
RSK TABLEAUX AND BOX-BALL SYSTEMS

BEN DRUCKER, ELI GARCIA, EMILY GUNAWAN, AUBREY RUMBOLT, AND ROSE SILVER

Abstract. A box-ball system is a discrete dynamical system whose dynamics come from the balls

jumping according to certain rules. A permutation on n objects gives a box-ball system state by

assigning its one-line notation to n consecutive boxes. After a finite number of steps, a box-ball

system will reach a steady state. From any steady state, we can construct a tableau called the

soliton decomposition of the box-ball system. We prove that if the soliton decomposition of a

permutation w is a standard tableau or if its shape coincides with the Robinson–Schensted (RS)

partition of w, then the soliton decomposition of w and the RS insertion tableau of w are equal.

We also use row reading words, Knuth moves, RS recording tableaux, and a localized version of

Greene’s theorem (proven recently by Lewis, Lyu, Pylyavskyy, and Sen) to study various properties

of a box-ball system.

Contents

1. Introduction 2

1.1. Insertion tableaux and soliton decompositions 3

1.2. Tableau reading words 4

1.3. Recording tableaux and time to steady state 4

1.4. Types of Knuth moves 5

1.5. An algorithm with multiple carriers 5

2. Greene’s theorem and a localized version of Greene’s theorem 6

2.1. Greene’s theorem and RS partition 6

2.2. Localized Greene’s theorem and BBS soliton partition 7

3. Fukuda’s carrier algorithm 8

3.1. Carrier algorithm 9

3.2. The RS insertion tableau is an invariant of a box-ball system 10

4. When the soliton decomposition and the RS insertion tableau coincide 12

5. Reading words and steady states 13

5.1. Reading words of standard tableaux 13

5.2. Reading words of standard skew tableaux 14

5.3. Separation condition 14

6. A recording tableau giving n–3 steady-state time 17

6.1. A recording tableau giving n–3 steady-state time 17

6.2. Lemmas for Theorem 6.7 17

6.3. Proof of Theorem 6.7 20

7. Knuth moves 22

7.1. Soliton decompositions are preserved by certain Knuth moves 22

Date: December 7, 2021.
1

7.2. Permutations one Knuth move away from a reading word with steady-state time 1 24

8. M-carrier algorithm 30

Acknowledgements 32

References 32

1. Introduction

A box-ball system (BBS) is a collection of discrete time states. At each state, we have an injective

map from n balls (labeled by the integers from 1 to n) to boxes (labeled by the natural numbers);

each box can fit at most one ball. The dynamics come from the balls jumping according to certain

rules. Let Sn denote the set of permutations on [n] = {1, 2, . . . , n}. A permutation w in Sn gives a

box-ball system state by assigning the one-line notation of the permutation to n consecutive boxes.

Given a BBS state at time t, we compute the BBS state at time t+ 1 by applying one BBS move,

which is the process of moving each integer to the nearest empty box to its right, beginning with

the smallest. See Figure 1. This version of the box-ball system was introduced in [Tak93] and is an

extension of the box-ball system first invented by Takahashi and Satsuma in [TS90].

4 5 2 3 6 1

4 5 2 3 6 1

4 5 23 6 1

4 5 2 36 1

45 2 36 1

4 5 2 36 1

4 5 2 3 61

t = 0

t = 1

Figure 1. Performing a BBS move on w = 452361

A soliton is a maximal consecutive increasing sequence of balls which is preserved by all

subsequent BBS moves. After a finite number of BBS moves, a box-ball system containing a

configuration w will reach a steady state, decomposing into solitons whose sizes are weakly decreasing

from right to left, that is, forming an integer partition shape. From such a state, we can construct the

soliton decomposition of the box-ball system, denoted SD, by stacking solitons so that the rightmost

soliton is placed on the first row, the soliton to its left is placed on the second row, and so on. We

obtain a tableau where each row is increasing but which may or may not be standard. The soliton

decomposition of a permutation w is the soliton decomposition of the box-ball system containing w.

Figure 2 shows the state of the box-ball system containing w = 452361 from t = 0 to t = 4. Note

that steady state is first reached at t = 3. The soliton decomposition of w = 452361 is the tableau

SD(w) =
1 3 6
2 5
4

.

2

In this example, the soliton decomposition is a standard tableau, but most permutations have soliton

decompositions which are not standard. The tableau SD(w) has shape (3, 2, 1). We will refer to the

shape of the soliton decomposition as the BBS soliton partition.

4 5 2 3 6 1

4 5 2 3 61

t = 0

t = 1

4 5 2 3 61
t = 2

24
t = 3

t = 4

3 615

24 3 615

Figure 2. BBS moves starting at w = 452361

The well-known Robinson–Schensted (RS) insertion algorithm is a bijection

w 7→ (P(w),Q(w))

from Sn onto pairs of standard size-n tableaux of the same shape [Sch61]. The tableau P(w) is called

the insertion tableau of w, and the tableau Q(w) is called the recording tableau of w. The shape of

these tableaux is called the RS partition of w.

The row reading word of a tableau is the permutation formed by concatenating the rows of the

tableau from bottom to top, left to right.

If r is the row reading word of a standard tableau T , then P(r) = T . (1.1)

For example, if w = 452361, then

P(w) =
1 3 6
2 5
4

, Q(w) =
1 2 5
3 4
6

.

The tableau P(w) has row reading word r = 425136. The insertion tableau of r is the tableau P(w).

For more information, see for example the textbook [Sag20, Section 7.5].

Our goal is to study the connection between the soliton decompositions and RS tableaux of

permutations. We now describe our main results.

1.1. Insertion tableaux and soliton decompositions. For the permutation w = 452361 used

in the above example, we have SD(w) = P(w). However, in general the soliton decomposition and

the RS insertion tableau of a permutation do not coincide. Surprisingly, having a standard soliton

decomposition tableau or having a BBS soliton partition which equals the RS partition is enough to

guarantee that the soliton decomposition and the RS insertion tableau coincide.

Theorem A (Theorem 4.2). Suppose w is a permutation. Then the following are equivalent:

(1) SD(w) = P(w).

(2) SD(w) is a standard tableau.
3

(3) The shape of SD(w) equals the shape of P(w).

Our proof uses Greene’s theorem (Theorem 2.2) and a result of Fukuda which says that the RS

insertion tableau is an invariant of a box-ball system (Theorem 3.3). The proof that part (3) implies

part (2) was suggested to us by Darij Grinberg.

1.2. Tableau reading words. We study the connection between steady-state configurations and

row reading words. It turns out that a permutation is in steady state if and only if it is the row

reading word of a standard tableau.

Proposition B (Proposition 5.1). A permutation r reaches its soliton decomposition at time t = 0

if and only if r is the row reading word of a standard tableau.

Next, we represent a box-ball system state as an array containing integers from 1 to n called

the configuration array. This array has increasing rows but not necessarily increasing columns; it

also may not have a valid skew shape and it may be disconnected. Proposition B turns out to be a

special case of the following.

Proposition C (Proposition 5.2). A BBS configuration w is in steady state if and only if the

configuration array of w is a standard skew tableau whose rows are weakly decreasing in length.

As we will explain in Section 5, Proposition C is a corollary of a characterization for steady

state given by Lewis, Lyu, Pylyavskyy, and Sen in [LLPS19, Proof of Lemma 2.1 and 2.3].

1.3. Recording tableaux and time to steady state. We also study the relationship between

the RS recording tableau of a permutation and the behavior of its box-ball system. The number of

BBS moves required for a permutation w to reach a steady state is called the steady-state time of w.

For example, as illustrated in Figure 2, the steady-state time of the permutation 452361 is 3.

Theorem D (Theorem 6.7). If n ≥ 5, let

Q̂ :=
1 2 . . . n-2 n-1

3 4

n

.

If Q(w) = Q̂, then w first reaches steady state at time n− 3.

This particular recording tableau is special; we conjecture that all other permutations in Sn

have steady-state time smaller than n− 3.

Conjecture 1.1. A permutation in Sn whose recording tableau is not equal to Q̂ has steady-state

time smaller than n− 3.

Furthermore, we conjecture that Theorem D is a special case of the following general phenomenon.

Conjecture 1.2. If two permutations π and w are such that Q(π) = Q(w), then π and w have the

same steady-state time.

Conjecture 1.2 is proven in a forthcoming paper [CFG+].
4

1.4. Types of Knuth moves. The RS insertion tableau is preserved under any Knuth move [Knu70].

In contrast, the soliton decomposition is only preserved under certain types of Knuth moves.

Definition 1.3 (Knuth Moves). Suppose π, w ∈ Sn and x < y < z.

(1) We say that π and w differ by a Knuth relation of the first kind (K1) if

π = π1 . . . yxz . . . πn and w = π1 . . . yzx . . . πn or vice versa

(2) We say that π and w differ by a Knuth relation of the second kind (K2) if

π = π1 . . . xzy . . . πn and w = π1 . . . zxy . . . πn or vice versa

In addition, We say that π and w differ by a Knuth relation of both kinds (KB) if they differ by a

Knuth relation of the first kind (K1) and of the second kind (K2), that is,

π = π1 . . . y1xzy2 . . . πn and w = π1 . . . y1zxy2 . . . πn or vice versa

where x < y1 < z and x < y2 < z.

Note that, when we apply a K1 move (respectively, a K2 move), the move may or may not be a

KB move. If we apply a KB move, then it is both a K1 move and a K2 move.

When performing a Knuth move, if we replace an “xz” pattern with a “zx” pattern, we denote

this with a superscript “+.” Otherwise, if we replace a “zx” pattern with an “xz” pattern, we denote

this with a superscript “−.” For example, if x < y1 < z and x < y2 < z, the move y1xzy2 7→ y1zxy2

is denoted K+
B .

