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Abstract 

New disease challenges, societal demands and better or novel types of data 

drive innovations in the structure, formulation and analysis of epidemic 

modelling. Innovations in modelling can lead to new insights into epidemic 

processes and better use of available data, yielding improved control and 

stimulating collection of better data and new data types. Here we identify key 

challenges for the structure, formulation, analysis and use of mathematical 

models of pathogen transmission relevant to current and future pandemics. 
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Introduction 

Mathematical and computational modelling of the spread and effects of 

infection has old roots, going back at least to the works of Daniel Bernoulli in 

the eighteenth century, with the first significant use of epidemic modelling for 

successful intervention being perhaps that of Ross and Hudson on malaria, 

early in the 20th century (Bacaër 2011). Since then, and especially over the last 

50 years, the field has expanded hugely (Diekmann et al., 2013). Heesterbeek 

et al., (2015) provide a set of historical highlights in the development of 

modelling methodology and concepts since 1950, demonstrating how 

developments have been stimulated by the many and diverse infectious 

disease challenges experienced over this period. 

In developing our understanding of pandemics and how best to control them, 

models are needed that address a wide range of aspects including aetiology, 

epidemiology, natural history, and individual and societal response. Almost all 

models exhibit threshold behaviour whereby epidemic spread occurs when a 

certain combination of parameters that is dependent on model structure, (e.g. 

the real time reproduction number Rt) exceeds a threshold. Typically, the aim 

of interventions is to bring epidemic spread below this threshold, and/or to deal 

with the consequences of being close to it. Interventions will depend on disease 

impacts and wider societal issues that may also have important implications for 

modelling.  

Given the complex questions and uncertainties that arise during infectious 

disease emergencies, it is important to note that modelling does not offer exact 

or binary answers but, rather, provides tools to enable both understanding and 

quantification of phenomena. Such use of models is discussed in other 

contributions to this special issue. For example, modelling tools can be used to 

develop a suite of possible answers for informing and advising policy (Hadley 

et al., 2021) and for designing and assessing interventions (Kretzschmar et al., 

2021). An important step in this process is the statistical estimation of key 

quantities that characterise transmission and other aspects of disease 

dynamics (Swallow et al., 2021), which is critically dependent on the availability, 

accessibility and reliability of data (Shadbolt et al., 2021). The specific 

contribution of the current paper is to focus on the challenges for the structure, 

formulation, and analysis of models to understand disease dynamics better and 

to support real time response to future pandemics. We argue that such 

challenges extend to ensuring model assumptions and results are 

communicated in an open, transparent manner and that modelling has a critical 

role to play in informing the intelligent collection of data for future pandemics. 

During pandemics such as COVID-19, much of the interest is in difficult 

questions that cannot be answered empirically or for which insufficient 

information is available solely from data when decisions need to be made. 

Modelling allows a technical framework to be developed in which such 

questions can be explored. During the COVID-19 pandemic modelling has 

been applied more prominently and widely than ever to inform and advise public 

health policy. See for example the special issue of the journal Philosophical 



   
 

   
 

Transactions B on Modelling that shaped the early COVID-19 pandemic 

response in the UK (Brooks-Pollock et al., 2021). 

 

Modellers must grapple with uncertainty driven by spatial, temporal and societal 

heterogeneities, stochasticity in dynamics and incomplete knowledge of 

parameters and model structure. Combining outcomes across multiple models 

that vary in complexity, allows assessment of the robustness of conclusions to 

a range of assumptions. For example, the relationship between the real time 

growth rate of the number of cases or infected hosts and the reproduction 

number Rt is highly sensitive to the distribution of the infectivity profile of an 

infectious host (Roberts and  Heesterbeek, 2007; Wallinga and Lipsitch, 2007). 

On the other hand, the relationship depends to a much lesser extent on 

population structure (assuming that structure is characterized by several 

distinct classes of individuals, a social network structure or households; 

Trapman et al., 2016). More detailed understanding of transmission 

mechanisms and the effects of interventions requires more complex models, 

but inevitably also very many (often unknown) parameters and typically new or 

larger datasets.  The value that statistical inference can extract from data is 

intimately tied to the structure and formulation of models. As the statistician 

George Box wrote `all models are wrong, but some are useful’ (Box 1979), 

meaning that models are simplifications of reality, thus false or wrong, but can 

still retain the essential features of the process, generating understanding and 

allowing prediction. 

Controlling pandemics is a wicked problem (Rittel and Webber 1973) hence 

characterized by incomplete, contradictory and changing requirements, 

difficulties in obtaining data relevant for decision-making, and where seemingly 

well-motivated efforts may lead to unintended and even self-defeating 

outcomes. Mathematical modelling of pandemics is therefore critical: 

 yielding qualitative understanding of how various factors influence spread 

of infection, e.g. differential within host progression of disease, 

heterogeneity in population response, infectivity, susceptibility, contact 

intensity and structures, and allowing in silico experiments to determine the 

effects of possible interventions; 

 providing a framework for synthesising multiple sources of information 

including understanding how best to collect, analyse and interpret 

observations (data) related to the infection and its spread in the population, 

and also for determining what further data would most usefully be collected;  

 allowing estimation of current and historic trends including non-observed or 

non-observable quantities as well as short term projections and quantitative 

(future) scenarios useful for health policy decision making, planning and 

evaluation of interventions. 

