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Abstract 52 

Mathematical modelling and statistical inference provide a framework to evaluate different non-53 

pharmaceutical and pharmaceutical interventions for the control of epidemics that has been 54 

widely used during the COVID-19 pandemic. In this paper, lessons learned from this and previous 55 

epidemics are used to highlight the challenges for future pandemic control. We consider the 56 

availability and use of data, as well as the need for correct parameterisation and calibration for 57 

different model frameworks. We discuss challenges that arise in describing and distinguishing 58 

between different interventions, within different modelling structures, and allowing both within 59 

and between host dynamics. We also highlight challenges in modelling the health economic and 60 

political aspects of interventions. Given the diversity of these challenges, a broad variety of 61 

interdisciplinary expertise is needed to address them, combining mathematical knowledge with 62 

biological and social insights, and including health economics and communication skills. 63 

Addressing these challenges for the future requires strong cross-disciplinary collaborations 64 

together with close communication between scientists and policy makers.  65 

 66 
  67 
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1 Introduction   68 

In the first two decades of the 21st century, we have witnessed several outbreaks of infectious diseases 69 

that expanded across several continents (SARS, Zika, MERS), caused a large number of deaths (Ebola), or 70 

grew out to a pandemic (influenza 2009, SARS-CoV-2). By far the largest impact on humanity can be 71 

attributed to the ongoing SARS-CoV-2 pandemic, that has affected almost all countries in the world in 72 

ways unimaginable before the year 2020. All these outbreaks required significant efforts in mitigation 73 

and control measures, since they caused millions of deaths worldwide and had enormous economic and 74 

social impacts.  75 

  76 

From the start of the SARS-CoV-2 pandemic, mathematical modelling has played a key role in supporting 77 

policy makers in their decisions about control measures. Politicians and society alike have looked to 78 

modellers to provide them with predictions about the future course of the pandemic, with assessments 79 

of which interventions should work and with guidance for how to interpret the developing numbers of 80 

cases, hospitalizations, and deaths [McBryde et al 2020]. This puts a large responsibility to those who 81 

develop mathematical models and analyse intervention strategies. Fortunately, there is a well-82 

established toolbox for infectious disease modelling, based on the pioneering work of Kermack and 83 

McKendrick and many following generations of mathematical modellers [Diekmann et al 2012]. The 84 

theory of infectious disease dynamics described in terms of differential equations is grounded in 85 

dynamical systems theory, and has led to the development of key concepts such as the basic 86 

reproduction number. Nevertheless, there remain challenges for modelling of infectious diseases and 87 

interventions, many of which became clearly visible during the unfolding pandemic of SARS-CoV-2 88 

[Thompson et al 2020] and are discussed in detail in Marion et al (Ch 06).  89 

  90 

Modelling can be useful in assessing impact of interventions, with three modelling approaches widely 91 

used: compartmental models (deterministic or stochastic), network models (either static or dynamic), 92 

and individual (or agent) based micro-simulation models, in which individual agents and their 93 

interactions are simulated as a stochastic process. These approaches differ in the amount of information 94 

about individuals and their contacts that is included ranging from very explicit in individual based 95 

models to aggregated in compartmental models. In network models details of the contact structure is 96 

taken into account, while individuals still may be alike with respect to other features. While individual 97 

based models seem to be most realistic, they require information on many more parameters and are 98 

mostly not amenable to mathematical analysis. Compartmental models on the other hand are more 99 

readily parameterized, but may lack the level of detail needed to answer policy related questions.  100 

Another important issue, that is especially relevant for assessing non-pharmaceutical interventions (NPI) 101 
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relying on changes of contact networks and their transmissibility, is that all approaches have major 102 

drawbacks in addressing structural aspects on a level between the individual and population levels. We 103 

need to understand better the mesoscopic level, if we really want to assess the impact of interventions 104 

such as social distancing, closing of schools and workplaces, contact tracing, and travel restrictions on 105 

epidemic spread. While it is possible to describe the contact network in all details in an individual based 106 

model, it is time consuming to perform extensive model analysis including sensitivity analyses. For 107 

network models, some theoretical results are available, but mostly for networks with structure that 108 

does not properly reflect real contact patterns. Finally, with compartmental models it is hard to take 109 

correlations between connected individuals into account without generating an exploding number of 110 

equations.  111 

  112 

Thus, the overriding challenge as with all modelling is to find models that are complex enough to 113 

reflect sufficient details of the system, but simple enough not to get lost in the jungle of details. 114 

Ideally, we need tools to describe exactly the structures of interest in a generic way, i.e., such that one 115 

can draw conclusions that are valid for a large range of parameter values and situations.  116 

 117 

In application of modelling interventions for policy support, the main challenge is the need to clearly 118 

define objectives and aims of modelling in interaction with policy makers, who typically consult 119 

mathematical modellers to determine any intervention strategies that may need to be introduced in 120 

order to minimise the impact of an ongoing epidemic [Grimm et al 2020].  In such circumstances, it is 121 

vital that policy makers define what they consider the main aims of interventions, or more technically, 122 

the objective function that they are looking to minimise [e.g. Gösgens et al 2021]. For human 123 

pathogens, the objective may be simply to minimise the number of individuals getting sick or dying from 124 

infection, whilst for livestock or plant crop diseases, it may be important to minimise the direct cost of 125 

an outbreak to the agricultural industry. The aim of an intervention, which may also change over time, 126 

can often critically affect which control policy is deemed optimal.   127 

 128 

In this paper, we reflect on what the above challenges mean for various aspects of mathematical 129 

modelling of interventions, e.g., for data collection and availability, for biological parameters that affect 130 

intervention effectiveness, for the social structure leading that may be targeted by interventions, and 131 

for the economic impact of intervention measures (Figure 1). We build on progress since publication of 132 

an earlier series of challenges paper [Lloyd-Smith et al 2015], and delineate challenges that remain or 133 

have emerged since. One of the main challenges that was addressed by Funk et al [2015], namely 134 

incorporating behaviour into mathematical models, had proven to be crucial during the SARS-CoV2 135 
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pandemic, but also challenges around vaccination [Metcalf et al 2015] and around emergence of 136 

pathogens [Gog et al 2015] are highly relevant. We hope to give inspiration to future generations of 137 

mathematical modellers who might be faced with dealing with a future pandemic and are struggling to 138 

give good advice to policy makers on which interventions may be effective in a given situation.  139 

 140 

 141 

 142 
Figure 1: Relationships between interventions and methodological aspects. 143 

 144 

 145 

2 Data challenges relating to interventions in a future epidemic  146 

Biological characteristics and transmission routes strongly determine which interventions could be 147 

effective, and on which time scale interventions should be rolled out. Usually, data are scarce at the 148 

onset of the epidemic, but for various types of data the challenges remain in the later stages. Here we 149 

focus on data challenges related to modelling interventions, though other data challenges can emerge 150 

during an epidemic [cf Ch 06 and Ch 08]. 151 

 152 
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2.1 Biological data 153 