We say that π and w are Knuth equivalent if they differ by a finite sequence of Knuth relations.

Using the localized version of Greene’s Theorem given in Section 2.2, we prove a partial

characterization of the BBS soliton partition in terms of types of Knuth moves.

Theorem E (Theorem 7.1). If π and w are related by a sequence of K1 or K2 moves (but not KB),

then sh SD(π) = sh SD(w). If π and w are related by a sequence of Knuth moves containing an odd

number of KB moves, then sh SD(π) 6= sh SD(w).

We also use a non-KB Knuth move to give a family of permutations which have steady-state

time 1.

Theorem F (Theorem 7.4). Suppose r is the row reading word of a standard tableau. If w is a

permutation one K1 or K2 (but not KB) move away from r, then the steady-state time of w is 1.

1.5. An algorithm with multiple carriers. The single-carrier algorithm (which we review in

Section 3) is a way to transform a box-ball configuration at time t into the configuration at time

t + 1. At each step in the algorithm, we insert and bump numbers in and out of a carrier filled

with a weakly increasing sequence, following a rule which should remind the reader of the Robinson–

Schensted–Knuth (RSK) insertion algorithm. In fact, the carrier algorithm can be viewed as a

sequence of Knuth transformations (see Remark 3.2).

In Section 8, we define the M -carrier algorithm (Algorithm 2) which is equivalent to performing

the carrier algorithm M times (Proposition 8.2). Given a large enough M , the M -carrier algorithm

gives us an RSK-like insertion algorithm which maps a permutation to its soliton decomposition.

The paper is organized as follows. In the next two sections, we review materials in the literature

that we will use to prove our results. First, we review Greene’s theorem in Section 2.1 and Lewis,

Lyu, Pylyavskyy, and Sen’s localized Greene’s theorem in Section 2.2. Next, we review Fukuda’s
5

carrier algorithm and its connection to the RS insertion tableaux in Section 3. In Section 4, we prove

Theorem A. In Section 5, we define the configuration array and use the carrier algorithm to prove

Proposition C. Section 6 is devoted to the proof of Theorem D. We prove the two results involving

types of Knuth moves (Theorem E and Theorem F) in Section 7. Finally, we define the M -carrier

algorithm in Section 8.

2. Greene’s theorem and a localized version of Greene’s theorem

In the 1970s, Greene showed that the RS partition of a permutation and its conjugate record

the numbers of disjoint unions of increasing and decreasing sequences of the permutation, which

we explain in Section 2.1. Lewis, Lyu, Pylyavskyy, and Sen recently showed that the BBS soliton

partition of a permutation and its conjugate record a localized version of Greene’s theorem statistics.

They studied an alternate version of the box-ball system, so in Section 2.2 we reframe their result to

match our box-ball convention.

2.1. Greene’s theorem and RS partition. In this section, we review Greene’s theorem [Gre74,

Theorem 3.1], which states that the RS partition of a permutation and its conjugate record the

numbers of disjoint unions of increasing and decreasing sequences of the permutation. For more

details, see for example Chapter 3 of the textbook [Sag01].

Definition 2.1 (longest k-increasing and k-decreasing subsequences). A subsequence σ of w is called

k-increasing if, as a set, it can be written as a disjoint union

σ = σ1 t σ2 t · · · t σk

where each σi is an increasing subsequence of w. If each σi is a decreasing subsequence of w, we say

that σ is k-decreasing. Let

ik(w) denote the length of a longest k-increasing subsequence of w

and

dk(w) denote the length of a longest k-decreasing subsequence of w.

Theorem 2.2 ([Gre74, Theorem 3.1]). Suppose w ∈ Sn. Let λ = (λ1, λ2, λ3, . . .) denote the RS

partition of w, that is, let λ = sh P(w). Let µ = (µ1, µ2, µ3, . . .) denote the conjugate of λ. Then,

for any k,

ik(w) = λ1 + λ2 + . . .+ λk,

dk(w) = µ1 + µ2 + . . .+ µk.

Example 2.3. Let w = 5623714. For short, we write ik := ik(w) and dk := dk(w). The longest

1-increasing subsequences are

567, 237, and 234.

The longest 2-increasing subsequence is given by

562374 = 567 t 234.

A longest 3-increasing subsequence (among others) is given by

5623714 = 56 t 237 t 14.
6

Thus,

i1 = 3, i2 = 6, and ik = 7 if k ≥ 3.

Similarly, the longest 1-decreasing subsequences are

521, 621, 531, and 631.

A longest 2-decreasing subsequence (among others) is given by

52714 = 521 t 74.

A longest 3-decreasing subsequence (among others) is given by

5623714 = 52 t 631 t 74.

Thus,

d1 = 3, d2 = 5, and dk = 7 if k ≥ 3.

By Theorem 2.2, the RS partition is equal to λ = (i1, i2− i1, i3− i2) = (3, 3, 1) and the conjugate

of the RS partition is µ = (d1,d2− d1,d3−d2) = (3, 2, 2). We can verify this by computing the RS

tableaux

P(w) =
1 3 4
2 6 7
5

, Q(w) =
1 2 5
3 4 7
6

.

2.2. Localized Greene’s theorem and BBS soliton partition. In [LLPS19, Lemma 2.1] and

the blog post [Lew], Lewis, Lyu, Pylyavskyy, and Sen presented a localized version of Greene’s

theorem. They studied an alternate version of the box-ball system, and in this section we reframe

their result to match our box-ball convention.

Definition 2.4 (A localized version of longest k-increasing subsequences). If u is a sequence, let

i(u) denote the length of a longest increasing subsequence of u.

For w ∈ Sn and k ≥ 1, we define

Ik(w) = max
w=u1|···|uk

k∑
j=1

i(uj),

where the maximum is taken over ways of writing w as a concatenation u1 | · · · | uk of consecutive

subsequences. That is, we consider all ways to break w into k consecutive subsequences, sum the

i(uj) values for each way, and let Ik(w) be the maximum sum.

Definition 2.5 (A localized version of longest k-decreasing subsequences). If u is a sequence of `

elements, an integer m ∈ [`− 1] is called a descent of u if um > um+1. Let D(u) := 1 + |{descents of

u}|.
For w ∈ Sn and k ≥ 1, we define

Dk(w) = max
w=u1t···tuk

k∑
j=1

D(uj),

where the maximum is taken over ways to write w as the union of disjoint subsequences uj of w.

Notice that we only require u1, . . . , uk to be disjoint, not consecutive, in contrast to the procedure

for calculating Ik(w).

The following lemma is a corollary of [LLPS19, Lemma 2.1].
7

Lemma 2.6 (A localized version of Greene’s theorem). Suppose w ∈ Sn. Let Λ = (Λ1,Λ2,Λ3, . . .)

denote the BBS soliton partition of w, that is, let Λ = sh SD(w). Let M = (M1,M2,M3, . . .) denote

the conjugate of Λ. Then, for any k,

Ik(w) = Λ1 + Λ2 + . . .+ Λk,

Dk(w) = M1 +M2 + . . .+Mk.

Example 2.7. Let w = 5623714, the permutation used in Example 2.3. For short, we write

Ik := Ik(w) and Dk := Dk(w). Then

I1 = i(w) = 3 (since the longest increasing subsequences are 567, 237, and 234),

I2 = 5 (witnessed by 56|23714 or 56237|14),

I3 = 7 (witnessed uniquely by 56|237|14), and

Ik = 7 for all k ≥ 3.

We have

D1 = D(w) = 1 + |descents of 5623714| = 1 + |{2, 5}| = 3,

D2 = 6 (one can take subsequences 531 and 6274, among other partitions),

D3 = 7 (one can take subsequences 52, 631, and 74, among other partitions), and

Dk = 7 for all k ≥ 3.

By Lemma 2.6, sh SD(w) = (I1, I2− I1, I3− I2) = (3, 2, 2) and its conjugate is (D1, D2−D1,

D3−D2) = (3, 3, 1). We can verify this by computing the soliton decomposition SD(w), which turns

out to be the nonstandard tableau
1 3 4
2 7
5 6

.

Note that, in this example, SD(w) 6= P(w), demonstrating Theorem A. Also, in this example,

sh SD(w) = (3, 2, 2) is smaller than sh P(w) = (3, 3, 1) in the dominance partial order.

Corollary 2.8. If w ∈ Sn, then the BBS soliton partition of w is smaller or equal to the RS partition

of w in the dominance partial order.

Proof. Let Λ = (Λ1,Λ2,Λ3, . . .) denote sh SD(w) and let λ = (λ1, λ2, λ3, . . .) denote sh P(w). Then,

for all k = 1, 2, . . . , we have

Λ1 + Λ2 + · · ·+ Λk = Ik(w) by localized Greene’s theorem (Lemma 2.6)

≤ ik(w) since Ik(w) gives the length of a k-increasing subsequence of w

= λ1 + λ2 + · · ·+ λk by Greene’s theorem (Theorem 2.2).

�

3. Fukuda’s carrier algorithm

In this section, we review the carrier algorithm and the fact that the RS insertion tableau is an

invariant of a box-ball system (BBS).
8

3.1. Carrier algorithm. The carrier algorithm is a way to describe a BBS move as a sequence

of local operations of inserting and bumping numbers in and out of a carrier filled with a weakly

increasing string. A version of the carrier algorithm was first introduced in [TM97], and the version

of the carrier algorithm we use in this paper comes from [Fuk04, Section 3.3]. Given a BBS state at

time t, the carrier algorithm is used to calculate the state at time t+ 1. We describe the process in

Algorithm 1. Note that, after each insertion and ejection step, the sequence in the carrier is weakly

increasing.