Work during the COVID-19 pandemic has revealed not only a lack of 

information on aspects of the infection itself, but also important gaps in the 

available modelling tools and theoretical understanding needed. This paper 

discusses the key challenges in modelling related to pandemics. In doing so, 



   
 

   
 

we build upon many of the challenges highlighted in the special issue of the 

Epidemics journal (vol.10) on Challenges in Modelling Infectious Disease 

Dynamics (Lloyd-Smith et al., 2015).  That issue included challenges related to 

global transmission models (Britton et al., 2015), meta-population and 

household approaches (Ball et al., 2015), and explicitly spatial (Riley et al., 

2015) and detailed network representations (Pellis et al., 2015). Although such 

models are typically built on stochastic processes, deterministic models can 

also provide critical insights (discussed in Roberts et al., 2015). Many of the 

challenges raised in the 2015 volume, relating for example to pathogen 

mutation-evolution, multi-strain systems, inferential methods for data on the 

emerging phase of epidemics in structured populations, computationally 

efficient methods for calculating thresholds and early exponential growth rates, 

and designing network-based/spatial interventions, remain important during 

modelling of the spread of SARS-CoV-2 and its variants. In this paper, we 

highlight to what extent these challenges have been addressed in the 

intervening 6 years, which are outstanding, and add new challenges seen from 

a mid-pandemic rather than `peacetime’ perspective.  Its overall structure and 

interconnections are shown in Figure 1. We first discuss challenges in the 

formulation and analysis of models from the interlinked perspectives of 

between-host contact processes (Section 1), within-host dynamics (§2) and the 

characteristics of the pathogen (§3). We then look beyond model formulation 

and analysis to challenges where models and modellers can play a critical role 

in improving modelling and the impact of modelling in future pandemics 

through: better collection of data during outbreaks including design of testing, 

surveillance and contact tracing (§4); and in improving capabilities for real time 

decision support and ensuring greater openness, transparency and trust in 

communicating modelling results to policy makers and the public (§5).  

  



   
 

   
 

 

 

Figure 1. Challenges for pandemic modelling: Enhancements of models and 

associated analytical tools (see challenges in §1, §2 and §3) and greater 

engagement with public health stakeholders (§4 and §5) are mutually 

reinforcing and will ultimately lead to better pandemic control. 

1. Between host: Modelling infectious contact processes  

The representation of infectious contacts underpins all dynamic transmission 

modelling and is therefore the central challenge in modelling future pandemics. 

COVID-19 has revealed significant deficiencies in our ability to model contact 

processes, but it has also generated huge amounts of data across the world 

and under different interventions (Chang et al., 2021; Vigfusson et al., 2021; 

Jia et al., 2020). A challenge and opportunity is to use these data to inform 

modelling approaches and in particular to better understand disease contact 

processes and to allow models to move beyond use of observed pre-outbreak 

contact patterns (Conlan et al., 2021) in future pandemics.  

While they appeared less influential a decade ago (Lloyd-Smith et al., 2015), 

agent-based models (ABMs) have proved to be an attractive approach 

particularly in response to infectious disease outbreaks like Ebola and COVID-

19 (see e.g. Kiskowski and Chowell 2016; Kerr et al., 2020), allowing 

investigation of many aspects highlighted here. However, simplified 

deterministic and stochastic models remain fundamental in providing analytic 

insights into how key aspects of contact patterns and human behaviour affect 

epidemic dynamics and outcomes. Analytical approaches can also enable 

development of simplified models more amenable to formal methods of 

statistical inference and uncertainty quantification.  

Here we identify substantive challenges for the modelling and understanding of 

contact processes under three broad headings: household models, multi-scale 



   
 

   
 

approaches that couple meta-population, spatial or network structures, and the 

need for more predictive models of behavioural impact on contacts. 

Household models and extensions  

Households represent a key structure in many human societies. For directly 

transmissible pathogens, they are a fundamental epidemiological unit because 

for many infectious diseases the stable and more intimate nature of contacts 

between household members typically translates into significantly higher 

probability of transmission than with individuals outside the household. 

Furthermore, household sizes and compositions are also typically readily 

available from census data, and many control policies are targeted at 

households. Some of these considerations can also be extended to other kinds 

of stable groupings of individuals, such as workplaces, schools, etc., where 

contacts are closer than average. 

Households are also natural observation points for estimating transmission 

parameters and how individual (e.g. age, sex, occupation, etc.) and household 

(e.g. socio-economic status, overcrowding) properties affect susceptibility and 

infectivity. Model structure is intimately connected with estimation. Optimal 

design of household-stratified data collection has recently attracted increased 

interest (Kinyanjui et al., 2016), and the COVID-19 pandemic has seen an 

explosion of large-scale data collection (see for example the UK Office for 

National Statistics (2021)). Observables have traditionally focussed on 

household final size data (Demiris and O'Neill, 2005), though more recent work 

has investigated biases arising in a growing epidemic (e.g. Ball and Shaw 

2015). However, challenges remain in the context of a pandemic with 

interventions imposed and lifted in rapid succession or in the presence of 

imperfect case ascertainment, in particular due to heterogeneous symptoms, 

test-seeking behaviour and disease outcome. Final size household data can be 

used by separating the epidemic into suitably distinct phases (House and Pellis, 

2021), but methodological developments are urgently needed for using data 

collected in real-time and on a background of a dynamically varying population 

prevalence and hence risk of introduction into households, as well as to make 

full use of test results of household members collected over time or other 

temporal data. A key challenge is thus to improve analytic understanding of the 

temporal dynamics of household models under variable conditions and with 

detailed endpoints. 