Transmission models require key biological parameters, such as the duration of infectious period, 154 

infectivity of symptomatic and asymptomatic cases, and case fatality ratios. Intervention planning can 155 

then explore how changes to these model parameters influence future epidemic trajectories. However, 156 

not only are fundamental biological data scarce during the initial phase of an epidemic, but they are also 157 

affected by  biases because of their dependence on uncertain information obtained from reported cases 158 

and surveillance data. Moreover, time interval distributions are sensitive to truncation and censoring 159 

biases, since data are collected while the epidemic is expanding [Scalia Tomba 2010, Park et al. 2020]. In 160 

later phases, identified cases still depend heavily on the adopted surveillance strategy, and parameters 161 

like time interval distributions are potentially affected by the intervention measures. Designing data 162 

collection studies that overcome these biases, or statistical methods that account for them, remain 163 

fundamental issues for obtaining reliable parameter estimates. 164 

 165 

2.2 Surveillance data  166 

Surveillance data (e.g., case notifications, hospitalisations, and mortality) represent the most direct 167 

monitoring tools of an ongoing epidemic. These data are used to estimate biological parameters, 168 

monitor the prevalence and severity of the disease, and calibrate transmission models that evaluate the 169 

impact of interventions. Regarding model calibration, special consideration should be given as to 170 

whether to use case notification, hospitalisation, or mortality data, or some combination of these. All 171 

empirical datasets may contain potential biases, depending on how they are assembled. Whilst case 172 

notification data may be sufficiently informative for pathogens with a low proportion of asymptomatic 173 

cases, such as the severe acute respiratory syndrome (SARS), they pose challenges for pathogens like 174 

SARS-CoV-2, characterised by a high proportion of unreported asymptomatic or mildly symptomatic 175 

cases. Testing protocols may change significantly during the epidemic, which can further disrupt fitting 176 

transmission models to cases data. 177 

 178 

Hospital data tend to be more reliable because hospital-seeking behaviour is less likely to change over 179 

time, and are therefore used ubiquitously in modelling studies [Di Domenico et al 2020, Rozhnova et al 180 

2021, Viana et al 2021, Funk et al 2021]. However, the potential overwhelming of the healthcare system 181 

and an evolving understanding of when to seek medical attention might shift during a pandemic. 182 

Moreover, despite being routinely collected by hospitals, hospital data are rarely publicly available and, 183 

especially at the beginning of the epidemic, they are often not aggregated at a national scale. Designing 184 

protocols of data collection and aggregation into publicly available datasets, together with strategic 185 

margins of flexibility so that the protocols could be promptly adapted to the ongoing outbreak, could 186 
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partially mitigate these biases. This would provide a framework that ensures consistency in data 187 

collection from the beginning of the outbreak [cf Ch 08] 188 

 189 

A further challenge when using surveillance data is that they are inevitably lagged relative to 190 

infections, upon which interventions aim to act, due to the concatenation of incubation period and 191 

test- or care-seeking behaviour. Understanding these lags is vital when designing intervention timelines 192 

for two main reasons: first, to avoid severe consequences when the effect of an intervention manifests 193 

itself in the surveillance data only after a consistent delay [Pellis et al 2020]; second, to facilitate their 194 

later assessment. Gradual changes in policies can ensure windows of opportunity for disentangling the 195 

effect of different interventions and evaluating their effectiveness. 196 

 197 

For pathogens with high proportions of unascertained infections, models fitted only to surveillance data 198 

may not be sufficient to estimate the true incidence or prevalence. Here, seroprevalence data become 199 

fundamental to calibrate the models [Rozhnova et al 2021, Viana et al 2021] or, where available, 200 

community infection surveys. Moreover, longitudinal seroprevalence data, and individual data on the 201 

duration and extent to which prior infection confers protection against future infections, are required to 202 

investigate the impact of interventions on longer timescales. However, during initial stages of an 203 

epidemic these data are usually available for either relatively short observation periods, small sample 204 

sizes, or selected populations. A further challenge in using seroprevalence data can be due to the 205 

sensitivity of serology to identify individuals with prior infection. For example, there is growing evidence 206 

that SARS-CoV-2 antibodies may be below the level of detection for persons who experienced 207 

asymptomatic or mild infections [Burgess et al 2020], and that antibody levels decline over time. 208 

Additionally, it is not clear to what extent a negative serological result denotes lack of immunity. 209 

Tackling these challenges is vital for modelling interventions in the long term. 210 

 211 

When designing interventions, it is important to understand transmission within different settings. 212 

Genetic sequencing data can facilitate investigation of outbreaks by reconstructing potential 213 

transmission trees, e.g., to discriminate within-household transmission from between-household 214 

transmission [cf Ch 06 and Ch 07], or identify nosocomial transmission. Genetic sequencing is also 215 

important for monitoring the emergence of novel variants, which may adversely affect intervention 216 

policies, through, for example, increased transmission or vaccine escape mutations. Genetic sequencing 217 

capacity is and will likely remain in the future highly heterogeneous across countries, as manifested 218 

during the COVID-19 pandemic. This can skew the observation of any new variants of concern, leading 219 

to delays in identifying and adapting to novel variants. 220 
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 221 

2.3 Behavioural and adherence data 222 

Scenario simulations exploring the impact of interventions require data on people’s behaviour and 223 

changes thereof as a response to interventions. For sexually transmitted pathogens, the relevant 224 

measure is the number of sexual partners per unit of time, but also partnership duration, concurrent 225 

partnerships [Morris 1997] and mixing between population subgroups with different sexual risk 226 

behaviour can be important quantities [Rozhnova et al 2016, Erens et al]. For airborne diseases, an 227 

individual’s behaviour is measured by the number of transmission-relevant contacts a person has per 228 

day in a specific setting. The baseline age-dependent mixing patterns of contacts relevant for airborne 229 

transmission are available for a few countries [Mossong et al 2008] and have been projected for other 230 

countries for which social contact data are not available [Prem et al 2017, Mistry et al 2021]. There are 231 

fewer contact data sources when it comes to the impacts that different interventions might have on 232 

mixing. As part of the response to COVID-19, several countries have conducted contact surveys during 233 

different stages of the pandemic [Backer et al 2020, Jarvis et al 2020, Zhang et al 2020], which have 234 

been used successfully in modelling studies [Rozhnova et al 2021, Kucharski et al 2020]. However, in the 235 

absence of setting-specific contact matrices assessed at different time points during an ongoing 236 

epidemic, model simulations must involve assumptions that may influence model predictions.  237 

 238 

Understanding adherence to regulations is vital in evaluating past and designing future interventions. 239 

However, adherence data may be challenging to obtain. Partially to address this issue, the SARS-CoV-2 240 

pandemic has showcased the importance of digital resources (such as contact tracing or health 241 

reporting apps). These tools allow the collection of large amounts of data while minimising delays in 242 

collection, and are widely accessible by many portions of society [Colizza et al 2020]. However, they 243 

have also revealed a strong hesitancy by many users mainly due to data privacy concerns [Blasimme et 244 

al 2020]. Where government apps may struggle with public confidence, private health apps could help 245 

to fill the void. Throughout the COVID-19 pandemic, various health apps have attempted to collect data, 246 

such as symptom profiles, adherence data, and public insights [Chidanbaram et al 2020].  247 

 248 

Another challenge with adherence data is that high adherence might not correlate with contact 249 

reduction for some portions of society: for instance, essential workers might report high adherence to 250 

social distancing measures, while still performing most of their usual activities. Hence, surveys may be 251 

better focused on quantifying behaviour rather than adherence. Data collection apps and surveys 252 

strategically designed in collaboration between modellers, behavioural scientists, and statisticians may 253 

assume a fundamental role in planning behavioural data collection before, during, and after an 254 
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epidemic, to optimise the available data both for prospective planning and retrospective assessment of 255 

the effect of interventions [Salathe et al 2012]. Mobile telephone data [Grantz et al 2020; Oliver et al 256 