Algorithm 1 The 1-carrier algorithm [Fuk04]

1: begin carrier algorithm
2: Set e := n+ 1, so that e is considered to be larger than any ball
3: Set B := the configuration of the BBS at time t, where each empty box is replaced with an e

and the first (leftmost) element of B is the integer in the first (leftmost) nonempty box in
the configuration and the last (rightmost) element of B is the integer in the last (rightmost)
nonempty box of the configuration

4: Let ` denote the number of elements (including the e’s) of B
5: Fill a “carrier” C —depicted —with n copies of e
6: Write B to the right of C
7: begin Process 1: insertion process
8: for all i in {1, 2, . . . , `} do
9: Set p to be the ith leftmost element of B

10: begin element ejection process
11: if an element in C is larger than p then
12: Set s := the smallest element in C larger than p. If s = e, pick the leftmost e
13: Eject s from C and put it immediately to the left of C
14: insert p in the place of s
15: else
16: Set s := the smallest element in C
17: Eject s from C and put it immediately to the left of C
18: I Note: There are now n− 1 elements in C
19: Place p in the rightmost location in C
20: I Note: There are now n elements in C
21: end if
22: end element ejection process
23: end for
24: end Process 1: insertion process
25: begin Process 2: flushing process
26: while there are non-e elements in C do
27: Set p := e
28: Perform the element ejection process (see line 10)
29: end while
30: end Process 2: flushing process
31: I Note: The current elements to the left of C correspond to the t+ 1 state of the BBS
32: end carrier algorithm

Example 3.1. We compute the configuration at time t = 3 of the box-ball system from Figure 2

by applying the carrier algorithm to the configuration at time t = 2. Following Algorithm 1, we set

B := 452ee136. The carrier algorithm then proceeds as follows.

9

begin Process 1: insertion process

eeeeee 452ee136

e 4eeeee 52ee136

ee 45eeee 2ee136

ee4 25eeee ee136

ee42 5eeeee e136

ee425 eeeeee 136

ee425e 1eeeee 36

ee425ee 13eeee 6

ee425eee 136eee

end insertion process

begin Process 2: flushing process

ee425eee 136eee← e

ee425eee1 36eeee← e

ee425eee13 6eeeee← e

ee425eee136 eeeeee

end flushing process

The elements ee425eee136 to the left of C correspond to the configuration at time t = 3 given in

Figure 2.

3.2. The RS insertion tableau is an invariant of a box-ball system.

Remark 3.2 ([Fuk04, Remark 4]). The carrier algorithm can be viewed as a sequence of Knuth

moves. Consider the insertion of p into the carrier. Note that, since our carrier can carry n elements,

if p 6= e, then the carrier must contain a number (possibly e) greater than p. If p = e, then no

number in the carrier is greater than p.

First, suppose p 6= e, and let Cp denote the smallest element in the carrier which is greater than

p.

(i) If Cp is the smallest element in the carrier, then the insertion process is equivalent to applying

a sequence of K−1 moves

Cpz1z2 · · · z`−1z` p

Cpz1z2 · · · z`−1pz`
...

Cpz1pz2 · · · z`−1z`

Cp pz1z2 z` .

(ii) If Cp is the largest element in the carrier, then the insertion process is equivalent to applying a

sequence of K+
2 moves

x1x2 · · ·xm−1xmCp p

x1x2 · · ·xm−1Cpxmp
...

x1Cpx2 · · ·xm−1xmp

Cp x1x2 · · ·xm−1xmp .

10

(iii) If Cp is neither the smallest nor the largest element in the carrier, then the insertion process is

equivalent to applying a sequence of K−1 moves

x1x2 · · ·xm−1xmCpz1z2 · · · z`−1z` p

x1x2 · · ·xm−1xmCpz1z2 · · · z`−1pz`
...

x1x2 · · ·xm−1xmCpz1pz2 · · · z`−1z`

x1x2 · · ·xm−1xmCppz1z2 · · · z`−1z`

followed by a sequence of K+
2 moves

x1x2 · · ·xm−1xmCppz1z2 · · · z`−1z`

x1x2 · · ·xm−1Cpxmpz1z2 · · · z`−1z`
...

x1Cpx2 · · ·xm−1xmpz1z2 · · · z`−1z`

Cp x1x2 · · ·xm−1xmpz1z2 · · · z`−1z` .

Next, suppose p = e. Then p is greater than or equal to every element in the carrier, and the

insertion process is equivalent to applying the trivial transformation

x1x2 · · ·xn p

x1 x2 · · ·xn p .

Theorem 3.3 ([Fuk04, Theorem 3.1]). The RS insertion tableau is a conserved quantity under the

time evolution of the BBS, i.e., the RS insertion tableau is preserved under each BBS move. More

precisely, let Bt be the state of a box-ball system at time t. Let B′t be the permutation created from

Bt by removing all e’s. Then P(B′t) is identical for all t.

Example 3.4. As shown in Figure 2, the configurations 452361, ee45e2136, eeee452ee136, and

eeeeee425eee136 are in the same box-ball system. As Theorem 3.3 tells us, the permutations 452361,

452136, and 425136 have the same RS insertion tableau

P(452361) = P(452136) = P(425136) =
1 3 6
2 5
4

.

Corollary 3.5. Let w be a permutation. If r is the row reading word of SD(w), then P(w) = P(r).

Proof. Let r be the row reading word of SD(w). By definition of the soliton decomposition tableau,

we know that r is the order in which the balls of w are configured once we reach a steady state.

Therefore, r is a state in the box-ball system containing w. Theorem 3.3 tells us that the RS insertion

tableau is preserved under a sequence of box-ball moves, so P(w) = P(r). �

Example 3.6. Let w = 5623714, the permutation from Section 2, and let r be the row reading word

of SD(w). We have

SD(w) =
1 3 4
2 7
5 6

, r = 5627134, and P(w) =
1 3 4
2 6 7
5

= P(r).

11

In Example 3.4, the soliton decomposition coincides with the RS insertion tableau of the box-ball

system, but in Example 3.6 these two tableaux do not coincide. In the next section we discuss when

SD(w) = P(w).

4. When the soliton decomposition and the RS insertion tableau coincide

In this section, we will prove Theorem 4.2. One direction of our proof uses the following lemma,

which was communicated to us by Darij Grinberg.

Lemma 4.1. Suppose S is a row-strict tableau, that is, every row is increasing (with no restrictions

on the columns). Let r be the row reading word of S. If shS = sh P(r), then S is standard, that is,

every column of S is increasing.

Proof. Suppose S is not standard. Then S has two adjacent entries in a column which are out of

order. Indexing our rows from top to bottom and our columns from left to right, this means there is

a column (say, column c) for which the entry in some row k is bigger than the entry immediately

below it. Let y be the entry in the k-th row, c-th column of S, and let x be the entry immediately

below it (in the k + 1-th row, c-th column of S).

Since r is the row reading word of S and since each row of S is increasing, we can construct a

list of k disjoint increasing subsequences of r: The first k − 1 increasing subsequences of r are the

first k − 1 rows of S. The k-th increasing subsequence starts in row k + 1, column 1 of S, moving

along the same row until we get to column c (with entry x), then going up to row k above (which

has entry y), then continuing to the end of row k.

The length of the k-th increasing subsequence is larger (by 1) than the length of the k-th row of

S. So the total number of letters in our list of k disjoint increasing subsequences of r is larger by 1

than the total length of the first k rows of S. Thus, Greene’s theorem (Theorem 2.2) says that the

total length of the first k rows of the RS insertion tableau P(r) of r is larger (at least by 1) than the

total length of the first k rows of S. Therefore, the shape of S is not equal to the shape of P(r). �

The following theorem gives a characterization of permutations whose soliton decompositions

are equal to their RS insertion tableaux.

Theorem 4.2. Let w be a permutation. Then the following are equivalent:

(1) SD(w) = P(w).

(2) SD(w) is a standard tableau.

(3) The shape of SD(w) equals the shape of P(w).

Proof. Certainly (1) implies (2) and (3). We will show that (2) implies (1) and (3) implies (2).

Let r be the row reading word of SD(w). By Corollary 3.5, we have

P(w) = P(r). (4.1)

First, we show that (2) implies (1). Suppose that SD(w) is a standard tableau T . Since r is

the row reading word of T , we have P(r) = T by (1.1). Combining this equality with (4.1), we get

P(w) = P(r) = T = SD(w).

Next, we show that (3) implies (2). Let S denote SD(w), and note that SD(w) is a row-

strict tableau by construction. Suppose shS = sh P(w). Since P(w) = P(r) by (4.1), we have
12

sh P(w) = sh P(r), so shS = sh P(w) = sh P(r). Because S is a row-strict tableau and the permutation

r is the row reading word of S and shS = sh P(r), Lemma 4.1 tells us that S is standard. �

Corollary 4.3. Let w be a permutation. Then the following five statements are equivalent:

(1) SD(w) = P(w).

(2) SD(w) is a standard tableau.

(3) The shape of SD(w) equals the shape of P(w).

(4) For all k ≥ 1, we have

Ik(w) = ik(w).

(5) For all k ≥ 1, we have

Dk(w) = dk(w).

The symbols Ik and Dk are the statistics from localized Greene’s theorem (Section 2.2) and

ik and dk are the statistics from Greene’s theorem (Section 2.1).

Proof. For short, we write ik := ik(w), Ik := Ik(w), dk := dk(w), and Dk := Dk(w). By localized

Greene’s theorem (Lemma 2.6),

the shape of SD(w) is (I1, I2− I1, I3− I2, . . .) and

the shape of the conjugate of SD(w) is (D1,D2−D1,D3−D2, . . .).

By Greene’s theorem (Theorem 2.2),

the shape of P(w) is (i1, i2− i1, i3− i2, . . .) and

the shape of the conjugate of P(w) is (d1,d2−d1,d3−d2, . . .).