Important mathematical developments in the context of models with household 

structure have been made over the past 25 years (e.g. Ball, Mollison and 

Scalia-Tomba (1997), Ball, Sirl and Trapman (2014), Pellis, Ball and Trapman 

(2012)). However, the vast majority of theoretical results are confined to time-

integrated epidemiological quantities, such as reproduction numbers, final size 

distributions or the probability of a large outbreak. Such results have been 

influential in informing the likely impact of specific policies, for example 

providing intuition on the role of household bubbles in allowing more social 

interaction while limiting the increase in transmission (Danon et al, 2021), or on 

how school closure and reopening affect the network linking households and 

thus the household reproduction number. However, other forms of household-



   
 

   
 

based interventions that received significant interest during the COVID-19 

pandemic, including in- or out-of-household isolation of single individuals or 

quarantining of all household members following symptom-based case 

detection (Overton et al., 2020) or contact tracing (Fyles et al., 2020), result in 

responsive changes to transmission parameters during a within-household 

outbreak. Obtaining theoretical results for models with non-constant 

parameters, even in simple cases, remains an open problem. Similarly, 

although analytical results for the real-time growth rate are available (Ball et al., 

2015, §6), results on real-time non-linear epidemic dynamics in the presence 

of households would be valuable.  

Given these theoretical challenges regarding the temporal dynamics of the 

epidemic, it is unsurprising that practical questions that require models explicitly 

accounting for household structure have been mainly tackled with ABMs. 

Recent examples include, models with both households and communities of 

households to study the spread of Ebola in West Africa (Kiskowski 2014) or 

household bubbles in the context of COVID-19 (Leng et al., 2021), and models 

with dynamic household structure, for instance with individuals distributed 

across multiple dwellings (Chisholm et al., 2020) or with explicit demographic 

change (Geard et al., 2015). A general challenge consists in formulating 

analytically tractable models to tackle these questions, which includes 

understanding how much complexity is really needed and whether general 

principles from simple household models can shed light on the behaviour of 

more complex ABMs. 

Extensions to the simplest household models that allow for individual 

heterogeneity exist (see e.g. Ball, Britton and Sirl, 2011)). Potential extensions 

include models with multiple types of both households and household 

members, together with realistic contacts and other disease-dependent 

parameters between the different types. Such models might allow for better 

understanding of household infection dynamics, more targeted interventions, 

as well as a more realistic description of consequences of socio-economic 

differences between household types (Villela, 2021). Furthermore, such models 

might incorporate assortative mixing between households based on size or 

composition, e.g. households with children are more likely to be linked with 

each other through schools, and are likely larger than average. Effects of 

interventions such as school closures could be better captured in such models 

than when household connections are uncorrelated. 

Models with further structures beyond single households might also be both of 

practical interest and amenable to mathematical tractability. Recent advances 

have been made on models with hierarchical structures (e.g. Gandolfi and 

Cecconi, 2016). Some work also exists when other small mixing groups overlap 

with households, e.g. schools or workplaces (e.g. Pellis, Ferguson and Fraser, 

2011). However, overlap creates dependencies between units and the 

techniques (Ball, Sirl and Trapman, 2014) used in these studies, which 

essentially assume that overlap is restricted to one individual, would profit from 

generalisation.  



   
 

   
 

From a practical point of view, understanding the role of households on 

transmission dynamics, epidemic outcome and impact of interventions is 

crucial. However, the meaning of understanding is highly dependent on context, 

desired aims and model choice (in turn dictated by data availability). For 

example, Pellis et al., (2020) narrows the question to the context of an emerging 

epidemic and two age classes, and formulates it as a problem of model 

comparison. More work is required to study the role of households on 

transmission in other contexts, starting from the formulation of questions 

precise enough to allow investigation. Substantial work is also needed on 

comparison of structurally different models, not only in terms of model fit to data, 

but also in terms of predictions (model assessment). 

Multi-scale models: meta-population, spatial and network 

Britton et al., (2015) posed the question, “Is the classification into global, 

network, meta-population and spatial models sufficient for the range of contact 

structures of interest in understanding infectious disease dynamics?” Here we 

argue for the need to understand hybrid models that combine or bridge between 

meta-population, social network and spatial structures. As argued above, meta-

population structures of households and workplaces have proved crucial in 

understanding and controlling COVID-19 as have detailed individual level 

models (Chang et al., 2021) based on networks captured by GPS tracking that 

reveal local spatial structure. Moreover, at large scales real word disease 

incidence shows substantial spatial variation. Attempts to address such issues 

have made use of spatially explicit individual-based models (Lau et al., 2017) 

and ABMs (Kerr et al., 2020) including cases described above where household 

structures are embedded within broader contexts (e.g. Kiskowski & Chowell, 

2014). 

A significant challenge is to develop approaches to analyse, and simplify such 

models to enable greater understanding of disease dynamics and control. 

Methods such as moment-closure and pair approximations are useful in 

developing simplified representations and analytic results in spatial and 

network models (Barnard et al., 2019). Another promising approach is to 

develop systematic methods (Khudabukhsh et al., 2019) to enable coarse-

graining of networked individual-based models to generate more tractable 

representations. Although it is understood that higher-order network structure 

impacts epidemic outcomes (Ritchie et al 2014), an important challenge is to 

understand what properties of real world networks impact the accuracy of 

analytic results obtained under different assumptions (Silva et al., 2020; Wu 

and Hadzibeganovic, 2020). The concept of universality classes (Chung et al., 

2016) may be useful in classifying epidemic dynamics on real world networks.   

