ON THE EFFECT OF FAST ROTATION AND VERTICAL VISCOSITY ON THE
LIFESPAN OF THE 3D PRIMITIVE EQUATIONS
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ABSTRACT. We study the effect of the fast rotation and vertical viscosity on the lifespan of solutions
to the three-dimensional primitive equations (also known as the hydrostatic Navier-Stokes equations)
with impermeable and stress-free boundary conditions. Firstly, for a short time interval, independent
of the rate of rotation |Q|, we establish the local well-posedness of solutions with initial data that is
analytic in the horizontal variables and only L? in the vertical variable. Moreover, it is shown that the
solutions immediately become analytic in all the variables with increasing-in-time (at least linearly) radius
of analyticity in the vertical variable for as long as the solutions exist. On the other hand, the radius of
analyticity in the horizontal variables might decrease with time, but as long as it remains positive the
solution exists. Secondly, with fast rotation, i.e., large |€2|, we show that the existence time of the solution
can be prolonged, with “well-prepared” initial data. Finally, in the case of two spatial dimensions with
Q = 0, we establish the global well-posedness provided that the initial data is small enough. The smallness
condition on the initial data depends on the vertical viscosity and the initial radius of analyticity in the
horizontal variables.
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1. INTRODUCTION

We consider the following 3D viscous primitive equations (PEs) with only vertical viscosity for the
large-scale oceanic and atmospheric dynamics:

OV +V VYV +wd,V —vd,.V+QVt +Vp=0, (1.1a)
0.p =0, (1.1b)
V-V+0,w=0, (1.1c)

in the horizontal channel D := {(z,2)" = (z,y,2)" : &’ € T,z € (0,1)}, subject to the following initial
and boundary conditions:

V0i=0 = Vo, (1.2)
(0:V,w)|z=0,1 = 0, and (V,w) are periodic in & with period 1. (1.3)

Here the horizontal velocity field V = (u,v) ", the vertical velocity w, and the pressure p are the unknowns
of the initial-boundary value problem. The 2D horizontal gradient is denoted by V = (9;,8,)". The
positive constant v is the vertical viscosity coefficient. QY+ = Q(—wv,u) T represents the Coriolis force with
magnitude |Q| € RT. As one will see later, the Coriolis force induces linear rotation waves with rotating
rate |2|. The 3D viscous PEs can be derived as the asymptotic limit of the small aspect ratio between the
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vertical and horizontal length scales from the Boussinesq system, which is justified rigorously first in [1] in
a weak sense, then later in [39] in a strong sense with error estimates (see also a recent paper [40] for the
PEs with anisotropic horizontal viscosity). Notice that we have omitted the coupling with temperature
in (1.1) for the sake of simple and clear presentation. System (1.1) is also referred to as the anisotropic
vertically viscous hydrostatic Navier-Stokes equations.

The global well-posedness of strong solutions to the 3D PEs with full viscosity was first established in
[15], and later in [30]. See also [35, 36] for different boundary conditions, and [26] for solutions with less
regular initial data. In [11, 12, 13], the authors consider global well-posedness of strong solutions to the
3D PEs with only horizontal viscosity.

In the inviscid case without rotation (2 = 0), the linear ill-posedness of solutions in Sobolev spaces
has been established in [45]. Later on, the nonlinear ill-posedness of the inviscid PEs without rotation
was established in [25]. Moreover, without rotation, it was proved that smooth solutions to the inviscid
PEs can develop singularity in finite time [10, 46]. Recently, it is shown in [27] that these results can
be extended to the case with rotation, i.e., 2 # 0. Under some structural (local Rayleigh condition) or
analyticity assumption of the initial data, the well-posedness theory was studied in [8, 9, 22, 23, 33, 34, 42].
In particular, it has been shown that the lifespan of solutions to the 3D inviscid PEs can be prolonged
provided that the rate of rotation is fast enough and the initial data is “well-prepared” in [22]. Similar
results have been studied in the case of the 3D fast rotating Euler, Navier-Stokes, and Boussinesq equations
in 3, 4, 5, 6, 16, 17, 18, 28, 31] (see also [2, 24, 32, 41] for some explicit examples demonstrating the
mechanism).

For the PEs with only vertical viscosity, it has been shown in [45] that system (1.1) is ill-posed in any
Sobolev space. This ill-posedness can be overcome by considering additional linear (Rayleigh-like friction)
damping, see [14] for the reduced 3D case. On the other hand, with Gevrey regularity and some convex
conditions on the initial data, the local well-posedness is established in [21]. When the initial data is
analytic in the horizontal variables & and is sufficiently small, the global well-posedness is proved in [44] in
2D, with Q = 0 and Dirichlet boundary condition. In this paper, we consider (1.1) in 3D, with arbitrary
Q € R and subject to impermeable and stress-free boundary conditions.

The main results of this paper are roughly summarized as follows:

R1 Local well-posedness (see Theorem 3.2): Assume that )V is analytic in the horizontal variables
x and only L? in the vertical variable z. Let Q € R be arbitrary but fixed. Then there exists
a positive time 7 > 0, independent of €2, such that there exists a unique Leray-Hopf type weak
solution V to system (1.1) (see Definition 3.1, below). Moreover the weak solution V depends
continuously on the initial data and in particular it is unique.

R2 Instantaneous analyticity in the vertical variable (see Theorem 3.3): With the same assumptions
as in R1 above, the unique Leray-Hopf type weak solution ¥V immediately becomes analytic in z
for t > 0. Moreover, thanks to the viscous effect the radius of analyticity in z increases in time,
at least linearly, for as long as the solution exists. On the other hand, the radius of analyticity in
the horizontal variables might decrease with time, but as long as it remains positive the solution
exists.

R3 Long-time existence (see Theorem 5.1): Let |Q > [Qg| with |Qg| large enough, in particular
|Q] > 1. Assume that the analytic-Sobolev norm (see (2.3), below) of both the barotropic mode
Vo and baroclinic mode V, are O(1), and that some Sobolev norm of Vy is O(ﬁ), as Qo] — oo.
Then a lower bound, 7T, of the existence time of the Leray-Hopf type weak solution to system
(1.1) with |©2| > |Qo| satisfies

T = O(log[log[log(log(|Q0]))]]) — oo as |Qg]| — co. (1.4)
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Moreover, as a corollary of R2, the solution is analytic in all variables (see Remark 9, below).
R4 Long-time existence with small barotropic mode (see Theorem 5.2): Let [2] > |Q] > 1 and ||
be large enough.

(a) Under the assumption that the solution V to the 2D Euler equations with initial data Vo
is uniformly-in-time bounded in the analytic space norm, (1.4) can be improved to 7 =
O(log(log(|€2%])))- Let us note that this result is parallel to a similar one in the inviscid case
[22].

(b) Moreover, under the assumption that V' is uniformly-in-time small enough (the smallness
condition is independent of |2g]) in the analytic space norm, the smallness requirement on
the Sobolev norm of Vy can be relaxed and is independent of Qp, and (1.4) can be improved
to T = O(log(|Q%])), as || — co. In view of work reported in [29] about the growth of
solutions of 2D Euler equations, we observe that the above assumptions about the smallness
of V might not be valid for all initial data.

(c) If the analytic norm of Vy is of order O(ﬁ), as || — oo, then the smallness requirement

on the Sobolev norm of V; can be relaxed and independent of €g; moreover, (1.4) can be
improved to 7 = O(|Q|2).

