1 Challenges for modelling interventions for future pandemics

2			
3	Miriam E. Kretzschmar ¹ . Ben Ashby ² . Elizabeth Fearon ^{3,4} . Christopher E. Overton ^{5,6,7} . Jasmina		
4	Panovska-Griffiths ^{8,9} Lorenzo Pellis ^{5,6,10} Matthew Quaife ¹¹ Ganna Bozhnova ^{1,12} Francesca		
5	Scarabol ^{5,6,13} Holona B Stago ^{5,6,14,15} Bon Swallow ^{16,17} Bohin N. Thompson ^{6,18,19} Michael L		
5	Scalabels, $\beta = 10^{-10}$, β		
6	Tildesley ^{6,18,19} , Daniel Villela ²⁰		
7			
8			
9			
10	1. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University,		
11	Utrecht, The Netherlands		
12	2. Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK		
13	3. Department of Global Health, London School of Hygiene and Tropical Medicine, London, UK		
14	4. Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine. LK		
16	Medicine, OK 5 Department of Mathematics, University of Manchester, UK		
17	6 Joint LINIversities Pandemic and Enidemiological Research LIK		
18	7. Clinical Data Science Unit. Manchester University NHS Foundation Trust. UK		
19	8. The Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK		
20	9. The Queen's College, University of Oxford, Oxford, UK		
21	10. The Alan Turing Institute, London, UK		
22	11. TB Modelling Group, Faculty of Epidemiology and Population Health, London School of Hygiene and		
23	Tropical Medicine		
24	12. BiolSI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon,		
25	Portugal		
20	 CDLab - Computational Dynamics Laboratory, Department of Mathematics, Computer Science and Physics, University of University of University of University of Mathematics, Computer Science and Physics, 		
27	University of Udine, Italy		
20 29	14. University of Polsualli, Germany 15. Humboldt University of Berlin, Germany		
$\frac{2}{30}$	16 School of Mathematics and Statistics University of Glasgow, Glasgow, UK		
31	17. Scottish Covid-19 Response Consortium, UK, www.gla.ac.uk/scrc		
32	18. Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK		
33	19. Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of		
34	Warwick, Coventry CV4 7AL, UK		
35	20. Program of Scientific Computing, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil		
36			
37			
38			
39			
40			
41			
41			
42	Corresponding author:		
43	Mirjam Kretzschmar		
44	Julius Center for Health Sciences and Primary Care		
45	University Medical Center Utrecht		
46			
17			
+/			
48	3584CX Utrecht		
49	The Netherlands		
50	Email: m.e.e.kretzschmar@umcutrecht.nl		
51			
	1		

52 Abstract

53 Mathematical modelling and statistical inference provide a framework to evaluate different non-54 pharmaceutical and pharmaceutical interventions for the control of epidemics that has been 55 widely used during the COVID-19 pandemic. In this paper, lessons learned from this and previous 56 epidemics are used to highlight the challenges for future pandemic control. We consider the 57 availability and use of data, as well as the need for correct parameterisation and calibration for 58 different model frameworks. We discuss challenges that arise in describing and distinguishing 59 between different interventions, within different modelling structures, and allowing both within 60 and between host dynamics. We also highlight challenges in modelling the health economic and 61 political aspects of interventions. Given the diversity of these challenges, a broad variety of 62 interdisciplinary expertise is needed to address them, combining mathematical knowledge with 63 biological and social insights, and including health economics and communication skills. 64 Addressing these challenges for the future requires strong cross-disciplinary collaborations 65 together with close communication between scientists and policy makers.

68 **1 Introduction**

In the first two decades of the 21st century, we have witnessed several outbreaks of infectious diseases that expanded across several continents (SARS, Zika, MERS), caused a large number of deaths (Ebola), or grew out to a pandemic (influenza 2009, SARS-CoV-2). By far the largest impact on humanity can be attributed to the ongoing SARS-CoV-2 pandemic, that has affected almost all countries in the world in ways unimaginable before the year 2020. All these outbreaks required significant efforts in mitigation and control measures, since they caused millions of deaths worldwide and had enormous economic and social impacts.

76

77 From the start of the SARS-CoV-2 pandemic, mathematical modelling has played a key role in supporting 78 policy makers in their decisions about control measures. Politicians and society alike have looked to 79 modellers to provide them with predictions about the future course of the pandemic, with assessments 80 of which interventions should work and with guidance for how to interpret the developing numbers of 81 cases, hospitalizations, and deaths [McBryde et al 2020]. This puts a large responsibility to those who 82 develop mathematical models and analyse intervention strategies. Fortunately, there is a well-83 established toolbox for infectious disease modelling, based on the pioneering work of Kermack and 84 McKendrick and many following generations of mathematical modellers [Diekmann et al 2012]. The 85 theory of infectious disease dynamics described in terms of differential equations is grounded in 86 dynamical systems theory, and has led to the development of key concepts such as the basic 87 reproduction number. Nevertheless, there remain challenges for modelling of infectious diseases and 88 interventions, many of which became clearly visible during the unfolding pandemic of SARS-CoV-2 89 [Thompson et al 2020] and are discussed in detail in Marion et al (Ch 06).

90

91 Modelling can be useful in assessing impact of interventions, with three modelling approaches widely 92 used: compartmental models (deterministic or stochastic), network models (either static or dynamic), 93 and individual (or agent) based micro-simulation models, in which individual agents and their 94 interactions are simulated as a stochastic process. These approaches differ in the amount of information 95 about individuals and their contacts that is included ranging from very explicit in individual based 96 models to aggregated in compartmental models. In network models details of the contact structure is 97 taken into account, while individuals still may be alike with respect to other features. While individual 98 based models seem to be most realistic, they require information on many more parameters and are 99 mostly not amenable to mathematical analysis. Compartmental models on the other hand are more 100 readily parameterized, but may lack the level of detail needed to answer policy related questions. 101 Another important issue, that is especially relevant for assessing non-pharmaceutical interventions (NPI)

102 relying on changes of contact networks and their transmissibility, is that all approaches have major 103 drawbacks in addressing structural aspects on a level between the individual and population levels. We 104 need to understand better the mesoscopic level, if we really want to assess the impact of interventions 105 such as social distancing, closing of schools and workplaces, contact tracing, and travel restrictions on 106 epidemic spread. While it is possible to describe the contact network in all details in an individual based 107 model, it is time consuming to perform extensive model analysis including sensitivity analyses. For 108 network models, some theoretical results are available, but mostly for networks with structure that 109 does not properly reflect real contact patterns. Finally, with compartmental models it is hard to take 110 correlations between connected individuals into account without generating an exploding number of 111 equations.

112113

reflect sufficient details of the system, but simple enough not to get lost in the jungle of details.
Ideally, we need tools to describe exactly the structures of interest in a generic way, i.e., such that one
can draw conclusions that are valid for a large range of parameter values and situations.
In application of modelling interventions for policy support, the main challenge is the need to clearly

Thus, the overriding challenge as with all modelling is to find models that are complex enough to

119 define objectives and aims of modelling in interaction with policy makers, who typically consult 120 mathematical modellers to determine any intervention strategies that may need to be introduced in 121 order to minimise the impact of an ongoing epidemic [Grimm et al 2020]. In such circumstances, it is 122 vital that policy makers define what they consider the main aims of interventions, or more technically, 123 the *objective function* that they are looking to minimise [e.g. Gösgens et al 2021]. For human 124 pathogens, the objective may be simply to minimise the number of individuals getting sick or dying from 125 infection, whilst for livestock or plant crop diseases, it may be important to minimise the direct cost of 126 an outbreak to the agricultural industry. The aim of an intervention, which may also change over time, 127 can often critically affect which control policy is deemed optimal.

128

In this paper, we reflect on what the above challenges mean for various aspects of mathematical modelling of interventions, e.g., for data collection and availability, for biological parameters that affect intervention effectiveness, for the social structure leading that may be targeted by interventions, and for the economic impact of intervention measures (Figure 1). We build on progress since publication of an earlier series of challenges paper [Lloyd-Smith et al 2015], and delineate challenges that remain or have emerged since. One of the main challenges that was addressed by Funk et al [2015], namely incorporating behaviour into mathematical models, had proven to be crucial during the SARS-CoV2

- 136 pandemic, but also challenges around vaccination [Metcalf et al 2015] and around emergence of
- 137 pathogens [Gog et al 2015] are highly relevant. We hope to give inspiration to future generations of
- 138 mathematical modellers who might be faced with dealing with a future pandemic and are struggling to
- 139 give good advice to policy makers on which interventions may be effective in a given situation.
- 140
- 141

- 143 **Figure 1:** Relationships between interventions and methodological aspects.
- 144

142

145

2 Data challenges relating to interventions in a future epidemic

Biological characteristics and transmission routes strongly determine which interventions could be effective, and on which time scale interventions should be rolled out. Usually, data are scarce at the onset of the epidemic, but for various types of data the challenges remain in the later stages. Here we focus on data challenges related to modelling interventions, though other data challenges can emerge during an epidemic [cf Ch 06 and Ch 08].

153 **2.1 Biological data**

- 154 Transmission models require key biological parameters, such as the duration of infectious period, 155 infectivity of symptomatic and asymptomatic cases, and case fatality ratios. Intervention planning can 156 then explore how changes to these model parameters influence future epidemic trajectories. However, 157 not only are fundamental biological data scarce during the initial phase of an epidemic, but they are also 158 affected by biases because of their dependence on uncertain information obtained from reported cases 159 and surveillance data. Moreover, time interval distributions are sensitive to truncation and censoring 160 biases, since data are collected while the epidemic is expanding [Scalia Tomba 2010, Park et al. 2020]. In 161 later phases, identified cases still depend heavily on the adopted surveillance strategy, and parameters 162 like time interval distributions are potentially affected by the intervention measures. Designing data 163 collection studies that overcome these biases, or statistical methods that account for them, remain 164 fundamental issues for obtaining reliable parameter estimates.
- 165

166 **2.2 Surveillance data**

- 167 Surveillance data (e.g., case notifications, hospitalisations, and mortality) represent the most direct 168 monitoring tools of an ongoing epidemic. These data are used to estimate biological parameters, 169 monitor the prevalence and severity of the disease, and calibrate transmission models that evaluate the 170 impact of interventions. Regarding model calibration, special consideration should be given as to 171 whether to use case notification, hospitalisation, or mortality data, or some combination of these. All 172 empirical datasets may contain potential biases, depending on how they are assembled. Whilst case 173 notification data may be sufficiently informative for pathogens with a low proportion of asymptomatic 174 cases, such as the severe acute respiratory syndrome (SARS), they pose challenges for pathogens like 175 SARS-CoV-2, characterised by a high proportion of unreported asymptomatic or mildly symptomatic 176 cases. Testing protocols may change significantly during the epidemic, which can further disrupt fitting 177 transmission models to cases data.
- 178

Hospital data tend to be more reliable because hospital-seeking behaviour is less likely to change over time, and are therefore used ubiquitously in modelling studies [Di Domenico et al 2020, Rozhnova et al 2021, Viana et al 2021, Funk et al 2021]. However, the potential overwhelming of the healthcare system and an evolving understanding of when to seek medical attention might shift during a pandemic. Moreover, despite being routinely collected by hospitals, hospital data are rarely publicly available and, especially at the beginning of the epidemic, they are often not aggregated at a national scale. **Designing**

- 185 protocols of data collection and aggregation into publicly available datasets, together with strategic
- 186 margins of flexibility so that the protocols could be promptly adapted to the ongoing outbreak, could

- partially mitigate these biases. This would provide a framework that ensures consistency in datacollection from the beginning of the outbreak [cf Ch 08]
- 189

190 A further challenge when using surveillance data is that they are inevitably lagged relative to

191 infections, upon which interventions aim to act, due to the concatenation of incubation period and 192 test- or care-seeking behaviour. Understanding these lags is vital when designing intervention timelines 193 for two main reasons: first, to avoid severe consequences when the effect of an intervention manifests 194 itself in the surveillance data only after a consistent delay [Pellis et al 2020]; second, to facilitate their 195 later assessment. Gradual changes in policies can ensure windows of opportunity for disentangling the 196 effect of different interventions and evaluating their effectiveness.

