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Abstract. We study the effect of the fast rotation and vertical viscosity on the lifespan of solutions
to the three-dimensional primitive equations (also known as the hydrostatic Navier-Stokes equations)

with impermeable and stress-free boundary conditions. Firstly, for a short time interval, independent
of the rate of rotation |Ω|, we establish the local well-posedness of solutions with initial data that is

analytic in the horizontal variables and only L2 in the vertical variable. Moreover, it is shown that the

solutions immediately become analytic in all the variables with increasing-in-time (at least linearly) radius
of analyticity in the vertical variable for as long as the solutions exist. On the other hand, the radius of

analyticity in the horizontal variables might decrease with time, but as long as it remains positive the

solution exists. Secondly, with fast rotation, i.e., large |Ω|, we show that the existence time of the solution
can be prolonged, with “well-prepared” initial data. Finally, in the case of two spatial dimensions with

Ω = 0, we establish the global well-posedness provided that the initial data is small enough. The smallness

condition on the initial data depends on the vertical viscosity and the initial radius of analyticity in the
horizontal variables.
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1. Introduction

We consider the following 3D viscous primitive equations (PEs) with only vertical viscosity for the
large-scale oceanic and atmospheric dynamics:

∂tV + V · ∇V + w∂zV − ν∂zzV + ΩV⊥ +∇p = 0, (1.1a)

∂zp = 0, (1.1b)

∇ · V + ∂zw = 0, (1.1c)

in the horizontal channel D :=
{

(x, z)> = (x, y, z)> : x> ∈ T2, z ∈ (0, 1)
}

, subject to the following initial
and boundary conditions:

V|t=0 = V0, (1.2)

(∂zV, w)|z=0,1 = 0, and (V, w) are periodic in x with period 1. (1.3)

Here the horizontal velocity field V = (u, v)>, the vertical velocity w, and the pressure p are the unknowns
of the initial-boundary value problem. The 2D horizontal gradient is denoted by ∇ = (∂x, ∂y)>. The
positive constant ν is the vertical viscosity coefficient. ΩV⊥ = Ω(−v, u)> represents the Coriolis force with
magnitude |Ω| ∈ R+. As one will see later, the Coriolis force induces linear rotation waves with rotating
rate |Ω|. The 3D viscous PEs can be derived as the asymptotic limit of the small aspect ratio between the
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vertical and horizontal length scales from the Boussinesq system, which is justified rigorously first in [1] in
a weak sense, then later in [39] in a strong sense with error estimates (see also a recent paper [40] for the
PEs with anisotropic horizontal viscosity). Notice that we have omitted the coupling with temperature
in (1.1) for the sake of simple and clear presentation. System (1.1) is also referred to as the anisotropic
vertically viscous hydrostatic Navier-Stokes equations.

The global well-posedness of strong solutions to the 3D PEs with full viscosity was first established in
[15], and later in [30]. See also [35, 36] for different boundary conditions, and [26] for solutions with less
regular initial data. In [11, 12, 13], the authors consider global well-posedness of strong solutions to the
3D PEs with only horizontal viscosity.

In the inviscid case without rotation (Ω = 0), the linear ill-posedness of solutions in Sobolev spaces
has been established in [45]. Later on, the nonlinear ill-posedness of the inviscid PEs without rotation
was established in [25]. Moreover, without rotation, it was proved that smooth solutions to the inviscid
PEs can develop singularity in finite time [10, 46]. Recently, it is shown in [27] that these results can
be extended to the case with rotation, i.e., Ω 6= 0. Under some structural (local Rayleigh condition) or
analyticity assumption of the initial data, the well-posedness theory was studied in [8, 9, 22, 23, 33, 34, 42].
In particular, it has been shown that the lifespan of solutions to the 3D inviscid PEs can be prolonged
provided that the rate of rotation is fast enough and the initial data is “well-prepared” in [22]. Similar
results have been studied in the case of the 3D fast rotating Euler, Navier-Stokes, and Boussinesq equations
in [3, 4, 5, 6, 16, 17, 18, 28, 31] (see also [2, 24, 32, 41] for some explicit examples demonstrating the
mechanism).

For the PEs with only vertical viscosity, it has been shown in [45] that system (1.1) is ill-posed in any
Sobolev space. This ill-posedness can be overcome by considering additional linear (Rayleigh-like friction)
damping, see [14] for the reduced 3D case. On the other hand, with Gevrey regularity and some convex
conditions on the initial data, the local well-posedness is established in [21]. When the initial data is
analytic in the horizontal variables x and is sufficiently small, the global well-posedness is proved in [44] in
2D, with Ω = 0 and Dirichlet boundary condition. In this paper, we consider (1.1) in 3D, with arbitrary
Ω ∈ R and subject to impermeable and stress-free boundary conditions.

The main results of this paper are roughly summarized as follows:

R1 Local well-posedness (see Theorem 3.2): Assume that V0 is analytic in the horizontal variables
x and only L2 in the vertical variable z. Let Ω ∈ R be arbitrary but fixed. Then there exists
a positive time T > 0, independent of Ω, such that there exists a unique Leray-Hopf type weak
solution V to system (1.1) (see Definition 3.1, below). Moreover the weak solution V depends
continuously on the initial data and in particular it is unique.

R2 Instantaneous analyticity in the vertical variable (see Theorem 3.3): With the same assumptions
as in R1 above, the unique Leray-Hopf type weak solution V immediately becomes analytic in z
for t > 0. Moreover, thanks to the viscous effect the radius of analyticity in z increases in time,
at least linearly, for as long as the solution exists. On the other hand, the radius of analyticity in
the horizontal variables might decrease with time, but as long as it remains positive the solution
exists.

R3 Long-time existence (see Theorem 5.1): Let |Ω| ≥ |Ω0| with |Ω0| large enough, in particular
|Ω0| > 1. Assume that the analytic-Sobolev norm (see (2.3), below) of both the barotropic mode

V0 and baroclinic mode Ṽ0 are O(1), and that some Sobolev norm of Ṽ0 is O( 1
|Ω0| ), as |Ω0| → ∞.

Then a lower bound, T , of the existence time of the Leray-Hopf type weak solution to system
(1.1) with |Ω| ≥ |Ω0| satisfies

T = O(log[log[log(log(|Ω0|))]])→∞ as |Ω0| → ∞. (1.4)
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Moreover, as a corollary of R2, the solution is analytic in all variables (see Remark 9, below).
R4 Long-time existence with small barotropic mode (see Theorem 5.2): Let |Ω| ≥ |Ω0| > 1 and |Ω0|

be large enough.
(a) Under the assumption that the solution V to the 2D Euler equations with initial data V0

is uniformly-in-time bounded in the analytic space norm, (1.4) can be improved to T =
O(log(log(|Ω0|))). Let us note that this result is parallel to a similar one in the inviscid case
[22].

(b) Moreover, under the assumption that V is uniformly-in-time small enough (the smallness
condition is independent of |Ω0|) in the analytic space norm, the smallness requirement on

the Sobolev norm of Ṽ0 can be relaxed and is independent of Ω0, and (1.4) can be improved
to T = O(log(|Ω0|)), as |Ω0| → ∞. In view of work reported in [29] about the growth of
solutions of 2D Euler equations, we observe that the above assumptions about the smallness
of V might not be valid for all initial data.

(c) If the analytic norm of V0 is of order O( 1
|Ω0| ), as |Ω0| → ∞, then the smallness requirement

on the Sobolev norm of Ṽ0 can be relaxed and independent of Ω0; moreover, (1.4) can be

improved to T = O(|Ω0|
1
2 ).

R5 Global well-posedness in 2D with Ω = 0 (see Theorem 6.1): In the 2D case with Ω = 0, suppose
that the initial data V0 is analytic only in the horizontal variable with small analytic-Sobolev
norm (the smallness condition depends on ν and the initial radius of analyticity τ0). Then the
unique Leray-Hopf type weak solution exists globally in time. Furthermore, R2 implies that the
solution is analytic in all variables.

Compared to the inviscid case [22], this paper investigates the combined effect of the fast rotation and
the vertical viscosity. The main differences are the following:

• The presence of vertical viscosity allows the initial data to be only L2 in the z-variable, while the
inviscid PEs requires initial data to be analytic in all spatial variables.

• Under the assumption that the analytic norm of V0 is of order O( 1
Ω0

) (i.e., the assumption in

R4(c)), the smallness assumption on the Sobolev norm of Ṽ0 can be relaxed to become independent

of Ω0, and the existence time can be improved to T = O(|Ω0|
1
2 ), which is an unknown property

in the inviscid case .
• In the 2D case with Ω = 0 and vanishing initial barotropic mode (i.e., R5), the PEs with vertical

viscosity is globally well-posed with small initial data, which does not hold in the inviscid case
thanks to the finite-time blowup result as shown in [10, 27, 46].

Compared to the work [44], which studies the 2D model subject to Dirichlet boundary condition without
rotation, we investigate here both the 2D and 3D models subject to the impermeable and stress-free
boundary conditions. While recognizing the subtle difference between the imposed boundary conditions
and their mathematical and physical implications, the result reported in [44] is, roughly speaking, along
the lines of the statement in R5, above, focusing on the 2D case. Meanwhile, our main objective in this
contribution is to study the combined effect of the fast rotation and viscosity in the 3D case, as it has
been summarized in R1 – R4 above.

The paper is organized as follows. In section 2, we introduce the notations and some preliminary results
which will be used throughout this paper. In section 3, we establish the local well-posedness of system
(1.1) and instantaneous analytic regularity in the vertical variable by proving Theorem 3.2 (i.e., R1) and
Theorem 3.3 (i.e., R2). In section 4, we derive the formal limit resonant system of (1.1) when |Ω| → ∞
and establish some properties about the limit system. Section 5 is the centerpiece of this paper and is
devoted to studying the effect of rotation, where we prove Theorem 5.1 (i.e., R3) and Theorem 5.2 (i.e.,
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R4). In section 6, we prove the global well-posedness in the 2D case with Ω = 0, i.e., Theorem 6.1 (i.e.,
R5).

2. Preliminaries

In this section, we introduce the notations and collect some preliminary results that will be used in this
paper. The generic constant C appearing in this paper may change from line to line. We use subscript,
e.g., Cr, to emphasize the dependence of the constant on r.

2.1. Functional settings. We use the notation (x, z) = (x, y, z) ∈ D = T2×[0, 1], where x and z represent
the horizontal and vertical variables, respectively. T2 is the two-dimensional torus with unit length. Denote
by L2(D), the Lebesgue space of complex/real valued functions f(x, z) satisfying

∫
D |f(x, z)|2dxdz <∞,

endowed with the norm

‖f‖ := ‖f‖L2(D) = (

∫
D
|f(x, z)|2dxdz) 1

2 ,

and the inner product

〈f, g〉 :=

∫
D
f(x, z)g∗(x, z) dxdz (2.1)

for f, g ∈ L2(D). Here g∗ represents the complex conjugate of g. Given any time T > 0, Lp(0, T ;X)

represents the space of functions f : [0, T ]→ X satisfying
∫ T

0
‖f(t)‖pXdt <∞, where X is a Banach space

with norm ‖ · ‖X . For a function f ∈ L2(D), we use f̂k(z),k ∈ 2πZ2, to denote its Fourier coefficients in
the x-variables, i.e.,

f̂k(z) :=

∫
T2

e−ik·xf(x, z)dx, and hence f(x, z) =
∑

k∈2πZ2

f̂k(z)eik·x. (2.2)

Let A :=
√
−∆h, where ∆h = ∂xx + ∂yy is the horizontal Laplacian, defined by, in terms of the Fourier

coefficients,

Âfk(z) := |k|f̂k(z), k ∈ 2πZ2.

For r ≥ 0, we define

Hr(D) := {f ∈ L2(D) : ‖f‖Hr <∞},
with

‖f‖Hr :=
∑

0≤m≤r,m∈Z

(
‖Ar−m∂mz f‖2 + ‖∂mz f‖2

) 1
2 .

Notice that, with (2.2), we have

‖∂mz f‖2 =

∫ 1

0

( ∑
k∈2πZ2

|∂mz f̂k(z)|2
)
dz and ‖Ar−m∂mz f‖2 =

∫ 1

0

( ∑
k∈2πZ2

|k|2(r−m)|∂mz f̂k(z)|2
)
dz.

In addition, given any r ≥ 0 and s ≥ 0 with s ∈ Z, we define the anisotropic Sobolev space

Hr
xH

s
z (D) := {f ∈ L2(D) : ‖f‖HrxHsz <∞},

where the anisotropic Sobolev norm is given by

‖f‖HrxHsz :=
∑
m≤s

(
‖Ar∂mz f‖2 + ‖∂mz f‖2

) 1
2 .

On the other hand, given any r ≥ 0, s ≥ 0, and τ ≥ 0, with s ∈ Z, we define the analytic-Sobolev space

Sr,s,τ := {f ∈ L2(D) : ‖f‖r,s,τ <∞},
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where the norm is given by

‖f‖r,s,τ :=
∑
m≤s

(‖AreτA∂mz f‖2 + ‖∂mz f‖2)
1
2 , (2.3)

with, recalling (2.2),

‖AreτA∂mz f‖2 :=

∫ 1

0

( ∑
k∈2πZ2

|k|2re2τ |k||∂mz f̂k(z)|2
)
dz.

Roughly speaking, Sr,s,τ is the space of functions that are analytic with radius τ in the x-variables, and
Hs in the z-variable. The space of analytic functions is a special case of Gevrey class. For more details
about Gevrey class, we refer readers to [19, 20, 22, 38]. Notice that when τ = 0, one has Sr,s,0 = Hr

xH
s
z (D).

Remark 1. With abuse of notation, we also write f ∈ Sr,0,τ for f = f(x) depending only on the horizontal
variables.

The following lemma summarizes the algebraic property of functions with analyticity in the horizontal
variables:

Lemma 2.1. For τ ≥ 0 and r > 1, we have

‖AreτA(fg)(z)‖L2
x
≤ Cr

(
|f̂0(z)|+ ‖AreτAf(z)‖L2

x

)(
|ĝ0(z)|+ ‖AreτAg(z)‖L2

x

)
,

provided that the right hand side is bounded, where, according to (2.2),

f̂0(z) =

∫
T2

f(x, z)dx.

The proof of Lemma 2.1 is standard. We refer to [19, 22, 43] for details.

With k = (k1, k2, k3) ∈ 2π
(
Z2 × (Z+ ∪ {0})

)
, we define

φk = φk1,k2,k3 :=

{√
2ei(k1x1+k2x2) cos( 1

2k3z) if k3 6= 0,

ei(k1x1+k2x2) if k3 = 0,
(2.4)

and

V := {φ ∈ C∞(D)
∣∣∣ φ =

∑
k∈2π

(
Z2×(Z+∪{0})

) akφk, a−k1,−k2,k3 = a∗k1,k2,k3 ,

∫ 1

0

∇ · φ = 0}. (2.5)

Here a∗ denotes the complex conjugate of a. Let

H := the closure of V in L2(D) and V := the closure of V in H1(D),

with norms given by

‖ · ‖H := ‖ · ‖L2(D) and ‖ · ‖V := ‖ · ‖H1(D), respectively.

Then one has

V ⊂ H ≡ H ′ ⊂ V ′, V ↪→↪→ H ↪→↪→ V ′.
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2.2. Projections and reformulation of the problem. In this paper, we assume that
∫
D V0(x, z)dxdz =

0. This assumption is made to simplify the mathematical presentation. In fact, integrating (1.1a) in D
leads to, after applying integration by parts, (1.1c), and (1.3),

∂t

∫
D
Vdxdz + Ω

∫
D
V⊥dxdz = 0. (2.6)

Therefore, under our assumption, one has∫
D
V(t)dxdz =

∫
D
V0(x, z)dxdz = 0. (2.7)

With slight modifications, our result applies to the case when
∫
D V0(x, z)dxdz 6= 0.

Let

L̇2 :=
{
ϕ ∈ L2(D,R2) :

∫
D
ϕ(x, z)dxdz = 0

}
.

Denote the barotropic mode and the baroclinic mode of V by

V(x) :=

∫ 1

0

V(x, z)dz and Ṽ(x, z) := V − V, respectively. (2.8)

From (1.3) and (1.1c), we have

∇ · V =

∫ 1

0

∇ · V(x, z)dz = −
∫ 1

0

∂zw(x, z)dz = 0, (2.9)

and

w(x, z) = −
∫ z

0

∇ · Ṽ(x, s)ds. (2.10)

Remark 2. In the remaining of this paper, we will substitute w by its representation (2.10) without
explicitly pointing it out.

Since ∇ · V = 0, and V has zero mean over T2 thanks to (2.7), there exists a stream function ψ(x) such
that V = ∇⊥ψ = (−∂yψ, ∂xψ)>. Therefore, the space of solutions to (1.1) is given by

S := L̇2 ∩H =
{
ϕ ∈ L̇2 : ∇ · ϕ = 0

}
=
{
ϕ ∈ L̇2 : ϕ = ∇⊥ψ(x) + ϕ̃(x, z),

for some ψ,

∫
T2

ψ(x) dx = 0
}
.

(2.11)

Indeed, S is the analogy of “incompressible function space” for the PEs. Here ϕ and ϕ̃ are the barotropic
and baroclinic modes of ϕ, respectively, as in (2.8).

For ϕ ∈ L̇2, let the rotating operator be Jϕ := ϕ⊥ = (−ϕ2, ϕ1)>. Denote the Leray projection in T2

by

Phϕ := ϕ−∇∆−1
h ∇ · ϕ. (2.12)

Here, ∆−1
h represents the inverse of Laplacian operator in T2 with zero mean value. We define the analogy

of the Leray projection for the PEs Pp : L̇2 → S as

Ppϕ := ϕ̃+ Phϕ.

Moreover, let R : S → S be defined as

Rϕ := Pp(Jϕ).

With notations as above, a direct computation shows that

Rϕ = ϕ̃⊥ for ϕ ∈ S.
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Indeed, owing to (2.11), ϕ = ∇⊥ψ(x) + ϕ̃ ∈ S for some ψ(x). Then

Rϕ =Pp(J ϕ̃) + Pp(J∇⊥ψ(x))

=ϕ̃⊥ −Ph∇ψ(x)︸ ︷︷ ︸
≡0

= ϕ̃⊥.