R5 Global well-posedness in 2D with Q = 0 (see Theorem 6.1): In the 2D case with £ = 0, suppose
that the initial data Vy is analytic only in the horizontal variable with small analytic-Sobolev
norm (the smallness condition depends on v and the initial radius of analyticity 79). Then the
unique Leray-Hopf type weak solution exists globally in time. Furthermore, R2 implies that the
solution is analytic in all variables.

Compared to the inviscid case [22], this paper investigates the combined effect of the fast rotation and
the vertical viscosity. The main differences are the following:

e The presence of vertical viscosity allows the initial data to be only L? in the z-variable, while the
inviscid PEs requires initial data to be analytic in all spatial variables.
e Under the assumption that the analytic norm of Vg is of order O(Qio) (i.e., the assumption in

R4(c)), the smallness assumption on the Sobolev norm of V; can be relaxed to become independent
of Qp, and the existence time can be improved to 7 = C’)(|QO|%)7 which is an unknown property
in the inviscid case .

e In the 2D case with = 0 and vanishing initial barotropic mode (i.e., R5), the PEs with vertical
viscosity is globally well-posed with small initial data, which does not hold in the inviscid case
thanks to the finite-time blowup result as shown in [10, 27, 46].

Compared to the work [44], which studies the 2D model subject to Dirichlet boundary condition without
rotation, we investigate here both the 2D and 3D models subject to the impermeable and stress-free
boundary conditions. While recognizing the subtle difference between the imposed boundary conditions
and their mathematical and physical implications, the result reported in [44] is, roughly speaking, along
the lines of the statement in R5, above, focusing on the 2D case. Meanwhile, our main objective in this
contribution is to study the combined effect of the fast rotation and viscosity in the 3D case, as it has
been summarized in R1 — R4 above.

The paper is organized as follows. In section 2, we introduce the notations and some preliminary results
which will be used throughout this paper. In section 3, we establish the local well-posedness of system
(1.1) and instantaneous analytic regularity in the vertical variable by proving Theorem 3.2 (i.e., R1) and
Theorem 3.3 (i.e., R2). In section 4, we derive the formal limit resonant system of (1.1) when || — oo
and establish some properties about the limit system. Section 5 is the centerpiece of this paper and is
devoted to studying the effect of rotation, where we prove Theorem 5.1 (i.e., R3) and Theorem 5.2 (i.e.,
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R4). In section 6, we prove the global well-posedness in the 2D case with 2 = 0, i.e., Theorem 6.1 (i.e.,
R5).

2. PRELIMINARIES

In this section, we introduce the notations and collect some preliminary results that will be used in this
paper. The generic constant C appearing in this paper may change from line to line. We use subscript,
e.g., C}., to emphasize the dependence of the constant on 7.

2.1. Functional settings. We use the notation (z, z) = (z,y,2) € D = T?x|[0, 1], where & and z represent
the horizontal and vertical variables, respectively. T? is the two-dimensional torus with unit length. Denote
by L?(D), the Lebesgue space of complex/real valued functions f(x, 2) satisfying fD |f(z, 2)|?dzdz < oo,
endowed with the norm

161 = Wiy = ([ 1f(@.2) )t
and the inner product

(f.9) = /D f(@, 2)g" (x, 2) dwd (2.1)

for f,g € L?(D). Here g* represents the complex conjugate of g. Given any time 7 > 0, LP(0,7; X)
represents the space of functions f : [0,7] — X satisfying fOT | f ()% dt < oo, where X is a Banach space

with norm || - || x. For a function f € L2(D), we use fi(z), k € 2772, to denote its Fourier coefficients in
the x-variables, i.e.,
fru(2) ::/ e T f (g 2)de, and hence flx,2z) = Z fre(z)e®=. (2.2)
T2
ke2nZ?

Let A :=+/—Ay, where Ay = 0y + Oyy is the horizontal Laplacian, defined by, in terms of the Fourier
coefficients,

Afe(2) = [kl fu(z), ke 2aZ2.
For r > 0, we define
H'(D) = {f € LD) : | |- < o0},
with 1
Il = > (lA=m0m |12 + 1o £12) 2.

0<m<r,mez
Notice that, with (2.2), we have

1 1
oI = [ (X rfuP)de and far st = [ (Y KO
0 “keanze 0 “keanz?
In addition, given any r > 0 and s > 0 with s € Z, we define the anisotropic Sobolev space
HgH(D) == {f € L*(D) : || fllym: < oo},

where the anisotropic Sobolev norm is given by

I lgre = S (lAT0m 12 + o £11%) .

m<s
On the other hand, given any r > 0, s > 0, and 7 > 0, with s € Z, we define the analytic-Sobolev space
Srsri=1{f € LQ(D) N f s, < 0o},
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where the norm is given by

Fllr 2= S0 (A0 12 + 07 1),
m<s
with, recalling (2.2),
1
e or i = [ (30 WPreHar ful) )
0

ke2nzZ?

(2.3)

Roughly speaking, S, s - is the space of functions that are analytic with radius 7 in the x-variables, and
H? in the z-variable. The space of analytic functions is a special case of Gevrey class. For more details
about Gevrey class, we refer readers to [19, 20, 22, 38]. Notice that when 7 = 0, one has S, 5,0 = HLH: (D).

Remark 1. With abuse of notation, we also write f € S, 0.~ for f = f(x) depending only on the horizontal

variables.

The following lemma summarizes the algebraic property of functions with analyticity in the horizontal

variables:

Lemma 2.1. For 7> 0 and r > 1, we have
1474 () @lIng < Cr(1fo()] + 147 )1z ) (Ia0(2)] + 147 g (2)l1n3 ),
provided that the right hand side is bounded, where, according to (2.2),

fo(z) = flx, z)dx.
'H‘2

The proof of Lemma 2.1 is standard. We refer to [19, 22, 43] for details.
With k = (k1, k2, ks) € 2m(Z* x (Z4 U{0})) , we define

\/Qei(k1$1+k2w2) Cos(%kgz) if ks 7& 0,
(bk = ¢k1,k2,k3 = i(k1x1+kax i
6(11+22) lfk‘gzo,
and
1
V= {oeC=(D)| o= > @k Ot —ha by = Oy bk / vee=ok
kezw(22x(z+u{0})) ’

Here a* denotes the complex conjugate of a. Let
H := the closure of ¥ in L?(D) and V := the closure of ¥ in H!(D),
with norms given by
Il =1 llz2py and [|-[lv := - |z (p), respectively.

Then one has

VcCH=H CcV', Ve HsV.

(2.4)

(2.5)
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2.2. Projections and reformulation of the problem. In this paper, we assume that fD Vo(x, 2)dedz =
0. This assumption is made to simplify the mathematical presentation. In fact, integrating (1.1a) in D
leads to, after applying integration by parts, (1.1c), and (1.3),

at/ Vda:dz—l—Q/ Vidadz = 0. (2.6)
D D
Therefore, under our assumption, one has
/ V(t)dwdz :/ Vo(, =)dwdz = 0, (2.7)
D D

With slight modifications, our result applies to the case when fD Vo(zx, z)dzdz # 0.
Let
L? .= {50 € L*(D,R?) : / o(z, z)dxdz = O}.
D

Denote the barotropic mode and the baroclinic mode of V by

V(z) = /1 V(x,z)dz and V(z,z):=V -V, respectively. (2.8)
From (1.3) and (1.1c), we have0
V-V= /1 V- V(z,2)dz = — /1 O w(x, z)dz = 0, (2.9)
and 0 0
w(x,z) = — /OZ V- V(x,s)ds. (2.10)

Remark 2. In the remaining of this paper, we will substitute w by its representation (2.10) without
explicitly pointing it out.

