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Abstract. Cluster algebra structures for Grassmannians and their (open) positroid
strata are controlled by a Postnikov diagram D or, equivalently, a dimer model on
the disc, as encoded by either a bipartite graph or the dual quiver (with faces).
The associated dimer algebra A, determined directly by the quiver with a certain
potential, can also be realised as the endomorphism algebra of a cluster-tilting
object in an associated Frobenius cluster category.

In this paper, we introduce a class of A-modules corresponding to perfect
matchings of the dimer model of D and show that, when D is connected, the
indecomposable projective A-modules are in this class. Surprisingly, this allows us
to deduce that the cluster category associated to D embeds into the cluster category
for the appropriate Grassmannian. We show that the indecomposable projectives
correspond to certain matchings which have appeared previously in work of Muller–
Speyer. This allows us to identify the cluster-tilting object associated to D, by
showing that it is determined by one of the standard labelling rules constructing a
cluster of Plücker coordinates from D. By computing a projective resolution of
every perfect matching module, we show that Marsh–Scott’s formula for twisted
Plücker coordinates, expressed as a dimer partition function, is a special case of
the general cluster character formula, and thus observe that the Marsh–Scott twist
can be categorified by a particular syzygy operation in the Grassmannian cluster
category.

1. Introduction

A key example of a cluster algebra (with frozen variables) is given by Scott’s cluster
structure [34] on the homogeneous coordinate ring C[Grnk ] of the Grassmannian of
k-planes in Cn. The Plücker coordinates φI , for I a k-subset of {1, . . . , n} (written
I ∈

(
n
k

)
below), are cluster variables of this cluster algebra, and a set {φI : I ∈ C}

of Plücker coordinates is a cluster if and only if C ⊆
(
n
k

)
is maximal with respect

to the property that its elements are pairwise non-crossing [34, Def. 3] (or weakly
separated [23]). The frozen variables, which appear in every cluster, are the Plücker
coordinates φI for I = {i, . . . , i+ k − 1} a cyclic interval in {1, . . . , n}, considered
modulo n.

Recently, it has been shown by Galashin–Lam [14] (see also [35]) that the coordinate
rings of open positroid varieties Π◦(P) in Grnk also have cluster algebra structures.
These varieties are defined from a positroid P ⊆

(
n
k

)
, and consist of those points

in Grnk on which the Plücker coordinates φI with I /∈ P vanish, while another set
of Plücker coordinates depending on P (the frozen variables in the cluster algebra
structure) do not vanish. Again, the cluster algebra has a cluster {φI : I ∈ C}
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of (restricted) Plücker coordinates for each maximal non-crossing subset C of P
containing the indices of these frozen variables.
Both for the full Grassmannian and for open positroid varieties, the quivers of

these clusters of Plücker coordinates are described via Postnikov (alternating strand)
diagrams, which are given by a collection of n strands in a disc with n marked points
on its boundary, satisfying various consistency conditions, as we recall in Section 2.
Such a diagram is also equivalent to the data of a bipartite graph in the interior of
the disc, joined to the n marked points on the boundary by ‘half-edges’. The cluster
is then given by a standard labelling rule for the vertices of the quiver Q (or faces of
the bipartite graph) so that C = {Ij : j ∈ Q0}. However, note that several labelling
conventions exist and we will discuss which is most suitable for us in Section 8.
To describe a cluster in C[Grnk ], each strand should go from the i-th point to the

(i + k)-th point. We call this a uniform strand permutation and any correspond-
ing diagram is a uniform Postnikov diagram. Diagrams with non-uniform strand
permutations define clusters for more general open positroid varieties.
The cluster algebra structure on C[Grnk ] has a categorical model given by the

Frobenius cluster category CM(C), introduced by Jensen–King–Su [20], whose objects
are Cohen–Macaulay modules over a Gorenstein order C = Ck,n, that is, modules
free over a central subalgebra Z = C[[t]]. The Plücker coordinates of C[Grnk ] are
in bijection with certain ‘rank 1’ C-modules MI . The indecomposable projective-
injective objects of CM(C) are MI for I a cyclic interval, and so these objects are in
bijection with the frozen variables of the cluster algebra.

A direct relationship between the category CM(C) and uniform Postnikov diagrams
is given by Baur–King–Marsh [2]. As observed in [20], corresponding to a uniform
cluster {φI : I ∈ C} of Plücker coordinates there is a cluster tilting object

TC =
⊕
I∈C

MI =
⊕
j∈Q0

MIj (1.1)

in CM(C). From the quiver Q(D) of a Postnikov diagram D, one can define a
frozen Jacobian algebra A = AD and it is shown in [2] that, when D is uniform,
A ∼= EndC(TC)

op and further that C ∼= eAe, for a suitable ‘boundary’ idempotent e.
On the other hand, Pressland [32] has shown that, if you consider the dimer

algebra A of a general connected Postnikov diagram D and define the boundary
algebra B = eAe, then

TD = eA =
⊕
j∈Q0

eAej (1.2)

is a cluster tilting object in the Frobenius cluster category GP(B) of Gorenstein
projective modules over B, which is an Iwanaga–Gorenstein algebra. Furthermore
A ∼= EndB(TD)

op. Note that, in the uniform case, when B = C, we also have
GP(C) = CM(C).

In general, C ⊆ B and GP(B) ⊆ CM(B) ⊆ CM(C), where the second inclusion is
strictly the fully faithful embedding given by restriction (Proposition 3.6). It turns
out (Proposition 8.6) that the rank 1 modules MI that are in CM(B) are precisely
those with I ∈ P. Furthermore, we can relate the two points of view above by
showing (Proposition 8.2) that

TD ∼= TC, (1.3)



PERFECT MATCHING MODULES 3

for a general connected Postnikov diagram D with corresponding cluster C, where
TC is defined exactly as in (1.1).
The central theme of this paper is that the rank 1 modules in CM(A) also have

a combinatorial description in that they correspond to perfect matchings on the
bipartite graph, or indeed on the quiver Q(D) suitably interpreted (Definition 4.1).
In particular, every perfect matching µ determines a perfect matching module Nµ.
The restriction of such a module to the boundary algebra B, and further to C, is
encoded combinatorially by the boundary value ∂µ (Definition 4.7) of the matching
µ; see Proposition 4.9 for a precise statement.
The consistency conditions for Postnikov diagrams imply that the projective

A-modules Aej are rank 1 (Corollary 4.6) and one key result of the paper is to
show (Theorem 7.4) that the corresponding perfect matchings are those identified
by Muller–Speyer [25] in the course of defining a twist automorphism for positroid
varieties. The boundary values of these matchings were identified in [25], which leads
directly to (1.3).
The core result which implies the others in the paper is the determination of

a projective resolution of every perfect matching module Nµ (Theorem 6.9) and
consequently its class [Nµ] in the Grothendieck group K0(projA) (Proposition 6.11).
An important use of perfect matchings is to define partition functions for dimer

models. For example, Marsh–Scott [24] defined

MS◦(I) = x−wt(D)
∑

µ:∂µ=I

xwt◦(µ), (1.4)

for I ∈
(
n
k

)
, where wt(D) and wt(µ) are certain elements of K0(projA), so this

expression is a (formal) Laurent polynomial in the cluster algebra associated to the
diagram D. Strictly speaking, [24] only studied the uniform case, but their partition
function (1.4) makes sense in the general case. In the uniform case, under the
substitution x[Aej ] 7→ φIj , [24] showed that MS◦(I) is a twisted Plucker coordinate
←−φI ∈ C[Grnk ].
The principal application of perfect matching modules in this paper is to give a

module theoretic interpretation of this Marsh–Scott formula. Our first step in this
direction (Proposition 9.2, Theorem 9.3) is to reformulate (1.4) in terms of modules:

MS◦(I) = x[P
◦
I ]
∑

µ:∂µ=I

x−[Nµ] = x[FP◦MI ]
∑

N⩽FMI
eN=MI

x−[N ], (1.5)

where F = HomB(TD,−) : CM(B)→ CM(A) is the right adjoint functor to boundary
restriction N 7→ eN . In addition P ◦

I is a certain projective A-module (depending
on I) and P◦MI is a (non-minimal) projective cover of MI in CM(B), such that
FP◦MI = P ◦

I . To get from (1.4) to (1.5), we use Proposition 6.11, to show that
[P ◦

I ]− [Nµ] = wt◦(µ)− wt(D).
For our second step (Theorem 10.3), we show that (1.5) can be transformed into

MS◦(I) = x[FΩ◦MI ]
∑

E⩽GΩ◦MI

x−[E]. (1.6)
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where G = Ext1B(TD,−) : CM(B)→ CM(A) and Ω◦M = ker(P◦M →M). Now we
can recognise (1.6) as Fu–Keller’s version [11] of the Caldero–Chapoton formula [7]
for the cluster character of Ω◦MI , using the cluster tilting object TD in GP(B).

In the uniform case, the cluster character of MI is φI , under the same substitution
x[Aej ] 7→ φIj . Thus (see (11.2)) the Marsh–Scott twist on Plücker coordinates is
categorified by the syzygy Ω◦ on rank 1 modules in CM(C). Muller–Speyer [25]
define a slightly different twist, including in the non-uniform case, which we also
relate to a syzygy via a cluster character formula (12.3).

In more detail, the structure of the paper is as follows. In Section 2, we describe
the notion of a consistent dimer model on a disc, in terms of a Postnikov diagram
D, a bipartite graph Γ(D) or a quiver with faces Q(D). We also describe the dimer
algebra A = AD, introduced in [2]. A fundamental invariant of a dimer model is its
type (k, n) (Definition 2.5). In Section 3, we describe the two algebras associated to
the boundary of the dimer model. The first is B = eAe, for e a certain boundary
idempotent in A, and the second is the algebra C = Ck,n introduced in [20] to
categorify the Grassmannian cluster algebra C[Grnk ].
In Section 4, we explain how a perfect matching on Q(D) determines a module

Nµ for the corresponding dimer algebra A. In the context of Postnikov diagrams,
this allows us to prove Proposition 3.6, showing that C is canonically a subalgebra of
B, in such a way that the restriction map CM(B)→ CM(C) is fully faithful. Thus
CM(B)-modules are effectively a special class of CM(C)-modules.
In Section 5, we study the ‘induction-restriction’ relationship between modules

for the algebras B and A. We recall results from elsewhere showing that A is the
endomorphism algebra of a cluster-tilting object T ∈ GP(B), when the Postnikov
diagram is connected.

In Section 6 we use the combinatorics of Q(D) to write down a projective resolution
of Nµ. This projective resolution is used in Section 7 to show that Muller–Speyer
matchings correspond to projective modules. In Section 8, we discuss the combinato-
rial labelling of Postnikov diagrams, and show that this agrees with the categorical
labelling arising from restricting A-modules to the boundary.

Sections 9 and 10 recall the Marsh–Scott formula and Fu–Keller’s cluster character.
In Section 11 we relate these by showing that the twisted Plücker coordinate←−φI is the
cluster character ΦT (Ω

◦MI), where Ω
◦MI is a particular syzygy of the C-moduleMI ,

by comparing the Marsh–Scott formula to the Caldero–Chapoton formula. Finally, in
Section 12, we relate Muller–Speyer’s twist for more general open positroid varieties
to the cluster character formula.
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2. Grassmannian cluster categories and dimer models

In this section we introduce the related notions of Postnikov diagrams and dimer
models with boundary. Our exposition largely follows [2, §2], but at a slightly higher
level of generality.
Let C = (C0, C1) be a circular graph with vertex set C0 and edge set C1, both of

size n. We will often label the edges with {1, . . . , n}, in cyclic order, but will not
explicitly label the vertices. The case n = 7 is illustrated in Figure 2.1.

•
1

•
2

• 3
•

4

•

5

•
6

•7

Figure 2.1. The circular graph C.

Definition 2.1. Consider a disc with n marked points on its boundary, identified
with C1 in the same cyclic order. A Postnikov (or alternating strand) diagram D
consists of a set of n oriented curves in the disc, called strands, connecting the
boundary marked points, such that each marked point is incident with one incoming
and one outgoing strand. The following axioms must be satisfied.

Local axioms:

(a1) Only two strands can cross at a given point and all crossings are transverse.
(a2) There are finitely many crossing points.
(a3) Proceeding along a given strand, the other strands crossing it alternate between

crossing it left to right and right to left.

Global axioms:

(b1) A strand cannot cross itself.
(b2) If two strands cross at distinct points U and V , then one strand is oriented

from U to V and the other is oriented from V to U .

For axioms (a3) and (b2), the two strands meeting at a marked point are regarded
as crossing at this point in the obvious way. We call D connected if the union of its
strands is a connected set. An example of a connected Postnikov diagram is shown
in Figure 2.2.
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Figure 2.2. A Postnikov diagram.

A Postnikov diagram divides the interior of the disc into regions, the connected
components of the complement of the union of the strands. A region is alternating
if the strands incident with it alternate in orientation going around its boundary.
It is oriented if the strands around its boundary are all oriented clockwise, or all
anticlockwise. It easy to see that every region of a Postnikov diagram must be
alternating or oriented.
An alternating region with an edge on the boundary is called a boundary region,

otherwise it is an internal region. The labelling of boundary points by C1 gives a
canonical map from C0 onto the set of boundary regions. This map is a bijection
when the Postnikov diagram is connected, so that each boundary region meets the
boundary in a single edge.

A Postnikov diagram D determines a permutation πD of C1, with πD(i) = j when
the strand starting at i ends at j. If πD(i) = i+ k (modulo n) for some fixed k, we
call D a (k, n)-diagram. These diagrams will play a special role for us, since they are
related to the (k, n)-Grassmannian cluster algebra and its categorification by Jensen–
King–Su [20]. However, most of our results apply to more general diagrams, which
describe cluster structures on more general positroid varieties [14, 35], categorified
in [32].

Definition 2.2. A lollipop in a Postnikov diagram D is a strand starting and ending
at the same point on the disc, corresponding to a fixed point of πD.

Proposition 2.3. A lollipop has no crossings with other strands of D.

Proof. Let s be a lollipop, and consider its first crossing with another strand s′. By
(b1), s is a simple closed curve, and by (a3) strand s′ must cross into the inside of
this curve. To end on the boundary s′ must therefore cross s a second time, later
on s. But this violates (b2), hence we obtain a contradiction. □

As a result, connected Postnikov diagrams have no lollipops, except in the most
degenerate case.
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The information in a Postnikov diagram may also be encoded in a reduced plabic
(planar bicoloured) graph in the disc, as in [29, §11–14]. For our purposes it is
sufficient to assume that this graph is actually bipartite.

Definition 2.4. To any Postnikov diagram D, there is an associated bipartite graph
Γ(D) embedded into the disc, defined as follows. The nodes correspond to the
oriented regions of D and are coloured black or white when the boundary of the
region is oriented anticlockwise or clockwise, respectively, and the internal edges
of Γ(D) correspond to the points of intersection of pairs of oriented regions. We
call the nodes corresponding to regions meeting the boundary of the disc boundary
nodes, and the others internal nodes. We also include in Γ(D) the data of half-edges,
which connect each boundary node to the marked points on the boundary that its
corresponding region meets. We label the half-edges by C1, so that half-edge i meets
marked point i. The tiles of Γ(D), i.e. the connected components of its complement
in the disc, correspond to the alternating regions of D.

4

3

2

1
7

6

5

Figure 2.3. The bipartite graph corresponding to the Postnikov
diagram in Figure 2.2.

Definition 2.5 (cf. [25, §3.1]). Let D be a Postnikov diagram. The type of D is
(k, n), where

k = #{white nodes in Γ(D)} −#{black nodes in Γ(D)}
+#{half-edges in Γ(D) incident with a black node},

and n is the number of strands, or equivalently the number of half-edges in Γ(D).

We will see in Section 8 that a (k, n)-diagram has type (k, n). The Postnikov
diagram in Figure 2.3 has type (3, 7), but it is not a (3, 7)-diagram. In this example,
each black boundary node is incident with a unique half-edge, so that

k = #{white nodes} −#{internal black nodes},
but this need not always be the case, as in the example in Figure 3.3.
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We may also associate a quiver to any Postnikov diagram. Recall that a quiver
Q is a directed graph encoded by a tuple Q = (Q0, Q1, h, t), where Q0 is the set of
vertices, Q1 is the set of arrows and h, t : Q1 → Q0, so that each α ∈ Q1 is an arrow
tα→ hα. We will write Q = (Q0, Q1), with the remaining data implicit, and we will
also regard it as an oriented 1-dimensional CW-complex. Given a quiver Q, we write
Qcyc for the set of oriented cycles in Q (up to cyclic equivalence).

Definition 2.6. A quiver with faces is a quiver Q = (Q0, Q1), together with a set
Q2 of faces and a map ∂ : Q2 → Qcyc, which assigns to each F ∈ Q2 its boundary
∂F ∈ Qcyc.

We shall often denote a quiver with faces by the same letter Q, regarded now as
the triple (Q0, Q1, Q2). We say that Q is finite if Q0, Q1 and Q2 are all finite sets.
The number of times an arrow α ∈ Q1 appears in the boundaries of the faces in Q2

will be called the face multiplicity of α. The (unoriented) incidence graph of Q, at a
vertex i ∈ Q0, has vertices given by the arrows incident with i. The edges between
two arrows α, β correspond to the paths of the form

α−→ i
β−→

occurring in the cycle ∂F for some face F .

Definition 2.7. A (finite, connected, oriented) dimer model with boundary is a finite
connected quiver with faces Q = (Q0, Q1, Q2), where Q2 is written as disjoint union
Q2 = Q+

2 ∪Q−
2 , satisfying the following properties:

(a) the quiver Q has no loops, i.e. no 1-cycles (but 2-cycles are allowed),
(b) all arrows in Q1 have face multiplicity 1 (boundary arrows) or 2 (internal arrows),
(c) each internal arrow lies in a cycle bounding a face in Q+

2 and in a cycle bounding
a face in Q−

2 ,
(d) the incidence graph of Q at each vertex is non-empty and connected.

Note that, by (b), each incidence graph in (d) must be either a line (at a boundary
vertex) or an unoriented cycle (at an internal vertex).