Therefore, the kernel of R is given by

kerR =
{
ϕ ∈ S : ϕ̃⊥ = 0

}
=
{
ϕ ∈ S : ϕ = ϕ

}
. (2.13)

One can define the projection P0 : S → kerR by

P0ϕ := ϕ =

∫ 1

0

ϕ(x, z)dz. (2.14)

Notice that P0 can be interpreted as projection to the barotropic mode. The fact that kerR coincides
with the space of functions with only the barotropic mode plays an important role in our analysis.

Furthermore, let

P+ϕ :=
1

2
(ϕ̃+ iϕ̃⊥), and P−ϕ :=

1

2
(ϕ̃− iϕ̃⊥). (2.15)

Then it is easy to verify that

RP±ϕ = ∓iP±ϕ,
i.e., P± are the projection operators to eigenspaces of R with eigenvalues ∓i, respectively.

Similarly to [22, 17, 31], Lemma 2.2–2.3, below, summarize projection properties of P0,P±. For the
proof, we refer readers to [22] for details.

Lemma 2.2. For any ϕ ∈ L2(D), we have the following decomposition:

ϕ = P0ϕ+ P+ϕ+ P−ϕ. (2.16)

Moreover, we have the following properties:

P±P±ϕ = P±ϕ, P0P0ϕ = P0ϕ, and 0 ≡ P±P∓ϕ = P0P±ϕ = P±P0ϕ.

Lemma 2.3. For f, g ∈ L2(D), we have

〈P0f, g〉 = 〈f,P0g〉 = 〈P0f,P0g〉 and 〈P±f, g〉 = 〈f,P±g〉.

Here the L2 inner product is defined as (2.1). Moreover, if f ∈ Sr,s,τ with r, s, τ ≥ 0, s ∈ Z, we have

AreτA∂szP0f = P0A
reτA∂szf and AreτA∂szP±f = P±A

reτA∂szf.

Let I be the identity operator. A direct corollary of Lemma 2.3 is the following:

Corollary 2.4. Consider r ≥ 0, τ ≥ 0, and s ∈ Z+. Since V = P0V + (I−P0)V = V + Ṽ, we have

‖V‖2 = ‖V‖2 + ‖Ṽ‖2, ‖∂szV‖2 = ‖∂sz Ṽ‖2,

and

‖AreτAV‖2 = ‖AreτAV‖2 + ‖AreτAṼ‖2, ‖AreτA∂szV‖2 = ‖AreτA∂sz Ṽ‖2.

Moreover, after applying P0 and I−P0 to equation (1.1a), thanks to (1.3), (2.9), and (2.10), one can

derive the evolutionary equations for V and Ṽ as follows:

∂tV + V · ∇V + P0

(
(∇ · Ṽ)Ṽ + Ṽ · ∇Ṽ

)
+∇p = 0, (2.17a)
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∂tṼ + Ṽ · ∇Ṽ + Ṽ · ∇V + V · ∇Ṽ −P0

(
Ṽ · ∇Ṽ + (∇ · Ṽ)Ṽ

)
−
(∫ z

0

∇ · Ṽ(x, s)ds
)
∂zṼ + ΩṼ⊥ − ν∂zzṼ = 0.

(2.17b)

Here, we have abused the notation by denoting p − Ωψ with ∇⊥ψ(x, t) = V(x, t) as p, where ψ is the
stream function of V (see (2.11)).

Remark 3. According to (2.13), (2.17) can be viewed as the orthogonal decomposition of (1.1) into kerR
and (kerR)⊥. As |Ω| → ∞, formal asymptotic analysis of (2.17b) assures that, for well-prepared data

(i.e., data ensuring that (2.17b) makes sense), Ṽ → 0 in some functional space. Therefore, in the limiting
equations, (2.17) converge to the 2D Euler equations at leading order. In particular, in [22], it has been
shown that the lifespan of the solutions can be prolonged with well-prepared initial data in the inviscid
case.

According to (2.15), one has Ṽ⊥ = −iP+V + iP−V. Therefore, after applying P± to (2.17b), we arrive
at

∂tP±V + P±

(
Ṽ · ∇Ṽ + Ṽ · ∇V + V · ∇Ṽ −P0(Ṽ · ∇Ṽ + (∇ · Ṽ)Ṽ)

− (

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ
)
∓ iΩP±V − ν∂zzP±V = 0.

(2.18)

Let

V+ := e−iΩtP+V and V− := eiΩtP−V. (2.19)

Then, for r ≥ 0, τ ≥ 0, s ≥ 0, and s ∈ Z, it is straightforward to check that,

‖AreτA∂szV+‖2 = ‖AreτA∂szV−‖2 =
1

2
‖AreτA∂sz Ṽ‖2. (2.20)

One can derive from (2.18) that

∂tV± + e∓iΩtP±

(
Ṽ · ∇Ṽ + Ṽ · ∇V + V · ∇Ṽ −P0(Ṽ · ∇Ṽ + (∇ · Ṽ)Ṽ)

− (

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ
)
− ν∂zzV± = 0.

(2.21)

Thanks to Lemma 2.2 and (2.15), we have

P+(Ṽ · ∇Ṽ) =
1

2
(Ṽ · ∇Ṽ + iṼ · ∇Ṽ⊥)− 1

2
P0

(
Ṽ · ∇Ṽ + iṼ · ∇Ṽ⊥

)
=

1

2
Ṽ · ∇(Ṽ + iṼ⊥)− 1

2
P0

(
Ṽ · ∇(Ṽ + iṼ⊥)

)
= eiΩt

(
Ṽ · ∇V+ −P0(Ṽ · ∇V+)

)
,

P+(Ṽ · ∇V) =
1

2
(Ṽ · ∇V + iṼ · ∇V⊥) =

1

2
Ṽ · ∇(V + iV⊥),

P+(V · ∇Ṽ) =
1

2
(V · ∇Ṽ + iV · ∇Ṽ⊥) = eiΩt(V · ∇V+),

P+P0

(
Ṽ · ∇Ṽ + (∇ · Ṽ)Ṽ

)
= 0.
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After applying integration by parts, one has

P+

(
(

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ
)

=
1

2

(
(

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ + i(

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ⊥
)

− 1

2
P0

(
(

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ + i(

∫ z

0

∇ · Ṽ(x, s)ds)∂zṼ⊥
)

=eiΩt(

∫ z

0

∇ · Ṽ(x, s)ds)∂zV+ + eiΩtP0

(
(∇ · Ṽ)V+

)
.

Moreover, thanks to (2.15) and (2.19), Ṽ = V+e
iΩt + V−e−iΩt. Therefore, the V+ part of (2.21) can be

written as

∂tV+ =− eiΩt
(
V+ · ∇V+ −P0(V+ · ∇V+ + (∇ · V+)V+)− (

∫ z

0

∇ · V+(x, s)ds)∂zV+

)
−
(
V · ∇V+ +

1

2
(V+ · ∇)(V + iV⊥)

)
+ ν∂zzV+ − e−2iΩt 1

2
(V− · ∇)(V + iV⊥)

− e−iΩt
(
V− · ∇V+ −P0(V− · ∇V+ + (∇ · V−)V+)− (

∫ z

0

∇ · V−(x, s)ds)∂zV+

)
.

(2.22)

Similarly, the V− part of (2.21) can be written as

∂tV− =− e−iΩt
(
V− · ∇V− −P0(V− · ∇V− + (∇ · V−)V−)− (

∫ z

0

∇ · V−(x, s)ds)∂zV−
)

−
(
V · ∇V− +

1

2
(V− · ∇)(V − iV⊥)

)
+ ν∂zzV− − e2iΩt 1

2
(V+ · ∇)(V − iV⊥)

− eiΩt
(
V+ · ∇V− −P0(V+ · ∇V− + (∇ · V+)V−)− (

∫ z

0

∇ · V+(x, s)ds)∂zV−
)
.

(2.23)

In addition, (2.17a) can be written as

∂tV + V · ∇V + e2iΩtP0

(
V+ · ∇V+ + (∇ · V+)V+

)
+ e−2iΩtP0

(
V− · ∇V− + (∇ · V−)V−

)
+∇p+ P0

(
V+ · ∇V− + V− · ∇V+ + (∇ · V+)V− + (∇ · V−)V+

)
= 0.

Recalling (2.15) and (2.19), i.e., V± = e∓iΩtP±V = 1
2e
∓iΩt(Ṽ ± iṼ⊥), we rewrite the last term of the above

equation as

P0

(
V+ · ∇V− + V− · ∇V+ + (∇ · V+)V− + (∇ · V−)V+

)
=

1

2
P0

(
Ṽ · ∇Ṽ + Ṽ⊥ · ∇Ṽ⊥ + (∇ · Ṽ)Ṽ + (∇ · Ṽ⊥)Ṽ⊥

)
=

1

2
P0(∇|Ṽ|2) = ∇(

1

2
P0|Ṽ|2),

which can be combined with ∇p. Therefore, with abuse of notation, one can rewrite (2.17a) as

∂tV + (V · ∇V) +∇p+ e2iΩtP0

(
V+ · ∇V+ + (∇ · V+)V+

)
+e−2iΩtP0

(
V− · ∇V− + (∇ · V−)V−

)
= 0.

(2.24)

3. Local Well-posedness

In sections 3.1 and 3.2, below, we will establish the local well-posedness, i.e., the existence, the unique-
ness, and the continuous dependency on initial data, of weak solutions to system (1.1), defined as below:

Definition 3.1. Let T > 0, r > 2, τ0 > 0, and suppose that the initial data V0 ∈ Sr,0,τ0 ∩H. We say V
is a Leray-Hopf type weak solution to system (1.1) with initial and boundary conditions (1.2)–(1.3) if
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1) there exists τ(t) > 0, for t ∈ [0, T ], such that

V ∈ L∞
(
0, T ;Sr,0,τ(t)

)
∩ L2

(
0, T ;V ∩ Sr,1,τ(t) ∩ Sr+ 1

2 ,0,τ(t)

)
,

∂tV, Ar−
1
2 eτA∂tV ∈ L2

(
0, T ;V ′

)
,

2) system (1.1) is satisfied in the distribution sense,
3) and moreover, the following energy inequality holds:

‖V(t)‖2r,0,τ(t) + 2

∫ t

0

(
ν‖∂zV(s)‖2r,0,τ(s) + ‖Ar+ 1

2 eτ(s)AV(s)‖2
)
ds ≤ ‖V0‖2r,0,τ0 .

The following theorem is the main result in this section.

Theorem 3.2. Assume V0 ∈ Sr,0,τ0 ∩ H with r > 2 and τ0 > 0. Let Ω ∈ R be arbitrary and fixed.
Then there exist a positive time T > 0 and a positive function τ(t) > 0 given in (3.6) and (3.5), below,
respectively, such that V is a Leray-Hopf type weak solution, as in Definition 3.1, to system (1.1) with (1.2)
and (1.3) in [0, T ]. In particular, τ(t) and T are independent of Ω. Moreover, V is unique and depends
continuously on the initial data, in the sense of (3.21), below.

Notice that we do not need to assume (2.7) in Theorem 3.2. Throughout the rest of this section, we
assume that (V, p) satisfies (1.1)–(1.3) and is smooth enough such that the following calculation makes
sense. The rigid justification can be established through Galerkin approximation arguments (see, e.g.,
[22, 37]). In particular, in section 3.1, we establish the a priori estimates of solutions to system (1.1) with
(1.3). In section 3.2, we finish the proof of Theorem 3.2 by establishing the uniqueness and continuous
dependency on initial data. In section 3.3, we show that the weak solution immediately becomes analytic
in z, and the radius of analyticity in z increases as long as the solution exists.

3.1. A Priori Estimates. Direct calculation of 〈(1.1a),V〉 + 〈AreτA(1.1a), AreτAV〉, after applying in-
tegration by parts, (1.1c), and (1.3), shows that

1

2

d

dt
‖V‖2r,0,τ+ν‖∂zV‖2r,0,τ − τ̇‖Ar+

1
2 eτAV‖2 = −

〈
AreτA(V · ∇V), AreτAV

〉
+
〈
AreτA

[( ∫ z

0

∇ · V(x, s)ds
)
∂zV

]
, AreτAV

〉
=: I1 + I2.

(3.1)

By virtue of Lemma A.1, the Sobolev inequality, and the Hölder inequality, we have

|I1| ≤
∣∣∣〈AreτA(V · ∇V), AreτAV

〉∣∣∣
≤
∫ 1

0

Cr

(
‖AreτAV(z)‖L2(T2) + ‖V(z)‖L2(T2)

)
‖Ar+ 1

2 eτAV(z)‖2L2(T2)dz

≤ Cr(‖V‖r,0,τ + ‖∂zV‖r,0,τ )‖Ar+ 1
2 eτAV‖2.

Applying Lemma A.2 to I2 leads to

|I2| ≤ Cr‖∂zV‖r,0,τ‖Ar+
1
2 eτAV‖2.

Thus from (3.1), one has

1

2

d

dt
‖V‖2r,0,τ + ν‖∂zV‖2r,0,τ + ‖Ar+ 1

2 eτAV‖2 ≤
(
τ̇ + 1 + Cr(‖V‖r,0,τ + ‖∂zV‖r,0,τ )

)
×‖Ar+ 1

2 eτAV‖2 ≤
(
τ̇ + Cr(1 + ‖V‖2r,0,τ + ‖∂zV‖2r,0,τ )

)
‖Ar+ 1

2 eτAV‖2.
(3.2)

Choose τ such that
τ̇ + 1 + Cr(‖V‖r,0,τ + ‖∂zV‖r,0,τ ) = 0. (3.3)
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Then, one has
1

2

d

dt
‖V‖2r,0,τ + ν‖∂zV‖2r,0,τ + ‖Ar+ 1

2 eτAV‖2 ≤ 0.

For T > 0, to be determined, and t ∈ [0, T ], one has, after integrating (3.2) in the t-variable,

‖V(t)‖2r,0,τ(t) + 2

∫ t

0

(
ν‖∂zV(s)‖2r,0,τ(s) + ‖Ar+ 1

2 eτ(s)AV(s)‖2
)
ds ≤ ‖V0‖2r,0,τ0 . (3.4)

On the other hand, integrating (3.3) yields

τ(t) =τ0 − t− Cr
∫ t

0

(
‖V(s)‖r,0,τ(s) + ‖∂zV(s)‖r,0,τ(s)

)
ds

≥τ0 − (1 + Cr‖V0‖r,0,τ0)t− Cr√
2ν
‖V0‖r,0,τ0

√
t.

(3.5)

Consider, for Cr > 0 as in (3.5), that

T :=
(√C2

r‖V0‖2r,0,τ0
2ν + 2τ0(1 + Cr‖V0‖r,0,τ0)− Cr‖V0‖r,0,τ0√

2ν

2(1 + Cr‖V0‖r,0,τ0)

)2

> 0, (3.6)

which solves

(1 + Cr‖V0‖r,0,τ0)T − Cr√
2ν
‖V0‖r,0,τ0

√
T =

τ0
2
.

Then one has
τ(t) ≥ τ0/2 > 0 for t ∈ [0, T ].

Consequently, (3.4) implies that

V ∈ L∞
(
0, T ;Sr,0,τ(t)

)
∩ L2

(
0, T ;V ∩ Sr,1,τ(t) ∩ Sr+ 1

2 ,0,τ(t)

)
(3.7)

with T > 0 given as in (3.6) and τ(t) given as in (3.5) (or equivalently (3.3)).

Next, in order to obtain the estimate of ∂tV, testing (1.1a) with ∀φ ∈ V (see (2.5)) leads to〈
∂tV, φ

〉
+
〈
V · ∇V −

(∫ z

0

∇ · V(x, s)ds
)
∂zV + ΩV⊥ − ν∂zzV, φ

〉
= 0. (3.8)

where we have substituted, thanks to (1.1b) and (2.5), 〈∇p, φ〉 = −〈p,∇ · φ〉 = 0. Since r > 2, thanks to
the Hölder inequality and the Sobolev inequality, we obtain that∣∣∣〈V · ∇V, φ〉∣∣∣ ≤ C‖V‖L∞x L2

z
‖∇V‖L2

xL
2
z
‖φ‖L2

xL
∞
z
≤ Cr‖V‖2r,0,τ‖φ‖V

and ∣∣∣〈( ∫ z

0

∇ · V(x, s)ds
)
∂zV, φ

〉∣∣∣ ≤ ∫
T2

(∫ 1

0

|∇ · V|dz
)(∫ 1

0

|∂zV||φ|dz
)
dx

≤ C
∫
T2

‖∇V‖L2
z
‖∂zV‖L2

z
‖φ‖L2

z
dx ≤ C‖∇V‖L2

xL
2
z
‖∂zV‖L4

xL
2
z
‖φ‖L4

xL
2
z
≤ Cr‖V‖r,1,τ‖V‖r,0,τ‖φ‖V .

After applying integration by parts, one has∣∣∣〈ΩV⊥ − ν∂zzV, φ
〉∣∣∣ =

∣∣∣〈ΩV⊥, φ
〉

+ ν
〈
∂zV, ∂zφ

〉∣∣∣ ≤ Cν,Ω‖V‖r,1,τ‖φ‖V .
Therefore, one has∣∣∣〈∂tV, φ〉∣∣∣ ≤ Cν,r,Ω(‖V‖2r,0,τ + (1 + ‖V‖r,0,τ )‖V‖r,1,τ

)
‖φ‖V .

Since V is dense in V , thanks to (3.7), we have

∂tV ∈ L2(0, T ;V ′) and ‖∂tV‖L2(0,T ;V ′) ≤ Cν,r,Ω
(
‖V‖2r,0,τ + (1 + ‖V‖r,0,τ )‖V‖r,1,τ

)
<∞. (3.9)
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Meanwhile, for Ar−
1
2 eτA∂tV, one has, similarly as in (3.8),〈

Ar−
1
2 eτA∂tV, φ

〉
+
〈
Ar−

1
2 eτA

(
V · ∇V

)
−Ar− 1

2 eτA
(( ∫ z

0

∇ · V(x, s)ds
)
∂zV

)
+ ΩAr−

1
2 eτAV⊥ − ν∂zzAr−

1
2 eτAV, φ

〉
= 0.

With r > 2, thanks to Lemma 2.1, the Hölder inequality, and the Sobolev inequality, we obtain that∣∣∣〈Ar− 1
2 eτA

(
V · ∇V

)
, φ
〉∣∣∣ ≤ ‖Ar− 1

2 eτAV · ∇V‖L2
xL

1
z
‖φ‖L2

xL
∞
z

≤ Cr‖V‖r+ 1
2 ,0,τ
‖V‖r,0,τ‖φ‖V .