Combining these facts, we conclude that sh SD(w) = sh P(w) if and only if Ik = ik for all k ≥ 1 if

and only if Dk = dk for all k ≥ 1. �

Example 4.4. Let w = 5623714. From Examples 2.3 and 2.7, we know that I2(w) = 5 < 6 = i2(w).

So all the other items of Corollary 4.3 must also be false.

5. Reading words and steady states

We study the steady-state configurations of a box-ball system. The main result of this section

(Proposition 5.2) is a corollary of [LLPS19, Proof of Lemma 2.1 and 2.3].

5.1. Reading words of standard tableaux. The permutations which reach their steady state at

time 0 are precisely the row reading words of standard tableaux.

Proposition 5.1. A permutation r is the row reading word of a standard tableau if and only if r

reaches its soliton decomposition at time t = 0.

In particular, if r is the row reading word of a standard tableau T , then T = SD(r). In the next

section, the standard tableau in Proposition 5.1 is generalized to standard skew tableaux whose rows

are weakly decreasing in length.
13

5.2. Reading words of standard skew tableaux. A BBS state can be represented as a configu-

ration array containing the integers from 1 to n as follows: scanning the boxes from right to left,

each increasing run (maximal consecutive increasing string of balls) becomes a row in the array. A

string of g empty boxes indicates that the next row below should be shifted g spaces to the left. Note

that this array has increasing rows but not necessarily increasing columns; it may be disconnected

and it may not have a valid skew shape.

Proposition 5.2. A BBS configuration C is in steady state if and only if its configuration array is

a standard (possibly disconnected) skew tableau whose rows are weakly decreasing in length.

We will give a proof in Section 5.3.

Example 5.3. Let w = 5623714, the example we use in Section 2. The following are the box-ball

system states from time t = 0 to t = 4 and their configuration arrays.

t = 0 5 6 2 3 7 1 4 e . . .
1 4
2 3 7
5 6

t = 1 e e 5 6 e 2 7 1 3 4 e . . .
1 3 4
2 7

5 6

t = 2 e e e e 5 6 e 2 7 e 1 3 4 e . . .
1 3 4

2 7
5 6

t = 3 e e e e e e 5 6 e 2 7 e e 1 3 4 e . . .
1 3 4

2 7
5 6

t = 4 e e e e e e e e 5 6 e 2 7 e e e 1 3 4 e . . .
1 3 4

2 7
5 6

In this box-ball system, all configurations at time t ≥ 1 are in steady state.

Example 5.4. The following is an example of a non-steady-state BBS configuration and its con-

figuration array. Note that the configuration array is a standard skew tableau but its rows are not

weakly decreasing in length.

. . . e 1 3 7 e 2 4 6 9 e e 5 8 e . . .
5 8

2 4 6 9
1 3 7

5.3. Separation condition. A ‘separation condition’ for steady state is given in statement (43)

in [LLPS19]. In Lemmas 5.5 and 5.6, we reframe this characterization for steady state in terms of

our version of the box-ball system. Proposition 5.2 follows directly from these two lemmas.

Lemma 5.5 (Separation condition). Let a BBS configuration be in steady state. Suppose two

adjacent solitons L (the left soliton with length `) and R (the right soliton) are separated by g empty

boxes, where g < `. Then, for i = 1, 2, . . . , `− g,
14

the i-th smallest ball of the right soliton R is smaller than

the (i+ g)-th smallest ball of the left soliton L.

Proof. We apply one BBS move to the configuration via the carrier algorithm. Suppose L =

L1L2 . . . L` and R = R1R2 . . . Rr are the two leftmost solitons.

Our initial setup with n copies of e in the carrier is

ee · · · e
carrier

L1 . . . L`

g copies︷ ︸︸ ︷
e . . . e R1 . . . Rr . . .

First, we simply insert L1, . . . , L` into the carrier. Since L is increasing, each time we insert a ball of

L, we eject a copy of e. We get

` copies︷ ︸︸ ︷
e . . . e L1 · · · L` ee · · · e

g copies︷ ︸︸ ︷
e . . . e R1 . . . Rr . . . (5.1)

Next, we insert the g copies of e into the carrier and eject L1, . . . , Lg:

e . . . e L1 . . . Lg︸ ︷︷ ︸
first g balls

`− g balls︷ ︸︸ ︷
Lg+1 · · ·L` ee · · · e R1 . . . Rr . . .

Since we started with a steady-state configuration, the left soliton L must stay intact at the end of

the carrier algorithm. So, for each i = 1, . . . , `− g, as we insert Ri, we must eject Lg+i, and get

e . . . e L1 . . . Lg Lg+1 . . . L`︸ ︷︷ ︸
`− g balls

R1 · · · R`−g ee · · · e R`−g+1 . . . Rr . . .

So we must have Ri < Lg+i for i = 1, 2, . . . , `− g, as needed.

After we insert the rest of the elements of R into the carrier, we have

e . . . e L1 . . . L`

r−`+g
copies︷ ︸︸ ︷
ee . . . e R1 · · · Rr ee · · · e . . .

If we have a third soliton located to the right of R, we would be in the same situation as (5.1). We

then repeat the same process for the rest of the solitons and arrive at the same conclusion. �

Lemma 5.6 (Sufficient condition for steady state). Suppose a BBS configuration w satisfies the

following.

(1) The configuration array of w has rows of weakly decreasing length.

(2) The configuration array of w is standard; that is, if two adjacent maximal consecutive

increasing blocks L (the left block with length `) and R (the right block) of w are separated

by g empty boxes such that g < `, then, for i = 1, 2, . . . , `− g,

the i-th ball of the right block R is smaller than

the (i+ g)-th ball of the left block L.

Then w is in steady state.

Proof. Suppose w is the configuration at time t. We apply the carrier algorithm to get the configuration

at time t+ 1. Suppose L = L1L2 . . . L` and R = R1R2 . . . Rr are the two leftmost increasing runs

(maximal consecutive increasing blocks of balls).
15

Prior to applying the carrier algorithm, we have

ee · · · e
carrier

L1 . . . L`︸ ︷︷ ︸
first run

g copies︷ ︸︸ ︷
e . . . eR1 . . . Rr︸ ︷︷ ︸

second run

. . .

First, we insert each of L1, . . . , L` into the carrier and eject an e each time. We get

` copies︷ ︸︸ ︷
e . . . e L1 · · ·L` ee · · · e

g copies︷ ︸︸ ︷
e . . . eR1 . . . Rr (5.2)

Next, we insert the g copies of e into the carrier and eject L1, . . . , Lg. There are two cases: either (a)

g ≥ ` or (b) g < `.

(a) First, suppose that g ≥ `. Then all of L1, . . . , L` are ejected and the carrier is now empty:

e . . . e L1 . . . L`︸ ︷︷ ︸
first run

g−`︷ ︸︸ ︷
e . . . e ee · · · e R1 . . . Rr︸ ︷︷ ︸

second run

. . .

We proceed by inserting R1, . . . , Rr into the carrier. Since R is increasing, we eject r copies of e’s:

e . . . e L1 . . . L`

g−`︷ ︸︸ ︷
e . . . e

r︷ ︸︸ ︷
e . . . e R1 · · ·Rr ee · · · e . . .

(b) Second, suppose g < `. After L1, . . . , Lg are ejected, we have

e . . . e L1 . . . Lg︸ ︷︷ ︸
first g balls

`−g balls︷ ︸︸ ︷
Lg+1 · · ·L` ee · · · e R1 . . . Rr︸ ︷︷ ︸

second run

. . .

We proceed by inserting R1, · · · , Rr into the carrier. We have ` ≤ r by assumption part (1) and

Ri < Lg+i for i = 1, 2, . . . , l − g by assumption part (2). Therefore, as we insert R1, . . . , R`−g, we

must eject Lg+1, . . . , L`, and we get

e . . . e L1 . . . Lg Lg+1 . . . L`︸ ︷︷ ︸
`−g balls

R1 · · ·R`−g ee · · · e R`−g+1 . . . Rr . . .

After we insert the rest of the elements of R into the carrier, we have

e . . . e L1 . . . L`

r−`+g︷ ︸︸ ︷
ee . . . e R1 · · ·Rr ee · · · e . . .

In both cases, at time t + 1 there are at least r − ` + g empty boxes to the right of L. Since

` ≤ r, we have g ≤ r− `+ g, so there are at least as many empty boxes to the right of L as at time t.

Furthermore, the increasing run L stays together.

If we have a third increasing run S = S1 . . . Ss to the right of R (with a gap of g′ empty boxes),

we would be in the same situation as (5.2). After inserting the elements of S into the carrier, we

would have

e . . . e L1 . . . L`

r−`+g︷ ︸︸ ︷
ee . . . e R1 . . . Rr

s−r+g′︷ ︸︸ ︷
ee . . . e S1 · · ·Ss ee · · · e . . .

Again, there are at least as many empty boxes to the right of R at time t+ 1 than at time t, and R

stays together.

At the end of the carrier algorithm, the increasing runs stay together, their order stays the same,

and the gap of empty boxes between each pair of adjacent sequences is at least as large as at time t.

16

The new configuration satisfies both part (1) and (2) of the assumption. By induction, subsequent

carrier algorithm applications leave the order of the increasing runs unchanged, so these increasing

runs are in fact solitons. �

By the two lemmas above, we have Proposition 5.2: a box-ball configuration is in steady state

if and only if its configuration array (1) has rows of weakly decreasing length and (2) each of its

column is increasing.

6. A recording tableau giving n–3 steady-state time

In this section, we prove Theorem 6.7, which states that all permutations in Sn with a certain

recording tableau have box-ball steady-state time n− 3. We conjecture that all other permutations

in Sn have steady-state time less than n− 3 (Conjecture 1.1).

Theorem 6.7 turns out to be a special case of a general phenomenon, which is proven in [CFG+]:

if two permutations have the same recording tableau, then they have the same BBS steady-state

time (Conjecture 1.2).