In cluster algebras literature, internal vertices are usually called mutable and
boundary vertices called frozen, terminology which is sometimes [33] extended to
internal and boundary arrows, but we opt here for the more geometric terms.
If we realise each face F of a quiver with faces Q as a polygon, whose edges are

labelled (cyclically) by the arrows in ∂F , then we may, in the usual way, form a
topological space |Q| by gluing together the edges of the polygons labelled by the
same arrows, in the manner indicated by the directions of the arrows. If Q is a dimer
model with boundary then, arguing as in [4, Lemma 6.4], we see that conditions (b)
and (d) ensure that |Q| is a surface with boundary, while (c) means that it can be
oriented by declaring the boundary cycles of faces in Q+

2 to be oriented positive (or
anticlockwise) and those of faces in Q−

2 to be negative (or clockwise). Note also that
each component of the boundary of |Q| is (identified with) an unoriented cycle of
boundary arrows in Q.
On the other hand, suppose that we are given an embedding of a finite quiver

Q = (Q0, Q1) into a compact oriented surface Σ with boundary, such that the
complement of Q in Σ is a disjoint union of discs, each of which is bounded by a
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cycle in Q. Then we may make Q into an oriented dimer model in the above sense,
for which |Q| ∼= Σ, by setting Q2 to be the set of connected components of the
complement of Q in Σ, separated into Q+

2 and Q−
2 using the orientation of Σ.

Definition 2.8. The quiver Q(D) with faces of a Postnikov diagram D has vertices
Q0(D) given by the alternating regions of D. The arrows Q1(D) correspond to
intersection points of two alternating regions, with orientation consistent with the
strand orientation, as in Figure 2.4. We refer to the arrows between boundary
vertices as boundary arrows ; these are naturally labelled by C1 in an analogous way
to the half-edges of Γ(D). The faces Q2(D) are the cycles of arrows determined by
an oriented region of D; these lie in Q+

2 (D) if the region (equivalently the cycle) is
oriented anticlockwise, and in Q−

2 (D) if it is clockwise.

As in [2, Rem. 3.4], the quiver Q(D) associated to a connected Postnikov diagram
D in a disc is naturally a dimer model in the disc as above—connectedness of D is
required for connectedness of incidence graphs as in Definition 2.7(d). The Postnikov
diagram is recovered as the collection of zig-zag paths of the dimer model; the global
conditions (b1) and (b2) on the Postnikov diagram correspond to zig-zag consistency
for the dimer model [3, Thm. 5.5], [19, Defn. 3.5].

We may also describe Q(D), as a quiver with faces, directly and more combinato-
rially as the dual of the bipartite graph Γ(D), as in [12, §2.1] for a general bipartite
field theory. In other words, Q0(D) is in bijection with the set of tiles of Γ(D) and
Q1(D) with the set of edges, with boundary arrows corresponding to half-edges. An
arrow joins the two tiles in Γ(D) that share the corresponding edge and is oriented
so that the black node is on the left and/or the white node is on the right. The faces
(plaquettes in [12]) F ∈ Q+

2 (D) correspond to the black nodes, while those in Q−
2 (D)

correspond to the white nodes. For this reason, we will usually refer to the faces of
a general dimer model with boundary as black, if they lie in Q+

2 , or white, if they
lie in Q−

2 . The boundary ∂F of a face F is given by the arrows corresponding to
the edges incident with the node of Γ(D) corresponding to F , ordered anticlockwise
round black nodes and clockwise round white ones. This duality is illustrated in
Figure 2.4, for D as in Figure 2.2.

Remark 2.9. The reverse of the above procedure can be used to exhibit an arbitrary
dimer model with boundary Q as the dual of a bipartite graph Γ in the surface |Q|,
and it is this graph that is sometimes, more traditionally, called the dimer model
[18]. When Q = Q(D) is the quiver of a Postnikov diagram, the dual bipartite graph
is precisely Γ(D) as in Definition 2.4.

Remark 2.10. Note that Marsh–Scott [24] associate white nodes of the bipartite
graph to anticlockwise regions and black nodes to clockwise regions, whereas our
convention is more consistent with the rest of the literature, e.g. [10, 25]. Thus when
quoting results from [24], we will swap black and white, usually without further
comment.

Definition 2.11. Given a dimer model with boundary Q, we define the dimer algebra
AQ as follows. For each internal arrow α ∈ Q1, there are (unique) faces F+ ∈ Q+

2

and F− ∈ Q−
2 such that ∂F± = αp±α , for paths p

+
α and p−α from hα to tα. Then the

dimer algebra AQ is the quotient of the complete path algebra ĈQ by (the closure
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Figure 2.4. The quiver and bipartite graph associated to the Post-
nikov diagram in Figure 2.2.

of) the ideal generated by relations

p+α = p−α , (2.1)

for internal arrows α ∈ Q1. When D is a connected Postnikov diagram, so that Q(D)
is a dimer model with boundary, we abbreviate AD = AQ(D).

Remark 2.12. Note that the orientation is not strictly necessary to define AQ; we
only need to know that F± are the two faces that contain the internal arrow α in
their boundaries, but not which is which. On the other hand, given the orientation,
we may also define a (super)potential WQ by the usual formula (e.g. [10, §2])

WQ =
∑
F∈Q+

2

∂F −
∑
F∈Q−

2

∂F.

Then AQ may also be described as the quotient of ĈQ by the so-called ‘F-term’
relations

∂α(WQ) = 0,

for each internal arrow α in Q, where ∂α is the usual cyclic derivative (e.g. [16, §1.3]
or [4, §3]). Thus the algebra AQ is a frozen Jacobian algebra (e.g. [30, Defn. 5.1]).

Definition 2.13. Let Q be a dimer model with boundary. Since the incidence graph
of Q at each vertex is connected, it follows from the defining relations of AQ that,
for any vertex i ∈ Q0, the products in AQ of the arrows in any two cycles that start
at i and bound a face are the same. We denote such a product by ti, and write

t =
∑

i∈Q0(D)

ti. (2.2)

It similarly follows from the relations that t commutes with every arrow and hence
is in the centre of AQ. Thus AQ is a Z-algebra for Z = C[[t]].
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A key property of dimer algebras that arise from Postnikov diagrams in the disc is
the following. It is the analogue of algebraic consistency [5, §5] in this context.

Definition 2.14. We say that a Z-algebra A is thin if HomA(P,Q) is a free rank
one module over Z for any indecomposable projective A-modules P and Q.

In practice, we will only consider Z-algebras A defined via quivers, for which the
indecomposable projectives are, up to isomorphism, Aei for i ∈ Q0. Such an algebra
is thin if and only if HomA(Aei, Aej) = ejAei is a free rank one module over Z for
each i, j ∈ Q0, and in this case A is free and finitely generated over Z.
It was shown in [2, Cor. 9.4] that the dimer algebra AD is thin when D is a

(k, n)-diagram. In fact, this is true for any connected Postnikov diagram D.

Proposition 2.15. If D is a connected Postnikov diagram in the disc, then AD is
thin.

Proof. As in [2, §4], we may weight the arrows of Q = Q(D) by elements of ZC0 . A
path in Q is weighted by the sum of w weights of its arrows, and its total weight is
defined to be

∑
i∈C0 w(i), which is always at least 1.

The proof of [2, Cor. 4.4], stated for (k, n)-diagrams, remains valid in our more
general setting to show that the path bounding any face of Q has constant weight
w(i) = 1 for all i ∈ C0. If p+ = p− is an F-term relation, then there is an arrow
α ∈ Q1 such that both αp+ and αp− are such boundary cycles, from which it follows
that the weights of p+ and p− agree. Therefore the weight, and hence the total
weight, is invariant under F-term equivalence, and thus descends to a grading of AD.

Now let i, j ∈ Q0. Since the disc is connected, there is some path from i to j in Q
[2, Rem. 3.3], and we choose p to be such a path with minimal total weight. If q is
any other path from i to j, then [2, Prop. 9.3] applies to show that there is a path
r : i→ j and non-negative integers Np and Nq such that

p = tNpr, q = tNqr

in AD. As before, this proposition is stated only in the case that D is a (k, n)-diagram,
but its proof is still valid under our weaker assumptions—the key property of D here
is (b2).
Since the total weight of u is non-zero, and p has minimal total weight among

paths from i to j, we must have Np = 0 and p = r. Thus q = tNqp is a Z-multiple
of p, showing that ejAei is a rank one Z-module. It is free since each element of
{tNp : N ⩾ 0} has a different total weight, which implies that these elements are
linearly independent in AD. □

Remark 2.16. In some parts of the paper, particularly Section 9 concerning the
Marsh–Scott formula, it will be necessary to consider bipartite graphs such that all
boundary nodes have the same colour. Any bipartite graph can be made into one
with this property by introducing a bivalent node on any half-edge incident with
a boundary node of the wrong colour; up to isomorphism, adding this extra node
does not affect AQ, where Q is the dual dimer model. In Q, this addition of a node
corresponds to gluing a digon (i.e. a 2-cycle bounding a face) onto the boundary
arrow of a boundary face. If Q = Q(D) for some Postnikov diagram D, then one
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can achieve the same effect by modifying D via a twisting move [2, Defn. 2.2] at the
boundary.

We will refer to bipartite graphs with only white boundary nodes as ◦-standardised
and those with only black boundary nodes as •-standardised, and extend this termi-
nology to the associated Postnikov diagrams and dimer models with boundary. Note
for example that in a ◦-standardised diagram D of type (k, n), the value k is simply
the number of white nodes minus the number of black nodes in Γ(D), whereas in a
•-standardised diagram the number of black nodes minus the number of white nodes
is n− k.

Definition 2.17. Given a Postnikov diagram D, we denote by Dop its opposite
diagram, obtained by reversing the orientation of each strand.

Remark 2.18. The quiver, dimer algebra, bipartite graph, and type of Dop are
related to the corresponding objects associated to D in the following way.

(1) We have Q(Dop) = Q(D)op, where the opposite Qop of a dimer model Q with
boundary is the opposite quiver with faces. This has has the same set of
vertices, arrows and faces as Q, but with hop(a) = t(a) and top(a) = h(a) on
arrows, with ∂opF = (∂F )op on faces, and with (Qop

2 )± = Q∓
2 .

(2) It then follows directly from Definition 2.11 that ADop = Aop
D , that is, the iden-

tity map on vertices and arrows of Q(Dop) = Q(D)op induces an isomorphism
of these algebras.

(3) The bipartite graph Γ(Dop) is obtained from Γ(D) by swapping the colours
of all nodes.

(4) It then follows from Definition 2.5 that if D has type (k, n) then Dop has
type (n− k, n), using that the total number of half-edges in either associated
bipartite graph is n.

3. Boundary algebras

In this section, we fix 1 ⩽ k < n, and explain how Postnikov diagrams of type
(k, n) are related to the categorification of the Grassmannian Grnk by Jensen–King–Su
[20].
Consider again the n-vertex circular graph C = (C0, C1), as in Figure 2.1. We

associate to C a quiver Q = Q(C) with vertex set Q0 = C0 and arrow set Q1 = {xi, yi :
i ∈ C1} with xi clockwise and yi anticlockwise, as illustrated in Figure 3.1 in the case
n = 7.

Definition 3.1. Write x =
∑

i∈C1 xi and y =
∑

i∈C1 yi. Then the (complete)
preprojective algebra Π of C is the quotient of the complete path algebra of Q(C) by
the closed ideal generated by xy − yx; multiplying this by the vertex idempotents
produces one commutativity relation beginning at each vertex.

For our fixed 1 ⩽ k < n, we write C for the quotient of Π by the additional relation
yk = xn−k. Again, this implies one relation of this kind beginning at each vertex.
Writing t = xy ∈ C, the centre of C is Z = C[[t]], and C is a thin Z-algebra [20, §3].

Since C is free and finitely generated over Z, it is natural to consider the category

CM(C) = {X ∈ modC : X is free over Z}.
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Figure 3.1. The double quiver Q(C).

The notation here refers to (maximal) Cohen–Macaulay C-modules, meaning C-
modules which are Cohen–Macaulay when restricted to the commutative (Gorenstein)
ring Z; Auslander [1, §I.7] refers to these modules as C-lattices. Note that CM(C)
coincides with the category

GP(C) = {X ∈ modC : ExtiC(X,C) = 0 for i > 0}
of Gorenstein projective C-modules (see [20, Cor. 3.7] and [21, 30]).

By Proposition 2.15, the dimer algebra A of any Postnikov diagram D is also free
and finitely generated over Z and, since Z is a principal ideal domain, so is any
subalgebra B of A. Later, we will also consider the categories CM(A) and CM(B),
but note that these do not usually coincide with GP(A) and GP(B).
The rank of M ∈ CM(C), when treated as a Z-module, is always divisible by

n = |Q0|, so we ‘normalise’ by dividing out this constant. This normalised rank may
also be computed as the length ofM⊗ZK over the simple algebra C⊗ZK ∼= Mn(K),
where K = C((t)) is the field of fractions of Z [20, Defn. 3.5].

Definition 3.2 ([20, Defn. 5.1]). For any I ⊆ C1, we can define a Π-module MI as
follows. For each i ∈ C0, set eiM = Z. The arrows of Q(C) act by

xi · z =

{
tz i ∈ I,
z i /∈ I,

yi · z =

{
z i ∈ I,
tz i /∈ I.

Then xy and yx both act as multiplication by t, and so MI is a Π-module.
If I is a k-subset, thenMI is actually a C-module: if the product of n−k successive

arrows xi acts by ts, then the product of the remaining k arrows xj acts by tk−s.
Hence the product of the corresponding k arrows yj acts again by tk−(k−s) = ts, and
so we conclude that yk and xn−k always have the same action. By construction, MI

is free and finitely generated as a Z-module, so it is in CM(C), and furthermore it
has rank 1.

Remark 3.3. Note that we use complementary naming conventions to those in [20]:
our module MI would be denoted there by MIc , that is, using the complementary
subset of C1. It is explained in [20] how the category CM(C), for C = Π/(yk −
xn−k), provides a categorification of Scott’s cluster algebra structure [34] on the
Grassmannian Grnn−k of (n−k)-planes in Cn; in particular, there is a cluster character
CM(C)→ C[Grnn−k]. Because of the difference in conventions, it takes our C-module
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MI to the Plücker coordinate φIc . However, by composing with the isomorphism
C[Grnn−k] → C[Grnk ] satisfying φIc 7→ φI for each k-subset I ⊆ C1, which relates
Scott’s cluster structures on these two isomorphic Grassmannians, we obtain a cluster
character Ψ: CM(C)→ C[Grnk ] sending MI to the Plücker coordinate φI .

Every rank 1 module in CM(C) is isomorphic to MI for some k-subset I ⊆ C1
[20, Prop. 5.2]. Certain cluster-tilting objects in CM(C), all of which are mutation
equivalent, have the property that all of their indecomposable summands have rank
1, and the cluster character Ψ induces a bijection from the mutation class of these
objects to the set of clusters of the Grassmannian cluster algebra [20, Rem. 9.6].
Now let D be any Postnikov diagram of type (k, n), with dimer algebra AD. We

may define the boundary idempotent e =
∑

i∈C0 ei ∈ AD, and consider the boundary
algebra B = eADe. This algebra is quite closely related to the algebra C, which
depends only on the type (k, n), as we now explain.
Let i ∈ C1. If the boundary arrow of Q(D) labelled by i is clockwise, we name

this arrow αi, and let βi be the (unique) path completing αi to a boundary face.
Conversely, if the boundary arrow labelled by i is anticlockwise, then we call this
arrow βi, and write αi for the path completing it to a face. Writing α =

∑
i∈C1 αi

and β =
∑

i∈C1 βi, we have have αβ = te = βα, and hence there is a canonical map

ε̃ : Π→ BD,

fixing the vertex idempotents ej, for j ∈ C0, and with ε̃(xi) = αi and ε̃(yi) = βi for
each i ∈ C1. The existence of the map ε̃ can also be deduced from the description of
B as the boundary algebra of the frozen Jacobian algebra AD, by [31, Prop. 8.1].

Claim 3.4. When D has type (k, n), the map ε̃ : Π → B factors through a map
ε : C → B. In other words, ε̃(yk − xn−k) = 0.

Remark 3.5. It would be nice to have a direct algebraic proof of Claim 3.4, but we
currently use facts about perfect matching modules proved in Section 4, so the proof
is postponed until after Proposition 4.5. The statement depends on consistency of
the dimer model, as the example in Figure 3.2 shows. Here the combinatorics tells
us that k = 1 and n = 3, but the relation x2 = y does not follow from the dimer
relations.

2

1

3

2

•

•

1

•

•

3
•

•

Figure 3.2. An inconsistent dimer model.

Assuming Claim 3.4 for the moment, we have the following.
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Proposition 3.6. Let B = eADe be the boundary algebra of AD, for D a Postnikov
diagram of type (k, n). Then the canonical map ε : C → B is injective and the
corresponding restriction functor ρ : CM(B)→ CM(C) is fully faithful.

Proof. It follows from Proposition 2.15 and [20, §3] that both B and C are thin.
Hence when restricted to each piece eiCej , for i, j ∈ C0, the canonical map ε : C → B
from Claim 3.4 becomes a map of free Z-modules of rank 1, so it is either injective
or zero. The image of a generator of eiCej is a path in the dimer algebra AD, i.e.
the F-term equivalence class of a path in the defining quiver. Since AD is defined by
commutation relations, no path is zero and so ε must be injective, as required.

Let Z[t−1] = C((t)) be the field of formal Laurent series in t and, for any Z-module
X, let X[t−1] = X ⊗Z Z[t

−1]. In particular, if M is a B-module, then M [t−1] is
a B[t−1]-module. Because B and C are thin, the inclusion ε : C → B induces an
isomorphism C[t−1] ∼= B[t−1] and so we may consider that B ⊆ C[t−1].
Thus any modules M,N in CM(B) can be considered to be B-submodules of the

C[t−1]-modules M [t−1], N [t−1]. Now t acts injectively on M and N , so any map in
HomC(ρM, ρN) commutes with t−1 and so commutes with any element of B. Thus
HomC(ρM, ρN) = HomB(M,N), that is, ρ is fully faithful, as required. □

Note that the canonical map ε : C → B is typically not surjective, and the more
general restriction map modB → modC is typically not fully faithful. An example
is shown in Figure 3.3. There every vertex of Q(D) is on the boundary, so B = AD,
but the map ε : C → B from Claim 3.4 is not surjective, since the internal arrow of
AD is not in its image.