Since V-V = 0, and V has zero mean over T? thanks to (2.7), there exists a stream function v (x) such
that V = V19 = (=9,,0,1) ". Therefore, the space of solutions to (1.1) is given by
S:=L>NH= {@GLQ:V-¢=0} = {npeL'Q:@:Vlw(ac)—i—(ﬁ(ac,z),
(2.11)
for some 1, / Y(x)de = 0}.
T2

Indeed, S is the analogy of “incompressible function space” for the PEs. Here g and ¢ are the barotropic
and baroclinic modes of @, respectively, as in (2.8).

For ¢ € L2, let the rotating operator be J¢ := ¢ = (—¢a,¢1)". Denote the Leray projection in T2
by
Prp:=7— VA, 'V 5. (2.12)
Here, Agl represents the inverse of Laplacian operator in T? with zero mean value. We define the analogy
of the Leray projection for the PEs ‘B, : [? = S as
By = ¢ + Prp.
Moreover, let R : S — S be defined as
R =P, (T ).
With notations as above, a direct computation shows that

Rp = @t for pe€S8.
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Indeed, owing to (2.11), ¢ = V+te(x) + @ € S for some (x). Then

R =B (T @) + Pp(TV(2))
=¢~ = PaVi(z) = 5.
T
Therefore, the kernel of fR is given by
kerSR:{goeSmZL:O}:{9068:@:@}. (2.13)

One can define the projection By : S — ker R by

1
Popi=p = | olw )iz (2.14)

Notice that Py can be interpreted as projection to the barotropic mode. The fact that ker R coincides
with the space of functions with only the barotropic mode plays an important role in our analysis.

Furthermore, let

Prp=3FE+it),  ad  Fpi=s(F-iFh). (215)
Then it is easy to verify that
RPro = FiPro,
i.e., P+ are the projection operators to eigenspaces of SR with eigenvalues Fi, respectively.

Similarly to [22, 17, 31], Lemma 2.2-2.3, below, summarize projection properties of o, PB+. For the
proof, we refer readers to [22] for details.

Lemma 2.2. For any ¢ € L?(D), we have the following decomposition:

¢ =Pop +Bro+P_o. (2.16)
Moreover, we have the following properties:
PBLPro=P1o,  PoPoy = Pow, and  0=PLPze = PoPre = P+ Poe.
Lemma 2.3. For f,g € L?*(D), we have
(Bof.g) = (f,Bog) = (Bof- Bog)  and  (Bxf.9) = ([, Pxg)-

Here the L? inner product is defined as (2.1). Moreover, if f € S5, withr,s,7 >0, s € Z, we have
ATeTAOSPof = PoATeTASf and ATeTAIPLf = PLATeTAIES.
Let J be the identity operator. A direct corollary of Lemma 2.3 is the following;:
Corollary 2.4. Consider r > 0,7 >0, and s € Z,. Since V =LV + (T —Po)V =V + 17, we have
VIZ=1VIP+VIE l9vIP = o2V,
and
[ATeTAV[]P = [[ATeTAV|P + [[ATeTAV2, ATV = [|ATeT a2

Moreover, after applying o and T — PPy to equation (1.1a), thanks to (1.3), (2.9), and (2.10), one can
derive the evolutionary equations for ¥V and V as follows:

atVJrV-VVero((V-\?)\?H?-V\?) +Vp =0, (2.17a)
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at9+17-vﬁ+ﬁ-v?+?-v9—q30(9-v17+(v-ﬁ)ﬁ)
_— 0 N (2.17b)
—(/ vV V(e s)ds)@ZV OVt 09V =0.
0

Here, we have abused the notation by denoting p — Qv with V+i(x,t) = V(=,t) as p, where 1 is the
stream function of V (see (2.11)).

Remark 3. According to (2.13), (2.17) can be viewed as the orthogonal decomposition of (1.1) into ker R
and (ker R)*. As |[Q| — oo, formal asymptotic analysis of (2.17b) assures that, for well-prepared data
(ie., data ensuring that (2.17b) makes sense), V — 0 in some functional space. Therefore, in the limiting
equations, (2.17) converge to the 2D Euler equations at leading order. In particular, in [22], it has been
shown that the lifespan of the solutions can be prolonged with well-prepared initial data in the inviscid
case.

According to (2.15), one has vi= B4V +¥#B_V. Therefore, after applying P4 to (2.17b), we arrive
at

amivwm(ﬁ-vﬁ+i-v?+?-v9—%(l7~v9+(v-ﬁ)ﬁ)

—_ B (2.18)
- (/ V- V(z, s)ds)@zV) FiOPLY — 0. PLV = 0.
0
Let
Vi=e MY and Vo =B V. (2.19)
Then, for r > 0,7 > 0,5 > 0, and s € Z, it is straightforward to check that,
1 ~
|47 A03, [P = AT AoV |2 = AoV (2:20)
One can derive from (2.18) that
OV + TP (V- TV VTV 4V TV = Fo(V- YV + (V- D)D)
(2.21)

- (/OZ V- V(z, s)ds)azﬁ) — 9., Vs = 0.
Thanks to Lemma 2.2 and (2.15), we have
P (V- TV) = S(V- VD40 VD) 1oy (V- VD ¥ 9P
= SV VI 4V = B (V- V0 4 iVH) = (V- Vv~ (P TV,
B (V- YY) = %(T/ V4V V) = %9 VT4V,
BV VV) = %(V VP 4 iV VD) = V. vy,

T4 o (17 VY4 (V- 17)17) —0.
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After applying integration by parts, one has
Ty ((/ vV V(a, s)ds)ajz) -1 ((/ V - V(x,s)ds)d,V + i(/ vV V(a, s)ds)az]NiL)
0 2 0 0

- ;mo((/oz V- V(, s)ds)d.V + i(/oz v V(z, s)ds)azfﬂ)

_iQt ZV-9 . $)ds)d.V iQt V-gV )
([ V-Vl )0y + (7 D)

Moreover, thanks to (2.15) and (2.19), V = V, i + V_e~i®  Therefore, the V part of (2.21) can be
written as

0Vs == ™ (Ve WV = (Ve VY44 (V- VW) = (| Vo Vie,9ds)o.vs)
0
_ 1 _ 1 _
e R L T T ) TR T o (2.22)
it (v_ UV — Po(Vo - VY, + (V- V)V, — (/ Vo V_(a, s)ds)@zv+).
0

Similarly, the V_ part of (2.21) can be written as

BV = — e~ (v_ VY- —Po(V_ - VV_ + (V- V)V_) — (/z VoV (a, S)ds)an_)
0
- (V VV_ + %(v_ V(Y - z'VJ')) +v0,.V_ — eQiQt%(V+ VT -iv) (2.23)
it (v+ VY- —Po(Vy - VV_ + (V- V)V — (/OZ V-V, (a, s)ds)@zv_>.

In addition, (2.17a) can be written as
OV +V - VY + 2%y, (v+ YV, + (V- v+)v+) e 2y (v_ VV_ 4 (V- v_)v_)
+Vp + o (v+ SVV_ 4V YV + (V- V)V + (V- v_)v+) —0.