Analysis of models that bridge the gap between meta-population, network or 

spatial representation of contact processes are rare. One example of analytical 

work that attempts to address combined meta-population and network models 

uses moment-closure to develop simplified representations and analytic results 

that suggest detailed case-reporting data can be informative of connectivity 

between metapopulations (Meakin and Keeling, 2019). On the other hand, Haw 

et al., (2020) develop and analyse the output of hybrid models that combine 



   
 

   
 

interactions on social networks with spatial movement showing they can give 

rise to sub-exponential outbreak dynamics with lower, later epidemic peaks that 

are hard to explain in more standard models. A potential route to greater 

analytic understanding of such models might be to exploit links between spatial 

models (Riley et al., 2015) and more general network representations. For 

example, the spatial structure of human infectious contacts, and how it is 

affected by interventions, is not well understood. There is an unexplored part of 

model space between strictly spatial models, where the k-neighbourhood of an 

individual, the number that can be reached in a chain of 𝑘 successive contacts, 

is of order 𝑘2, and homogeneous-mixing models where it is of order 𝑒𝑘. These 

correspond to networks with typical distance between individuals varying from 

the square root to the log of population size. For example, initial work in this 

area shows that networks with local clustering are effectively homogeneous-

mixing in their spatial structure (Mollison 2004). Promising work has shown how 

to develop analytic approaches for models that combine spatial features of 

scale-free networks with nested community structure (Gandolfi and Cecconi, 

2016). More recent work has shown how to embed networks within a spatial 

structure to better explore the impact of controls like social distancing and travel 

restrictions (Hulshof et al., 2020). Tractable models that better represent mixing 

at a range of scales e.g. in human populations, would allow better 

understanding and even prediction of how epidemics spread and how individual 

and public health responses to them could best limit the impact of outbreaks 

and reduce persistence of endemic disease. 

Behaviour and contact processes 

Behavioural responses significantly increase the challenge of assessing the 

impact of public health interventions (Michie and West, 2020). Throughout the 

COVID-19 pandemic models have been widely used to predict the impact of 

non-pharmaceutical interventions, or NPIs (Flaxman et al., 2020). NPIs 

represent measures to reduce ongoing and limit future transmission via social-

distancing (including lockdowns) and in the case of respiratory infections the 

use of face masks. Assessment of NPIs is further complicated by the fact that 

awareness of disease spread itself, or simply the knowledge that NPIs are 

being discussed, may alter contact behaviour (Zhou et al., 2020). Furthermore, 

behavioural responses to vaccination and to exogenous factors such as 

seasonality, societal events e.g. religious and other festivals, economic and 

natural shocks to society may also prove significant.   

Currently the typical approach to assessing the impact of NPIs or other 

behavioural responses to outbreaks is to modify parameters of epidemic 

models to capture resulting or anticipated changes e.g. reducing contact rates 

to represent social distancing measures. This is reliant on expert judgment 

about the impact of NPIs or rich sources of data on observed responses, ideally 

under NPIs, to allow robust calibration with uncertainties in predictions 

quantified. A challenge here is to develop methods that use transmission 

models and the observed epidemic to robustly quantify changes in contact 

patterns. Such approaches offer a valuable quantitative framework, but are 

phenomenological and at best can only explore direct impacts of known and 



   
 

   
 

anticipated responses to pandemics and NPIs. For example, they do not 

account for compensatory behaviours.  

Improved understanding and prediction in pandemics and large-scale 

outbreaks and endemic disease scenarios requires better quantification of 

behaviour (Funk et al., 2015) and the dynamics of social systems. These 

dynamics include movement patterns at various scales associated with 

different activities e.g. work and leisure including how these are impacted by 

public health intervention, business response and individual behaviour change 

in direct and indirect response to a pandemic.  

Anonymised mobile-phone call detail records (CDRs) have been used to show 

behavioural change of infected individuals (Vigfusson et al., 2021). This poses 

challenges and opportunities to standard disease transmission modelling to 

account for such behavioural changes and heterogeneities in such responses 

across populations due to socio-economic factors e.g. that limit opportunities to 

self-isolate (Bharti, 2021, Gauvin et al., 2021). These complexities are further 

compounded by large-scale changes in society in response to perception of 

disease outbreaks and public health interventions. A challenge here is how to 

make use of available data at different levels of granularity from ‘big data’ on 

tracking of individuals to aggregate societal data, such as population flows (Jia 

et al., 2020), transport usage and retail sales, to develop sufficiently predictive 

models that can, for example, anticipate changes in contact patterns e.g. when 

pubs, bars and restaurants close (Tang, 2020).   

 

In recent years there has been significant interest in game theoretic approaches 

to understand and predict behavioural responses to disease threats (Chang et 

al., 2020). Another potential way forward is the development of mechanistic 

models of dynamic contact processes that account for constraints on individual 

behaviour using individual propensities for types of contact behaviour. Such 

models may be amenable to analysis and parameterisation using big data 

describing historic movement patterns (for moves in this direction see e.g. 

Knight et al., 2021).  Treatment of such models as dynamic networks may offer 

a fruitful approach to develop better understanding of behavioural responses 

and effect of social distancing measures (Valdano et al., 2018; Barnard, et al., 

2018; Britton et al., 2019). 

  



   
 

   
 

2. Within host complexity: beyond SEIR models   

There is increasing recognition that within host dynamics play a critical role in 

disease transmission. Ways to account for this range from the use of expanded 

state spaces in compartmental models beyond standard models such as SEIR 

e.g. representing separate symptomatic and asymptomatic pathways for 

COVID-19, to models of individual viral loads and even immune response 

dynamics. A more complete representation of within host dynamics could be 

validated by availability of detailed longitudinal data e.g. from repeated testing, 

but also by better use of existing data sources e.g. by recognising the non-

binary nature of diagnostic test results. The modelling challenges here are to 

develop models that can be parameterised and tested using such data as well 

as approaches that can be used to analyse them. 

Better disease progression models 

Although the adoption of discrete states e.g. susceptible, exposed, infectious, 

recovered, has been extraordinarily successful in epidemiological modelling, 

these must be adapted to particular conditions or properties of the disease, 

such as presymptomatic infectivity or degrees of severity of symptoms (see e.g. 