1

23

4

•

•

•

•

Figure 3.3. A dimer algebra AD for a Postnikov diagram D of type (2, 4).

4. Perfect matching modules

Let D be a Postnikov diagram of type (k, n). In this section we associate a module
for the dimer algebra AD to each perfect matching of the bipartite graph Γ(D). To
start with, we may consider an arbitrary quiver with faces Q (see Definition 2.6).

Definition 4.1. A perfect matching on a quiver with faces Q is a subset µ of Q1

such that the boundary of each face in Q2 contains precisely one arrow in µ.

An example of a perfect matching is given in Figure 4.1.
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Figure 4.1. A perfect matching of a dimer model with boundary.
The perfect matching is indicated by the thicker arrows.

Remark 4.2. If Q is a dimer model with boundary, its arrows are in bijection with
the edges and half-edges of the dual bipartite graph Γ, in such a way that the arrows
incident with a given face correspond to the edges and half-edges incident with the
dual node. A perfect matching of Q is thus equivalent to the data of a subset µ
of the edges and half-edges of Γ with the property that each node of Γ is incident
with precisely one element of µ. When |Q| is closed, so that Γ is an honest bipartite
graph, such a set µ is a perfect matching of Γ in the usual, graph-theoretic sense,
hence the terminology. In general, a boundary node of Γ need not be matched with
another node, but may instead be incident with a half-edge in µ.

Any perfect matching of a quiver Q with faces determines a ĈQ-module in the
following way.

Definition 4.3. To each perfect matching µ on Q, we associate a ĈQ-module Nµ

as follows. Let eiNµ = Z for all i ∈ Q0. An arrow α acts as multiplication by t if
α ∈ µ, and as the identity otherwise.

We may extend the quiver Q(C) from Section 3 to a quiver with n faces, the
boundaries of which are the 2-cycles xiyi for i ∈ C1. Then, given any subset I ⊆ C1,
the set µ(I) = {xi : i ∈ I} ∪ {yj : j /∈ I} ⊆ Q1 is a perfect matching of Q(C), and
the module Nµ(I) is precisely the Π-module MI from Definition 3.2.

If Q is a dimer model with boundary and µ is a perfect matching, p+α and p−α act
on Nµ in the same way for any α ∈ Q1, and so Nµ is a module for the dimer algebra
AQ. Note that the central element t ∈ AQ from Definition 2.13 acts on any Nµ as
multiplication by t ∈ Z, justifying the abuse of notation.

Definition 4.4. Any perfect matching µ of a quiver with faces Q determines a

grading of the path algebra ĈQ with

degµ α =

{
1, α ∈ µ,
0, α /∈ µ.
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If Q is a dimer model with boundary, this descends to a grading of AQ since the
defining relation p+α − p−α has degree 0 if α ∈ µ and degree 1 otherwise. For any µ, we
have degµ t = 1. Grading Nµ by putting deg 1 = 0 for each generator 1 ∈ ejNµ = Z

makes Nµ into a graded ĈQ-module for the above grading on ĈQ.
Proposition 4.5. Let Q be a quiver with faces such that |Q| is simply connected. Let

N be a ĈQ-module such that the vector space ejN is equipped with the structure of a
free Z-module of rank 1 for each j ∈ Q0, in such a way that ∂F acts as multiplication
by t for every F ∈ Q2. Then there exists a unique perfect matching µ of Q such that
N ∼= Nµ.

Proof. We associate to N , as a representation of Q, the set µ of arrows whose arrow
maps are non-invertible. Choosing a Z-module generator for ejN for j ∈ Q0, each
arrow α acts, relative to these generators, as multiplication by λαt

mα with λα ∈ Z×;
we use here that Z is a local ring with maximal ideal (t). Since the boundary of any
face acts by t, we must have mα ∈ {0, 1}, equal to 1 for exactly one arrow in each
face. These are precisely the arrows in µ, which is thus a perfect matching.
Moreover, the λα multiply to 1 around each face, so λ is a 1-cocycle for Q with

coefficients in Z×. As |Q| is simply connected, λ = dκ for some 0-cochain κ. Rescaling
the generators by κ sets λ = 1, and thus N ∼= Nµ.

Uniqueness follows because µ is the set of arrows acting non-invertibly on Nµ, and
this set is an isomorphism invariant. □

When N is an AD-module for some connected Postnikov diagram D, we will always
give N (and hence the fibres ejN for j ∈ Q0) the Z-module structure arising from
the restriction to Z ⊆ AD (see Definition 2.13). In particular, this means that ∂F
always acts on N as multiplication by t for every F in Q2, and so Proposition 4.5
simplifies as follows.

Corollary 4.6. Let D be a connected Postnikov diagram with dimer algebra A = AD,
and let N be an A-module such that the Z-module ejN is free of rank 1 for each
j ∈ Q0. Then N ∼= Nµ for a unique perfect matching µ of Q(D). This applies in
particular when N = Aei is an indecomposable projective A-module.

Proof. The first statement is just Proposition 4.5, the condition on ∂F being
automatic as above. For an indecomposable projective Aei, the fibre ejAei =
HomA(Aei, Aej) is free of rank one since A is thin (Proposition 2.15). □

Definition 4.7. Let D be a Postnikov diagram with quiver Q(D). Then a perfect
matching µ on Q(D) has a boundary value ∂µ ⊆ C1, defined as follows: ∂µ consists of
those i ∈ C1 such that either the boundary arrow of Q(D) labelled by i is clockwise
and contained in µ, or this arrow is anticlockwise and not contained in µ.

The boundary value of the perfect matching in Figure 4.1 is {1, 3, 5}. Note that
if D is ◦-standardised in the sense of Remark 2.16, then all boundary arrows are
clockwise and so ∂µ consists simply of the labels in C1 of the boundary arrows in µ.
Conversely, in a •-standardised diagram all of the boundary arrows are anticlockwise,
and ∂µ consists of the labels of those boundary arrows not in µ.

Proposition 4.8. If D is a Postnikov diagram of type (k, n) and µ is a perfect
matching of Q(D), then ∂µ has cardinality k.
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Proof. Since k is defined in terms of the graph Γ(D), we view µ as a subset of the
edges and half-edges of Γ(D) as in Remark 4.2. In this language, the boundary value
∂µ consists of those I ∈ C1 such that the corresponding half-edge of Γ(D) is either
incident with a white node and contained in µ, or is incident with a black node and
not contained in µ.

Now consider the disjoint union S of the set of white nodes of Γ(D) with the set of
half-edges of Γ(D) incident with a black node, and its subset Sµ consisting of white
nodes joined to a black node by an edge of µ, together with the half-edges in µ ∩ S.
Since µ is a perfect matching, the cardinality of Sµ is equal to the number of black
nodes, and so S \ Sµ has cardinality k by a direct comparison with Definition 2.5.
On the other hand, S \ Sµ consists of those white nodes incident with a (necessarily
unique) half-edge in µ, together with the half-edges of S which are not in µ, and so
its cardinality also agrees with that of ∂µ. □

The modules Nµ provide a convenient way to prove Claim 3.4 and hence to
complete the proof of Proposition 3.6.

Proof of Claim 3.4. We need only check that ε̃(yk − xn−k) = 0, or equivalently, that
ε̃(yk) and ε̃(xn−k) have the same action on any indecomposable projective B-module
Bei, for i ∈ C0. Now Bei = eADei is a subspace of the projective AD-module ADei
which, by Corollary 4.6, is isomorphic to Nµ for some perfect matching µ. In fact,
the elements ε̃(yk) and ε̃(xn−k) of B ⊆ AD act in the same way on Nµ for any perfect
matching µ, as we now show.

Fix i ∈ C1. By construction, ε̃(xi) = αi acts on the relevant fibres of Nµ either by
the identity or as multiplication by t, and ε̃(yi) = βi acts complementarily. If the
boundary arrow of Q(D) labelled by i is clockwise, then αi is this arrow, which acts
as t on Nµ if and only if i ∈ ∂µ. On the other hand, if the boundary arrow βi labelled
by i is anticlockwise, then αi is the path completing βi to a face, which acts as t on
Nµ if and only if βi acts as 1, again if and only if i ∈ ∂µ. Thus by Proposition 4.8,
exactly k = |∂µ| of the αi act as multiplication by t. Verifying that ε̃(yk) and ε̃(xn−k)
have the same action on Nµ is then straightforward (cf. Definition 3.2). □

Proposition 4.9. Let D be a Postnikov diagram, let µ be a perfect matching for the
associated quiver Q(D) with corresponding AD-module Nµ, and let e be the boundary
idempotent of AD. Then ρ(eNµ) = M∂µ, where ρ : CM(B) → CM(C) denotes the
restriction functor from Proposition 3.6.

Proof. Consider eNµ, which by definition has vertex components eiNµ = Z for each
i ∈ C0, under our identification of C0 with the boundary vertices of Q. Exactly as
in the proof of Claim 3.4, the arrow xi acts as multiplication by t if i ∈ ∂µ, and
as the identity otherwise. Since xiyi bounds a face, it must act by multiplication
by t. Hence the arrow yi acts as the identity when xi acts by t, i.e. when i ∈ ∂µ,
and as multiplication by t otherwise. Comparing to Definition 3.2, we see that
ρ(eNµ) =M∂µ. □

Since ρ is fully faithful by Proposition 3.6, we immediately have the following.

Corollary 4.10. The boundary module M = eNµ ∈ CM(B) of a perfect matching µ
is determined up to isomorphism by the boundary value ∂µ of the matching.
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Definition 4.11. We will refer to an A-module N together with a preferred isomor-
phism Nµ

∼−→ N as a perfect matching module. Specifying such an isomorphism is
equivalent to choosing a preferred generator gj for each ejN (necessarily a rank one
Z-module) in such a way that the arrows act by multiplication by a power of t, rela-
tive to these generators. The isomorphism is then given by mapping 1 ∈ ejNµ = Z
to gj, and the power of t is necessarily 0 or 1, as in the proof of Proposition 4.5.

Lemma 4.12. Any submodule N of a perfect matching module M is canonically a
perfect matching module.

Proof. We have a generator gj for each ejM as in Definition 4.11. Each ejN is a Z-
submodule of ejM and is thus canonically generated by tmgj for some m (depending
on j). Since t is central in A, the arrows still act on these new generators by
multiplication by a power of t, as required. □

5. Induction and restriction

Let D be a connected Postnikov diagram in the disc with quiver Q = Q(D), and
write A = AD for its dimer algebra, with boundary idempotent e. Write B = eAe
and T = eA. The restriction functor

e : modA→ modB : L 7→ eL = T ⊗A L = HomA(Ae, L)

has right and left adjoints F, F̃ : modB → modA given by

FM = HomB(T,M),

F̃M = Ae⊗B M.

Since eF and eF̃ are naturally isomorphic to the identity on modB, there is a
universal map

ιM : F̃M → FM. (5.1)

We write F ′M = im ιM ; this defines a functor F ′ : modB → modA, sometimes
called the intermediate extension associated to the idempotent e. See [9, 22] for
some general discussion of this construction. We may also compute F ′M as the

torsion-free part of F̃M (as a Z-module), so that F ′ becomes the honest left adjoint
of e upon its restriction to a functor CM(A)→ CM(B).

Let N ∈ CM(A). Then viewing N as a quiver representation, the fibre of eiN over
each i ∈ Q0 is a free and finitely generated Z-module. Moreover, each a ∈ Q1 begins
a cycle bounding a face. Since the cycle acts on N as multiplication by t, and so in
particular injectively, amust also act injectively onM , and so rkZ(ehaN) ⩽ rkZ(etaN).
Since Q is strongly connected, meaning any two vertices lie on some cycle, it follows
that in fact rkZ(eiN) is constant in i. We define rk(N) to be this constant value.
Observe that rk(Nµ) = 1 for any perfect matching µ by construction, and that if
rk(N) = 1 then N ∼= Nµ for some perfect matching µ by Corollary 4.6.

Lemma 5.1. When M is in CM(B), both FM and F ′M are in CM(A).

Proof. Since Z is a principal ideal domain, any submodule of a free and finitely
generated Z-module is again free and finitely generated. By Proposition 2.15,
T ∈ CM(A).
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It follows that F ′M ⊆ FM ⊆ HomZ(T,M) are free and finitely generated whenever
M ∈ CM(B), since T andM are. Thus F ′M,FM ∈ CM(A) for allM ∈ CM(B). □

A consequence of Lemma 5.1 is that for anyM ∈ CM(B), there exists N ∈ CM(A)
with eN = M (for example, take N = FM). Thus eiM = eiN for any boundary
vertex i, and so rkZ(eiM) = rk(N) is constant in i. We define rk(M) to be this
constant, the above argument showing that rk(M) = rk(N) for any N ∈ CM(A)
with eN =M . It also follows by a direct comparison of the definitions that the rank
of M ∈ CM(B) agrees with that of ρ(M) ∈ CM(C).

Lemma 5.2. Let f : M → N be a morphism in CM(A) such that its restriction
e(f) : eM → eN is injective. Then f is injective.

Proof. Since CM(A) is closed under submodules, K = ker f is Cohen–Macaulay. If
i ∈ Q0 is a boundary vertex, then eiK ⊆ eK = 0 since e(f) is injective. Since for
any j ∈ Q0 we have rkZ(ejK) = rkZ(eiK) = 0, and ejK is free over Z, it follows
that ejK = 0 for all j, and thus that K = 0. □

Lemma 5.3. For M,N ∈ CM(A), the restriction HomA(M,N)→ HomB(eM, eN)
is injective.

Proof. As in any adjunction, the restriction map can be factored as

HomA(M,N) −→ HomA(M,FeN)
∼−→ HomB(eM, eN),

where the first map is HomA(M,−) applied to the counit N → FeN , and the second
is adjunction. In this case, the counit map restricts to the identity eN → eN and so
is injective by Lemma 5.2. Since HomA(M,−) is left exact, the restriction map is
injective as required. □

One immediate consequence of these lemmas is the following.

Proposition 5.4. Let M ∈ CM(B) and N ⩽ FM . Then eN = M if and only if
F ′M ⩽ N .

Proof. Note that the statement makes the canonical identification eFM =M . For

the backwards implication, note that the map F̃M → FM restricts to the identity
M →M on the boundary and therefore eF ′M =M . Hence, if F ′M ⩽ N , then eN
is sandwiched between eF ′M = M and eFM = M , so eN = M . For the forward
implication, the left and right adjunctions provide universal (unit and counit) maps

F ′eN → N → FeN.

By general properties of adjunctions, the composition of these maps restricts to
id : eN → eN on the boundary (using our canonical identification), and so by
Lemma 5.3 agrees with the inclusion map F ′eN → FeN , which also has this
restriction. If eN =M , then a similar argument shows that the second map is the
given inclusion N → FM . Thus we have shown in this case that the inclusion of
F ′M into FM factors over that of N into FM , and so F ′M ⩽ N . □

Proposition 5.5. Let M ∈ CM(B) with rk(M) = 1. Then there is a bijection

θ : {N ⩽ FM : eN =M} → {µ : eNµ
∼= M}

determined by θ(N) = µ when N ∼= Nµ.
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Proof. Since eFM = M has rank 1, we also have rk(FM) = 1 and so by Proposi-
tion 4.5 we may choose a perfect matching module structure, in the sense of Defini-
tion 4.11, on FM . This induces such a structure on any N ⩽ FM by Lemma 4.12.
Thus N ∼= Nµ for a perfect matching µ, unique by Corollary 4.6. In addition, by
restriction to the boundary, the perfect matching module structure on N induces a
preferred isomorphism eNµ

∼−→M , and so θ is a well-defined map.
For injectivity, suppose µ = θ(N). Being a perfect matching module, N is the

image of a canonical map Nµ → FM , as in Definition 4.11. Since eN = M , this

map restricts to the preferred isomorphism eNµ
∼−→ M on the boundary and, by

Lemma 5.3, there can only be one such map. Thus N is uniquely determined by
µ. For surjectivity, let µ be a perfect matching with eNµ

∼= M . This induces an

isomorphism FeNµ
∼−→ FM and, precomposing with the unit of the adjunction, a

monomorphism Nµ → FM . This map restricts to the given isomorphism eNµ
∼−→M

on the boundary, and so its image N has eN =M and θ(N) = µ. □

Remark 5.6. We can use Proposition 5.4 to rewrite the domain of θ in Proposition 5.5
as

{N ⩽ FM : eN =M} = {N : F ′M ⩽ N ⩽ FM}.
We can also use Corollary 4.10 to rewrite the codomain of θ in purely combinatorial
terms:

{µ : eNµ
∼= M} = {µ : ∂µ = I},

where I ⊆ C1 is the unique k-subset such that ρ(M) ∼= MI [20, Prop. 5.2].

Lemma 5.7. Let D be a Postnikov diagram, B the boundary algebra of AD and
M ∈ CM(B) with rk(M) = 1. Then

(1) any two perfect matchings of Q(D) with boundary module M coincide on all
arrows not incident with the set S ⊆ Q0 of vertices on which FM/F ′M is
supported, and

(2) if µ is such a perfect matching, and ω is a cycle of arrows in Q(D) bounding
a face and passing through S, then the unique arrow of µ in ω is incident
with S.

Proof. Using the bijection θ of Proposition 5.5, let µ0 = θ(FM), let µ be another
perfect matching with boundary module M and let N = θ−1(µ).

Since F ′M ⩽ N ⩽ FM by Proposition 5.4, the module N coincides with FM away
from the vertices supporting FM/F ′M . Thus if a ∈ Q1 is an arrow not incident with
these vertices, then etaN = etaFM and ehaN = ehaFM , and since N is a submodule
of FM , the action of a is the same in the two module structures. It follows that a is
an arrow of µ if and only if it is an arrow of µ0, establishing (1).
We first prove (2) for the perfect matching µ0 = θ(FM). If every arrow of ω has

both head and tail in S, then there is nothing to prove, so assume otherwise. Then
there must be an arrow a of ω with ha ∈ S but ta /∈ S. Since FM/F ′M is 0 at ta,
we have etaFM = etaF

′M . Since F ′M is a submodule of FM , the action of a takes
the Z-generator of etaF

′M to an element of ehaF
′M , which is properly contained in

ehaFM since ha ∈ S. Thus this image cannot be the Z-generator of the codomain,
so the arrow map on a is not an isomorphism and a ∈ µ0.
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The statement for any other matching µ with boundary M then follows from (1),
since µ agrees with µ0 on the arrows of ω not incident with S, meaning none of these
arrows can appear in µ. □

This result will help us to show that the computation of the set of perfect matchings
in Proposition 5.5 can be reduced to a potentially much smaller computation, only
involving the vertices on which FM/F ′M is supported. To explain how this works,
it will be helpful to use the description of a perfect matching as a set of edges in a
bipartite graph, rather than as a set of arrows in the dual quiver.