2020, Chang et al 2021] and mobility data [Google 2021] can also be leveraged to measure behavioural 257 

changes and adherence, and can be incorporated into transmission models. However, while the latter 258 

remain public, mobile telephone or airline data might not be accessible to all researchers. Wider 259 

accessibility to local and global mobility data might become a fundamental support to models for 260 

future pandemics. Even with wider accessibility, a challenge still remains here pertaining to finding 261 

the acceptable level of aggregation that balances out privacy issues whilst accurately informing 262 

models of mobility patterns.  This is also discussed in Ch 07. 263 

 264 

2.4 Vaccination data 265 

Vaccinations and treatments are key interventions for managing disease outbreaks. However, these are 266 

often not available at the start of a pandemic and need to be developed throughout its course (for 267 

example Ebola and COVID-19). When modelling the rollout of such interventions, their effectiveness has 268 

to be estimated as quickly as possible. In addition to the challenges involved in designing studies to 269 

estimate vaccine efficacy in the context of an evolving pandemic [cf Ch 04a], the way the data are 270 

collected and recorded also present challenges [Lipsitch 2020]. For example, vaccination data linked 271 

with other health care data or age-stratified vaccination data may not be readily available, thus limiting 272 

the opportunity to estimate the impact of the vaccine deployment on symptoms, transmission, risk of 273 

hospitalisation and death across different age groups. Finally, the uptake of vaccination is of utmost 274 

importance when assessing the impact of vaccination as increasing vaccine hesitancy has been shown to 275 

hamper the success of vaccination programmes in the past. Data quantifying vaccine hesitancy would 276 

be vital for modelling vaccine impact (Ch 08). Modelling the spread of vaccine hesitancy, such as 277 

through social media networks, may inform what type of data needs to be collected to account for 278 

vaccine hesitancy in models.    279 

 280 

3 Challenges in developing a theoretical framework for understanding 281 

intervention impact 282 

3.1 Epidemiological distributions and within-host dynamics 283 

One of the most common theoretical frameworks for understanding transmission is compartmental 284 

modelling, in which individuals are grouped according to their infection and/or symptom status [Keeling 285 

and Rohani 2011]. Deterministic or stochastic compartmental models can be used to represent 286 

epidemic dynamics, and the impacts of interventions can be assessed by making relevant adjustments 287 

to the model (e.g., altering the values of model parameters or including new compartments). Standard 288 
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compartmental models are based on the assumption that individuals remain in compartments for 289 

exponentially distributed periods, while Gamma or Lognormal distributions often provide more 290 

accurate fits to data. Similarly, infectivity may be variable during the infectious period, which can be 291 

accounted for using age of infection models that assume continuous “infectivity curves” [Handel et al 292 

2013, Diekmann et al 2021], sometimes approximated using multiple compartments of infectious 293 

individuals [Cunniffe et al 2012, Hart el al 2020]. Although these elements of a framework for describing 294 

epidemics based on realistic biological distributions exist, and relationships between distributions of 295 

epidemiological time periods and key epidemiological parameters (e.g., reproduction numbers and 296 

epidemic growth rates) are well known, the challenge remains to integrate these components into 297 

flexible and readily available epidemiological modelling tools that can be adapted for specific 298 

epidemics.  299 

 300 

Similar arguments hold for the task of incorporating waning immunity or partial immunity in 301 

compartmental models [Heffernan and Keeling 2009]. Boosting and waning of immunity is often 302 

included by distinguishing various levels of immunity and transitions between these levels. An 303 

alternative approach is to model waning immunity as an exponential decay process with boosting 304 

events as jumps in the immunity level [Diekmann et al 2018]. Combining within-host modelling of the 305 

immune system with between-host modelling of transmission dynamics to assess impact of 306 

interventions is an area for further research.  A related challenge is to develop a framework to allow 307 

interpretation of serological data collected in populations to assess the impacts of interventions 308 

[Teunis et al 2012, Hens et al 2012].   309 

 310 

3.2 Time scales and geographical scales 311 

Another challenge is to design interventions in which the scale of interventions is matched with the 312 

scale of transmission, both geographically and temporally. Assessments of interventions sometimes rely 313 

on simple models that do not account explicitly for the geographical or spatial scale of transmission. For 314 

example, the level of vaccination required to achieve herd immunity is often stated, but standard 315 

approximations assume that the population is well-mixed. The time-dependent reproduction numbers 316 

can be tracked to assess the effectiveness of interventions and the level of interventions required to 317 

bring an epidemic under control [Wallinga and Teunis 2004, Cori et al 2013, Thompson et al 2019], but 318 

are delayed by generation time intervals.  319 

 320 

While the effects of some interventions may not depend on the spatial scale of transmission - for 321 

example, population-wide strategies such as nationwide social distancing measures - the effectiveness 322 



11 
 

of many localised measures that seek to bring a newly invading pathogen under control depends 323 

critically on the relationship between the geographical and temporal scale of transmission and the 324 

equivalent geographical and temporal scale of the interventions. The importance of matching the 325 

spatial scale of interventions to the spatial scale of transmission has been demonstrated clearly using 326 

epidemiological models of foot and mouth disease epidemics, for which the scales over which to 327 

implement culling [Keeling et al 2001, Ferguson et al 2001, Tildesley et al 2010] and reactive vaccination 328 

strategies [Tildesley et al 2006] have been considered.  329 

 330 

For epidemics in human populations, the choice of interventions to introduce involves balancing the 331 

benefits in terms of disease reduction against the costs (see Introduction), including economic costs and 332 

health harms due to intense measures [Xue et al 2012, Sandmann et al 2021]. As a result, localised 333 

interventions such as the introduction of tiers [Davies et al 2021; Viana 2021] have the potential to lead 334 

to successful disease control without entire populations being placed under severe restrictions. When 335 

considering the optimal spatial extent of tiers, the spatial scale of transmission of the pathogen should 336 

be considered, accounting for the movement of individuals between tiers. Of particular importance is 337 

the insight that introducing restrictions along local authority borders may not provide the optimal 338 

balance between benefits and costs [Thompson et al 2016]. 339 

 340 

Similarly, the introduction of interventions, as well as the duration over which interventions must be 341 

maintained, depends on the timescale of transmission. This in turn depends on the duration of 342 

epidemiological periods (see above), and human behaviour plays a key role. When a pathogen first 343 

invades a new location, a timely response is critical to reduce the risk that initial cases of disease spark a 344 

large epidemic [Thompson et al 2020b]. If interventions are instead introduced after several generations 345 

of infection have occurred, then containment may be impossible. At the opposite end of an epidemic, it 346 

is only possible to declare an epidemic over with confidence once a sufficient interval has passed since 347 

the “final case” [Nishiura et al 2016]. As an example, Ebola epidemics are declared over by the World 348 

Health Organization and interventions are relaxed once a period of 42 days has passed without any new 349 

probable or confirmed case, which is twice the length of an approximate maximal incubation period 350 

