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Abstract. Skew-gentle algebras are a generalisation of the well-known class of gentle algebras
with which they share many common properties. In this work, using non-commutative Gröbner

basis theory, we show that these algebras are strong Koszul and that the Koszul dual is again

skew-gentle. We give a geometric model of their bounded derived categories in terms of polygonal
dissections of surfaces with orbifold points, establishing a correspondence between curves in the

orbifold and indecomposable objects. Moreover, we show that the orbifold dissections encode ho-

mological properties of skew-gentle algebras such as their singularity categories, their Gorenstein
dimensions and derived invariants such as the determinant of their q-Cartan matrices.

1. Introduction

Derived categories play an important role in many branches of mathematics such as algebraic
geometry and representation theory, where they provide the proper setting for tilting theory [10, 9,
25].

In general, giving a concrete description of the (bounded) derived category of a finite dimensional
algebra is not easy to achieve. However, when the derived category is tame, this is often possible,
and a geometric realisation or a combinatorial description of their indecomposables objects and
morphisms has been given for several families of well-known algebras, such as hereditary algebras
of Dynkin type or gentle algebras [6, 24, 23, 32, 35].

The derived categories of gentle algebras have been gaining relevance in several branches of mathe-
matics; for example, recently these categories have been linked to homological mirror symmetry, a
homological framework developed by Kontsevich [29] to explain the similarities between the sym-
plectic geometry of the so-called A-model, and the algebraic geometry of the so-called B-model of
certain Calabi-Yau manifolds. Derived categories of gentle algebras have provided a good under-
standing of the A-model in the mirror symmetry program in the case of surfaces. In particular, a
connection between graded gentle algebras and Fukaya categories was established in [23, 8], where
collections of formal generators in (partially wrapped) Fukaya categories were constructed whose
endomorphism algebras are graded gentle algebras. Conversely, in [32, 35], given a homologically
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smooth graded gentle algebra A, a graded surface with stops (SA,MA, ηA) is constructed, where
SA is an oriented smooth surface with non-empty boundary, MA is a set of stops on the boundary
of A and ηA is a line field on A, such that the partially wrapped Fukaya category W(SA,MA, ηA)
and derived category D(A) are equivalent.

Skew-gentle algebras, skew group algebras of gentle algebras, have recently been related to other
areas of mathematics where they have been a tool to prove some interesting results. For instance, in
[17], triangulations giving rise to skew-gentle Jacobian algebras are used to establish the tameness of
the Jacobian algebras associated to triangulations of surfaces, see [30, 31]. These triangulations in
[17] were used in [36] to study the cluster category of punctured surfaces with non-empty boundary
where it is shown that there is a bijection between so-called strings in a skew-gentle algebra and
tagged curves in the corresponding surface. In [2] a geometric construction of these cluster categories
via a Z/2 actions on surfaces is given. In [41], skew-gentle algebras were used to prove that
Jacobian algebras coming from triangulations of closed surfaces are algebras of exponential growth,
an unexpected result uncovering a new class of symmetric tame Ω-periodic algebras. Furthermore,
in [26], a geometric model for the module category of a skew-gentle algebra has been given in terms
of tagged dissections of surfaces.

The bounded derived categories of skew-gentle algebras have been studied by several authors be-
ginning with [5]. In that paper, the authors give a classification of the indecomposable objects in
terms of so-called generalised homotopy strings and bands. In [11], another classification of the
indecomposable objects is given by using different matrix reduction techniques. In [1], a geomet-
ric classification of the derived equivalence classes of skew-gentle algebras is given based on the
Z/2-action using the geometric model and results for gentle algebras in [35, 3].

In the present paper, we realise the indecomposable objects of the bounded derived category of a
skew-gentle algebra as curves on a surface with orbifold points of order two. Furthermore, using
non-commutative Gröbner bases theory, we give a direct proof that skew-gentle algebras are strong
Koszul, a property that is not known to be preserved under skew group action. We show that the
Koszul dual is skew-gentle and that its geometric model has the same underlying surface.

More specifically, we show that there is a bijection between skew-gentle algebras and generalised
dissections of surfaces with orbifold points of order two, or simply orbifold dissection. This bijection
is a natural generalisation from gentle to skew-gentle algebras and it has also recently been shown
in [1, 26]. However, in contrast to [1], where derived equivalences between two skew-gentle algebras
are studied in terms of diffeomorphisms of the orbifold working mostly in its double cover, we
work directly in the orbifold and prove that graded curves in an orbifold dissection coming from
a skew-gentle algebra are in bijection with homotopy strings and bands, which by [5] describe the
indecomposable objects in the bounded derived category of the algebra. Furthermore, the data of
the orbifold dissection contains, on the one hand, the data of a line field in the same way as for
gentle algebras in [1, 3, 32, 35], and on the other, the homological grading in the derived category.
In this paper we will focus on the latter.

Our results suggest that the bounded derived category of a skew-gentle algebra should in fact be
a partially wrapped Fukaya category. However, in order to establish this, a complete description
of the morphisms in the bounded derived category of a skew-gentle algebra is needed. Unlike for
gentle algebras, in the skew-gentle case this is an open problem which we are hoping to address in
a forthcoming paper [39].
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We now state our first result. According to the classification in [5], indecomposable objects in the
bounded derived category of a skew-gentle algebra fall within two classes, the so-called string objects
and band objects, the latter coming in infinite families. Using this fact, we show the following.

Theorem A (Theorem 6.7) Let A be a skew-gentle algebra with associated surface O with orbifold
points and induced orbifold dissection G. Denote by M the set of vertices of G. Then the data
of (O,M,G) gives a geometric model for the objects of the bounded derived category Db(A) of A.
More precisely,

(1) the indecomposable string objects in Db(A) are induced by graded arcs (γ, f), where γ is an
orbifold homotopy class of curves in O that either start and end in marked points in M , or
start in a marked point in M and wrap around a puncture at the other end, or wrap around
a puncture at each end, and where f is a grading on γ;

(2) each family of indecomposable band objects in Db(A) corresponds to a graded closed curve
(γ, f) where γ is an orbifold homotopy class of closed curves in O with grading f such that
the combinatorial winding number induced by f is zero.

We note that the combinatorial grading on curves naturally encodes the data of a line field on the
orbifold surface.

Furthermore, we show that the orbifold dissection corresponding to a skew-gentle algebra encodes
important information of the algebra itself. Namely, as an application of our geometric model,
we show how the orbifold dissection associated to a skew-gentle algebra A encodes the singularity
category of the A, its Gorenstein dimension and the derived invariant given by the q-Cartan matrix
of A.

In [21] Green introduced the notion of a strong Koszul algebra. By definition an algebra is strong
Koszul if it has a quadratic Gröbner basis. It is shown in [19] that strong Koszul algebras are
Koszul. However, there are examples of Koszul algebras which are not strong Koszul. One such
example is the family of Sklyanin algebras [40].

We prove that skew-gentle algebras are strong Koszul and that their Koszul dual is again a (possibly
infinite dimensional) skew-gentle algebra which can be realised on the same surface. More precisely,
we show the following.

Theorem B (Theorem 4.8) Let A be a skew-gentle algebra. Then A is a strong Koszul algebra and
its Koszul dual A! is (locally) skew-gentle, and A and A! give rise to dual orbifold dissections on
the same surface with orbifold points.

Acknowledgements: The authors would like to thank Claire Amiot and Thomas Brüstle for
discussing and sharing the results of their recent paper [1] while both their and our papers were
still in preparation. The authors would also like to particularly thank Viktor Bekkert and Eduardo
Marcos for helpful conversations in relation to [5].

2. Preliminaries

In this section we fix some of the notation and definitions which will be used through this paper.
We fix an algebraically closed field K of char 6= 2.
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2.1. Gentle and skew-gentle algebras. In this subsection, we define gentle and skew-gentle
algebras.

A quiver Q is a quadruple (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is the set of arrows and
s, t : Q1 → Q0 are functions indicating the source and target of an arrow. A path w of length n > 0
in Q is a sequence of arrows α1 . . . αn such that t(αj) = s(αj+1) for each j = 1, . . . , n− 1. For each
vertex i, we denote by ei the trivial path of length 0.

The path algebra KQ is defined as the K-vector space with basis the set of all paths in Q, with
multiplication induced by concatenation of paths. A 2-sided ideal I of KQ is admissible if there
exists an integer m ≥ 2 such that Rm ⊂ I ⊂ R2, where R is the ideal of KQ generated by the
arrows of Q.

Skew-gentle algebras were introduced in [16]. They are closely linked to the well-studied class of
gentle algebras. For instance, they are skew-group algebras of gentle algebras. They are of tame
representation type [16] and their derived categories are also tame [5, 12]. In [5] a combinatorial
description of the indecomposable objects in the bounded derived category of a skew-gentle algebra
is given in terms of homotopy strings and bands.

In order to define skew-gentle algebras, we first recall the definition of gentle algebras.

Definition 2.1. A K-algebra Λ is gentle if it is Morita equivalent to KQ/I, where

(1) Q is a finite quiver such that for every vertex i of Q there are at most two arrows ending
at i and at most two arrow starting at i;

(2) for every arrow α of Q, there is at most one arrow β such that t(α) = s(β) and αβ ∈ I,
and there is at most one arrow γ such that t(γ) = s(α) and γα ∈ I;

(3) for every arrow α of Q, there is at most one arrow β′ such that αβ′ /∈ I, and there is at
most one arrow γ′ such that γ′α 6∈ I;

(4) I is the 2-sided ideal of Q generated by certain paths of length 2;
(5) I is an admissible ideal of Q.