197

198 For pathogens with high proportions of unascertained infections, models fitted only to surveillance data 199 may not be sufficient to estimate the true incidence or prevalence. Here, seroprevalence data become 200 fundamental to calibrate the models [Rozhnova et al 2021, Viana et al 2021] or, where available, 201 community infection surveys. Moreover, longitudinal seroprevalence data, and individual data on the 202 duration and extent to which prior infection confers protection against future infections, are required to 203 investigate the impact of interventions on longer timescales. However, during initial stages of an 204 epidemic these data are usually available for either relatively short observation periods, small sample 205 sizes, or selected populations. A further challenge in using seroprevalence data can be due to the 206 sensitivity of serology to identify individuals with prior infection. For example, there is growing evidence 207 that SARS-CoV-2 antibodies may be below the level of detection for persons who experienced 208 asymptomatic or mild infections [Burgess et al 2020], and that antibody levels decline over time. 209 Additionally, it is not clear to what extent a negative serological result denotes lack of immunity. 210 Tackling these challenges is vital for modelling interventions in the long term.

211

212 When designing interventions, it is important to understand transmission within different settings. 213 Genetic sequencing data can facilitate investigation of outbreaks by reconstructing potential 214 transmission trees, e.g., to discriminate within-household transmission from between-household 215 transmission [cf Ch 06 and Ch 07], or identify nosocomial transmission. Genetic sequencing is also 216 important for monitoring the emergence of novel variants, which may adversely affect intervention 217 policies, through, for example, increased transmission or vaccine escape mutations. Genetic sequencing 218 capacity is and will likely remain in the future highly heterogeneous across countries, as manifested 219 during the COVID-19 pandemic. This can skew the observation of any new variants of concern, leading 220 to delays in identifying and adapting to novel variants.

221

222 **2.3 Behavioural and adherence data**

223 Scenario simulations exploring the impact of interventions require data on people's behaviour and 224 changes thereof as a response to interventions. For sexually transmitted pathogens, the relevant 225 measure is the number of sexual partners per unit of time, but also partnership duration, concurrent 226 partnerships [Morris 1997] and mixing between population subgroups with different sexual risk 227 behaviour can be important quantities [Rozhnova et al 2016, Erens et al]. For airborne diseases, an 228 individual's behaviour is measured by the number of transmission-relevant contacts a person has per 229 day in a specific setting. The baseline age-dependent mixing patterns of contacts relevant for airborne 230 transmission are available for a few countries [Mossong et al 2008] and have been projected for other 231 countries for which social contact data are not available [Prem et al 2017, Mistry et al 2021]. There are 232 fewer contact data sources when it comes to the impacts that different interventions might have on 233 mixing. As part of the response to COVID-19, several countries have conducted contact surveys during 234 different stages of the pandemic [Backer et al 2020, Jarvis et al 2020, Zhang et al 2020], which have 235 been used successfully in modelling studies [Rozhnova et al 2021, Kucharski et al 2020]. However, in the 236 absence of setting-specific contact matrices assessed at different time points during an ongoing 237 epidemic, model simulations must involve assumptions that may influence model predictions.

238

239 Understanding adherence to regulations is vital in evaluating past and designing future interventions. 240 However, adherence data may be challenging to obtain. Partially to address this issue, the SARS-CoV-2 241 pandemic has showcased the importance of digital resources (such as contact tracing or health 242 reporting apps). These tools allow the collection of large amounts of data while minimising delays in 243 collection, and are widely accessible by many portions of society [Colizza et al 2020]. However, they 244 have also revealed a strong hesitancy by many users mainly due to data privacy concerns [Blasimme et 245 al 2020]. Where government apps may struggle with public confidence, private health apps could help 246 to fill the void. Throughout the COVID-19 pandemic, various health apps have attempted to collect data, 247 such as symptom profiles, adherence data, and public insights [Chidanbaram et al 2020].

248

Another challenge with adherence data is that high adherence might not correlate with contact reduction for some portions of society: for instance, essential workers might report high adherence to social distancing measures, while still performing most of their usual activities. Hence, surveys may be better focused on quantifying behaviour rather than adherence. Data collection apps and surveys strategically designed in collaboration between modellers, behavioural scientists, and statisticians may assume a fundamental role in planning behavioural data collection before, during, and after an 255 epidemic, to optimise the available data both for prospective planning and retrospective assessment of 256 the effect of interventions [Salathe et al 2012]. Mobile telephone data [Grantz et al 2020; Oliver et al 2020, Chang et al 2021] and mobility data [Google 2021] can also be leveraged to measure behavioural 257 258 changes and adherence, and can be incorporated into transmission models. However, while the latter 259 remain public, mobile telephone or airline data might not be accessible to all researchers. Wider 260 accessibility to local and global mobility data might become a fundamental support to models for 261 future pandemics. Even with wider accessibility, a challenge still remains here pertaining to finding 262 the acceptable level of aggregation that balances out privacy issues whilst accurately informing 263 models of mobility patterns. This is also discussed in Ch 07.

264

265 **2.4 Vaccination data**

266 Vaccinations and treatments are key interventions for managing disease outbreaks. However, these are 267 often not available at the start of a pandemic and need to be developed throughout its course (for 268 example Ebola and COVID-19). When modelling the rollout of such interventions, their effectiveness has 269 to be estimated as quickly as possible. In addition to the challenges involved in designing studies to 270 estimate vaccine efficacy in the context of an evolving pandemic [cf Ch 04a], the way the data are 271 collected and recorded also present challenges [Lipsitch 2020]. For example, vaccination data linked 272 with other health care data or age-stratified vaccination data may not be readily available, thus limiting 273 the opportunity to estimate the impact of the vaccine deployment on symptoms, transmission, risk of 274 hospitalisation and death across different age groups. Finally, the uptake of vaccination is of utmost 275 importance when assessing the impact of vaccination as increasing vaccine hesitancy has been shown to 276 hamper the success of vaccination programmes in the past. Data quantifying vaccine hesitancy would 277 be vital for modelling vaccine impact (Ch 08). Modelling the spread of vaccine hesitancy, such as 278 through social media networks, may inform what type of data needs to be collected to account for 279 vaccine hesitancy in models.

280

3 Challenges in developing a theoretical framework for understanding

282 intervention impact

283 **3.1** Epidemiological distributions and within-host dynamics

One of the most common theoretical frameworks for understanding transmission is compartmental
 modelling, in which individuals are grouped according to their infection and/or symptom status [Keeling

- and Rohani 2011]. Deterministic or stochastic compartmental models can be used to represent
- 287 epidemic dynamics, and the impacts of interventions can be assessed by making relevant adjustments
- to the model (e.g., altering the values of model parameters or including new compartments). Standard

289 compartmental models are based on the assumption that individuals remain in compartments for 290 exponentially distributed periods, while Gamma or Lognormal distributions often provide more 291 accurate fits to data. Similarly, infectivity may be variable during the infectious period, which can be 292 accounted for using age of infection models that assume continuous "infectivity curves" [Handel et al 293 2013, Diekmann et al 2021], sometimes approximated using multiple compartments of infectious 294 individuals [Cunniffe et al 2012, Hart el al 2020]. Although these elements of a framework for describing 295 epidemics based on realistic biological distributions exist, and relationships between distributions of 296 epidemiological time periods and key epidemiological parameters (e.g., reproduction numbers and 297 epidemic growth rates) are well known, the challenge remains to integrate these components into 298 flexible and readily available epidemiological modelling tools that can be adapted for specific 299 epidemics.

300

301 Similar arguments hold for the task of incorporating waning immunity or partial immunity in 302 compartmental models [Heffernan and Keeling 2009]. Boosting and waning of immunity is often 303 included by distinguishing various levels of immunity and transitions between these levels. An 304 alternative approach is to model waning immunity as an exponential decay process with boosting 305 events as jumps in the immunity level [Diekmann et al 2018]. Combining within-host modelling of the 306 immune system with between-host modelling of transmission dynamics to assess impact of 307 interventions is an area for further research. A related challenge is to develop a framework to allow 308 interpretation of serological data collected in populations to assess the impacts of interventions 309 [Teunis et al 2012, Hens et al 2012].

310

311 **3.2** Time scales and geographical scales

312 Another challenge is to design interventions in which the scale of interventions is matched with the 313 scale of transmission, both geographically and temporally. Assessments of interventions sometimes rely 314 on simple models that do not account explicitly for the geographical or spatial scale of transmission. For 315 example, the level of vaccination required to achieve herd immunity is often stated, but standard 316 approximations assume that the population is well-mixed. The time-dependent reproduction numbers 317 can be tracked to assess the effectiveness of interventions and the level of interventions required to 318 bring an epidemic under control [Wallinga and Teunis 2004, Cori et al 2013, Thompson et al 2019], but 319 are delayed by generation time intervals.

320

While the effects of some interventions may not depend on the spatial scale of transmission - for
 example, population-wide strategies such as nationwide social distancing measures - the effectiveness

of many localised measures that seek to bring a newly invading pathogen under control depends critically on the relationship between the geographical and temporal scale of transmission and the equivalent geographical and temporal scale of the interventions. The importance of matching the spatial scale of interventions to the spatial scale of transmission has been demonstrated clearly using epidemiological models of foot and mouth disease epidemics, for which the scales over which to implement culling [Keeling et al 2001, Ferguson et al 2001, Tildesley et al 2010] and reactive vaccination strategies [Tildesley et al 2006] have been considered.

330

331 For epidemics in human populations, the choice of interventions to introduce involves balancing the 332 benefits in terms of disease reduction against the costs (see Introduction), including economic costs and 333 health harms due to intense measures [Xue et al 2012, Sandmann et al 2021]. As a result, localised 334 interventions such as the introduction of tiers [Davies et al 2021; Viana 2021] have the potential to lead 335 to successful disease control without entire populations being placed under severe restrictions. When 336 considering the optimal spatial extent of tiers, the spatial scale of transmission of the pathogen should 337 be considered, accounting for the movement of individuals between tiers. Of particular importance is 338 the insight that introducing restrictions along local authority borders may not provide the optimal 339 balance between benefits and costs [Thompson et al 2016].

340

341 Similarly, the introduction of interventions, as well as the duration over which interventions must be 342 maintained, depends on the timescale of transmission. This in turn depends on the duration of 343 epidemiological periods (see above), and human behaviour plays a key role. When a pathogen first 344 invades a new location, a timely response is critical to reduce the risk that initial cases of disease spark a 345 large epidemic [Thompson et al 2020b]. If interventions are instead introduced after several generations 346 of infection have occurred, then containment may be impossible. At the opposite end of an epidemic, it 347 is only possible to declare an epidemic over with confidence once a sufficient interval has passed since 348 the "final case" [Nishiura et al 2016]. As an example, Ebola epidemics are declared over by the World 349 Health Organization and interventions are relaxed once a period of 42 days has passed without any new 350 probable or confirmed case, which is twice the length of an approximate maximal incubation period 351 [World Health Organization, 2020] and should ensure a low probability that active cases are still 352 present. As a result, matching both the spatial and temporal scales of interventions to the analogous 353 epidemiological scales is a critical aspect of many disease control strategies [Gilligan et al 2007, Filipe et 354 al 2012, Cunniffe et al 2015].