[World Health Organization, 2020] and should ensure a low probability that active cases are still 351 

present.  As a result, matching both the spatial and temporal scales of interventions to the analogous 352 

epidemiological scales is a critical aspect of many disease control strategies [Gilligan et al 2007, Filipe et 353 

al 2012, Cunniffe et al 2015]. 354 

 355 

3.3 Multiple strains and evolution 356 
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Interventions affect pathogen evolution in two key ways: by changing (typically increasing) the selection 357 

pressure on the pathogen, and by altering (typically decreasing) mutation supply. When there is a 358 

plentiful supply of susceptible hosts, the selection pressure is relatively weak, and when there is a 359 

limited supply the selection pressure is relatively strong. Mutation supply is generally proportional to 360 

the number of infections. Interventions such as social distancing and vaccination can therefore increase 361 

the selection pressure for new variants, while simultaneously reducing mutation supply. Since the rate 362 

of pathogen adaptation depends on the balance between mutation supply and selection pressure, 363 

interventions may decrease cases in the short-term while increasing the likelihood that new variants will 364 

emerge. An important challenge involves analysing evidence for evolutionary changes during epidemics 365 

[Day et al 2020] and quantifying the net risk of emergence of novel pathogen variants under 366 

interventions given these trade-offs [Cobey et al 2021].  367 

 368 

Modelling of interventions typically focuses on epidemiological impacts on infections and mortality, 369 

without considering potential evolutionary consequences. This may lead to strategies, where short-term 370 

reductions in infections or mortality may come at the cost of higher infections or mortality over the 371 

longer-term due to pathogen evolution. For example, from a short-term perspective it may be desirable 372 

to prioritise vaccinations for those who are most vulnerable to disease, but this may increase the 373 

likelihood of a vaccine-escape variant significantly [Saad-Roy 2021]. This may be the case if vaccines do 374 

not block transmission entirely and if vulnerable hosts are not the individuals who contribute most to 375 

transmission [Gog et al 2021]. 376 

 377 

Some patterns are intuitive. For example, introducing a vaccine when prevalence (and hence mutation 378 

supply) is high is more likely to lead to a vaccine-escape variant emerging than when prevalence is low. 379 

However, the extent to which one must use NPIs to reduce cases while rolling out vaccinations to 380 

achieve substantial reductions in the risk of vaccine escape, or the order in which to vaccinate groups, 381 

requires more detailed modelling. Over the longer-term, if a pandemic pathogen transitions to an 382 

endemic state, then immune pressure from the host population may lead to diversification into a 383 

number of coexisting variants [Buckee et al 2011], or successive variants emerging over time [Gupta et 384 

al 1998]. Modelling the transition to endemicity may therefore require a multi-strain framework. 385 

 386 

Multi-strain frameworks can help to quantify both the likelihood and timescales over which new 387 

variants may emerge, and hence how interventions should be designed to limit opportunities for 388 

pathogen adaptation. Given that newly emergent strains are by definition rare, stochasticity is likely to 389 

play an important role in the probability that a new variant will go extinct even if it has above average 390 
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fitness. While general theory exists to understand the effects of stochasticity on rates of adaptation, a 391 

key challenge is to translate modelling theories about pathogen evolution under interventions to 392 

policies for specific epidemics. 393 

 394 

3.4 Interventions in different epidemic phases 395 

Interventions have the potential for significant impact early in an outbreak and decision-makers may 396 

not be able to wait for uncertainties to be resolved before introducing control measures. A challenge is 397 

to make models that are simple and robust, so that quick decisions can be supported even if precise 398 

predictions are not possible.  Deciding between two candidate interventions may be possible without 399 

being able to assess their exact impacts in terms of precise numbers of future cases. Of course, a policy 400 

that is introduced at an early stage may not be truly optimal, so it is important to adopt adaptive 401 

approaches to decision-making and fine tune any response as more information becomes available 402 

[Shea et al 2014, Atkins et al 2020]. Also, characteristics of people most affected by an epidemic may 403 

change as the epidemic takes its course and reaches different strata of a population.  404 

 405 

As an epidemic progresses, and more data become available, interventions may have a more limited 406 

effect since containment is then impossible. Additionally, a policy that may have seemed optimal when 407 

data were scarce may no longer prove to be most effective. The ability to resolve uncertainty itself may 408 

also depend upon the initial interventions that are chosen. An intense policy of suppression in the early 409 

stages may appear optimal to minimise the short-term impact of an outbreak, but this may also lead to 410 

a protracted period in which model parameters cannot be resolved, given the resultant small number of 411 

initial cases. Meanwhile a less intense initial policy, whilst not optimal in the short term, may lead to 412 

faster parameter resolution and the ability to switch to a preferred policy sooner, once uncertainty is 413 

resolved. While ethical considerations such as an individual’s right to treatment must be prioritised over 414 

allowing a pathogen to spread without interventions, there is a need to develop approaches for 415 

estimating impacts of interventions that are in place and resolving uncertainty to establish the 416 

optimal long-term control policy. As described in the Introduction, identifying the optimal policy 417 

requires the objective function for the ongoing epidemic to be defined clearly. 418 

 419 

4 Challenges in modelling pharmaceutical interventions and prevention   420 

4.1 Vaccination 421 

Vaccination [see also Ch 4a] is a pharmaceutical intervention of primary importance, as it allows 422 

conferring protection against infection and/or disease to individuals in a safe and controlled way. 423 

Mathematical models can be used to evaluate the effectiveness of vaccination and inform the design of 424 



14 
 

optimal vaccination strategies in terms of feasibility, costs, and disease burden [Matrajt et al 2020, 425 

Bubar et al 2021]. Questions that have been particularly acute during the SARS-CoV-2 pandemic include 426 

how to inform optimal vaccination policies under a dynamic and quickly evolving vaccine landscape, 427 

involving: (i) uncertain or unknown efficacy of vaccine against infection and disease (e.g. reduction in 428 

risk of infection, hospitalisation or death, as well as in the chance of onward transmission); (ii) delivery 429 

of multiple recommended doses, raising questions on whether a broader distribution of less-protective 430 

single-dose vaccination is better than delivery of multiple doses to fewer individuals and, if so, how far 431 

apart from each other [Hill and Keeling 2021, Saad-Roy et al 2021]; (iii) simultaneous use of multiple 432 

vaccines with different properties, which, on the one hand, might shape the evolutionary landscape, 433 

and, on the other hand, opens up questions about the consequences of mixing and matching doses 434 

from different vaccines; (iv) possible evolution of vaccine escapes that become dominant and 435 

potentially shape other simultaneous interventions [Saad-Roy et al 2021, and Section 3.4].  436 

A fundamental modelling challenge is informing vaccine prioritisation and allocation when vaccine 437 

effectiveness and contact structure are highly heterogeneous. Possible allocation strategies may differ 438 

substantially in their target such as prioritisation by age or risk group [Wallinga et al 2010, Viana et al 439 

2021, Bubar et al 2021], and specific strategies like ring immunisation may be considered for specific 440 

diseases [Kucharski et al 2016, Kretzschmar et al 2004]. Mathematical models should ideally be able to 441 

compare different allocation strategies based on the different stratification of the population. However, 442 

models encapsulating all the required complexities are often too detailed to parameterise robustly, and 443 

rather multiple simpler models are used that capture only a part of the desired heterogeneities. 444 