If I satisfies (1), (2), (3) and (4), then we say that the quotient KQ/I is locally gentle.

Definition 2.2. A K-algebra A is (locally) skew-gentle if it is Morita equivalent to an algebra
KQ/I where

(1) Q1 = Q′1 ∪ S, where for ε ∈ S, s(ε) = t(ε),
(2) I = 〈I ′ ∪ {ε2 − ε | ε ∈ S}〉,
(3) KQ′/I ′ is a (locally) gentle algebra where Q′ = (Q′1, Q0),
(4) if ε ∈ S then the vertex i = s(ε) is the start or the end of exactly one arrow in Q′1 and if

there is an arrow α ∈ Q′1 with t(α) = i and an arrow β ∈ Q′1 with s(β) = i then αβ ∈ I ′.
Moreover, there is no other element in S starting at i.

We call a vertex i ∈ Q0 special if there exists ε ∈ S such that i = s(ε). We denote the set of special
vertices by Sp. If KQ/I is a skew-gentle algebra as above, we call (Q′, I ′, Sp) a skew-gentle triple.

Remark 2.3. If KQ/I is a skew-gentle algebra with non-empty set of special vertices, then the ideal
I is not admissible.

An admissible presentation KQsg/Isg of a skew-gentle algebra A is given as follows. Let Λ = KQ/I
be the gentle algebra obtained from A by deleting the special loops.
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Set

Qsg0 (i) =

{
{i+, i−} if i ∈ Sp
{i} otherwise

Define

Qsg0 :=
⋃
i∈Q0

Qsg0 (i),

The arrows of Qsg1 are defined as follows. The set Qsg1 [i, j] of arrows from vertex i to vertex j is
given by

Qsg1 [i, j] := {(i, α, j) | α ∈ Q1, i ∈ Qsg0 (s(α)), j ∈ Qsg0 (t(α))}.
The ideal Isg is defined as follows.

Isg :=
〈 ∑
j∈Qsg

0 (s(β))

λj(i, α, j)(j, β, k) | αβ ∈ I, i ∈ Qsg0 (s(α)), k ∈ Qsg0 (t(β))
〉
,

where λj = −1 if j = l− for some l ∈ Q0, and λj = 1 otherwise.

Note that in general, the relations in Isg are not monomial, instead, the ideal Isg is admissible and
quadratic.

Example 2.4. Consider the following quivers

Q : 4
α1 // 3

α2 // 2
α3 // 1 εdd and Q′ : 3

α1 //

ε1

��
2

ε2

�� α2 // 1,

and set I = {ε2 − ε} and I ′ = {ε2
1 − ε1, ε

2
2 − ε2, α1α2}. Then the algebras A1 = KQ/I and A2 =

KQ′/I ′ are skew-gentle and their respective admissible presentations KQsg/Isg and KQ′sg/I ′sg

are as follows.

1−

Qsg : 4
(4,α1,3) // 3

(3,α2,2) // 2

(2,α3,1
−)

;;

(2,α3,1
+) ##

1+

3−
(3−,α1,2

−) //

(3−,α1,2
+)

!!

2−

(2−,α2,1)

##
Q′sg : 1

3+

(3+,α1,2
+)

//

(3+,α1,2
−)

==

2+

(2+,α2,1)

;;

where Isg is the empty set and

I ′sg = 〈(3−, α1, 2
+)(2+, α2, 1)−(3−, α1, 2

−)(2−, α2, 1), (3+, α1, 2
+)(2+, α2, 1)−(3+, α1, 2

−)(2−, α2, 1)〉.

Note that the algebra KQsg/Isg = KQsg corresponds to an orientation of the Dynkin diagram D5.

2.2. Ribbon graphs and ribbon surfaces of a gentle algebra. We now briefly recall the
construction of the ribbon graph of a gentle algebra embedded in a surface with boundary as
introduced in [38, 35] based on [37].

A graph G is a quadruple G = (M,E, s, ι), where M is a finite set of vertices, E a finite set of
half-edges, s : E → M is a function sending each half edge to the vertex it is attached to, and
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ι : E → E is a fixed point free involution sending each each half-edge to the other half-edge it is
glued to.

A ribbon graph is a graph G endowed with a cyclic permutation of the half-edges at each vertex,
given by a function σ : E → E whose orbits correspond to the sets s−1(m), for all m ∈ M . A
marked ribbon graph is a ribbon graph G equipped with a map p : M → E, that is at each vertex
we chose exactly one half-edge.

Let Λ be a gentle algebra. Following [37, 38, 35] we construct a marked ribbon graph GΛ canonically
embedded into an unique, up to isomorphism, compact oriented surface SΛ in such a way that the
faces of GΛ are in bijection with the boundary components of SΛ. Furthermore, the information
given by m translates into a gluing of the vertices of GΛ onto the boundary components of SΛ.
More precisely,

Definition 2.5. The marked ribbon graph GΛ of a gentle algebra Λ = KQ/I is defined as follows.
The set of vertices M of GΛ are in bijection with the set consisting of

• maximal paths in KQ/I, that is, paths w ∈ KQ, with w /∈ I such that for any arrow
α ∈ Q1, αw ∈ I and wα ∈ I;

• trivial paths ei such that i is either the source or the target of only one arrow, or i is the
target of exactly one arrow α and the source of exactly one arrow β, and αβ /∈ I;

The edges of GΛ are in bijection with the vertices of Q0: It follows from the definition of M that
any vertex i ∈ Q0 is in exactly two elements of M , that is, there exist w1, w2 in M such that
wk = pkeiqk for pk, qk possibly trivial paths in Q and k = 1, 2. Hence by construction every vertex
in Q0 corresponds to exactly two elements in M , thus defining an edge in GΛ. Unless otherwise
specified and if no confusion arises, we will denote the edge in GΛ corresponding to the vertex
i ∈ Q0 again by i.

Note that the construction of GΛ naturally gives a linear order of the half-edges attached to every
vertex w ∈ M : namely, if i1, . . . , in are the half-edges at w then w = ei1α1ei2α2 · · ·αn−1ein , with
αj ∈ Q1 and ij ∈ Q0 and the induced linear order of the half-edges is given by i1 < i2 < · · · < in.
The cyclic order σ of the half-edges at w is then given by the cyclic closure of this linear order.

Furthermore, we define the marking map m : M → E by m(w) = ee(w) for w ∈M .

We recall from [35] the following definition.

Definition 2.6. The ribbon surface SΛ of a gentle algebra Λ is a tuple SΛ = (SΛ,MΛ), where SΛ

is a compact oriented surface and a finite set MΛ of marked points in the boundary of SΛ such that
GΛ is canonically embedded into SΛ with faces of GΛ corresponding to boundary components in
SΛ and where MΛ corresponds to the vertices (GΛ)0 of GΛ such that for each vertex v ∈ V , the
boundary component lies between m(v) and σ(m(v)) in the orientation of the surface.

Remark 2.7. By [35, Proposition 1.12], the ribbon graph GΛ of gentle algebra Λ divides SΛ into
polygons of the following type

(1) polygons whose edges are edges of GΛ except for exactly one boundary edge, and whose
interior contains no boundary component of SΛ;

(2) polygons whose edges are edges of GΛ and whose interior contains exactly one boundary
component of SΛ with no marked points.
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We refer to (SΛ,MΛ, GΛ) as the surface dissection of SΛ associated to the gentle algebra Λ. In the
following we will replace any boundary component with no marked points, such as those in Remark
2.7 (2), with punctures. Furthermore, by abuse of notation we will sometimes treat these punctures
as marked points in the interior of the surface.

3. Skew-gentle algebras and orbifolds

In this section, we define a graph associated to a skew-gentle algebra generalising the ribbon graph
associated to a gentle algebra, and we will show that this graph also has a canonical embedding
into a surface.

Lemma 3.1. Let A be a skew-gentle algebra, Λ = KQ/I be the associated gentle algebra obtained
from A by deleting all special loops and (SΛ,MΛ, GΛ) be its surface dissection. Then any special
vertex i ∈ Sp corresponds to an edge g in GΛ of a digon with exactly one boundary edge and whose
interior contains no boundary component of SΛ.

Proof. Let i be a special vertex of A corresponding the edge i in GΛ and let P and P ′ be the
polygons sharing the edge g . By Definition 2.2, the vertex i is either the start or the end of exactly
one arrow in Q or there are exactly two arrows α, β in Q such that s(β) = t(α) = i and αβ ∈ I.

Suppose first that we are in the latter case, that is that there are exactly two arrows α and β
such that s(β) = t(α) = i. Assume further that s(α) and t(β) are edges in P . Then the edge
j of P ′ preceding i and the edge k following i in the orientation of SΛ are boundary edges. By
[35, Proposition 1.12] every polygon in the surface dissection of SΛ has at most one boundary edge
which implies that j = k and P ′ is a digon.

In the case that there is exactly one arrow incident with i, the argument is similar. �

We now give the definition of a generalised ribbon graph associated to a skew-gentle algebra based
on the ribbon graph and surface of the underlying gentle algebra.