After applying integration by parts in the z-variable and the Hölder inequality, one has∣∣∣〈Ar− 1
2 eτA

(( ∫ z

0

∇ · V(x, s)ds
)
∂zV

)
, φ
〉∣∣∣ ≤ ∣∣∣〈Ar− 1

2 eτA
(

(∇ · V)V
)
, φ
〉∣∣∣

+
∣∣∣〈Ar− 1

2 eτA
(( ∫ z

0

∇ · V(x, s)ds
)
V
)
, ∂zφ

〉∣∣∣ ≤ Cr‖V‖r+ 1
2 ,0,τ
‖V‖r,0,τ‖φ‖V ,

and similarly, ∣∣∣〈ΩAr−
1
2 eτAV⊥ − ν∂zzAr−

1
2 eτAV, φ

〉∣∣∣ ≤ Cν,Ω‖V‖r,1,τ‖φ‖V .
Therefore, one has∣∣∣〈Ar− 1

2 eτA∂tV, φ
〉∣∣∣ ≤ Cν,r,Ω(‖V‖r+ 1

2 ,0,τ
‖V‖r,0,τ + ‖V‖r,1,τ

)
‖φ‖V .

Since V is dense in V , thanks to (3.7), we have

Ar−
1
2 eτA∂tV ∈ L2

(
0, T ;V ′

)
and

‖Ar− 1
2 eτA∂tV‖

L2
(

0,T ;V ′
) ≤ Cν,r,Ω(‖V‖r+ 1

2 ,0,τ
‖V‖r,0,τ + ‖V‖r,1,τ

)
<∞.

(3.10)

3.2. Uniqueness and continuous dependence on the initial data. In this section, we show the
uniqueness of solutions and the continuous dependence on the initial data. Let V1 and V2 be two weak
solutions with initial data (V0)1 and (V0)2, respectively. Assume the radius of analyticity of (V0)1 and
(V0)2 is τ0. By virtue of (3.5) and (3.6), for i = 1, 2, let

τi(t) := τ0 − t− Cr,i
∫ t

0

(
‖Vi(s)‖r,0,τi(s) + ‖∂zVi(s)‖r,0,τi(s)

)
ds,

and Ti :=
(√C2

r,i‖(V0)i‖2r,0,τ0
2ν + 2τ0(1 + Cr,i‖(V0)i‖r,0,τ0)− Cr,i‖(V0)i‖r,0,τ0√

2ν

2(1 + Cr,i‖(V0)i‖r,0,τ0)

)2

(3.11)

such that, according to (3.4), (3.7), (3.9), and (3.10),

‖Vi(t)‖2r,0,τi(t) + 2

∫ t

0

(
ν‖∂zVi(s)‖2r,0,τi(s) + ‖Ar+ 1

2 eτi(s)AVi(s)‖2
)
ds ≤ ‖(V0)i‖2r,0,τi0 ,

for t ∈ [0, Ti], and

Vi ∈ L∞
(
0, Ti;Sr,0,τi(t)

)
∩ L2

(
0, Ti;V ∩ Sr,1,τi(t) ∩ Sr+ 1

2 ,0,τi(t)

)
,

∂tVi and Ar−
1
2 eτiA∂tVi ∈ L2

(
0, Ti;V ′

)
.

We remind readers that Cr,i, i = 1, 2, are independent of Ω and τ0.

Let

M := max
{
‖(V0)1‖r,0,τ0 , ‖(V0)2‖r,0,τ0

}
. (3.12)
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Denote by δV := V1 − V2 and δp := p1 − p2. Let

τ̃(t) := τ0 − t− Cr
2∑
i=1

∫ t

0

(
‖Vi(s)‖r,0,τi(s) + ‖Vi(s)‖2r,0,τi(s) + ‖∂zVi(s)‖r,0,τi(s)

)
ds,

and T̃ :=
(√ 2C2

rM
2

ν + 2τ0
(
1 + 2Cr(M2 +M)

)
−
√

2CrM√
ν

2
(
1 + 2Cr(M2 +M)

) )2

,

(3.13)

where Cr is a positive constant, to be determined later, satisfying

Cr ≥ max{Cr,1, Cr,2}. (3.14)

In particular, (3.13) and (3.14) imply that τ̃(t) ≤ τi(t) and T̃ ≤ T̃i for i ∈ {1, 2} and t ∈ (0, T̃ ]. Therefore,
for i = 1, 2,

δV and Vi ∈ L∞
(
0, T̃ ;Sr,0,τ̃(t)) ∩ L2

(
0, T̃ ;V ∩ Sr,1,τ̃(t) ∩ Sr+ 1

2 ,0,τ̃(t)), (3.15)

∂tδV and Ar−
1
2 eτ̃A∂tδV ∈ L2

(
0, T̃ ;V ′

)
, (3.16)

and

‖Vi(t)‖2r,0,τ̃(t) + 2

∫ t

0

(
ν‖∂zVi(s)‖2r,0,τ̃(s) + ‖Ar+ 1

2 eτ̃(s)AVi(s)‖2
)
ds ≤M2,

for t ∈ [0, T̃ ].

From system (1.1), it is clear that

∂tδV + δV · ∇V1 + V2 · ∇δV −
(∫ z

0

∇ · δV(x, s)ds
)
∂zV1 −

(∫ z

0

∇ · V2(x, s)ds
)
∂zδV

+ΩδV⊥ − ν∂zzδV +∇δp = 0 and ∂zδp = 0.

Notice that from (3.15), one has that Ar−
1
2 eτ̃AδV ∈ L2

(
0, T̃ ;V

)
. Thanks to (3.16), similar calculation as

in (3.1) leads to

1

2

d

dt
‖δV‖2r− 1

2 ,0,τ̃
+ ν‖∂zδV‖2r− 1

2 ,0,τ̃
− ˙̃τ‖Areτ̃AδV‖2

=−
〈
δV · ∇V1 + V2 · ∇δV −

(∫ z

0

∇ · δV(x, s)ds
)
∂zV1 −

(∫ z

0

∇ · V2(x, s)ds
)
∂zδV, δV

〉
−
〈
Ar−

1
2 eτ̃A(δV · ∇V1), Ar−

1
2 eτ̃AδV

〉
+
〈
Ar−

1
2 eτ̃A

[( ∫ z

0

∇ · δV(x, s)ds
)
∂zV1

]
, Ar−

1
2 eτ̃AδV

〉
−
〈
Ar−

1
2 eτ̃A(V2 · ∇δV), Ar−

1
2 eτ̃AδV

〉
+
〈
Ar−

1
2 eτ̃A

[( ∫ z

0

∇ · V2(x, s)ds
)
∂zδV

]
, Ar−

1
2 eτ̃AδV

〉
.

(3.17)

After applying integration by parts, the Hölder inequality, the Young inequality, and the Sobolev inequality,
since r > 2, one has∣∣∣〈δV · ∇V1 + V2 · ∇δV −

(∫ z

0

∇ · δV(x, s)ds
)
∂zV1 −

(∫ z

0

∇ · V2(x, s)ds
)
∂zδV, δV

〉∣∣∣
=
∣∣∣〈δV · ∇V1 −

(∫ z

0

∇ · δV(x, s)ds
)
∂zV1, δV

〉∣∣∣ ≤ Cr− 1
2
‖V1‖r,1,τ̃‖δV‖2r− 1

2 ,0,τ̃
.
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Thanks to Lemmas A.1 and A.2, the Hölder inequality, the Young inequality, and the Sobolev inequality,
since r > 2, one has∣∣∣〈Ar− 1

2 eτ̃A(δV · ∇V1), Ar−
1
2 eτ̃AδV

〉∣∣∣
≤
∫ 1

0

Cr− 1
2

[
(‖Ar− 1

2 eτ̃AδV(z)‖L2(T2) + ‖δV(z)‖L2(T2))‖Areτ̃AV1(z)‖L2(T2)‖Areτ̃AδV(z)‖L2(T2)

+ ‖Areτ̃AδV(z)‖L2(T2)‖Areτ̃AV1(z)‖L2(T2)‖Ar−
1
2 eτ̃AδV(z)‖L2(T2)

]
dz

≤ Cr− 1
2
‖V1‖r,1,τ̃ (‖δV‖2r− 1

2 ,0,τ̃
+ ‖Areτ̃AδV‖2),∣∣∣〈Ar− 1

2 eτ̃A(V2 · ∇δV), Ar−
1
2 eτ̃AδV

〉∣∣∣
≤
∫ 1

0

Cr− 1
2

[
(‖Ar− 1

2 eτ̃AV2(z)‖L2(T2) + ‖V2(z)‖L2(T2))‖Areτ̃AδV(z)‖L2(T2)‖Areτ̃AδV(z)‖L2(T2)

+ ‖Areτ̃AV2(z)‖L2(T2)‖Areτ̃AδV(z)‖L2(T2)‖Ar−
1
2 eτ̃AδV(z)‖L2(T2)

]
dz

≤ Cr− 1
2
‖V2‖r,1,τ̃‖Areτ̃AδV‖2,∣∣∣〈Ar− 1

2 eτ̃A
[( ∫ z

0

∇ · δV(x, s)ds
)
∂zV1

]
, Ar−

1
2 eτ̃AδV

〉∣∣∣ ≤ Cr− 1
2
‖V1‖r,1,τ̃‖Areτ̃AδV‖2,

and∣∣∣〈Ar− 1
2 eτ̃A

[( ∫ z

0

∇ · V2(x, s)ds
)
∂zδV

]
, Ar−

1
2 eτ̃AδV

〉∣∣∣
≤ Cr− 1

2
‖Areτ̃AV2‖‖∂zδV‖r− 1

2 ,0,τ̃
‖Areτ̃AδV‖ ≤ ν

2
‖∂zδV‖2r− 1

2 ,0,τ̃
+ Cν,r− 1

2
‖V2‖2r,0,τ̃‖Areτ̃AδV‖2.

(3.18)

Consequently, combining the calculations between (3.17) and (3.18) yields

1

2

d

dt
‖δV‖2r− 1

2 ,0,τ̃
+

1

2
ν‖∂zδV‖2r− 1

2 ,0,τ̃

≤
(

˙̃τ + Cν,r− 1
2
‖V2‖2r,0,τ̃ + Cr− 1

2
(‖V1‖r,1,τ̃ + ‖V2‖r,1,τ̃ )

)
‖Areτ̃AδV‖2 + Cr− 1

2
‖V1‖r,1,τ̃‖δV‖2r− 1

2 ,0,τ̃
.

In addition, from (3.13), and (3.14), and the fact that τi(t) ≥ τ̃(t), i = 1, 2, one can derive that

˙̃τ + Cν,r− 1
2
‖V2‖2r,0,τ̃ + Cr− 1

2
(‖V1‖r,1,τ̃ + ‖V2‖r,1,τ̃ )

=− 1− Cr
2∑
i=1

(
‖Vi(t)‖r,0,τi(t) + ‖Vi(t)‖2r,0,τi(t) + ‖∂zVi(t)‖r,0,τi(t)

)
+ Cν,r− 1

2
‖V2‖2r,0,τ̃ + Cr− 1

2
(‖V1‖r,1,τ̃ + ‖V2‖r,1,τ̃ )

≤
(
C̃ν,r− 1

2
− Cr

) 2∑
i=1

(
‖Vi(t)‖r,0,τ̃(t) + ‖Vi(t)‖2r,0,τ̃(t) + ‖∂zVi(t)‖r,0,τ̃(t)

)
≤ 0,

where we have chosen

Cr := max{C̃ν,r− 1
2
, Cr,1, Cr,2}. (3.19)

In conclusion, with Cr satisfying (3.19), one has

1

2

d

dt
‖δV‖2r− 1

2 ,0,τ̃
+

1

2
ν‖∂zδV‖2r− 1

2 ,0,τ̃
≤ Cr− 1

2
‖V1‖r,1,τ̃‖δV‖2r− 1

2 ,0,τ̃
. (3.20)
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Applying the Grönwall inequality to (3.20) results in

‖δV(t)‖2r− 1
2 ,0,τ̃(t) ≤ ‖δV(0)‖2r− 1

2 ,0,τ0
exp(

∫ t

0

2Cr− 1
2
‖V1(s)‖r,1,τ̃(s)ds) (3.21)

for t ∈ [0, T̃ ], which establishes the continuous dependence on the initial data as well as the uniqueness of
the weak solutions. This, together with section 3.1, finishes the proof of Theorem 3.2.

3.3. Instantaneous analyticity in the z-variable. In this section, we will show that the weak solution
obtained in Theorem 3.2 immediately becomes analytic in the z-variable (and thus analytic in all variables)
when t > 0. Moreover, the radius of analyticity in the z-variable increases as long as the solution exists.
For simplicity, we consider the even extension for V in the z-variable, which is compatible with (1.3), and
work in the unit three-dimensional torus T3 instead of D. With abuse of notations, we use V to represent
both V in D and its even extension with respect to the z-variable in T3.

We first introduce the following notations that are only used in this subsection. For f ∈ L2(T3) even
with respect to the z-variable, we consider the following functional space

Sr,s,τ,η :=
{
f ∈ L2(T3), ‖f‖r,s,τ,η <∞, f even with respect to the z-variable

}
,

where

‖f‖2r,s,τ,η :=
∑

k∈2πZ2,k3∈2πZ

(
1 + (|k|2r + |k3|2s)e2τ |k|e2η|k3|

)
|f̂k,k3 |2

and f̂k,k3 :=

∫
T3

e−ik·x−ik3zf(x, z) dxdz.

Denote by

Ah :=
√
−∆h, Az :=

√
−∂zz,

subject to periodic boundary condition, defined by, in terms of the Fourier coefficients,

(Ârhf)k,k3 := |k|rf̂k,k3 , (Âszf)k,k3 := |k3|sf̂k,k3 , (k, k3) ∈ 2π(Z2 × Z), r, s ≥ 0.

Accordingly, one has

‖f‖2r,s,τ,η = ‖f‖2 + ‖ArheτAheηAzf‖2 + ‖AszeτAheηAzf‖2.

With such notations, we establish the following theorem:

Theorem 3.3. Assume V0 ∈ Sr,0,τ0,0 with r > 2 and τ0 > 0. Let Ω ∈ R be arbitrary and fixed. Then
there exist T > 0 defined in (3.24), τ(t) > 0 given in (3.23), below, and η(t) = ν

2 t, such that there exists
a unique solution V to system (1.1) with (1.2) and (1.3) in [0, T ] satisfying

V ∈ L∞
(
0, T ;Sr,0,τ(t),η(t)

)
∩ L2

(
0, T ;Sr,1,τ(t),η(t)

)
,

and depending continuously on the initial data. In particular, V immediately becomes analytic in all spatial
variables for t > 0.

Remark 4. After restricting V0 and V in T2× (0, 1), the solutions in Theorem 3.3 are the same to the ones
in Theorem 3.2, thanks to the uniqueness of solutions. Therefore, the gain of analyticity in the z-variable
of Theorem 3.3 can be regarded as a property to solutions in Theorem 3.2.

Sketch of proof. Here we only show the a priori estimates. Direct calculation of

〈(1.1a),V〉+ 〈ArheτAheηAz (1.1a), Arhe
τAheηAzV〉+ 〈eτAheηAz (1.1a), eτAheηAzV〉,
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after applying integration by parts, (1.1c), and (1.3), shows that

1

2

d

dt
‖V‖2r,0,τ,η + ν‖∂zV‖2r,0,τ,η − τ̇

(
‖Ar+

1
2

h eτAheηAzV‖2 + ‖A
1
2

h e
τAheηAzV‖2

)
− η̇
(
‖A

1
2
z A

r
he
τAheηAzV‖2 + ‖A

1
2
z e

τAheηAzV‖2
)

+
〈
Arhe

τAheηAz (V · ∇V), Arhe
τAheηAzV

〉
+
〈
eτAheηAz (V · ∇V), eτAheηAzV

〉
+
〈
Arhe

τAheηAz
(

(

∫ z

0

∇ · Vds)∂zV
)
, Arhe

τAheηAzV
〉

+
〈
eτAheηAz

(
(

∫ z

0

∇ · Vds)∂zV
)
, eτAheηAzV

〉
= 0.

Denote by

E := ‖V‖2r,0,τ,η =
∑

(k,k3)∈2πZ3

(
1 + (|k|2r + 1)e2τ |k|e2η|k3|

)
|V̂k,k3 |2,

F := ‖∂zV‖2r,0,τ,η =
∑

(k,k3)∈2πZ3

|k3|2
(

1 + (|k|2r + 1)e2τ |k|e2η|k3|
)
|V̂k,k3 |2,

G := ‖Ar+
1
2

h eτAheηAzV‖2 + ‖A
1
2

h e
τAheηAzV‖2 =

∑
(k,k3)∈2πZ3

(|k|2r+1 + |k| 12 )e2τ |k|e2η|k3||V̂k,k3 |2,

H := ‖A
1
2
z A

r
he
τAheηAzV‖2 + ‖A

1
2
z e

τAheηAzV‖2 =
∑

(k,k3)∈2πZ3

(|k3||k|2r + |k3|)e2τ |k|e2η|k3||V̂k,k3 |2.

Observe that H ≤ F . After setting η̇ = ν
2 , one obtains that

1

2

d

dt
E +

1

2
νG− τ̇G

+
〈
Arhe

τAheηAz (V · ∇V), Arhe
τAheηAzV

〉
+
〈
eτAheηAz (V · ∇V), eτAheηAzV

〉
+
〈
Arhe

τAheηAz
(

(

∫ z

0

∇ · Vds)∂zV
)
, Arhe

τAheηAzV
〉

+
〈
eτAheηAz

(
(

∫ z

0

∇ · Vds)∂zV
)
, eτAheηAzV

〉
≤ 0.

For the nonlinear terms, by applying similar calculations as in Lemma A.1 and Lemma A.2 (we also refer
the readers to [22] for detailed calculations in T3), one can obtain that∣∣∣〈ArheτAheηAz (V · ∇V), Arhe

τAheηAzV
〉∣∣∣+

∣∣∣〈eτAheηAz (V · ∇V), eτAheηAzV
〉∣∣∣ ≤ Cr(E 1

2 + F
1
2

)
G,

∣∣∣〈ArheτAheηAz((

∫ z

0

∇ · Vds)∂zV
)
, Arhe

τAheηAzV
〉∣∣∣ ≤ CrF 1

2G,

and thanks to the Young inequality,∣∣∣〈eτAheηAz((

∫ z

0

∇ · Vds)∂zV
)
, eτAheηAzV

〉∣∣∣ ≤ CrF 1
2E

1
2G

1
2 ≤ Cr

ν
EG+

ν

4
F.

Therefore, combining all the estimates above leads to

d

dt
E +

1

2
νF ≤

(
τ̇ + Cr(E

1
2 + F

1
2 +

1

ν
E)
)
G. (3.22)
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By taking τ̇ + Cr(E
1
2 + F

1
2 + 1

νE) = 0, one obtains

E(t) +
1

2
ν

∫ t

0

F (s)ds ≤ E(0).

