CORRIGENDUM TO "ON TWO CONJECTURES CONCERNING CONVEX CURVES", BY V. SEDYKH AND B. SHAPIRO

BORIS SHAPIRO AND MICHAEL SHAPIRO

Abstract

As was pointed out by S. Karp, Theorem B of paper [8] is wrong. Its claim is based on an erroneous example obtained by multiplication of three concrete totally positive 4×4 upper-triangular matrices, but the order of multiplication of matrices used to produce this example was not the correct one. Below we present a right statement which claims the opposite to that of Theorem B. Its proof can be essentially found in a recent paper [1].

1. Introduction

Recall that a classical result due to H. Schubert, [7] claims that for a generic $(k+1)(n-k)$-tuple of k-dimensional complex subspaces in $\mathbb{C} P^{n}$ there exist $\sharp_{k, n}=$ $\frac{1!2!\ldots(n-k-1)!((k+1)(n-k))!}{(k+1)!(k+2)!\ldots(n)!}$ complex projective subspaces of dimension $(n-k-1)$ in $\mathbb{C} P^{n}$ intersecting each of the above k-dimensional susbspaces. (The number $\sharp_{k, n}$ is the degree of the Grassmannian of projective k-dimensional subspaces in $\mathbb{C} P^{n}$ considered as a projective variety embedded using Plücker coordinates.) The following conjecture has been formulated in early 1990's by the authors (unpublished); it has been proven in two fascinating papers [3, 2] some years ago. (Recently two novel and very different proofs of these results have been in [4] and [6]).
Conjecture on total reality. For the real rational normal curve $\rho_{n}: S^{1} \rightarrow \mathbb{R} P^{n}$ and any $(k+1)(n-k)$-tuple of pairwise distinct real projective k-dimensional osculating subspaces to ρ_{n}, there exist $\sharp_{k, n}$ real projective subspaces of dimension $(n-k-1)$ in $\mathbb{R} P^{n}$ intersecting each of the above osculating subspaces.

Many discussions and further results related to the latter conjecture can be found in [9].

Originally, the authors suspected that the latter conjecture were also valid for convex curves and not just for the rational normal curve where a curve $\gamma: S^{1} \rightarrow$ $\mathbb{R} P^{n}\left(\right.$ resp. $\left.\gamma:[0,1] \rightarrow \mathbb{R} P^{n}\right)$ is called convex if any hyperplane $H \subset \mathbb{R} P^{n}$ intersects γ at most n times counting multiplicities. (Discussions of various properties of convex curves can be found in a number of earlier papers by the authors as well as in other publications). In particular, at each point of a convex curve γ there exists a well-defined Frenet frame and therefore a well-defined osculating k-dimensional subspace for any $k=1, \ldots, n-1$.

Theorem B of [8] erroneously claims that there exists a convex curve in $\mathbb{R} P^{3}$ and a 4 -tuple of its tangent lines such that there are no real lines intersecting all of them. (In this case $k=1, n=3$ and $\sharp_{1,3}=2$). The correct statement is as follows.
Theorem 1. For any convex curve $\gamma: S^{1} \rightarrow \mathbb{R} P^{3}$ (resp. $\gamma:[0,1] \rightarrow \mathbb{R} P^{3}$) and any 4-tuple of its tangent lines $\mathcal{L}=\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)$, there exist two real distinct lines L_{1} and L_{2} intersecting each line in \mathcal{L}.

In other words, Theorem 1 claims that total reality conjecture is valid in the special case $k=1, n=3$ for convex curves as well. Its proof follows straight forwardly from the next result of [1]. (We want to thank S. Karp for providing us the formulation and the proof of this statement.)
Theorem 2. Let $W_{i}, i=1,2,3,4$ be 4×2 real matrices, such that the 4×8 matrix formed by concatenating W_{1}, W_{2}, W_{3}, and W_{4} has all its 4×4 minors positive. Then regarding each W_{i} as an element of the real Grassmannian $G r_{2,4}(\mathbb{R})$, there exist two distinct $U \in G r_{2,4}(\mathbb{R})$ such that $U \cap W_{i} \neq \emptyset$ for $i=1,2,3,4$.