Recalling (2.15) and (2.19), i.e., V4 = eTEHPLY = %e:Fmt(lj:I:ile), we rewrite the last term of the above
equation as

Po(Vi VYo 4V Ve + (V- VOV + (V- V)V, )
1 e e o~ . o~ 1 - 1~
= 3% (V- IV + VL VUL 4+ (V- D)V + (V- V4V ) = SBo(VIV) = V(5 Pl V),
which can be combined with Vp. Therefore, with abuse of notation, one can rewrite (2.17a) as

OV + (V- VD) + Vp + X9 (Vy - VYV, + (V- V)04
| (2.24)
e 2P (V- VY (VYY) =0,

3. LocAL WELL-POSEDNESS
In sections 3.1 and 3.2, below, we will establish the local well-posedness, i.e., the existence, the unique-
ness, and the continuous dependency on initial data, of weak solutions to system (1.1), defined as below:

Definition 3.1. Let T > 0, r > 2, 79 > 0, and suppose that the initial data Vo € Sy 0.+, N H. We say V
is a Leray-Hopf type weak solution to system (1.1) with initial and boundary conditions (1.2)—(1.3) if
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1) there exists T(t) > 0, fort € [0,T], such that
VeL® (O7 T, 87”,0,7’(75)) N L2 (O7 T, VN S’l",l,‘r(t) N S’r‘+%,0,7’(t))7

BV, AT 2e™49,V € L2(0,T; V'),
2) system (1.1) is satisfied in the distribution sense,
3) and moreover, the following energy inequality holds:

t
T 1 T(S
VO +2 [ (A0VONE 0 + 14737V ) s < Vo

The following theorem is the main result in this section.

Theorem 3.2. Assume Vo € Spo., N H with v > 2 and 19 > 0. Let Q € R be arbitrary and fized.
Then there exist a positive time T > 0 and a positive function 7(t) > 0 given in (3.6) and (3.5), below,
respectively, such thatV is a Leray-Hopf type weak solution, as in Definition 3.1, to system (1.1) with (1.2)
and (1.3) in [0,T]. In particular, 7(t) and T are independent of Q. Moreover, V is unique and depends
continuously on the initial data, in the sense of (3.21), below.

Notice that we do not need to assume (2.7) in Theorem 3.2. Throughout the rest of this section, we
assume that (), p) satisfies (1.1)—(1.3) and is smooth enough such that the following calculation makes
sense. The rigid justification can be established through Galerkin approximation arguments (see, e.g.,
[22, 37]). In particular, in section 3.1, we establish the a priori estimates of solutions to system (1.1) with
(1.3). In section 3.2, we finish the proof of Theorem 3.2 by establishing the uniqueness and continuous
dependency on initial data. In section 3.3, we show that the weak solution immediately becomes analytic
in z, and the radius of analyticity in z increases as long as the solution exists.

3.1. A Priori Estimates. Direct calculation of ((1.1a),V) + (A"e™4(1.1a), A"e™ V), after applying in-
tegration by parts, (1.1c), and (1.3), shows that

1d
5o V200V, = FIATT AV = — (AT YY), ATEAY )
24t 'm0 -0,
e (3.1)
+{ATe™ / V- V(x,s)ds)d,V JATETAYY = I + L.
(e[ (] Jo.v] aretv)
By virtue of Lemma A.1, the Sobolev inequality, and the Hélder inequality, we have
| < |(arer A vw), e
1
< / Cr (47 AV (@) | agra) + V() zaes) AT 2T AV(E) 3 sy o
< Co(|Vllror + 19:V o)A 274V 2.
Applying Lemma A.2 to I, leads to
|2 < CH0:V]lror AT 274V 12,
Thus from (3.1), one has
1d 1 .
S WVIE o, +vI0:VIEo, + 1A 2™ V|? < (T +14+Cr(IVlror + ||8ZV||no,T))
2 dt 1 1 (3.2)
XAV < (+4 Co L+ VI, + 10:V12,,0) ) A7 e 4V
Choose 7 such that
7+ 14 Cr(IV|lr0,+ + 110:V]r0,7) = 0. (3.3)
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Then, one has
S SV 0 + 10V, + A2 VI < 0
For T > 0, to be determined, and ¢ € [0, 7], one has, after integrating (3.2) in the ¢t-variable,
¢ r+i (s
V@2 020 +2/0 (yuazw 2o + 1A T2V (5)? )ds < VollZo.r- (3.4)

On the other hand, integrating (3.3) yields

t
7(t) =10 — 1 - Cr/o (V) lr0,7(5) + 10:V(5)lr0,7(s) ) ds

r,0,7

o (3.5)
>Tp — (1 + CT‘HVOHT',O,TU)t - \/%”VO \/Z
Consider, for C,. > 0 as in (3.5), that
CZIMVollZ 0, w[[Vollro.x
o <¢§V°°+2m< +Cv-||Vo||v-,o,m)—C%\/2|7’M))2 » .
- ( +Cr||v0||r70,7'o) 7 '

which solves

(1 + Or||V0||n0,To)T

VT=T
i

j— CT
Vv

T(t) > 10/2>0 for tel0,7].

Then one has

Consequently, (3.4) implies that
Ve L®(0,7T;:80-1) NL*(0, T3V NS 1.0 NS, %,077@) (3.7)
with 7 > 0 given as in (3.6) and 7(t) given as in (3.5) (or equivalently (3.3)).
Next, in order to obtain the estimate of 9;V, testing (1.1a) with V¢ € ¥ (see (2.5)) leads to

<atv, ¢> + <v VY- (/ vV V(z, s)ds)@zV FOVt — oy, ¢> —0. (3.8)
0

where we have substituted, thanks to (1.1b) and (2.5), (Vp, ¢) = —(p, V - ¢) = 0. Since r > 2, thanks to
the Holder inequality and the Sobolev inequality, we obtain that

(V- 9v,0)| < CVIg 2219Vl sz ll6lrz e < CHVIZo - N6llv

/ V- Vms)ds)av¢ / / v V|dz / EX V|\¢|dz)d:c

and

After applying integration by parts, one has
(ot —vo.v,0)| = [(*,0) +(0.9,0.0)| < CualVilnas
Therefore, one has
[(0,0)| < Cuma (V20 + (0 + IMbom) Vlle )6y
Since ¥ is dense in V, thanks to (3.7), we have
oV e L0, T:V)  and  [0V]ez07v) < Coma(IVI20r + 1+ Vlnor)IVIrar) < oo (39)

|Bllv-
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Meanwhile, for A"~ 2e749,V, one has, similarly as in (3.8),
(Arherdgw, o) + (A her A (V- wY) - Arée”‘((/oz Y V(x,5)ds)0.V)
L QAT BT AYL g ATt Ay, ¢> —0.
With r > 2, thanks to Lemma 2.1, the Holder inequality, and the Sobolev inequality, we obtain that
(a3 d (V- 9),6)| < 1434V VVllia a6z
< Cr|Vlrg 20+ 1VIroll9llv
After applying integration by parts in the z-variable and the Hélder inequality, one has

’<Ar—$e”‘((/ozv-V(w,s)ds)az]/),¢>‘ < |[(a=ter (V- V)v),0)|

(a2 ([ 9 (@,5005)9),0.6)| < GV 0,1V

ros[llv,

and similarly,

’<QAT—%eTAvi V8. AT EeTAY), ¢>‘ < CpalV

rarl@lly.
Therefore, one has
(a2 0,6)| < Cura (Vs g 0.7 VlIro + 1Vl ) I8l
Since ¥ is dense in V, thanks to (3.7), we have
A3 A9V e L2(0,T; V) and

I (3.10)
A2 e A0,V )< Cw,n(\\V||T+%,0,TIIVIIT,0,T + IIVIIM,T) < 00.