Let A be a skew-gentle, Λ = KQ/I be the associated gentle algebra obtained from A by deleting all
special vertices, and let (SΛ,MΛ, GΛ) its surface dissection. For each edge g of GΛ corresponding
to a special vertex i ∈ Sp, let P and P ′ be the polygons sharing the edge g. Suppose further that
P ′ is a digon with one boundary edge (which exists by the specialeness of v, see Lemma 3.1). We
define the local replacement of g in GΛ as the graph embedded graph G′Λ obtained by contracting
the boundary segment of P ′ and identifying the vertices p1 and p2 by collapsing the interior of
the polygon P ′ so that g is incident with p1 = p2. In the process we obtain a new marked point
in the interior of P , we will denote this point by o and depict by drawing a cross-shaped vertex
in the surface. We will refer to these vertices as special vertices. We locally illustrate the local
replacement and the resulting new vertex in Figure 1.

Remark 3.2. (1) Observe that after local replacement the polygon P is no longer a polygon, but
corresponds to a degenerate or self-folded polygon with a special edge ending in a cross-shaped
vertex.

(2) We note that up to homeomorphism the surface does not change under local replacement.
However, the number of marked points in the boundary changes.
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p1 p2

P

g. . . . . .

. . .

GΛ :
p1 = p2

. . .
×
o

P
g

.

.

.

.

.

.

G′Λ :

Figure 1. A local replacement

Definition 3.3. Let A be a skew-gentle algebra, Λ = KQ/I be the associated gentle algebra
obtained from A by deleting all special vertices, and (SΛ,MΛ, GΛ) be its surface dissection.

The generalised ribbon graph GA of A is the graph obtained from GΛ by applying a local replacement
at each each special vertex.

Denote by MA the marked points on SΛ corresponding to the vertices of the embedded ribbon
graph GA which are not special. Let OA = (S,MA,O) be the triple given by the surface S = SΛ,
the marked points MA and the set of special vertices O.

From now on consider the special vertices of GA to be orbifold points of order two and we say that
an edge in GA joining a vertex and an orbifold point is a special edge. Consequently, we refer to
OA as the orbifold of A.

Note that the above construction also works for locally skew-gentle algebras A = KQ/I. In this case
the generalised ribbon graph will have in addition to the special vertices punctures corresponding
to either cycles with no relations in the quiver or to cycles with full relations, but with a special
loop at each vertex of the cycle.

Remark 3.4. We note that we can construct the generalised ribbon graph directly from the data of
(Q, I, Sp), where A = KQ/I is a skew-gentle algebra with set of special vertices Sp. We say that
a path p in Q is Sp-maximal if for all x ∈ Q1 \ Sp we have px = xp = 0 in KQ/I. Then the set of
vertices M of the ribbon graph GA of A is in bijection with the union of all

• Sp-maximal paths;
• trivial paths ei such that i is either the source or the target of only one arrow, or i is the

target of exactly one arrow α and the source of exactly one arrow β, and αβ /∈ I, or i ∈ Sp.

The set of edges of GA is in bijection with the vertices of Q0 (note that this includes the special
vertices). Then GA is a ribbon graph with the cyclic ordering of the edges at each vertex induced
by the Sp-maximal paths. Denote by SA the corresponding oriented surface with boundary such
that GA is a deformation retract of SΛ. Now define a marking map m : M \ Sp→ E similar to the
gentle case. Note that the elements of M corresponding to the idempotents at special vertices in
Q0 are not marked. The marking map gives a unique way of gluing the marked vertices of GA to
the boundary of SA whereas the vertices of GA corresponding to elements in Sp stay in the interior
of the surface where they give rise to the set O of orbifold points of order two. This gives rise to
a generalised surface dissection which coincides with the construction of the orbifold dissection of
OA in Definition 3.7 below.

Example 3.5. Let A1 = KQ/I and A2 = KQ′/I ′ be the skew-gentle algebras from Example 2.4.
Note that the set of verticesMA1 of the generalised ribbon graphGA1 is the set {α1α2α3ε, e4, e3, e2, e1}
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where e1 corresponds to the trivial path associated to the special vertex 1 and that the set of vertices
MA2 of A2 is the set {ε1α1ε2α2, e3, e2, e1} where e3 and e2 correspond to the trivial path associated
to the special vertices 3 and 2 respectively. The generalised ribbon graphs GA1

and GA2
can be

seen in Figure 2.

α1α2α3ε

×e4

e3 e2

e1

ε1α1ε2α2

×

×
e3

e2

e1

Figure 2. Generalised ribbon graphs of D5 and A2 from Example 2.4

Then the generalised ribbon graphs GA1 and GA2 embedded in their respective orbifolds can be
seen in Figure3.

×

×
×

Figure 3. Generalised ribbon graphs of D5 and KQ′/I from Example 2.4 embed-
ded in their respective orbifolds.

For any skew-gentle algebra A, the edges of GA cut the orbifold OA into polygons, some of which
contain the points in O and a special edge connected to them. We call those polygons degen-
erate polygons. We note that the following two results, Proposition 3.6 and Theorem 3.8, have
independently appeared in [1].

Proposition 3.6. Let A be a skew-gentle algebra, and let GA be the generalised ribbon graph of A
embedded into its orbifold OA = (SA,MA,O). Then GA cuts OA into four types of polygons:

a) polygons and degenerate polygons containing exactly one boundary segment whose interior
contains no boundary component of OA.

b) polygons and degenerate polygons with no boundary segments and whose interior contains
exactly one boundary component of OA with no marked points.

Proof. This directly follows from [35, Proposition 1.12] and the construction of GA by local replace-
ment. �

Definition 3.7. We call an orbifold dissection any tuple of the form (S,M,O, G), where S is a
compact oriented surface with marked points M , orbifold points O of order 2 and G is a graph
as in Remark 3.4 dissecting S into polygons and degenerate polygons of the form as described in
Proposition 3.6.

Before stating the next result, we define the following notation. Denote by B one of the skew-gentle
algebras with two vertices, one arrow between them and one or two special loops.
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Theorem 3.8. Every skew-gentle algebra non-isomorphic to B uniquely determines an orbifold
dissection up to homemorphism and every orbifold dissection uniquely determines a skew-gentle
algebra.

Proof. By Proposition 3.6 it is enough to show that given a orbifold dissection (S,M,O, G) there
exists a skew-gentle algebra A having (S,M,O) as its orbifold and G as its generalised ribbon graph.
Given (S,M,O, G), define a quiver Q as follows:

(1) the vertices of Q are in bijection with the edges of G;
(2) if i, j are two edges incident with the same vertex in G then there is an arrow from i to j

if j is a direct successor of i in the orientation of the surface, that is there is no other edge
of G between i and j. Note that if i is a special edge in a degenerate polygon, then i is its
own successor, therefore there is a loop incident to i. Denote by Sp the set of vertices of Q
which corresponds to the special edges of G and by S the set of special loops incident to a
special vertex i ∈ Sp.

Observe that by construction any vertex of Q has at most two in going arrows and at most two
outgoing arrows, because any edge of G shares at most two (degenerate) polygons. Let I be the
ideal of KQ generated by the following relations: if α : i → j and β : j → k are two consecutive
arrows such that i, j and k correspond to edges of the same (degenerate) polygon and such that
neither α nor β correspond to a special loop, then αβ is a relation. Consequently, for any arrow α,
there is at most one consecutive arrow β such that αβ ∈ I and at most one preceding arrow γ such
that γα ∈ I. Finally, for each loop ε, incident to a special vertex, ε2 − ε ∈ I.

We need to show that A = KQ/I is a skew-gentle algebra. By construction, if P is a degenerate
polygon, and v is a special edge of P , then the valency of i is at most two, because any special edge
belongs to exactly one degenerate polygon. Moreover, if the valency of i is two, by the definition
of the generators of I, the composition of the arrow ending at i with the arrow starting at i is a
generator.

Finally it follows from the construction of KQ/I that its orbifold dissection is (S,M,O, G). �

4. The dual graph and the Koszul dual of a skew-gentle algebra

In this subsection, we show that a skew-gentle algebra is strong Koszul and that its Koszul dual is
again skew-gentle. Furthermore, given a skew-gentle algebra A and the corresponding skew orbifold
dissection, we construct a dual graph embedded in the orbifold and we show that this dual graph
is the orbifold dissection of the Koszul dual of A.

According to [21], an algebra KQ/I is strong Koszul if I is quadratic and has a quadratic Gröbner
basis. By [19] any strong Koszul algebra is a Koszul algebra, but the converse does not always hold,
for example, Sklyanin algebras [40] are Koszul algebras but not strong Koszul.

Since gentle algebras are Koszul and since skew-group constructions preserve the Koszul property
[33], it is clear that skew-gentle algebras are Koszul. However, it is not known whether the skew-
group algebra of a strong Koszul algebra is strong Koszul. The aim of this section is prove that
skew-gentle algebras are strong Koszul. As as consequence we also give a new proof that skew-gentle
algebras are Koszul. Following [20] and [22], we recall the basic definitions of Gröbner bases. Recall
that � is an admissible order on B if � is a total order on B such that every nonempty subset of
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B has a minimal element, and � is compatible with the multiplicative structure of B, namely the
following conditions hold for any p, q, x, w ∈ B, see [20, Section 2.2.1] for details.

(1) if p � q then px � qx when px 6= 0 and qx 6= 0.
(2) if p � q then wp � wq when px 6= 0 and qx 6= 0.
(3) if p = qx, then p � q and p � x.

Definition 4.1. Let Q be a quiver, B the basis of paths of KQ and � an admissible order on B.
For x =

∑
p∈B λpp with λp ∈ K such that almost all λp = 0 define the tip of x to be tip(x) =

p if λp 6= 0 and p � q for all q with λp 6= 0. Furthermore, if X ⊂ KQ then we define tip(X) =
{tip(x) | x ∈ X \ {0}}.