6.1. A recording tableau giving n–3 steady-state time.

Definition 6.1. If n ≥ 5, let Q̂ denote the tableau

1 2 . . . n− 2 n− 1

3 4

n

.

Let Sn(Q̂) be the set of permutations w ∈ Sn such that its recording tableau Q(w) is equal to Q̂.

Example 6.2. For n = 5, the five permutations of Sn(Q̂) are the following.

45132 25143 35142 45231 35241

For n = 6, the sixteen permutations of Sn(Q̂) are as follows.

451362 251463 351462 452361 352461 561243 261354 361254

461253 561342 261453 361452 461352 562341 362451 462351

Note that one of our running examples, 452361, is in S6(Q̂). As illustrated in Figure 2, its steady-state

time is 3 = 6− 3.

Remark 6.3. It follows from Definition 6.1 that the RS algorithm induces a bijection from Sn(Q̂)

onto the set of standard tableaux of shape (n− 3, 2, 1), so Sn(Q̂) is counted by the sequence [Lan02].

The rest of this section is devoted to proving Theorem 6.7, which states that every permutation

in Sn(Q̂) has steady state time n− 3.

6.2. Lemmas for Theorem 6.7.

Lemma 6.4. Let n ≥ 5, and suppose w ∈ Sn(Q̂). Then w is not the union of two increasing

subsequences.
17

Proof. The recording tableau of w is equal to Q̂, which has height 3. Therefore, the RS partition

of w has three parts. By Greene’s theorem (Theorem 2.2), w is not the union of two increasing

subsequences. �

Lemma 6.5. Let n ≥ 5, and suppose w = w1w2 . . . wn ∈ Sn(Q̂). Then w satisfies the following.

(1) w3 < w4 < · · · < wn−1

(2) wn < w2

(3) w1 < w2

(4) w3 < w1

(5) w3 < w2

(6) w4 < w2

Proof. Since w ∈ Sn(Q̂), the recording tableau of w is equal to Q̂. We will use the inverse RS

algorithm1 to construct w. Let P = P(w) and Q = Q(w). Denote the entries in the top row of P by

a1, a2, . . . , aq (where q = n− 3), the second row of P by b1 and b2, and the entry in the third row of

P by c1. Hence, the starting pair P and Q is

P = a1 a2 a3 a4 . . . aq − 1 aq

b1 b2

c1

Q = 1 2 5 6 . . . n− 2 n− 1

3 4

n

Since P is standard, we know that b1 < c1. The other entry b2 in the second row is larger than b1. If

b2 < c1, let by equal b2. Otherwise, let by be b1. In other words, we let by denote the largest element

in the second row which is smaller than c1. Similarly, let ax denote the largest element in the first

row which is smaller than by. The first step of the inverse RS algorithm tells us that wn = ax.

After the first step in the inverse RS algorithm, we get the pair of tableaux

Pn−1 = α1 α2 α3 α4 . . .αq − 1 αq

β1 β2

Qn−1 =
1 2 5 6 . . . n− 2 n− 1

3 4
.

We now pause to observe two facts that will be referenced at the end of this proof. First, note

that Pn−1 is standard by definition of the inverse RS algorithm. Thus,

α1, α2, . . . , αq is increasing. (6.1)

Second, we note that

ax < β2, (6.2)

as we now explain. Recall that wn = ax, so, using the original RS algorithm, we insert ax into Pn−1

to get P . Since row 1 of Pn−1 and row 1 of P have the same size, we know that ax bumps a number

in row 1 of Pn−1 to row 2. Let

ai denote the smallest entry in row 1 of Pn−1 which is greater than ax.

The RS algorithm replaces ai with ax and bumps ai to row 2. Since row 2 of Pn−1 and row 2 of P

have the same size, we know that ai bumps a number in row 2 of Pn−1. So ai must be smaller than

β2. Since ax < ai, we have ax < β2. This concludes our explanation for (6.2).

1For definition of the inverse RS algorithm, see, for example, the textbook [Sag01, Section 3.1].

18

We also note that

β1 < β2, (6.3)

α1 < β1, and (6.4)

α2 < β2, (6.5)

since Pn−1 is standard. We will reference these inequalities at the end of this proof.

If n > 5, the numbers n − 1, n − 2, . . . , 6, 5 are in the first row of Q, so the next steps in the

inverse RS algorithm are to remove elements αq, αq−1, . . . , α4, α3 from Pn−1, in that order. Hence,

the last n− 4 letters of w are α3, α4, . . . , αq−1, αq, ax.

The new pair of tableaux is

P4 = α1 α2

β1 β2

Q4 = 1 2

3 4
.

Note that 4 is the bottom right corner of Q4. Since α2 < β2 by (6.5), we know that α2 is the largest

element in row 1 of P which is smaller than β2. So w4 = α2, and the last n − 3 letters of w are

α2, α3, α4, . . . , αq, αq−1, ax.

The new pair of tableaux is

P3 = α1 β2

β1

Q3 = 1 2

3
.

Note that 3 is in the second row of Q3. We know from (6.3) that β2 is larger than β1, so α1 is

the largest element in row 1 smaller than β1. Thus, w3 = α1. So the last n − 2 letters of w are

α1, α2, α3, α4, . . . , αq, αq−1, ax. The new pair of tableaux is

P2 = β1 β2 Q2 = 1 2 .

We then remove β2 and β1 from P2, in that order.

Therefore,

w = β1β2︸︷︷︸
increasing

α1α2α3α4 . . . αq−1αq︸ ︷︷ ︸
increasing

ax.

We now have all the necessary information to prove all parts of the lemma.

(1) The subsequence w3, w4, . . . , wn−1 is increasing because it is equal to the sequence α1, α2,

. . . , αq, which is increasing due to (6.1). This proves part (1).

(2) We have wn < w2 from (6.2), since wn = ax and w2 = β2. This proves part (2).

(3) We have w1 < w2 from (6.3), since w1 = β1 and w2 = β2. This proves part (3).

(4) We have w3 < w1 from (6.4), since w3 = α1 and w1 = β1. This proves part (4).

(5) We have w3 < w2 since w1 < w2 and w3 < w1. This proves part (5).

(6) We have w4 < w2 from (6.5), since w4 = α2 and w2 = β2. This proves part (6).

�

Lemma 6.6. Suppose w = w1 . . . wn ∈ Sn(Q̂).

(1) Either wn = 1 or w3 = 1.

(2) If w3 = 1, then w1 = 2, w4 = 2, or wn = 2.

(3) If w3 = 1 and w1 = 2, then w4 = 3 or wn = 3.
19

Proof. (1) Suppose wn 6= 1. Since both w1, w2 and w3, . . . , wn−1 are increasing subsequences by

Lemma 6.5(3),(1), either w1 = 1 or w3 = 1. Since w3 < w1 by Lemma 6.5(4), we must have

w3 = 1.

(2) Assume w3 = 1. We will show that w2 6= 2 and that none of w5, . . . , wn−1 is equal to 2

(hence w1 = 2, w4 = 2, or wn = 2). Since w3 < w2 and w4 < w2 by Lemma 6.5(5),(6) and

since w is a permutation, we must have 2 < w2. Similarly, since w3 < w4 < w5 < · · · < wn−1

by Lemma 6.5(1) and since w is a permutation, each of w5, . . . , wn−1 must be larger than 2.

(3) Suppose w3 = 1 and w1 = 2. We will prove that w2 6= 3 and none of w5, . . . , wn−1 is equal

to 3 (hence w4 = 3 or wn = 3). Since wn /∈ {1, 2}, we have 2 < wn. By Lemma 6.5(2),

we have wn < w2. So 2 < wn < w2, which implies that w2 is larger than 3 (since w is

a permutation). Similarly, since w3 < w4 by Lemma 6.5(1) and w1 = 2, we must have

2 < w4 < w5 < · · · < wn−1 by Lemma 6.5(1). So each of w5, . . . , wn−1 is larger than 3 (since

w is a permutation).

�

6.3. Proof of Theorem 6.7.

Theorem 6.7. If n ≥ 5, every permutation in Sn(Q̂) has steady-state time n− 3.

Proof. Suppose w = w1 . . . wn ∈ Sn(Q̂) is the box-ball configuration at time 0. We will show that w

first reaches steady state at time t = n− 3.

Let j be the smallest number in {3, 4, . . . , n− 1} such that wn < wj . We claim that the box-ball

configuration at time t = 1 is

e e w1 w2︸ ︷︷ ︸
increasing

block

n−5
copies︷ ︸︸ ︷

e e e . . . e x 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

, (6.6)

where x = wj , there are (n− 5) copies of e between w2 and x, and y1 < y2 < · · · < yn−4.

To prove this claim, consider the following cases. Due to Lemma 6.6, these five cases cover all

possibilities.

(1) wn = 1

(2) w3 = 1 and wn = 2

(3) w3 = 1, w1 = 2, and wn = 3

(4) w3 = 1, w1 = 2, and w4 = 3

(5) w3 = 1 and w4 = 2

First, suppose wn = 1. Lemma 6.5 tells us that w3 is smaller than each wi except for wn = 1, so

we must have w3 = 2 and j = 3:

w1 w2 w3︸︷︷︸
2

w4 w5 . . . wn−1 wn︸︷︷︸
1

.

Since w1 < w2 and w4 < w5 < · · · < wn−1 and since w4 < w2, applying one box-ball move to w

results in the configuration

e ew1 w2

n−5︷ ︸︸ ︷
e e e . . . e w3︸︷︷︸

x

1w4 w5 . . . wn−1

20

where there are (n− 5) copies of e between w2 and x = w3 = 2.

Second, suppose w3 = 1 and wn = 2:

w1 w2 w3︸︷︷︸
1

w4 w5 . . . wn−1 wn︸︷︷︸
2

.