Anderson et al., 2020) or different levels of subsequent immunity. This requires 

a judicious synthesis of clinical and epidemiological observations, especially in 

the early phases of a new epidemic. Ideally, modelled states should correspond 

to distinct and measurable clinical conditions, but this is rarely the case. 

Parameterisation must then be addressed using inference exploiting 

longitudinal data with individual-based stochastic models and other proxy 

information, such as viral load; key challenges are computational complexity of 

inference (Swallow et al., 2021) and access to longitudinal data (Shadbolt et 

al., 2021). Recently, describing infectivity progression by an infectivity profile, 

which is directly coupled to the generation time distribution, has become 

popular. This kind of description emphasises the continuous nature of disease 

progression. Adding similar descriptions of symptoms, severity of disease and 

development of immunity would constitute further improvements. Recent work 

on inferential questions (e.g. Britton & Scalia Tomba, 2019) has also highlighted 

the need for describing joint properties of disease states, such as joint 

distributions of latent, incubation and infectious periods, which lead to related 

inferential challenges. Coupling within host disease progression models with 

measurement of viral load (Kissler et al., 2021) could provide information on 

time of infection and infectivity profiles and thus inform the dynamics of 

outbreaks from cross-sectional data (Hay et al., 2020; Rydevik et al., 2016). For 

example, the association between viral load and transmission strength and 

period across the population could be untangled, enabling better understanding 

of the difference in development of an early, exponentially growing epidemic 

and a developed but fragmented epidemic in heterogeneous populations 

(Lythgoe, Pellis and Fraser, 2013). 

Immunity and vaccination 

Further work is required to account for the dynamic distribution of immunity 

across heterogeneous populations resulting from both transmission and 



   
 

   
 

vaccination.  For example, there is still a challenge in analysing and describing 

how heterogeneity in the population impacts distribution of immunity after an 

epidemic or wave of an outbreak, and which heterogeneities should be taken 

into account (Gomes et al., 2020). Some work has been done regarding the 

impact of multi-type populations (Britton, Trapman and Ball, 2020), where it is 

shown that immunity caused by an earlier wave of an epidemic is distributed 

over the population in a substantially more efficient way than if the immunity is 

obtained through vaccination programmes that do not target those making 

disproportionally many potentially infectious contacts.  A challenge in modelling 

vaccination is how to differentiate between the waning of immunity following 

infection and that following vaccination. Disentangling these effects will likely 

require data on host immune response and information on pathogen exposure. 

Realistic modelling of waning immunity, and possibly boosting of previously 

acquired immunity via exposure to infection, remains an active area of research 

linking within and between host dynamics (Heffernan and Keeling, 2009). 

Mathematical models can help in the design of optimal vaccination programmes 

and to assess their effectiveness. However, work is needed to develop models 

able to identify optimal distribution strategies and vaccination thresholds when 

resources e.g. doses, are limited in terms of overall quantities available and 

rates of supply. Model-based searches for optimal strategies are 

computationally intensive, especially in the absence of precise estimates or 

prior knowledge about multiple aspects. Depending on the specific questions 

asked, several issues must be accounted for: granularity in the population, for 

instance in terms of age or risk groups and localities; different vaccine modes 

of action, e.g. transmission blocking vs reducing disease severity (Hodgson et 

al., 2021), especially when transmission and serious disease are distributed 

differently across the population (i.e. when these are negatively correlated); and 

different vaccine efficacies or dosing schedules (e.g., requirement for one vs 

two doses). Additional challenges are related to the role of mathematical 

models in: enabling vaccine efficacy to be better estimated from surveillance 

data; exploring interactions between vaccination, disease-induced immunity 

and NPIs, for instance to identify possible roadmaps towards lifting of 

restrictions (Panovska-Griffiths et al., 2021; Whittles et al., 2021); and 

developing better understanding of the potential for vaccine escape and 

capturing the effect of variation in vaccine efficacy across variants (Day et al., 

2020). See Kretzschmar et al., (2021) and Madewell et al., (2021) for further 

discussion of vaccination challenges.  

  



   
 

   
 

3. A pathogen perspective 

Multiple pathogen strains: from neutrality to selection 

Driven by the increased resolution in our ability to observe pathogens afforded 

by application of molecular biology tools, an urgent challenge for 

epidemiological modelling is representation of the dynamics of pathogen 

heterogeneity e.g. multiple pathogen strains (Lythgoe et al., 2021). A standard 

approximation is to assume that mutations are neutral and therefore that 

transmission is unaffected by pathogen strain (Frost et al., 2015).  Under this 

assumption phylogenetic data on pathogens can inform inference of contact 

networks and be combined with standard epidemiological observations (Volz 

and Frost, 2013; Lau et al., 2015). However, significant challenges remain in 

terms of embedding phylodynamics (Grenfell et al., 2004) within disease 

transmission models. In particular, current approaches do not adequately 

account for within host diversity of pathogen, host immunity and pathogen load 

or selective pressure amongst competing strains (Lau et al., 2019; Metcalf et 

al., 2015; Wikramaratna et al., 2015). The latter is particularly urgent given 

concern over the emergence of novel COVID-19 strains with higher 

transmissibility. 

More work is needed to assess the impact of the evolutionary pressures 

imposed by vaccination and other control campaigns on pathogens (Read et 

al., 2015).  Currently such problems are tackled using models that focus on the 

potential for invasion of a variant in the presence of a dominant strain, or model 

fixed and typically small number of competing strains (Day et al., 2020). Greater 

flexibility is afforded by ABMs that represent multiple strains, but these come 

with significant computational and analytic challenges. Tools from quantitative 

genetics may prove useful in developing analytical insight into such problems 

(Day and Gandon, 2007; Day et al., 2020b), and there is increasing recognition 

of the need to couple evolutionary and ecological dynamics (Lion, 2018)  

Addressing host genetics e.g. that may affect susceptibility, infectivity and 

recovery (Pooley et al., 2021), would add further complexity (Frost et al., 2015) 

and point toward multi-scale models that represent both within and between 

host pathogen dynamics (Gog et al., 2015). 