To simplify notation, in this section a vertex idempotent ei associated to a vertex i will be denoted
by i. An element x ∈ KQ is uniform if there are vertices i, j ∈ Q0 such that ixj = x.

Definition 4.2. Let KQ/I be an algebra and let � be an admissible order on the basis of paths B
of KQ. We say that G ⊂ I is a Gröbner basis for I with respect � if G is a set of uniform elements
in I such that 〈tip(I)〉 = 〈tip(G)〉.

The concepts of simple and complete reductions play an important role in Gröbner basis theory.
For example, a useful characterisation of a Gröbner basis is that all its elements completely reduce
to zero, see, for example, [22, Proposition 2.9]. Furthermore, complete reduction can be used to
complete a subset H of uniform elements of the ideal I to a Gröbner basis.

Definition 4.3. Let H be a set of nonzero uniform elements in KQ and x =
∑
p∈B λpp 6= 0 be an

element of KQ with λp ∈ K.

• A simple reduction of x by H is defined as follows: Suppose for some p with λp 6= 0 there
exists h ∈ H and r, s ∈ B such that r tip(h)s = p. If λ is the coefficient of tip(h) as a
summand of h as a linear combination of basis elements then a simple reduction x→H y of
x by H is y = λx− λprhs. This replaces λpp in x by a linear combination of paths smaller
than p.

• A complete reduction x =⇒ Hyn of x by H is a sequence of simple reductions (. . . ((x →H
y1)→H y2)→H . . . )→H yn, such that either yn = 0 or yn has no simple reductions by H.

Definition 4.4. Let x =
∑
p∈B λpp and y =

∑
q∈B µqq in KQ. Suppose that s = tip(x), t = tip(y)

and sm = nt for some m,n ∈ B \Q0 where the lengths of m and n are strictly less than the length
of s. Then the overlap relation, o(x, y,m, n), is

o(x, y,m, n) = (µt)xm− (λs)ny.

We now show that a skew-gentle algebra is strongly Koszul by showing that it has a quadratic
Gröbner basis. For this we begin by showing that given a skew-gentle algebra A, any admissible
order for the underlying gentle algebra Λ induces a natural admissible order for A.

Lemma 4.5. Let A be a skew-gentle, Λ = KQ/I be the gentle algebra obtaining from A by deleting
special loops, and let B be the basis of paths of KQ. Suppose that �Q is an admissible order on B.
Then �Q induces an admissible order � on the basis of paths Bsg of KQsg.

Proof. Let �Q be an order on Q inducing an admissible order on B. Consider � an order on Qsg

induced by �Q as follows.
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Let (i, α, j) and (i′, β, j′) be two arrows in Qsg. If α 6= β, we say that (i, α, j) � (i′, β, j′) if and
only if α �Q β.

Now, suppose that α = β and s(α) or t(α) is a special vertex, then we fix an order on the set of
arrows induced by α : i→ j as follows.

If i and j are special vertices, then (i+, α, j+) � (i−, α, j−) � (i+, α, j−) � (i−, α, j+). If i is a
special vertex and t(α) is not special (resp. i is not special and j is special), then (i+, α, j) �
(i−, α, j) (resp. (i, α, j+) � (i, α, j−)).

By construction the only property we need to check in order for � to be admissible, is that every
descending chain in Bsg has a minimal element. Let C=(p1 � p2 � · · · � pt � . . . ) be a descending
chain of paths in Bsg. By construction of kQsg, each path pr is a sequence of arrows of the form
(ir1 , αr1 , jr1) . . . (irl , αrl , jrl) such that αr1 . . . αrl is a path p̂r in Q and C ′ = (p̂1 �Q p̂2 �Q · · · �Q
p̂t �Q . . . ) is a descending chain of elements in B. Since �Q is an admissible order on B, the chain
C ′ has a minimal element p̂r, for some r ∈ N, such that p̂r = p̂r+m for all m ∈ N, therefore there
exists some r′ ∈ N such that pr′ = pr′+m for all m ∈ N.

Thus the order � on the basis of paths Bsg of KQsg is admissible. �

Proposition 4.6. Let A be a locally skew-gentle algebra, then A is strong Koszul.

Proof. Let A be a locally skew-gentle algebra, Λ = KQ/I be the locally gentle algebra obtained from
A by deleting special loops. Consider the admissible presentation of A, namely Asg = KQsg/Isg.
By [19, Theorem 3] it is enough to prove that there exists a quadratic Gröbner basis for the ideal
Isg. Let �Q be an admissible order on B the basis of path of KQ, for example, and more precisely
let �Q be a paths length lexicographical order. By Lemma 4.5, there exists an admissible order �
on Bsg, the basis of paths of KQsg such that:

(1) if α 6= β then (i, α, j) � (i′, β, j′) if and only if α �Q β;
(2) the order on the set of of arrows of Qsg associated to an arrow α in Q ending or starting

in a special vertex is given as follows: If i and j are special vertices, then (i+, α, j+) �
(i−, α, j−) � (i+, α, j−) � (i−, α, j+). If i is a special vertex and t(α) is not special (resp.
i not special and j special), then (i+, α, j) � (i−, α, j) (resp. (i, α, j+) � (i, α, j−)).

We claim that the set

G = {
∑

j∈Qsg
0 (s(β))

λj(i, α, j)(j, β, k) | αβ ∈ I, i ∈ Qsg0 (s(α)), k ∈ Qsg0 (t(β))}

where λj = −1 if j = l− for some l ∈ Q0, and λj = 1 otherwise, is Gröbner basis for Isg. By
[22, Theorem 2.13] it is enough to show that every overlap relation of any two elements of G
completely reduces to 0 by G. It follows from the definition of Asg that any element in G is a linear
combination with at most two summands. Let x = λ1(i, α, j)(j, β, k) + λ2(i, α, j′)(j′, β, k) and
y = µ1(j, β, k)(k, γ, l) + µ2(j, β, k′)(k′, γ, l) be elements in G and n,m ∈ B such that o(x, y,m, n)
is a overlap relation. Observe that in this case, by the definition of the overlap relation, n and m
are arrows. It is easy to check that if x or y are monomial relations, then o(x, y,m, n) is also a
monomial relation in Asg. Suppose that x and y are binomial relations, and suppose t = tip(x) =
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(i, α, j)(j, β, k) and t′ = tip(y) = (j, β, k)(k, γ, l), then the overlap relation is written as follows

o(x, y, n,m) = µ1λ2((i, α, j′)(j′, β, k))(k, γ, l)− λ1µ2(i, α, j)((j, β, k′)(k′, γ, l))

= −((i, α, j′)(j′, β, k))(k, γ, l) + (i, α, j)((j, β, k′)(k′, γ, l)),

where n = (k, γ, l) and m = (i, α, j). Observe that by the definition of the relations in Isg

and by definition of the admissible order �, we have that (j, β, k) is either (s(β)+, β, t(β)+)
or (s(β)−, β, t(β)−). Moreover, there is no element z ∈ G such that tip(z) is starting with
(j′, β, k) or (j, β, k′). Therefore any simple reduction of o(x, y, n,m) replaces the second element
(i, α, j)(j, β, k′)(k′, γ, l) with:

−((i, α, j′)(j′, β, k))(k, γ, l)− (i, α, j′)(j′, β, k′)(k′, γ, l).

Finally, if there exist an element w in G such that tip(w) is starting with (j′, β, k′) then we can
reduce (i, α, j′)(j′, β, k′)(k′, γ, l) as follows:

−((i, α, j′)(j′, β, k))(k, γ, l)− (i, α, j′)(j′, β, k)(k, γ, l) = 0.

Which implies that the quadratic basis G is a Gröbner basis, and as a consequence A is a Koszul
algebra. �

Before we state the last result of this section, we recall the definition of Koszul dual, see [34] for
details. The Koszul dual A! of a finite dimensional Koszul algebra A is by definition the algebra
ExtA(A/ rad(A), A/ rad(A))op, which is isomorphic to the quadratic dual of A. For the convenience
of the reader we briefly recall the construction of A! for algebras of the form KQ/I. Let V = KQ2

be the vector space generated by the paths of length two and {γ1, . . . , γr} be a basis of V . Denote
by V op the vector space generated by paths of length two in Qop with dual basis {γop1 , . . . , γopn }.

Following [34], the orthogonal ideal I⊥2 is generated by

B = {v ∈ V op | 〈u, v〉 = 0 for every u ∈ I},
where 〈 , 〉 : V × V op → k is a bilinear form defined on bases elements as follows:

〈γi, γopj 〉 =

{
0 if γi 6= γj ,

1 otherwise.

Then the Koszul dual A! of A is the path algebra KQop/I⊥2 .

Proposition 4.7. Let A = KQsg/Isg be the admissible presentation of a skew-gentle algebra and
A! its Koszul dual. Then the admissible ideal I⊥2 of A! is generated by:

• paths of length two which are not a summand of a minimal generator of Isg

• commutativity relations in Isg.

Proof. Let W be the set of generators of the ideal Isg, namely

W = {
∑

j∈Qsg
0 (s(β))

λj(i, α, j)(j, β, k) | αβ ∈ I, i ∈ Qsg0 (s(α)), k ∈ Qsg0 (t(β))},

where λj = −1 if j = l− for some l ∈ Q0, and λj = 1 otherwise.