Since w1 < w2 and w4 < w5 < · · · < wn−1 and since w4 < w2, applying one box-ball move to w

results in the configuration

e ew1 w2

n−5 copies︷ ︸︸ ︷
e e e . . . e w4︸︷︷︸

x

1 2w5 w6 . . . wn−1

where there are (n− 5) copies of e between w2 and x = w4. In this case, w3 = 1 is not bigger than

wn = 2, but w4 must be bigger than wn = 2 since w4 /∈ {1, 2}, so j = 4.

Third, suppose w3 = 1 and w1 = 2 and wn = 3. Lemma 6.5 tells us that w4 is smaller than each

of the wi (except for w3 = 1, w1 = 2, and wn = 3), so w4 must be 4:

w1︸︷︷︸
2

w2 w3︸︷︷︸
1

w4︸︷︷︸
4

w5 . . . wn−1 wn︸︷︷︸
3

.

Using the same reasoning as in the previous two cases, applying one box-ball move to w results in

the configuration

e e w1︸︷︷︸
2

w2

n−5 copies︷ ︸︸ ︷
e e e . . . e w4︸︷︷︸

x

1wn w5 w6 . . . wn−1

where there are (n− 5) copies of e between w2 and x = w4. In this case, j = 4 since w3 = 1 is not

larger than wn = 3 but w4 = 4 is.

Finally, suppose we have one of the last two cases, so w3 = 1 and w4 < wn:

w1 w2 w3︸︷︷︸
1

w4 w5 . . . wn−1 wn︸︷︷︸
larger

than w4

Since w1 < w2 and w4 < w5 < · · · < wj−1 < wn < wj < · · · < wn−1 and since w4 < w2, applying

one box-ball move to w results in the configuration

e ew1 w2

n−5 copies︷ ︸︸ ︷
e e e . . . e wj︸︷︷︸

x

1w4 w5 . . . wj−1 wn wj+1 . . . wn−1

where there are (n − 5) e’s between w2 and x = wj . In this case, j ≥ 5 since w4 is smaller than

wn. This concludes the proof of our claim that the box-ball configuration at time t = 1 is as given

in (6.6).
21

Now we perform another box-ball move to reach the configuration at t = 2. If n > 5, in the

configuration at t = 2, there are (n− 6) e’s between w2 and x:

e e e ew1 w2

n−6
copies︷ ︸︸ ︷
e e . . . e x

n−4
copies︷ ︸︸ ︷
e e . . . e 1 y1 y2 . . . yn−4︸ ︷︷ ︸

increasing block

.

In fact, at each BBS move, the increasing sequence w1, w2 moves together two spaces to the right,

the singleton x moves one space to the right, and the increasing sequence 1, y1, y2 . . . , yn−4 moves

n − 3 spaces to the right. So the number of e’s between w2 and x decreases by 1 after each BBS

move. The configuration at t = n− 4 is

. . . e e ew1 w2 x e e e . . . e e e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

We claim that

x < w2,

which we now prove. Recall that x = wj , where j is the smallest number in {3, 4, . . . , n− 1} such

that wn < wj . If w2 < wj , then w1 < w2 < wj < wj+1 < · · · < wn−1 and the remaining wi’s form

two increasing subsequences of w whose union is w. This contradicts Lemma 6.4, so indeed x < w2.

Since x < w2, we have either x < w1 < w2 or w1 < x < w2. If x < w1 < w2, then the

configuration at t = n− 3 is

. . . e ew1 xw2︸︷︷︸
increasing

block

e e . . . e e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

If w1 < x < w2, then the configuration at t = n− 3 is

. . . e ew2 w1 x︸︷︷︸
increasing

block

e e . . . e e 1 y1 y2 . . . yn−4︸ ︷︷ ︸
increasing block

.

Either way, the configuration array at t = n− 3 is a standard skew tableau whose rows have

length n− 3, 2, and 1. By Proposition 5.2, the configuration at t = n− 3 is in steady state.

The configuration at t = n− 4 is not yet in steady-state, as the relative positions of w1, w2, and

x in the configuration at t = n− 4 differ from the configuration at t = n− 3. Therefore, t = n− 3 is

the minimum steady-state time of w. �

7. Knuth moves

We study how types of Knuth moves (Definition 1.3) play a role in a box-ball system. In

Section 7.1, we prove that a non-KB Knuth move preserves the shape of a soliton decomposition and

that a KB move changes it (Theorem 7.1). In Section 7.2, we prove that every permutation which is

one non-KB Knuth move away from a row reading word has steady state time 1 (Theorem 7.4).

7.1. Soliton decompositions are preserved by certain Knuth moves. Using the localized

version of Greene’s Theorem given in Section 2.2, we prove a partial characterization of the shape of

SD in terms of types of Knuth moves.

Theorem 7.1. Suppose π and w are two permutations in the same Knuth equivalence class.
22

(1) If π and w are related by a sequence of Knuth moves containing an odd number of KB moves,

then SD(π) 6= SD(w).

(2) If π and w are related by a sequence of non-KB Knuth moves, then sh SD(π) = sh SD(w).

Proof. To prove part (1), we observe that a K+
B move decreases the number of descents by 1, and a

K−B move increases the number of descents by 1. Since the height the partition sh SD(w) is equal to

D1(w) = 1 + |{descents of w}|

by Lemma 2.6, it follows that applying an odd number of KB moves to w changes sh SD(w).

To prove part (2), suppose x, y ∈ Sn are related by a K1 or K2 move which is not KB . Due to

Lemma 2.6, it suffices to prove that Dk(x) = Dk(y) for all k. This breaks down into two main cases:

case (i), where y = K+
1 (x), and case (ii), where y = K+

2 (x). These further divide into the following

subcases, where a < b < c in all cases:

i. (a) y = · · · bca or y = · · · bcad · · · with c < d

x = · · · bac or x = · · · bacd · · ·
(b) y = · · · bca or y = · · · bcaa′ with a′ < a

x = · · · bac or x = · · · baca′

ii. (a) y = cab · · · or y = · · · dcab · · · with c < d

x = acb · · · or x = · · · dacb · · ·
(b) y = cab · · · or y = · · · a′cab · · · with a′ < a

x = acb · · · or x = · · · a′acb · · ·

The proofs are similar for each case. We include a partial proof of case (ia). Suppose

y = · · · bca

x = · · · bac

or

y = · · · bcad · · ·

x = · · · bacd · · ·

where a < b < c < d. The idea is to show that Dk(y) ≤ Dk(x) and Dk(x) ≤ Dk(y) for all k, from

which the result follows.

Let k ≥ 1. To show Dk(y) ≤ Dk(x), suppose that u1, . . . , uk are disjoint subsequences of y such

that

Dk(y) = D(u1) + · · ·+ D(uk).

We will produce disjoint subsequences u′1, . . . , u
′
k of x where

D(u1) + · · ·+ D(uk) ≤ D(u′1) + · · ·+ D(u′k).

First, suppose that c and a are in different subsequences. Then set u′i := ui for each 1 ≤ i ≤ k. Since

D(u1) + · · ·+ D(uk) = D(u′1) + · · ·+ D(u′k), we have Dk(y) ≤ Dk(x).

Next, suppose that b, c, and a are in the same subsequence uj of y. Define u′j to be the

subsequence of x which is obtained from uj by swapping c, a with a, c. Define u′i := ui for all i 6= j.
23

Then, since a < b < c, we have

D(uj) = D(. . . , b, c, a, . . .) ≤ D(. . . , b, a, c, . . .) = D(u′j),

so Dk(y) ≤ Dk(x).

Lastly, suppose that c and a are in the same subsequence, say u1, and b is in a different

subsequence, say u2. Write u1 as a concatenation

u1 = (. . . , c)︸ ︷︷ ︸
u1
1

t (a, . . .)︸ ︷︷ ︸
u2
1

of two subsequences u1
1 and u2

1, respectively. Write u2 as a concatenation

u2 = (. . . , b)︸ ︷︷ ︸
u1
2

t (. . .)︸ ︷︷ ︸
u2
2

of two subsequences u1
2 and u2

2, respectively. Define

u′1 : = u1
2 t u2

1 = (. . . , b) t (a, . . .),

u′2 : = u1
1 t u2

2 = (. . . , c) t (. . .),

and u′i := ui for all i /∈ {1, 2}. Then, since a < b < c,

D(u1) + D(u2) ≤ D(u′1) + D(u′2),

so Dk(y) ≤ Dk(x). The proof of the reverse inequality Dk(x) ≤ Dk(y) is similar. �

Theorem 7.1 allow us to use Knuth moves to find a subset of permutations whose soliton

decomposition and RS insertion tableau coincide.

Corollary 7.2 (Corollary of Theorem 4.2 and Theorem 7.1). Let w ∈ Sn and let T = P(w).

(1) If w is related to the row reading word of T by a sequence of Knuth moves such that an odd

number of the moves are KB moves, then SD(w) 6= P(w) = T .

(2) If w is a sequence of K1 or K2 moves (but not KB) away from the row reading word of T ,

then SD(w) = P(w) = T .

Example 7.3. The permutation r = 362514 is the reading word of the tableau

1 4

2 5

3 6

.

Figure 3 shows all permutations in the Knuth equivalence class of r. The corresponding soliton

decomposition is drawn next to each permutation. The edge with label K1 (respectively, K2) indicates

that the move is only K1 and not K2 (respectively, K2 and not K1). An edge with label KB indicates

that the move is both K1 and K2. The permutations are arranged in such that they form the Hasse

diagram of a subposet of the right weak order2 on the symmetric group S6.

7.2. Permutations one Knuth move away from a reading word with steady-state time 1.

2For definition of the right weak order, see, for example, the textbook [BB05, Section 3.1].