Proposition 5.8. In the setting of Lemma 5.7, let ΓM be the graph consisting of
those edges and nodes of Γ(D) incident with the tiles corresponding to the vertices
of Q(D) supporting FM/F ′M . Then the perfect matchings of Q(D) with boundary
module M are in bijection with those of ΓM via intersection, i.e. by taking a perfect
matching µ to the set of edges of ΓM dual to arrows of µ. Precomposing with the
bijection from Proposition 5.5, we obtain a bijection

{N ⩽ FM : eN =M} → {µ : µ is a perfect matching of ΓM}.

Proof. Let µ be a perfect matching of Q(D) with boundary module M . Each node
v of ΓM corresponds to a face of Q(D) whose boundary cycle ω intersects S, the
support of FM/F ′M . The edges of ΓM incident with v are dual to arrows of ω
incident with S, and by Lemma 5.7(2), one of these arrows is the unique arrow of ω
lying in µ. Thus intersection indeed gives a perfect matching of ΓM .
It remains to show that any perfect matching of ΓM arises in this way. Let µ0

be the matching of Q(D) such that FM ∼= Nµ0 , and let µ be a perfect matching of
ΓM . Then we may take µ̂ to be the set of arrows of Q(D) dual to the edges of µ,
together with those arrows in µ0 not incident with S. By Lemma 5.7(2) again, µ̂ is
a perfect matching of Q(D). By construction, the intersection of µ̂ with ΓM is µ,
and it remains to check that µ̂ has the correct boundary module.

Since eF ′M =M = eFM , the support of FM/F ′M does not contain any boundary
vertices, and hence ΓM contains none of the half-edges. Thus ∂µ̂ = ∂µ0. By
Corollary 4.10, we see that µ̂ has the same boundary module as µ0, namely M . □

Remark 5.9. The set {N ⩽ FM : eN =M} is naturally a poset under inclusion.
It has the unique maximal element FM and, by Proposition 5.4, the unique minimal
element F ′M . Thus the bijection in Proposition 5.5 puts a poset structure on the
set of perfect matchings µ with eNµ

∼= M , that is, with ∂µ = I for the appropriate
k-subset I (cf. Remark 5.6), and there are unique maximal and minimal matchings
(cf. [26, Defn. 4.7]). We also get a poset structure on the perfect matchings of the
subgraph ΓM ⊆ Γ(D) from Proposition 5.8. When the full subquiver of Q(D) on
the vertices supporting FM/F ′M is an orientation of an An quiver, so in particular
FM/F ′M is an indecomposable string module, Proposition 5.8 corresponds to [8,
Thm. 3.9].

The quotient FM/F ′M has another description, which plays a key role later on.
To obtain this description, we use that the dimer algebra of a Postnikov diagram is
internally 3-Calabi–Yau [30, Defn. 2.1], which is proved in [32, Thm. 3.7], and has
the following consequences.
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Proposition 5.10. Let D be a connected Postnikov diagram D, with associated
dimer algebra A = AD and boundary algebra B = eAe, and set T = eA.

(i) The natural map A→ EndB(T )
op is an isomorphism of algebras.

(ii) Ext1B(T, T ) = 0.

In particular,

(iii) The natural map Ae→ HomB(T,B) is an isomorphism of A-modules.
(iv) Ext1B(T,B) = 0.

Proof. Statements (i) and (ii) are among the conclusions of [30, Thm. 4.1], and the
pair (A, e) satisfies the assumptions of this theorem by [32, Thm. 3.7, Prop. 4.4].
Then (iii) and (iv) follow immediately, since Te = B. □

It in fact follows from [32, Thm. 3.7] together with the general theory from [30] that
T is a cluster-tilting object in the Frobenius category GP(B) of Gorenstein projective
B-modules, in which B is injective. We will return to this in Section 10, but for now
we need only the resulting vanishing of extension groups in Proposition 5.10.

Corollary 5.11. In the setting of Proposition 5.10, let M ∈ CM(B). Then F ′M is
the subspace of FM consisting of maps factoring through a projective B-module, and
hence

FM/F ′M = HomB(T,M) = GΩM,

where ΩM is a first syzygy of M , i.e. the kernel of a projective cover, and G =
Ext1B(T,−).

Proof. By Proposition 5.10(iii) the map ιM of (5.1) may be identified with the
composition map

HomB(T,B)⊗B HomB(B,M)→ HomB(T,M)

and the first equality follows.
Consider a short exact sequence

0 −→ ΩM −→ PM −→M −→ 0 (5.2)

where PM →M is a projective cover of M . Applying the functor F = HomB(T,−)
to (5.2) yields the long exact sequence

0 −→ FΩM −→ FPM −→ FM −→ GΩM −→ 0 (5.3)

where the final zero follows from Proposition 5.10(iv), since PM ∈ add(B). Thus
the second equality follows. □

While ΩM depends on the choice of projective cover PM , since we do not insist
that the cover is minimal, the A-module GΩM is independent of this choice. By
Corollary 5.11, the image of the middle map in (5.3) is F ′M , yielding the two exact
sequences

0 −→ FΩM −→ FPM −→ F ′M −→ 0, (5.4)

0 −→ F ′M −→ FM −→ GΩM −→ 0. (5.5)
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6. A projective resolution

In this section, we construct an explicit projective resolution for each perfect
matching module. This will play a key role for us later on, both in Section 7 when
determining which perfect matchings describe the indecomposable projective modules
of the dimer algebra of a Postnikov diagram, and in Sections 9 and 10 when we relate
the combinatorial information appearing in Marsh–Scott’s dimer partition function
to the homological information in the Caldero–Chapoton cluster character formula.

Let Q be a dimer model with boundary. Recall that the dimer algebra A = AQ is
a Z-algebra, for Z = C[[t]], as in Definition 2.13.

Given a perfect matching µ of Q, let Qµ
1 = Q1 \ µ. We write

Qµ
2 = {f ∪ f ′ : f, f ′ ∈ Q2 with boundaries sharing some arrow of µ}.

In other words, Qµ
2 is obtained from the set of faces of Q by merging those faces

adjacent along an arrow in the matching µ, and deleting those whose intersection
with µ is a boundary arrow. In what follows, it will be convenient to identify Qµ

2 with

the set of defining relations r(β) = p+β − p
−
β ∈ ĈQ corresponding to internal arrows

β ∈ µ; we do this by identifying r(β) with the union of the two faces containing β.
We will also want to consider various (projective) A-modules of the form⊕

x∈X

Aehx ⊗Z etxNµ,

where X is some set together with head and tail maps h, t : X → Q0, and Nµ is the
module attached to µ in Definition 4.3. For the rest of the section, we will write
⊗ = ⊗Z . Since ejNµ = Z for all j by definition, each element of Aehx ⊗ etxNµ is of
the form a ⊗ 1 for some unique a ∈ Aehx. Denoting the image of a ⊗ 1 under the
map Aehx⊗ etxNµ →

⊕
x∈X Aehx⊗ etxNµ by a⊗ [x], each element of this direct sum

can be written ∑
x∈X

ax ⊗ [x],

for some unique elements ax ∈ Aehx. To define an A-module homomorphism
φ :
⊕

x∈X Aehx ⊗ etxNµ → M , it suffices to specify φ(ehx ⊗ [x]) ∈ ehxM for each
x ∈ X, which may be done freely.

Now consider the complex

ξµ :
⊕
r∈Qµ

2

Aehr ⊗ etrNµ
∂2−→

⊕
α∈Qµ

1

Aehα ⊗ etαNµ
∂1−→
⊕
j∈Q0

Aej ⊗ ejNµ
∂0−→ Nµ,

whose terms are in homological degrees 2, 1, 0 and −1, and whose maps are defined
as follows. First, ∂0 is just the action of A on Nµ. For a ∈ ekAej, we also write
a : Aek → Aej for right multiplication by a, and denote by a∗ : ejNµ → ekNµ the
action of a on Nµ. Then, for any α ∈ Qµ

1 , the α component of ∂1 is

(α⊗ 1,−1⊗ α∗) : Aehα ⊗ etαNµ → (Aetα ⊗ etαNµ)⊕ (Aehα ⊗ ehαNµ).

Since α is unmatched, α∗ is the identity Z → Z, so we have

∂1(ehα ⊗ [α]) = α⊗ [tα]− ehα ⊗ [hα].
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For any path p = αm · · ·α1 of Q and any arrow α ∈ Q1, we define

∆α(p) =
∑
αi=α

αm · · ·αi+1 ⊗ (αi−1 · · ·α1)∗ : Aehp ⊗ etpNµ → Aehα ⊗ etαNµ.

The components of ∂2 are then

∂
r(β),α
2 = ∆α(p

+
β )−∆α(p

−
β ) : Aetβ ⊗ ehβNµ → Aehα ⊗ etαNµ

for β ∈ µ internal and α /∈ µ. Since β ∈ µ, none of the arrows of p+β or p−β are in µ,

and so writing p+β = α+
m · · ·α+

1 and p−β = α−
ℓ · · ·α

−
1 , we have

∂2(etα ⊗ [r(β)]) =
m∑
i=1

α+
m · · ·α+

i+1 ⊗ [α+
i ]−

ℓ∑
i=1

α−
ℓ · · ·α

−
i+1 ⊗ [α−

i ],

and in particular ∂2 takes values in the appropriate sum of projective modules. In
the above formula, an empty product of arrows is interpreted as the appropriate
idempotent (for example, α+

m · · ·α+
m+1 should be read as ehα+

m
).

The goal of this section is to prove, in the case that A = AD for D a connected
Postnikov diagram, that ξµ is exact; in other words, its non-negative degree part is a
projective resolution of the perfect matching module Nµ. A priori, we will show this
for any dimer algebra A = AQ which is thin, and for which the cell complex Q has
H2(Q) = 0, although it will then follow from exactness of ξµ that |Q| is the disc.

Using the grading degµ from Definition 4.4, each map ∂i in ξµ has degree 0, since
this is true of every arrow in Qµ

1 . This makes ξµ into a graded complex, which is
exact if and only if its degree d part (ξµ)d is exact for all d. Moreover, as vector
spaces, each complex (ξµ)d decomposes as the direct sum

(ξµ)d =
⊕
i∈Q0

ei(ξµ)d,

so, extending the refinement by degree, ξµ is exact if and only if ei(ξµ)d is exact for
all i ∈ Q0 and d ∈ Z.

Remark 6.1. The degree 0 part of ξµ is a complex of modules for the algebra A0,
which can be presented as the path algebra of the quiver (Q0, Q

µ
1 ) modulo the ideal

of relations generated by r ∈ Qµ
2 , i.e. r = r(β) for β ∈ µ. In fact, (ξµ)0 is the start of

the standard resolution (see for example [6, 1.2]) of the A0-module (Nµ)0, which is
given by C at each vertex, with all arrows (in Qµ

1 ) acting as the identity. Thus (ξµ)0
is always exact in homological degrees 1, 0 and −1.

In order to study the complexes ei(ξµ)d, we interpret them topologically. Recall
that the quiver with faces Q can be thought of as a cell complex (Q0, Q1, Q2) for the
topological space |Q|. Given a subset S ⊆ Q0, we denote by Q[S] the full subcomplex
of Q with vertex set S, that is, the edges of Q[S] are those edges of Q with both
endpoints in S and the faces of Q[S] are those faces of Q incident only with vertices
in S. The geometric realisation |Q[S]| is naturally embedded into |Q|. We also
consider the cell complex Qµ = (Q0, Q

µ
1 , Q

µ
2), used above in the construction of the

chain complex ξµ, and its full subcomplexes Qµ[S] for S ⊆ Q0.
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For any perfect matching µ on Q, vertex i ∈ Q0 and d ⩾ 0, we define the subset

S(µ, i, d) = {j ∈ Q0 : there is a path p : j → i with degµ(p) = d}
= {j ∈ Q0 :

(
eiAej

)
d
̸= 0}

Lemma 6.2. An arrow α ∈ Qµ
1 , respectively a face r ∈ Qµ

2 , lies in Q
µ[S(µ, i, d)] if

and only if hα, respectively hr, does.

Proof. Any α ∈ Qµ
1 has degµ(α) = 0. Thus if j ∈ S(µ, i, d), so that there is a

path p : j → i with degµ(p) = d, then any α ∈ Qµ
1 with hα = j determines a path

pα : tα→ i with degµ(pα) = d, and hence tα ∈ S(µ, i, d). Thus any such α has both
endpoints in S(µ, i, d) and so lies in Qµ[S(µ, i, d)].

Similarly, every arrow in the boundary of r ∈ Qµ
2 has degree 0, and any vertex in

this boundary begins a path consisting of these arrows and ending at hr. Thus if
hr ∈ S(µ, i, d), so is every vertex incident with r. □

If A is thin, in the sense of Definition 2.14, then any two paths p : j → i with
degµ(p) = d, as appearing in the definition of S(µ, i, d), are F-term equivalent, and

so all determine the same element of A, which we denote by pdi,j. This element is

then a preferred basis for the one-dimensional vector space
(
eiAej

)
d
. Recall from

Proposition 2.15 that if A = AD for some Postnikov diagram D, then A is thin.

Proposition 6.3. When A is thin, the complex ei(ξµ)d computes the reduced coho-
mology of the cell complex Q[S(µ, i, d)] with coefficients in C.

Proof. Write S = S(µ, i, d). The first step is to observe that Q[S] is homotopy
equivalent to Qµ[S]. Indeed, these two complexes differ only when there is an α ∈ µ
such that tα ∈ S. If α is contained in two faces of Q[S], then these faces are merged
in Qµ[S], leaving the geometric realisation unchanged. If α is contained in only a
single face F of Q[S], then it lies in the boundary of the geometric realisation and
we can contract F onto the union of its other edges in this realisation, corresponding
to the removal of F in Qµ[S]. Since µ is a perfect matching, the contractions operate
independently of one another and collectively describe a homotopy equivalence
between |Q[S]| and |Qµ[S]|. Thus we can instead prove the result for the reduced
cohomology of the cell complex Qµ[S].
Each face r ∈ Qµ

2 [S] is the union of two faces of Q[S], one black and one white;
we write r+ for the set of arrows of Qµ

1 [S] lying in the boundary of the black face,
and r− for the set of arrows of Qµ

1 [S] lying in the boundary of the white face. Then
the chain complex computing the reduced cohomology of the cell complex, using
an anticlockwise orientation on faces and the given orientation of the edges, has
non-zero terms

ζ :
⊕

r∈Qµ
2 [S]

C · r δ2−→
⊕

α∈Qµ
1 [S]

C · α δ1−→
⊕
j∈S

C · j δ0−→ C,

in homological degrees 2, 1, 0,−1. The maps are defined on generators as follows.

δ0(1 · j) = 1, δ1(1 · α) = 1 · tα− 1 · hα,

δ2(1 · r) =
∑

α+∈r+
1 · α+ −

∑
α−∈r−

1 · α−
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We now construct an isomorphism of complexes ψ : ζ → ei(ξµ)d. In homological
degree −1, we have, by definition, eiNµ = Z, so (eiNµ)d = C · td and so we start with
ψ−1 : 1 7→ td.
To compare the other terms, we note that each summand in the higher degree

terms of ξµ is of the form Aehx ⊗ etxNµ, for some cell x of Qµ. As before, we denote
the single generator of etxNµ by [x], which has degµ[x] = 0. Thus the corresponding

term of ei(ξµ)d is
(
eiAehx ⊗ etxNµ

)
d
, which, as A is thin, is either a one-dimensional

vector space with basis pdi,hx⊗ [x], if hx ∈ S, or zero, if hx /∈ S. Hence we may define

ψ0(1 · j) = pdi,j ⊗ [j], ψ1(1 · α) = pdi,hα ⊗ [α], ψ2(1 · r) = pdi,hr ⊗ [r].

Once we have checked that this is a morphism of complexes, it follows that it is a
(well-defined) isomorphism by Lemma 6.2, because α ∈ Qµ

1 [S] if and only if hα ∈ S
and r ∈ Qµ

2 [S] if and only if hr ∈ S. There is nothing to prove in homological degree
0 because Qµ

0 [S] = S, as already used in writing down the complex ζ.
It remains to check that the maps ψ• commute with the differentials. For j ∈ S,

∂0ψ0(1 · j) = ∂0(p
d
i,j ⊗ [j]) = td = ψ−1δ0(1 · j),

where the middle equality follows precisely because degµ p
d
i,j = d, so pdi,j acts on Nµ

as multiplication by td. For α ∈ Qµ
1 [S], we check ∂1ψ1(1 · α) = ψ0δ1(1 · α), i.e.

∂1
(
pdi,hα ⊗ [α]

)
= pdi,hαα⊗ [tα]− pdi,hα ⊗ [hα] = ψ0(1 · tα− 1 · hα),

because pdi,hαα = pdi,tα, that is, it is a path tα→ i of degree d.

Finally, when r = r(β) ∈ Qµ
2 [S], write p

+
β = α+

M · · ·α
+
1 and p−β = α−

L . . . α
−
1 , so that

r+ = {α+
1 , . . . , α

+
M} and r− = {α−

1 , . . . , α
−
L}. Then ∂2ψ2(1 · r) = ψ1δ2(1 · r), i.e.

∂2
(
pdi,hr ⊗ [r]

)
=

M∑
m=1

pdi,hrα
+
M · · ·α

+
m+1 ⊗ [α+

m]−
L∑

ℓ=1

pdi,hrα
−
L · · ·α

−
ℓ+1 ⊗ [α−

ℓ ]

=
M∑

m=1

pd
i,hα+

m
⊗ [α+

m]−
L∑

ℓ=1

pd
i,hα−

ℓ
⊗ [α−

ℓ ]

= ψ1

( ∑
α+∈r+

1 · α+ −
∑

α−∈r−
1 · α−

)
,

completing the proof. □

Lemma 6.4. Assume A is thin. Then for any i ∈ Q0 and sufficiently large d, the
cohomology of the complex ei(ξµ)d is the reduced cohomology of |Q|.

