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Abstract. As was pointed out by S. Karp, Theorem B of paper [8] is wrong.
Its claim is based on an erroneous example obtained by multiplication of three

concrete totally positive 4 × 4 upper-triangular matrices, but the order of
multiplication of matrices used to produce this example was not the correct
one. Below we present a right statement which claims the opposite to that of
Theorem B. Its proof can be essentially found in a recent paper [1].

1. Introduction

Recall that a classical result due to H. Schubert, [7] claims that for a generic
(k+1)(n− k)-tuple of k-dimensional complex subspaces in CPn there exist ♯k,n =
1!2!...(n−k−1)!((k+1)(n−k))!

(k+1)!(k+2)!...(n)! complex projective subspaces of dimension (n− k − 1) in

CPn intersecting each of the above k-dimensional susbspaces. (The number ♯k,n is
the degree of the Grassmannian of projective k-dimensional subspaces in CPn con-
sidered as a projective variety embedded using Plücker coordinates.) The following
conjecture has been formulated in early 1990’s by the authors (unpublished); it has
been proven in two fascinating papers [3, 2] some years ago. (Recently two novel
and very different proofs of these results have been in [4] and [6]).

Conjecture on total reality. For the real rational normal curve ρn : S1 → RPn

and any (k + 1)(n − k)-tuple of pairwise distinct real projective k-dimensional
osculating subspaces to ρn, there exist ♯k,n real projective subspaces of dimension
(n− k − 1) in RPn intersecting each of the above osculating subspaces.

Many discussions and further results related to the latter conjecture can be found
in [9].

Originally, the authors suspected that the latter conjecture were also valid for
convex curves and not just for the rational normal curve where a curve γ : S1 →
RPn (resp. γ : [0, 1] → RPn) is called convex if any hyperplaneH ⊂ RPn intersects
γ at most n times counting multiplicities. (Discussions of various properties of
convex curves can be found in a number of earlier papers by the authors as well as
in other publications). In particular, at each point of a convex curve γ there exists
a well-defined Frenet frame and therefore a well-defined osculating k-dimensional
subspace for any k = 1, . . . , n− 1.

Theorem B of [8] erroneously claims that there exists a convex curve in RP 3

and a 4-tuple of its tangent lines such that there are no real lines intersecting all of
them. (In this case k = 1, n = 3 and ♯1,3 = 2). The correct statement is as follows.

Theorem 1. For any convex curve γ : S1 → RP 3 (resp. γ : [0, 1] → RP 3) and
any 4-tuple of its tangent lines L = (ℓ1, ℓ2, ℓ3, ℓ4), there exist two real distinct lines
L1 and L2 intersecting each line in L.
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In other words, Theorem 1 claims that total reality conjecture is valid in the
special case k = 1, n = 3 for convex curves as well. Its proof follows straight
forwardly from the next result of [1]. (We want to thank S. Karp for providing us
the formulation and the proof of this statement.)

Theorem 2. Let Wi, i = 1, 2, 3, 4 be 4× 2 real matrices, such that the 4× 8 matrix
formed by concatenating W1,W2,W3, and W4 has all its 4 × 4 minors positive.
Then regarding each Wi as an element of the real Grassmannian Gr2,4(R), there
exist two distinct U ∈ Gr2,4(R) such that U ∩Wi 6= ∅ for i = 1, 2, 3, 4.

Proof. Let A := [W1 W2 W3 W4] be the 4 × 8 matrix formed by concatenating
W1,W2,W3, and W4. After acting on R4 by an element of a GL4(R) with positive
determinant, we may assume that A = [X Y ], where X is a 4 × 4 totally positive
matrix and

Y =









0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0









Then X = [W1 W2] and Y = [W3 W4]. Set

U :=









1 0
−x 0
0 −1
0 y









(x, y ∈ R).

Then inside Gr2,4(R), we have U ∩ W3 6= ∅ and U ∩ W4 6= ∅. Also, we have
U ∩W1 6= ∅ and U ∩W2 6= ∅ if and only if

det[W1 U ] = 0 and det[W2 U ] = 0.

These conditions give the following two equations:

∆13,12xy+∆14,12x+∆23,12y+∆24,12 = 0 and ∆13,34xy+∆14,34x+∆23,34y+∆24,34 = 0,

where ∆I,J denotes the determinant of the submatrix of X in rows I and columns
J . Using the second equation to solve for y in terms of x and substituting into the
first equation, we obtain a quadratic equation in x whose discriminant equals

D = (∆13,12∆24,34 −∆24,12∆13,34 −∆14,12∆23,34 +∆23,12∆14,34)
2

−4(∆13,12∆14,34 −∆14,12∆13,34)(∆23,12∆24,34 −∆24,12∆23,34).

To settle Theorem 2 it suffices to show that under our assumptions D > 0.