Environmentally persistent pathogens and indirect transmission 

Many pathogens persist in the environment necessitating modelling of indirect, 

or environmental transmission in addition to, or instead of, direct transmission 

resulting from contacts between infectious and susceptible individuals. Future 

pandemics may be caused by pathogens that are more persistent in the 

environment than SARS-CoV-2, and there are numerous challenges 

associated with modelling resultant environmental transmission (Hollingsworth 

et al., 2015). However, in simple scenarios, direct transmission models can 

accurately represent epidemic outbreaks of environmentally transmitted 

pathogens as long as there is no significant timescale separation between host 

infectious period and environmental persistence of the pathogen (Benson et al., 

2021).  However, caution is needed, since for pathogens that persist in the 

environment for long periods of time the behaviour of direct and indirect 



   
 

   
 

transmission models will be markedly different e.g. the re-emergence of 

environmentally transmitted diseases in cases where there are no remaining 

infectious individuals. Thus, un-accounted for environmental transmission is 

likely to impact evaluation of control measures. Furthermore, environmental 

transmission is likely to increase the degree of connectivity compared with an 

observed direct contact process by broadening the effective contact network. 

For example, two individuals who visit a given location but at different times 

may nonetheless have effectively been in contact.  A key challenge therefore 

is to develop modelling approaches that account for such differences implicitly 

or explicitly and methods that enable integration of environmental pathogen 

load measurements (Wade et al., 2021) into transmission modelling. Other 

major challenges include integrating understanding of local environmental 

transmission in and across a range of settings (Morawska et al., 2021; Wang 

et al., 2021) within e.g. city or national scale modelling of disease dynamics. 

Perhaps a promising place to start is to develop modelling that accounts for 

variation in relative environmental exposure (Jones et al., 2021). 

A critical class of strongly environmentally persistence pathogens are vector-

borne diseases, such as malaria and infections by arboviruses (DENV, CHIKV, 

ZIKV), leading to disease endemic levels, marked by seasonality, usually by 

vector abundance. Modelling of endemicity in these scenarios requires 

analytical treatment using seasonal oscillations to be considered for instance 

in interventions (Bacaër and Guernaoui, 2006; Griffin, 2015). Seasonal 

variations also appear in the cycle of mosquito-borne infections, for instance 

due to temperature-dependent incubation period, in which parasites remain 

latent in infected mosquitoes (extrinsic incubation period), with direct impact on 

the generation time of the disease. The consequences of time-varying 

generation time have been examined for the estimation of the effective 

reproduction number (Codeço et al., 2018; Siraj et al., 2017). However, further 

characterisation of the seasonal treatment, including modelling of other 

environment-dependent biological mechanisms, is an open challenge. 

 

4. Better design of testing, surveillance and contact tracing 

Public health interventions like symptomatic testing, surveillance and contact 

tracing and other NPIs, in addition to being vital to control pandemics, are also 

currently under-exploited pseudo-experiments that provide untapped potential 

to inform on key parameters and processes. For example, more accurate meta-

data on who is tested and why may enable better use of case reports. Modelling 

is central to demonstrating the benefits of better exploitation of such data 

sources e.g. more effective intervention, as well as being central to 

implementing protocols to extract information from data collected during them. 

Given a lack of knowledge, there may be considerable benefit to trialling and 

assessing different interventions in different places (Michie and West, 2020). 

There are clearly ethical and political considerations, but for example where 

this is already happening (see e.g. Islam et al., 2020), it would be advisable to 

ensure that sufficient data are collected to enable as complete an assessment 

as possible. 



   
 

   
 

Data collection during outbreaks 

An important challenge is in predicting which datatypes may be useful in a 

future outbreak, many aspects of which are currently unknown. There are data 

and estimation aspects to this challenge but also a significant modelling 

challenge in terms of developing appropriate models and scenarios to assess 

the value of potential data. Prior to the next significant pathogen outbreak, there 

is therefore considerable work to do in assessing the informative value of 

various data types and data collection systems (represented in terms of 

planned protocols, and departures that occur from plans in implementation). 

This problem can be tackled through a combination of modelling different 

pandemic scenarios and using inferential tools (Swallow et al., 2021) to assess 

the value of different data collection systems. Even within the same broad 

scenario, the usefulness of certain data will depend on model structure, so this 

work must also anticipate that a range of models likely to be used throughout 

an outbreak. This scenario planning will enable recommendations on what data 

should be collected at different stages of an outbreak, with the aim of 

maximising societal ability to respond.  Conflict between the primary purpose 

of such interventions and data gathering can potentially be minimised by 

developing general guidelines for data collection (Shadbolt et al., 2021).    

A further challenge is the development of tools for adaptive design to prioritise 

data collection in real time. These could be built around sensitivity analysis of 

specific model outputs/value of information studies (Jackson et al., 2019) or 

surveillance of current data streams for changes (Xiang and Swallow, 2021). 

Stochastic and network models, where sensitivity analysis is significantly more 

complex, would benefit from further development of tools and software to 

enable uptake on a wider scale. Sensitivity analysis can also inform prediction 

of future necessary datasets, giving data collectors the time to implement 

required protocols. 

Contact tracing 

Contact tracing represents a particularly difficult challenge for mathematical 

epidemiology in terms of its ability to inform effective real world intervention and 

real time data collection. This is due to the complexities of capturing the contact 

patterns between individuals and the testing and tracing process which 

propagates over the network of contacts and locally modifies it at the same 

time. Better understanding of this process is needed to allow interpretation and 

use of contact-tracing data to inform models and better characterise outbreaks. 