Proof. Let $A:=\left[\begin{array}{llll}W_{1} & W_{2} & W_{3} & W_{4}\end{array}\right]$ be the 4×8 matrix formed by concatenating W_{1}, W_{2}, W_{3}, and W_{4}. After acting on \mathbb{R}^{4} by an element of a $G L_{4}(\mathbb{R})$ with positive determinant, we may assume that $A=[X Y]$, where X is a 4×4 totally positive matrix and

$$
Y=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Then $X=\left[\begin{array}{ll}W_{1} & W_{2}\end{array}\right]$ and $Y=\left[\begin{array}{ll}W_{3} & W_{4}\end{array}\right]$. Set

$$
U:=\left(\begin{array}{cc}
1 & 0 \\
-x & 0 \\
0 & -1 \\
0 & y
\end{array}\right) \quad(x, y \in \mathbb{R}) .
$$

Then inside $G r_{2,4}(\mathbb{R})$, we have $U \cap W_{3} \neq \emptyset$ and $U \cap W_{4} \neq \emptyset$. Also, we have $U \cap W_{1} \neq \emptyset$ and $U \cap W_{2} \neq \emptyset$ if and only if

$$
\operatorname{det}\left[W_{1} U\right]=0 \text { and } \operatorname{det}\left[W_{2} U\right]=0
$$

These conditions give the following two equations:
$\Delta_{13,12} x y+\Delta_{14,12} x+\Delta_{23,12} y+\Delta_{24,12}=0$ and $\Delta_{13,34} x y+\Delta_{14,34} x+\Delta_{23,34} y+\Delta_{24,34}=0$,
where $\Delta_{I, J}$ denotes the determinant of the submatrix of X in rows I and columns J. Using the second equation to solve for y in terms of x and substituting into the first equation, we obtain a quadratic equation in x whose discriminant equals

$$
\begin{aligned}
D & =\left(\Delta_{13,12} \Delta_{24,34}-\Delta_{24,12} \Delta_{13,34}-\Delta_{14,12} \Delta_{23,34}+\Delta_{23,12} \Delta_{14,34}\right)^{2} \\
& -4\left(\Delta_{13,12} \Delta_{14,34}-\Delta_{14,12} \Delta_{13,34}\right)\left(\Delta_{23,12} \Delta_{24,34}-\Delta_{24,12} \Delta_{23,34}\right) .
\end{aligned}
$$

To settle Theorem 2 it suffices to show that under our assumptions $D>0$.
Since X is totally positive, by the LoewnerWhitney theorem $[5,10]$ we can write

$$
X=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
g+j+l & 1 & 0 & 0 \\
h j+h l+k l & h+k & 1 & 0 \\
i k l & i k & k & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
m & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & o & 0 \\
0 & 0 & 0 & p
\end{array}\right) \cdot\left(\begin{array}{cccc}
1 & f+d+a & a b+a e+d e & a b c \\
0 & 1 & b+e & b c \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $a, \ldots, p>0$. Then we calculate

$$
D=m^{2} n^{2}\left(F G+H^{2}\right)
$$

where
$F=$ acehijmo + acehilmo +2 cdehijmo + cdehilmo $+a b h j m p+a b h l m p+a b k l m p+$ aehjmp+aehlmp+aeklmp+cehino+dehjmp+dehlmp+deklmp+bhnp+2bknp+ehnp+eknp,
$G=$ acehijmo + acehilmo + cdehilmo + abhjmp + abhlmp + abklmp + aehjmp + aehlmp +

$$
\text { aeklmp }+ \text { cehino }+\operatorname{dehjmp}+\operatorname{dehlmp}+\operatorname{deklmp}+\text { bhnp }+ \text { ehnp }+e k n p,
$$