Proof. By Proposition 6.3, the cohomology of ei(ξµ)d is that of Q[S(i, µ, d)]. On the
other hand, every j ∈ Q0 admits some path j → i, hence one of minimal degree.
So, if d is larger than the maximum, over j ∈ Q0, of these minimal degrees, then
S(i, µ, d) = Q0 and Q[S(i, µ, d)] = Q. □

Lemma 6.5. Assume A is thin and H2(Q) = 0. Then, for any µ, the map ∂2 in ξµ
is injective.
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Proof. As A is thin,
⊕

r∈Qµ
2
Aehr ⊗ etrNµ is a free Z-module and hence so is the

submodule K = ker ∂2. However, by Lemma 6.4 and the assumption on Q, we have
Kd = 0, for sufficiently large d, and hence K = 0. □

Lemma 6.6. Assume A is thin and H2(Q) = 0. Then the complex (ξµ)0 is exact for
all µ.

Proof. Injectivity of ∂2 follows from Lemma 6.5 and the exactness elsewhere has
already been noted in Remark 6.1. □

We are now ready to complete the proof that ξµ is exact under the assumptions of
Lemma 6.6. Our strategy is to show that each of the subsets S = S(µ, i, d) is equal
to S(ν, i, 0), for some other matching ν. Then the cohomology of Q[S] is computed
by both of the complexes ei(ξµ)d and ei(ξν)0. Since the second of these complexes is
exact by Lemma 6.6, it will follow that ei(ξµ)d is also exact. To construct the new
matching ν, we use the following two results.

Lemma 6.7. Assume A is thin. Let i ∈ Q0 be a vertex, α ∈ Q1 be an arrow, and µ
be a matching of Q. For each j ∈ Q0, choose a minimal degree path pj : j → i, and
for each α ∈ Q1 write εα = degµ(α); i.e. εα = 1 when α ∈ µ, and εα = 0 otherwise.
Then

degµ(ptα)− εα ⩽ degµ(phα) ⩽ degµ(ptα) + 1− εα.
It follows that degµ(ptα) can be strictly smaller than degµ(phα) only when α /∈ µ, and
strictly larger only when α ∈ µ, the difference being bounded by 1 in each case.

Proof. The path phαα : tα → i has degree degµ(phα) + εα, and the first inequality
follows. Consider a path q : hα→ tα completing α to the boundary of a face of Q.
Since µ is a perfect matching, this boundary has degree 1, and so degµ(q) = 1− εα.
The second inequality then follows by considering the path ptαq : hα→ i, of degree
degµ(ptα) + 1− εα. □

Proposition 6.8. Assume A is thin, and let µ be a matching of Q, i ∈ Q0 and
d ⩾ 1. Then there exists a matching ν such that S(µ, i, d) = S(ν, i, d− 1).

Proof. As in Lemma 6.7, choose a minimal degree path pj : j → i for each j ∈ Q0.
Define

X = {α ∈ Q1 : degµ(ptα) = d, degµ(phα) = d− 1},
Y = {β ∈ Q1 : degµ(ptα) = d− 1, degµ(phα) = d}.

Then, by Lemma 6.7, we have X ⊆ µ, and µ ∩ Y = ∅. Let ν = (µ \X) ∪ Y . We
claim first that ν is a perfect matching, and secondly that, for any j ∈ Q0,

degν(pj) =

{
degµ(pj) if degµ(pj) ⩽ d− 1,

degµ(pj)− 1 if degµ(pj) ⩾ d.

From these two claims it immediately follows that S(µ, i, d) = S(ν, i, d− 1), because

S(µ, i, d) = {j ∈ Q0 : degµ(pj) ⩽ d}.
We now prove the claims, beginning with the statement that ν is a perfect matching.

Let F be a face of Q, the boundary of which contains exactly one arrow α ∈ µ, which
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lies either in X or µ \X. For F to intersect ν in exactly one arrow, we must show
that the boundary of F contains exactly one arrow from Y in the case that α ∈ X,
and no arrows from Y if α ∈ µ \X.
First assume α ∈ X, and consider the path q completing α to ∂F . By the

assumption on α, we have degµ(phq) = d and degµ(ptq) = d− 1. Moreover, q contains
no arrows of µ and so degµ(phγ) ⩾ degµ(ptγ) for every arrow γ of q, by Lemma 6.7.
It follows that these two degrees are equal for all but one γ, which is the unique
element of ∂F ∩ Y .
Now assume that β ∈ ∂F ∩ Y ≠ ∅, and let α be the unique arrow of µ in

∂F ; we aim to show that α ∈ X. Let q be the path completing β to ∂F , so that
degµ(phq) = d− 1 and degµ(ptq) = d by the assumption on β. Using Lemma 6.7 as
in the previous case, degµ(phγ) ⩾ degµ(ptγ) for every arrow γ ̸= α of q, since these
arrows are not in µ, whereas degµ(phα) ⩾ degµ(ptα)− 1 since α ∈ µ. Comparing to
degµ(phq) and degµ(ptq) we see that all of these inequalities are in fact equalities,
and so α ∈ X.

Now to prove the second claim, concerning the degrees degν(pj), observe first that
for any arrow α of the path pj we get inequalities

degµ(ptα)− 1 ⩽ degµ(phα) ⩽ degµ(ptα).

Indeed, the first inequality holds for any arrow α ∈ Q1, since degµ(ptα) ⩽ degµ(phαα)
and degµ(α) ⩽ 1. For the second, write pj = p1αp2. By minimality of degµ(pj),
we must have degµ(p1) = degµ(phα) and degµ(p1α) = degµ(ptα), and so the second
inequality follows.

From these inequalities, it follows that the degrees degµ(pℓ) are weakly decreasing
as ℓ runs through the vertices of pj in the direction of the path, and two successive
degrees in this sequence differ by at most 1. Thus if degµ(pj) ⩽ d − 1, so that
j ∈ S(µ, i, d− 1), then pj only passes through vertices in this subset, so it contains
no arrows of X or Y . Hence the matchings µ and ν agree on all arrows of pj and
degν(pj) = degµ(pj). On the other hand, if degµ(pj) ⩾ d, then the path pj contains
a unique arrow α ∈ X ⊆ µ and no arrow of Y . By construction, the arrow α does
not appear in ν, but the matchings µ and ν agree on the other arrows of the path.
Thus degν(pj) = degµ(pj)− 1, completing the argument. □

Putting everything together, we obtain the following theorem.

Theorem 6.9. Let Q be a dimer model with boundary such that AQ is thin and
H2(Q) = 0, and let Nµ be the A-module corresponding to a perfect matching µ. Then
the complex (extended by zeroes)

ξµ :
⊕
f∈Qµ

2

Aehf ⊗ etfNµ
∂2−→

⊕
α∈Qµ

1

Aehα ⊗ etαNµ
∂1−→
⊕
j∈Q0

Aej ⊗ ejNµ
∂0−→ Nµ

is exact, yielding a projective resolution of Nµ. This result applies in particular to
the case that A = AD for a connected Postnikov diagram D.

Proof. To recap, we show that ei(ξµ)d is exact, for every vertex i ∈ Q0 and degree
d ⩾ 0. By Proposition 6.3, ei(ξµ)d computes the (reduced) cohomology of Q[S], for
S = S(µ, i, d). By applying Proposition 6.8 inductively, we may construct a matching
ν for which S = S(ν, i, 0). Hence the (reduced) cohomology of Q[S] vanishes, because



30 İLKE ÇANAKÇI, ALASTAIR KING, AND MATTHEW PRESSLAND

(again by Proposition 6.3) it is computed by ei(ξν)0, which is exact by Lemma 6.6.
Thus ei(ξµ)d is exact, as required.

If D is a connected Postnikov diagram, then H2(Q(D)) = 0 since |Q(D)| is a disc,
and AD is thin by Proposition 2.15. □

Corollary 6.10. If Q is a dimer model with boundary admitting a perfect matching
µ, and such that H2(Q) = 0 and AQ is thin, then |Q| is a disc.

Proof. The complex ξµ is exact by Theorem 6.9, and so ei(ξµ)d must also be exact
for all d ⩾ 0 and all i ∈ Q0. By Lemma 6.4, the reduced cohomology of |Q| vanishes,
and so |Q| is a contractible compact surface with boundary, i.e. a disc. □

As an immediate consequence of Theorem 6.9, Nµ has finite projective dimension
and so we can associate to it a class [Nµ] in the (free abelian) Grothendieck group
K0(projA). Indeed, the resolution enables us to write several explicit expressions for
this class, written in the canonical basis [Pj] = [Aej], for j ∈ Q0.
We do this for the case A = AD for a connected Postnikov diagram D. Recall

from Definition 2.7 that vertices and arrows of Q are either internal (abbreviated
‘int’ below) or boundary (abbreviated ‘bdry’). Note that every internal arrow γ of Q
is contained in a unique ‘black cycle’, the boundary of a black face of Q, which we
denote by bl(γ) and which corresponds to a black node of the dual bipartite graph
Γ(D). We write bl0(γ) for the vertices in this cycle and

bl′0(γ) = bl0(γ)∖ {tγ, hγ}. (6.1)

Similarly, γ is also contained in a unique white cycle wh(γ) passing through vertices
wh0(γ), and we write

wh′
0(γ) = wh0(γ)∖ {tγ, hγ}.

Without loss of generality (i.e. without changing AD up to isomorphism), we may
assume that D is standardised (Remark 2.16). If D is ◦-standardised then the
boundary arrows of Q(D) are αi = ε(xi) for i ∈ C1, whereas if D is •-standardised
then the boundary arrows are βi = ε(yi) for i ∈ C1. Recall that a perfect matching µ
is a subset of Q1, with boundary value ∂µ ⊆ C1 (Definition 4.7). For standardised D,
the description of ∂µ simplifies—it is either the set of i ∈ C1 such that the boundary
arrow αi is in µ, if D is ◦-standardised, or the set of i ∈ C1 such that the boundary
arrow βi is not in µ if D is •-standardised.

Proposition 6.11. Let D be a ◦-standardised connected Postnikov diagram with
dimer algebra A = AD, and let µ be a perfect matching of Q(D). In K0(projA), the
class of Nµ is given by the formula

[Nµ] =
∑
j∈Q0
int

[Pj] +
∑
i∈∂µ

[Phαi
]− wt◦(µ), (6.2)

where αi is the (clockwise) boundary arrow labelled by i ∈ C1, and

wt◦(µ) =
∑
γ∈Q1
int

wtµ(γ) (6.3)
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for

wtµ(γ) =

{
−[Ptγ] γ ∈ µ
[Phγ] γ /∈ µ

(6.4)

Moreover,

wt◦(µ) =
∑
γ∈µ
int

wt◦MS(γ) for wt◦MS(γ) =
∑

j∈bl′0(γ)

[Pj] (6.5)

where bl′0(γ) is the truncated black cycle as in (6.1). If instead D is •-standardised,
then

[Nµ] =
∑
j∈Q0
int

[Pj] +
∑
i/∈∂µ

[Phβi
]− wt•(µ), (6.6)

where βi is the (anticlockwise) boundary arrow labelled by i ∈ C1, and

wt•(µ) =
∑
γ∈Q1
int

wtµ(γ). (6.7)

Moreover,

wt•(µ) =
∑
γ∈µ
int

wt•MS(γ) for wt•MS(γ) =
∑

j∈wh′0(γ)

[Pj]. (6.8)

Proof. Using Theorem 6.9, recalling that Qµ
1 = Q1 \ µ and noting that the faces

f ∈ Qµ
2 correspond one-to-one to the internal arrows α ∈ µ in such a way that

hf = tα, we get

[Nµ] =
∑
j∈Q0

[Pj]−
∑
γ /∈µ

[Phγ] +
∑
γ∈µ
int

[Ptγ]. (6.9)

When D is standardised, each boundary vertex is the head of a unique boundary
arrow and so we can write the first term above as∑

j∈Q0

[Pj] =
∑
j∈Q0
int

[Pj] +
∑
γ∈Q1
bdry

[Phγ]. (6.10)

If D is ◦-standardised, then the boundary arrows are the clockwise arrows αi for
i ∈ C1, and those not in the matching µ are precisely those for which i /∈ ∂µ. Thus
substituting (6.10) into (6.9) and simplifying yields

[Nµ] =
∑
j∈Q0
int

[Pj] +
∑
i∈∂µ

[Phαi
]−
∑
γ /∈µ
int

[Phγ] +
∑
γ∈µ
int

[Ptγ],

which is precisely (6.2), using the definition (6.3) of wt◦(µ) in terms of weights
wtµ(γ). On the other hand, if D is •-standardised then the boundary arrows are the
anticlockwise arrows βi for i ∈ C1, which are not in µ if and only if i ∈ ∂µ, and so

[Nµ] =
∑
j∈Q0
int

[Pj] +
∑
i/∈∂µ

[Phβi
]−
∑
γ /∈µ
int

[Phγ] +
∑
γ∈µ
int

[Ptγ],

which is (6.6).
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To obtain (6.5) and (6.8), we write∑
γ∈Q1
int

wtµ(γ) =
∑
γ∈Q1
int

[Phγ]−
∑
γ∈µ
int

(
[Phγ] + [Ptγ]

)
.

Every internal arrow is in a unique black cycle and, because D is ◦-standardised,
every arrow in a black cycle is internal. Since each black cycle contains a unique
(internal) arrow of µ, we can rewrite the preceding expression as∑

γ∈Q1
int

wtµ(γ) =
∑
γ∈µ
int

( ∑
j∈bl0(γ)

[Pj]
)
−
∑
γ∈µ
int

(
[Phγ] + [Ptγ]

)
=
∑
γ∈µ
int

∑
j∈bl′0(γ)

[Pj]

=
∑
γ∈µ
int

wt◦MS(γ),

which yields (6.5). The equation (6.8) follows similarly, using that white cycles
contain only internal arrows when D is •-standardised. □

Remark 6.12. We use the notation wt◦ and wt• to emphasise that these functions
should be applied to matchings of ◦-standardised and •-standardised diagrams
respectively, despite the fact that both functions are given by the same formula.
While it can happen that a ◦-standardised diagram and a •-standardised diagram
have isomorphic dimer algebras (for example, by starting with an arbitrary diagram
and then standardising it in each way as in Remark 2.16), and this isomorphism
induces a bijection between the two sets of perfect matchings via Proposition 4.5,
the value of wt◦ on a matching of the ◦-standardised diagram typically does not
agree with the value of wt• on the corresponding matching of the •-standardised
diagram, as formulae (6.2) and (6.6) illustrate, since the two quivers have different
sets of internal arrows.

The weight wt◦MS(γ) in (6.5) is the edge weight used by Marsh–Scott [24] to write
down a formula for a twisted Plücker coordinate as a dimer partition function; strictly
speaking, they define wt(e), for an edge e of the dual bipartite graph, in terms of face
weights. Recall also from Remark 2.10 that in [24] the colours black and white have
opposite meanings to here. We will return to the Marsh–Scott formula in Section 9
below, where we also explain a closely related formula involving the weights wt•MS(γ)
from (6.8).

Remark 6.13. Consider the reduced cochain complex of the quiver with faces Q

Z c−→ ZQ0 d−→ ZQ1 d−→ ZQ2 , (6.11)

where the first map is the inclusion of the constant functions and the other two are
the coboundary maps. Note that the faces are all oriented so that second coboundary
map d : ZQ1 → ZQ2 is simply the face-arrow incidence matrix, with all coefficients 0
or 1. Since |Q| is contractible, this complex (with 0 added at both ends) is exact.
Let w ∈ ZQ2 be the function with constant value 1 on faces and let M = d−1Zw

be the sublattice in ZQ1 of functions with the same sum around every face. Define
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deg : M → Z to give the value of that sum, that is, df = deg(f)w, for all f ∈ M.
Then (6.11) restricts to the exact sequence

Z c−→ ZQ0 d−→M deg−→ Z. (6.12)

Observe that perfect matchings µ, as in Definition 4.1, may be characterised as
functions µ ∈ M such that µ(γ) ⩾ 0 for all γ ∈ Q1 and deg(µ) = 1. We can then
also observe that (6.9) from (the proof of) Proposition 6.11 can be formulated as

[Nµ] = η(µ), (6.13)

where η : M→ K0(projA) is defined by

η(f) = deg(f)
∑
j∈Q0

[Pj]−
∑
γ∈Q1

(deg(f)− f(γ))[Phγ] +
∑
γ∈Q1
int

f(γ)[Ptγ]. (6.14)

Note that the matching lattice M and the map η are insensitive to the addition
of boundary digons to the quiver with faces Q, as in Remark 2.16. More precisely,
suppose that γ ∈ Q1 is a boundary arrow and that we add a digon with boundary
γγ, where γ is opposite to γ and becomes the new boundary arrow. Then we can
uniquely extend f ∈M from the old to new Q by setting f(γ) = deg(f)− f(γ). The
formula on the right of (6.14) gains two new terms, which cancel.
In the special case that Q is ◦-standardised, the derivation of (6.2) from (6.9)

generalises to give

η(f) = deg(f)
∑
j∈Q0
int

[Pj] +
∑
i∈C1

f(αi)[Phαi
]−

∑
γ∈Q1
int

f(γ) wt◦MS(γ). (6.15)

Similarly, when Q is •-standardised, the derivation of (6.6) gives

η(f) = deg(f)
∑
j∈Q0
int

[Pj] +
∑
i∈C1

f(βi)[Phβi
]−

∑
γ∈Q1
int

f(γ) wt•MS(γ). (6.16)

Remark 6.14. The map η appears implicitly in [25]. There M appears as the
kernel of the map Z⊕ ZQ1 → ZQ2 : (n, f) 7→ nw − df . They also consider the map
Z⊕ ZQ1 → ZQ0 given by

(n, f) 7→ n
∑
j∈Q0

(1−Bj)pj +
∑
γ∈Q1

f(γ)
(
phγ + χγptγ

)
, (6.17)

where {pj : j ∈ Q0} is the standard basis of ZQ0 , while Bj = #{γ ∈ Q1 : hγ = j}
and χγ is 1 (resp. 0) when γ is internal (resp. on the boundary). Identifying ZQ0

with K0(projA) using pj 7→ [Pj] and comparing to (6.14), we see that η is obtained
by restricting this second map to M.
For comparison, in [25, Lemma 5.1] these two maps are combined into a single

map X : Z⊕ ZQ1 → ZQ0 ⊕ ZQ2 and described in terms of the bipartite graph dual
to Q. However, η itself appears more explicitly in the proof of [25, Prop 5.5]. The
facts that X and η are isomorphisms are the content of these two results in [25].