Some important challenges in creating mathematically rigorous results for 

stochastic models with contact tracing remain to be addressed. In particular, 

contact tracing creates dependencies between durations of infectious periods 

(and thus cumulative infectivity) for infectors and their infectees. Because of 

this, the ordinary theory of branching processes does not suffice, even if it is 

possible to deduce the correct (marginal) distribution of the number of other 

people an infected person infects (Müller et al., 2000, Müller and Hösel 2020). 

To obtain theoretical results on questions such as "what is the probability that 

a major outbreak occurs in a population with a functioning contact tracing 



   
 

   
 

infrastructure?" new models that allow for dependencies created by contact 

tracing and that can be analysed in a mathematically rigorous way need to be 

developed. 

Further important challenges are connected with improving the description of 

the real world. Clusters and superspreading events are known to be decisive 

for contact tracing effectiveness (House and Keeling 2010, Endo et al., 2020). 

Intermediate settings of society, like households, workplaces, or in more 

general places of aggregation or at events, are particularly important as policies 

often act on this scale (Kucharski et al., 2020, Fyles et al., 2021, Kretzschmar 

et al., 2020). Another important aspect is the realistic modelling of time and 

resource constraints, as contact tracing typically requires an extensive 

infrastructure to identify infected cases and swiftly search and isolate the 

contacts of a confirmed case. Therefore, theoretical results (e.g., the efficacy 

of backward versus forward contact tracing, or results on the controllability of 

the epidemic) that are often derived under assumptions of unlimited tracing 

capabilities, should be carefully evaluated in the presence of limitations to 

capacity. In this context, mathematical modelling has proved useful in 

assessing the effectiveness of new technologies like digital contact tracing 

compared to manual contact tracing (Kretzschmar et al., 2020, Kucharski et al., 

2020, Ferretti et al., 2020). Further work involving resource limitations is critical. 

Estimating model parameters from surveillance data are crucial to evaluate the 

effectiveness of interventions and identify margins for improvement. Some work 

in the direction of developing deterministic models that are efficient to solve 

numerically (hence suitable for model fitting) while capturing the essential 

features of individual contacts with rigorous probabilistic arguments has been 

done using time-since-infection models (Müller et al., 2000, Scarabel et 

al.,2021) or deterministic compartmental models (Sturniolo et al., 2021). 

However, estimation of contact tracing parameters via model fitting remains an 

open challenge (Swallow et al., 2021). 

 

5. Open, transparent, and trusted models to support policy  

The challenges addressed here focus on the need to ensure models that 

support public health policy are timely, better enable decision making and are 

transparent and openly scrutinised. Using epidemiological models to inform 

public health policy requires that models be trusted by policy makers and the 

public alike. Although the road to public trust is complex and subject to a range 

of forces, greater openness and transparency of model code, data, and 

underlying assumptions than is currently typical are required to aid 

reproducibility and engender increased trust, including being clear and honest 

about the level of uncertainty inherent in each analysis. Such an approach will 

allow scrutiny within and beyond teams using model outputs which will lead to 

more robust understanding, through testing of assumptions by a wider scientific 

community, and ultimately better policy and greater public confidence.  

 



   
 

   
 

Modelling for real time decision support 

Perhaps the key problem for real time decision support is the rapidly evolving 

landscape in terms of both knowledge of the pathogen and its impact, and 

hence on the priority questions for public health. Analysis therefore must be 

timely. This requires faster tools for simulation, statistical estimation, model 

assessment and uncertainty quantification (Swallow et al., 2021), greater 

understanding of available data (Shadbolt et al., 2021) but also analytical 

understanding of a wider classes of models as discussed above. Another 

critical issue for real time decision support is the need for effective quantification 

of uncertainty and good communication with decision makers. For example, 

what uncertainties to account for should be influenced by the requirements of 

decision makers e.g. as part of constructing scenarios to assess alternative 

interventions. 

Openness within and beyond the scientific community  

Issues with scientific peer review, reproducibility, and ultimately public trust 

arise when models used to inform policy cannot be readily scrutinised, are not 

properly documented, or are not immediately and openly available. Improved 

tools and a greater culture of openness (such as making model software open 

source as standard) are needed to support open modelling for future 

pandemics and to lay bare the assumptions and limitations of such approaches.  

It is important that modellers communicate the dependence of predictions on 

such assumptions and make clear their limitations. There need to be 

transparent and accessible links between models, data and assumptions, and 

use of best practices in terms of documenting and testing open-source code. 

The need for such an approach is demonstrated by criticisms of models used 

to inform public health policies during the COVID-19 pandemic (Rice et al., 

2020). Shadbolt et al., (2021) describe a roadmap for the development of 

suitable standards and software that would provide traceability and 

transparency tools that accessibly link model outputs to data and assumptions. 

To further increase trust in models used to inform policy, in addition to such 

robust systems, new and accepted open epidemiology standards are needed 

to provide documentation of model quality, reproducibility and fitness for 

purpose. This includes the need for modelling teams to provide evidence of 

defensible parameters and, ideally, model inference from data or transparent 

sources for model parameters and model structure. Even more critical is the 

need to demonstrate evidence of model testing and assessment against 

simulated or ideally observational or experimental data. For example, is the 

model able to predict future trends and to what extent? Finally, ideally models 

and model-based studies used to inform public health policy and intervention 

should be rigorously peer-reviewed. The Royal Society’s Rapid Assistance in 

Modelling the Pandemic (RAMP) initiative, which crowd-sourced rapid reviews 

of the burgeoning scientific literature, provides a paradigm for how this could 

be done. In summary, there is an urgent need to develop and ensure wide 

adoption of open modelling standards and tools that meet the above 

requirements. Despite inherent time constraints in pandemic response such 



   
 

   
 

tools should facilitate both replication and reproducibility including rigorous 

testing and adaptation of epidemiological models. Indeed, there have been 

some moves towards this during the COVID-19 pandemic with, for example, 

reanalysis of influential model results (Rice et al., 2020).   