2(0,73v7

3.2. Uniqueness and continuous dependence on the initial data. In this section, we show the
uniqueness of solutions and the continuous dependence on the initial data. Let V; and V5 be two weak
solutions with initial data (Vy); and (Vy)a, respectively. Assume the radius of analyticity of (V)1 and
(Vo)2 is 9. By virtue of (3.5) and (3.6), for i = 1,2, let

7t =10 —t — Cry / (IVi(s)]

r,0,7i(s) T ”azvl(s) ||r,0,‘rz-(s))d57

(3.11)

CZ N (Vo)illZ, . Cri illr,0,7
(\/ 070 4 270(1 4 Crl| (Vo) illn0,m ) — 2 e 70 ”(%H N
2(1 + Cr,i (Vo),|
such that, according to (3.4), (3.7), (3.9), and (3.10),

t

I 1 Ti (&
U o +2 | (AI0V 0 o+ 147 OV, (3) ) s < O

and T =

7‘;0770)

for ¢t € [0, 7;], and
Vi € L(0, 7558 0,m (1)) NL2(0, Tis VN Spa7y) N Sr+%,0,n(t))7
8V and A"T2eTA8,); € L2(0,T; V).
We remind readers that C, ;,i = 1,2, are independent of {2 and 7.

Let
M o= masx { (Vo)1 llr0,70, 1(V0)zllro,r0 }- (3.12)



THE EFFECT OF FAST ROTATION AND VERTICAL VISCOSITY ON LIFESPAN OF THE PRIMITIVE EQUATIONS13

Denote by 6V :=V; — Vs and dp := p1 — p2. Let

2 t
T(t) =70 —t - CZ/O (Vi) lr0,7:05) + Vi) 17 07205 T 10:Vi(3) 110,725 ) s,
i=1

2072 (3.13)
- VIR or (1420, (M2 + M) — Y2CM Ly
d = ( - ) ,
o 2(1 + 2C, (M2 + M)
where C, is a positive constant, to be determined later, satisfying
CT 2 maX{Crwl, Cr,2}~ (314)

In particular, (3.13) and (3.14) imply that 7(t) < 7;(t) and T < 7T; for i € {1,2} and t € (0, T]. Therefore,
fori=1,2,

oV and Vi€ L®(0,7:8,070) N L2 (0, T3V N Sr1 70 NSy 1.0.7)s (3.15)
80V and  AT"2eT49,0V € L2(0,T; V), (3.16)
and
Vi®)170,7 /Ot (V\Ié‘zV( o7 + IIA”%J(S)A%(S)HQ)CIS < M?,
for t € [0,7].

From system (1.1), it is clear that

B8V + 8V - YV, + Vs - V6V — (/ V- oV(z, 5)d5)82V1 - (/ V- Vs(z, s)ds)@z(ﬂ/
0 0

+Q0VE — 10,0V +Vip=0 and  9.6p=0.

Notice that from (3.15), one has that AT~ 3eTASY € L2 (0, T, V). Thanks to (3.16), similar calculation as
n (3.1) leads to

SIVIZ 5+ I00VIZ_ o — FIATTAGV?

- <5v UV + Ve - VOV — ( V. 6V(:c,s)ds)8z]}1 - / V. Vg(w,s)ds)8z5V,5V>

0 (3.17)

<AT—§eTA(6V V), A% TA5V> <AT_§eTA / V- 5V(x s)ds)a vl} A3 TA5V>
<AT’5eTA(V2 VoV), AT 3 TA5V>+<AT*§eTA / V- Vo(z s)ds)a 51/} A3 TA6V>.

After applying integration by parts, the Holder inequality, the Young inequality, and the Sobolev inequality,
since r > 2, one has

‘<6V UV + Ve - VOV — (/ V. (5V(:n,s)ds) 9.V — (/ V. Vg(w7s)ds)8Z5V,(5V>‘
0 0

:Kav YV, — (/O V- 6V(:c,s)ds)(“)ZV1,5V>’ <oy Vil 2I0VIE_y 5
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Thanks to Lemmas A.1 and A.2, the Holder inequality, the Young inequality, and the Sobolev inequality,
since r > 2, one has

‘<A’“*%e“(6v VW), A“%e;AWM
1
< /O Cr1 [(I\A’“‘fe”‘éV(z)llemrz> 18V (2) |2 (2)) | AT V1 (2) | 2 r2) | A"€TA6V (2) || 22 (2
+ HATe?A(SV(z)HLz T2)||AT6;AV1(Z)||L2 Tz)HAT_%e:FA5V(Z)||L2(T2) dz
Cr Vil 7 (ISVIE_ s o 5 + A€ 0V|?),
‘<AT_§eTA(V2 VoY), AT_EeTA5V>‘
1
< / Cr_1 [(|\AT_E€TAV2(Z)||L2(T2) + Va(2)ll L2 (12) |A7€™ 0V (2) | 22y | AT €46V (2) | L2 (12
0
+ |\A’“e“v2<z>||mz>\|A’“e“6V<z>||Lzm\\A’“-%emav<z>||m> dz

Vel 7 A7e A5V,

‘<AT“ 7A / V.- 0V(z s)ds)a vl] A3 TA5V>‘ C, sl
and

‘<Ar—56ﬂ4 / YV Vo( s)ds)a 51;} AT% TA6V>‘

(3.18)
o117 V|[[10:6V |,y o 7 ATeT AV < Ha VIZ s o7+ Coroz V2l ozl AT 8V,
Consequently, combining the calculations between (3.17) and (3.18) yields
S IVIZy o+ gHIBVIZ o -
<(F+ Corg D2l s + ooy (Wil + 1Vl 2) ) A7 A8V + €,y DAl #0VIE o 5
In addition, from (3.13), and (3.14), and the fact that 7;(t) > 7(¢), ¢ = 1,2, one can derive that
? + CV 'rf— ||V2||r 0,7 'rf% (||V1||T7177~' + ||V2||7"717‘7)
=-1-C; Z Vi) llr0,ms6) + Vi 0,70y + 10:Vi@) lr0,m01))
+ Cu,rfl Vell? o7 + Coy (Wil 7 + V2l 7)
2
<oy~ C) S (Vi) + VO 0 20 + [0V Dl.70)) <O,
i=1
where we have chosen
CT = max{Cy r—— CT 1,C7« 2} (319)

In conclusion, with C,. satisfying (3.19), one has

1
S TIVIZ g o+ SPI00VIE 2 < Oy Wl slOVIEy (3:20)

r—3 2
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Applying the Gronwall inequality to (3.20) results in
t
IOV _1 070 < 16VO)E_1 o, eXp(/O 20,1 [Vi(9)llr,1,7(s)ds) (3.21)

for t € [0, ’7~'], which establishes the continuous dependence on the initial data as well as the uniqueness of
the weak solutions. This, together with section 3.1, finishes the proof of Theorem 3.2.