With our interpretation of η in terms of projective resolution, we can give a more
conceptual proof of the fact that it is an isomorphism.

Lemma 6.15. The map η : M→ K0(projA), defined in (6.14), is an isomorphism.
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Proof. By Corollary 4.6, every indecomposable projective Pj = Aej is (isomorphic
to) some perfect matching module Nµj

. Hence [Pj] = η(µj) by Proposition 6.11 and
so, since {[Pj ] : j ∈ Q0} is a basis of K0(projA), we see that η is surjective. However,
as the sequence (6.12) is exact, M has the same rank (namely |Q0|) as K0(projA)
and so η is an isomorphism, as required. □

Corollary 6.16. Let M1,M2 ∈ CM(A). If rk(M1) = rk(M2) = 1 and [M1] = [M2]
in K0(projA), then M1

∼= M2.

Proof. As rk(Mi) = 1, Proposition 4.5 implies that Mi
∼= Nµi

, for perfect matchings
µi ∈M, and so [Mi] = η(µi). Since η is injective, the fact that [M1] = [M2] implies
that µ1 = µ2 and thus Nµ1

∼= Nµ2 , as required. □

One consequence of Corollary 6.16 is that, to identify the matching µ for which
Pj
∼= Nµ, as in Corollary 4.6, it suffices to show that [Nµ] = [Pj]. We do this in the

next section, using the calculation (6.2) of [Nµ].
Lemma 6.15 has a further consequence for the ‘cluster ensemble sequence’

Z c−→ ZQ0
β−→ ZQ0 rk−→ Z, (6.18)

where we identify the first ZQ0 with K0(fdA) via its basis of simples [Si], for i ∈ Q0,
and the second ZQ0 with K0(projA) via its basis of projectives [Pi], for i ∈ Q0. As
before, c is the inclusion of constant functions, while rk[Pi] = 1 for all i. The map β
corresponds to projective resolution, but can just be described combinatorially as

β[Si] = [Pi]−
∑
a:ta=i

[Pha] +
∑

a:ha=i

χa[Pta]− χi[Pi] (6.19)

where χa (resp. χi) is 1 or 0 depending on whether the arrow a ∈ Q1 (resp. vertex
i ∈ Q0) is internal or on the boundary. Note that β is an extension of the exchange
matrix (or its negative, depending on the convention used), when Q is interpreted as
the ice quiver of a cluster algebra seed as in [14].

Proposition 6.17. The cluster ensemble sequence (6.18) is exact.

Proof. Two straightforward (but not entirely trivial) calculations, which we describe
below, show that the map η fits into the following commutative diagram.

Z ZQ0 M Z

Z ZQ0 ZQ0 Z

c d deg

η

c β rk

(6.20)

Since η is an isomorphism by Lemma 6.15, this diagram describes an isomorphism of
complexes from the exact cochain complex (6.11) to the cluster ensemble sequence
(6.18), which is therefore also exact.

The first calculation is that η(d[Si]) = β[Si]. We start by noting that deg(d[Si]) = 0,
so that

η(d[Si]) =
∑

a:ha=i

(
[Pha] + χa[Pta]

)
−
∑
a:ta=i

(
[Pha] + χa[Pta]

)
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so we are reduced to proving that∑
a:ha=i

[Pha]−
∑
a:ta=i

χa[Pta] = (1− χi)[Pi].

When i is internal, all incident arrows a are internal and there are as many with
ha = i as with ta = i. When i is on the boundary, there is one more arrow a with
ha = i than with ta = i, when we ignore any boundary arrows of the latter type.
The second calculation is that rk(η(f)) = deg(f). For this we observe that

rk(η(f)) = deg(f)
(
|Q0| − |Q1|

)
+
∑
a∈Q1

f(a)(1 + χa)

and the right-hand sum is equal to deg(f)|Q2|, as f ∈M. But |Q0|− |Q1|+ |Q2| = 1,
that is, the Euler characteristic of the disc. □

Remark 6.18. The commutativity of (6.20) in fact shows that the exactness of
(6.18) is equivalent to η being an isomorphism; one direction is as given in the proof
of Proposition 6.17, while the converse follows from the five lemma.
Indeed, if one calculates the maps η and β combinatorially in the inconsistent

example in Figure 3.2, then one finds that η is not an isomorphism and the sequence
(6.18) is not exact.

7. Muller–Speyer matchings

Let D be a Postnikov diagram, with Q = Q(D) and A = AD, and consider the
map η̂ : M→ ZQ0 given by

η̂(f) = deg(f)
∑
j∈Q0

pj −
∑
γ∈Q1

(deg(f)− f(γ))phγ +
∑
γ∈Q1
int

f(γ)ptγ (7.1)

where {pj : j ∈ Q0} is the standard basis of ZQ0 . When D is connected, we use the
isomorphism ZQ0 → K0(projA) : pj 7→ [Pj] as a (silent) identification, so that the
map η̂ in (7.1) is identified with the map η in (6.14). In this case, Lemma 6.15 shows
that η̂ is an isomorphism.

In this section we will want to evaluate η̂ on perfect matchings µ ∈M, for which
we have (cf. (6.9))

η̂(µ) =
∑
i∈Q0

pi −
∑
γ /∈µ

phγ +
∑
γ∈µ
int

ptγ. (7.2)

In [25, §5.2], without requiring D to be connected, Muller–Speyer defined a special
matching mj, associated to any vertex j ∈ Q0 (or more strictly to a face of the dual
plabic graph Γ(D)), by

α ∈ mj ⇐⇒ j ∈ DS(α) (7.3)

where DS(α) is the downstream wedge of the arrow α ∈ Q1, as illustrated in
Figure 7.2(a). One of their results [25, Cor. 5.6] is that {mj : j ∈ Q0} is a basis of
M, which can be formulated as saying that

M : ZQ0 →M : pj 7→ mj (7.4)

is an isomorphism. To make the comparison, note that [25, §5.3] actually uses −M
to describe a monomial map between the tori (C×)|Q1|/(C×)|Q2|−1 and (C×)|Q0| whose
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character lattices are M and ZQ0 respectively. Furthermore these tori are described
in terms of the bipartite graph dual to the quiver with faces Q.
Our main goal in this section is to show that, in fact, η̂ = M−1. We do this

by showing that η̂ ◦M = id, i.e. η̂(mj) = pj for all j ∈ Q0. In the case that D is
connected, this means that η(mj) = [Pj ] and so, since we also have η(mj) = [Nmj

] by
(6.13), we may conclude via Corollary 6.16 that Pj

∼= Nmj
.

An example of a Muller–Speyer matching mj is shown in Figure 7.1 and one can
verify in this case that Nmj

∼= Pj.

•
•

•

•

•

•

•
•

•

•

Figure 7.1. The Muller–Speyer matching mj for j the circled vertex.

Interestingly, Muller–Speyer [25, proof of Prop. 5.5] also show that η̂ = M−1, but
by instead proving that M ◦ η̂ = id. They deduce this identity by defining larger
matrices

X : Z⊕ ZQ1 → ZQ0 ⊕ ZQ2 and X ′ : ZQ0 ⊕ ZQ2 → Z⊕ ZQ1 ,

with M a component of X ′, and showing [25, Lemma 5.1] that X ′ ◦ X = id (cf.
Remark 6.14). They then deduce that X ◦X ′ = id, one component of which implies
that each mj is indeed a matching.

•

•

•

•
•

•

Figure 7.2. (a) downstream wedge of an arrow, (b) wedges round a face

On the other hand, to see directly that mj is a matching, one must observe that
the downstream wedges of the arrows in a face of Q partition the vertices Q0, as
illustrated in Figure 7.2(b). This is a special case of a more general wedge-covering
property that we now explain.
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Recall that, by the Jordan curve theorem, the complement of a simple closed
curve in the disc has one component not intersecting the boundary, which we call
the inside (the other components being the outside). Furthermore, the curve is the
boundary of its inside.

Definition 7.1. In a Postnikov diagram D, a strand polygon P is an oriented simple
closed curve consisting of a collection of contiguous segments, either of the boundary
of the disc or of strands oriented consistently with P. We further require that P
turns towards its inside at each vertex, i.e. the point at which one segment ends and
the next begins. See Figure 7.3 for examples and Figure 7.4 for non-examples. Note
that edges of the strand polygon may cross other strands in the diagram.

Each vertex v of the polygon has a tendril fv, defined as follows. If the preceding
edge ev is a strand segment, then fv is the continuation of the strand from ev until it
ends on the boundary of the disc. If ev is a boundary segment, then fv is the point
v by definition.

Each vertex v of the polygon determines a (downstream) wedge, which is the subset
of the disc bounded by the tendril fv, the edge ew following v, the tendril fw, and the
boundary segment from the endpoint of fv to that of fw in the direction (clockwise or
anticlockwise) of the orientation of P . This construction is illustrated in Figure 7.5.

Figure 7.3. Strand polygons

Figure 7.4. Not strand polygons

Note that whenever v is on the boundary, fv is just the single point v (by definition
or by construction). The turning condition implies that non-trivial tendrils start by
moving into the outside of P .
Each wedge is well-defined (and wedge-shaped) because of condition (b2) in the

definition of a Postnikov diagram, which implies that the strand segments fv and
ew ∪ fw intersect only at v. If v is on the boundary, then its wedge is trivial if the
next edge of P is a boundary segment, and otherwise is just one side of the strand
on which the next edge lies.
Note that the boundary of an oriented region of D, corresponding to a face F

of Q, is an example of a strand polygon. The inside of the polygon is the oriented
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v

w

ew

fw

fv

ev

Figure 7.5. A strand polygon and its tendrils. The wedge at v is shaded.

region and the downstream wedges of its vertices are those of the arrows in ∂F (see
Figure 7.2(b)).

Lemma 7.2. Let P be a strand polygon in D. Then the tendrils of P meet P only
at their starting vertices.

Proof. Fix a vertex v of P and let ev, from u to v, and ew, from v to w, be the edges
incident with v. Let sv be the strand containing ev and fv. We may assume that fv
is non-trivial, i.e. that v is not on the boundary.
We first observe that fv only intersects ev and ew at its start v. A second intersection

of fv with ev would imply either a self-intersection of sv, contradicting (b1), or that
sv is a closed loop, or that u lies on the boundary and sv is a lollipop with both
endpoints at u. But lollipops have no crossings by Proposition 2.3, and sv has a
crossing at v. Similarly, fv cannot have a second intersection with ew, since this
would either contradict condition (b2) because sv already intersects ew at v, or imply
that sv contributes both edges ev and ew, and so has a self-intersection at v.
If fv meets P again, let α be the piece of fv from v to its second meeting with

P (which may not be a vertex of P) and let γ be the path in P completing α to a
simple closed curve in such a way that the inside R of α ∪ γ is entirely outside of
P . Note that the interior of γ never intersects the boundary of the disc, because it
always has R on one side and the inside of P on the other. On the other hand, by
our initial observation, the interior of γ does contain either u or w.
If u is in the interior of γ, then in particular it is not on the boundary. Thus we

may consider the non-trivial tendril fu, contained in the strand su crossing sv at u.
Since fu starts by entering R, it must cross α ∪ γ to reach the boundary. Since su
crosses sv at u, it cannot then cross α ⊆ sv or eu ⊆ sv without violating (b2), and so
fu must exit R by crossing γ before ev.
Applying the same argument to fu, we construct curves α′ and γ′ bounding

R′ ⊆ R. The curve γ′ must be contained in γ, but it ends at u and so has at least one
fewer vertex in its interior. As γ contained only finitely many vertices, by iterating
this procedure we eventually arrive at γ̄ with no interior vertices. But then the
corresponding ᾱ starts at a vertex v̄ of the polygon and ends on the preceding edge,
violating (b1).
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The case that w is in the interior of γ is similar, using instead the tendril fw.
This tendril cannot intersect fv, because the underlying strands met at v, and
cannot intersect ew since this would be a self-intersection. Thus fw has the same
pathological behaviour as fv, but cuts off fewer vertices of P , leading inductively to
a contradiction. □

Proposition 7.3. Let P be a strand polygon in a Postnikov diagram D. Then the
tendrils of P are disjoint. In particular, the tendrils end on the boundary in the same
cyclic order as they start on the polygon, and the outside of P is partitioned by the
downstream wedges of its vertices.

Proof. Consider an edge ev, from u to v. We first observe that the tendrils fv and fu
do not cross. If ev is a boundary segment then fu and fv are distinct single points
and there is nothing to prove, so we may assume that ev lies on a strand sv. If the
edge ending at u is a boundary segment, then fu is the single point u, which is not
on fv by Lemma 7.2. Otherwise, u lies on a strand su, which crosses sv at u, and so
fv cannot intersect fu without violating (b2).
So assume there is some v′ ̸= v for which fv and fv′ cross, and let α be the path

which follows fv until its first crossing with fv′ and then follows fv′ backwards until
reaching P. By Lemma 7.2, α is a simple curve from v to v′, intersecting P only
at these points. Let γ be the curve in P such that the inside R of α ∪ γ is entirely
outside of P . By the preceding paragraph, v and v′ are not the two ends of a single
edge, and so there is at least one vertex v′′ of P in the interior of γ.
We may now argue similarly to Lemma 7.2. The vertex v′′ is not on the boundary,

so the segment fv′′ begins by entering R, but it must leave R before terminating. It
cannot do so through P by Lemma 7.2, so it must meet α, either on fv or fv′ . Thus
we may replace either fv or fv′ by fv′′ and run the argument again. This replaces γ by
a curve γ′ containing fewer vertices, and hence leads inductively to a contradiction.
Thus we have proved the disjointness, and the remaining two statements follow

directly from this. □

As anticipated, by applying Proposition 7.3 to the case that P is the boundary of
an oriented region of D, we see that mj is a matching for all j ∈ Q0 (see Figure 7.2(b)).
The more general covering property also enables us to prove the main objective of
this section.

Theorem 7.4. Let Q = Q(D) for D a Postnikov diagram. For each j ∈ Q0, we
have η̂(mj) = pj, where mj is the Muller–Speyer matching (7.3).

Proof. We need to calculate the coefficient of pi in the formula (7.2) for η̂(mj) and
show that this coefficient is 1 when i = j and 0 otherwise. Since the first sum in
(7.2) contributes 1 for each pi, what we need to show is

#{γ ̸∈ mj : hγ = i} −#{int γ ∈ mj : tγ = i} =

{
1 if i ̸= j

0 if i = j
(7.5)

Since the matching mj contains all arrows γ with hγ = j and no arrows with tγ = j,
the case i = j is immediate.
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For the case i ̸= j we consider the union of the alternating region Ri corresponding
to the vertex i ∈ Q0 with the clockwise (oriented) regions adjacent to Ri, correspond-
ing to the clockwise faces in Q2 that have i as a vertex. The boundary P◦

i of this
union is made up of the clockwise edges and boundary edges of Ri together with the
edges of each adjacent clockwise region, except the (necessarily unique) edge shared
with Ri. These bounding edges are all distinct, as are the points at which they meet;
the main ingredient here is that any point in the disc is incident with at most one
clockwise region.
Hence P◦

i is a simple closed curve, and it is even a strand polygon as follows.
We observe that all vertices of P◦

i apart from those at the ends of a boundary
edge are corners of clockwise regions, and P◦

i turns towards the region at these
points. Moreover, the boundary edges of P◦

i are edges of Ri, which is inside P◦
i . See

Figure 7.6 for examples.

•
•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•
•

•

•

Figure 7.6. Two examples of the strand polygon P◦
i and its tendrils;

the vertex i is circled in each case.

Note that every quiver vertex j ̸= i is outside of P◦
i , and hence by Proposition 7.3

is contained in a unique downstream wedge of this polygon. For each vertex of P◦
i

not incident with Ri, the wedge of P◦
i at this vertex is the wedge of the corresponding

arrow, which is not incident with i but lies in a clockwise face incident with i. The
remaining vertices of P◦

i either start a boundary edge, in which case the wedge is
trivial, or end a boundary edge, in which case the wedge is one side of the strand
starting at this vertex.

Consider an arrow γ with hγ = i. If γ does not lie in a clockwise face, then γ is a
boundary arrow at which a boundary edge of P◦

i ends, and we let Wγ be the wedge
of P◦

i at its vertex on γ, which is the complement of the wedge of γ. Otherwise, γ
lies in a clockwise face F in which the next arrow γ′ has tγ′ = i. If γ′ is internal, let
Wγ be the union of wedges of the vertices of P◦

i on ∂F , whereas if γ′ is a boundary
arrow, let Wγ be the union of these wedges together with the wedge of the vertex of
P◦

i on γ′ (which is just the wedge of γ′ in this case). Note that every arrow incident
with i is either one of the arrows γ or γ′ considered above, or is a boundary arrow
with tail at i, and thus irrelevant to the calculation (7.5). Note further that every
wedge of P◦

i , and hence every quiver vertex j ̸= i, is contained in Wγ for a unique
arrow γ with hγ = i.
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Suppose j ∈ Wγ. If γ is not in a clockwise face, this means that j is not in
the downstream wedge of γ, and so γ /∈ mj counts 1 on the left-hand side of (7.5).
Otherwise, γ is followed by γ′ in a clockwise face F . If γ′ is internal, then j ∈ Wγ

means that j is in the wedge of some arrow in F different from γ and γ′. Then
γ /∈ mj counts 1 in (7.5), whereas γ′ /∈ mj counts 0. If γ

′ is on the boundary, then
its wedge is also contained in Wγ, so we could have γ′ ∈ mj, but it contributes 0 in
(7.5) anyway. Thus whenever j ∈ Wγ , the total contribution of γ and γ′ (if it exists)
to (7.5) is 1.
Now suppose j /∈ Wγ. If γ is not in a clockwise face, this means that γ ∈ mj

counts 0 in (7.5). If γ is followed by a boundary arrow γ′ in a clockwise face F , this
means that γ ∈ mj, since the wedges of all other arrows of F are contained in Wγ.
Thus γ counts 0 in (7.5), as does γ′ since it is on the boundary. On the other hand,
if γ is followed by an internal arrow γ′, then Wγ consists of the wedges of arrows in
F different from γ and γ′, so either γ ∈ mj or γ

′ ∈ mj . If γ ∈ mj it counts 0 in (7.5),
as does γ′ /∈ mj . If γ

′ ∈ mj it counts −1 in (7.5), while γ /∈ mj counts 1. In any case,
the total contribution of γ and γ′ is 0.