Then, the orthogonal ideal I⊥2 is generated by

B = {v ∈ V op | 〈u, v〉 = 0 for every u ∈W},
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where 〈 , 〉 : V × V op → k is a bilinear form defined on bases elements as follows:

〈γi, γopj 〉 =

{
0 if γi 6= γj ,

1 otherwise.

By definition of B, any path of length two which is not a summand of a minimal generator of Isg

is an element of B. Let x be uniform element in B which is by definition of V a linear combination
of at most two paths. To fix notation, let x = λ1ρ1 + λ2ρ2 be a linear combination of two paths ρ1

and ρ2 with the same source and target with λ1, λ2 ∈ K∗.
Suppose for contradiction that ρ1 is a monomial relation. Then 〈ρ1, x〉 = 0 implies that λ1 = 0 which
is a contradiction. Therefore without loss of generality, we have ρ1 − ρ2 ∈ V and 〈ρ1 − ρ2, x〉 = 0
implies that λ1 = λ2 that is x = ρ1 + ρ2.

Using the isomorphism ϕ : KQsg → KQsg defined by

ϕ((i, α, j)) =

{
−(i, α, j) if i = s(α)+ and j = t(α)+ or i = s(α)− and j = t(α)−;

(i, α, j) otherwise.

the result follows. �

The following Theorem shows how to compute the generalised ribbon graph of the Koszul dual of
a skew-gentle algebra.

Theorem-Definition 4.8. Let A be a skew-gentle algebra, and let (S,M,O, GA) be the orbifold
dissection of A. Denote by G∗A the graph embedded in a surface obtained from (S,M,O) as follows.

• In each boundary edge of the dissection GA, there is exactly one vertex of G∗A. In addition,
any unmarked boundary in (S,M,O) is replaced by a vertex of G∗A.
• Any orbifold point in GA is also an orbifold point in G∗A.

Then for every non-special edge v of GA there is a unique edge in G∗A crossing v exactly once.
Every special edge of GA corresponds to an edge of G∗A connecting the orbifold point with the unique
vertex of G∗A such that the resulting edge does not cross any edge of GA. We call these edges of G∗A
special edges.

Then G∗A is the graph of the Koszul dual A!.

Proof. This follows directly from the construction of G∗A and Proposition 4.7. �

In Figure 4 we can see the dual graphs of the generalised ribbon graphs from example 3.5.

Example 4.9. Let Q be the quiver

and R1 = {α1α2, α2α3, α3α1, ε
2− ε} and R2 = {α1α2, α2α3, ε

2− ε}. The algebras A1 = KQ/〈R1〉
and A2 = KQ/〈R2〉 are skew-gentle. Orbifold dissections and their duals are depicted in Figure 5.
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Figure 4. Dissections for the skew-gentle algebra and its Koszul dual associated
to D5 on the left and A2 on the right from Example2.4

•

• •

α2

ε

α1

α3

Orbifold dissection and its dual graph of A1

× ×

Orbifold dissection and it dual graph of A2

× ×

Figure 5. Orbifold dissection and dual graph for A1 and A2

5. Graded curves in an orbifold dissection

In this section we define graded curves in an orbifold with marked points. We begin by recalling
from [13] the notion of homotopy in an orbifold based on what is called skein relations in that
paper.

Let A be a skew-gentle algebra and O be the associated orbifold. We recall the notion of O-free
homotopy from [13].

Definition 5.1. Two oriented closed curves γ and γ′ in O are O-homotopic if they are related
by a finite number of moves given by either a homotopy in the complement of the orbifold points
or are related by moves taking place in a disk D containing exactly one orbifold point ox as in
Figure 6. That is, a segment of a curve with no self-intersection in D and passing through ox is
O-homotopic relative to its endpoints to a segment spiralling around ω in either direction exactly
once as in Figure 6.

As a consequence of Definition 5.1, we have the following O-homotopic curves in O.
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× ∼ × ∼ ×

Figure 6. Moves in a disk containing exactly one orbifold point.

× ∼ × ∼ ×

Figure 7. O-homotopic curves in a disk containing one orbifold point.

Definition 5.2. Let O = (S,M,O) be an orbifold with set O of orbifold points of order 2 with a
finite set M of marked points in the boundary component of S or in the interior of S. Let x, y be
marked points.

(1) If x and y are marked points in the boundary of S, a finite arc (or simply an arc) γ from x
to y is an O-homotopy class, relative to endpoints, of non-contractible curves γ from x to
y in O.

(2) A closed curve γ is a free O-homotopy class of non-contractible closed curves γ not passing
through any orbifold points.

(3) An infinite arc is an O-homotopy class γ associated to rays, that is a continuous maps
r : (0, 1] → O (or r : [0, 1) → O) or l : (0, 1) → O respectively, that wrap around
an unmarked boundary component in a clockwise way, asymptotically approaching this
boundary.

Recall that two rays r : (0, 1] → O and r′ : (0, 1] → O are O-homotopic if they wrap
infinitely many times around the same unmarked boundary component B, their endpoints
coinciding in the marked point x in the boundary, and if for every closed neighbourhood N
of B the induced maps r, r′ : [0, 1] → O \ N are O-homotopic relative to their endpoints.
Similarly, we say two lines l : (0, 1) → O and l′ : (0, 1) → O are equivalent if they wrap
infinitely many times around the same unmarked boundary components B and B′ on either
end and if for every closed neighbourhood N of B and N ′ of B′ the induced maps l, l′ :
[0, 1]→ O \ (N ∪N ′) are O-homotopic relative to their endpoints.

Our main result requires a notion of grading on arcs and closed curves. This grading depends on
the dual graph G∗A of a skew-gentle algebra A. Therefore before giving the definition, we will need
some results on the geometry of the graph G∗A. Moreover, since every unmarked boundary in a
orbifold dissection (S,M,O, G) of A is replaced by a vertex of G∗, we will view unmarked boundary
components as marked points in the interior. In particular, it will be useful to think of infinite arcs
wrapping around a boundary component as infinite arcs wrapping around a marked points in the
interior. We note that in our model we only consider infinite arcs as in Definition 5.2(3), that is
only those infinite arcs that wrap around an unmarked boundary component (ie a marked point in
the interior of the surface) in a clockwise way.



SKEW-GENTLE ALGEBRAS AND ORBIFOLDS 17

γγ∗

w

w′
P

P ′

w = w′

γ

γ∗P

P ′

×

Figure 8

Lemma 5.3. Let A = KQ/I be a skew-gentle algebra with orbifold OA = (S,M,O) with set of
marked points M and embedded generalised ribbon graph GA. Then the dual graph G∗A subdivides
OA into polygons and degenerate polygons, where the edges of each such polygon are edges of G∗A
and exactly one boundary segment containing exactly one marked point of M .

Proof. Let Λ be the gentle algebra obtained from A by deleting all special loops in Q and let
(S,MΛ, GΛ) be surface dissection associated to Λ. By [35, Lemma 2.6] and Remark 3.2, the dual
graph G∗Λ of Λ subdivides SΛ into polygons and degenerate polygons, where the edges of each such
polygon are edges of G∗Λ and exactly one boundary segment containing exactly one marked point
of MΛ.

It is enough to observe that after a local replacement of a special edge γ in GΛ, the unique edge
γ∗ of G∗Λ crossing γ corresponds to a special edge in G∗. By definition γ∗ is connected to an
orbifold point ox. Let P and P ′ be the polygons in of G∗Λ in S sharing the common edge γ∗. As
a consequence of the local replacement, P and P ′ correspond to a single degenerate polygon in S
containing ox, see Figure 8. The result follows. �

By the Lemma 5.3, G∗A induces a dissection of OA. Furthermore, the generalised polygons of G∗A
are in bijection with vertices of GA.

Remark 5.4. (1) We assume that any finite collection of curves is in minimal position, that is, the
number of intersections of each pair of (not necessarily distinct) curves in this set is minimal.

(2) If γ is an arc or closed curve in an orbifold dissction (S,M,O, G) we always assume that γ
crosses every edge of G transversely.

(3) In Figure 9 we give examples of O-homotopic curves. In each case the first curve represents the
chosen representative in its O-homotopic class which we will usually be working with.

× ' × × ' × × ' ×

Figure 9. O-homotopic curves

Definition 5.5. Given a skew-gentle algebra A and the associated graph GA with vertex set M ,
with dual graph G∗A and associated orbifold O = (S,M,O), we call the tuple (S,M,O, G∗A) the
orbifold dissection associated to A.
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We note that if (S,M,O, G∗) is an orbifold dissection and if γ is a possibly infinite arc or a closed
curve in O then γ is completely determined by the possibly infinite sequence of edges of G∗ which
it crosses. If γ is a closed curve then this sequence is determined up to cyclic permutation.

Definition 5.6. Let γ be an arc or a closed curve in an orbifold dissection (S,M,O, G) and let
(xi) be the ordered multiset of edges of the dual graph G∗ of G crossed successively by γ.

Let [xi, xi+1] be the oriented segment going from xi to xi+1. Then both xi and xi+1 are edges of
the same (degenerate) polygon P which contains exactly one marked point m ∈ M . A grading on
γ is a function f : (xi)→ Z satisfying the following conditions.

f(xi+1) =

{
f(xi) + 1 if m is to the left of [xi, xi+1] in P ;

f(xi)− 1 if m is to the right of [xi, xi+1] in P

If γ is an (infinite) arc, we say that (γ, f) is an (infinite) graded arc on SA. If γ is a closed curve
successively crossing the edges x1, . . . , xn of G∗, we say that (γ, f) is a graded closed curve if the
grading f is such that f(x1) = f(xn).