355

356 3.3 Multiple strains and evolution

357 Interventions affect pathogen evolution in two key ways: by changing (typically increasing) the selection 358 pressure on the pathogen, and by altering (typically decreasing) mutation supply. When there is a 359 plentiful supply of susceptible hosts, the selection pressure is relatively weak, and when there is a 360 limited supply the selection pressure is relatively strong. Mutation supply is generally proportional to 361 the number of infections. Interventions such as social distancing and vaccination can therefore increase 362 the selection pressure for new variants, while simultaneously reducing mutation supply. Since the rate 363 of pathogen adaptation depends on the balance between mutation supply and selection pressure, 364 interventions may decrease cases in the short-term while increasing the likelihood that new variants will 365 emerge. An important challenge involves analysing evidence for evolutionary changes during epidemics 366 [Day et al 2020] and quantifying the net risk of emergence of novel pathogen variants under 367 interventions given these trade-offs [Cobey et al 2021].

368

369 Modelling of interventions typically focuses on epidemiological impacts on infections and mortality, 370 without considering potential evolutionary consequences. This may lead to strategies, where short-term 371 reductions in infections or mortality may come at the cost of higher infections or mortality over the 372 longer-term due to pathogen evolution. For example, from a short-term perspective it may be desirable 373 to prioritise vaccinations for those who are most vulnerable to disease, but this may increase the 374 likelihood of a vaccine-escape variant significantly [Saad-Roy 2021]. This may be the case if vaccines do 375 not block transmission entirely and if vulnerable hosts are not the individuals who contribute most to 376 transmission [Gog et al 2021].

377

378 Some patterns are intuitive. For example, introducing a vaccine when prevalence (and hence mutation 379 supply) is high is more likely to lead to a vaccine-escape variant emerging than when prevalence is low. 380 However, the extent to which one must use NPIs to reduce cases while rolling out vaccinations to 381 achieve substantial reductions in the risk of vaccine escape, or the order in which to vaccinate groups, 382 requires more detailed modelling. Over the longer-term, if a pandemic pathogen transitions to an 383 endemic state, then immune pressure from the host population may lead to diversification into a 384 number of coexisting variants [Buckee et al 2011], or successive variants emerging over time [Gupta et 385 al 1998]. Modelling the transition to endemicity may therefore require a multi-strain framework. 386

Multi-strain frameworks can help to quantify both the likelihood and timescales over which new
 variants may emerge, and hence how interventions should be designed to limit opportunities for
 pathogen adaptation. Given that newly emergent strains are by definition rare, stochasticity is likely to
 play an important role in the probability that a new variant will go extinct even if it has above average

fitness. While general theory exists to understand the effects of stochasticity on rates of adaptation, a
 key challenge is to translate modelling theories about pathogen evolution under interventions to
 policies for specific epidemics.

394

395 3.4 Interventions in different epidemic phases

396 Interventions have the potential for significant impact early in an outbreak and decision-makers may 397 not be able to wait for uncertainties to be resolved before introducing control measures. A challenge is 398 to make models that are simple and robust, so that quick decisions can be supported even if precise 399 predictions are not possible. Deciding between two candidate interventions may be possible without 400 being able to assess their exact impacts in terms of precise numbers of future cases. Of course, a policy 401 that is introduced at an early stage may not be truly optimal, so it is important to adopt adaptive 402 approaches to decision-making and fine tune any response as more information becomes available 403 [Shea et al 2014, Atkins et al 2020]. Also, characteristics of people most affected by an epidemic may 404 change as the epidemic takes its course and reaches different strata of a population.

405

406 As an epidemic progresses, and more data become available, interventions may have a more limited 407 effect since containment is then impossible. Additionally, a policy that may have seemed optimal when 408 data were scarce may no longer prove to be most effective. The ability to resolve uncertainty itself may 409 also depend upon the initial interventions that are chosen. An intense policy of suppression in the early 410 stages may appear optimal to minimise the short-term impact of an outbreak, but this may also lead to 411 a protracted period in which model parameters cannot be resolved, given the resultant small number of 412 initial cases. Meanwhile a less intense initial policy, whilst not optimal in the short term, may lead to 413 faster parameter resolution and the ability to switch to a preferred policy sooner, once uncertainty is 414 resolved. While ethical considerations such as an individual's right to treatment must be prioritised over 415 allowing a pathogen to spread without interventions, there is a need to develop approaches for 416 estimating impacts of interventions that are in place and resolving uncertainty to establish the 417 optimal long-term control policy. As described in the Introduction, identifying the optimal policy 418 requires the objective function for the ongoing epidemic to be defined clearly. 419

420 **4** Challenges in modelling pharmaceutical interventions and prevention

421 4.1 Vaccination

422 Vaccination [see also Ch 4a] is a pharmaceutical intervention of primary importance, as it allows

423 conferring protection against infection and/or disease to individuals in a safe and controlled way.

424 Mathematical models can be used to evaluate the effectiveness of vaccination and inform the design of

425 optimal vaccination strategies in terms of feasibility, costs, and disease burden [Matrajt et al 2020, 426 Bubar et al 2021]. Questions that have been particularly acute during the SARS-CoV-2 pandemic include 427 how to inform optimal vaccination policies under a dynamic and quickly evolving vaccine landscape, 428 involving: (i) uncertain or unknown efficacy of vaccine against infection and disease (e.g. reduction in 429 risk of infection, hospitalisation or death, as well as in the chance of onward transmission); (ii) delivery 430 of multiple recommended doses, raising questions on whether a broader distribution of less-protective 431 single-dose vaccination is better than delivery of multiple doses to fewer individuals and, if so, how far 432 apart from each other [Hill and Keeling 2021, Saad-Roy et al 2021]; (iii) simultaneous use of multiple 433 vaccines with different properties, which, on the one hand, might shape the evolutionary landscape, 434 and, on the other hand, opens up questions about the consequences of mixing and matching doses 435 from different vaccines; (iv) possible evolution of vaccine escapes that become dominant and 436 potentially shape other simultaneous interventions [Saad-Roy et al 2021, and Section 3.4]. 437 A fundamental modelling challenge is informing vaccine prioritisation and allocation when vaccine 438 effectiveness and contact structure are highly heterogeneous. Possible allocation strategies may differ 439 substantially in their target such as prioritisation by age or risk group [Wallinga et al 2010, Viana et al 440 2021, Bubar et al 2021], and specific strategies like ring immunisation may be considered for specific 441 diseases [Kucharski et al 2016, Kretzschmar et al 2004]. Mathematical models should ideally be able to 442 compare different allocation strategies based on the different stratification of the population. However, 443 models encapsulating all the required complexities are often too detailed to parameterise robustly, and 444 rather multiple simpler models are used that capture only a part of the desired heterogeneities.

445

446 If a certain amount of vaccine is available before the outbreak starts, the following spread can still be 447 described by an epidemic model with constant parameters, more amenable to mathematical 448 tractability. However, with new emerging pathogens, vaccines are typically developed and distributed 449 while the outbreak is ongoing, raising further challenges during the transient vaccination phase. Indeed, 450 mathematical models should capture the dynamic vaccine deployment and distribution, which is often 451 spread over a long time period, and untangle the effect stemming from vaccination compared to the 452 effect from NPIs or lockdowns [Moore et al 2021, Jentsch et al 2021, Viana et al 2021]. These challenges 453 come on top of the inevitable aforementioned uncertainty in vaccine efficacy, which might improve 454 over time, as well as the specific distribution policy and the uncertainty in underlying changes in contact 455 patterns and transmission. The issues related to vaccination are not confined to the mass-vaccination 456 campaign during the outbreak itself, but extend also in the later phase, when long-term vaccination 457 strategies must be investigated in order to face a potential endemic phase of the disease. Booster

- 458 vaccination sometime after the second dose, or indeed the need for a yearly vaccination analogous to459 the seasonal vaccination are possible options for the future.
- 460

461 **4.2 Treatment as prevention**

462 Treatment of an infectious disease firstly benefits the patient, who gets the treatment, but often also 463 impacts transmission by reducing the duration of an infection, infectiousness [Cohen et al 2011] or 464 both. Therefore, in modelling interventions, we are interested in how application of a treatment in a 465 large part of the infected population influences the epidemic dynamics. An example of major public 466 health relevance is HIV, where the strategy of "treatment as prevention" has been declared the major 467 strategy that may lead to elimination of HIV in the long run. Strategic goals like the 90-90-90 goal 468 formulated by WHO [UNAIDS 2017], which aims at 90 percent of infected persons knowing their HIV 469 status, 90 percent of those starting antiretroviral treatment, and 90 percent of those being virally 470 suppressed, is viewed as a step towards eradicating HIV globally. More recently, the WHO strategy has 471 been updated to the 95-95-95 goal, with HIV elimination as a target on the horizon. The rationale is that 472 treatment reduces the viral load to undetectable levels and with that stops further transmission. 473 Mathematical modelling has been used to assess whether this strategy is sufficient to achieve 474 elimination of HIV in the foreseeable future [Granich et al 2009; Eaton et al 2012]. Apart from treatment 475 of infected persons, also pre-exposure prophylaxis (PrEP) is used to prevent transmission to susceptible 476 persons and influences the epidemic dynamics of HIV.

477

478 For other infectious diseases for which no vaccine is available, mass treatment is sometimes an 479 intervention option. Mass drug administration has been tested as an intervention for vector-borne 480 diseases [Mutapi et al 2017], sexually transmitted diseases like gonorrhoea and chlamydia [Korenromp 481 et al 2000], and hepatitis C infection [Hill et al 2017]. However, these intervention programmes have not 482 always been very successful, some of them because of development of resistance to antibiotics and 483 antivirals, some of them because of lack of adherence to treatment regimens and difficulties in rolling 484 out treatment in large parts of a population, or because of reinfection after treatment, as in the case for 485 instance of hepatitis C infection [Lambers et al 2011].

486

487 A challenge for mathematical modelling of treatment impact is to incorporate the mechanism with 488 which treatment affects epidemic dynamics in an appropriate way into the model. How do treated 489 people differ from untreated infected persons? What is the effect of treatment in different phases of 490 the infectious period, and by how much is infectiousness lowered? Do treated persons have different 491 contact patterns than untreated persons? Furthermore, if elimination is the goal, we are confronted with the challenges of defining what we mean by elimination and how to model an infection at the
point or elimination. It is clear that stochastic models are required, that can describe extinction
properly, but which stochastic processes will govern the dynamics near extinction? When do we know
that extinction has actually taken place? This question has been addressed in the context of polio
[Eichner & Dietz 1996].

497

An emerging challenge is **how mathematical models can inform the design of pharmaceutical products in view of potential health crises.** Mathematical models could explore the effect of pharmaceutical products on the disease dynamics at the population level, and help investigate to what extent suboptimal but generic drugs could contribute to the response to pandemics, or to virus elimination [Slater et al 2017]. Also, they could help to assess when during an emerging outbreak vaccines should best be used, and what are the trade-offs between fast production, effectiveness, and broadness/specificity of vaccines or drugs [Hollingsworth et al 2012].

505

506 5 Challenges in modelling non-pharmaceutical interventions, human behaviour

507 NPIs are measures used to control transmission of infection in the absence of vaccination or treatment. 508 For a respiratory virus like SARS-CoV-2, these have included stay-at-home orders, closure of non-509 essential workplaces, schools, hospitality and leisure facilities, limits on sizes of gatherings, border 510 controls and travel restrictions, curfews and personal protective equipment (PPE) requirements (e.g., 511 use of face masks). For a sexually transmitted infection, these may be condom use, having fewer sexual 512 partners, or voluntary male circumcision. Some NPIs which reduce social mixing can be relatively 513 untargeted, such as stay-at-home orders applied to the majority of the population. More targeted 514 measures aim to reduce contacts among those most likely to be infectious, such as Test, Trace and 515 Isolate policies (TTI). Others, like the use of PPE or condom use, work by reducing the risk of 516 transmission per contact. Border controls and travel restrictions aim to limit the seeding of new 517 infections internationally or across regions. Establishing baselines for comparison and defining the levels 518 at which human behaviour should be included in models have previously been discussed [Eames et al, 519 2015; Funk et al, 2015]. However, recent advances in data availability have highlighted the complex 520 interplay of variability in human behaviour across socioeconomic and demographic scales.