Integrating in time for τ̇ + Cr(E
1
2 + F

1
2 + 1

νE) = 0, we have

τ(t) = τ0 −
∫ t

0

Cr(E
1
2 (s) + F

1
2 (s) +

1

ν
E(s))ds ≥ τ0 − Cr

(
E

1
2 (0)(t+

√
2t

ν
) + E(0)

t

ν

)
. (3.23)

Since E(0) = ‖V‖2r,0,τ,0, we denote by

T :=
(√ 2

ν ‖V‖
2
r,0,τ,0 + 2τ0

Cr
(
‖V‖2r,0,τ,0

ν + ‖V‖r,0,τ,0)−
√

2
ν ‖V‖r,0,τ,0

2(
‖V‖2r,0,τ,0

ν + ‖V‖r,0,τ,0)

) 1
2

> 0, (3.24)

which solves

‖V‖r,0,τ,0(T +
√
T ) +

1

ν
‖V‖2r,0,τ,0T =

τ0
2Cr

.

Then one has

τ(t) ≥ τ0/2 > 0 for t ∈ [0, T ].

Notice that the radius of analyticity in the z variable satisfies η = ν
2 t. Therefore, (3.22) implies that

V ∈ L∞
(
0, T ;Sr,0,τ(t),η(t)

)
∩ L2

(
0, T ;Sr,1,τ(t),η(t)

)
.

Based on the estimates above, one is able to show the existence, uniqueness, and continuous dependence
on the initial data of the solution V. We omit the details.

�

4. The limit resonant system

In this section, we derive the formal limit resonant system, i.e., the limit system of system (1.1) (or,
equivalently, system (2.17)) as |Ω| → ∞, and discuss some properties of the limit resonant system. Recall
that from (2.22), we have

∂tV+ =− eiΩt
(
V+ · ∇V+ − P0(V+ · ∇V+ + (∇ · V+)V+)− (

∫ z

0

∇ · V+(x, s)ds)∂zV+︸ ︷︷ ︸
=:I1

)

−
[ (
V · ∇V+ +

1

2
(V+ · ∇)(V + iV⊥)

)
− ν∂zzV+︸ ︷︷ ︸

=:I0

]

− e−iΩt
(
V− · ∇V+ − P0(V− · ∇V+ + (∇ · V−)V+)− (

∫ z

0

∇ · V−(x, s)ds)∂zV+︸ ︷︷ ︸
=:I−1

)

− e−2iΩt 1

2
(V− · ∇)(V + iV⊥)︸ ︷︷ ︸

=:I−2

.

(4.1)

We can further rewrite (4.1) as

∂t

[
V+ −

i

Ω

(
eiΩtI1 − e−iΩtI−1 −

1

2
e−2iΩtI−2

)]
= − i

Ω

(
eiΩt∂tI1 − e−iΩt∂tI−1 −

1

2
e−2iΩt∂tI−2

)
− I0.
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Denote by the formal limits of V+,V−, and V to be V+, V−, and V , respectively. By taking limit Ω→∞,
we obtain the limit resonant equation for V+ is

∂tV+ = −(V · ∇)V+ −
1

2
(V+ · ∇)(V + iV

⊥
) + ν∂zzV+. (4.2)

Similarly, one has

∂tV− = −(V · ∇)V− −
1

2
(V− · ∇)(V − iV ⊥) + ν∂zzV−, (4.3)

and

∂tV + V · ∇V +∇p = 0, ∇ · V = 0, ∂zp = 0. (4.4)

Notice that (4.4) is nothing but the 2D Euler equations. Accordingly, we consider the initial conditions

(V 0, (V+)0, (V−)0) = (V0,
1

2
(Ṽ0 + iṼ⊥0 ),

1

2
(Ṽ0 − iṼ⊥0 )) (4.5)

for equations (4.2)–(4.4). Since V 0, V0, and Ṽ0 are real valued, one has that (V+)0 = (V−)∗0, (V+)0+(V−)0 =

i((V+)0 − (V−)0)⊥ = Ṽ0, and, thanks to (4.4), V is real valued. Thanks to (4.2) and (4.3), one has

∂t(V+ − V ∗−) = −(V · ∇)(V+ − V ∗−)− 1

2

[
(V+ − V ∗−) · ∇

]
(V + iV

⊥
) + ν∂zz(V+ − V ∗−), (4.6)

∂t
[
(V+ + V−)− i(V+ − V−)⊥

]
= −(V · ∇)

[
(V+ + V−)− i(V+ − V−)⊥

]
− 1

2

+ν∂zz
[
(V+ + V−)− i(V+ − V−)⊥

]
.

(4.7)

Therefore, provided solutions exist and are well-posed, one has V+ ≡ V ∗− and V+ +V− ≡ i(V+−V−)⊥. Let

Ṽ := V+ + V−. (4.8)

Notice that, according to (2.19), Ṽ is the formal limit of V+ + V− = e−iΩtP+V + eiΩtP−V, as Ω→∞. It
is easy to verify that

V± =
1

2
(Ṽ ± iṼ ⊥), (4.9)

and

∂tṼ + (V · ∇)Ṽ +
1

2
(Ṽ · ∇V − Ṽ ⊥ · ∇V ⊥)− ν∂zzṼ = 0,

or, thanks to ∇ · V = 0, equivalently,

∂tṼ + V · ∇Ṽ +
1

2
Ṽ ⊥(∇⊥ · V )− ν∂zzṼ = 0. (4.10)

In summary, to solve the limit equations (4.2)–(4.4) with (4.5) is equivalent to solve the following
equations:

∂tV + V · ∇V +∇p = 0, (4.11a)

∇ · V = 0, ∂zp = 0, (4.11b)

∂tṼ + V · ∇Ṽ +
1

2
Ṽ ⊥(∇⊥ · V )− ν∂zzṼ = 0, (4.11c)

∂zṼ
∣∣
z=0,1

= 0, V (0) = V0, and Ṽ (0) = Ṽ0. (4.11d)

Notice that, thanks to our choice of V0 and Ṽ0, one has P0V = V and P0Ṽ = 0. In addition, (4.11a)–
(4.11b) is the 2D Euler system, and (4.11c) is a linear transport equation with a stretching term and
vertical dissipation. In the rest of this section, we summarize the well-posedness theory of (4.11).
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4.1. Well-posedness theory of (4.11a) and (4.11b). The global well-posedness of solutions to the 2D
Euler system (4.11a)–(4.11b) in Sobolev spaces Hr(T2) = Sr,0,0 with r > 3 is a classical result (see, e.g.,
[7]). Moreover, from equation (3.84) in [7], for r > 3, we have

d

dt
‖V ‖r,0,0 ≤ Cr‖V ‖r,0,0(1 + ln+ ‖V ‖r,0,0). (4.12)

Let ‖V 0‖r,0,0 ≤M for some M ≥ 0. Denote by W (t) := ‖V (t)‖r,0,0 + e. Thanks to ln+ x+ 1 ≤ 2 ln(x+ e),
from (4.12), we have

d

dt
W ≤ CrW lnW.

Therefore, one can obtain that

‖V (t)‖r,0,0 ≤W (t) ≤W (0)e
Crt

= (‖V 0‖r,0,0 + e)e
Crt ≤ (M + e)e

Crt

=: θM,r(t). (4.13)

The authors in [38] proved the global existence of solutions to system (4.11a)–(4.11b) for initial data
in the space of analytic functions. For completion, we state it here, with slight modifications to meet our
settings. See also [22].

Proposition 4.1. Assume V 0 ∈ S ∩ Sr,0,τ0 with r > 3 and τ0 > 0, and suppose that ‖V 0‖r,0,τ0 ≤ M for
some M ≥ 0. Let

τ(t) := τ0 exp
(
− Cr

∫ t

0

h(s)ds
)
,

where

h2(t) := ‖V 0‖2r,0,τ0 + Cr

∫ t

0

θ3
M,r(s)ds,

with θM,r(t) defined in (4.13). Then for any given time T > 0, there exists a unique solution

V ∈ L∞(0, T ;S ∩ Sr,0,τ(t))

to system (4.11a)–(4.11b). Moreover, there exist constants CM > 1 and Cr > 1 such that

‖V (t)‖2r,0,τ(t) ≤ h
2(t) ≤ Cexp(Crt)

M .

The solution is continuously depending on the initial data.

4.2. Global well-posedness of system (4.11). In this subsection, we establish the global well-posedness
of limit resonant system (4.11) in both Sobolev spaces Sr,s,0 and analytic-Sobolev spaces Sr,s,τ .

Proposition 4.2. Let r > 2 and s ∈ {0, 1}. Assume that V 0 ∈ S ∩ Sr+1,0,0 and Ṽ0 ∈ S ∩ Sr,s,0. Let

M ≥ 0 be the constant such that ‖V 0‖r+1,0,0 ≤ M . Then there exists a function K(t) := C
exp(Crt)
M

with constants CM > 1 and Cr > 1, such that for any given time T > 0, there exists a unique solution

(V , Ṽ ) ∈ L∞(0, T ;S ∩ Sr+1,0,0)× L∞(0, T ;S ∩ Sr,s,0) of system (4.11), which satisfies

‖V (t)‖r+1,0,0 ≤ K(t) and ‖Ṽ (t)‖2r,s,0 + 2ν

∫ t

0

‖∂zṼ (ξ)‖2r,s,0dξ ≤ ‖Ṽ0‖2r,s,0 e
∫ t
0
K(s) ds. (4.14)

On the other hand, suppose that V 0 ∈ S∩Sr+1,0,τ0 and Ṽ0 ∈ S∩Sr,s,τ0 with τ0 > 0, and that ‖V 0‖r+1,0,τ0 ≤
M . Let

τ(t) := τ0 exp(−
∫ t

0

K(s)ds). (4.15)

Then for any given time T > 0, there exists a unique solution (V , Ṽ ) ∈ L∞(0, T ;S∩Sr+1,0,τ )×L∞(0, T ;S∩
Sr,s,τ ) of system (4.11) such that

‖V (t)‖r+1,0,τ(t) ≤ K(t) and ‖Ṽ (t)‖2r,s,τ(t)+2ν

∫ t

0

‖∂zṼ (ξ)‖2r,s,τ(ξ)dξ ≤ ‖Ṽ0‖2r,s,τ0e
∫ t
0
K(s) ds. (4.16)
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The solutions continuously depend on the initial data.

Sketch of proof. We will consider the case when s = 1 and only show the a priori estimates. The con-
struction of solutions, uniqueness, and continuous dependency of solutions on initial data, as well as the
case when s = 0, are left to readers as exercises. The global well-posedness of the 2D Euler equations in
Sobolev spaces and corresponding growth estimate have been reviewed in the previous subsection. From
(4.13), we obtain that

‖V ‖r+1,0,0 ≤ K1(t) (4.17)

for some function K1(t) := C
exp(Cr,1t)
M,1 with some constants CM,1, Cr,1 > 1.

Denote by I the identity map. For the growth of ‖Ṽ ‖Hr , after calculating 2〈(4.11c), (I − ∂zz)Ṽ 〉 +

2〈Ar(4.11c), (I−∂zz)ArṼ 〉 and applying integration by parts to the resultant, one has, thanks to ∂zV = 0,
∇ · V = 0, and r > 5

2 , for some constant Cr,s > 0,

d

dt
‖Ṽ ‖2r,1,0 + 2ν‖∂zṼ ‖2r,1,0 ≤ Cr,s‖V ‖r+1,0,0‖Ṽ ‖2r,1,0. (4.18)

After applying the Grönwall inequality to the above, by virtue of (4.17), we obtain

‖Ṽ (t)‖2r,1,0 + 2ν

∫ t

0

‖∂zṼ (ξ)‖2r,1,0dξ ≤ ‖Ṽ0‖2r,1,0 exp
(
Cr,s

∫ t

0

K1(ξ)dξ
)
. (4.19)

On the other hand, the global well-posedness of the 2D Euler equations in the space of analytic functions
and the corresponding growth estimate are summarized in Proposition 4.1. We can first choose some

suitable function K2(t) := C
exp(Cr,2t)
M,2 , with CM,2, Cr,2 > 1, such that ‖V (t)‖r+1,0,τE(t) ≤ K2(t) with

τE(t) := τ0 exp(−
∫ t

0
K2(s)ds).

Let τ = τ(t) to be determined. For Ṽ , after calculating 〈(4.11c), (I − ∂zz)Ṽ 〉 + 〈AreτA(4.11c), (I −
∂zz)A

reτAṼ 〉 and applying integration by parts, the Hölder inequality, the Sobolev inequality, Lemma 2.1,
and Lemma A.4 to the resultant, since r > 2, one has, for some constant Cr,a > 0,

1

2

d

dt
‖Ṽ ‖2r,1,τ + ν‖∂zṼ ‖2r,1,τ − τ̇

(
‖Ar+ 1

2 eτAṼ ‖2 + ‖Ar+ 1
2 eτA∂zṼ ‖2

)
=−

〈
V · ∇Ṽ , Ṽ

〉
− 1

2

〈
(∇⊥ · V )Ṽ ⊥, Ṽ

〉
−
〈
V · ∇∂zṼ , ∂zṼ

〉
− 1

2

〈
(∇⊥ · V )∂zṼ

⊥, ∂zṼ
〉

︸ ︷︷ ︸
=0

−
〈
AreτA(V · ∇Ṽ ), AreτAṼ

〉
− 1

2

〈
AreτA

(
(∇⊥ · V )Ṽ ⊥

)
, AreτAṼ

〉
−
〈
AreτA(V · ∇∂zṼ ), AreτA∂zṼ

〉
− 1

2

〈
AreτA

(
(∇⊥ · V )∂zṼ

⊥
)
, AreτA∂zṼ

〉
=−

(〈
AreτA(V · ∇Ṽ ), AreτAṼ

〉
−
〈
V · ∇AreτAṼ , AreτAṼ

〉
︸ ︷︷ ︸

=0

)
−
(〈
AreτA(V · ∇∂zṼ ), AreτA∂zṼ

〉
−
〈
V · ∇AreτA∂zṼ , AreτA∂zṼ

〉
︸ ︷︷ ︸

=0

)

− 1

2

〈
AreτA

(
(∇⊥ · V )Ṽ ⊥

)
, AreτAṼ

〉
− 1

2

〈
AreτA

(
(∇⊥ · V )∂zṼ

⊥
)
, AreτA∂zṼ

〉
≤Cr,aτ‖V ‖r+1,0,τ

(
‖Ar+ 1

2 eτAṼ ‖2 + ‖Ar+ 1
2 eτA∂zṼ ‖2

)
+ Cr,a‖V ‖r+1,0,τ‖Ṽ ‖2r,1,τ .

(4.20)
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Now, let

K(t) := max{(1 + Cr,s)K1(t), (1 + Cr,a)K2(t)} and τ = τ(t) := τ0 exp(−
∫ t

0

K(s) ds). (4.21)

Then τ(t) satisfies

τ(t) ≤ τE(t) and τ̇ + Cr,aτ‖V ‖r+1,0,τ ≤ τ̇ + Cr,aτ‖V ‖r+1,0,τE ≤ τ̇ + Cr,aτK2 ≤ 0.

Therefore,

‖V (t)‖r+1,0,τ(t) ≤ ‖V (t)‖r+1,0,τE(t) ≤ K2(t) ≤ K(t), (4.22)

and, after applying the Grönwall inequality to (4.20), we have

‖Ṽ (t)‖2r,1,τ(t) + 2ν

∫ t

0

‖∂zṼ (ξ)‖2r,1,τ(ξ)dξ ≤ ‖Ṽ0‖2r,1,τ0 exp
(∫ t

0

Cr,a‖V (ξ)‖r+1,0,τ(ξ)dξ
)

≤ ‖Ṽ0‖2r,1,τ0e
∫ t
0
Cr,aK2(s) ds ≤ ‖Ṽ0‖2r,1,τ0e

∫ t
0
K(s) ds.

(4.23)

Consequently, according to (4.17), (4.19), (4.22), and (4.23), K and τ as in (4.21) verify (4.14) and
(4.16). �

Remark 5. From Proposition 4.2, one can see that the growth of ‖V (t)‖r+1,0,0 and ‖V (t)‖r+1,0,τ(t) are

double exponential in time, while the growth of ‖Ṽ (t)‖r,s,0 and ‖Ṽ (t)‖r,s,τ(t) are triple exponential in time.

Remark 6. Thanks to (4.9), similarly as in (2.20), we have

‖V+‖2r,s,τ = ‖V−‖2r,s,τ =
1

2
‖Ṽ ‖2r,s,τ ,

whose growths are also triple exponential.

Remark 7. Proposition 4.2 is for the general initial data. However, by considering special solutions to the
2D Euler equations, one has the following:

• When V is uniformly-in-time bounded in Sr+1,0,τ , i.e., sup0≤t<∞ ‖V (t)‖r+1,0,τ ≤ CM,r for some

positive constant CM,r, then the growth of ‖Ṽ (t)‖r,1,τ will be only exponentially in time.

• When sup0≤t∞ ‖V (t)‖r+1,0,τ ≤ ν
4Cr,α

is small enough, by applying the Poincaré inequality and

with τ chosen suitably, (4.20) becomes

d

dt
‖Ṽ ‖2r,1,τ +

1

2
ν‖∂zṼ ‖2r,1,τ ≤ −ν‖Ṽ ‖2r,1,τ0 .

After applying the Grönwall inequality to the above, we obtain

‖Ṽ (t)‖2r,1,τ(t)e
νt +

1

2
ν

∫ t

0

‖∂zṼ (ξ)‖2r,1,τ(ξ)e
νξdξ ≤ ‖Ṽ0‖2r,1,τ0 .

In particular, this result holds when V ≡ 0, i.e., zero solutions to the 2D Euler equations.