Deeper engagement with policy and decision makers 

A further broader challenge is that of communication on the modeller-decision-

maker interface. In terms of communication of modelling results, it is critical not 

to overwhelm decision-makers with too much information. Adoption of 

suitable visualisation techniques would focus on how best to present 

information in a way that supports human decision-making abilities (Chen et al., 

2021). Such communication needs to convey both uncertainty and model 

assumptions and inherent limitations (Swallow et al., 2021; Hadley et al., 2021). 

The development of the open epidemiology standards and data pipeline tools 

discussed above would provide a framework within which to structure such 

communications. However, modellers should also give greater consideration to 

the presentation of results and the art of writing succinct honest, executive 

summaries and syntheses across multiple sources of evidence. Such 

communication must take into account the way in which users of the information 

provided are likely to interpret what is presented. 

To deepen trust and increase the effectiveness of interactions across the 

modeller-decision-maker interface, modellers should also engage in co-

construction of models and model-based analysis with policy, decision makers 

and other stakeholders. Such co-development would focus on formulating 

policy relevant questions which could be usefully addressed by modelling, and 

also on the development and parameterisation of models used in answering 

these questions. We note that the tools of expert elicitation will be invaluable in 

realising these ambitions (Swallow et al., 2021). In line with the points made 

previously about the need for transparency and trust in models, it is vital to 

ensure that such elicitation processes are well documented and open to 

scrutiny. Adoption of these deeply collaborative approaches would likely lead 

to substantially greater public health benefits derived from epidemiological 

modelling efforts. Moreover, the time consuming nature of such interactions 

suggests that the necessary exercises should begin well ahead of future 

pandemics. This would allow identification and testing of ideas and procedures 

but perhaps most importantly the development suitable relationships at 

institutional and individual level. 

 

Discussion 

Despite the substantial public health benefits derived to date from 

epidemiological models of infectious disease there are still many opportunities 

to enhance modelling to better inform management and control of future 

pandemics. Here a wide range of challenges for epidemiological modelling that 

need to be addressed if such benefits are to be realised have been identified. 

These fall under structural modelling and analytic challenges to better account 

for contact processes and host and pathogen complexity, and a set of 



   
 

   
 

challenges related to improving the impact of modelling in future pandemics 

(see Figure 1).  

The focus on directly transmitted pathogens is justified since future pandemic 

risks are greatest in the case of direct person to person transmission. However, 

many current and future high impact disease threats result from vector borne 

pathogens often affecting groups and populations that lack sufficient resources 

to respond effectively. Climate change is likely to increase risks from vector 

borne pathogens as environmental conditions allow vector distributions to 

spread or shift to either overlap with populations not currently exposed, or to 

increase exposure in areas already affected. These threats raise a further set 

of modelling challenges. Nonetheless, many of the issues discussed here 

remain relevant to reducing wider impacts of infectious diseases and pandemic 

preparedness.  

The key theme identified here is the need to make models that are more 

effective at providing decision makers with relevant information during 

pandemics. This will be underpinned by better communication with public 

health stakeholders at all stages from identifying questions, through model 

development, to the synthesis of policy advice built on model outputs and expert 

judgement. Such communication needs to: be built on better understanding of 

how target audiences perceive presented information; express the limitations 

of models and uncertainty in model outputs; and critically build a clear 

understanding of what questions are addressed by specific analyses to enable 

more effective decision making. An important step in achieving this is the 

development of tools and standards through which to make models and model 

outputs used to inform policy more open, transparent and trusted (Shadbolt et 

al., 2021).  

In terms of impacting pandemic control, challenges identified include more 

realistic modelling of time and resource constraints including rates at which 

interventions including contact tracing and vaccination can be conducted. The 

modelling of contact tracing is itself identified as a particularly difficult problem 

due to induced dependencies between disease contacts. A further important 

opportunity for models to contribute to pandemic control is by using available 

data better to estimate the underlying characteristics of outbreaks e.g. real time 

reproduction numbers, transmission rates and disease progression. 

Furthermore, the largely untapped potential to use models to enhance possibly 

adaptive collection of data during a pandemic could transform future public 

health response. The ability to achieve such goals is dependent on continued 

improvements in the formulation, development and testing of models and 

theory of infectious disease.  

Current critical gaps in the modelling toolkit include the need further to develop 

models to account for heterogeneity and more complex dynamics of contact 

structures including host behaviour, hosts and pathogens.  Developments in 

modelling within host dynamics will enhance implementation of interventions 

including contact tracing and vaccination by improved theoretical 

understanding and better quantification through more complete use of 

information from disease diagnostics. Similarly, the explosion of information on 



   
 

   
 

pathogen genetics raises significant modelling challenges in terms of 

representing the diversity and evolution of pathogens, and ultimately how these 

interact with host genetics. An urgent and overarching requirement is the need 

to enhance the modelling of contact processes in human society and how these 

respond to public health messages and interventions including compensatory 

behaviours. Continued threats from SARS-CoV-2 and risks of future pandemics 

point to the need for models that more fully couple the dynamics of human 

societies and pathogens. Such human-disease system models would enable 

exploration of public health and other policies that would make humanity more 

resistant to the emergence of zoonotic diseases and less vulnerable to 

pandemic spread when they inevitably arise. 
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