wide a set of impacts should be included?) and across space 
(if Germany imposes a lockdown, do we also count impacts in France within the analysis?). 
Stretching these boundaries allows us to recognise some of the less obvious impacts of 
interventions, such as the effects of school closures on childrens’ well-being, and on labour 
supply to the health service by parents, but also poses greater challenges of understanding 
and quantification for the analyst.  
 
The second is a positive contribution and comes from integrating the models of health and 
economic outcomes to understand better how interventions influence disease dynamics. The 
key to this is a model of individual behaviour within both an economic and health context. 
Pandemics impose both economic and health consequences, and how people respond to 
these risks will affect transmission of the disease.  A model of rational choice or utility 
maximisation is a natural choice for this purpose; but people do not always respond to risk in 
the way which is consistent with this standard model. Behavioural science shows that non-
standard preferences, beliefs and behaviours all matter when trying to understand the 
feedbacks between the systems characterised by uncertain benefits and costs. 
 
Thirdly, we set out some of the important paradoxes that would seem to hamper the 
development of appropriate preventative strategies, given the likelihood of future pandemics 
occurring.  
 
Last, while we have presented the issues of policy evaluation and the integration of behaviour 
into disease modelling as separate challenges, the two are closely related. A complete cost 
benefit analysis requires an understanding and incorporation of individual behaviour. To see 
this, recall that the cost-benefit analysis calls on the analyst to weigh up the benefits and costs 
to society of different actions, relative to some baseline. However, the relevant baseline to 
evaluate interventions to manage the disease is itself dependent on individuals’ voluntary 
behaviour to self-protect; and this in turn may depend on people’s evaluation of the 
intervention. In a fully-fledged behavioural epidemic analysis, the reasonable worst-case 



scenario against which different policy measures are measured cannot be a “non-
behavioural” benchmark scenario in which people do not respond to increasing risks by 
changing their behaviour. For such a comparison will be unreasonably pessimistic about what 
can be expected, and could lead to fatalism in individual models of expectations, and lead to 
the need for and effects of policy interventions being overstated. But by the same token, by 
not adequately taking into account the role of voluntary behaviour to self-protect, such as 
has been the case with social distancing during the COVID-19 pandemic, policy will wrongly 
be viewed as having caused more economic damage than it does. A fully-fledged economic 
epidemiological cost benefit analysis will disentangle how much of the costs of policy 
interventions are due to voluntary behavioural changes, and how much to mandated 
restrictions. 
 
We end by alluding to an implication of the argument of this paper that economics and 
science need to be brought together for an improved understanding of pandemics. For 
example, in the UK while science has played an integral part of the evidence considered when 
developing policy (Brooks-pollock et al. 2021), there has been a distinct lack of representation 
from the economics research community in the various advisory bodies5. As a result, the 
evidence presented to government has focused solely on the likely impact of control policies, 
e.g. closure on schools, contact tracing, on limited health outcomes, e.g. numbers of cases, 
hospital admissions and deaths. However, as we have argued throughout this paper, 
pandemics don’t just make people sick, and in order to identify strategies to manage future 
pandemics, it is vital that evidence presented to policy makers takes into account these 
complex interactions between different systems. Therefore, a key challenge is building strong 
relationships between the economics, behavioural science and epidemiology modelling 
communities to ensure better representation on government advisory panels for future 
pandemics. 
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