5. Effect of fast rotation

In this section, we investigate the effect of rotation on the lifespan T of solutions to system (1.1). We
show that the existing time of the solution in Sr,0,τ(t) can be prolonged for large |Ω| provided that the

Sobolev norm ‖Ṽ0‖ 5
2 +δ,1,0 is small, while the analytic-Sobolev norm ‖Ṽ0‖r,0,τ0 can be large. Such initial

data is referred to as “well-prepared” initial data.
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Theorem 5.1. Let δ ∈ (0, 1
2 ) be a constant. Let |Ω| ≥ |Ω0| > 1 and |Ω0| be large enough such that

condition (5.3) below holds. Assume V0 ∈ S ∩ Sr+3,0,τ0 , Ṽ0 ∈ S ∩ Sr+2,0,τ0 ∩ Sr+1,1,τ0 with r > 2 and
τ0 > 0. Let M ≥ 0 be such that

‖V0‖2r+3,0,τ0 + ‖Ṽ0‖2r+2,0,τ0 + ‖Ṽ0‖2r+1,1,τ0 ≤M, (5.1)

and

‖Ṽ0‖ 3
2 +δ,0,0 ≤

M

|Ω0|
. (5.2)

Then there exists a time T = T (τ0, |Ω0|,M, r, ν) satisfying

T =
1

Cτ0,M,r,ν
log[log[log(log(|Ω0|))]] ≥ 1, (5.3)

for some positive constant Cτ0,M,r,ν > 0, such that the unique solution V obtained in Theorem 3.2 satisfies

V ∈ L∞(0, T ;S ∩ Sr,0,τ(t)), (5.4)

with τ(t) > 0, t ∈ [0, T ], satisfying (5.38), below. In particular, from (5.3), T → ∞ as |Ω0| → ∞.

Remark 8. The constant Cτ0,M,r,ν satisfies Cτ0,M,r,ν →∞ as ν → 0.

In Theorem 5.1, we consider general initial data V0 for the barotropic mode. By virtue of Remark 7,
when the solution V to the 2D Euler equations with initial condition V0 satisfies certain conditions, the
smallness condition (5.2) can be relaxed and the result (5.3) can be improved. The following theorem is
the summary of these results:

Theorem 5.2. With the same assumptions as in Theorem 5.1, let V (t) be the solution to the 2D Euler
equations with initial condition V 0 = V0. Then

(i) if ‖V (t)‖r+3,0,τ(t) ≤ CM,r, the result (5.3) can be improved to T = 1
Cτ0,M,r,ν

log(log(|Ω0|));
(ii) if ‖V (t)‖r+3,0,τ(t) ≤ ν

4Cr,α
which is small enough, then (5.2) can be relaxed and replaced by

‖Ṽ0‖ 3
2 +δ,0,0 ≤ τ0

Cr,ν,M
, and (5.3) can be improved to T = 1

Cτ0,M,r,ν
log(|Ω0|);

(iii) finally, if the initial condition satisfies ‖V0‖r+3,0,τ0 ≤ M
|Ω0| , (5.2) can be relaxed and replaced by

‖Ṽ0‖ 3
2 +δ,0,0 ≤ τ0

Cr,ν,M
, and (5.3) can be improved to T = |Ω0|

1
2

Cτ0,M,r,ν
.

In this section, we focus on equations (2.22)–(2.24), which are equivalent to system (1.1). To prove
Theorem 5.1, in section 5.1, we rewrite (2.22)–(2.24) as the perturbation of (4.2)–(4.4). In section 5.2, we
establish a series of a priori estimates on the solutions to the perturbation system. This together with
Proposition 4.2 will finish the proof of Theorem 5.1. In section 5.3, the proof of Theorem 5.2 is provided.

Remark 9. In this section, we only focus on the long-time existence of the weak solution. By virtue of
Theorem 3.3, the weak solution is analytic in all spatial variables.

5.1. The perturbation system. Denote by

φ := V − V and φ± := V± − V±. (5.5)

Calculating the difference between (2.22), (2.23) , (2.24) and (4.2), (4.3), (4.4), respectively, leads to

∂tφ+ + φ · ∇V+ + φ · ∇φ+ + V · ∇φ+ +
1

2
(φ+ · ∇)(V + iV

⊥
) +

1

2
(φ+ · ∇)(φ+ iφ

⊥
)

+
1

2
(V+ · ∇)(φ+ iφ

⊥
)− ν∂zzφ+ + eiΩt

(
Q1,+,+ −P0Q1,+,+ −P0Q2,+,+ −Q3,+,+

)
+e−iΩt

(
Q1,−,+ −P0Q1,−,+ −P0Q2,−,+ −Q3,−,+

)
+ e−2iΩtQ4,−,+ = 0,

(5.6)
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∂tφ− + φ · ∇V− + φ · ∇φ− + V · ∇φ− +
1

2
(φ− · ∇)(V − iV ⊥) +

1

2
(φ− · ∇)(φ− iφ⊥)

+
1

2
(V− · ∇)(φ− iφ⊥)− ν∂zzφ− + e−iΩt

(
Q1,−,− −P0Q1,−,− −P0Q2,−,− −Q3,−,−

)
+eiΩt

(
Q1,+,− −P0Q1,+,− −P0Q2,+,− −Q3,+,−

)
+ e2iΩtQ4,+,− = 0,

∇ · φ = 0, ∂zp = 0,

∂tφ+ φ · ∇V + φ · ∇φ+ V · ∇φ+ e2iΩtP0

(
Q1,+,+ +Q2,+,+

)
+e−2iΩtP0

(
Q1,−,− +Q2,−,−

)
+∇p = 0,

(5.7)

where

Q1,±,∓ :=φ± · ∇V∓ + φ± · ∇φ∓ + V± · ∇φ∓ + V± · ∇V∓,
Q2,±,∓ :=(∇ · φ±)V∓ + (∇ · φ±)φ∓ + (∇ · V±)φ∓ + (∇ · V±)V∓,

Q3,±,∓ :=(

∫ z

0

∇ · φ±(x, s)ds)∂zV∓ + (

∫ z

0

∇ · φ±(x, s)ds)∂zφ∓

+ (

∫ z

0

∇ · V±(x, s)ds)∂zφ∓ + (

∫ z

0

∇ · V±(x, s)ds)∂zV∓,

Q4,±,∓ :=
1

2

[
(φ± · ∇)(V ∓ iV ⊥) + (φ± · ∇)(φ∓ iφ⊥)

+ (V± · ∇)(φ∓ iφ⊥) + (V± · ∇)(V ∓ iV ⊥)
]
.

Recalling that (V,V±) and (V , V±) are complemented with the same initial data. Hence, we have

φ|t=0 = 0 and φ±|t=0 = 0. (5.8)

5.2. Proof of Theorem 5.1. In this subsection, we prove Theorem 5.1. Thanks to Proposition 4.2, let
V± and V be the global solution to equations (4.2)-(4.4) in L∞(0,∞;S ∩ Sr+2,1,τ(t)) and L∞(0,∞;S ∩
Sr+3,0,τ(t)) for some τ = τ(t), t ∈ [0,∞), respectively. Next, we provide the energy estimate in the space
Sr,0,τ(t) for equations (5.6)–(5.7).

After applying similar calculation as in (3.1), we obtain that

1

2

d

dt
(‖φ+‖2r,0,τ + ‖φ−‖2r,0,τ ) + ν(‖∂zφ+‖2r,0,τ + ‖∂zφ−‖2r,0,τ ) = τ̇(‖Ar+ 1

2 eτAφ+‖2 + ‖Ar+ 1
2 eτAφ−‖2)

−
〈
φ · ∇V+ + φ · ∇φ+ + V · ∇φ+ +

1

2
(φ+ · ∇)(V + iV

⊥
) +

1

2
(φ+ · ∇)(φ+ iφ

⊥
)

+
1

2
(V+ · ∇)(φ+ iφ

⊥
) + eiΩt

(
Q1,+,+ −Q3,+,+

)
+ e−iΩt

(
Q1,−,+ −Q3,−,+

)
+ e−2iΩtQ4,−,+, φ+

〉
−
〈
φ · ∇V− + φ · ∇φ− + V · ∇φ− +

1

2
(φ− · ∇)(V − iV ⊥) +

1

2
(φ− · ∇)(φ− iφ⊥)

+
1

2
(V− · ∇)(φ− iφ⊥) + e−iΩt

(
Q1,−,− −Q3,−,−

)
+ eiΩt

(
Q1,+,− −Q3,+,−

)
+ e2iΩtQ4,+,−, φ−

〉
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−
〈
AreτA(φ · ∇V+), AreτAφ+

〉
︸ ︷︷ ︸

Tp2

−
〈
AreτA(φ · ∇V−), AreτAφ−

〉
︸ ︷︷ ︸

Tp2

−
〈
AreτA(φ · ∇φ+), AreτAφ+

〉
︸ ︷︷ ︸

Tp1

−
〈
AreτA(φ · ∇φ−), AreτAφ−

〉
︸ ︷︷ ︸

Tp1

−
〈
AreτA(V · ∇φ+), AreτAφ+

〉
︸ ︷︷ ︸

Tp4

−
〈
AreτA(V · ∇φ−), AreτAφ−

〉
︸ ︷︷ ︸

Tp4

−
〈
AreτA(φ+ · ∇(V + iV

⊥
)), AreτAφ+

〉
︸ ︷︷ ︸

Tp2

−
〈
AreτA(φ− · ∇(V − iV ⊥)), AreτAφ−

〉
︸ ︷︷ ︸

Tp2

−
〈
AreτA(φ+ · ∇(φ+ iφ

⊥
)), AreτAφ+

〉
︸ ︷︷ ︸

Tp1

−
〈
AreτA(φ− · ∇(φ− iφ⊥)), AreτAφ−

〉
︸ ︷︷ ︸

Tp1

−
〈
AreτA(V+ · ∇(φ+ iφ

⊥
)), AreτAφ+

〉
︸ ︷︷ ︸

Tp4

−
〈
AreτA(V− · ∇(φ− iφ⊥)), AreτAφ−

〉
︸ ︷︷ ︸

Tp4

− eiΩt
(〈
AreτA(Q1,+,+ −Q3,+,+), AreτAφ+

〉
+
〈
AreτA(Q1,+,− −Q3,+,−), AreτAφ−

〉)
︸ ︷︷ ︸

Tp1,··· ,Tp5

− e−iΩt
(〈
AreτA(Q1,−,+ −Q3,−,+), AreτAφ+

〉
+
〈
AreτA(Q1,−,− −Q3,−,−), AreτAφ−

〉)
︸ ︷︷ ︸

Tp1,··· ,Tp5

− e2iΩt
〈
AreτAQ4,+,−, A

reτAφ−

〉
︸ ︷︷ ︸

Tp1,Tp2,Tp4,Tp5

− e−2iΩt
〈
AreτAQ4,−,+, A

reτAφ+

〉
︸ ︷︷ ︸

Tp1,Tp2,Tp4,Tp5

, (5.9)

and

1

2

d

dt
‖AreτAφ‖2 =τ̇‖Ar+ 1

2 eτAφ‖2

−
〈
AreτA(φ · ∇V ), AreτAφ

〉
︸ ︷︷ ︸

Tp2

−
〈
AreτA(φ · ∇φ), AreτAφ

〉
︸ ︷︷ ︸

Tp1

−
〈
AreτA(V · ∇φ), AreτAφ

〉
︸ ︷︷ ︸

Tp4

− e2iΩt
〈
AreτA(Q1,+,+ +Q2,+,+), AreτAφ

〉
︸ ︷︷ ︸

Tp1,Tp2,Tp4,Tp5

− e−2iΩt
〈
AreτA(Q1,−,− +Q2,−,−), AreτAφ

〉
︸ ︷︷ ︸

Tp1,Tp2,Tp4,Tp5

, (5.10)

where we have applied Lemmas 2.2–2.3. It is easy to verify from (5.7) and (5.8) that∫
T2

φ(x, t) dx =

∫
T2

φ(x, t)|t=0 dx = 0,

and therefore, applying the Poincaré inequality yields

‖φ‖ ≤ ‖AreτAφ‖ and ‖φ‖r,0,τ ≤ C‖AreτAφ‖. (5.11)
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In (5.9) and (5.10), we have labeled five types of terms by Tp1, · · · ,Tp5, which we will present the esti-
mates. The rest lower order terms can be estimated in a similar manner and will be omitted. Temporally,
let V denote V± and V , and φ denote φ± and φ. The aforementioned five types of terms are described in
the following:

• Type 1 (labeled as Tp1): terms that are trilinear in φ, e.g.,

ejiΩt
〈
AreτA

(
(φ · ∇)φ

)
, AreτAφ

〉
, ejiΩt

〈
AreτA

(
(∇ · φ)φ

)
, AreτAφ

〉
,

and ejiΩt
〈
AreτA

(∫ z

0

(∇ · φ(x, s)) ds∂zφ
)
, AreτAφ

〉
, j = 0,±1,±2;

• Type 2 (labeled as Tp2): terms that are bilinear in φ with no derivative of φ, e.g.,

ejiΩt
〈
AreτA

(
(φ · ∇)V

)
, AreτAφ

〉
and

ejiΩt
〈
AreτA

(
(∇ · V )φ

)
, AreτAφ

〉
, j = 0,±1,±2;

• Type 3 (labeled as Tp3): terms that are bilinear in φ and a vertical derivative of φ, e.g.,

ejiΩt
〈
AreτA

(∫ z

0

(∇ · V (x, s)) ds∂zφ
)
, AreτAφ

〉
, j = 0,±1,±2;

• Type 4 (labeled as Tp4): terms that are bilinear in φ and a horizontal derivative of φ, e.g.,

ejiΩt
〈
AreτA

(
(V · ∇)φ

)
, AreτAφ

〉
, ejiΩt

〈
AreτA

(
(∇ · φ)V

)
, AreτAφ

〉
,

and ejiΩt
〈
AreτA

(∫ z

0

(∇ · φ(x, s)) ds∂zV
)
, AreτAφ

〉
, j = 0,±1,±2;

• Type 5 (labeled as Tp5): terms that are linear in φ, e.g.,

ejiΩt
〈
AreτA

(
(V · ∇)V

)
, AreτAφ

〉
, ejiΩt

〈
AreτA

(
(∇ · V )V

)
, AreτAφ

〉
,

and ejiΩt
〈
AreτA

(∫ z

0

(∇ · V (x, s)) ds∂zV
)
, AreτAφ

〉
, j = ±1,±2.

5.2.1. Estimates of Type 1 – Type 4 terms. We start with Type 1 terms. Applying Lemmas A.1–A.3 yields

|Tp1| ≤Cr
∫ 1

0

‖Ar+ 1
2 eτAφ(z)‖2L2(T2)︸ ︷︷ ︸
L1 in z

(
‖AreτAφ(z)‖L2(T2) + ‖φ(z)‖L2(T2)

)︸ ︷︷ ︸
L∞ in z

dz

+ Cr‖Ar+
1
2 eτAφ‖2‖∂zφ‖r,0,τ ≤ Cr‖Ar+

1
2 eτAφ‖2‖φ‖r,1,τ ,

where we have used the embedding L∞z ↪→ H1
z in the z-variable and the Hölder inequality. Notice that,

for φ = φ, the estimate is similar with obvious modification. Therefore, hereafter, unless pointed out
explicitly, we omit the estimates in the case of φ = φ and, similarly, V = V .

Similarly, applying Lemma 2.1 to Types 2 and 3 terms yields

|Tp2| ≤Cr
∫ 1

0

(
‖Ar+1eτAV (z)‖L2(T2) + ‖V (z))‖L2(T2)

)︸ ︷︷ ︸
L∞ in z

(
‖AreτAφ(z)‖L2(T2) + ‖φ(z))‖L2(T2)

)2︸ ︷︷ ︸
L1 in z

dz

≤Cr‖V ‖r+1,1,τ‖φ‖2r,0,τ and

|Tp3| ≤Cr
∫ 1

0

[(∫ z

0

‖Ar+1eτAV (s)‖L2(T2) + ‖V (s)‖L2(T2) ds

)
︸ ︷︷ ︸

L∞ in z

(
‖AreτA∂zφ(z)‖L2(T2) + ‖∂zφ(z)‖L2(T2)

)
︸ ︷︷ ︸

L2 in z



26 Q. LIN, X. LIU, AND E.S. TITI

×
(
‖AreτAφ(z)‖L2(T2) + ‖φ(z)‖L2(T2)

)
︸ ︷︷ ︸

L2 in z

]
dz ≤ Cr‖V ‖r+1,0,τ‖∂zφ‖r,0,τ‖φ‖r,0,τ

≤ν
2
‖∂zφ‖2r,0,τ + Cr,ν‖V ‖2r+1,0,τ‖φ‖2r,0,τ .

In order to estimate Type 4 terms, notice that Tp4 can be written as, with abuse of notations,

Tp4 = Tp41 + Tp42,

where

Tp41 :=ejiΩt
〈

(V · ∇)AreτAφ,AreτAφ
〉

+ ejiΩt
〈

(∇ ·AreτAφ)V,AreτAφ
〉

+ ejiΩt
〈∫ z

0

(
∇ ·AreτAφ(s)

)
ds∂zV,A

reτAφ
〉
,

Tp42 :=ejiΩt
〈
AreτA

(
(V · ∇)φ

)
− (V · ∇)AreτAφ,AreτAφ

〉
+ ejiΩt

〈
AreτA

(
(∇ · φ)V

)
− (∇ ·AreτAφ)V,AreτAφ

〉
+ ejiΩt

〈
AreτA

(∫ z

0

(∇ · φ(s)) ds∂zV
)
−
∫ z

0

(
∇ ·AreτAφ(s)

)
ds∂zV,A

reτAφ
〉
.