6. Indecomposable objects in the derived category of a skew-gentle algebra

In this section, given a skew-gentle algebra A, we show that the geometric model constructed in
Section 3 is a model for the bounded derived category Db(A). More precisely, using the equivalence
Db(A) and K−,b(proj−A), we establish a one to one correspondence between the homotopy strings
and bands encoding the indecomposable objects in K−,b(proj − A) and graded arcs and curves in
the orbifold associated to A.

6.1. Homotopy strings and bands. We begin by briefly recalling the definition of homotopy
strings and bands from [5]. Throughout this section let A be a skew-gentle algebra and let Λ =
KQ/I be the associated gentle algebra obtained from A by deleting all special loops.

The definition of homotopy strings and bands for skew-gentle algebras is based on another gentle
algebra A+ underlying A in the following way. Let B a minimal set of relations of Λ = KQ/I and
set J = 〈B \ {αβ | αβ ∈ I, t(α) ∈ Sp}〉. Then by [5] A+ = KQ/J is a gentle algebra.

For every arrow α ∈ Q1, we define a formal inverse arrow α where s(α) = t(α) and t(α) = s(α). For

each path w = α1 . . . αk we define (α1 . . . αk) = αk . . . α1, s(w) = e(w) and t(w) = s(w). A walk w
is sequence w1 . . . wn where wi is either an arrow or an inverse arrow such that s(wk+1) = e(wk).

A string is a walk w = w1 . . . wn such that wk+1 6= wk for 1 ≤ k < n and such that no substring
w′ of w or its inverse w′ is in J . For every i ∈ Q0, we denote by ei the string corresponding to the
trivial walk at i.

A string w = w1 . . . wn is a direct (resp. inverse) homotopy letter if wk is a direct (resp. inverse)
arrow, for all 1 ≤ k ≤ n. A homotopy walk σ is a sequence σ1 . . . σr, where σk is a direct or
inverse homotopy letter such that s(σk+1) = t(σk). We say that σ = σ1 . . . σr is a direct (resp.
inverse) homotopy walk if σk is direct (resp. inverse), for all 1 ≤ k ≤ r. A walk σ (resp. a
homotopy walk) is closed if s(σ) = t(σ). Given a (homotopy) walk σ = σ1 . . . σr we denote by
σ[m] = σm+1 . . . σrσ1 . . . σj its rotations where m = 1, . . . , r − 1.
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Definition 6.1. Let A be a skew-gentle algebra with Λ = KQ/I be the associated gentle algebra
obtained from A be deleting all special loops, and A+ = KQ/J the associated gentle algebra as
defined above.

(1) A homotopy string is a homotopy walk σ = σ1 . . . σr such that
• if both σi, σi+1 are direct (resp. inverse) homotopy letters such that σi (resp. σi+1) is

not ending at a special vertex, then σiσi+1 ∈ J (resp. σiσi+1 ∈ J),
• if σi, σi+1 (resp. σi, σi+1) are direct homotopy letters and σi (resp. σi) is not ending

at a special vertex, then σiσi+1 is a string.
A nontrivial homotopy string σ is symmetric if σ = σ and asymmetric otherwise.

(2) A homotopy band is a closed homotopy string σ = σ1 . . . σn with an equal number of direct
and inverse homotopy letters such that σ is not a proper power of some homotopy string
σ′ and such that every power of σ is a homotopy string.

A nontrivial homotopy band σ is symmetric if σ = σ[m] for some m and asymmetric
otherwise.

Remark 6.2. By definition, any symmetric band σ is a word such that

σ = σ = σ1 . . . σk = a1 . . . arar . . . a1b1 . . . bsbs . . . b1,

where t(ar) and t(bs) are special vertex, having the following picture:

• • . . . • • • . . . •

• •

• • . . . • • • . . . •

bs−1 b1 a1

arbs

bs

bs−1 b1 a1

ar

Definition 6.3. A right (resp. left) infinite homotopy string is a sequence σ = σ0σ1σ2 . . . (resp.
σ = . . . σ−2σ−1σ0 ) such that for some k, all σi (resp. σ−i) are direct (resp. inverse) arrows, for
i > k and such that every finite subword of σ is a homotopy string.

An infinite homotopy string is a sequence σ = . . . σ−2σ−1σ0σ1σ2 . . . such that . . . σ−2σ−1 is a left
infinite homotopy string and σ0σ1σ2 is a right infinite homotopy string.

6.2. String and Band Complexes. In order to define the complexes induced by homotopy
strings and bands as introduced in [5], we need to introduce a grading on homotopy strings and
bands. Our definition closely follows [35].

Definition 6.4. Let σ = σ1 . . . σr be a finite homotopy string.

A grading on σ is a sequence of integers µ = (µ0, . . . , µr) such that

µi+1 =

{
µi + 1 if σi+1 is a direct homotopy letter;

µi − 1 otherwise,

for each i ∈ {1, . . . , r − 1}. The pair (σ, µ) is a graded homotopy string.

Moreover, if σ is a homotopy band, the pair (σ, µ) is a graded homotopy band if (σ, µ) is a graded
homotopy string and i is considered modulo r.
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In a similar way, we define a grading on (left, right) infinite homotopy strings.

Let A be a skew-gentle algebra with admissble presentation Asg = KQsg/Isg. For a vertex i ∈ Qsg0 ,
we write Pi for the projective indecomposable Asg-module at vertex i.

Following [5], to each graded homotopy string or band (σ, µ) we associate a complex of projective A-
modules P •(σ,µ) which is not necessarily indecomposable, but is a sum of at most two indecomposable

complexes. For this, we freely view A-modules as modules over Asg and we define the following
projective A-module for every i ∈ Q0.

P (i) =

{
Pi+ ⊕ Pi− if i is a special vertex;

Pi otherwise.

The definition of a complex associated to a symmetric homotopy band σ relies on a set of matrices

M with coefficients in K where M ∈M is such that M =

(
A C
B D

)
∈ Mat(l+ l′,m+m′) for some

strictly positive integers l, l′,m,m′. We refer the reader to [5][Section 3.1] for the precise definition
of M.

Definition 6.5. (1) Let (σ, µ) be a graded homotopy string with σ = σ1 . . . σr. Then let

P •(σ,µ) = · · · −→ P−1 −→ P 0 −→ P 1 −→ . . .

be the complex such that P j =
⊕

0≤i≤r
µi=j

P (i), for all j ∈ Z and where the differentials are

induced by the homotopy letters.
If σ is an asymmetric homotopy string, we say that a complex P is an asymmetric string

complex if it is isomorphic to P(σ,µ) in Kb,−(proj −A).
If σ is a symmetric homotopy string then P(σ,µ) decomposes into the direct sum of two

indecomposables complexes of projective A-modules. We will refer to the indecomposable
summands as P(σ,µ,0) and P(σ,µ,1). We call a complex P isomorphic to either P •(σ,µ,0) or

P •(σ,µ,1), a dimidiate string complex.

(2) Let (σ, µ) be a graded homotopy band where σ = σ1 . . . σr is an asymmetric homotopy
band. Let indK [x] be the set of non trivial powers of irreducible polynomials over K with
leading coefficient equal to 1 and different from x and x−1. Then, for each p(x) ∈ ind k [x],
let

P •(σ,µ),p(x) = · · · −→ P−1 −→ P 0 −→ P 1 −→ . . .

be the complex such that P j =
⊕

0≤i≤r
µi=j

P (i) ⊗K Kdeg p(x) in degree j. We call a complex

P an asymmetric band complex if it is isomorphic in Kb,−(proj −A) to P(σ,µ),p(x) where σ
is an asymmetric band.

(3) Let (σ, µ) be a graded homotopy band with σ = a1 . . . arar . . . a1b1 . . . bsbs . . . b1 symmetric

and such that e(ar) and e(bs) are special vertices. Let M =

(
A C
B D

)
∈ M. Then the

complex

P •(σ,µ) = · · · −→ P−1 −→ P 0 −→ P 1 −→ . . .

is given by
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P j =
⊕

0≤i≤r
µi=j

Q(i)⊕
⊕

2r+1≤i≤2r+s
µi=j

Q(i)

for all j ∈ Z, where Q(i) is a projective A-module which depends on the size of the
matrices A,B,C,D in M as follows:

Q(i) =


P (i)⊗K Kl ⊕ P (i)⊗K Kl′ if i = µ0, . . . , µr−1

P (i)⊗K Km ⊕ P (i)⊗K Km′ if i = µ2r+1, . . . , µ2r+s−1

Pi+ ⊗K Kl ⊕ Pi− ⊗K Kl′ if i = µr

Pi+ ⊗K Km ⊕ Pi− ⊗K Km′ if i = 2r + s

We say that a complex P is a dimidiate band complex if it is isomorphic in Kb,−(proj−A)
to P(σ,µ),M where σ is a symmetric band.

We will not give the definitions of the differentials of the above complexes, since we do not need
those in the geometric description of the indecomposable objects of the bounded derived category
of a skew-gentle algebra.

Remark 6.6. In [39] we give a correspondence of intersections of graded curves and homomorphisms
in the bounded derived category of a skew-gentle algebra.