3.3. Instantaneous analyticity in the z-variable. In this section, we will show that the weak solution
obtained in Theorem 3.2 immediately becomes analytic in the z-variable (and thus analytic in all variables)
when ¢ > 0. Moreover, the radius of analyticity in the z-variable increases as long as the solution exists.
For simplicity, we consider the even extension for V in the z-variable, which is compatible with (1.3), and
work in the unit three-dimensional torus T? instead of D. With abuse of notations, we use V to represent
both V in D and its even extension with respect to the z-variable in T3.

We first introduce the following notations that are only used in this subsection. For f € L?(T?) even
with respect to the z-variable, we consider the following functional space

Srrn = {F € LT, ]1f]

rs,rm < 00, f even with respect to the z-variable},

where
T Z (1+(‘k|2r+|k3|25)627\k\62n\k3|)|fk7k3‘2
ke2r72 ks e2nT
and fk,kg = /[F?’ e~tk@=iksz £ o) dadz.
Denote by

Ah =V —Ah, A, = V _az27
subject to periodic boundary condition, defined by, in terms of the Fourier coefficients,
(A7 Doy = k| frowss (AP koks = ksl froks, (ko ks) € 2m(Z% x Z), 7,5 > 0.
Accordingly, one has
IFI17 s = LI 4 AT 4m e f12 4 | AZeTn e £ 2.

With such notations, we establish the following theorem:

Theorem 3.3. Assume Vo € Sy0,r,,0 with r > 2 and 19 > 0. Let Q € R be arbitrary and fized. Then
there exist T > 0 defined in (3.24), 7(t) > 0 given in (3.23), below, and n(t) = 5t, such that there erists
a unique solution V to system (1.1) with (1.2) and (1.3) in [0, T| satisfying

Ve L¥(0,T;8r0rmw) N L0, T: 81 2(t)mt))

and depending continuously on the initial data. In particular, V immediately becomes analytic in all spatial
variables for t > 0.

Remark 4. After restricting Vo and V in T? x (0, 1), the solutions in Theorem 3.3 are the same to the ones
in Theorem 3.2, thanks to the uniqueness of solutions. Therefore, the gain of analyticity in the z-variable
of Theorem 3.3 can be regarded as a property to solutions in Theorem 3.2.

Sketch of proof. Here we only show the a priori estimates. Direct calculation of

((1.1a), V) + (AL e ren=(1.1a), Ay e™Ar e V) 4 (e74n e (1.1a), e r e V),
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after applying integration by parts, (1.1c), and (1.3), shows that
S VI 0+ 10V, — (145 A2 4 4 entep)?)
—i(JlAfaper e VP afe ety )
F(Apem et (V- V), AjeT AV (TR (V - TY), T eAD)
<AT A e"A / V - Vds)d, V) AT emAn e"sz>

+<eTAhe"Az ( /0 V-Vds)@zV),eTAhe”AZV>:0.

Denote by
E = > (1 (kP e Ml Dy, 2
(k,k3)€27rl3
0V 0y = D Ihal?(1 (R el 2,
(k,ks) €273
1 1 ~
_ ||A7};+267Ah,6nAzV”2 + ||A26TAh,6’rIAzVH2 _ Z (|k|2r+1 + |k|%)627|k|62n|k3||Vk7k3‘2,
(k,k}3)62ﬂ'23
1 A
HA Ar TAhenAzV”Q + ||AZ2 BTAhenAzV”Q — Z (|k3||k|2r + |k3‘)e2r|k|€2n|k3\‘Vk7k3|2.

(k,k3)€2ﬂ'z3
Observe that H < F. After setting 1 = %, one obtains that

2
1d 1
il 2y _
2 & + Z/G TG

—|—<AT e™An e”AZ V-VvV),A; eTAhe”AZV> + <eTAhe”A2 (V-VvV), eTA"e”AZV>
+{Aperinent-( / V- Vds).V), Ajem ety
< TAhe"Az ( /0 V-Vds)azv>,eTA’le"AzV> <.

For the nonlinear terms, by applying similar calculations as in Lemma A.1 and Lemma A.2 (we also refer
the readers to [22] for detailed calculations in T?), one can obtain that

[(Agemtnerd= (v wV), Ajer eV 4 (T Anerd (1 WY), eV < € (B 4 PG,

‘<Ar TAhe"A / V - Vds)d. V) AL TAhe"AZV>‘ < C,F3G,

and thanks to the Young inequality,

‘< TAp Az / V - Vds)o, V) TAhenAzV>’ <C,F2 IEIGE < %EG—i— “r

Therefore, combining all the estimates above leads to
d

1 |
= < (7 34 P34 . 3.22
B+ v (T+OT(E2 +F7 4+ uE))G (3.22)
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By taking 7 + C,.(E% + Fz + LE) = 0, one obtains

t
E(t) + %1// F(s)ds < E(0).
0
Integrating in time for ¥ + C,(E2 4+ Fz + 1F) =0, we have
¢ 1 1 1 1 2t t
r(t) =70 — [ Co(BE(s)+ FE(s) + = E(s))ds = 70— Co (EFO)(t+ /) + BO)= ). (3.23)
0

Since E(0) = ||[V||? .0, We denote by

IVIZo. -,
(VR0 BT 4 Vlhoro) - 2 IVInoroy
=( VEoro )" >0,

2(—22=2 + [Vllr0,m0)

(3.24)

which solves
To

2C,

1
Vllror0(T +VT) + ~ VI 00T =

Then one has
T(t) > 19/2>0 for te€0,7T].

Notice that the radius of analyticity in the z variable satisfies 7 = §¢. Therefore, (3.22) implies that
Ve L>(0,T;Sr0,r)mt)) N L (0, T3 Sr1,m0)mt))-

Based on the estimates above, one is able to show the existence, uniqueness, and continuous dependence
on the initial data of the solution V. We omit the details.

O
4. THE LIMIT RESONANT SYSTEM

In this section, we derive the formal limit resonant system, i.e., the limit system of system (1.1) (or,
equivalently, system (2.17)) as |2| — oo, and discuss some properties of the limit resonant system. Recall
that from (2.22), we have

8tV+ = — BiQt(V_F . VV+ - PO(V+ . VV+ + (V . V+)V+) - (/ V- V+(:13, s)ds)an_;_)
0

=:1;

_ [(V VYV, + %(M V)V + WL)) - ”@ZV*}

=fo (4.1)

_ eﬂ'ﬂt(y_ WV =P (Vo -VV+ (V- V)WV — (| V-V (=, S)d8)32V+)
0

=:1_1

. 1 — .
_ 6—21Qt i(v— . V)(V + ZVJ_) .

::I_Q

We can further rewrite (4.1) as
at |:V+ o é(ezﬂtll . 67207:[_1 . 56722915]_2)} — 7% (ezﬂtatll . esztatI_l o 56727'(“815]_2) . IO~



18 Q. LIN, X. LIU, AND E.S. TITI

Denote by the formal limits of V., V_, and V to be V., V_, and V, respectively. By taking limit 2 — oo,
we obtain the limit resonant equation for V, is

@w:—WWMQ—;wWMV+Wﬂ+wM@ (4.2)
Similarly, one has

@u:f@?wmf%w,vmﬁ4V6+ch, (4.3)
and

OV V- VV4+Vp=0, V-V=0, 0dp=0. (4.4)

Notice that (4.4) is nothing but the 2D Euler equations. Accordingly, we consider the initial conditions
J— —_— 1 it el 1 3 eyl
Vo, (Vi)o, (V=)o) = (Vo, 5 (Vo + iV ), 5 (Vo —iVy)) (4.5)

for equations (4.2)-(4.4). Since Vo, Vo, and V, are real valued, one has that (V. )o = (V_)&, (Vi)o+(V_)o =
i(Vi)o — (Vo)o)*t = Vo, and, thanks to (4.4), V is real valued. Thanks to (4.2) and (4.3), one has

OV = V2) = (V- V)(Vi = V2) = S [(Vy = V) - D)V 4iV) 4 00a(Ve — V), (46)

OV + Vo) —i(Vy — V)] = —(F-9) (Vs + Vo) —i(Vy — V)] - 2

2 (4.7)
00, [(Ve + Vo) —i(Ve — Vo).