Observing from (5.9) and (5.10), only for V = V±, Tp41 is nontrivial. Therefore, after substituting the

inequality |α| 12 ≤ |β| 12 + |ξ| 12 for α+ β = ξ in the Fourier representation of Tp41 (see the proof of Lemma
A.2 in the appendix), one can obtain that, for any δ ∈ (0, 1),

|Tp41| ≤
∣∣∣〈(A

1
2V± · ∇)Ar−

1
2 eτAφ,AreτAφ

〉∣∣∣+
∣∣∣〈(V± · ∇)Ar−

1
2 eτAφ,Ar+

1
2 eτAφ

〉∣∣∣
+
∣∣∣〈(∇ ·Ar− 1

2 eτAφ)A
1
2V±, A

reτAφ
〉∣∣∣+

∣∣∣〈(∇ ·Ar− 1
2 eτAφ)V±, A

r+ 1
2 eτAφ

〉∣∣∣
+
∣∣∣〈 ∫ z

0

(
∇ ·Ar− 1

2 eτAφ(s)
)
ds∂zA

1
2V±, A

reτAφ
〉∣∣∣+

∣∣∣〈 ∫ z

0

(
∇ ·Ar− 1

2 eτAφ(s)
)
ds∂zV±, A

r+ 1
2 eτAφ

〉∣∣∣
≤ Cr

∫ 1

0

(
‖A 1

2V±(z)‖H1+δ(T2) + ‖V±(z)‖H1+δ(T2)

)︸ ︷︷ ︸
L∞ in z

‖Ar+ 1
2 eτAφ(z)‖2L2(T2)︸ ︷︷ ︸
L1 in z

dz

+ Cr

∫ 1

0

[∫ z

0

‖Ar+ 1
2 eτAφ(s)‖L2(T2) ds︸ ︷︷ ︸
L∞ in z

×‖Ar+ 1
2 eτAφ(z)‖L2(T2)︸ ︷︷ ︸
L2 in z

×
(
‖∂zA

1
2V±(z)‖H1+δ(T2) + ‖∂zV±(z)‖H1+δ(T2)

)︸ ︷︷ ︸
L2 in z

]
dz ≤ Cr‖V±‖ 3

2 +δ,1,0‖Ar+
1
2 eτAφ‖2,

where we have applied the Sobolev embedding inequality and the Hölder inequality. Meanwhile, applying
Lemmas A.4–A.6 to Tp42 yields

|Tp42| ≤Cr
∫ 1

0

‖Arφ(z)‖2L2(T2)‖A
rV (z)‖L2(T2) dz

+ Crτ

∫ 1

0

‖Ar+ 1
2 eτAφ(z)‖2L2(T2)‖A

r+ 1
2 eτAV (z)‖L2(T2) dz

+ Cr‖Ar∂zV ‖‖Arφ‖2 + Crτ‖Ar+
1
2 eτA∂zV ‖‖Ar+

1
2 eτAφ‖2

≤Cr‖V ‖r,1,τ‖φ‖2r,0,τ + Crτ‖V ‖r+ 1
2 ,1,τ
‖Ar+ 1

2 eτAφ‖2.
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Remark 10. For the interested readers, we refer to [22] for an alternative estimate of Tp41, where some
cancellations are taking care of. However, in this paper, such cancellations are not necessary and thus
omitted. Notably, the terms ‖V±‖ 3

2 +δ,1,0 in the estimate of Tp41 is the reason for the requirement (5.2).

5.2.2. Estimates of Type 5 terms. In this case, j 6= 0 and ejΩit =
1

jΩi

d

dt
ejΩit. Therefore, Tp5 can be written

as, with abuse of notations,

Tp5 =
1

Ω

d

dt
N +

1

Ω
R,

with

N :=
ejΩit

ji

[〈
AreτA

(
(V · ∇)V

)
, AreτAφ

〉
+
〈
AreτA

(
(∇ · V )V

)
, AreτAφ

〉
+
〈
AreτA

(∫ z

0

(∇ · V (s)) ds∂zV
)
, AreτAφ

〉]
,

(5.12)

R :=
ejΩit

ji

[
∂t

〈
AreτA

(
(V · ∇)V

)
, AreτAφ

〉
︸ ︷︷ ︸

=:R1

+ ∂t

〈
AreτA

(
(∇ · V )V

)
, AreτAφ

〉
︸ ︷︷ ︸

=:R2

+ ∂t

〈
AreτA

(∫ z

0

(∇ · V (s)) ds∂zV
)
, AreτAφ

〉
︸ ︷︷ ︸

=:R3

]
.

(5.13)

It is straightforward to check that

N ≤ Cr‖V ‖r,1,τ‖V ‖r+1,0,τ‖φ‖r,0,τ . (5.14)

Meanwhile, one has

R1 =2τ̇
〈
Ar+1eτA

(
(V · ∇)V

)
, AreτAφ

〉
+
〈
AreτA∂t

(
(V · ∇)V

)
, AreτAφ

〉
+
〈
AreτA

(
(V · ∇)V

)
, AreτA∂tφ

〉
=: R1,1 +R1,2 +R1,3.

It follows that, thanks to Lemma 2.1 and similar arguments as in section 5.2.1,

R1,1 ≤ Cr|τ̇ |‖V ‖r+1,1,τ‖V ‖r+2,0,τ‖φ‖r,0,τ . (5.15)

After applying the Leray projection (2.12) to (4.4), together with (4.2) and (4.3), for V = V± or V , one
has

∂tV − ν∂zzV︸ ︷︷ ︸
for V=V±

= B(V,∇V ). (5.16)

Here we use B to represent a generic bilinear term with respect to both of its arguments. With such
notations, after applying integration by parts, one can derive

R1,2 =− 2ν
〈
AreτA

(
(∂zV · ∇)∂zV

)
, AreτAφ

〉
− ν
〈
AreτA

(
(∂zV · ∇)V + (V · ∇)∂zV

)
, AreτA∂zφ

〉
+
〈
AreτA

(
(B(V,∇V ) · ∇)V + (V · ∇)B(V,∇V )

)
, AreτAφ

〉
≤Cr,ν

(
‖V ‖r,1,τ‖V ‖r+1,1,τ‖φ‖r,1,τ + ‖V ‖r,0,τ‖V ‖2r+1,1,τ‖φ‖r,0,τ + ‖V ‖2r+1,1,τ‖V ‖r+2,0,τ‖φ‖r,0,τ

)
,

(5.17)
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where we have applied Lemma 2.1 and similar arguments as in section 5.2.1. Similarly, according to
(5.6)–(5.7), for φ = φ± or φ, one has, with abuse of notations

∂tφ−
(
ν∂zzφ+ ejΩit(

∫ z

0

∇ · (φ+ V )(s) ds)∂z(φ+ V )
)

︸ ︷︷ ︸
for φ=φ± and V=V±

=
∑

A,B∈{φ,V }

B(A,∇B). (5.18)

Therefore, R1,3 can be estimated as

R1,3 =− ν
〈
AreτA

(
(∂zV · ∇)V + (V · ∇)∂zV

)
, AreτA∂zφ

〉
− ejΩit

〈
Ar+1eτA

(
(V · ∇)V

)
, Ar−1eτA

(
(

∫ z

0

∇ · (φ+ V )(s) ds)∂z(φ+ V )
)〉

−
∑

A,B∈{φ,V }

〈
Ar+1eτA

(
(V · ∇)V

)
, Ar−1eτAB(A,∇B)

〉
≤Cr,ν‖V ‖r,1,τ‖V ‖r+1,1,τ‖∂zφ‖r,0,τ

+ Cr‖V ‖r+1,1,τ‖V ‖r+2,0,τ (‖φ‖r−1,1,τ + ‖V ‖r−1,1,τ )(‖φ‖r,0,τ + ‖V ‖r,0,τ ).

(5.19)

The estimate of R2 is the same as R1 (see (5.15), (5.17), and (5.19)). To estimate R3, one has, after
applying integration by parts,

R3 =2τ̇
〈
Ar+1eτA

(∫ z

0

(∇ · V (s)) ds∂zV
)
, AreτAφ

〉
−
〈
AreτA∂t

(
(∇ · V )V

)
, AreτAφ

〉
−
〈
AreτA∂t

(∫ z

0

(∇ · V (s)) dsV
)
, AreτA∂zφ

〉
+
〈
AreτA

(∫ z

0

(∇ · V (s)) ds∂zV
)
, AreτA∂tφ

〉
=:R3,1 +R3,2 +R3,3 +R3,4.

As before,

R3,1 ≤ Cr|τ̇ |‖V ‖r+2,0,τ‖V ‖r+1,1,τ‖φ‖r,0,τ . (5.20)

The estimate of R3,2 is the same as that of R1,2 in (5.17). Meanwhile, substituting representation (5.16)
in R3,3 leads to

R3,3 =−
〈
AreτA

(∫ z

0

(∇ · ∂tV (s)) dsV
)
, AreτA∂zφ

〉
−
〈
AreτA

(∫ z

0

(∇ · V (s)) ds∂tV
)
, AreτA∂zφ

〉
=−

〈
AreτA

(∫ z

0

(∇ · (ν∂zzV + B(V,∇V ))(s)) dsV
)
, AreτA∂zφ

〉
−
〈
AreτA

(∫ z

0

(∇ · V (s)) ds(ν∂zzV + B(V,∇V ))
)
, AreτA∂zφ

〉
≤Cr,ν

(
‖V ‖r+1,0,τ‖V ‖r,2,τ + ‖V ‖r+1,0,τ‖V ‖r,1,τ‖V ‖r+2,0,τ

)
‖∂zφ‖r,0,τ .

(5.21)

After substituting (5.18), R3,4 can be estimated as

R3,4 =− ν
〈
AreτA

(∫ z

0

(∇ · V (s)) ds∂zzV
)
, AreτA∂zφ

〉
− ν
〈
AreτA

(
(∇ · V )∂zV

)
, AreτA∂zφ

〉
− ejΩit

〈
Ar+1eτA

(∫ z

0

(∇ · V (s)) ds∂zV
)
, Ar−1eτA

[(∫ z

0

∇ · (φ+ V )(s) ds
)
∂z(φ+ V )

]〉
−

∑
A,B∈{φ,V }

〈
Ar+1eτA

(∫ z

0

(∇ · V (s)) ds∂zV
)
, Ar−1eτAB(A,∇B)

〉
≤Cr,ν‖V ‖r+1,0,τ‖V ‖r,2,τ‖∂zφ‖r,0,τ

+ Cr‖V ‖r+2,0,τ‖V ‖r+1,1,τ (‖φ‖r,0,τ + ‖V ‖r,0,τ )(‖φ‖r−1,1,τ + ‖V ‖r−1,1,τ ).

(5.22)
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We emphasize that, in the estimates above, we do not distinguish V± and V , φ± and φ, i.e., we treat
all V and φ as if they are three-dimensional. The estimates in the case when they are two-dimensional are
similar with obvious modifications, and thus omitted. Consequently, combining (5.15)–(5.22) leads to the
estimate of R.

5.2.3. Finishing of proof of Theorem 5.1. Without loss of generality, we assume |Ω| > 1. Combining the
estimates in subsections 5.2.1 and 5.2.2, from (5.9) and (5.10), yields, thanks to (5.11) and the Young
inequality,

d

dt
F + νH ≤

[
τ̇ + CrK

1
2 τ + Cr

(
‖V+‖ 3

2 +δ,1,0 + ‖V−‖ 3
2 +δ,1,0

)
+ CrF

1
2 + CrH

1
2

]
×G+ Cr,ν

(
K2 + 1

)
F

+
Cr,ν
|Ω|

KH +
Cr,ν
|Ω|

(
‖∂zV+‖r,1,τ + ‖∂zV−‖r,1,τ

)
K

1
2H

1
2

+
Cr,ν
|Ω|

(
|τ̇ |2 +K2 + 1

)
+
Cr,ν
|Ω|

∂tN.

(5.23)

where δ ∈ (0, 1
2 ) and

F :=‖AreτAφ‖2 + ‖φ+‖2r,0,τ + ‖φ−‖2r,0,τ , (5.24)

G :=‖Ar+ 1
2 eτAφ‖2 + ‖Ar+ 1

2 eτAφ+‖2 + ‖Ar+ 1
2 eτAφ−‖2, (5.25)

H :=‖∂zφ+‖2r,0,τ + ‖∂zφ−‖2r,0,τ , (5.26)

K :=‖V ‖2r+2,0,τ + ‖V+‖2r+2,0,τ + ‖V−‖2r+2,0,τ + ‖V+‖2r+1,1,τ + ‖V−‖2r+1,1,τ . (5.27)

Assume that, for the moment, we have

τ̇ + CrK
1
2 τ + Cr

(
‖V+‖ 3

2 +δ,1,0 + ‖V−‖ 3
2 +δ,1,0

)
+ CrF

1
2 + CrH

1
2 = 0, (5.28)

which implies τ ≤ τ0 and
|τ̇ |2 ≤ Cr(τ2

0 + 1)K + Cr(F +H).

On the other hand, recalling M as in (5.1), then according to Proposition 4.2, (4.8), and (4.9), there exist
CM,ν , Cr > 1 such that

K +

∫ t

0

(
‖∂zV+(s)‖2r,1,τ + ‖∂zV−(s)‖2r,1,τ

)
ds ≤ exp[exp[exp(Crt+ CM,ν)]] =: K(t), (5.29)

and∫ t

0

(
‖V+(s)‖23

2 +δ,1,0 + ‖V−(s)‖23
2 +δ,1,0

)
ds ≤ ‖Ṽ0‖23

2 +δ,0,0K(t). (5.30)

Under these conditions, from (5.23), one can derive that

d

dt
F +

ν

2
H ≤ Cr,ν

(
K2 + 1

)
F +

Cr,ν
|Ω|

(K + 1)H +
Cr,ν
|Ω|2

(
‖∂zV+‖2r,1,τ + ‖∂zV−‖2r,1,τ

)
K

+
Cr,ν
|Ω|

(
K2 + τ4

0 + 1
)

+
Cr,ν
|Ω|

∂tN.

(5.31)

Therefore, multiplying (5.31) with e−Cr,ν
∫ t
0

(K2+1)(s) ds leads to

d

dt

(
Fe−Cr,ν

∫ t
0

(K2+1)(s) ds
)

+
[ν

2
− Cr,ν
|Ω|

(K + 1)
]
He−Cr,ν

∫ t
0

(K2+1)(s) ds

≤ Cr,ν
|Ω|2

(
‖∂zV+‖2r,1,τ + ‖∂zV−‖2r,1,τ

)
Ke−Cr,ν

∫ t
0

(K2+1)(s) ds
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+
Cr,ν
|Ω|

(
K2 + τ4

0 + 1
)
e−Cr,ν

∫ t
0

(K2+1)(s) ds +
Cr,ν
|Ω|

∂tNe
−Cr,ν

∫ t
0

(K2+1)(s) ds.

Integrating the above equation in time and recalling that F (t = 0) = 0, one obtains(
F (t)e−Cr,ν

∫ t
0

(K2+1)(s) ds
)

+

∫ t

0

[ν
2
− Cr,ν
|Ω|

(K(t′) + 1)
]
H(t′)e−Cr,ν

∫ t′
0

(K2+1)(s) ds dt′

≤
∫ t

0

Cr,ν
|Ω|2

(
‖∂zV+(t′)‖2r,1,τ + ‖∂zV−(t′)‖2r,1,τ

)
Ke−Cr,ν

∫ t′
0

(K2+1)(s) ds dt′

+

∫ t

0

Cr,ν
|Ω|

(
K2(t′) + τ4

0 + 1
)
e−Cr,ν

∫ t′
0

(K2+1)(s) ds dt′

+

∫ t

0

Cr,ν
|Ω|

∂tN(t′)e−Cr,ν
∫ t′
0

(K2+1)(s) ds dt′

≤ Cr,ν
|Ω|2
K(t) +

Cr,ν
|Ω|

∫ t

0

(K(t′) + τ4
0 + 1) dt′ +

Cr,ν
|Ω|

∫ t

0

∂tN(t′)e−Cr,ν
∫ t′
0

(K2+1)(s) ds dt′,

(5.32)

where we have applied (5.29) and, thanks to the definition of K,

K(t′)e−Cr,ν
∫ t′
0

(K2+1)(s) ds < C, (5.33)

for some constant C ∈ (0,∞). On the other hand, thanks to (5.14), (5.29), and (5.33), since N(t = 0) = 0,
one can derive that∫ t

0

∂tN(t′)e−Cr,ν
∫ t′
0

(K2+1)(s) ds dt′ = N(t)e−Cr,ν
∫ t
0

(K2+1)(s) ds

+ Cr,ν

∫ t

0

N(t′)(K2(t′) + 1)e−Cr,ν
∫ t′
0

(K2+1)(s) ds dt′

≤ K(t)e−Cr,ν
∫ t
0

(K2+1)(s) dsF
1
2 (t) + Cr,ν

∫ t

0

(K2(t′) + 1)K(t′)F
1
2 (t′)e−Cr,ν

∫ t′
0

(K2+1)(s) ds dt′

≤ Cr,νF
1
2 (t) + Cr,ν

∫ t

0

(K2(t′) + 1)F
1
2 (t′) dt′.

(5.34)

Hence, (5.32) implies that, for t ∈ [0, T ], since |Ω| > 1, after applying the young inequality,

F (t) +

∫ t

0

H(t′) dt′ ≤ Cr,ν
|Ω|
K(t)eCr,ν

∫ t
0

(K2+1)(s) ds

+
Cr,ν
|Ω|

(∫ t

0

(
K2(t′) + 1

)
dt′
)2

eCr,ν
∫ t
0

(K2+1)(s) ds

+
Cr,ν
|Ω|

∫ t

0

(
K(t′) + τ4

0 + 1
)
dt′ × eCr,ν

∫ t
0

(K2+1)(s) ds,

(5.35)

where T ∈ (0,∞] is given by the following constraints:

τ(s) > 0 and
ν

2
− Cr,ν
|Ω|

(K(s) + 1) ≥ ν

4
> 0 for s ∈ [0, T ]. (5.36)

Since |Ω| ≥ |Ω0|, in particular, there exists a constant CM,ν,τ0 ∈ (1,∞) such that, for t ∈ (0, T ],

F (t) +

∫ t

0

H(t′) dt′ ≤ 1

|Ω0|
exp[exp[exp[exp[CM,ν,τ0(t+ 1)]]]]. (5.37)
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Now we will be able to estimate T . To ensure τ > 0 in (5.36), from (5.28), (5.29), (5.30), and (5.37),
one has

τ(t) = −Cr
∫ t

0

e−Cr
∫ t
t′ K

1
2 (s) ds

(
‖V+‖3/2+δ,1,0 + ‖V−‖3/2+δ,1,0 + F

1
2 +H

1
2

)
dt′

+ τ0e
−Cr

∫ t
0
K

1
2 (t′) dt′ ≥ τ0 exp[exp[exp[exp[−C′M,ν(t+ 1)]]]]

− Cr
(
‖Ṽ0‖ 3

2 +δ,0,0 +
1

|Ω0|
1
2

)
exp[exp[exp[exp[C′M,ν,τ0(t+ 1)]]]]

(5.38)

for some constant C′M,ν , C′M,ν,τ0
∈ (1,∞). Notably, the function τ(t) we obtain is bounded above by (4.15).