521

522 **5.1** Heterogeneity of populations and contact networks

523 Behavioural responses and engagement with NPIs and TTI will likely not be uniform across populations,

524 over time and across different combinations of interventions. Models of NPIs, TTI and other

525 interventions should therefore capture uptake and adherence in order to assess possible effectiveness 526 in practice. Analyses should consider interactions with other interventions (e.g. relationship between 527 isolation take-up and work-at-home orders) and with operational parameters (e.g. testing uptake and 528 booking delays), the potential for threshold effects, uptake along multiple steps in an intervention, 529 potential trade-offs and compensatory behaviours, scales of adherence (e.g. a partial but incomplete 530 reduction in non-essential contacts) and sustainability of adherence over time.

531

532 There are important heterogeneities in capabilities across population groups to engage with

533 interventions, which likely correlate with other risks of infection. These heterogeneities present 534 challenges both in the interpretation of the relevant data, and in selecting the salient features for each 535 model. Many settings have observed stark socioeconomic and ethnic inequalities across the population 536 with respect to COVID-19 infection and mortality, some of which reflect long standing societal effects on 537 vulnerability to severe disease and some of which reflect inequalities in exposure including the ability to 538 physically distance (adhere to NPIs) and take up and adhere to isolation or quarantine notifications (SPI-539 B, 2020). For instance, the ability to work from home is related to measures of socioeconomic 540 deprivation and associated with probability of infection with SARS-CoV-2 [Pouwels et al., 2021, EMG 541 Transmission Group, 2021]. The individuals, and the characteristics of their social contact networks, who 542 are still working outside of the home and making out-of-household contacts during 'lockdown', are 543 different from those who are able to reduce their contacts. They are likely to have larger household 544 sizes or to work in high-contact roles or within non-policy adherent workplaces, with implications for 545 how the contact network scales with implementation of NPIs and for what can be assumed about 546 adherence to other interventions such as TTI [Public Health England, 2020].

547

548 To understand the effectiveness of interventions, we need ways to model clustering of intervention 549 uptake and adherence among individuals who might also cluster on the network of contacts, the 550 potential transmission network. We can attempt to model these clusters either by including particular 551 settings within the model, such as schools or workplaces with their own contact patterns, or via 552 including particular classes of individuals. The modelling required to capture the transmission patterns 553 will vary significantly depending on the degree of integration between the cluster and the wider 554 community, e.g., an outbreak on a mostly closed campus (such as a university or factory with employee 555 dormitories) will have a different impact than an outbreak in a high-risk work setting where employees 556 return to their own homes daily. 557 Despite the key modelling role in correctly embedding clusters into the community, beyond age

558 classification, descriptions of social contacts by other population heterogeneities are often limited by

the availability of data, or pertain to a specific outbreak investigation that does not easily generalise [Section 2, behaviour]. These often do not account for compensatory/altered contact patterns as a result of an NPI seeking to limit infectious contacts, such as those deriving from informal childcare provision when schools are closed.

563

564 Shared structural influences on uptake and adherence to interventions by neighbourhood or local 565 area could lead to 'pockets' of high transmission and disease [Vitora et al., 2018, Todd et al., 2021]. 566 Including indices of social deprivation in a structured population model, or levels of deprivation in a 567 spatial model, can reflect socioeconomic influences on behavioural engagement with interventions 568 [Section 2, adherence]. Household models might instead assume a higher probability of introduction of 569 infection into the household, while accounting for the variable household sizes as they correlate with 570 income. Agent-based models could explore the impacts of TTI or other such interventions according to 571 the number of infectious contacts of each person, their personal adherence to interventions, and any 572 changes to adherence based on the adherence of those around them. All of these models would 573 further benefit from knowing what proportion of contacts from a person within a cluster are also a part 574 of the same cluster [Centola et al., 2010, Sprague et al., 2017]. Generalised modelling approaches to 575 population heterogeneities have previously considered contact networks where the degree distribution 576 of contacts captures this variability, though time-varying components in modified homogeneously 577 mixing compartmental models can achieve similar effects [Bansal et al., 2007].

578

579 Clustering in behaviours may result from a shared local environment, such as in areas where there are 580 many individuals in insecure jobs without sick pay or arise via direct behavioural influences over a 581 network of social relationships. The resultant patterns of clustering that this might produce and the 582 effects on transmission of infections will depend upon the extent to which these social relationships and 583 the potential transmission network ties overlay each other. Increasingly, the 'virtual' network ties via 584 social media are becoming important for influencing uptake and adherence to interventions and 585 vaccination, though the extent to which these overlap with potential transmission networks, and 586 therefore the effects on epidemic dynamics might differ [Wilson et al., 2020]. Some interventions utilise 587 social networks for their recruitment [Nikolopoulos et al., 2016] or distribution [Lippman et al., 2019], 588 adding another consideration to dependencies between different network types in influencing the 589 effectiveness of interventions against future pandemics.

590

591 Uptake and adherence to interventions, and their impact on the characteristics of the contact

592 **network, could also change as a function of the epidemic itself.** It is feasible to model population

593 behavioural responses, and uptake and adherence to interventions, as dynamic and as dependent on 594 characteristics of the epidemic [Funk et al., 2015], but it remains challenging in practice to specify the 595 relationship, especially for a new infection and in the context of an emergency [Teslya 2020]. In 596 practice, the public does not have perfect information about the course of the epidemic and is in some 597 cases actively misinformed. This lack of information is enhanced by delays between infection, 598 symptoms, hospitalisations and death [Pellis et al., 2020, da Silva et al., 2019]. Furthermore, there may 599 be strong barriers to adherence which are independent of individuals' willingness or intentions. Under 600 imperfect adherence to multiple NPIs, quantifying which interventions are most impactful is essential 601 for managing an outbreak.

602

603 **5.2** Contact tracing, quarantine, and isolation

604 One of the main advantages of contact tracing and cluster investigation is that they are directed 605 specifically to individuals who are more likely to have been exposed to the infection. However, 606 capturing the specific contact network and the TTI process over such a network constitutes a key 607 modelling challenge for mathematical epidemiology [Müller & Kretzschmar 2021], particularly because 608 realistic networks and clustering due to social settings (e.g., households and workplaces) are difficult to 609 measure and describe mathematically (see also Ch 06), but strongly affect the effectiveness of contact 610 tracing [House & Keeling 2010]. Different tracing policies (e.g., forward tracing of the secondary cases or 611 backward tracing of the potential infector of a confirmed case) require different modelling 612 considerations [Müller et al 2000; Kojaku et al 2021], although in practice it is often impossible to 613 identify the direction of the infection between two confirmed cases. Backward/forward tracing often 614 becomes indistinguishable from outbreak investigation, which focuses on transmission in particular 615 environments rather than between specific individuals, bringing in additional complexities in terms of 616 modelling possibly overlapping clustered networks and superspreading events. Contact tracing serves a 617 dual role as a transmission surveillance and control tool, finding cases among harder-to-reach groups, 618 and informing interventions which break transmission chains. The balance between these roles can vary 619 greatly.

620

621 Contact tracing typically requires an extensive infrastructure able to identify infected cases and swiftly 622 search and isolate as many of their contacts as possible. In the case of fast epidemics, this translates 623 into important limitations, for instance in terms of the maximal number of individuals that can be 624 reached and isolated every day and unavoidable delays along the process, which strongly influence the 625 effectiveness of the intervention [Kretzschmar et al 2020, Contreras et al 2021]. Modelling the real 626 impact of these limitations is often extremely challenging, but at the same time fundamental to

evaluate the effectiveness of TTI and identify what aspects can be improved. The effectiveness of TTI
needs to be balanced with the societal impact of quarantine, which depends on its duration and

629 effectiveness in preventing onward transmission [Ashcroft et al 2021]. Recently smartphone apps for

630 digital contact tracing have been developed, which are aimed at mitigating these limitations, while

- 631 introducing further challenges connected with a realistic modelling of the app uptake and mechanisms
- 632 [Ferretti et al 2020].
- 633

One of the main objectives of modelling interventions is to analyse their cost-effectiveness. Depending on the particular contact tracing policy, not only infected individuals, but all (possibly healthy) known contacts of a confirmed case may be required to quarantine. This introduces further complexities, as an effective mathematical model should keep track not only of the infector-infectee pairs, but also of the infectious contacts where transmission was unsuccessful, in order to quantify the potential disruption to healthy individuals and society in general [Kucharski et al 2020] (see also Section 7).

640

641 6 Challenges in parameter estimation and model fitting

Fitting a model to data can have two main goals: one goal is to estimate parameters that have not been measured by fitting to those that have been measured; the second goal is to fit a model to observations up to the present in order to predict what will happen in the future. The nature of challenges to modelling and inferring impacts of interventions will vary at different stages of an epidemic. For prediction of intervention impact, much work is done using scenario simulation using mathematical models of transmission [Davies et al 2020; Teslya 2020]. Expert elicitation may be an option, but that also comes with its own challenges [Section 5 of Ch 07].

649

650 Interventions have the potential to impact numbers in all compartments of a compartmental model, as 651 well as a large proportion of/all individuals in IBMs, but many of those impacts are unobservable 652 directly and must be inferred indirectly from changes in positive test rates or numbers of deaths and/or 653 hospitalisations [Section 2, surveillance data]. Observation models are required in this case, using latent 654 states or other statistical approaches to account for delays on impacts. Exactly what aspect(s) of the 655 model the intervention is impacting and the exact form in which the intervention is introduced to the 656 model will change the level of interpretation that can be made, such as whether the impact is directly 657 on specific outputs of the model, or forcing introduced on specific model parameters. Interventions can 658 also be introduced at different strengths and levels, and measuring that level of severity and how it 659 changes through time is challenging from both a modelling and a statistical perspective. Non-linear 660 effects are potential issues, as are qualitative interventions.

661

662 Political and national boundaries are usually the domain on which interventions are introduced [Section] 663 2 of Ch 02], but there are many other geographical, political and behavioural boundaries that will 664 impact the efficacy of intervention measures, that may or may not be known or observable. The fact 665 that there has been little attempt to introduce global interventions- combined with the fact that a 666 variety of measures is often introduced even within countries and nations- has made tracking 667 interventions and measuring their impact particularly challenging [Flaxman et al 2020; Brauner et al 668 2021]. The introduction of multiple interventions simultaneously, such as closing borders, schools, 669 pubs, shopping centres, etc. can make extracting the success of any single measure difficult [Soltecz et 670 al 2020]. Statistical identification of parameters measuring individual impacts will likely be impossible, 671 as structural and practical non-identifiability will be at play without careful experimental design and 672 model sensitivity analysis [Browning et al 2020]. Multiple layers of interventions such as NPIs make the 673 evaluation of these layers individually incredibly difficult as the epidemics evolve, especially as the 674 introduction of subsequent NPIs can impact the efficacy of or adherence to existing interventions. More 675 transmissible variants, escape variants and associated increased/decreased mortality may also 676 necessitate the re-evaluation of model estimates or flexibility within the model for those estimates to 677 be temporally indexed. There is a challenge in measuring if an intervention is inherently unsuccessful, or 678 whether it is unsuccessful due to a lack of public adherence [Gelfand et al 2021] [Section 2, 679 adherence/behavioural data; Section 5]. These uncertainties, coupled with underreporting of case 680 incidence and asymptomatic individuals, also make estimation and communication of intervention 681 impacts challenging. Experimental design of interventions in pandemic scenarios, which otherwise may 682 be the most appropriate approach in other domains, inevitably has significant challenges for ethical 683 reasons, as well as associated political and logistical difficulties.