 445 

If a certain amount of vaccine is available before the outbreak starts, the following spread can still be 446 

described by an epidemic model with constant parameters, more amenable to mathematical 447 

tractability. However, with new emerging pathogens, vaccines are typically developed and distributed 448 

while the outbreak is ongoing, raising further challenges during the transient vaccination phase. Indeed, 449 

mathematical models should capture the dynamic vaccine deployment and distribution, which is often 450 

spread over a long time period, and untangle the effect stemming from vaccination compared to the 451 

effect from NPIs or lockdowns [Moore et al 2021, Jentsch et al 2021, Viana et al 2021]. These challenges 452 

come on top of the inevitable aforementioned uncertainty in vaccine efficacy, which might improve 453 

over time, as well as the specific distribution policy and the uncertainty in underlying changes in contact 454 

patterns and transmission. The issues related to vaccination are not confined to the mass-vaccination 455 

campaign during the outbreak itself, but extend also in the later phase, when long-term vaccination 456 

strategies must be investigated in order to face a potential endemic phase of the disease. Booster 457 
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vaccination sometime after the second dose, or indeed the need for a yearly vaccination analogous to 458 

the seasonal vaccination are possible options for the future.  459 

 460 

4.2 Treatment as prevention 461 

Treatment of an infectious disease firstly benefits the patient, who gets the treatment, but often also 462 

impacts transmission by reducing the duration of an infection, infectiousness [Cohen et al 2011] or 463 

both. Therefore, in modelling interventions, we are interested in how application of a treatment in a 464 

large part of the infected population influences the epidemic dynamics. An example of major public 465 

health relevance is HIV, where the strategy of “treatment as prevention” has been declared the major 466 

strategy that may lead to elimination of HIV in the long run. Strategic goals like the 90-90-90 goal 467 

formulated by WHO [UNAIDS 2017], which aims at 90 percent of infected persons knowing their HIV 468 

status, 90 percent of those starting antiretroviral treatment, and 90 percent of those being virally 469 

suppressed, is viewed as a step towards eradicating HIV globally. More recently, the WHO strategy has 470 

been updated to the 95-95-95 goal, with HIV elimination as a target on the horizon. The rationale is that 471 

treatment reduces the viral load to undetectable levels and with that stops further transmission. 472 

Mathematical modelling has been used to assess whether this strategy is sufficient to achieve 473 

elimination of HIV in the foreseeable future [Granich et al 2009; Eaton et al 2012]. Apart from treatment 474 

of infected persons, also pre-exposure prophylaxis (PrEP) is used to prevent transmission to susceptible 475 

persons and influences the epidemic dynamics of HIV.  476 

 477 

For other infectious diseases for which no vaccine is available, mass treatment is sometimes an 478 

intervention option. Mass drug administration has been tested as an intervention for vector-borne 479 

diseases [Mutapi et al 2017], sexually transmitted diseases like gonorrhoea and chlamydia [Korenromp 480 

et al 2000], and hepatitis C infection [Hill et al 2017]. However, these intervention programmes have not 481 

always been very successful, some of them because of development of resistance to antibiotics and 482 

antivirals, some of them because of lack of adherence to treatment regimens and difficulties in rolling 483 

out treatment in large parts of a population, or because of reinfection after treatment, as in the case for 484 

instance of hepatitis C infection [Lambers et al 2011].  485 

 486 

A challenge for mathematical modelling of treatment impact is to incorporate the mechanism with 487 

which treatment affects epidemic dynamics in an appropriate way into the model. How do treated 488 

people differ from untreated infected persons? What is the effect of treatment in different phases of 489 

the infectious period, and by how much is infectiousness lowered? Do treated persons have different 490 

contact patterns than untreated persons? Furthermore, if elimination is the goal, we are confronted 491 



16 
 

with the challenges of defining what we mean by elimination and how to model an infection at the 492 

point or elimination. It is clear that stochastic models are required, that can describe extinction 493 

properly, but which stochastic processes will govern the dynamics near extinction? When do we know 494 

that extinction has actually taken place? This question has been addressed in the context of polio 495 

[Eichner & Dietz 1996].  496 

 497 

An emerging challenge is how mathematical models can inform the design of pharmaceutical products 498 

in view of potential health crises. Mathematical models could explore the effect of pharmaceutical 499 

products on the disease dynamics at the population level, and help investigate to what extent sub-500 

optimal but generic drugs could contribute to the response to pandemics, or to virus elimination [Slater 501 

et al 2017]. Also, they could help to assess when during an emerging outbreak vaccines should best be 502 

used, and what are the trade-offs between fast production, effectiveness, and broadness/specificity of 503 

vaccines or drugs [Hollingsworth et al 2012].  504 

 505 

5 Challenges in modelling non-pharmaceutical interventions, human behaviour  506 

NPIs are measures used to control transmission of infection in the absence of vaccination or treatment. 507 

For a respiratory virus like SARS-CoV-2, these have included stay-at-home orders, closure of non-508 

essential workplaces, schools, hospitality and leisure facilities, limits on sizes of gatherings, border 509 

controls and travel restrictions, curfews and personal protective equipment (PPE) requirements (e.g., 510 

use of face masks). For a sexually transmitted infection, these may be condom use, having fewer sexual 511 

partners, or voluntary male circumcision. Some NPIs which reduce social mixing can be relatively 512 

untargeted, such as stay-at-home orders applied to the majority of the population. More targeted 513 

measures aim to reduce contacts among those most likely to be infectious, such as Test, Trace and 514 

Isolate policies (TTI). Others, like the use of PPE or condom use, work by reducing the risk of 515 

transmission per contact. Border controls and travel restrictions aim to limit the seeding of new 516 

infections internationally or across regions. Establishing baselines for comparison and defining the levels 517 

at which human behaviour should be included in models have previously been discussed [Eames et al, 518 

2015; Funk et al, 2015]. However, recent advances in data availability have highlighted the complex 519 

interplay of variability in human behaviour across socioeconomic and demographic scales. 520 

 521 

5.1 Heterogeneity of populations and contact networks 522 

Behavioural responses and engagement with NPIs and TTI will likely not be uniform across populations, 523 

over time and across different combinations of interventions. Models of NPIs, TTI and other 524 
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interventions should therefore capture uptake and adherence in order to assess possible effectiveness 525 

in practice. Analyses should consider interactions with other interventions (e.g. relationship between 526 

isolation take-up and work-at-home orders) and with operational parameters (e.g. testing uptake and 527 

booking delays), the potential for threshold effects, uptake along multiple steps in an intervention, 528 

potential trade-offs and compensatory behaviours, scales of adherence (e.g. a partial but incomplete 529 

reduction in non-essential contacts) and sustainability of adherence over time.  530 

   531 

There are important heterogeneities in capabilities across population groups to engage with 532 

interventions, which likely correlate with other risks of infection. These heterogeneities present 533 

challenges both in the interpretation of the relevant data, and in selecting the salient features for each 534 

model. Many settings have observed stark socioeconomic and ethnic inequalities across the population 535 

with respect to COVID-19 infection and mortality, some of which reflect long standing societal effects on 536 

vulnerability to severe disease and some of which reflect inequalities in exposure including the ability to 537 

physically distance (adhere to NPIs) and take up and adhere to isolation or quarantine notifications (SPI-538 

B, 2020). For instance, the ability to work from home is related to measures of socioeconomic 539 

deprivation and associated with probability of infection with SARS-CoV-2 [Pouwels et al., 2021, EMG 540 