Therefore, for t > 0 satisfying

exp[exp[exp[exp[(C′M,ν + C′M,ν,τ0)(t+ 1)]]]] <
τ0

2Cr
(
‖Ṽ0‖ 3

2 +δ,0,0 +
1

|Ω0|
1
2

) , (5.39)

it follows that τ(t) > 0.

Consequently, under condition (5.2), (5.36) and (5.39) imply (5.3), and (5.37) implies (5.4) thanks to
(5.5). This completes the proof of Theorem 5.1.

Remark 11. After carefully tracking the estimates above, one can observe that C′M,ν,τ0
→ ∞ as ν → 0.

For the sake of presentation, we omit such details.

5.3. Proof of Theorem 5.2. In this section, we prove Theorem 5.2. We only sketch the proof for the
first two parts, and will provide detailed proof for the third part.

For the first part of the theorem, thanks to Remark 7, we know that when sup0≤t<∞ ‖V (t)‖r+3,0,τ(t) ≤
CM,r the growth of ‖Ṽ (t)‖r+2,1,τ(t) will only be exponentially in time. Thus, the function K(t) appears in
the proof of Theorem 5.1 (e.g., (5.29) and (5.35)) becomes only exponentially in time. This reduces two
logarithms in the estimate of existence time and gives

T =
1

Cτ0,M,r,ν
log(log(|Ω0|)).

This can be seen as in (5.36) – (5.39).

Similarly, for the second part of Theorem 5.2, thanks to Remark 7, when sup0≤t<∞ ‖V (t)‖r+3,0,τ ≤ ν
4Cr,α

is small enough ‖Ṽ (t)‖r+2,1,τ(t) does not grow and thus the function K(t) is uniformly-in-time bounded.
This reduces one more logarithm and gives

T =
1

Cτ0,M,r,ν
log(|Ω0|)).

To show that the smallness condition (5.2) can be relaxed, recalling K in (5.27). Under our new assumption

on V, thanks to Remark 7, we have that K
1
2 ≤ ν

Cr,α
+ CMe

− ν2 t and ‖V+(t)‖3/2+δ,1,0 + ‖V−(t)‖3/2+δ,1,0 ≤
τ0

Cr,ν,M
e−

ν
2 t. Now recall from (5.38) that

τ(t) =
(
τ0 − Cr

∫ t

0

eCr
∫ t′
0
K

1
2 (s) ds

(
‖V+‖3/2+δ,1,0 + ‖V−‖3/2+δ,1,0 + F

1
2 +H

1
2

)
dt′
)
e−Cr

∫ t
0
K

1
2 (t′) dt′ ,

in which we will ask for

τ0 − Cr
∫ t

0

eCr
∫ t′
0
K

1
2 (s) ds

(
‖V+‖3/2+δ,1,0 + ‖V−‖3/2+δ,1,0

)
dt′

≥ τ0 − Cr
∫ ∞

0

CM,ν
τ0

Cr,ν,M
e
Cr
Cr,α

νt′− ν2 t
′
dt′ ≥ τ0

2
,
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provided that Cr,ν,M and Cr,α are large enough. From this, one can conclude that the smallness assumption

can be relaxed and replaced by ‖Ṽ0‖ 3
2 +δ,0,0 ≤ τ0

Cr,ν,M
.

Next we give the detailed proof to the third part of Theorem 5.2. Consider the initial data satisfying
‖V0‖r+3,0,τ0 ≤ M

|Ω|0 . We set V = 0 and replace the initial condition (5.8) of the perturbed system to

φ0 = V0, (φ±)0 = 0.

With more careful estimates, (5.23) becomes

d

dt
F + νH ≤

[
τ̇ + CrK

1
2 τ + Cr

(
‖V+‖ 3

2 +δ,1,0 + ‖V−‖ 3
2 +δ,1,0

)
+ CrF

1
2 + CrH

1
2

]
×G+ Cr,νLF

+
Cr,ν
|Ω|

KH +
Cr,ν
|Ω|

(
‖∂zV+‖r,1,τ + ‖∂zV−‖r,1,τ

)
K

1
2H

1
2

+
Cr,ν,τ0
|Ω|

L+
Cr,ν
|Ω|

∂tN,

(5.40)

where δ ∈ (0, 1
2 ) and F,G,H are defined as in (5.24)–(5.26),

K := ‖V+‖2r+2,0,τ + ‖V−‖2r+2,0,τ + ‖V+‖2r+1,1,τ + ‖V−‖2r+1,1,τ , L := K
1
2 +K +K2,

and

τ̇ + CrK
1
2 τ + Cr

(
‖V+‖ 3

2 +δ,1,0 + ‖V−‖ 3
2 +δ,1,0

)
+ CrF

1
2 + CrH

1
2 = 0. (5.41)

On the other hand, thanks to Remark 7, (4.8), and (4.9), there exist CM,ν , Cr, C > 1 such that

L ≤ CMe−
ν
C t =: K(t), (5.42)

ν

∫ t

0

(
‖∂zV+(s)‖2r,1,τ + ‖∂zV−(s)‖2r,1,τ

)
eνs ds ≤ CM and (5.43)

ν

∫ t

0

(
‖V+(s)‖23

2 +δ,1,0 + ‖V−(s)‖23
2 +δ,1,0

)
eνs ds ≤ C‖Ṽ0‖23

2 +δ,0,0. (5.44)

With these conditions, from (5.40), one can derive that

d

dt
F + νH ≤ Cr,νLF +

Cr,ν
|Ω|

(K + 1)H +
Cr,ν
|Ω|2

(
‖∂zV+‖2r,1,τ + ‖∂zV−‖2r,1,τ

)
K +

Cr,ν,τ0
|Ω|

L+
Cr,ν
|Ω|

∂tN,

and thus

d

dt
F +

ν

2
H ≤ Cr,νLF +

Cr,ν
|Ω|2

(
‖∂zV+‖2r,1,τ + ‖∂zV−‖2r,1,τ

)
K +

Cr,ν,τ0
|Ω|

L+
Cr,ν
|Ω|

∂tN, (5.45)

provided that |Ω| > CM,r,ν for some positive constant CM,r,ν > 0. Multiplying (5.45) with e−Cr,ν
∫ t
0
L(s) ds

leads to

d

dt

(
Fe−Cr,ν

∫ t
0
L(s) ds

)
+
ν

2
He−Cr,ν

∫ t
0
L(s) ds ≤ Cr,ν

|Ω|2
(
‖∂zV+‖2r,1,τ + ‖∂zV−‖2r,1,τ

)
Ke−Cr,ν

∫ t
0
L(s) ds

+
Cr,ν,τ0
|Ω|

Le−Cr,ν
∫ t
0
L(s) ds +

Cr,ν
|Ω|

∂tNe
−Cr,ν

∫ t
0
L(s) ds.
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After integrating the above equation in time and recalling that F (t = 0) ≤ M
|Ω0| , since |Ω| > |Ω0| > 1, one

obtains (
F (t)e−Cr,ν

∫ t
0
L(s) ds

)
+

∫ t

0

ν

2
H(t′)e−Cr,ν

∫ t′
0
L(s) ds dt′

≤ CM
|Ω0|

+

∫ t

0

Cr,ν
|Ω0|

(
‖∂zV+(t′)‖2r,1,τ + ‖∂zV−(t′)‖2r,1,τ

)
Ke−Cr,ν

∫ t′
0
L(s) ds dt′

+

∫ t

0

Cr,ν,τ0
|Ω0|

L(t′)e−Cr,ν
∫ t′
0
L(s) ds dt′ +

∫ t

0

Cr,ν
|Ω0|

∂tN(t′)e−Cr,ν
∫ t′
0
L(s) ds dt′

≤ CM,r,ν,τ0

|Ω0|
+
Cr,ν
|Ω0|

∫ t

0

∂tN(t′)e−Cr,ν
∫ t′
0
L(s) ds dt′.

(5.46)

According to (5.34), since now N(0) 6= 0 due to φ0 6= 0, the estimate becomes∫ t

0

∂tN(t′)e−Cr,ν
∫ t′
0
L(s) ds dt′ = N(t)e−Cr,ν

∫ t
0

(K2+1)(s) ds −N(0)

+ Cr,ν

∫ t

0

N(t′)L(t′)e−Cr,ν
∫ t′
0
L(s) ds dt′

≤ CM,r,ν

(
F

1
2 (t) + 1

)
+ Cr,ν

∫ t

0

K(t′)F
1
2 (t′) dt′.

Hence, (5.46) implies that, for t ∈ [0, T ], after applying the young inequality, one has

F (t) +

∫ t

0

H(t′) dt′ ≤ CM,r,ν,τ0

|Ω0|
, (5.47)

where T ∈ (0,∞] is given by the constraint

τ(s) > 0 for s ∈ [0, T ].

Now we will be able to estimate T . To ensure τ > 0, from (5.41), (5.42), (5.44), and (5.47), one has

τ(t) = −Cr
∫ t

0

e−Cr
∫ t
t′ K

1
2 (s) ds

(
‖V+‖3/2+δ,1,0 + ‖V−‖3/2+δ,1,0 + F

1
2 +H

1
2

)
dt′

+ τ0e
−Cr

∫ t
0
K

1
2 (t′) dt′

≥ τ0C ′M,r,ν − C ′M,r,ν,τ0

1

|Ω0|
1
2

(t+ 1)− Cr,ν‖Ṽ0‖ 3
2 +δ,0,0

(5.48)

for some constant C′M,r,ν ∈ (0, 1), Cr,ν , C′M,r,ν,τ0
∈ (1,∞). Therefore, for t > 0 satisfying

t+ 1 <
C ′M,r,ντ0|Ω0|

1
2

2C′M,r,ν,τ0

(5.49)

and ‖Ṽ0‖ 3
2 +δ,0,0 satisfying

‖Ṽ0‖ 3
2 +δ,0,0 <

τ0C
′
M,r,ν

2Cr,ν
,

it follows that τ(t) > 0. Consequently, (5.49) implies T = |Ω0|
1
2

Cτ0,M,r,ν
. This completes the proof of Theorem

5.2.
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6. Global Existence in 2D with Ω = 0

In this section, we show that the weak solution obtained in section 3 exists globally in time in the case
of 2D and Ω = 0, provided that the initial data is small. This result is similar to the one in [44], where
system (1.1) with Dirichlet boundary condition is considered.

To be more precious, let us consider V = (u, v)>(x, z, t) with (2.7), i.e., the solution to system (1.1)
independent of the y-variable. It is easy to verify that

u = 0, (6.1a)

∂tv + ∂xP0(ũṽ) = 0, (6.1b)

∂tũ+ ũ∂xũ− ∂xP0(ũ2)−
(∫ z

0

∂xũ(x, s)ds
)
∂zũ− Ωṽ − ν∂zzũ = 0, (6.1c)

∂tṽ + ũ∂xṽ + ũ∂xv − ∂xP0(ũṽ)−
(∫ z

0

∂xũ(x, s)ds
)
∂z ṽ + Ωũ− ν∂zz ṽ = 0. (6.1d)

In addition, let Ω = 0. Then one can observe that v ≡ 0 and ṽ ≡ 0 are invariant in time, a property that
is not true in the case of Ω 6= 0. Consequently, with Ω = 0 and v0 = ṽ0 = 0, system (6.1) reduces to

∂tũ+ ũ∂xũ− ∂xP0(ũ2)−
(∫ z

0

∂xũ(x, s)ds
)
∂zũ− ν∂zzũ = 0 with ∂zũ|z=0,1. (6.2)

We have the following theorem concerning the global existence of the weak solutions to (6.2) with Ω = 0:

Theorem 6.1. For r > 2 and τ0 > 0, suppose that the initial data ũ|t=0 = ũ0 ∈ Sr,0,τ0 with
∫ 1

0
ũ0(x, z) dz =

0 satisfies the smallness condition

‖ũ0‖r,0,τ0 <
ντ0
Cr

, (6.3)

where Cr > 0 is a constant as in (6.5), below. Then the unique weak solution to system (6.2) exists globally
in time.

Sketch of proof. Similarly to (3.1), we have

1

2

d

dt
‖ũ‖2r,0,τ + ν‖∂zũ‖2r,0,τ = τ̇‖Ar+ 1

2 eτAũ‖2 −
〈
AreτAũ∂xũ, A

reτAũ
〉

−
〈
AreτA

(∫ z

0

∂xũ(x, s)ds
)
∂zũ, A

reτAũ
〉

≤
(
τ̇ + Cr(‖ũ‖r,0,τ + ‖∂zũ‖r,0,τ )

)
‖Ar+ 1

2 eτAũ‖2,

thanks to Lemma A.1 and Lemma A.2.

It is easy to see that
∫ 1

0
ũ(x, z)dz = 0. One can apply the Poincaré inequality to get ‖ũ‖r,0,τ ≤ ‖∂zũ‖r,0,τ ,

and consequently,

1

2

d

dt
‖ũ‖2r,0,τ +

ν

2
‖∂zũ‖2r,0,τ ≤

(
τ̇ + Cr‖∂zũ‖r,0,τ

)
‖Ar+ 1

2 eτAũ‖2 − ν

2
‖ũ‖2r,0,τ .

Assuming that

τ̇ + Cr‖∂zũ‖r,0,τ = 0, (6.4)

one has
d

dt
‖ũ‖2r,0,τ + ν‖∂zũ‖2r,0,τ ≤ −ν‖ũ‖2r,0,τ .
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After applying the Grönwall inequality, one obtains

‖ũ(t)‖2r,0,τ(t)e
νt + ν

∫ t

0

‖∂zũ(s)‖2r,0,τ(s)e
νsds ≤ ‖ũ0‖2r,0,τ0 .

Therefore, integrating (6.4) from 0 to t ∈ (0,∞) and applying the Hölder inequality in the resultant lead
to

τ(t) = τ0 − Cr
∫ t

0

‖∂zũ(s)‖r,0,τ(s)ds

≥ τ0 − Cr
(∫ t

0

‖∂zũ(s)‖2r,0,τ(s)e
νsds

) 1
2
(∫ t

0

e−νsds
) 1

2

≥ τ0 −
Cr
ν
‖ũ0‖r,0,τ0 ,

(6.5)

for some positive constant Cr ∈ (0,∞).

In summary, for the initial data satisfying (6.3), we have that τ(t) > 0 for all t > 0, and thus the
solution exists for all time. �

Appendix A. Estimates of nonlinear terms

In this appendix, we list the estimates of nonlinear terms in the analytic-Sobolev spaces Sr,s,τ . Lemma
A.1–A.2 will be used to prove the local well-posedness.

Lemma A.1. For f, g, h ∈ Sr+ 1
2 ,s,τ

, where r > 1, s ≥ 0, and τ ≥ 0, one has∣∣∣〈AreτA(f · ∇g), AreτAh
〉∣∣∣

≤
∫ 1

0

Cr

[
(‖AreτAf(z)‖L2(T2) + |f̂0(z)|)‖Ar+ 1

2 eτAg(z)‖L2(T2)‖Ar+
1
2 eτAh(z)‖L2(T2)

+ ‖Ar+ 1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖AreτAh(z)‖L2(T2)

]
dz.

(A.1)

Proof. First, notice that
∣∣∣〈AreτA(f · ∇g), AreτAh

〉∣∣∣ =
∣∣∣〈f · ∇g,AreτAH〉∣∣∣, where H = AreτAh. Using

the Fourier representation, we have,

f(x, z) =
∑

j∈2πZ2

f̂j(z)eij·x, (A.2a)

g(x, z) =
∑

k∈2πZ2

ĝk(z)eik·x, (A.2b)

h(x, z) =
∑

l∈2πZ2

ĥl(z)e
il·x, and by definition, (A.2c)

AreτAH(x, z) =
∑

l∈2πZ2

|l|reτ |l|Ĥl(z)e
il·x, with Ĥl(z) = |l|reτ |l|ĥl(z). (A.2d)

Therefore, ∣∣∣〈f · ∇g,AreτAH〉∣∣∣ ≤ ∫ 1

0

∑
j+k+l=0

|f̂j(z)||k||ĝk(z)||l|reτ |l||Ĥl(z)|dz.

Since |l| = |j + k| ≤ |j|+ |k|, we have the following inequalities:

|l|r ≤ (|j|+ |k|)r ≤ Cr(|j|r + |k|r), eτ |l| ≤ eτ |j|eτ |k|.
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Applying these inequalities, we have

∣∣∣〈f · ∇g,AreτAH〉∣∣∣ ≤ ∫ 1

0

∑
j+k+l=0

Cr|f̂j(z)||k||ĝk(z)|(|j|r + |k|r)eτ |j|eτ |k||l|reτ |l||ĥl(z)|dz.

Since |k|, |j|, |l| ≥ 0, we have |k| 12 ≤ (|j|+ |l|) 1
2 ≤ |j| 12 + |l| 12 , therefore,∣∣∣〈f · ∇g,AreτAH〉∣∣∣

≤
∫ 1

0

∑
j+k+l=0

Cr|f̂j(z)||k| 12 (|j| 12 + |l| 12 )|ĝk(z)|(|j|r + |k|r)eτ |j|eτ |k||l|reτ |l||ĥl(z)|dz

≤
∫ 1

0

∑
j+k+l=0

Cr

(
|k| 12 |j|r+ 1

2 |l|r + |k|r+ 1
2 |j| 12 |l|r + |k| 12 |j|r|l|r+ 1

2 + |k|r+ 1
2 |l|r+ 1

2

)
× eτ |j|eτ |k|eτ |l||f̂j(z)||ĝk(z)||ĥl(z)|dz =:

∫ 1

0

(A1 +A2 +A3 +A4)(z)dz.

Thanks to Cauchy–Schwarz inequality, since r > 1, we have

A1 =
∑

j+k+l=0

Cr|k|
1
2 |j|r+ 1

2 |l|reτ |j|eτ |k|eτ |l||f̂j(z)||ĝk(z)||ĥl(z)|

= Cr
∑

k∈2πZ2

k 6=0

[
|k| 12 |ĝk(z)|eτ |k|

∑
j∈2πZ2

j 6=0,−k

|j|r+ 1
2 eτ |j||f̂j(z)||j + k|reτ |j+k||ĥ−j−k(z)|

]

≤ Cr
( ∑

k∈2πZ2

k 6=0

|k|−2r
) 1

2
( ∑

k∈2πZ2

k 6=0

|k|2r+1e2τ |k||ĝk(z)|2
) 1

2

× sup
k∈2πZ2

[( ∑
j∈2πZ2

j 6=0,−k

|j|2r+1e2τ |j||f̂j(z)|2
) 1

2
( ∑

j∈2πZ2

j 6=0,−k

|j + k|2re2τ |j+k||ĥ−j−k(z)|2
) 1

2

]

≤ Cr‖Ar+
1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖AreτAh(z)‖L2(T2).