684

Between-country comparisons often receive significant backlash from politicians and the media and can
easily be open to criticism for not accounting for some underlying process that has not been considered
(demographic or environmental differences, for example) [Pearce et al 2020; Xiang and Swallow 2021;
Komarova et al 2020]. Data collection procedures also vary drastically between nations and privacy
constraints make large-scale analyses challenging to complete.

690

There is a large range of different models used to study epidemic outcomes, all with their own
 assumptions, mechanisms and uncertainties. Measuring impacts of interventions will subsequently vary
 according to which model is used or which data are used to estimate it. Combining the impact of
 interventions observed across models adds an additional dimension to the challenges. There is also a

695 significant difference between models used for explanation or estimation and those used for prediction 696 or forecasting, both structurally and from a philosophical perspective [Hanna 1969; Shmueli 2010]. This 697 will be particularly challenging when choosing between models for estimating impacts of interventions 698 as opposed to models developed for scenario exploration or forecasting. It is therefore important not to 699 assume automatically that these models can be used interchangeably.

700

701 **7** Challenges in modelling health economic and political aspects of interventions

702 NPIs seek to reduce transmission through reducing the number, length, and/or intensity of contacts 703 between people where transmission could occur. Some of the NPIs mentioned above are relatively cost-704 free – for example, mask wearing is considered a moderately effective NPI, requiring minimal upfront 705 cost from mask users, and having minimal impact on day-to-day activities for most users [Greenhalgh 706 2020, Czypionka et al. 2020]. Other NPIs can be highly costly in micro- and macroeconomic terms – for 707 example, the closure of non-essential shops and/or hospitality sectors. For respiratory pathogens, these 708 more restrictive NPIs are likely to be both more effective at reducing transmission and much more 709 costly to individuals and the broader economy than less restrictive NPIs. In addition, the imposition of 710 NPIs that affect the extent to which people are able to work productively will have a direct impact on 711 household finances, and are likely to cause a proportion of households to fall below the poverty line.

712 To allow decision makers to make these trade-offs in a consistent and data-driven way, there is a 713 challenge for transmission modellers and health economists assessing the impact and cost-714 effectiveness of NPIs to quantify and include broader household costs and macroeconomic impacts. 715 The measurement of household costs is comparatively simple, and a range of validated and tested tools 716 exist to measure an exhaustive list of medical and non-medical expenditures [World Health 717 Organization, 2017], though it is critical that comparable data are collected before and after the 718 imposition of NPIs. The estimation of the broader macroeconomic impact of NPIs is more challenging, 719 and generally requires the combining of epidemiological transmission models and complex 720 macroeconomic models [Keogh-Brown et al. 2020, Smith et al. 2020]. Ideally models would be fully 721 combined, allowing feedback between epidemiological and macroeconomic factors - for example, if the 722 closure of a sector's workplaces reduces social mixing but leads to a fall in productivity resulting in 723 redundancies, workers' movements between sectors with different levels of mixing would also change 724 transmission. However, in practice, it is very complex to stratify epidemiological and macroeconomic 725 models in a sufficiently detailed and consistent way to reflect these feedback loops, and the current 726 state-of-the-art is for transmission model outputs to inform macroeconomic models.

727 Another important challenge is **how to represent financial and non-financial constraints in models**

728 [Bozzani et al. 2018, Bozzani et al. 2020]. The majority of health economic evaluations, including in

infectious diseases, take a marginal approach and assess the incremental costs and benefits of

730 interventions and policies. This approach ignores that the total costs of programmes may be very high,

such as when entire populations require vaccinating against newly emerged pathogens. It is therefore

732 important that economic evaluations of interventions that are delivered to a substantial fraction of the

733 population incorporate full budget impact analyses [Weerasuriya et al. 2021].

734 In practice, non-financial constraints are arguably more critical and much less visible than financial 735 constraints. For example, patients in intensive care may require ventilators, but also – critically – one-to-736 one nursing care and attention from specialist intensive care clinicians. These human resource inputs 737 cannot be quickly scaled up in pandemic response. Therefore, models estimating the number of people 738 with care needs reliant on human resources and other non-financial factors for their delivery – for 739 example, critical care staff, oxygen, needles, and treatment drug doses – should consider these 740 operational needs. It is generally possible to include constraints and optimisation functions in models 741 without requiring significant structural changes and doing so could help to inform real-world 742 prioritisation of scarce resources.

743 Finally, people experience health and economic impacts of infectious diseases differently.

744 Socioeconomic status is a key stratum across which health and economic indicators vary and ensuring

equitable benefits from health interventions and programmes, but **incorporating equity aspects into**

746 **infectious disease models is a key challenge**. For example, recent methodological advances in equity-

informative cost-effectiveness analysis provides a readily applicable analytical framework. The key

contribution of these methods is the disaggregation of health impacts and economic consequences

across equity strata, for example distribution across people of different socioeconomic status.

750 Recent applications of extended cost-effectiveness analyses using infectious disease models add 751 decision making value compared to models which do not disaggregate outcomes by equity strata, yet 752 these are subject to a number of highly restrictive assumptions such as perfectly assortative mixing 753 within strata, uniform underlying distribution of susceptibility, transmission conditional on exposure, 754 and severity and death conditional on infection. In reality, data to parameterize these assumptions is 755 hard to obtain – for example the extent to which people of different strata contact – or do not contact – 756 each other. Where data are available, they are likely to be confounded by other factors; for example, 757 observing a greater rate of deaths due to an infectious pathogen could be due to differential and 758 potentially unquantifiable mixing, susceptibility, or severity in each group.

Торіс	Key challenges
General Section 1	 Find models that are complex enough to reflect the system we want to describe in sufficient detail, but simple enough so that we do not get lost in the jungle of details. Need to clearly define objectives and aims of modelling in interaction with policy makers
Data related to interventions Section 2	 Designing in advance data collection studies and statistical methods to overcome biases in biological data. Developing methods to account and correct for lags and scarcity in surveillance data Wider accessibility to mobility and behavioural data to quantify how interventions change contact patterns.
Mathematical framework Section 3	 Developing robust, flexible modelling tools that are readily available to plan interventions during epidemics Designing public health measures that match the temporal and spatial scale of interventions with those of transmission Translating modelling theory about pathogen evolution into epidemic-specific interventions that limit the risk of variants of concern emerging
Pharmaceutical interventions Section 4	 Modelling population heterogeneity (e.g., in vaccine efficacy, uptake, transmission) to investigate optimal vaccine prioritisation and allocation Modelling vaccine strategies in a highly dynamic environment (including time-varying vaccine rollout, introduction of different vaccines with single or multiple doses, changes in NPIs) Incorporating mechanisms to describe how treatment affects epidemic dynamics Defining and modelling elimination
NPI Section 5	 Capturing adherence and take-up of NPIs across heterogeneous populations and contact networks Modelling clustering in behaviour and its relation to clustering in e.g. geography or socioeconomic status Incorporating the factors responsible for changing behaviour (take-up and adherence) over time.
Parameter estimation, Model fitting Section 6	 Parameterising multiple layers of interventions and their time-varying impacts Statistical identification of different overlapping intervention impacts Intervention impact detection across models
<i>Economic modelling</i> Section 7	 Including macroeconomic costs is critical to understand the full impact of infectious diseases and their control measures Financial and non-financial constraints matter and need to be reflected in models Different groups experience diseases and interventions differently, and models need to represent inequities better

760 **Table 1**: Key challenges

762 In practice, models have been informative with relatively simple distributional assumptions across these

763 factors, and where data are unknown or highly confounded, sensitivity analyses can show whether

764 plausible differences by socioeconomic strata between, for example, mixing and severity, explain the

765 differential outcomes observed [Munday et al, 2018].

⁷⁶¹

766 8 Discussion and conclusions

Use of mathematical modelling to assess the impact of interventions has taken enormous strides since the turn of the century, fuelled by an increasing number of emergence events of new pathogens, large outbreaks of infectious diseases spanning several countries or continents, and the fast increase in computing power and communication speed. Nevertheless, many challenges remain for the modelling community in developing fast, precise, and flexible tools for supporting public health responses to future pandemics.

773

We discussed different types of interventions, each posing various challenges in terms of data availability and modelling requirements (Table 1). We did not address the possibilities of synergy or interference of different interventions, when rolled out simultaneously. If there are interactions, one also needs to ask in which order interventions should best be rolled out, or which combinations of interventions are most effective. These are extremely complex questions for mathematical modelling.

779

While this document focuses on the impact of human-to-human transmission, zoonotic spill over and
vector-borne diseases (e.g., dengue fever and malaria) remain key areas of concern for future
pandemics. Where animals can act as an infection reservoir and continue to seed infection among
humans, targeted interventions are required, with a corresponding new set of behavioural interventions
and structural pressures on uptake and adherence. The challenges of those transmission routes have
been discussed a.o. by Hollingsworth et al (2015), Brooks-Pollock et al (2015), Lloyd-Smith et al (2015),
and are explored further in [Roberts et al (Ch 02); Metcalf et al (Ch 03)].

787

788 The challenges for modelling interventions identified and discussed here are diverse. Finding solutions 789 will require a broad variety of skills and expertise, ranging from mathematical creativity and precision 790 over biological insight to social sciences and communication skills. It is clear that addressing these 791 challenges will require the strong collaboration of researchers from different disciplines, and close 792 communication between scientists and policy makers. Only if knowledge and ideas from different fields 793 can be combined, will it be possible to find solutions to the broad questions sketched in this document. 794 We have witnessed a continuous development of the research field loosely termed "infectious disease 795 dynamics" in the last decades, in which various strands of research including applied mathematics, 796 pathogen biology, human behaviour, economics, and policy science have grown together and merged to 797 create a fascinating and rapidly expanding research field.

- 799 While scientists have established closer and closer international collaborations over the last decades,
- and research in mathematical modelling of infectious diseases has developed into a truly international
- 801 activity, there is much less international collaboration in the actual response to a pandemic [Priesemann
- et al 2021]. Policy making and pandemic response is limited by country borders, and which leads to
- 803 asynchronous waves of an epidemic between countries and out of phase epidemics just across a border.
- 804 Hopefully, good collaboration among scientists can eventually also inspire more cross-country
- 805 collaboration in fighting a pandemic.
- 806

807 Acknowledgements

- 808 We thank Valerie Isham and Denis Mollison for valuable contributions and support during our weekly
- 809 discussion meetings. We thank Hans Heesterbeek and Viola Priesemann for comments on earlier
- 810 versions of the manuscript. The authors would like to thank the Isaac Newton Institute for
- 811 Mathematical Sciences, Cambridge, for support during the Infectious Dynamics of Pandemics
- 812 programme where work on this paper was undertaken. This work was supported by EPSRC grant no.
- 813 EP/R014604/1.
- 814

815 Authors contributions

All authors took part in discussions and wrote sections of the manuscript. MEK coordinated discussions
 throughout and compiled the final version of the manuscript. All authors edited the manuscript and

- 818 approved the final version for publication.
- 819

820 Funding information

821 This work was supported by the Isaac Newton Institute (EPSRC grant no. EP/R014604/1). MEK was

- 822 supported by grants from The Netherlands Organisation for Health Research and Development
- 823 (ZonMw), grant number 10430022010001, and grant number 91216062, and by the H2020 project
- 824 101003480 (CORESMA). RNT was supported by the UKRI, grant number EP/V053507/1. GR was
- supported by Fundação para a Ciência e a Tecnologia (FCT) project reference 131_596787873. LP and
- 826 CO are funded by the Wellcome Trust and the Royal Society (grant 202562/Z/16/Z). LP is also supported
- by the UKRI through the JUNIPER modelling consortium (grant number MR/V038613/1) and by The Alan
- 828 Turing Institute for Data Science and Artificial Intelligence. HBS is funded by the Wellcome Trust and
- 829 Royal Society (202562/Z/16/Z), and the Alexander von Humboldt Foundation. DV had support from the
- 830 National Council for Scientific and Technological Development of Brazil (CNPq Refs. 441057/2020-9,
- 424141/2018-3, 309569/2019-2)). FS is supported by the UKRI through the JUNIPER modelling

- 832 consortium (grant number MR/V038613/1). EF is supported by UKRI (Medical Research
- 833 Council)/Department of Health and Social Care (National Insitute of Health Research) MR/V028618/1.