Therefore, provided solutions exist and are well-posed, one has V,, = V* and V, +V_ = i(V, —V_)L. Let

V=V, +V_. (4.8)

Notice that, according to (2.19), V is the formal limit of V. + V_ = e "B,V 4 PV, as QO — oo. It
is easy to verify that

mzéﬁiﬁﬂ, (4.9)
and
oV +(V-V)V+ %(17 NV -V YV =00,V =0,
or, thanks to V - V = 0, equivalently,
@V+Vlv?+%?ﬂviiﬂ—u@J7=o (4.10)

In summary, to solve the limit equations (4.2)—(4.4) with (4.5) is equivalent to solve the following
equations:

OV +V-VV+Vp=0, (4.11a)
V'VZO7 0.p=0, (4 11b)
~ ~ 1~ _ ~
oV +V.-VV + §VL(VL~V) —v0,.V =0, (4.11c)
8Z‘7|z:0 1 = 07 V(O) = V07 and ‘7(0) - ]70' (411d)

Notice that, thanks to our choice of Vy and io, one has PV =V and ‘,]30‘7 = 0. In addition, (4.11a)-
(4.11b) is the 2D Euler system, and (4.11c) is a linear transport equation with a stretching term and
vertical dissipation. In the rest of this section, we summarize the well-posedness theory of (4.11).
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4.1. Well-posedness theory of (4.11a) and (4.11b). The global well-posedness of solutions to the 2D
Euler system (4.11a)—(4.11b) in Sobolev spaces H"(T?) = S, 0,0 with 7 > 3 is a classical result (see, e.g.,
[7]). Moreover, from equation (3.84) in [7], for r > 3, we have

d — _ _
@HVHT,O,O < CollV 0,01 + I [V ]l10,0)- (4.12)

Let ||[Vo|lr0.0 < M for some M > 0. Denote by W (t) := ||V ()]|;.0.0 +e. Thanks to Int z+1 < 2In(x +e),
from (4.12), we have

iW <C,WlinW.
dt

Therefore, one can obtain that

|V (£)]lr0,0 < W(t) < W(0)

&Crt &C

= (I[Vollnoo + )¢~ < (M + €)™ =: 0pr.(£). (4.13)

The authors in [38] proved the global existence of solutions to system (4.11a)—(4.11b) for initial data
in the space of analytic functions. For completion, we state it here, with slight modifications to meet our
settings. See also [22].

Proposition 4.1. Assume Vo € SN S,.0.5, withr > 3 and 70 > 0, and suppose that |Vo|lro0-, < M for
some M > 0. Let

T(t) := 1o exp ( - C, /t h(s)ds),
where ’ .
B0 = Vol o, + Cr [ 6, (5)ds,
with Opr - (t) defined in (4.13). Then for any given time 7’2 0, there exists a unique solution
Ve L®0,T:8NS0.-1)
to system (4.11a)—(4.11b). Moreover, there exist constants Cpy > 1 and C, > 1 such that
V0,70 < h*(2) < 7.

The solution is continuously depending on the initial data.

4.2. Global well-posedness of system (4.11). In this subsection, we establish the global well-posedness
of limit resonant system (4.11) in both Sobolev spaces S, o and analytic-Sobolev spaces Sy s 7.

Proposition 4.2. Let r > 2 and s € {0,1}. Assume that Vo € SN S,1100 and Vo €SN Srs0. Let
M > 0 be the constant such that |Vollr+100 < M. Then there exists a function K(t) := C’Ep(cﬁ)

with_constants Cyy > 1 and C,. > 1, such that for any given time T > 0, there exists a unique solution
(V,V) e L*(0,T;8NSr11.00) X L=(0,T;8NS,50) of system (4.11), which satisfies

t
IVO)llrr100 K@) and VIR0 + QV/ 10V (170048 < IVoll7 0 elo K (4.14)
0

On the other hand, suppose that V € SNSy41,0,7, and ‘70 € SNS; 5.7, with 1o > 0, and that HVOHr+1,O,To <
M. Let

T(t) == 1o exp(—/O K(s)ds). (4.15)

Then for any given time T > 0, there exists a unique solution (V, ‘7) € L>(0,7;8NS,41,0,7) xL>®(0,T;8N
Sy.s,7) of system (4.11) such that

t
= =~ ~ ~ t
VO llr+10-0 < K@) and IIV(t)Ilf,S,T(t)Jr?V/O 10V (E)II7 o ()46 < VOl 0 ryelo K. (4.16)



20 Q. LIN, X. LIU, AND E.S. TITI

The solutions continuously depend on the initial data.

Sketch of proof. We will consider the case when s = 1 and only show the a priori estimates. The con-
struction of solutions, uniqueness, and continuous dependency of solutions on initial data, as well as the
case when s = 0, are left to readers as exercises. The global well-posedness of the 2D Euler equations in
Sobolev spaces and corresponding growth estimate have been reviewed in the previous subsection. From
(4.13), we obtain that

[Vlr41,00 < K1 (t) (4.17)

for some function K (t) := C;}(pl(c’”lt) with some constants Cs,1,Cr1 > 1.

Denote by J the identity map. For the growth of ||V||g, after calculating 2((4.11c), (3 — 8..)V) +
2<A (4.11c), (3— 8ZZ)ATV> and applying integration by parts to the resultant, one has, thanks to 9,V = 0,
V-V =0,and r > , for some constant C,. ; > 0,

HVIIT,Lo +20]|0. V(|7 10 < Crsl|V (4.18)
After applying the Gronwall inequality to the above, by virtue of (4.17), we obtain
t
PO 10+ 20 [ 107(€)120 06 < 1ol 00w (Cr [ Ka(E)E) (419)
0

On the other hand, the global well-posedness of the 2D Euler equations in the space of analytic functions
and the corresponding growth estimate are summarized in Proposition 4.1. We can first choose some

suitable function K(t) := CEZ(CT’M, with Caz2,Cr2 > 1, such that ||V (¢)||,41,0,r5) < Ka(t) with
Ti(t) = Toexp(— [y Ka(s)ds).