Transmission Group, 2021]. The individuals, and the characteristics of their social contact networks, who 541 

are still working outside of the home and making out-of-household contacts during ‘lockdown’, are 542 

different from those who are able to reduce their contacts. They are likely to have larger household 543 

sizes or to work in high-contact roles or within non-policy adherent workplaces, with implications for 544 

how the contact network scales with implementation of NPIs and for what can be assumed about 545 

adherence to other interventions such as TTI [Public Health England, 2020].  546 

 547 

To understand the effectiveness of interventions, we need ways to model clustering of intervention 548 

uptake and adherence among individuals who might also cluster on the network of contacts, the 549 

potential transmission network. We can attempt to model these clusters either by including particular 550 

settings within the model, such as schools or workplaces with their own contact patterns, or via 551 

including particular classes of individuals. The modelling required to capture the transmission patterns 552 

will vary significantly depending on the degree of integration between the cluster and the wider 553 

community, e.g., an outbreak on a mostly closed campus (such as a university or factory with employee 554 

dormitories) will have a different impact than an outbreak in a high-risk work setting where employees 555 

return to their own homes daily.  556 

Despite the key modelling role in correctly embedding clusters into the community, beyond age 557 

classification, descriptions of social contacts by other population heterogeneities are often limited by 558 
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the availability of data, or pertain to a specific outbreak investigation that does not easily generalise 559 

[Section 2, behaviour]. These often do not account for compensatory/altered contact patterns as a 560 

result of an NPI seeking to limit infectious contacts, such as those deriving from informal childcare 561 

provision when schools are closed. 562 

 563 

Shared structural influences on uptake and adherence to interventions by neighbourhood or local 564 

area could lead to ‘pockets’ of high transmission and disease [Vitora et al., 2018, Todd et al., 2021]. 565 

Including indices of social deprivation in a structured population model, or levels of deprivation in a 566 

spatial model, can reflect socioeconomic influences on behavioural engagement with interventions 567 

[Section 2, adherence]. Household models might instead assume a higher probability of introduction of 568 

infection into the household, while accounting for the variable household sizes as they correlate with 569 

income. Agent-based models could explore the impacts of TTI or other such interventions according to 570 

the number of infectious contacts of each person, their personal adherence to interventions, and any 571 

changes to adherence based on the adherence of those around them.  All of these models would 572 

further benefit from knowing what proportion of contacts from a person within a cluster are also a part 573 

of the same cluster [Centola et al., 2010, Sprague et al., 2017]. Generalised modelling approaches to 574 

population heterogeneities have previously considered contact networks where the degree distribution 575 

of contacts captures this variability, though time-varying components in modified homogeneously 576 

mixing compartmental models can achieve similar effects [Bansal et al., 2007].  577 

 578 

Clustering in behaviours may result from a shared local environment, such as in areas where there are 579 

many individuals in insecure jobs without sick pay or arise via direct behavioural influences over a 580 

network of social relationships. The resultant patterns of clustering that this might produce and the 581 

effects on transmission of infections will depend upon the extent to which these social relationships and 582 

the potential transmission network ties overlay each other. Increasingly, the ‘virtual’ network ties via 583 

social media are becoming important for influencing uptake and adherence to interventions and 584 

vaccination, though the extent to which these overlap with potential transmission networks, and 585 

therefore the effects on epidemic dynamics might differ [Wilson et al., 2020]. Some interventions utilise 586 

social networks for their recruitment [Nikolopoulos et al., 2016] or distribution [Lippman et al., 2019], 587 

adding another consideration to dependencies between different network types in influencing the 588 

effectiveness of interventions against future pandemics.  589 

 590 

Uptake and adherence to interventions, and their impact on the characteristics of the contact 591 

network, could also change as a function of the epidemic itself. It is feasible to model population 592 
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behavioural responses, and uptake and adherence to interventions, as dynamic and as dependent on 593 

characteristics of the epidemic [Funk et al., 2015], but it remains challenging in practice to specify the 594 

relationship, especially for a new infection and in the context of an emergency [Teslya 2020]. In 595 

practice, the public does not have perfect information about the course of the epidemic and is in some 596 

cases actively misinformed. This lack of information is enhanced by delays between infection, 597 

symptoms, hospitalisations and death [Pellis et al., 2020, da Silva et al., 2019]. Furthermore, there may 598 

be strong barriers to adherence which are independent of individuals’ willingness or intentions. Under 599 

imperfect adherence to multiple NPIs, quantifying which interventions are most impactful is essential 600 

for managing an outbreak. 601 

 602 

5.2 Contact tracing, quarantine, and isolation 603 

One of the main advantages of contact tracing and cluster investigation is that they are directed 604 

specifically to individuals who are more likely to have been exposed to the infection. However, 605 

capturing the specific contact network and the TTI process over such a network constitutes a key 606 

modelling challenge for mathematical epidemiology [Müller & Kretzschmar 2021], particularly because 607 

realistic networks and clustering due to social settings (e.g., households and workplaces) are difficult to 608 

measure and describe mathematically (see also Ch 06), but strongly affect the effectiveness of contact 609 

tracing [House & Keeling 2010]. Different tracing policies (e.g., forward tracing of the secondary cases or 610 

backward tracing of the potential infector of a confirmed case) require different modelling 611 

considerations [Müller et al 2000; Kojaku et al 2021], although in practice it is often impossible to 612 

identify the direction of the infection between two confirmed cases. Backward/forward tracing often 613 

becomes indistinguishable from outbreak investigation, which focuses on transmission in particular 614 

environments rather than between specific individuals, bringing in additional complexities in terms of 615 

modelling possibly overlapping clustered networks and superspreading events. Contact tracing serves a 616 

dual role as a transmission surveillance and control tool, finding cases among harder-to-reach groups, 617 

and informing interventions which break transmission chains. The balance between these roles can vary 618 

greatly. 619 

 620 

Contact tracing typically requires an extensive infrastructure able to identify infected cases and swiftly 621 

search and isolate as many of their contacts as possible. In the case of fast epidemics, this translates 622 

into important limitations, for instance in terms of the maximal number of individuals that can be 623 

reached and isolated every day and unavoidable delays along the process, which strongly influence the 624 

effectiveness of the intervention [Kretzschmar et al 2020, Contreras et al 2021]. Modelling the real 625 

impact of these limitations is often extremely challenging, but at the same time fundamental to 626 
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evaluate the effectiveness of TTI and identify what aspects can be improved. The effectiveness of TTI 627 

needs to be balanced with the societal impact of quarantine, which depends on its duration and 628 

effectiveness in preventing onward transmission [Ashcroft et al 2021]. Recently smartphone apps for 629 

digital contact tracing have been developed, which are aimed at mitigating these limitations, while 630 

introducing further challenges connected with a realistic modelling of the app uptake and mechanisms 631 

[Ferretti et al 2020]. 632 

 633 

One of the main objectives of modelling interventions is to analyse their cost-effectiveness. Depending 634 

on the particular contact tracing policy, not only infected individuals, but all (possibly healthy) known 635 

contacts of a confirmed case may be required to quarantine. This introduces further complexities, as an 636 

effective mathematical model should keep track not only of the infector-infectee pairs, but also of the 637 

infectious contacts where transmission was unsuccessful, in order to quantify the potential disruption to 638 

healthy individuals and society in general [Kucharski et al 2020] (see also Section 7).  639 