$$
H=b k n p-c d e h i j m o .
$$

Since F and G are positive in case when $a, \ldots, p>0$ we get that $D>0$.
In order to deduce Theorem 1 from Theorem 2 we need the following Lemma.
Lemma 3. For any convex curve $\gamma: S^{1} \rightarrow \mathbb{R} P^{3}$ (resp. $\gamma:[0,1] \rightarrow \mathbb{R} P^{3}$) and any 4-tuple of its tangent lines $\mathcal{L}=\left(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}\right)$, there exists a basic $e_{1}, e_{2}, e_{3}, e_{4}$ in \mathbb{R}^{4} where $\mathbb{R} P^{3}=\left(\mathbb{R}^{4} \backslash 0\right) / \mathbb{R}^{*}$ and bases in the 2 -dimensional subspace $\tilde{\ell}_{1}, \tilde{\ell}_{2}, \tilde{\ell}_{3}, \tilde{\ell}_{4}$ of \mathbb{R}^{4} covering $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ resp. such that the 4×2 matrices $W_{1}, W_{2}, W_{3}, W_{4}$ expressing the chosen bases of $\tilde{\ell}_{1}, \tilde{\ell}_{2}, \tilde{\ell}_{3}, \tilde{\ell}_{4}$ w.r.t $e_{1}, e_{2}, e_{3}, e_{4}$ satisfy the assumptions of Theorem 2.
Proof. Notice that given a convex curve $\gamma: S^{1} \rightarrow \mathbb{R} P^{3}$ (resp. $\gamma:[0,1] \rightarrow \mathbb{R} P^{3}$) as above, one can always find its lift $\tilde{\gamma}: S^{1} \rightarrow \mathbb{R}^{4} \backslash 0$ (resp. $\tilde{\gamma}:[0,1] \rightarrow \mathbb{R}^{4} \backslash 0$) such that the projectivization map $\mathbb{R} P^{3}=\left(\mathbb{R}^{4} \backslash 0\right) / \mathbb{R}^{*}$ sends $\tilde{\gamma}$ to γ. Since γ is convex, the lift $\tilde{\gamma}$ satisfies the property that any linear hyperplane $H \subset \mathbb{R}^{4}$ intersects $\tilde{\gamma}$ at most 4 times counting multiplicities.

Now set $e_{j}=\tilde{\gamma}^{(j-1)}(0), j=1,2,3,4$ where $\tilde{\gamma}^{(s)}$ stands for the derivative of $\tilde{\gamma}$ of order s considered as a vector function with values in \mathbb{R}^{4}. By convexity, the vectors $e_{1}, e_{2}, e_{3}, e_{4}$ are linearly independent and therefore form a basis in \mathbb{R}^{4}. In what follows we consider coordinates in \mathbb{R}^{4} with respect to the basis $\left\{e_{j}\right\}$.

The Wronski matrix of $\tilde{\gamma}$ at $t=0$ written in these coordinates coincides with the identity matrix and therefore has determinant 1 . In particular, this implies that the determinant of the 4×4 matrix whose rows are given by the coordinates of a 4 -tuple of vectors $\tilde{\gamma}\left(\delta_{i}\right)$ in the latter basis where $0 \leq \delta_{1}<\delta_{2}<\delta_{3}<\delta_{4}<\delta$ with sufficiently small δ is positive. Furthermore, by definition of convexity, the determinant of the 4×4 matrix with rows $\tilde{\gamma}\left(\theta_{i}\right), i=1,2,3,4$ does not vanish for any 4 -tuple $0 \leq \theta_{1}<\theta_{2}<\theta_{3}<\theta_{4} \leq 1$. Thus, this determinant is positive since its value is close to 1 for sufficiently small θ_{i} 's.

Thus all 4×4 minors of the matrix $U=\left(U_{i, j}\right)_{\substack{1 \leq i<8 \\ 1<j<4}}$, where $U_{i, j}=\tilde{\gamma}_{j}\left(t_{i}\right)$ are positive for any choice $0 \leq t_{1}<t_{2}<t_{3}<t_{4}<t_{5}<t_{6}<t_{7}<t_{8} \leq 1$. Choosing $0<t_{1}<t_{3}<t_{5}<t_{7}<1$ arbitrarily, set $t_{2 i}=t_{2 i-1}+\varepsilon$ for $i=1,2,3,4$ where ε is sufficiently small. Notice that $\tilde{\gamma}\left(t_{2 i}\right)=\tilde{\gamma}\left(t_{2 i-1}\right)+\varepsilon \tilde{\gamma}^{\prime}\left(t_{2 i-1}\right)+o(\varepsilon)$.