Since X is totally positive, by the LoewnerWhitney theorem [5, 10] we can write

X =









1 0 0 0
g + j + l 1 0 0

hj + hl + kl h+ k 1 0
ikl ik k 1









·









m 0 0 0
0 n 0 0
0 0 o 0
0 0 0 p









.·









1 f + d+ a ab+ ae+ de abc
0 1 b+ e bc
0 0 1 c
0 0 0 1









where a, . . . , p > 0. Then we calculate

D = m2n2(FG+H2),

where

F = acehijmo+acehilmo+2cdehijmo+ cdehilmo+abhjmp+abhlmp+abklmp+

aehjmp+aehlmp+aeklmp+cehino+dehjmp+dehlmp+deklmp+bhnp+2bknp+ehnp+eknp,
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G = acehijmo+acehilmo+cdehilmo+abhjmp+abhlmp+abklmp+aehjmp+aehlmp+

aeklmp+ cehino+ dehjmp+ dehlmp+ deklmp+ bhnp+ ehnp+ eknp,

H = bknp− cdehijmo.

Since F and G are positive in case when a, . . . , p > 0 we get that D > 0. �

In order to deduce Theorem 1 from Theorem 2 we need the following Lemma.

Lemma 3. For any convex curve γ : S1 → RP 3 (resp. γ : [0, 1] → RP 3) and any
4-tuple of its tangent lines L = (ℓ1, ℓ2, ℓ3, ℓ4), there exists a basic e1, e2, e3, e4 in

R4 where RP 3 = (R4 \ 0)/R∗ and bases in the 2-dimensional subspace ℓ̃1, ℓ̃2, ℓ̃3, ℓ̃4
of R4 covering ℓ1, ℓ2, ℓ3, ℓ4 resp. such that the 4 × 2 matrices W1,W2,W3,W4 ex-
pressing the chosen bases of ℓ̃1, ℓ̃2, ℓ̃3, ℓ̃4 w.r.t e1, e2, e3, e4 satisfy the assumptions
of Theorem 2.

Proof. Notice that given a convex curve γ : S1 → RP 3 (resp. γ : [0, 1] → RP 3) as
above, one can always find its lift γ̃ : S1 → R

4 \ 0 (resp. γ̃ : [0, 1] → R
4 \ 0) such

that the projectivization map RP 3 = (R4 \ 0)/R∗ sends γ̃ to γ. Since γ is convex,
the lift γ̃ satisfies the property that any linear hyperplane H ⊂ R4 intersects γ̃ at
most 4 times counting multiplicities.

Now set ej = γ̃(j−1)(0), j = 1, 2, 3, 4 where γ̃(s) stands for the derivative of γ̃
of order s considered as a vector function with values in R4. By convexity, the
vectors e1, e2, e3, e4 are linearly independent and therefore form a basis in R4. In
what follows we consider coordinates in R4 with respect to the basis {ej}.

The Wronski matrix of γ̃ at t = 0 written in these coordinates coincides with
the identity matrix and therefore has determinant 1. In particular, this implies
that the determinant of the 4 × 4 matrix whose rows are given by the coordinates
of a 4-tuple of vectors γ̃(δi) in the latter basis where 0 ≤ δ1 < δ2 < δ3 < δ4 < δ
with sufficiently small δ is positive. Furthermore, by definition of convexity, the
determinant of the 4 × 4 matrix with rows γ̃(θi), i = 1, 2, 3, 4 does not vanish for
any 4-tuple 0 ≤ θ1 < θ2 < θ3 < θ4 ≤ 1. Thus, this determinant is positive since its
value is close to 1 for sufficiently small θi’s.

Thus all 4 × 4 minors of the matrix U = (Ui,j)1≤i≤8
1≤j≤4

, where Ui,j = γ̃j(ti) are

positive for any choice 0 ≤ t1 < t2 < t3 < t4 < t5 < t6 < t7 < t8 ≤ 1. Choosing
0 < t1 < t3 < t5 < t7 < 1 arbitrarily, set t2i = t2i−1 + ε for i = 1, 2, 3, 4 where ε is
sufficiently small. Notice that γ̃(t2i) = γ̃(t2i−1) + εγ̃′(t2i−1) + o(ε).

Now introduce the 8-tuple of vectors wi, where w2k−1 = γ̃(t2k−1), k = 1, 2, 3, 4,
and w2k = γ̃(t2k−1) + εγ′(t2k−1). Define the 8 × 4 matrix W = (Wi,j), where
Wij = (wi)j .

Then for any ordered index set I = {1 ≤ i1 < i2 < i3 < i4 ≤ 8}, let UIand WI

denote the determinants of submatrices of U and W respectively formed by rows
indexed by I.

Define κk =

{

1, if {2k − 1, 2k} ⊂ I

0, otherwise.
, and κI :=

∑4
k=1 κk.

Obviously, WI = O(εκI ) and UI = WI + o(εκI ). As we have noticed above, UI ’s
are positive for all index sets I which yields that all WI ’s are positive as well if
ε is sufficiently small. It remains to notice that matrix W satisfies the conditions
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of Theorem 2 and it consists of the 4-tuple of pairs of vectors spanning the 2-
dimensional subspaces ℓ̃1, ℓ̃2, ℓ̃3, ℓ̃4 respectively. �

Problem 1. Prove or disprove the total reality conjecture for convex curves for
other values of parameters k and n.
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