834 References

- Ashcroft P, Lehtinen S, Angst DC, Low N, Bonhoeffer S. Quantifying the impact of quarantine duration on COVID-19 transmission. Elife. 2021 Feb 5;10:e63704.
- Atkins, B.D., Jewell, C.P., Runge, M.C., Ferrari, M.J., Shea, K., Probert, W.J. and Tildesley, M.J., 2020. Anticipating
 future learning affects current control decisions: A comparison between passive and active adaptive
 management in an epidemiological setting. *Journal of Theoretical Biology*, *506*, p.110380.
- Backer JA, Mollema L, Vos ER, Klinkenberg D, Van Der Klis FR, De Melker HE, Van Den Hof S, Wallinga J. Impact of
 physical distancing measures against COVID-19 on contacts and mixing patterns: repeated cross-sectional
 surveys, the Netherlands, 2016–17, April 2020 and June 2020. Eurosurveillance. 2021 Feb
 25;26(8):2000994. https://doi.org/10.2807/1560-7917.ES.2021.26.8.2000994.
- 844 Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: homogeneous and network models in 845 epidemiology. J R Soc Interface. 2007 Oct 22;4(16):879–91.
- 846 Blasimme A and Vayena E. What's next for COVID-19 apps? Governance and oversight. Science, 370. 2020.
- Bozzani, F.M., Mudzengi, D., Sumner, T., Gomez, G.B., Hippner, P., Cardenas, V., Charalambous, S., White, R. and
 Vassall, A., 2018. Empirical estimation of resource constraints for use in model-based economic
 evaluation: an example of TB services in South Africa. *Cost effectiveness and resource allocation*, *16*(1),
 pp.1-10.
- Bozzani, F.M., Sumner, T., Mudzengi, D., Gomez, G.B., White, R. and Vassall, A., 2020. Informing Balanced
 Investment in Services and Health Systems: A Case Study of Priority Setting for Tuberculosis Interventions
 in South Africa. *Value in Health*, 23(11), pp.1462-1469.
- Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, Stephenson AB, Leech G, Altman G,
 Mikulik V, Norman AJ, Monrad JT, Besiroglu T, Ge H, Hartwick MA, Teh YW, Chindelevitch L, Gal Y, Kulveit
 J. Inferring the effectiveness of government interventions against COVID-19. Science. 2021
 Feb19;371(6531):eabd9338. doi: 10.1126/science.abd9338.
- Brooks-Pollock E, De Jong MC, Keeling MJ, Klinkenberg D, Wood JL. Eight challenges in modelling infectious
 livestock diseases. Epidemics. 2015 Mar 1;10:1-5.
- Browning AP, Warne DJ, Burrage K, Baker RE, Simpson MJ. Identifiability analysis for stochastic differential
 equation models in systems biology. Journal of the Royal Society Interface. 2020 Dec
 23;17(173):20200652.
- Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, Larremore DB (2021), Model-informed COVID-19
 vaccine prioritization strategies by age and serostatus, *Science* 371, 916–921. 26 February 2021. DOI:
 10.1126/science.abe6959
- Buckee, C.O., Recker, M., Watkins, E.R. and Gupta, S., 2011. Role of stochastic processes in maintaining discrete
 strain structure in antigenically diverse pathogen populations. *Proceedings of the National Academy of Sciences, 108*(37), pp.15504-15509.
- Burgess S, Ponsford MJ, Gill D. Are we underestimating seroprevalence of SARS-CoV-2? BMJ. 2020;370.
 doi:10.1136/bmj.m3364.
- 871 Centola D. The Spread of Behavior in an Online Social Network Experiment. Science. 2010 Sep 3;329(5996):1194–
 872 7.
- Chang, S., Pierson, E., Koh, P.W. et al. Mobility network models of COVID-19 explain inequities and inform
 reopening. Nature 589, 82–87 (2021). https://doi.org/10.1038/s41586-020-2923-3.
- Chidanbaram S, Erridge S, Kinross J, and Purkayastha S. Observational study of UK mobile health apps for COVID19. The Lancet Digital Health, 2. 2020.
- Cobey, S., Larremore, D.B., Grad, Y.H. and Lipsitch, M., 2021. Concerns about SARS-CoV-2 evolution should not
 hold back efforts to expand vaccination. *Nature Reviews Immunology*, pp.1-6.
- 879Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, et al (2011) Prevention of HIV-1 infection with
early antiretroviral therapy. N Engl J Med 365: 493–505. DOI: 10.1056/NEJMoa1105243

- Colizza V, Grill E, Mikolajczyk R, Cattuto C, Kucharski A, Riley S, Kendall M, Katrina L, Bonsall D, Wymant C, and
 others. Time to evaluate COVID-19 contact-tracing apps. Nature Medicine, 2021.Cori A, Ferguson NM,
 Fraser C, Cauchemez S. 2013 A new framework and software to estimate time varying reproduction
 numbers during epidemics. Am. J. Epidemiol. 178, 1505–1512. (doi:10.1093/aje/kwt133).
- Contreras S, Dehning J, Loidolt M, Zierenberg J, Spitzner FP, Urrea-Quintero JH, Mohr SB, Wilczek M, Wibral M,
 Priesemann V. The challenges of containing SARS-CoV-2 via test-trace-and-isolate. Nature
 communications. 2021 Jan 15;12(1):1-3.
- Cunniffe, N.J., Stutt, R.O.J.H., Van den Bosch, F. and Gilligan, C.A., 2012. Time-dependent infectivity and flexible
 latent and infectious periods in compartmental models of plant disease. *Phytopathology*, *102*(4), pp.365 380.
- Koskella, B., Metcalf, C.J.E., Parnell, S., Gottwald, T.R. and Gilligan, C.A., 2015. Thirteen challenges in modelling plant diseases. *Epidemics* 10:6-10.
- Czypionka, T., Greenhalgh, T., Bassler, D. and Bryant, M.B., 2020. Masks and face coverings for the lay public: A
 narrative update. *Annals of internal medicine*.
- da Silva PCV, Velásquez-Rojas F, Connaughton C, Vazquez F, Moreno Y, Rodrigues FA. Epidemic spreading with
 awareness and different timescales in multiplex networks. Phys Rev E. 2019 Sep 24;100(3):032313.
- Bavies, NG, Jombart, Thibaut et al., (2020) Effects of non-pharmaceutical interventions on COVID-19 cases, deaths,
 and demand for hospital services in the UK: a modelling study. The Lancet Public Health, Volume 5, Issue
 7, e375 e385 https://doi.org/10.1016/S2468-2667(20)30133-X
- 900Davies, N.G., Barnard, R.C., Jarvis, C.I., Russell, T.W., Semple, M.G., Jit, M. and Edmunds, W.J., 2021. Association of
tiered restrictions and a second lockdown with COVID-19 deaths and hospital admissions in England: a
modelling study. The Lancet Infectious Diseases, 21, pp.482-492.
- Day, T., Gandon, S., Lion, S. and Otto, S.P., 2020. On the evolutionary epidemiology of SARS-CoV-2. *Current Biology*, *30*(15), pp.R849-R857.
- Diekmann O, Heesterbeek H, Britton T. Mathematical tools for understanding infectious disease dynamics.
 Princeton University Press; 2012 Nov 18.
- 907Diekmann, O., de Graaf, W.F., Kretzschmar, M.E.E. et al. Waning and boosting: on the dynamics of immune status.908J. Math. Biol. 77, 2023–2048 (2018). https://doi.org/10.1007/s00285-018-1239-5
- 909Diekmann O, Othmer HG, Planque R, Bootsma MC. On discrete time epidemic models in Kermack-McKendrick910form. PNAS. 2021; accepted.
- 911Di Domenico L, Pullano Giulia, Sabbatini CE, Boëlle P, and Vittoria Colizza, Impact of lockdown on COVID-19912epidemic in Île-de-France and possible exit strategies, BMC Medicine, (2020) 18:240913https://doi.org/10.1186/s12916-020-01698-4
- Eames K, Bansal S, Frost S, Riley S. Six challenges in measuring contact networks for use in modelling. Epidemics.
 2015 Mar;10:72–7.
- 916Eaton JW, Johnson LF, Salomon JA, Bärnighausen T, Bendavid E, Bershteyn A, et al. (2012), HIV Treatment as917Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral918Therapy on HIV Incidence in South Africa. PLoS Med 9(7): e1001245.919https://doi.org/10.1371/journal.pmed.1001245
- 920 Eichner M, Dietz K. Eradication of poliomyelitis: when can one be sure that polio virus transmission has been 921 terminated? Am J Epidemiol. 1996 Apr 15;143(8):816-22. doi: 10.1093/oxfordjournals.aje.a008820.
- 922EMG Transmission Group. COVID-19 Risk by Occupation and Workplace [Internet]. United Kingdom: Scientific923Advisory Group for Energencies; 2021 Feb [cited 2021 Mar 4]. Available from:924https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/965925094/s1100-covid-19-risk-by-occupation-workplace.pdf
- 926 Erens B, Phelps A, Cliften S, and others. The third National Survey of Sexual Attitudes and Lifestyles (Natsal-3): 927 technical report. http://www.natsal.ac.uk/natsal-3/methodology