For a grading µ = (µ1, . . . , µr) on a homotopy string or band, define a grading shift [m] as µ[m] =
(µ1 +m, . . . , µr +m) for m ∈ Z. Observe that the the complex induced by (σ, µ[m]) is P •(σ,µ[m]) =

P •(σ,µ)[m].

6.3. Main result on indecomposable objects of the derived category of a skew-gentle
algebra. Before stating one of the main theorems of this paper, we recall that we identify
unmarked boundary components and punctures in a surface S. We also recall that given an orbifold
dissection O = (S,M,O, G) we define graded arcs and graded closed curves up to O-homotopy.

Theorem 6.7. Let A be a skew-gentle algebra with orbifold dissection O = (S,M,O, G∗). Then
the homotopy strings and bands parametrizing the indecomposable objects in Db(A) are in bijection
with graded arcs and curves in O. More precisely,

(1) the set of homotopy strings are in bijection with graded arcs (γ, f), where γ is a finite arc
in O or an infinite arc whose infinite rays wrap around unmarked boundary components in
the anti-clockwise orientation;

(2) the set of homotopy bands are in bijection with graded primitive closed curves (γ, f) in O.

The proof is very similar to that of the corresponding result for gentle algebras in [35] with suitable
adjustments to be made for special loops in the algebra on the one side and polygons containing
orbifold points in the surface on the other. For the convenience of the reader, we give the whole
proof in detail.

The following definition gives the construction of a homotopy word induced by the interesection of
an arc or curve in the surface with the edges of the dual graph.
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Definition 6.8. Let A be a skew-gentle algebra with quiver QA = Q and γ be an arc or a closed
curve in its orbifold dissection (S,M,O, G∗). We set (xi) to be the ordered multiset of edges of G∗

crossed by γ following its trajectory. Furthermore, if γ crosses G∗ at least twice. Let [xi, xi+1] be
the oriented segment going from xi to xi+1, recall that both edges are in a (degenerate) polygon P
which contains exactly one marked point m ∈M .

We define the homotopy letter σ(xi) associated to the oriented segment [xi, xi+1] as follows:

(1) If the marked point m is on the left of [xi, xi+1], then let w1, . . . , wr be the edges between
xi = w1 and xi+1 = wr in the clockwise order. By Theorem 4.8, these correspond to
vertices of the quiver Q of A which are joined by arrows α1, . . . , αr−1. Then define σ(xi) :=
(α1 . . . αr−1).

(2) If the marked point m is on the right of [xi, xi+1], then let w1, . . . , wr be the edges between
xi+1 = w1 and xi = wr in the clockwise order. By Theorem 4.8, these correspond to
vertices of the quiver Q of A which are joined by arrows α1, . . . , αr−1. Then define σ(xi) :=

(α1 . . . αr−1).

If a graded arc (γ, f) crosses G∗ exactly once, namely at the edge x, then we set σ(γ) to be the
trivial string ex, and µ(f) = (f(x)) the grading on σ(γ).

Observe that by Theorem 4.8, σ(xi) is indeed a homotopy letter.

Lemma 6.9. Let (S,M,O, G∗) be the orbifold dissection of a skew-gentle algebra A given by the
dual G∗ of the generalised ribbon graph of A and let (γ, f) be an arc or a graded primitive closed
curve on (S,M,O) with (xi) the ordered multiset of edges of the dual graph G∗ crossed by γ following
its trajectory.

(1) If (γ, f) is a finite graded arc which crosses the edges of G∗ exactly r times and at least

twice, then σ(γ) =
∏r−1
i=1 σ(xi) is a homotopy string and µ(f) = (f(x1), . . . , f(xr)) is a

grading on σ(γ).
(2) If (γ, f) is an infinite graded arc, then σ(γ) =

∏
σ(xi) is a infinite homotopy string and

µ(f) = (f(xi)) is a grading on σ(γ).
(3) If (γ, f) is a primitive graded closed curve and if x1, x2, . . . , xr are the distinct edges of

G∗ crossed by γ (in that order), then σ(γ) =
∏r
i=0 σ(xi) is a homotopy band and µ(f) =

(f(x1), . . . , f(xr−1)) is a grading on σ(γ).

Proof. By construction, σ(γi) is a homotopy letter, for all i. As before, let Λ = KQ/I be the
associated gentle algebra obtained from A be deleting all special loops, B be a minimal set of
relations of Λ and A+ = KQ/J , where J = 〈B \ {αβ | t(α) ∈ Sp}〉. By Theorem 4.8, either
the composition or of the last arrow of σ(γi) and the first arrow of σ(γi+1) (or the composition of
their inverses) are in J or the end of σ(γi) is a special vertex. Then (2) directly follows from the
definition of homotopy strings in Section 6.1.

Now let (γ, f) be an infinite graded arc. By Lemma 5.3, γ wraps around a puncture p with at
least one incident edge and by the above, every finite homotopy sub-walk of σ(γ) is a homotopy
string. Denote by xk, xk+1, . . . , xr the set of edges of G∗ that γ crosses when γ does a complete
turn around p. By Theorem 4.8, their associated homotopy letters σ(xk), . . . , σ(xr) are homotopy
letters of length one, and σ(xk) . . . σ(xr) or its inverse is an oriented cycle. Furthermore, we have
that σ(xr)σ(xr+1) ∈ J with σ(xr+1) = σ(xk) and more generally, σ(xr+i) = σ(xk+i−1) for all i ≥ 1.
Thus σ(γ) is eventually periodic and an infinite homotopy string.
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In cases (1) and (2), directly follows from the definition of the grading f on γ that µ(f) is a grading
on the associated homotopy string.

To prove (3), assume that (γ, f) is a graded primitive closed curve. Let σ(γ) =
∏r
i=0 σ(γi). It is

enough to observe that s(σ(γ1)) = t(σγr ) to ensure that any rotation of σ(γ) is a homotopy string.
By definition, the existence of the grading f implies that there is the same number of inverse and
direct homotopy letters in σ(γ), which implies that σ(γ) is a homotopy band. �

Lemma 6.10. Let O = (S,M,O, G∗) be the orbifold dissection of a skew-gentle algebra A given by
the dual graph generalised ribbon graph G∗ of A.

(1) Let (σ, µ) be a finite (resp. infinite) graded homotopy string. Then there exists a unique
finite (resp. infinite) graded arc (γ, f) on O such that (σ(γ), µ(f)) = (σ, µ).

(2) Let (σ, µ) be a graded homotopy band. Then there exists a unique graded closed curve (γ, f)
on O (up to O-homotopy) such that (σ(γ), µ(f)) = (σ, µ).

Proof. Let Λ = KQ/I be the associated gentle algebra obtained from A be deleting all special
loops, B be a minimal set of relations of Λ and A+ = KQ/J , where J = 〈B \ {αβ | t(α) ∈ Sp}〉.
Let (σ, µ) be a finite graded homotopy string. By definition σ is a sequence σ1 . . . σn of homotopy
letters σi where s(σi+1) = t(σi) and such that either σiσi+1 ∈ J or σiσi+1 ∈ J or s(σi+1) = t(σi)
is a special vertex.

It is enough to prove that for each homotopy letter σi there is a (unique) oriented segment γi such
that the topological concatenation of those segments induces a graded arc γ on O and that two
distinct homotopy strings give rise to two graded arcs which are not O-homotopic.

Denote by xi and xi+1 the edges of G∗ corresponding to s(σi) and t(σi) respectively. By construction
of G∗, there is exactly one (degenerate) polygon Pi in O such that xi and xi+1 are edges of Pi.

If Pi is not degenerate or xi and xi+1 are not special edges, then up to homotopy there is a unique
oriented segment γi in the interior of Pi starting at the mid-point of xi and ending at the mid-point
of xi+1 such that γi has no self-crossing and does not cross any other edge of G∗.

If xi is not a special edge and xi+1 is a special edge (or xi is a special edge and xi+1 is not a special
edge), then up to homotopy there is a unique oriented segment γi in the interior of Pi starting at
the mid-point of (resp. the orbifold point of the edge) xi and ending at the orbifold point of the
edge (resp. the mid-point of) xi+1 such that γi has no self-crossing and does not cross any other
edge of G∗, see figure 10.

xi

a a

xi+1

×

γi

Figure 10. The arc γ from xi to xi+1

It is clear that the ending point of the oriented segment γi is the starting point of γi+1 and that
the concatenation γ1 ∗ · · · ∗ γn is an oriented segment from x1 = s(σ1 . . . σn) to xn+1 = t(σ1 . . . σn).
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Now, let P0 (resp. Pn+1) be the (degenerate) polygon which shares x1 (resp. xn+1) with P1 (resp.
Pn) and let m0 (resp. mn+1) be the marked point in the boundary segment of P0 (resp. Pxn+1).
Observe that if x1 (resp. xn) is a special edge, then P0 and P1 (resp. Pn and Pn+1) coincide.

Suppose that x1 (resp. xn) is not a special edge. Then there exists a unique oriented segment from
the marked point m0 (resp. the point xn+1) to middle point of x1 (resp. marked point mn+1),
which lies in P0 (resp. Pn+1), without self intersection and it is not crossing other edge of G∗.

If x1 (resp. xn) is a special edge, then there is a unique oriented segment γ0 (resp. γn+1) from m0

(resp. the middle point of xn+1) to the orbifold point of x1 (resp. mn+1) such that γ0 ∗ γ1 (resp.
γn ∗ γn+1)lies in P1 = P0 (resp. Pn = Pn+1) and is not crossing any other edge of G∗, see Figure
11.

x2

a a

x1

×
γ0

γ1

Figure 11. Oriented segment γ0 ∗ γ1

Then γ = γ0 ∗γ1 ∗ · · · ∗γn ∗γn+1 is a finite arc and by construction σ(γ) = σ. Moreover, the grading
µ on σ induces a natural grading f on γ.