24

r = 362514

1 4
2 5
3 6

362154

1 4
2 5
6
3

326514

1 4
2 5
6
3

3261541 4
2 5
6
3

321654

1 4
5
6
2
3

KB KB

K1 K2

KB

Figure 3. Soliton decompositions of the Knuth equivalence class of r = 362514

Theorem 7.4. Suppose r is the row reading word of a standard tableau. Let w be a permutation

one K1 or K2 (but not KB) move away from r. Then w first reaches its steady state after one BBS

move.

If w is one KB move away from the row reading word r of a standard tableau, then w may first

reach its steady state after more than one BBS move. See Example 7.5.

Example 7.5. Figure 4 shows all permutations in the Knuth equivalence class of r = 362514 from

Example 7.3 and their corresponding steady-state times. The edge with label K1 (respectively, K2)

indicates that the move is only K1 and not K2 (respectively, K2 and not K1). An edge with label

KB indicates that the move is both K1 and K2.

The permutation 362154 is one K−B move from r, and it first reaches steady state at t = 2.

Another permutation, 326514, is also one K−B move from r, and it first reaches steady state at t = 1.

r = 362514, t = 0

362154, t = 2 326514, t = 1

326154, t = 2

321654, t = 1

KB KB

K1 K2

KB

Figure 4. Steady-state times of the Knuth equivalence class of r = 362514

25

7.2.1. Proof of Theorem 7.4. Theorem 7.4 follows from the following four lemmas.

Lemma 7.6. Let r = r1r2 . . . rn be the row reading word of a standard tableau P .

(1) If one performs a K−1 move on r, the move is KB .

(2) Suppose we are able to perform a K+
1 move yxz 7→ yzx (where x < y < z) on r. If r1 6= y,

we must have

r = r1 . . . r` y x︸ ︷︷ ︸
decreasing

z . . . rn−1 rn (7.1)

where r1 > r2 > · · · > r` > y > x. The tableau P must be of the form given in Figure 5,

where the entry y is in its own row, and the row immediately above y starts with entries x, z.

... · · ·
a1 a2 a3 · · ·
x z b1 b2 · · ·
y (possibly with no bi’s)

r`...

r1

Figure 5. General form of a standard tableau P whose row reading word can
undergo a K+

1 move

(3) If one performs a K+
1 move on r, the move is not KB .

Proof. First, we prove part (1) of the lemma. Suppose we perform a K−1 move yzx 7→ yxz (where

x < y < z) on r. Since r is the row reading word of P , the tableau P must contain a subtableau

x b

y z
or

x . . . b

. . . y z
.

Since the rows and columns of P are increasing, we must have x < b < z. Thus, r must contain a

consecutive subsequence yzxb′ where x < b′ ≤ b < z, so the K−1 move yzx 7→ yxz is K−B .

Now suppose we perform a K+
1 move yxz 7→ yzx on r. First, we prove part (2). Since x < y < z

and P is standard, the entry y must be the only element in its row in P , that is, the rows of P

containing x, y, z are of the form

x z . . .

y

If r1 = y, then we are done. Suppose r1 6= y, and write r = r1r2 . . . r`yxz . . . rn. Since the rows of P

are weakly decreasing in length, the rows of P below y are of size 1. Since P is standard, we have

r1 > r2 > · · · > r` > y. So r is of the form given in (7.1) and P is of the form given in Figure 5.

Finally, to prove part (3) of the lemma, we prove that this K+
1 move is not a KB move. If

rn = z, then we know this K+
1 move is not KB . Suppose rn 6= z, so r = r1 . . . yxzb . . . rn for some b.

Since r is the row reading word of P , either the entry b is immediately above x in P or the entry b is
26

immediately to the right of z in P :

b · · ·
x z

y

or
x z b · · ·
y

Since P is standard, either b < x or z < b. Either way, this K+
1 move is not KB . �

Lemma 7.7. Let r = r1r2 . . . rn be the row reading word of a standard tableau P .

(1) It is impossible to perform a K+
2 move on r.

(2) Suppose we are able to perform a K−2 move zxy 7→ xzy (where x < y < z) which is not a

KB move on r. If r1 6= z, we have

r = r1 . . . r` z x︸ ︷︷ ︸
decreasing

y . . . rn−1 rn (7.2)

where r1 > r2 > · · · > r` > z. The tableau P must be of the form given in Figure 6, where

the entry z is in its own row, and the row immediately above z starts with entries x, y.

... · · ·
a1 a2 a3 . . .

x y b1 b2 b3 · · · bm
z (possibly with no bi’s)

r`
...

r2

r1

.

Figure 6. General form of a standard tableau P whose row reading word can
undergo a K−2 move which is not KB

Proof. First, we prove part (1) of the lemma. Assume (for the sake of contradiction) that one could

perform a K+
2 move on r. Then r must contain a xzy pattern. Hence, since r is the row reading

word of P , the tableau P must contain the following subtableau:

y . . .

x z

Notice that y is north or northwest of x but x < y. This is a contradiction to the fact that P is a

standard tableau. Therefore, we cannot perform a K+
2 move on r.

Next, we prove part (2) of the lemma. Suppose we perform a K−2 move zxy 7→ xzy on r which

is not a KB move. If r1 = z, then the last two rows of P are of the form

x y · · ·
z

,

so P is of the form given in Figure 6.
27

Suppose r1 6= z, and write r = r1 . . . r` z x y . . . rn−1 rn. Since our K−2 move is not KB, we

must have either r` < x or z < r`. Since P is standard and x is in the first column, we cannot have

r` < x. So z < r`. Therefore z is in its own row in P . Since the rows of P are weakly decreasing in

length, the rows of P below z are of size 1. Since P is standard, we have r1 > r2 > · · · > r`. So r is

of the form given in (7.2) and P is of the form given in Figure 6. �

Remark 7.8. In general, a K−2 move on the row reading word of a standard tableau may (or may

not) be KB .

The proofs of the next two lemmas, Lemmas 7.9 and 7.10, are similar.

Lemma 7.9. Suppose r = r1r2 . . . rn ∈ Sn is the row reading word of a standard tableau P . Let w

be a permutation which differs from r by one K1 move which is not KB. Then w first reaches its

steady state at t = 1.

Proof. By Lemma 7.6, applying a K1 move that is not KB to r must be a K+
1 move yxz 7→ yzx such

that

r = r1 r2 . . . r` y︸ ︷︷ ︸
decreasing

x z . . . rn−1 rn

w = K+
1 (r) = r1 r2 . . . r` y︸ ︷︷ ︸

decreasing

z x . . . rn−1 rn

where r1 > r2 > · · · > r` > y (if r1 6= y) and x < y < z.

We apply the carrier algorithm to w. First, we insert r1, r2, . . . , r`, y into the carrier. Since these

are decreasing, we eject e, r1, r2, . . . , r` from the carrier in consecutive order:

e e · · · e
carrier

r1 r2 r3 . . . r`−1 r` y︸ ︷︷ ︸
decreasing

z x . . . rn

e r1 e e · · · e r2 r3 . . . r`−1 r` y︸ ︷︷ ︸
decreasing

z x . . . rn

e r1 r2 e e · · · e r3 . . . r`−1 r` y︸ ︷︷ ︸
decreasing

z x . . . rn

...

e r1 r2 . . . r` y e e · · · e z x . . . rn

Next, we insert z into the carrier. Since the only non-e entry in the carrier, y, is smaller than z, we

eject an e:

e e r1 r2 . . . r` e y z e e · · · e x r`+4 . . . rn

Next, we insert x into the carrier. Since x < y < z, we eject y and get

e e r1 r2 . . . r` e y x z e e · · · e r`+4 . . . rn

Note that the string

x z r`+4 . . . rn−1 rn
28

is equal to the consecutive subsequence r`+2 . . . rn−1 rn of r. This string is the row reading word of

the subtableau (possibly with no bi’s)
... · · ·
a1 a2 a3 · · ·
x z b1 b2 · · ·

of P , where P is given in Figure 5. Since this subtableau has the shape of a partition and has

increasing rows and columns, completing the carrier algorithm yields the configuration at time t = 1:

e e r1 r2 . . . r` e y

0 or more
copies︷ ︸︸ ︷
e e . . . e x z b1 b2 b3 . . . a1 a2 rn−1 rn e e · · · e .

The configuration array at t = 1 is the skew tableau created by taking P and shifting some of the

rows to the right. Since P is standard tableau with partition shape to begin with, the configuration

array is a standard skew tableau with weakly increasing rows. By Proposition 5.2, the configuration

at t = 1 is in steady state. �

Lemma 7.10. Suppose r = r1r2 . . . rn ∈ Sn is the row reading word of a standard tableau P . Let w

be a permutation which differs from r by one K2 move which is not KB. Then w first reaches its

steady state at t = 1.

Proof. By Lemma 7.7, applying a K2 move that is not KB to r must be a K−2 move zxy 7→ xzy to r

such that

r = r1 . . . r` z x y . . . rn−1 rn

w = K−2 (r) = r1 . . . r` x z y . . . rn−1 rn

where r1 > r2 > · · · > r` > z (if r1 6= z) and x < y < z.