- 928Ferguson, N.M., Donnelly, C.A. and Anderson, R.M., 2001. Transmission intensity and impact of control policies on
the foot and mouth epidemic in Great Britain. *Nature*, 413(6855), pp.542-548.
- Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, Parker M, Bonsall D, Fraser C. Quantifying
 SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020 May
 8;368(6491).
- Filipe, J.A., Cobb, R.C., Meentemeyer, R.K., Lee, C.A., Valachovic, Y.S., Cook, A.R., Rizzo, D.M. and Gilligan, C.A.,
 2012. Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: sudden
 oak death in northern Californian forests. *PLoS Comput Biol*, 8(1), p.e1002328.
- 936Flaxman, S., Mishra, S., Gandy, A. et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in937Europe. Nature 584, 257–261 (2020). https://doi.org/10.1038/s41586-020-2405-7
- 938Funk S et al. Short-term forecasts to inform the response to the Covid-19 epidemic in the UK,
https://www.medrxiv.org/content/10.1101/2020.11.11.20220962v2.full
- 940Funk S, Bansal S, Bauch CT, Eames KTD, Edmunds WJ, Galvani AP, et al. Nine challenges in incorporating the
dynamics of behaviour in infectious diseases models. Epidemics. 2015 Mar;10:21–5.
- Gelfand MJ, Jackson JC, Pan X, Nau D, Pieper D, Denison E, Dagher M, Van Lange PA, Chiu CY, Wang M. The
 relationship between cultural tightness–looseness and COVID-19 cases and deaths: a global analysis. The
 Lancet Planetary Health. 2021 Jan 29.
- Gilligan C.A., Truscott, J.E. and Stacey, A.J., 2007. Impact of scale on the effectiveness of disease control strategies
 for epidemics with cryptic infection in a dynamical landscape: an example for a crop disease. *J R Soc Interface*, 4(16), pp.925-934.
- 948Gog JR, Pellis L, Wood JL, McLean AR, Arinaminpathy N, Lloyd-Smith JO. Seven challenges in modeling pathogen949dynamics within-host and across scales. Epidemics. 2015 Mar 1;10:45-8.
- Gog, J.R., Hill, E.M., Danon, L. and Thompson, R.N., 2021. Vaccine escape in a heterogeneous population: insights
 for SARS-CoV-2 from a simple model. *medRxiv*.
- 952Google LLC. Google COVID-19 Community Mobility Reports. https://www.google.com/covid19/mobility/ Accessed95315 April 2021.
- 954Gösgens M, Hendriks T, Boon M, Steenbakkers W, Heesterbeek H, Van Der Hofstad R, Litvak N. Trade-offs between955mobility restrictions and transmission of SARS-CoV-2. Journal of the Royal Society Interface. 2021 Feb95624;18(175):20200936.
- 957Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG (2009), Universal voluntary HIV testing with immediate958antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model, *The Lancet*959373, 48-57, 3 January 2009. Available at: https://doi.org/10.1016/S0140-6736(08)61697-9
- 960 Grantz, K.H., Meredith, H.R., Cummings, D.A.T. et al. The use of mobile phone data to inform analysis of COVID-19 961 pandemic epidemiology. Nat Commun 11, 4961 (2020). https://doi.org/10.1038/s41467-020-18190-5
- 962 Greenhalgh, T., 2020. Face coverings for the public: Laying straw men to rest. *Journal of evaluation in clinical* 963 *practice*, *26*(4), pp.1070-1077.
- Grimm, V., Johnston, A.S.A., Thulke, HH. et al. Three questions to ask before using model outputs for decision
 support. Nat Commun 11, 4959 (2020). https://doi.org/10.1038/s41467-020-17785-2
- 966Gupta, S., Ferguson, N. and Anderson, R., 1998. Chaos, persistence, and evolution of strain structure in
antigenically diverse infectious agents. *Science, 280*(5365), pp.912-915.
- Handel, A., Brown, J., Stallknecht, D. and Rohani, P., 2013. A multi-scale analysis of influenza A virus fitness trade offs due to temperature-dependent virus persistence. *PLoS Comput Biol, 9*(3), p.e1002989.
- 970Hanna, J.F. Explanation, prediction, description, and information theory. Synthese 20, 308–334 (1969).971https://doi.org/10.1007/BF00413732
- Hart, W.S., Maini, P.K., Yates, C.A. and Thompson, R.N., 2020. A theoretical framework for transitioning from
 patient-level to population-scale epidemiological dynamics: influenza A as a case study. *J R Soc Interface*, *17*(166), p.20200230.

- Heffernan, J.M., Keeling, M.J. Implications of vaccination and waning immunity. Proc Biol Sci. 2009 Jun
 7;276(1664):2071-80. doi: 10.1098/rspb.2009.0057
- Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling infectious disease parameters based on
 serological and social contact data: a modern statistical perspective. Springer Science & Business Media;
 2012 Oct 24.
- Hill AM, Nath S, Simmons B, The road to elimination of hepatitis C: analysis of cures versus new infections in 91
 countries (2017), *Journal of Virus Eradication* 3, 117–123.
- Hill EM and Keeling MJ (2021), Comparison between one and two dose SARS-CoV-2 vaccine prioritisation for a
 fixed number of vaccine doses, *medRxiv*, <u>https://doi.org/10.1101/2021.03.15.21253542</u>
- Hodgson SH, Mansatta K, Mallett G, Harris V, Emary KR, Pollard AJ. What defines an efficacious COVID-19 vaccine?
 A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. The lancet
 infectious diseases. 2020 Oct 27.
- Hollingsworth TD, Klinkenberg D, Heesterbeek H, Anderson RM. Mitigation strategies for pandemic influenza A:
 balancing conflicting policy objectives. PLoS computational biology. 2011 Feb 10;7(2):e1001076.
- Hollingsworth TD, Pulliam JR, Funk S, Truscott JE, Isham V, Lloyd AL. Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases. Epidemics. 2015
 Mar 1;10:16-20.
- House, T., & Keeling, M. J. (2010). The impact of contact tracing in clustered populations. PLoS Comput Biol, 6(3),
 e1000721. https://doi.org/10.1371/journal.pcbi.1000721
- Jarvis CI, Van Zandvoort K, Gimma A, Prem K, Auzenbergs M, O'Reilly K, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Medicine. 2020;18(1):124.
 doi:10.1186/s12916-020-01597-8.
- 997Jentsch PC, Anand M, Bauch CT (2021), Prioritising COVID-19 vaccination in changing social and epidemiological998landscapes: a mathematical modelling study, *The Lancet Infectious Diseases*, 31 March 2021. Available at:999https://doi.org/10.1016/S1473-3099(21)00057-8
- Keeling, M.J., Woolhouse, M.E., Shaw, D.J., Matthews, L., Chase-Topping, M., Haydon, D.T., Cornell, S.J., Kappey, J.,
 Wilesmith, J. and Grenfell, B.T., 2001. Dynamics of the 2001 UK foot and mouth epidemic: stochastic
 dispersal in a heterogeneous landscape. *Science*, *294*(5543), pp.813-817.
- Keeling, M.J. and Rohani, P., 2011. *Modeling infectious diseases in humans and animals*. Princeton University
 Press.
- 1005Keogh-Brown, M.R., Jensen, H.T., Edmunds, W.J. and Smith, R.D., 2020. The impact of Covid-19, associated1006behaviours and policies on the UK economy: A computable general equilibrium model. SSM-population1007health, 12, p.100651.
- 1008Komarova NL, Schang LM and Wodarz D (2020) Patterns of the COVID-19 pandemic spread around the world:1009exponential versus power laws, J. R. Soc. Interface.172020051820200518,1010http://doi.org/10.1098/rsif.2020.0518
- Kojaku, S., Hébert-Dufresne, L., Mones, E. *et al.* The effectiveness of backward contact tracing in networks. *Nat. Phys.* (2021). https://doi.org/10.1038/s41567-021-01187-2
- 1013Korenromp EL, Van Vliet C, Grosskurth H, Gavyole A, Van der Ploeg CP, Fransen L, Hayes RJ, Habbema JD. Model-
based evaluation of single-round mass treatment of sexually transmitted diseases for HIV control in a
rural African population. AIDS. 2000 Mar 31;14(5):573-93.
- 1016Kretzschmar M, van den Hof S, Wallinga J, van Wijngaarden J (2004), Ring vaccination and smallpox control.1017Emerging Infectious Diseases 10(5), 832-841. doi:10.3201/eid1005.030419
- 1018Kretzschmar ME, Rozhnova G, Bootsma MCJ, van Boven M, van de Wijgert JHHM, Bonten MJM. Impact of delays1019on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet Public Health. 20201020Aug;5(8):e452-e459. doi: 10.1016/S2468-2667(20)30157-2.

- 1021Kucharski AJ, Eggo RM, Watson CH, Camacho A, Funk S, Edmunds WJ (2016), Effectiveness of Ring Vaccination as1022Control Strategy for Ebola Virus Disease, Emerging Infectious Disease 22(1).1023http://dx.doi.org/eid2201.151410
- 1024Kucharski AJ, Klepac P, Conlan AJ, Kissler SM, Tang ML, Fry H, Gog JR, Edmunds WJ, Emery JC, Medley G, Munday1025JD. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of1026SARS-CoV-2 in different settings: a mathematical modelling study. The Lancet Infectious Diseases. 20201027Oct 1;20(10):1151-60. https://doi.org/10.1016/S1473-3099(20)30457-6
- 1028Lambers FAE, Prins M, Thomas X, Molenkamp R, Kwa D, Brinkman K et al (2011), Alarming incidence of hepatitis C1029virus reinfection after treatment of sexually acquired acute hepatitis C virus infection in HIV-infected1030MSM. AIDS 25(17):F21-7. https://www.ncbi.nlm.nih.gov/pubmed/21857492
- 1031Lippman SA, Lane T, Rabede O, Gilmore H, Chen Y-H, Mlotshwa N, et al. High Acceptability and Increased HIV-1032Testing Frequency After Introduction of HIV Self-Testing and Network Distribution Among South African1033MSM. JAIDS J Acquir Immune Defic Syndr. 2018 Mar 1;77(3):279–87.
- 1034 Lipsitch M, Dean NE. Understanding COVID-19 vaccine efficacy. Science. 2020; 370 (6518): 763-765.
- 1035Lloyd-Smith JO, Mollison D, Metcalf CJ, Klepac P, Heesterbeek JA. Challenges in modelling infectious disease1036dynamics: preface. Epidemics. 2015 Mar;10:iii-iv. doi: 10.1016/j.epidem.2015.02.001
- 1037Lloyd-Smith JO, Funk S, McLean AR, Riley S, Wood JL. Nine challenges in modelling the emergence of novel1038pathogens. Epidemics. 2015 Mar 1;10:35-9.
- 1039Matrajt L, Eaton J, Leung T, Brown ER (2021), Vaccine optimization for COVID-19: Who to vaccinate first? Science1040Advances 7(6). doi:10.1126/sciadv.abf1374
- McBryde ES, Meehan MT, Adegboye OA, Adekunle AI, Caldwell JM, Pak A, Rojas DP, Williams BM, Trauer JM. Role
 of modelling in COVID-19 policy development. Paediatr Respir Rev. 2020 Sep;35:57-60. doi:
 1043 10.1016/j.prrv.2020.06.013.
- 1044Metcalf CJ, Andreasen V, Bjørnstad ON, Eames K, Edmunds WJ, Funk S, Hollingsworth TD, Lessler J, Viboud C,1045Grenfell BT. Seven challenges in modeling vaccine preventable diseases. Epidemics. 2015 Mar 1;10:11-5.
- 1046Mistry, D., Litvinova, M., Pastore y Piontti, A. et al. Inferring high-resolution human mixing patterns for disease1047modeling. Nat Commun 12, 323 (2021). https://doi.org/10.1038/s41467-020-20544-y
- 1048Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ (2021), Vaccination and non-pharmaceutical interventions for1049COVID-19: a mathematical modelling study, *The Lancet Infectious Diseases*, 18 March 2021. Available at:1050https://doi.org/10.1016/S1473-3099(21)00143-2
- 1051 Morris M, Kretzschmar M (1997). Concurrent partnerships and the spread of HIV. AIDS: 11(5): 641-648.
- 1052 Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing patterns relevant 1053 to the spread of infectious diseases. PLOS Medicine. 2008;5(3):1-1. doi:10.1371/journal.pmed.0050074.
- 1054Müller J, Kretzschmar M. Contact tracing–Old models and new challenges. Infectious Disease Modelling. 2021 Jan10551;6:222-31. https://doi.org/10.1016/j.idm.2020.12.005
- 1056Müller J, Kretzschmar M, Dietz K. Contact tracing in stochastic and deterministic epidemic models. Mathematical
biosciences. 2000 Mar 1;164(1):39-64.
- 1058Munday, J.D., van Hoek, A.J., Edmunds, W.J. and Atkins, K.E., 2018. Quantifying the impact of social groups and1059vaccination on inequalities in infectious diseases using a mathematical model. BMC medicine, 16(1), pp.1-106012.
- 1061Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human schistosomiasis in the post mass drug administration era.1062Lancet Infect Dis. 2017 Feb;17(2):e42-e48. doi: 10.1016/S1473-3099(16)30475-3.
- 1063Nikolopoulos GK, Pavlitina E, Muth SQ, Schneider J, Psichogiou M, Williams LD, et al. A network intervention that1064locates and intervenes with recently HIV-infected persons: The Transmission Reduction Intervention1065Project (TRIP). Sci Rep. 2016 Dec;6(1):38100.
- 1066Nishiura, H., Miyamatsu, Y. and Mizumoto, K., 2016. Objective determination of end of MERS outbreak, South1067Korea, 2015. Emerging infectious diseases, 22(1), p.146.