Summing up, we see that the total contribution in (7.5) of all arrows incident with
i ̸= j is 1, as required. □

Note that we could equally well have used the strand polygon P•
i , bounding the

union of Ri with its adjacent anticlockwise regions, in place of P◦
i in the preceding

proof. As already observed, Theorem 7.4 leads directly to the following results.

Corollary 7.5. We have M−1 = η̂.

Proof. Theorem 7.4 proves that η̂ ◦M = id, which is sufficient because they are maps
between lattices of the same rank. □

Alternatively, having shown that η̂ ◦M = id, we may reach the same conclusion
by using that M (or η̂, if D is connected) is known to be an isomorphism.

Corollary 7.6. If D is connected, then the indecomposable projective AD-module Pj

is isomorphic to the matching module Nmj
.

Proof. Combining (6.13) with Theorem 7.4 gives [Nmj
] = η(mj) = [Pj]. The result

then follows from Corollary 6.16. □

Muller–Speyer also consider [25, §5.6] the matching m∨
j defined analogously to

mj but using the upstream wedge of an arrow in place of its downstream wedge.
Theorem 7.4 also allows us to identify the perfect matching module Nm∨

j
.

Corollary 7.7. If D is connected, then (ejA)
∨ := HomZ(ejA,Z) is isomorphic to

the matching module Nm∨
j
for each j ∈ Q0.

Proof. Consider the opposite diagram Dop (Definition 2.17), for which QDop = Qop

and ADop = Aop (Remark 2.18). We write mop
j for the Muller–Speyer matching of Qop

associated to vertex j, to distinguish this from the Muller–Speyer matching of Q for
this vertex. Applying Corollary 7.6 to Dop shows that the Aop-module ejA = Aopej
is isomorphic to Nmop

j
.

Since Q and Qop have the same set of arrows, we may also view mop
j as a matching

of Q, where it coincides with m∨
j . Moreover, the set of arrows of Qop acting as t on a
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rank one Aop-module N agrees with the set of arrows of Q acting as t on the rank
one A-module N∨ (that is, (AopNµ)

∨ ∼= ANµ for any perfect matching µ), and so we

conclude that (ejA)
∨ ∼−→ Nm∨

j
as required. □

8. Labelling

Let D be a Postnikov diagram with quiver Q = Q(D). Following, among others,
[34, §3] and [25, §4], we associate a label Ij ⊆ C1, to each vertex j ∈ Q0. To define
this label, note that each strand in D divides the disc into two parts: the left-hand
side and right-hand side, relative to the orientation of the strand.

Definition 8.1. For j ∈ Q0, define the (left) source label Ij ⊆ C1 to consist of those
i ∈ C1 such that the strand of D starting at i has j on its left-hand side.

4

3

2

1
7

6

5
134

123

127

167

367

356

345
135

137

357

Figure 8.1. The source labels Ij for a Postnikov diagram of type (3, 7).

Figure 8.1 shows the labels Ij , drawn in place of the quiver vertices, in our running
example (cf. Figure 2.4). The significance of these labels comes from cluster algebras,
which we will discuss further in Section 9: each Postnikov diagram determines an
initial seed for a cluster algebra structure on the corresponding (open) positroid
variety [14, 35], for which the initial cluster variables are restrictions of the Plücker
coordinates φIj for j ∈ Q0.
We are now able to interpret these labels algebraically, as follows. Write A =

AD and B = eAe, and let ρ : CM(B) → CM(C) be the restriction functor from
Proposition 3.6.

Proposition 8.2. Let D be a connected Postnikov diagram. For each j ∈ Q0, the
indecomposable projective A-module Aej satisfies

ρ(eAej) ∼= MIj , (8.1)

so that ρ(eA) =
⊕

j∈Q0
MIj . In particular, a Postnikov diagram D with n strands

has type (k, n) if and only if each Ij has cardinality k.
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Proof. Since Aej ∼= Nmj
by Corollary 7.6, it follows from Proposition 4.9 that

ρ(eAej) ∼= M∂mj
.

But by [25, Thm. 5.3], the boundary value ∂mj is precisely the set Ij. In particular,
if D has type (k, n) then Ij has cardinality k by Proposition 4.8. □

It is shown in [34] that when D is a (k, n)-diagram, meaning that the associated
permutation has πD(i) = i+ k (mod n) and that the seed attached to D generates a
cluster algebra structure on the Grassmannian Grnk , then each label Ij has cardinality
k. It thus follows from Proposition 8.2 that (k, n)-diagrams have type (k, n), as
promised in Definition 2.5.

Corollary 8.3. For any connected Postnikov diagram D, there is an isomorphism

AD
∼−→ EndC

(⊕
j∈Q0

MIj

)op
.

Proof. Writing A = AD, Proposition 5.10(i) provides an isomorphism

A
∼−→ EndB(eA)

op = EndB

(⊕
j∈Q0

eAej

)op
.

Since ρ : CM(B)→ CM(C) is fully faithful by Proposition 3.6, and ρ(eAej) ∼= MIj

by Proposition 8.2, we get a further isomorphism

EndB

(⊕
j∈Q0

eAej

)op ∼−→ EndC

(⊕
j∈Q0

MIj

)op
,

as required. □

Remark 8.4. Several sources, including [25, 28], also consider the target labels I∨j
consisting of those i ∈ C1 such that the strand ending at i has j on its left-hand side.
The analogous statement to Proposition 8.2 for these labels is that

ρ((ejAe)
∨) ∼= MI∨j

, (8.2)

where (−)∨ = HomZ(−, Z)—this follows from Corollary 7.7 together with the
analogue of [25, Thm. 5.3] for the upstream wedge matchings m∨

j , showing that
∂m∨

j = I∨j .
Applying Proposition 5.10 to Dop, with dimer algebra Aop, yields

Aop ∼−→ EndBop(Ae)op
∼−→ EndB((Ae)

∨),

where the second isomorphism uses that B and Ae are free and finitely generated
over Z, so that the duality (−)∨ is an equivalence CM(Bop)

∼−→ CM(B)op. Then
the same argument as for Corollary 8.3 shows that there is an isomorphism

AD
∼−→ EndC

(⊕
j∈Q0

MI∨j

)op
.

Remark 8.5. When D is a (k, n)-diagram, [2, Thm. 10.3] also exhibits an isomor-
phism of AD with an endomorphism algebra; using our notation and conventions
(see Remark 3.3), the isomorphism is

AD
∼−→ EndC̃

(⊕
j∈Q0

MIcj

)
.
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Figure 8.2. The target labels I∨j for a Postnikov diagram of type (3, 7).

Here C̃ = Π/(yn−k − xk), i.e. it is the algebra of Definition 3.1 but with parameters
(n− k, n), noting that Icj has cardinality n− k, and unlike in Corollary 8.3 we do
not take the opposite of the endomorphism algebra.
This isomorphism is, however, equivalent to the isomorphism of Remark 8.4 for

the (n− k, n)-diagram Dop. Each vertex j of Q(Dop) has target label Icj , where Ij is
the source label of j in D. Thus Remark 8.4 tells us that

ADop = Aop
D

∼−→ EndC̃

(⊕
j∈Q0

MIcj

)op
,

which is equivalent to [2, Thm. 10.3] by taking opposite algebras.
Similarly, one obtains a fourth isomorphism

AD
∼−→ EndC̃

(⊕
j∈Q0

M(I∨j )c

)
.

of AD with an endomorphism algebra.

An important special case of Proposition 8.2 is when j ∈ Q0 is a boundary
vertex, so that eAej = Bej, which is an indecomposable projective for the boundary
algebra B = eAe. Thus ρ(Bej) =MIj and the labels Ij for the n boundary vertices

j ∈ Q∂
0 are precisely the source necklace associated to the Postnikov diagram D

or just to the strand permutation (cf. [25, Prop. 4.3], where it is called the reverse
necklace). Similarly, the target necklace (or just necklace in [25]) consists of the
labels I∨j for j ∈ Q∂

0 and we have ρ(ejB
∨) =MI∨j

by (8.2), noting that ejB
∨ are the

indecomposable injective objects in CM(B).

Proposition 8.6. Consider the restriction functor ρ : CM(B)→ CM(C). For each
k-subset J , the C-module MJ is in the essential image of ρ if and only if J ∈ P,
where P is the positroid associated to D.

Proof. By [25, Thm. 3.1], the positroid P consists of boundary values of perfect
matchings on the graph Γ(D), or, from our point of view, on the quiver Q(D). For
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any such perfect matching µ we have M∂µ
∼= ρ(eNµ) in the essential image of ρ by

Proposition 4.9. Conversely, assume MJ
∼= ρ(M). Then M , and hence FM , has rank

1, and so by Corollary 4.6 there is a perfect matching µ of D such that FM ∼= Nµ.
Then M∂µ

∼= ρ(eNµ) ∼= ρ(eFM) = ρ(M) ∼= MJ , and so J = ∂µ. □

An alternative point of view is to note that C ⊆ B ⊆ C[t−1] by the proof of
Proposition 3.6. Any C-module M is naturally a subspace of the C[t−1]-module
M [t−1], and asking that M is in the essential image of ρ is equivalent to asking if
this subspace is a B-submodule; if it is, we simply say that M is a B-module. Using
the combinatorics of profiles [20, §6], one can show that the combinatorial condition
(see [25, §2.1] or [27, §5]) that determines whether J is in the positroid, in terms of
the source (or reverse [25], or upper [27]) necklace, is precisely the condition that
MJ is a B-module.

9. The Marsh–Scott formula

Let D be a Postnikov diagram, and consider the associated quiver Q(D). Being a
quiver with frozen vertices (those corresponding to boundary regions of D), we may
associate to it a cluster algebra with frozen variables. We may choose whether to
adopt the convention that frozen variables are invertible, in which we case we call
the resulting cluster algebra AD, or that they are not, in which case we obtain the
cluster algebra AD. In either case, the cluster algebra is defined as a subalgebra of
the field of rational functions in the initial cluster variables xj for j ∈ Q0.

IfD has type (k, n), recall from Section 8 that each quiver vertex j ∈ Q0 determines
a k-subset Ij ⊆ C1, and hence a Plücker coordinate φIj on the Grassmannian Grnk .
This yields a natural specialisation map

C(xj : j ∈ Q0)→ C(Grnk) : xj 7→ φIj , (9.1)

taking rational functions in the xj to rational functions on the (k, n)-Grassmannian.
When D is a (k, n)-diagram, this specialisation map restricts to an isomorphism

AD
∼−→ C[Grnk ], yielding Scott’s cluster structure [34] on C[Grnk ]. For a more general

Postnikov diagram D, the specialisation restricts to an isomorphism of AD with the
(homogeneous) coordinate ring of the open positroid variety corresponding to the
permutation πD [14], yielding the source-labelled cluster structure on this variety.

The Grassmannian Grnk carries a birational automorphism called the Marsh–Scott
twist [24, §2], or simply the twist, which we denote by x 7→ ←−x . By [24, Prop. 8.10],
if x is a cluster variable in Scott’s cluster structure, then ←−x is a product of a cluster
variable with a monomial in frozen variables; indeed, the twist is even a cluster
quasi-automorphism in the sense of Fraser [13]. Related twist automorphisms exist
for open positroid varieties [25], but in the general case they relate cluster variables
in two different cluster algebra structures on the coordinate ring.

The Marsh–Scott formula, introduced in [24] for a uniform Postnikov diagram, is
a certain dimer partition function which was used in [24] to compute the twisted
Plücker coordinates ←−φI . However, as a formula in the associated cluster algebra, it
makes sense for a general ◦-standardised Postnikov diagram D of type (k, n) and
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can be written as follows, for any k-subset I ⊆ C1.

MS◦(I) = x−wt(D)
∑

µ:∂µ=I

xwt◦(µ), (9.2)

where wt◦(µ) is as in (6.3) and

wt(D) =
∑
j∈Q0
int

[Pj]. (9.3)

Thus the formula associates to each k-subset I ⊆ C1 a formal Laurent polynomial in
C[K0(projA)], or equivalently a Laurent polynomial in the initial cluster variables
xj := x[Pj ] for j ∈ Q0. When I is not in the associated positroid P(D), so is the
boundary value of no matchings, the formula gives MS◦(I) = 0. Note, for comparison,
that (9.2) is written in terms of the quiver Q(D), whereas [24] writes an equivalent
formula in terms of the bipartite graph Γ(D).
To apply their formula, Marsh–Scott need to evaluate it in C[Grnk ] using the

specialisation (9.1), and then prove the following.

Theorem 9.1 ([24, Thm. 1.1]). Let D be a ◦-standardised (k, n)-diagram, let I ⊆ C1
be a k-subset and ←−φI ∈ C[Grnk ] be the associated twisted Plücker coordinate. Then

←−φI = MS◦(I)|xj 7→φIj
.

In the remainder of the paper, we give a categorical interpretation of this result
by relating the Marsh–Scott formula to the more general cluster character formula
of Fu–Keller [11], which computes cluster monomials from (reachable) rigid objects
in a Frobenius cluster category. Almost all our results will apply for all connected
Postnikov diagrams, except in Section 11, when we come to use Theorem 9.1 to
interpret MS◦(I) as a twisted Plücker coordinate.

To that end, assume that D is connected, of type (k, n) and ◦-standardised. Thus
the boundary arrows of Q(D) are αi for i ∈ C1, and all of these arrows are oriented
clockwise. Given any I ⊆ C1, we can define

P ◦
I =

⊕
i∈I

Phαi
=
⊕
i∈I

Aehαi
. (9.4)

This leads immediately to the following way to rewrite (9.2).

Proposition 9.2.

MS◦(I) = x[P
◦
I ]
∑

µ:∂µ=I

x−[Nµ]. (9.5)

Proof. We use Proposition 6.11, noting that (9.3) is the first term on the right-hand
side of (6.2), while the second term is [P ◦

∂µ]. Hence we can rearrange (6.2) as

wt◦(µ)− wt(D) = [P ◦
∂µ]− [Nµ],

to transform (9.2) into (9.5). □

We now want to rewrite (9.5) in a module theoretic way, that is, as a function of
the rank 1 moduleM ∈ CM(B) such that ρ(M) ∼= MI ∈ CM(C), as in Definition 3.2.
Note that such an M will exist provided {µ : ∂µ = I} is non-empty, i.e. provided
I is an element of the positroid associated to D, by Proposition 8.6. In that case,
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M and I are equivalent data because ρ : CM(B) → CM(C) is fully faithful, by
Proposition 3.6, while the module ρ(M) ∈ CM(C) has rank 1 and every C-module
of rank 1 is isomorphic to MI for a unique I ⊆ C1, by [20, Prop. 5.2].
As a result we can consider, as a function of such a rank 1 M ∈ CM(B) with

ρ(M) ∼= MI , the projective B-module

P◦M = eP ◦
I =

⊕
i∈I

Behαi
(9.6)

and thereby realise our goal of rewriting (9.5) module theoretically.

Theorem 9.3. Let M ∈ CM(B) with rk(M) = 1, and let I ∈ C1 be the k-subset
such that ρ(M) ∼= MI ∈ CM(C). Then

MS◦(I) = x[FP◦M ]
∑

N⩽FM
eN=M

x−[N ]. (9.7)

Proof. Combining Proposition 5.5 and Remark 5.6, we have a bijection

θ : {N ⩽ FM : eN =M} → {µ : ∂µ = I}
such that θ(N) = µ whenN ∼= Nµ. On the other hand, the natural map P ◦

I → FP◦M
is an isomorphism by Proposition 5.10(iii), since P ◦

I ∈ add(Ae). □

We may also observe that P◦M has a more special relationship to M .

Lemma 9.4. For M as in Theorem 9.3, there is a (non-minimal) projective cover
P◦M →M .

Proof. Since Behαi
is projective with top at hαi and the fibre ehαi

M is a free rank one
Z-module, there is a map πi : Behαi

→M (unique up to rescaling by Z×) such that
the restriction ehαi

Behαi
→ ehαi

M to fibres over hαi is surjective. Let π : P
◦M →M

be the map with components given by the πi.
Now consider ρ(π) : ρ(P◦M) → ρ(M) ∼= MI . As a map of vector spaces, this is

identical to π, so it suffices to show that ρ(π) is surjective. Note that, since the
canonical map C → B is injective by Proposition 3.6, the top of any B-module N is a
quotient of the top of the C-module ρ(N). Thus top ρ(P◦M) has all the vertices ehαi

,
for i ∈ I, in its support, and top ρ(M) = topMI is supported on a subset of these
vertices by construction. Since ρ(π) maps any Z-module generator of ehαi

Behαi
to a

Z-module generator of ehαi
M , it induces a surjective map top ρ(P◦M)→ top ρ(M)

and so is surjective as required. □

The use of ◦-standardised diagrams in this section reflects the choices made in
[24], but we can equally well work with •-standardised diagrams throughout. In this
context, given a k-subset I ⊆ C1, we define

MS•(I) = x−wt(D)
∑

µ:∂µ=I

xwt•(µ), (9.8)

and given additionally M ∈ CM(B) with ρ(M) ∼= MI we define

P •
I =

⊕
i ̸∈I

Phβi
, P•M = eP •

I .
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By analogous arguments to those for MS◦(I), one may show that

MS•(I) = x[P
•
I ]
∑

µ:∂µ=I

x−[Nµ] = x[FP•M ]
∑

N⩽FM
eN=M

x−[N ] (9.9)

and that there is a projective cover P•M →M .
Given a diagram D of type (k, n) and a k-subset I, we may either choose a

◦-standardisation of D and compute MS◦(I), or choose a •-standardisation of D and
compute MS•(I). Comparing (9.7) and (9.9), we see that

MS•(I) = x[FP•M ]−[FP◦M ] MS◦(I).