As in the proof of Lemma 7.9, we apply the carrier algorithm to w. We insert the decreasing

sequence r1, r2, . . . , r`, x into the carrier and eject e, r1, r2, . . . , r`, in that order. As we insert z and

y, we eject e and z, in that order:

e · · · e
carrier

r1 r2 r3 . . . r` x︸ ︷︷ ︸
decreasing

z y . . . rn−1 rn

e r1 e e · · · e r2 r3 . . . r` x︸ ︷︷ ︸
decreasing

z y . . . rn−1 rn

e r1 r2 e e · · · e r3 . . . r` x︸ ︷︷ ︸
decreasing

z y . . . rn−1 rn

...

e r1 r2 . . . r` x e . . . e z y . . . rn−1 rn

e r1 r2 . . . r` e x z e . . . e y r`+4 . . . rn

e r1 r2 . . . r` e z x y e . . . e r`+4 . . . rn

Note that the string

x y r`+4 . . . rn−1 rn
29

is equal to the consecutive subsequence r`+2 . . . rn−1 rn of r. This string is the row reading word of

the subtableau (possibly with no bi’s)
... · · ·
a1 a2 a3 · · ·
x y b1 b2 · · ·

of P , where P is given in Figure 6. Since this subtableau has the shape of a partition and has

increasing rows and columns, completing the carrier algorithm yields the configuration at time t = 1:

e e r1 r2 . . . r` e z

0 or more
copies︷ ︸︸ ︷
e . . . e x y b1 b2 b3 · · · a1 a2 . . . rn−1 rn e e · · · e .

The configuration array at t = 1 is the skew tableau created by taking P and shifting some of the

rows to the right. Since P is standard tableau with partition shape to begin with, the configuration

array is a standard skew tableau with weakly increasing rows. By Proposition 5.2, the configuration

at t = 1 is in steady state. �

8. M-carrier algorithm

In Algorithm 2, we define the M -carrier algorithm which is equivalent to performing the carrier

algorithm M times (Proposition 8.2). In addition to improving the efficiency of the box-ball system

calculations, the M -carrier algorithm enables us to compare the RS insertion algorithm and the

box-ball system more directly. Given a large enough M , the M -carrier algorithm gives us an RS-like

insertion algorithm which sends a permutation to its soliton decomposition.

Example 8.1. We apply the M -carrier algorithm with M = 3 to one of our running examples

w = 452361, the permutation whose box-ball system is illustrated in Figure 2.

begin Process 1: insertion process

eeeeee eeeeee eeeeee 452361

e eeeeee eeeeee 4eeeee 452361

ee eeeeee eeeeee 45eeee 2361

eee eeeeee 4eeeee 25eeee 361

eeee eeeeee 45eeee 23eeee 61

eeeee 4eeeee 5eeeee 236eee 1

eeeeee 45eeee
carrier
M=3

2eeeee
carrier 2

136eee
carrier 1

end insertion process

begin Process 2: flushing process

eeeeee 45eeee 2eeeee 136eee← e

eeeeee4 25eeee 1eeeee 36eeee← e

eeeeee42 5eeeee 13eeee 6eeeee← e

eeeeee425 eeeeee 136eee eeeeee← e

eeeeee425e 1eeeee 36eeee eeeeee← e

eeeeee425ee 13eeee 6eeeee eeeeee← e

eeeeee425eee 136eee eeeeee eeeeee← e

eeeeee425eee1 36eeee eeeeee eeeeee← e

eeeeee425eee13 6eeeee eeeeee eeeeee← e

eeeeee425eee136 eeeeee eeeeee eeeeee

end flushing process

30

Algorithm 2 The M -carrier algorithm

1: begin M -carrier algorithm
2: Set e := n+ 1
3: Set B := the configuration of the BBS at time t, where each empty box is denoted by the

letter e and the first (leftmost) element of B is the integer in the first (leftmost) nonempty box
in the configuration and the last (rightmost) element of B is the integer in the last (rightmost)
nonempty box of the configuration

4: Let ` be the number of elements (including the e’s) of B
5: Fill each of the M adjacent “carriers”—depicted ... — with n copies of e
6: Denote this string of carriers C
7: Denote the rightmost carrier c1, and in general, the jth rightmost carrier cj .
8: Write B to the right of C
9: begin Process 1: insertion process

10: for all i in {1, 2, . . . , `} do
11: Set p to be the ith leftmost element of B
12: begin element ejection process
13: for all j in {1, 2, . . . ,M} do
14: if an element in cj is larger than p then
15: Set s := the smallest element in cj larger than p. If s = e, pick the first e
16: Eject s by replacing it with p and setting p := s
17: else
18: Set s := the smallest element in cj
19: Remove s from cj
20: I Note: There are now n− 1 elements in cj
21: Place p in the rightmost location in cj
22: I Note: There are now n elements in cj
23: Set p := s
24: end if
25: if j = M then
26: Put p immediately to the left of C
27: end if
28: end for
29: end element ejection process
30: end for
31: end Process 1: insertion process
32: begin Process 2: flushing process
33: while there are non-e elements in C do
34: Set p := e
35: Perform the element ejection process (see line 12)
36: end while
37: end Process 2: flushing process
38: I Note: The elements to the left of C correspond to the state of the BBS at time t+M
39: end M -carrier algorithm

Proposition 8.2. Performing the M -carrier algorithm is equivalent to performing the 1-carrier

algorithm (Algorithm 1) M times. In particular, applying Algorithm 2 to a box-ball configuration at

time t yields the box-ball configuration of at t+M .
31

Proof. Ejecting an element from a carrier ci and then immediately inserting it into the next carrier

ci+1 is equivalent to ejecting all the elements from ci, forming a sequence and then inserting that

sequence into ci+1. �

Acknowledgements

This research project started during the University of Connecticut 2020 Mathematics REU

which was supported by NSF (DMS-1950543). Our project was inspired by a blog post [Lew]

for the University of Minnesota’s Open Problems in Algebraic Combinatorics (OPAC) conference

and conversations with Joel Lewis. We thank Ian Whitehead for serving as a faculty mentor to

B. Drucker’s research course in Fall 2020 and for helpful suggestions. We also thank Pavlo Pylyavskyy

and Rei Inoue for useful comments and Marisa Cofie, Olivia Fugikawa, Madelyn Stewart, and David

Zeng for many discussions during SUMRY 2021. Special thanks to Darij Grinberg for proving

one of our conjectures and for helpful feedback. This work also benefited from computation using

SageMath [Dev20] and the High Performance Computing facility at University of Connecticut.

E. Gunawan would like to thank the University of Oklahoma for support and the Isaac Newton

Institute for Mathematical Sciences (funded by EPSRC Grant Number EP/R014604/1) for support

and hospitality during the programme Cluster algebras and representation theory.

References

[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in

Mathematics. Springer, New York, 2005.

[CFG+] Marisa Cofie, Olivia Fugikawa, Emily Gunawan, Madelyn Stewart, and David Zeng. Box-ball systems and

RSK recording tableaux. In preparation.

[Dev20] The Sage Developers. Sage Mathematics Software (Version 9.1). The Sage Development Team, 2020.

[Fuk04] Kaori Fukuda. Box-ball systems and Robinson-Schensted-Knuth correspondence. Journal of Algebraic

Combinatorics, 19(1):67–89, 2004.

[Gre74] Curtis Greene. An extension of Schensted’s theorem. Advances in Math., 14:254–265, 1974.

[Knu70] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math., 34:709–727,

1970.

[Lan02] Wolfdieter Lang. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A077415, 11 2002.

Number of standard tableaux of shape (n-1,2,1) [Online; accessed 7-December-2021].

[Lew] Joel Lewis. A localized version of Greene’s theorem. https://realopacblog.wordpress.com/2019/11/24/

a-localized-version-of-greenes-theorem/. [Online; accessed 7-December-2021].

[LLPS19] Joel Lewis, Hanbaek Lyu, Pavlo Pylyavskyy, and Arnab Sen. Scaling limit of soliton lengths in a multicolor

box-ball system, 2019. Preprint arXiv:1911.04458.

[Sag01] Bruce E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathematics. Springer-Verlag, New

York, second edition, 2001. Representations, combinatorial algorithms, and symmetric functions.

[Sag20] Bruce E. Sagan. Combinatorics: The art of counting, volume 210. American Mathematical Soc., 2020.

[Sch61] C. Schensted. Longest increasing and decreasing subsequences. Canadian J. Math., 13:179–191, 1961.

[Tak93] Daisuke Takahashi. On some soliton systems defined by using boxes and balls. In Proceedings of the

international symposium on nonlinear theory and its applications (NOLTA’93), pages 555–558, 1993.

[TM97] Daisuke Takahashi and Junta Matsukidaira. Box and ball system with a carrier and ultradiscrete modified

KdV equation. Journal of Physics A: Mathematical and General, 30(21):L733, 1997.

[TS90] Daisuke Takahashi and Junkichi Satsuma. A soliton cellular automaton. J. Phys. Soc. Japan, 59(10):3514–

3519, 1990.

32

http://oeis.org/A077415
https://realopacblog.wordpress.com/2019/11/24/a-localized-version-of-greenes-theorem/
https://realopacblog.wordpress.com/2019/11/24/a-localized-version-of-greenes-theorem/
http://arxiv.org/abs/1911.04458

	1. Introduction
	1.1. Insertion tableaux and soliton decompositions
	1.2. Tableau reading words
	1.3. Recording tableaux and time to steady state
	1.4. Types of Knuth moves
	1.5. An algorithm with multiple carriers

	2. Greene's theorem and a localized version of Greene's theorem
	2.1. Greene's theorem and RS partition
	2.2. Localized Greene's theorem and BBS soliton partition

	3. Fukuda's carrier algorithm
	3.1. Carrier algorithm
	3.2. The RS insertion tableau is an invariant of a box-ball system

	4. When the soliton decomposition and the RS insertion tableau coincide
	5. Reading words and steady states
	5.1. Reading words of standard tableaux
	5.2. Reading words of standard skew tableaux
	5.3. Separation condition

	6. A recording tableau giving n–3 steady-state time
	6.1. A recording tableau giving n–3 steady-state time
	6.2. Lemmas for Theorem 6.7
	6.3. Proof of Theorem 6.7

	7. Knuth moves
	7.1. Soliton decompositions are preserved by certain Knuth moves
	7.2. Permutations one Knuth move away from a reading word with steady-state time 1

	8. M-carrier algorithm
	Acknowledgements
	References