- Oliver N, Lepri B, Sterly H, Lambiotte R, Deletaille S, De Nadai M, Letouzé E, Salah AA, Benjamins R, Cattuto C,
 Colizza V. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle.
 Science Advances 2020 Vol. 6, no. 23, eabc0764. DOI: 10.1126/sciadv.abc0764
- 1071Park SW, Sun K, Champredon D, Li M, Bolker BM, Earn DJD, Weitz JS, Grenfell BT, Dushoff J. Forward-looking serial1072intervals correctly link epidemic growth to reproduction numbers. Proc Natl Acad Sci U S A. 2021 Jan107312;118(2):e2011548118. doi: 10.1073/pnas.2011548118.
- 1074Pearce N, Lawlor DA, Brickley EB (2020), Comparisons between countries are essential for the control of COVID-19,1075International Journal of Epidemiology, 49(4) 1059–1062
- 1076Pellis L, Scarabel F, Stage HB, Overton CE, Chappell LHK, Lythgoe KA, Fearon E, Bennett E, UoM COVID19 Working1077Group, House TA, Hall I, Challenges in control of Covid-19: short doubling time and long delay to effect of1078interventions, arXiv: https://arxiv.org/abs/2004.00117
- 1079Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic1080data. PLOS Computational Biology. 2017;13(9):1-21. doi:10.1371/journal.pcbi.1005697.
- 1081Pouwels KB, House T, Pritchard E, Robotham JV, Birrell PJ, Gelman A, et al. Community prevalence of SARS-CoV-21082in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet1083Public Health. 2021 Jan;6(1):e30–8.
- 1084Priesemann V, Brinkmann MM, Ciesek S, Cuschieri S, Czypionka T, Giordano G, Gurdasani D, Hanson C, Hens N,1085Iftekhar E, Kelly-Irving M, Klimek P, Kretzschmar M, Peichl A, Perc M, Sannino F, Schernhammer E,1086Schmidt A, Staines A, Szczurek E. Calling for pan-European commitment for rapid and sustained reduction1087in SARS-CoV-2 infections. Lancet. 2021 Jan 9;397(10269):92-93. doi: 10.1016/S0140-6736(20)32625-8.
- 1088Public Health England. Disparities in the risk and outcomes of COVID-19 [Internet]. 2020 Aug [cited 2021 Mar 4].1089Available from:1090https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/908
- 1090https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/9081091434/Disparities_in_the_risk_and_outcomes_of_COVID_August_2020_update.pdf
- 1092Rozhnova G, van der Loeff MFS, Heijne JCM, Kretzschmar ME (2016) Impact of Heterogeneity in Sexual Behavior1093on Effectiveness in Reducing HIV Transmission with Test-and-Treat Strategy. PLOS Computational Biology109412(8): e1005012. https://doi.org/10.1371/journal.pcbi.1005012
- 1095Rozhnova, G., van Dorp, C.H., Bruijning-Verhagen, P. et al. Model-based evaluation of school- and non-school-1096related measures to control the COVID-19 pandemic. Nat Commun 12, 1614 (2021).1097https://doi.org/10.1038/s41467-021-21899-6
- 1098Saad-Roy CM, Morris SE, Metcalf CJE, Mina MJ, Baker RE, Farrar J, Holmes EC, Pybus OG, Graham AL, Levin SA,1099Grenfell BT, Wagner CE, Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing1100regimes, Science, eabg8663, 9 Mar 2021. DOI: 10.1126/science.abg8663
- 1101Salathé M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C, Campbell EM, Cattuto C, Khandelwal S,1102Mabry PL, Vespignani A. Digital epidemiology. PLoS Comput Biol. 2012;8(7):e1002616.1103doi:10.1371/journal.pcbi.1002616.
- 1104Sandmann, F.G., Davies, N.G., Vassall, A., Edmunds, W.J., Jit, M., Sun, F.Y., Villabona-Arenas, C.J., Nightingale, E.S.,1105Showering, A., Knight, G.M. and Sherratt, K., 2021. The potential health and economic value of SARS-CoV-11062 vaccination alongside physical distancing in the UK: a transmission model-based future scenario analysis1107and economic evaluation. The Lancet Infectious Diseases.
- 1108Scalia Tomba G, Svensson A, Asikainen T, and Giesecke J. Some model based considerations on observing1109generation times for communicable diseases. Mathematical Biosciences, 223(1): 24-31, 2010.
- 1110Scarabel F, Pellis L, Ogden NH, Wu J. A renewal equation model to assess roles and limitations of contact tracing1111for disease outbreak control, Royal Society Open Science, 8:202091 http://doi.org/10.1098/rsos.202091
- 1112Shea, K., Tildesley, M.J., Runge, M.C., Fonnesbeck, C.J. and Ferrari, M.J., 2014. Adaptive management and the1113value of information: learning via intervention in epidemiology. *PLoS Biol, 12*(10), p.e1001970.
- 1114 Shmueli G. "To Explain or to Predict?." Statist. Sci. 25 (3) 289 310, 2010. https://doi.org/10.1214/10-STS330

- Slater HC, Okell LC, Ghani AC. Mathematical modelling to guide drug development for malaria elimination. Trends
 in parasitology. 2017 Mar 1;33(3):175-84.
- 1117Smith, R.D., Keogh-Brown, M.R., Chico, R.M., Bretscher, M.T., Drakeley, C. and Jensen, H.T., 2020. Will More of the1118Same Achieve Malaria Elimination? Results from an Integrated Macroeconomic Epidemiological1119Demographic Model. The American journal of tropical medicine and hygiene, 103(5), pp.1871-1882.
- Soltesz, K., Gustafsson, F., Timpka, T. et al. The effect of interventions on COVID-19. Nature 588, E26–E28 (2020).
 https://doi.org/10.1038/s41586-020-3025-y
- 1122SPI-B. SPI-B. Increasing adherence to COVID-19 preventative behaviours among young people [Internet]. London,1123united Kingdom: Scientific Advisory Group for Emergencies; 2020 Nov [cited 2021 Mar 2]. Available from:1124https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/9331125228/S0829 SPI-B Increasing adherence to Covid-112619 preventative behaviours among young people.pdf
- 1127Sprague DA, House T. Evidence for complex contagion models of social contagion from observational data. Gómez1128S, editor. PLOS ONE. 2017 Jul 7;12(7):e0180802.
- 1129Teunis PF, Van Eijkeren JC, Ang CW, van Duynhoven YT, Simonsen JB, Strid MA, van Pelt W. Biomarker dynamics:1130estimating infection rates from serological data. Statistics in medicine. 2012 Sep 10;31(20):2240-8.
- 1131Teslya A, Pham TM, Godijk NG, Kretzschmar ME, Bootsma MCJ, Rozhnova G. (2020) Impact of self-imposed1132prevention measures and short-term government-imposed social distancing on mitigating and delaying a1133COVID-19 epidemic: A modelling study. PLOS Medicine 17(7): e1003166.1134https://doi.org/10.1371/journal.pmed.1003166
- 1135The National Institute for Public Health and the Environment (RIVM, The Netherlands). Applying behavioural1136science to COVID 19. https://www.rivm.nl/en/novel-coronavirus-covid-19/research/behaviour. Accessed113715 April 2021.
- 1138Thompson RN et al. 2019 Improved inference of time-varying reproduction numbers during infectious disease1139outbreaks. Epidemics 19, 100356. (doi:10.1016/j.epidem.2019.100356).
- 1140Thompson RN, Hollingsworth TD, Isham V, Arribas-Bel D, Ashby B, Britton T, Challenor P, Chappell LH, Clapham H,1141Cunniffe NJ, Dawid AP, et al. Key questions for modelling COVID-19 exit strategies. Proceedings of the1142Royal Society B. 2020 Aug 12;287(1932):20201405.
- 1143Thompson, R.N., Cobb, R.C., Gilligan, C.A. and Cunniffe, N.J., 2016. Management of invading pathogens should be1144informed by epidemiology rather than administrative boundaries. *Ecological modelling*, 324, pp.28-32.
- 1145 Thompson, R.N., 2020b. Novel coronavirus outbreak in Wuhan, China, 2020: intense surveillance is vital for 1146 preventing sustained transmission in new locations. *Journal of Clinical Medicine*, *9*(2), p.498.
- Tildesley, M.J., Savill, N.J., Shaw, D.J., Deardon, R., Brooks, S.P., Woolhouse, M.E., Grenfell, B.T. and Keeling, M.J.,
 2006. Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the
 UK. *Nature*, 440(7080), pp.83-86.
- 1150Tildesley, M.J., House, T.A., Bruhn, M.C., Curry, R.J., O'Neil, M., Allpress, J.L., Smith, G. and Keeling, M.J., 2010.1151Impact of spatial clustering on disease transmission and optimal control. Proceedings of the National1152Academy of Sciences, 107(3), pp.1041-1046.
- 1153Todd A, Bambra C. Learning from past mistakes? The COVID-19 vaccine and the inverse equity hypothesis. Eur J1154Public Health. 2021 Feb 1;31(1):2–2.
- 1155UNAIDS, 90–90–90 An ambitious treatment target to help end the AIDS epidemic, 1 January 2017, available at:1156https://www.unaids.org/sites/default/files/media_asset/90-90-90 en.pdf
- Viana, J., van Dorp, C.H., Nunes, A. et al. Controlling the pandemic during the SARS-CoV-2 vaccination rollout. Nat
 Commun 12, 3674 (2021). https://doi.org/10.1038/s41467-021-23938-8
- Victora CG, Joseph G, Silva ICM, Maia FS, Vaughan JP, Barros FC, et al. The Inverse Equity Hypothesis: Analyses of
 Institutional Deliveries in 286 National Surveys. Am J Public Health. 2018 Apr;108(4):464–71.
- 1161Wallinga J, Teunis P. 2004 Different epidemic curves for severe acute respiratory syndrome reveal similar impacts1162of control measures. Am. J. Epidemiol. 160, 509–516. (doi:10.1093/aje/kwh255).

- Wallinga J, van Boven M, Lipsitch M. Optimizing infectious disease interventions during an emerging epidemic.
 Proceedings of the National Academy of Sciences. 2010 Jan 12;107(2):923-8.
 https://doi.org/10.1073/pnas.0908491107
- Weerasuriya, C.K., Harris, R.C., Quaife, M., McQuaid, C.F., White, R.G. and Gomez, G.B., 2021. Affordability of
 Adult Tuberculosis Vaccination in India and China: A Dynamic Transmission Model-Based
 Analysis. *Vaccines*, 9(3), p.245.
- 1169 Wilson SL, Wiysonge C. Social media and vaccine hesitancy. BMJ Glob Health. 2020 Oct;5(10):e004206.
- 1170World Health Organization, 2020. Technical information note: WHO recommended criteria for declaring the end of1171the Ebola virus disease outbreak. 2020. Available here:1172https://reliefweb.int/sites/reliefweb.int/files/resources/who-recommended-criteria-for-declaring-the-1173end-of-the-ebola-virus-disease-outbreak.pdf
- 1174 World Health Organization. "Tuberculosis patient cost surveys: a handbook." (2017). Available at: 1175 https://www.who.int/tb/publications/patient_cost_surveys/en/. Accessed on 15/4/2021.
- 1176Xiang W, Swallow B, (2021) Multivariate spatio-temporal analysis of the global COVID-19 pandemic, medRxiv11772021.02.08.21251339; doi: https://doi.org/10.1101/2021.02.08.21251339
- 1178Xue, Y., Kristiansen, I.S. and de Blasio, B.F., 2012. Dynamic modelling of costs and health consequences of school1179closure during an influenza pandemic. BMC Public Health, 12(1), pp.1-17.
- 1180Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, Wu Q, Merler S, Viboud C, Vespignani A, Ajelli M, Yu H.1181Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 29 Apr 2020:1182eabb8001 doi: 10.1126/science.abb8001
- 1183
- 1184