Similarly, we have

A2 =
∑

j+k+l=0

Cr|k|r+
1
2 |j| 12 |l|reτ |j|eτ |k|eτ |l||f̂j(z)||ĝk(z)||ĥl(z)|

≤ Cr‖Ar+
1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖AreτAh(z)‖L2(T2),

and

A3 =
∑

j+k+l=0

Cr|k|
1
2 |j|r|l|r+ 1

2 eτ |j|eτ |k|eτ |l||f̂j(z)||ĝk(z)||ĥl(z)|

≤ Cr‖AreτAf(z)‖L2(T2)‖Ar+
1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2).
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For A4, thanks to Cauchy–Schwarz inequality, since r > 1, we have

A4 =
∑

j+k+l=0

Cr|k|r+
1
2 |l|r+ 1

2 eτ |j|eτ |k|eτ |l||f̂j(z)||ĝk(z)||ĥl(z)|

= Cr
∑

j∈2πZ2

[
eτ |j||f̂j(z)|

∑
k∈2πZ2

k 6=0,−j

|k|r+ 1
2 |ĝk(z)|eτ |k||j + k|r+ 1

2 eτ |j+k||ĥ−j−k|
]

≤ Cr
{
|f̂0(z)|+

( ∑
j∈2πZ2

j 6=0

|j|−2r
) 1

2
( ∑

j∈2πZ2

j 6=0

|j|2re2τ |j||f̂j(z)|2
) 1

2
}

× sup
j∈2πZ2

[( ∑
k∈2πZ2

k 6=0,−j

|k|2r+1e2τ |k||ĝk(z)|2
) 1

2
( ∑

k∈2πZ2

k 6=0,−j

|j + k|2r+1e2τ |j+k||ĥ−j−k|2
) 1

2

]

≤ Cr(‖AreτAf(z)‖L2(T2) + |f̂0(z)|)‖Ar+ 1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2).

Combining the estimates for A1 to A4, we achieve the desired inequality. �

Lemma A.2. For f, h ∈ Sr+ 1
2 ,s,τ

and g, ∂zg ∈ Sr,s,τ , where r > 3
2 , s ≥ 0, and τ ≥ 0, one has

∣∣∣〈AreτA((∫ z

0

∇ · f(x, s)ds)∂zg
)
, AreτAh

〉∣∣∣
≤Cr‖Ar+

1
2 eτAf‖‖∂zg‖r,0,τ‖Ar+

1
2 eτAh‖.

Proof. First,
∣∣∣〈AreτA((∫ z0 ∇ · f(x, s)ds)∂zg

)
, AreτAh

〉∣∣∣ =
∣∣∣〈(
∫ z

0
∇ · f(x, s)ds)∂zg,A

reτAH
〉∣∣∣. Owing to

the Fourier representation in (A.2) , we have

∣∣∣〈(

∫ z

0

∇ · f(x, s)ds)∂zg,A
reτAH

〉∣∣∣ =
∣∣∣〈 ∫ z

0

∑
j∈2πZ2

j · f̂j(s)eij·xds)∂zg,A
reτAH

〉∣∣∣
≤
∫ 1

0

∑
j+k+l=0

Cr|j|
(∫ z

0

|f̂j(s)|ds
)
|∂z ĝk(z)|(|j|r + |k|r)eτ |j|eτ |k||l|reτ |l||ĥl(z)|dz

≤
∫ 1

0

∑
j+k+l=0

Cr

(
|k| 12 |j|r+ 1

2 |l|r + |j|r+ 1
2 |l|r+ 1

2 + |j||k|r|l|r
)

× eτ |j|eτ |k|eτ |l|
(∫ z

0

|f̂j(s)|ds
)
|∂z ĝk(z)||ĥl(z)|dz =: B1 +B2 +B3.

where we have substituted the following inequalities: for j + k + l = 0,

|j| 12 ≤ (|k| 12 + |l| 12 ), |l|r ≤ Cr(|j|r + |k|r).
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Thanks to the Cauchy–Schwarz inequality, since r > 3
2 , we have

B1 =

∫ 1

0

∑
j+k+l=0

Cr|k|
1
2 |j|r+ 1

2 |l|reτ |j|eτ |k|eτ |l|
(∫ z

0

|f̂j(s)|ds
)
|∂z ĝk(z)||ĥl(z)|dz

= Cr

∫ 1

0

∑
k∈2πZ2

k 6=0

[
|k| 12 |∂z ĝk(z)|eτ |k|

∑
j∈2πZ2

|j|r+ 1
2 eτ |j|

(∫ z

0

|f̂j(s)|ds
)
|j + k|reτ |j+k||ĥ−j−k(z)|

]
dz

≤ Cr
∫ 1

0

(∑
k 6=0

|k|1−2r
) 1

2
(∑

k 6=0

|k|2r|∂z ĝk(z)|2e2τ |k|
) 1

2

sup
k 6=0

[( ∑
j∈2πZ2

|j|2r+1e2τ |j|‖f̂j‖2L2
z

) 1
2

×
( ∑

j∈2πZ2

|j + k|2re2τ |j+k||ĥ−j−k(z)|2
) 1

2

]
dz

≤ Cr‖Ar+
1
2 eτAf‖

∫ 1

0

‖AreτA∂zg(z)‖L2(T2)‖AreτAh(z)‖L2(T2)dz

≤ Cr‖Ar+
1
2 eτAf‖‖AreτA∂zg‖‖AreτAh‖,

For B2, we have

B2 =

∫ 1

0

∑
j+k+l=0

Cr|j|r+
1
2 |l|r+ 1

2 eτ |j|eτ |k|eτ |l|
(∫ z

0

|f̂j(s)|ds
)
|∂z ĝk(z)||ĥl(z)|dz

= Cr

∫ 1

0

∑
k∈2πZ2

[
|∂z ĝk(z)|eτ |k|

∑
j∈2πZ2

|j|r+ 1
2 eτ |j|

(∫ z

0

|f̂j(s)|ds
)
|j + k|r+ 1

2 eτ |j+k||ĥ−j−k(z)|
]
dz

≤
∫ 1

0

Cr

{
|∂z ĝ0(z)|+

(∑
k 6=0

|k|−2r
) 1

2
(∑

k 6=0

|k|2r|∂z ĝk(z)|2e2τ |k|
) 1

2
}

× sup
k∈2πZ2

[( ∑
j∈2πZ2

|j|2r+1e2τ |j|‖f̂j‖2L2
z

) 1
2
( ∑

j∈2πZ2

|j + k|2r+1e2τ |j+k||ĥ−j−k(z)|2
) 1

2

]
dz

≤ Cr‖Ar+
1
2 eτAf‖

∫ 1

0

(
|∂z ĝ0(z)|+ ‖AreτA∂zg(z)‖L2(T2)

)
‖Ar+ 1

2 eτAh(z)‖L2(T2)dz

≤ Cr‖Ar+
1
2 eτAf‖‖∂zg‖r,0,τ‖Ar+

1
2 eτAh‖.

The estimate of B3 is similar to that of B1, and one can obtain that

B3 ≤ Cr‖Ar+
1
2 eτAf‖‖AreτA∂zg‖‖AreτAh‖.

Combine the estimates of B1, B2, and B3, we obtain the desired result. �

Lemma A.3. For f, g, h ∈ Sr+ 1
2 ,s,τ

, where r > 1, s ≥ 0, and τ ≥ 0, one has∣∣∣〈AreτA((∇ · f)g
)
, AreτAh

〉∣∣∣
≤
∫ 1

0

Cr

[
(‖AreτAg(z)‖L2(T2) + |ĝ0(z)|)‖Ar+ 1

2 eτAf(z)‖L2(T2)‖Ar+
1
2 eτAh(z)‖L2(T2)

+ ‖Ar+ 1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖AreτAh(z)‖L2(T2)

]
dz.

The proof of Lemma A.3 is almost the same as Lemma A.1, so we omit it.
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We will show lemmas which are essential in the study of effect of rotation. Lemma A.4 to Lemma A.6
are concerning the commutator estimates.

Lemma A.4. For f, g, h ∈ Sr+ 1
2 ,s,τ

, where r > 2, s ≥ 0, and τ ≥ 0, one has∣∣∣〈AreτA(f · ∇g), AreτAh
〉
−
〈
f · ∇AreτAg,AreτAh

〉∣∣∣
≤ Cr

∫ 1

0

‖Arf(z)‖L2(T2)‖Arg(z)‖L2(T2)‖Arh(z)‖L2(T2)dz

+Crτ

∫ 1

0

‖Ar+ 1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2)dz.

Next, we have

Lemma A.5. For f, g, h ∈ Sr+ 1
2 ,s,τ

, where r > 2, s ≥ 0, and τ ≥ 0, one has∣∣∣〈AreτA((∇ · f)g
)
, AreτAh

〉
−
〈

(∇ ·AreτAf)g,AreτAh
〉∣∣∣

≤ Cr
∫ 1

0

‖Arf(z)‖L2(T2)‖Arg(z)‖L2(T2)‖Arh(z)‖L2(T2)dz

+Crτ

∫ 1

0

‖Ar+ 1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2)dz.

We start with the proof of Theorem A.4. The proof of Theorem A.5 will be similarly.

Proof of Lemma A.4. First, notice that
∣∣∣〈AreτA(f · ∇g), AreτAh

〉∣∣∣ =
∣∣∣〈f · ∇g,AreτAH〉∣∣∣, where H =

AreτAh. We use Fourier representation of f, g and H, in which we can write

f(x, z) =
∑

j∈2πZ2

f̂j(z)eij·x,

g(x, z) =
∑

k∈2πZ2

ĝk(z)eik·x,

AreτAH(x, z) =
∑

l∈2πZ2

|l|reτ |l|Ĥl(z)e
il·x.

Therefore,

I :=
∣∣∣〈AreτA(f · ∇g), AreτAh

〉
−
〈
f · ∇AreτAg,AreτAh

〉∣∣∣
=
∣∣∣〈(f · ∇g), AreτAH

〉
−
〈
f · ∇AreτAg,H

〉∣∣∣
≤

∑
j+k+l=0

∫ 1

0

|f̂j(z)||k||ĝk(z)||Ĥl(z)|
∣∣∣|l|reτ |l| − |k|reτ |k|∣∣∣dz.

By virtue of the following observation [38]:

For r ≥ 1 and τ ≥ 0, and for all positive ξ, η ∈ R, we have

|ξreτξ − ηreτη| ≤ Cr|ξ − η|
(
|ξ − η|r−1 + ηr−1 + τ(|ξ − η|r + ηr)eτ |ξ−η|eτη

)
; (A.3)

with ξ = |l|, η = |k|, and |ξ − η| ≤ |j|, inequality (A.3) implies

I ≤ Cr
∑

j+k+l=0

∫ 1

0

|f̂j(z)||k||ĝk(z)||Ĥl(z)||j|
(
|j|r−1 + |k|r−1 + τ(|j|r + |k|r)eτ |j|eτ |k|

)
dz.
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By the definition of H, and since ex ≤ 1 + xex for any x ≥ 0, we have

|Ĥl(z)| = |l|reτ |l||ĥl(z)| ≤ |l|r(1 + τ |l|eτ |l|)|ĥl(z)| ≤ |l|r|ĥl(z)|+ τ(|j|+ |k|)|Ĥl(z)|.

Therefore, one obtains that

|Ĥl(z)|
(
|j|r−1 + |k|r−1 + τ(|j|r + |k|r)eτ |k|eτ |j|

)
≤
(
|l|r|ĥl(z)|+ τ(|j|+ |k|)|Ĥl(z)|

)(
|k|r−1 + |j|r−1

)
+ |Ĥl(z)|

(
τ(|k|r + |j|r)eτ |k|eτ |j|

)
≤ |ĥl(z)||l|r(|k|r−1 + |j|r−1) + τCr|Ĥl(z)|(|k|r + |j|r)eτ |k|eτ |j|.

Based on this, one has

I ≤ Cr
∑

j+k+l=0

∫ 1

0

|f̂j(z)||k||ĝk(z)||j||ĥl(z)||l|r(|k|r−1 + |j|r−1)dz

+τCr
∑

j+k+l=0

∫ 1

0

|f̂j(z)||k||ĝk(z)||j||Ĥl(z)|(|k|r + |j|r)eτ |k|eτ |j|dz := I1 + I2.

Here

I1 = Cr
∑

j+k+l=0

∫ 1

0

(
|f̂j(z)||k|r|ĝk(z)||j||ĥl(z)||l|r + |f̂j(z)||k||ĝk(z)||j|r|ĥl(z)||l|r

)
dz :=

∫ 1

0

I11 + I12dz.

Thanks to Cauchy–Schwarz inequality, since r > 2, we have

I11 = Cr
∑

j+k+l=0

|j||f̂j(z)||k|r|ĝk(z)||l|r|ĥl(z)|

= Cr
∑

j∈2πZ2

j 6=0

|j||f̂j(z)|
∑

k∈2πZ2

k 6=0,−j

|k|r|ĝk(z)||j + k|r|ĥ−j−k(z)|

≤ Cr
( ∑

j∈2πZ2

j 6=0

|j|2−2r
) 1

2
( ∑

j∈2πZ2

j 6=0

|j|2r|f̂j(z)|2
) 1

2

× sup
j∈2πZ2

( ∑
k∈2πZ2

k 6=0,−j

|k|2r|ĝk(z)|2
) 1

2
( ∑

k∈2πZ2

k 6=0,−j

|j + k|2r|ĥ−j−k(z)|2
) 1

2

≤ Cr‖Arf(z)‖L2(T2)‖Arg(z)‖L2(T2)‖Arh(z)‖L2(T2).

Similarly, one gets

I12 ≤ Cr‖Arf(z)‖L2(T2)‖Arg(z)‖L2(T2)‖Arh(z)‖L2(T2).

Therefore,

I1 ≤ Cr
∫ 1

0

‖Arf(z)‖L2(T2)‖Arg(z)‖L2(T2)‖Arh(z)‖L2(T2)dz.

Next, we estimate

I2 = τCr
∑

j+k+l=0

∫ 1

0

(
|j|r+1eτ |j||f̂j(z)||k|eτ |k||ĝk(z)||Ĥl(z)|

+ |j|eτ |j||f̂j(z)||k|r+1eτ |k||ĝk(z)||Ĥl(z)|
)
dz :=

∫ 1

0

I21 + I22dz.
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Thanks to Cauchy–Schwarz inequality, since r > 2, by using |j| 12 ≤ |k| 12 + |l| 12 , and |k| 12 + |l| 12 ≤ 2|k| 12 |l| 12
when |k| ≥ 1 and |l| ≥ 1, we have

I21 = τCr
∑

j+k+l=0

|j|r+1eτ |j||f̂j(z)||k|eτ |k||ĝk(z)||Ĥl(z)|

≤ τCr
∑

j+k+l=0
j,k,l 6=0

|j|r+ 1
2 eτ |j||f̂j(z)||k| 32 eτ |k||ĝk(z)||l|r+ 1

2 eτ |l||ĥl(z)|

≤ Crτ
∑

k∈2πZ2

k 6=0

|k| 32 |ĝk(z)|eτ |k|
∑

j∈2πZ2

j 6=0,−k

|j|r+ 1
2 eτ |j||f̂j(z)||j + k|r+ 1

2 eτ |j+k||ĥ−j−k(z)|

≤ Crτ
( ∑

k∈2πZ2

k 6=0

|k|2−2r
) 1

2
( ∑

k∈2πZ2

k 6=0

|k|2r+1e2τ |k||ĝk(z)|2
) 1

2

× sup
k∈2πZ2

( ∑
j∈2πZ2

j 6=0,−k

|j|2r+1e2τ |j||f̂j(z)|2
) 1

2
( ∑

j∈2πZ2

j 6=0,−k

|j + k|2r+1e2τ |j+k||ĥ−j−k(z)|2
) 1

2

≤ Crτ‖Ar+
1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2).

Similarly, one gets

I22 ≤ Crτ‖Ar+
1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2).

Therefore,

I2 ≤ Crτ
∫ 1

0

‖Ar+ 1
2 eτAf(z)‖L2(T2)‖Ar+

1
2 eτAg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2)dz.

�

Lemma A.6. For f, g, ∂zg, h ∈ Sr+ 1
2 ,s,τ

, where r > 2, s ≥ 0, and τ ≥ 0, one has∣∣∣〈AreτA((

∫ z

0

∇ · f(x, s)ds)∂zg
)
, AreτAh

〉
−
〈
∂zgA

reτA(

∫ z

0

∇ · f(x, s)ds), AreτAh
〉∣∣∣

≤ Cr‖Ar∂zg‖‖Arf‖‖Arh‖+ Crτ‖Ar+
1
2 eτA∂zg‖‖Ar+

1
2 eτAf‖‖Ar+ 1

2 eτAh‖.

Proof. Observe that Lemma A.6 follows directly from Lemma A.5. Indeed, if one replaces f by
∫ z

0
f(x, s)ds

and g by ∂zg in Lemma A.5, by the Hölder inequality, one obtains that∣∣∣〈AreτA((

∫ z

0

∇ · f(x, s)ds)∂zg
)
, AreτAh

〉
−
〈
∂zgA

reτA(

∫ z

0

∇ · f(x, s)ds), AreτAh
〉∣∣∣

≤Cr
∫ 1

0

‖Ar
∫ z

0

f(x, s)ds‖L2(T2)‖Ar∂zg(z)‖L2(T2)‖Arh(z)‖L2(T2)dz

+ Crτ

∫ 1

0

‖Ar+ 1
2 eτA

∫ z

0

f(x, s)ds‖L2(T2)‖Ar+
1
2 eτA∂zg(z)‖L2(T2)‖Ar+

1
2 eτAh(z)‖L2(T2)dz

≤Cr‖Ar∂zg‖‖Arf‖‖Arh‖+ Crτ‖Ar+
1
2 eτA∂zg‖‖Ar+

1
2 eτAf‖‖Ar+ 1

2 eτAh‖.

�
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