 640 

6 Challenges in parameter estimation and model fitting  641 

Fitting a model to data can have two main goals: one goal is to estimate parameters that have not been 642 

measured by fitting to those that have been measured; the second goal is to fit a model to observations 643 

up to the present in order to predict what will happen in the future. The nature of challenges to 644 

modelling and inferring impacts of interventions will vary at different stages of an epidemic.  For 645 

prediction of intervention impact, much work is done using scenario simulation using mathematical 646 

models of transmission [Davies et al 2020; Teslya 2020]. Expert elicitation may be an option, but that 647 

also comes with its own challenges [Section 5 of Ch 07]. 648 

 649 

Interventions have the potential to impact numbers in all compartments of a compartmental model, as 650 

well as a large proportion of/all individuals in IBMs, but many of those impacts are unobservable 651 

directly and must be inferred indirectly from changes in positive test rates or numbers of deaths and/or 652 

hospitalisations [Section 2, surveillance data]. Observation models are required in this case, using latent 653 

states or other statistical approaches to account for delays on impacts. Exactly what aspect(s) of the 654 

model the intervention is impacting and the exact form in which the intervention is introduced to the 655 

model will change the level of interpretation that can be made, such as whether the impact is directly 656 

on specific outputs of the model, or forcing introduced on specific model parameters. Interventions can 657 

also be introduced at different strengths and levels, and measuring that level of severity and how it 658 

changes through time is challenging from both a modelling and a statistical perspective. Non-linear 659 

effects are potential issues, as are qualitative interventions.  660 
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 661 

Political and national boundaries are usually the domain on which interventions are introduced [Section 662 

2 of Ch 02], but there are many other geographical, political and behavioural boundaries that will 663 

impact the efficacy of intervention measures, that may or may not be known or observable. The fact 664 

that there has been little attempt to introduce global interventions- combined with the fact that a 665 

variety of measures is often introduced even within countries and nations- has made tracking 666 

interventions and measuring their impact particularly challenging [Flaxman et al 2020; Brauner et al 667 

2021].  The introduction of multiple interventions simultaneously, such as closing borders, schools, 668 

pubs, shopping centres, etc. can make extracting the success of any single measure difficult [Soltecz et 669 

al 2020]. Statistical identification of parameters measuring individual impacts will likely be impossible, 670 

as structural and practical non-identifiability will be at play without careful experimental design and 671 

model sensitivity analysis [Browning et al 2020]. Multiple layers of interventions such as NPIs make the 672 

evaluation of these layers individually incredibly difficult as the epidemics evolve, especially as the 673 

introduction of subsequent NPIs can impact the efficacy of or adherence to existing interventions. More 674 

transmissible variants, escape variants and associated increased/decreased mortality may also 675 

necessitate the re-evaluation of model estimates or flexibility within the model for those estimates to 676 

be temporally indexed. There is a challenge in measuring if an intervention is inherently unsuccessful, or 677 

whether it is unsuccessful due to a lack of public adherence [Gelfand et al 2021] [Section 2, 678 

adherence/behavioural data; Section 5]. These uncertainties, coupled with underreporting of case 679 

incidence and asymptomatic individuals, also make estimation and communication of intervention 680 

impacts challenging. Experimental design of interventions in pandemic scenarios, which otherwise may 681 

be the most appropriate approach in other domains, inevitably has significant challenges for ethical 682 

reasons, as well as associated political and logistical difficulties.   683 

 684 

Between-country comparisons often receive significant backlash from politicians and the media and can 685 

easily be open to criticism for not accounting for some underlying process that has not been considered 686 

(demographic or environmental differences, for example) [Pearce et al 2020; Xiang and Swallow 2021; 687 

Komarova et al 2020]. Data collection procedures also vary drastically between nations and privacy 688 

constraints make large-scale analyses challenging to complete.  689 

 690 

There is a large range of different models used to study epidemic outcomes, all with their own 691 

assumptions, mechanisms and uncertainties. Measuring impacts of interventions will subsequently vary 692 

according to which model is used or which data are used to estimate it. Combining the impact of 693 

interventions observed across models adds an additional dimension to the challenges. There is also a 694 
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significant difference between models used for explanation or estimation and those used for prediction 695 

or forecasting, both structurally and from a philosophical perspective [Hanna 1969; Shmueli 2010]. This 696 

will be particularly challenging when choosing between models for estimating impacts of interventions 697 

as opposed to models developed for scenario exploration or forecasting. It is therefore important not to 698 

assume automatically that these models can be used interchangeably. 699 

 700 

7 Challenges in modelling health economic and political aspects of interventions  701 

NPIs seek to reduce transmission through reducing the number, length, and/or intensity of contacts 702 

between people where transmission could occur. Some of the NPIs mentioned above are relatively cost-703 

free – for example, mask wearing is considered a moderately effective NPI, requiring minimal upfront 704 

cost from mask users, and having minimal impact on day-to-day activities for most users [Greenhalgh 705 

2020, Czypionka et al. 2020]. Other NPIs can be highly costly in micro- and macroeconomic terms – for 706 

example, the closure of non-essential shops and/or hospitality sectors. For respiratory pathogens, these 707 

more restrictive NPIs are likely to be both more effective at reducing transmission and much more 708 

costly to individuals and the broader economy than less restrictive NPIs. In addition, the imposition of 709 

NPIs that affect the extent to which people are able to work productively will have a direct impact on 710 

household finances, and are likely to cause a proportion of households to fall below the poverty line. 711 

To allow decision makers to make these trade-offs in a consistent and data-driven way, there is a 712 

challenge for transmission modellers and health economists assessing the impact and cost-713 

effectiveness of NPIs to quantify and include broader household costs and macroeconomic impacts. 714 

The measurement of household costs is comparatively simple, and a range of validated and tested tools 715 

exist to measure an exhaustive list of medical and non-medical expenditures [World Health 716 

Organization, 2017], though it is critical that comparable data are collected before and after the 717 

imposition of NPIs. The estimation of the broader macroeconomic impact of NPIs is more challenging, 718 

and generally requires the combining of epidemiological transmission models and complex 719 

macroeconomic models [Keogh-Brown et al. 2020, Smith et al. 2020]. Ideally models would be fully 720 

combined, allowing feedback between epidemiological and macroeconomic factors – for example, if the 721 

closure of a sector’s workplaces reduces social mixing but leads to a fall in productivity resulting in 722 

redundancies, workers’ movements between sectors with different levels of mixing would also change 723 

transmission. However, in practice, it is very complex to stratify epidemiological and macroeconomic 724 

models in a sufficiently detailed and consistent way to reflect these feedback loops, and the current 725 

state-of-the-art is for transmission model outputs to inform macroeconomic models. 726 
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Another important challenge is how to represent financial and non-financial constraints in models 727 

[Bozzani et al. 2018, Bozzani et al. 2020]. The majority of health economic evaluations, including in 728 

infectious diseases, take a marginal approach and assess the incremental costs and benefits of 729 

interventions and policies. This approach ignores that the total costs of programmes may be very high, 730 

such as when entire populations require vaccinating against newly emerged pathogens. It is therefore 731 

important that economic evaluations of interventions that are delivered to a substantial fraction of the 732 

population incorporate full budget impact analyses [Weerasuriya et al. 2021]. 733 