Now introduce the 8 -tuple of vectors \mathbf{w}_{i}, where $\mathbf{w}_{2 k-1}=\tilde{\gamma}\left(t_{2 k-1}\right), k=1,2,3,4$, and $\mathbf{w}_{2 k}=\tilde{\gamma}\left(t_{2 k-1}\right)+\varepsilon \gamma^{\prime}\left(t_{2 k-1}\right)$. Define the 8×4 matrix $W=\left(W_{i, j}\right)$, where $W_{i j}=\left(\mathbf{w}_{i}\right)_{j}$.

Then for any ordered index set $I=\left\{1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq 8\right\}$, let U_{I} and W_{I} denote the determinants of submatrices of U and W respectively formed by rows indexed by I.

Define $\varkappa_{k}=\left\{\begin{array}{ll}1, & \text { if }\{2 k-1,2 k\} \subset I \\ 0, & \text { otherwise } .\end{array}\right.$, and $\varkappa_{I}:=\sum_{k=1}^{4} \varkappa_{k}$.
Obviously, $W_{I}=O\left(\varepsilon^{\varkappa_{I}}\right)$ and $U_{I}=W_{I}+o\left(\varepsilon^{\varkappa_{I}}\right)$. As we have noticed above, U_{I} 's are positive for all index sets I which yields that all W_{I} 's are positive as well if ε is sufficiently small. It remains to notice that matrix W satisfies the conditions
of Theorem 2 and it consists of the 4-tuple of pairs of vectors spanning the 2 dimensional subspaces $\tilde{\ell}_{1}, \tilde{\ell}_{2}, \tilde{\ell}_{3}, \tilde{\ell}_{4}$ respectively.

Problem 1. Prove or disprove the total reality conjecture for convex curves for other values of parameters k and n.

Acknowledgements

The authors are grateful to Steven Karp for sharing his observation that results of [1] contradict to Theorem B of [8], for his notes and for useful discussions. M.S. is supported by International Laboratory of Cluster Geometry NRU HSE, RF Government grant, ag. №75-15-2021-608 dated 08.06.2021 and by NSF grant DMS2100791. M.S. would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme "Cluster algebras and representation theory" where work on the revision of this paper was undertaken. This work was supported by EPSRC grant no EP/R014604/1.

References

[1] Arkani-Hamed, Nima; Lam, Thomas; Spradlin, Marcus Non-perturbative geometries for planar $N=4$ SYM amplitudes, Journal of High Energy Physics volume 2021, Article number: 65 (2021).
[2] Mukhin, Evgeny; Tarasov, Vitaly; Varchenko, Alexander The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz. Ann. of Math. (2) 170 (2009), no. 2, 863881.
[3] Eremenko, Alexandre; Gabrielov, Andrei Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry. Ann. of Math. (2) 155 (2002), no. 1, 105129.
[4] Levinson, Jake; Purbhoo, Kevin A topological proof of the Shapiro-Shapiro conjecture, arXiv:1907.11924.
[5] Loewner, Charles, On totally positive matrices, Math. Z. 63 (1955), 338-340.
[6] Peltola, Eveliina; Wang, Yilin Large deviations of multichordal $S L E_{()+}$, real rational functions, and zeta-regularized determinants of Laplacians, arXiv:2006.08574.
[7] Schubert, Hermann Beziehungen zwischen den linearen Räumen auferlegbaren charakteristischen Bedingungen, Math. Ann. 38 (1891) 598-602.
[8] Sedykh, Vyacheslav; Shapiro, Boris On two conjectures concerning convex curves, Internat. J. Math. vol 16, issue 10 (2005) 1157-1173.
[9] Sottile, Frank Real solutions to equations from geometry. University Lecture Series, 57. American Mathematical Society, Providence, RI, 2011. x+200 pp
[10] Whitney, Anne Marie, A reduction theorem for totally positive matrices, J. d'Analyse Math. 2 (1952), 88-92.

Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden and Institute for Information Transmission Problems, Moscow, Russia

E-mail address: shapiro@math.su.se
Department of Mathematics, Michigan State University, East Lansing, MI 488241027, USA and National Research University Higher School of Economics, Moscow, RUSSIA

E-mail address: mshapiro@math.msu.edu