Since P•M and P◦M are projective B-modules, it follows that FP•M and FP◦M
are projective A-modules with top supported on the boundary vertices, and so
x[FP•M ]−[FP◦M ] is a Laurent monomial in frozen variables. Thus the conclusions of
Marsh–Scott’s Theorem 9.1 also hold for •-standardised diagrams with MS•(I) in
place of MS◦(I).

If D is a ◦-standardised Postnikov diagram of type (k, n), then by the observations
of Remark 2.18 its opposite diagram Dop is •-standardised of type (n− k, n). Since
Q(Dop) = Q(D)op has the same set Q0 of vertices as Q(D), and ADop = Aop

D , there is

a canonical isomorphism K0(projAD)
∼−→ K0(projADop) given by [ADei] 7→ [ADopei]

for each i ∈ Q0, which we will treat as an identification, exploiting that the basis
of projectives in each Grothendieck group yields an isomorphism with the lattice
ZQ0 . Thus we may identify the spaces of polynomials with exponents in the two
lattices, and view Marsh–Scott formulae computed with respect to D and Dop as
taking values in the same Laurent polynomial ring. This allows us to make another
comparison of the formulae (9.2) and (9.8).

Proposition 9.5. Let D be a ◦-standardised Postnikov diagram of type (k, n) and
I ⊆ C1 a k-subset. Then

MS◦
D(I) = MS•

Dop(Ic),

where each Marsh–Scott formula is calculated using the diagram indicated in the
subscript.

Proof. Note that the right-hand side of the claimed formula makes sense, since
Dop is a •-standardised diagram of type (n− k, n). As already observed, we have
Q(Dop) = Q(D)op, and so Q(D) and Q(Dop) have the same set of arrows, and the
same set of perfect matchings. Each perfect matching thus has two boundary values,
depending on whether it is viewed as a matching of Q(D) or of Q(Dop), but since a
boundary arrow is clockwise in Q(D) if and only if it is anticlockwise in Q(Dop), it
follows directly from the definition that these two boundary values are complementary
to each other. In particular, the set of perfect matchings of Q(D) with boundary
value I is equal to the set of perfect matchings of Q(Dop) with boundary value Ic.

Given a perfect matching µ, we can compute its weight as a perfect matching of the
◦-standardised quiver Q(D) using (6.5) or as a perfect matching of the •-standardised
quiver Q(Dop) using (6.8). Since Q(D) and Q(Dop) have the same set of faces, but
a face is white in Q(D) if and only if it is black in Q(Dop), these two calculations
are the same (recalling that we identify K0(projAD) with K0(projADop) using the
common set of quiver vertices), which completes the proof. □
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10. The Caldero–Chapoton formula

Let D be a connected Postnikov diagram of type (k, n) with dimer algebra A = AD

and boundary algebra B = eAe, and let T = eA ∈ CM(B). As mentioned in
Section 5, it follows from [32, Thm. 3.7] and the general theory from [30] that T is
a cluster-tilting object in the category GP(B) of Gorenstein projective B-modules,
that this category is a stably 2-Calabi–Yau Frobenius category, and moreover that
gldimA ⩽ 3.
Thus we may consider the Caldero–Chapoton cluster character formula, as de-

scribed by Fu–Keller [11] in the context of Frobenius categories. For eachX ∈ GP(B),
we define ΦT (X) by the formula

ΦT (X) = x[FX]
∑

E⩽GX

x−[E], (10.1)

giving a sum of formal Laurent monomials xv for v ∈ K0(projA). Note that it may
be that, for some v ∈ K0(projA), the set

Grv(GX) = {E ⩽ GX : [E] = v}
is infinite and, in this case, we count this set by its Euler characteristic, i.e. in the
sum in (10.1) the coefficient of x−v is χ(Grv(GX)). By [11, Thm. 3.3], the function
X 7→ ΦT (X) is a cluster character on GP(B) in the sense of [11, Def. 3.1].

Remark 10.1. Here we have used some of the homological properties of A, such as
the fact that gldimA ⩽ 3, to simplify the exponents in the cluster character formula
in [11]; an explanation of this may be found in [17, §3] (see also [11, Rem. 3.5]),
together with the observation that we can relax the requirement in [11] that the
Frobenius category is Hom-finite.

The cluster-tilting object T = eA has a natural decomposition into indecomposable
summands Tj = eAej for j ∈ Q0, yielding a basis [Pj] = [FTj] for K0(projA). We
may use this basis to write the formal monomials above as actual monomials in the
variables xj := x[Pj ] = ΦT (Tj). This is how the formula is written in [17], using the
Euler pairing to compute the coefficient of each indecomposable projective in the
expression for an arbitrary K-theory class in this basis.

Note that the formula ΦT (X) makes sense for any X ∈ CM(B) (or even for any
X ∈ modB) although it is only the restriction of the function X 7→ ΦT (X) to
objects of the stably 2-Calabi–Yau Frobenius category GP(B) which need have the
properties of a cluster character as described in [11].

Proposition 10.2. Let M ∈ CM(B), and consider any (exact) syzygy sequence

0 −→ ΩM −→ PM −→M −→ 0,

where the map PM →M is a (possibly non-minimal) projective cover. Then

ΦT (ΩM) = x[FPM ]
∑

N⩽FM
eN=M

x−[N ].

Proof. Proposition 5.4 tells us that

{N ⩽ FM : eN =M} = {N : F ′M ⩽ N ⩽ FM},
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so, using the definition of ΦT (ΩM) from (10.1), what we wish to prove is that

x[FΩM ]
∑

E⩽GΩM

x−[E] = x[FPM ]
∑

N :F ′M⩽N⩽FM

x−[N ]. (10.2)

From the short exact sequence (5.5), we know that GΩM = FM/F ′M and so there
is a bijection between {N : F ′M ⩽ N ⩽ FM} and {E ⩽ GΩM} given by setting
E = N/F ′M . Combining this with (5.4), we obtain

[N ]− [E] = [F ′M ] = [FPM ]− [FΩM ]

when E and N are related by this bijection, and thus

[FPM ]− [N ] = [FΩM ]− [E].

as required for (10.2). □

Now, for any rank 1 module M ∈ CM(B), let Ω◦M be the syzygy computed as
the kernel of the projective cover P◦M →M from Lemma 9.4. The main result of
this section is then the following.

Theorem 10.3. Let D be a connected Postnikov diagram, with dimer algebra A,
boundary algebra B. Let M ∈ CM(B) be a rank 1 module, with ρ(M) ∼= MI . Then
we have

MS◦(I) = ΦT (Ω
◦M),

where the left-hand side is the Marsh–Scott formula, as in (9.2), with respect to a
◦-standardisation of D, and the right-hand side is the cluster character (10.1), with
respect to the cluster-tilting object T = eA.

Proof. Applying Proposition 10.2 in the case that PM = P◦M , so that ΩM = Ω◦M ,
we see that

ΦT (Ω
◦M) = x[FP◦M ]

∑
N⩽FM
eN=M

x−[N ].

Then the right-hand side coincides with MS◦(I) by Theorem 9.3. □

In stating Proposition 10.2 and Theorem 10.3, we used the fact that the formula
(10.1) for ΦT (X) makes sense for X ∈ CM(B), even though this function is only
strictly a cluster character on GP(B). However, it turns out that this caveat is not
needed, because of the following lemma, the proof of which was pointed out to us by
Bernt Tore Jensen.

Lemma 10.4. For M ∈ CM(B), any syzygy ΩM is in GP(B).

Proof. We have to prove that ExtkB(ΩM,B) = 0 for all M ∈ CM(B) and all k ⩾ 1.
However, since Extk+1

B (ΩM,B) = ExtkB(Ω
2M,B) and CM(B) is closed under syzygies,

it suffices to prove that Ext1B(ΩM,B) = 0, for all M ∈ CM(B).
The restriction functor ρ : CM(B)→ CM(C) is exact and fully faithful by Proposi-

tion 3.6 and so, dropping ρ from the notation, we have Ext1B(M1,M2) ⊆ Ext1C(M1,M2)
for allM1,M2 ∈ CM(B). We also have Ext1C(M1,M2) = Ext1C(M2,M1), since CM(C)
is stably 2-Calabi–Yau. Thus it suffices to prove that Ext1C(B,ΩM) = 0.
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Now consider the syzygy sequence 0 −→ ΩM −→ PM
p−→M −→ 0 as a sequence

in CM(C), where p is a B-projective cover. Then part of the long exact sequence for
HomC(B,−) is

HomC(B,PM)
p∗−→ HomC(B,PM) −→ Ext1C(B,ΩM) −→ Ext1C(B,PM)

and p∗ is surjective, using again that ρ is fully faithful. Because B is rigid,
Ext1C(B,PM) = 0, and hence we obtain the required result. □

Corollary 10.5. Let D be a connected Postnikov diagram with boundary algebra B.
Then B is Iwanaga–Gorenstein with Gorenstein dimension at most 2.

Proof. The algebra B is Noetherian since it is free and finitely generated over Z by
Proposition 2.15. Let M ∈ modB and choose first and second syzygies ΩM and
Ω2M . Then ΩM ∈ CM(B) since Z is a PID, and so

Ext3B(M,B) = Ext1B(Ω
2M,B) = 0

by Lemma 10.4. Thus B has injective dimension at most 2 on the left. Since Bop

is the boundary algebra of the connected Postnikov diagram Dop, we may apply
the same argument to Bop to see that B has injective dimension at most 2 on the
right. □

Remark 10.6. Corollary 10.5 improves on the upper bound of 3 for the Gorenstein
dimension of B coming from the general results of [30], applied to connected Postnikov
diagrams via [32, Thm. 3.7]. When D is a (k, n)-diagram, so B ∼= C, its Gorenstein
dimension is 1 by [20]; this is the reason why CM(C) = GP(C) in this case. We
expect that in all other cases the Gorenstein dimension is exactly 2, and so GP(B)
is a proper subcategory of CM(B).

11. The Marsh–Scott twist

When D is a (k, n)-diagram, the situation is simpler. The canonical map C → B
is an isomorphism, so ρ : CM(B) → CM(C) is an equivalence. Suppressing this
equivalence in the notation, it follows from Proposition 8.2 that the indecomposable
summand Tj = eAej of the cluster-tilting object T is isomorphic to the rank 1
C-module MIj . Moreover, CM(C) = GP(C) is a stably 2-Calabi–Yau Frobenius
category, on which ΦT is an honest cluster character.

Proposition 11.1. For any k-subset I ⊆ C1, we have

ΦT (MI)|xj 7→φIj
= φI . (11.1)

Proof. In [20] (see also Remark 3.3), Jensen, King and Su exhibit a cluster character
Ψ: CM(C)→ C[Grnk ] such that Ψ(MI) = φI for all I. In particular, since Tj ∼= MIj

by Proposition 8.2, we have Ψ(Tj) = φIj .
On the other hand, the map X 7→ ΦT (X)|xj 7→φIj

is again a cluster character,

because this class of functions is closed under postcomposition with arbitrary maps
of rings. By Proposition 5.10, for each j ∈ Q0 we have GTj = 0 and

ΦT (Tj) = x[FTj ] = x[Pj ] = xj,

so that ΦT (Tj)|xj 7→φIj
= φIj .
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Thus the two cluster characters ΦT (after the substitution xj 7→ φIj) and Ψ agree
on the indecomposable summands Tj of T , and hence by the multiplication formula
[11, Def. 3.1(3)] they agree on all rigid indecomposable objects reachable from T ,
i.e. appearing as a summand of some cluster-tilting object obtained from T by a
sequence of mutations. As a consequence of [20, Thm. 9.5], this class of objects
includes MI for all k-subsets I ⊆ C1, and so

ΦT (MI)|xj 7→φIj
= Ψ(MI) = φI

as required. □

Furthermore, when D is a (k, n)-diagram we may interpret the Marsh–Scott
formula as a twisted Plücker coordinate via Theorem 9.1, and so Theorem 10.3
becomes

ΦT (Ω
◦MI)|xj 7→φIj

=←−φI . (11.2)

Comparing (11.1) and (11.2), we see that the operation Ω◦ on CM(C) can be
considered a categorification of the Marsh–Scott twist.

Remark 11.2. Note that the stable 2-Calabi–Yau property of CM(C) means that, as
functors on the stable category, Ω ∼= τ−1 is the inverse Auslander–Reiten translation.
In particular, when I is not an interval, so that MI is not itself projective, any
syzygy ΩMI is indecomposable in the stable category CM(C) and so has a single non-
projective indecomposable summand in CM(C). In view of (11.2), this corresponds
to the fact [24, Prop. 8.10] that ←−φI is a product of a single mutable cluster variable
with a monomial in frozen variables.

The fact that ΦT (Ω
◦MI)|xj 7→φIj

and ←−φI coincide after setting frozen variables

to 1 follows from a result of Geiß–Leclerc–Schröer [15, Thm. 6]. Our choice of
projective cover P◦MI is designed to ensure that the frozen variables appearing in
ΦT (Ω

◦MI)|xj 7→φIj
coincide precisely with those appearing in Marsh–Scott’s twisted

Plücker coordinate ←−φI .
Defining instead Ω•MI to be the kernel of the projective cover P•MI →MI , we

may show in an exactly analogous way that

MS•
D(I) = ΦT (Ω

•MI),

so that Ω• again categorifies a birational twist automorphism, differing from the
Marsh–Scott twist by multiplication by a Laurent monomial in frozen variables.

12. The Muller–Speyer twist

Muller and Speyer [25] describe twist automorphisms for open positroid varieties in
general. These maps involve inverting frozen variables and so are not defined on the
closed positroid varieties, in contrast to the Marsh–Scott twist for the Grassmannian,
i.e. the closed uniform positroid variety. Indeed, even in the uniform case, Muller–
Speyer’s twist differs from Marsh–Scott’s by multiplication by a Laurent monomial
in frozen variables, which can have a non-trivial denominator. Our methods also
give categorifications of these more general twists.
A key ingredient in Muller–Speyer’s construction is the map M : ZQ0 → M as

defined in (7.4), where M is the matching lattice as introduced in Remark 6.13. This
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map is an isomorphism, with inverse η̂ as defined in (7.1), by [25, Prop. 5.5] or
Corollary 7.5.

Let P be the positroid associated to D and let Π◦ = Π◦(P) be the corresponding
open positroid variety. In [25, Sec. 6], Muller–Speyer define a twist automorphism

tw: C
[
Π̃◦] → C

[
Π̃◦], where C

[
Π̃◦] is the homogeneous coordinate ring, i.e. the

coordinate ring of the cone on Π◦, and show the following (in the current notation).

Theorem 12.1 ([25, Prop 7.10]). For any I ∈ P, we have

tw(φI) =
∑

µ:∂µ=I

x−η̂(µ)|xj 7→φIj
. (12.1)

Note: here and later in this section, we abuse notation by writing φI for the restriction
of this Plücker coordinate to Π◦ ⊆ Grnk . The right-hand side of (12.1) is a formal
Laurent polynomial in C

[
ZQ0

]
, or equivalently a Laurent polynomial in variables

xj = xpj , where pj is a standard basis vector as in Section 7.

Proof. We recall the proof using [25, Thm. 7.1], writing half of that in terms of
maps on coordinate rings to get the following commutative diagram, in which the
horizontal maps are isomorphisms.

C
[
M
]

C
[
ZQ0

]
C
[
Π̃◦] C

[
Π̃◦]

C[−η̂]

net

tw

clu

Here C
[
M
]
is the coordinate ring of the torus (written (C×)|Q1|/(C×)|Q2|−1 in [25])

whose character lattice is M. In other words, it is the ring of formal Laurent
polynomials with exponents in M. Similarly, C

[
ZQ0

]
is the coordinate ring of the

torus (C×)Q0 .
The map C[−η̂] is the isomorphism of torus coordinate rings induced by the map
−η̂ : M→ ZQ0 of their character lattices, which is the inverse of −M by Corollary 7.5.
The map net is given by dimer partition functions (see [25, §3.2])

φI 7→
∑

µ:∂µ=I

xµ

and corresponds to (a lift of) the embedding of the network torus by the boundary
measurement map of [29].

The map clu corresponds to the embedding of the cluster torus in Π̃◦. More

precisely, it is obtained by composing the inverse of the map AD → C
[
Π̃◦] induced

by the substitution xj 7→ φIj from (9.1), which is a well-defined isomorphism by [14,

Thm. 3.5], with the inclusion AD ⊆ C
[
ZQ0

]
. □

Now assume D is connected. As in Section 7, we identify ZQ0 with K0(projA) by
pj 7→ [Pj], which identifies η̂(µ) with η(µ) = [Nµ]; see (6.13). In this case we may,
just as in Theorem 9.3, rewrite (12.1) as

tw(φI) =
∑

µ:∂µ=I

x−[Nµ]|xj 7→φIj
=
∑

N⩽FM
eN=M

x−[N ]|xj 7→φIj
, (12.2)
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for (the unique) M ∈ CM(B) with ρM ∼= MI , which exists since I ∈ P.
Recall from (10.1) the Fu–Keller cluster character ΦT : GP(B)→ C[K0(projA)],

where B = BD is the boundary algebra of D and T = eAD ∈ GP(B) is the initial
cluster-tilting object.

Theorem 12.2. Let M ∈ CM(B) such that ρM ∼= MI ∈ CM(C). Let PM be any
(possibly non-minimal) projective cover of M , fitting into a short exact sequence

0→ ΩM → PM →M → 0.

Then

tw(φI) =
ΦT (ΩM)

ΦT (PM)

∣∣∣∣
xj 7→φIj

. (12.3)

Proof. By Proposition 10.2,

ΦT (ΩM) = x[FPM ]
∑

N⩽FM
eN=M

x−[N ]. (12.4)

Since PM is projective, it is in addT , so GPM = 0 and ΦT (PM) = x[FPM ]. Thus
we obtain (12.3) by rearranging (12.4) and using (12.2). □

Remark 12.3. Theorem 12.2 is the analogue for positroid varieties of Geiß–Leclerc–
Schröer’s result [15, Thm. 6] for unipotent cells in Kac–Moody groups. Indeed, the
uniform open positroid variety in Grnk is an example of such a cell (cf. Remark 11.2).
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