In practice, non-financial constraints are arguably more critical and much less visible than financial 734 

constraints. For example, patients in intensive care may require ventilators, but also – critically – one-to-735 

one nursing care and attention from specialist intensive care clinicians. These human resource inputs 736 

cannot be quickly scaled up in pandemic response. Therefore, models estimating the number of people 737 

with care needs reliant on human resources and other non-financial factors for their delivery – for 738 

example, critical care staff, oxygen, needles, and treatment drug doses – should consider these 739 

operational needs. It is generally possible to include constraints and optimisation functions in models 740 

without requiring significant structural changes and doing so could help to inform real-world 741 

prioritisation of scarce resources. 742 

Finally, people experience health and economic impacts of infectious diseases differently. 743 

Socioeconomic status is a key stratum across which health and economic indicators vary and ensuring 744 

equitable benefits from health interventions and programmes, but incorporating equity aspects into 745 

infectious disease models is a key challenge. For example, recent methodological advances in equity-746 

informative cost-effectiveness analysis provides a readily applicable analytical framework. The key 747 

contribution of these methods is the disaggregation of health impacts and economic consequences 748 

across equity strata, for example distribution across people of different socioeconomic status. 749 

Recent applications of extended cost-effectiveness analyses using infectious disease models add 750 

decision making value compared to models which do not disaggregate outcomes by equity strata, yet 751 

these are subject to a number of highly restrictive assumptions such as perfectly assortative mixing 752 

within strata, uniform underlying distribution of susceptibility, transmission conditional on exposure, 753 

and severity and death conditional on infection. In reality, data to parameterize these assumptions is 754 

hard to obtain – for example the extent to which people of different strata contact – or do not contact – 755 

each other. Where data are available, they are likely to be confounded by other factors; for example, 756 

observing a greater rate of deaths due to an infectious pathogen could be due to differential and 757 

potentially unquantifiable mixing, susceptibility, or severity in each group. 758 
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 759 

Topic Key challenges 

General 

Section 1 

◊ Find models that are complex enough to reflect the system we want to describe in 
sufficient detail, but simple enough so that we do not get lost in the jungle of details. 

◊ Need to clearly define objectives and aims of modelling in interaction with policy 
makers 

Data related to 
interventions 

Section 2 

◊ Designing in advance data collection studies and statistical methods to overcome 
biases in biological data. 

◊ Developing methods to account and correct for lags and scarcity in surveillance data 
◊ Wider accessibility to mobility and behavioural data to quantify how interventions 

change contact patterns.  

Mathematical 
framework 

Section 3 

◊ Developing robust, flexible modelling tools that are readily available to plan 
interventions during epidemics 

◊ Designing public health measures that match the temporal and spatial scale of 
interventions with those of transmission 

◊ Translating modelling theory about pathogen evolution into epidemic-specific 
interventions that limit the risk of variants of concern emerging 

Pharmaceutical 
interventions 

Section 4 

◊ Modelling population heterogeneity (e.g., in vaccine efficacy, uptake, transmission) to 
investigate optimal vaccine prioritisation and allocation 

◊ Modelling vaccine strategies in a highly dynamic environment (including time-varying 
vaccine rollout, introduction of different vaccines with single or multiple doses, 
changes in NPIs)  

◊ Incorporating mechanisms to describe how treatment affects epidemic dynamics 
◊ Defining and modelling elimination 

NPI 

Section 5 

◊ Capturing adherence and take-up of NPIs across heterogeneous populations and 
contact networks 

◊ Modelling clustering in behaviour and its relation to clustering in e.g. geography or 
socioeconomic status  

◊ Incorporating the factors responsible for changing behaviour (take-up and adherence) 
over time. 

Parameter 
estimation, 

Model fitting 

Section 6 

◊ Parameterising multiple layers of interventions and their time-varying impacts 
◊ Statistical identification of different overlapping intervention impacts 
◊ Intervention impact detection across models 

Economic modelling 

Section 7 

◊ Including macroeconomic costs is critical to understand the full impact of infectious 
diseases and their control measures 

◊ Financial and non-financial constraints matter and need to be reflected in models 
◊ Different groups experience diseases and interventions differently, and models need 

to represent inequities better 

Table 1: Key challenges 760 
 761 

In practice, models have been informative with relatively simple distributional assumptions across these 762 

factors, and where data are unknown or highly confounded, sensitivity analyses can show whether 763 

plausible differences by socioeconomic strata between, for example, mixing and severity, explain the 764 

differential outcomes observed [Munday et al, 2018]. 765 
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8 Discussion and conclusions  766 

Use of mathematical modelling to assess the impact of interventions has taken enormous strides since 767 

the turn of the century, fuelled by an increasing number of emergence events of new pathogens, large 768 

outbreaks of infectious diseases spanning several countries or continents, and the fast increase in 769 

computing power and communication speed. Nevertheless, many challenges remain for the modelling 770 

community in developing fast, precise, and flexible tools for supporting public health responses to 771 

future pandemics.  772 

 773 

We discussed different types of interventions, each posing various challenges in terms of data 774 

availability and modelling requirements (Table 1). We did not address the possibilities of synergy or 775 

interference of different interventions, when rolled out simultaneously. If there are interactions, one 776 

also needs to ask in which order interventions should best be rolled out, or which combinations of 777 

interventions are most effective. These are extremely complex questions for mathematical modelling.  778 

 779 

While this document focuses on the impact of human-to-human transmission, zoonotic spill over and 780 

vector-borne diseases (e.g., dengue fever and malaria) remain key areas of concern for future 781 

pandemics. Where animals can act as an infection reservoir and continue to seed infection among 782 

humans, targeted interventions are required, with a corresponding new set of behavioural interventions 783 

and structural pressures on uptake and adherence. The challenges of those transmission routes have 784 

been discussed a.o. by Hollingsworth et al (2015), Brooks-Pollock et al (2015), Lloyd-Smith et al (2015), 785 

and are explored further in [Roberts et al (Ch 02); Metcalf et al (Ch 03)]. 786 

 787 

The challenges for modelling interventions identified and discussed here are diverse. Finding solutions 788 

will require a broad variety of skills and expertise, ranging from mathematical creativity and precision 789 

over biological insight to social sciences and communication skills. It is clear that addressing these 790 

challenges will require the strong collaboration of researchers from different disciplines, and close 791 

communication between scientists and policy makers. Only if knowledge and ideas from different fields 792 

can be combined, will it be possible to find solutions to the broad questions sketched in this document. 793 

We have witnessed a continuous development of the research field loosely termed “infectious disease 794 

dynamics” in the last decades, in which various strands of research including applied mathematics, 795 

pathogen biology, human behaviour, economics, and policy science have grown together and merged to 796 

create a fascinating and rapidly expanding research field.  797 

 798 
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While scientists have established closer and closer international collaborations over the last decades, 799 

and research in mathematical modelling of infectious diseases has developed into a truly international 800 

activity, there is much less international collaboration in the actual response to a pandemic [Priesemann 801 

et al 2021]. Policy making and pandemic response is limited by country borders, and which leads to 802 

asynchronous waves of an epidemic between countries and out of phase epidemics just across a border. 803 

Hopefully, good collaboration among scientists can eventually also inspire more cross-country 804 

collaboration in fighting a pandemic.  805 
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