To finish the proof, suppose that γ′ is a finite arcs such that σ(γ′) = σ = σ(γ). Without loss of
generality, suppose that γ′ is in minimal position, then σ(γ′) is already a reduced homotopy string.
We claim that γ and γ′ are O-homotopic. Any curve is completely determined by the ordered
multiset of edges of G∗ that it crosses and σ(γ′) = σ = σ(γ), thus γ and γ′ have the same multiset
of edges of crossings with G∗ and γ and γ′ are O-homotopic.

The proof for infinite homotopy strings and bands is similar to the above.

�

Proof of Theorem 6.7. By [5, Theorem 3], the indecomposable objects of the derived category
Db(A) are completely described by the graded homotopy strings and bands. The result then follows
from Lemma 6.9 and Lemma 6.10. �

7. Applications

7.1. Singularity category of a skew-gentle algebra. The stable derived category or singularity
category Dsg(A) of an algebra A is defined as the Verdier quotient of the bounded derived category
with respect to the perfect derived category.

In [27, Theorem 2.5], the singularity category of a gentle algebra was explicitly described as a finite
product of triangulated orbit categories which turn out to be n-cluster categories of type A1, as
follows. Let Λ = KQ/I be a gentle algebra. A cycle α1 . . . αn of positive length on Q is saturated
if each of the length-2 paths α1α2, . . . , αn−1αn, αnα1 belongs to I. Let C(Λ) be the set of cyclical
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permutation equivalence classes of saturated cycles without repeated arrows. For n > 2 denote by
Db(K −mod)/ [n] the triangulated orbit category as defined in [28]. Then [27, Theorem 2.5] shows
that Dsg(Λ) and

∏
c∈C(Λ)Db(K − mod)/ [nc] are equivalent as triangulated categories, where nc

denotes the length of any cycle in the equivalence class c ∈ C(Λ).

By construction of the dual ribbon graph GΛ of a gentle algebra Λ, it is easy to see that there is a
bijection between C(Λ) and the polygons in GΛ with no boundary edges. We will call such polygons
interior polygons and we denote by P◦Λ the set of interior polygons. Furthermore, for P ∈ P◦Λ denote
by nP the number of edges of P . A concrete description of Dsg(Λ) is then given by

Dsg(Λ) '
∏
P∈P◦Λ

Db(K −mod)/ [nP ] .

The geometric description of the singularity category of a skew-gentle algebra, follows from the
fact that, by [14, Theorem 3.5], a skew-gentle algebra A and its underlying gentle algebra Λ have
equivalent singularity categories, and that the generalised ribbon graph of a skew-gentle algebra
and that of a gentle algebra have the same number of interior polygons and corresponding interior
polygons have the same number of edges. More precisely, we have the following.

Theorem 7.1. Let A be a skew-gentle algebra and (S,M,O, G) be the orbifold dissection induced
by the generalised ribbon graph G of A. Then

Dsg(A) '
∏
P∈P◦A

Db(K −mod)/ [nP ]

where P◦A is the set of interior polygons of G and nP is the number of edges of P , for P ∈ P◦A.

7.2. Gorenstein dimension of skew-gentle algebras. Recall that a finite dimensional algebra
A is d-Gorenstein if it has a finite injective dimension d as a left and right A-module. Both gentle
and skew-gentle algebras are Gorenstein [18].

The following result shows that the Gorenstein dimension of a skew-gentle algebra can be read
from its orbifold dissection. For this we recall that a skew-gentle algebra gives rise to an orbifold
dissection into generalised polygons which either have no boundary edges or which have exactly
one boundary edge. We refer to the latter as a boundary polygon.

Theorem 7.2. Let A be a skew-gentle algebra and (S,M,O, G) be the orbifold dissection given by
the generalised ribbon graph G of A. Then the Gorenstein dimension of A is equal to d, where d−1
is the maximal number of internal edges of boundary polygons of the dissection, if such boundary
polygons exist or zero otherwise.

Proof. Let Λ be the gentle algebra obtained from A by deleting all special special loops. By [16],
there exists a gentle algebra B such that A is Morita equivalent to the skew-group algebra B ∗Z/2.
Then by [4, Theorem 2.3] and [18], B is Gorenstein and the Gorenstein dimensions of B and A
coincide.

By [18], the Gorenstein dimension of Λ is equal to the maximal length of saturated paths in A
which are not cycles, if such paths exist or zero otherwise. The result follows from the properties
of G. �
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7.3. q-Cartan matrices. A classical invariant for graded algebras is the so-called q-Cartan
matrix which generalises the classical Cartan matrix of a graded finite dimensional algebra, see for
example [15]. For this recall that, A = KQ/I has a grading induced by paths length if I is generated
by homogeneous relations. The q-Cartan matrix CA(q) = (cij(q)) of A, for an indeterminate q, is
the matrix with entries

cij(q) =
∑
n

dimK(eiAej)nq
n ∈ Z[q]

for vertices i, j in Q and where (eiAej)n is the component of degree n of eiAej . The q-Cartan
matrix is invariant under graded derived equivalence and specialises to the classical Cartan matrix
by setting q = 1.

In [7, Theorem 4.2], the determinant of the q-Cartan matrix CA(q) of a (skew-)gentle algebra A
is computed in terms of saturated cycles. In the following we show that this description can be
read-off the orbifold dissection of A.

Theorem 7.3. Let A be a skew-gentle algebra and (S,M,O, G) be the orbifold dissection induced
by the generalised ribbon graph GA of A. Denote by ck the number of (degenerate) interior polygons
of G with k edges and let Λ be the gentle algebra obtained from A by deleting the special loops. Then
the q-Cartan matrix CA(q) has determinant

detCA(q) = detCΛ(q) =
∏
k≥1

(1− (−q)k)ck .

8. Example

In this section, we will illustrate the geometric model and some of the results in the previous sections
on an example.

Let A = KQ/I be the skew-gentle algebra with admissible presentation Asg = KQsg/Isg, where Q
and Qsg are as follows

Q : 3

α1

��

α4

��

Qsg : 3
(3,α1,1)

��

(3,α4,2)

��

4+

1
α2

// 2
α3

// 4

ε

��
1

(1,α2,2)
// 2

(2,α3,4
+)

??

(2,α3,4
−)

��
4−

and where I = 〈α1α2, α4α3, ε
2−ε〉 and Isg = 〈(3, α1, 1)(1, α2, 2), (3, α4, 2)(2, α34+), (3, α4, 2)(2, α34−)〉.

Following Remark 3.4, the set of vertices MA of the ribbon graph is the set {α2α3ε, α1, α4, e4} and
its generalised ribbon graph GA can be seen in Figure 12. Note that the only difference between
a ribbon graph and a generalised ribbon graph is that in a generalised ribbon graph some of the
(leaf) vertices, namely those giving rise to orbifold points, are designated to be special.

Since A is a skew-gentle algebra, the generalised ribbon graph GA is embedded in an orbifold with
one orbifold point of order 2 which corresponds to the special vertex e4. The corresponding orbifold
dissection of A and its dual graph are depicted in Figure13.
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α2α3ε

×

α4

α1

e4

1
2

3

4

Figure 12. Generalised ribbon graphs of algebra A

×
×

1

2
4

3

Figure 13. Orbifold dissection induced by GA and its dual graph

Let (γ, f) be the graded curve where γ is as in Figure14 and where the grading is given by f =
(1, 2, 1, 0). The homotopy string σ(γ) associated to γ is (α2α3)(α3)(α4) and the grading µ(f)
induced by f . This induces the following asymmetric string complex P •(σ(γ),µ(f)) in Kb,−(proj-

Asg).

P1 P4+

⊕
P4−

P3 P2

α2α3

α4

α3

.

×

1

2
3

4

γ
×

1

2
3

4

δ

Figure 14. The curves γ and δ in the orbifold dissection (S,M,O, GA)

Let (δ, g) be the graded closed curve where δ is depicted in Figure 14 and g = (0, 1, 0,−1, 0). The
asymmetric homotopy band σ(δ) associated to δ is (α2α3)(α3)(α4)(α1) and as before µ(g) is induced
by g. Let q(x) ∈ indK[x] be a non trivial power of an irreducible polynomial over K with leading
coefficient equal to 1 and different from x and x−1. The asymmetric band complex P •(σ(δ),µ(g),p(x))
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in Kb,−(proj-Asg) induced by (σ(δ), µ(g)) is

P (1)⊗Kdeg q(x)

P (3)⊗Kdeg q(x) P (4)⊗Kdeg q(x)

P (2)⊗Kdeg q(x)

α2α3

α4

α1

α3

where P (i) = Pi for i 6= 4 and P (4) = P4+ ⊕ P4− .

Observe that the set of interior polygons of G is empty. Thus by Theorem7.1, the singularity
categoryDsg(A) is equivalent to the category with one element, and by Theorem7.3, the determinant
detCA(q) of the q-Cartan matrix CA(q) is zero.

By 7.2, to compute the Gorenstein dimension of A, we need to count the maximal number d of
internal edges of boundary polygons of the dissection, in this case, the dissection has one digon and
two 4-gon, then d = 3, and as a consequence, the Gorenstein dimension of A is 3− 1 = 2.
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