Let 7 = 7(t) to be determined. For V, after calculating ((4.11c), (3 — 8..)V) + (A"e"#(4.11¢), (T —
0..)ATe™ V) and applying integration by parts, the Holder inequality, the Sobolev inequality, Lemma 2.1,
and Lemma A.4 to the resultant, since 7 > 2, one has, for some constant C, , > 0,

AT vna VIR, — (A hem V2 + 4t er 40,712

V. .vr. V) - (vL VIWVE VY —(V-Va.V,0.V) — Z((V*-V)a. V0.V
;

:2?
-
-
-
-

=0
ATeTATV V), ATe TAV> <Areﬂ“((vl .V)f/i),ATeTAx7>
ATeTATV VT, ATem A0, V> <A7“eTA((vl -V)aZf/L),ATeTAaZ@

ATemA(V VT, Ame TAV> <V-VA’“eTAI~/,A”"eTAI~/>>

=0

{
<A’“ TA(V . V8, V), ATeTA0, v> <V-VAT6TA6217,A’“GTA82‘7>>

=0
- %<Areﬂ“((vL ~V)‘~/J‘>7AT67A‘7> - %<ATeTA ((vl -V)(?ZXN/L),A%TAGZIN/>

_ . G _ _
<Cra V0 (1A AV|2 4 | A+ 40,V)2) + Cral V4100
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Now, let
¢
K(t) :=max{(1+ C, ) K1(t), (1 + Cy o) K2(t)} and T=7():=1 exp(—/ K(s)ds). (4.21)
0

Then 7(t) satisfies
T(t) < (1) and 7+ CraT|VIrt1,0r <7+ CraT|Vrt1,0m8 <7+ CraTKz <0.
Therefore,
IV lr+10m) < NIV Ollrt107m0) < Ka(t) < K(2), (4.22)

and, after applying the Gronwall inequality to (4.20), we have

t
VO 022 [ 1T O € < 110 [ Coal P ©lhsrcrde)

< ||VO gfot K(s)ds

(4.23)

f Cr,aKa2(s)ds < H% 2

||T’,17T0 ||7‘,1,T0

Consequently, according to (4.17), (4.19), (4.22), and (4.23), K and 7 as in (4.21) verify (4.14) and
(4.16). 0

Remark 5. From Proposition 4.2, one can see that the growth of ||V(¢)|l;4+1,0,0 and [[V(¢)||,41,0,-¢) are

double exponential in time, while the growth of ||V (t) ||r.s.0 and |V (t) l|r,s,7(¢) are triple exponential in time.

Remark 6. Thanks to (4.9), similarly as in (2.20), we have

||V+||rs‘r = ||V ||'rs T 7HV||TS T

whose growths are also triple exponential.

Remark 7. Proposition 4.2 is for the general initial data. However, by considering special solutions to the
2D Euler equations, one has the following:

e When V is uniformly-in-time bounded in S,41,0.r, i.e., sSupg<s oo |V () [lr41,0r < Casr for some
positive constant Cyy ., then the growth of ||V (¢)||,,1,- will be only exponentially in time.
e When supp<; V) |lrr1.0- < 10— is small enough, by applying the Poincaré inequality and

with 7 chosen suitably, (4.20) becomes

IIV

N VHa VHT,LT = _VHV”TJ,TO

After applying the Gronwall inequality to the above, we obtain

VO 106 + 57 / 10T ey S < [Toll 100

In particular, this result holds when V = 0, i.e., zero solutions to the 2D Euler equations.

5. EFFECT OF FAST ROTATION

In this section, we investigate the effect of rotation on the lifespan 7 of solutions to system (1.1). We
show that the existing time of the solution in S, o ;) can be prolonged for large || provided that the
Sobolev norm ||1~)0H%+5’1’0 is small, while the analytic-Sobolev norm |[Vy||».0., can be large. Such initial
data is referred to as “well-prepared” initial data.
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Theorem 5.1. Let § € (0,%) be a constant. Let |Q| > |Q| > 1 and |Qo| be large enough such that
condition (5.3) below holds. Assume Vo € SN 814307, Vo € SN Sri207 NSri11,0 with r > 2 and
70 > 0. Let M > 0 be such that

HVOH%-‘,-?),OJ'O + ||§0||3+2,0,n, + ||]~/OH$+1,1,T0 <M, (5.1)

and M
% <. 2
”VOH%—H?,O,O = |QO| (5 )

Then there exists a time T = T (19, |Qol|, M, r,v) satisfying
1
T = 5 loglloglloslos()]) > 1, (5.3)
T0,M,r,V

for some positive constant Cry arr > 0, such that the unique solution V obtained in Theorem 3.2 satisfies
Ve L0, T;8NS0,r¢))s (5.4)
with 7(t) > 0, t € [0, 7], satisfying (5.38), below. In particular, from (5.3), T — o0 as |Qg| — 0.
Remark 8. The constant C sy, satisfies Cry a1 — 00 as v — 0.
In Theorem 5.1, we consider general initial data Vy for the barotropic mode. By virtue of Remark 7,
when the solution V' to the 2D Euler equations with initial condition ) satisfies certain conditions, the

smallness condition (5.2) can be relaxed and the result (5.3) can be improved. The following theorem is
the summary of these results:

Theorem 5.2. With the same assumptions as in Theorem 5.1, let V(t) be the solution to the 2D Euler
equations with initial condition Vo = Vqy. Then

(i) if ||V(t)||r+370,T(t) < Cprr, the result (5.3) can be improved to T = o L log(log(|20]));

o 0. M,r,v
(ii) if |V (t)llrts,0r0) < ¢ which is small enough, then (5.2) can be relazed and replaced by
Vollz 4500 < Gty and (5.3) can be improved to T = CTO,L,T’V log(|Q0]);

(iii) finally, if the initial condition satisfies ||Vollr+3.0,m < %, (5.2) can be relazed and replaced by

~ 1
Vollz 4500 < Gty and (5.3) can be improved to T = %

In this section, we focus on equations (2.22)—(2.24), which are equivalent to system (1.1). To prove
Theorem 5.1, in section 5.1, we rewrite (2.22)—(2.24) as the perturbation of (4.2)—(4.4). In section 5.2, we
establish a series of a priori estimates on the solutions to the perturbation system. This together with
Proposition 4.2 will finish the proof of Theorem 5.1. In section 5.3, the proof of Theorem 5.2 is provided.

Remark 9. In this section, we only focus on the long-time existence of the weak solution. By virtue of
Theorem 3.3, the weak solution is analytic in all spatial variables.

5.1. The perturbation system. Denote by
a = V - V and (b:i: = V:t - V:t. (5.5)
Calculating the difference between (2.22), (2.23) , (2.24) and (4.2), (4.3), (4.4), respectively, leads to

064 + 8- VVy 46 Vo +7 Vi + (61 V)(V +iV5) 4 201 V)(G+i5)
+%(V+ V) (¢ + ZEL) — V0,4 + ™ (Q1,+,+ —PoQ1,+,+ —Polz2,+ 4+ — Q3,+,+> (5.6)
+e (Q1,7,+ —PoQ1,—+ —Pol2,— + — Q3,7,+) +e QL =0,
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06+ 6TV 46-Yo +V Vo +5(6- V)V iV ) + 56 V)G~ ig")
+5 (Vo V)G~ i6") — et 4 e (QL,,, ~PoQ1, -~ — Po@z — Qs
+eit (Q1,+,— = PolQ1,+,— — Pol2,+,— — Q3,+,—) +e2 Q- =0,

V.-$=0, d.p =0,

O+ ¢ - VV +6-Vo+V- Vo + 2y, (Q1,+,+ + Q2,+,+)

| (5.7)
e 20 (Qu - + Qs ) + VP =0,
where
Qua5 =0+ - VVr+dsr -Vor + Vi Vo + V4 - Vg,
Q24,7 =(V-01)Vg + (V- d1)dx + (V- Vi) + (V- Vi)V,
Qs,+,7 ::(/ V- ¢i(x,5)ds)0. Ve + (/ V- ¢i(x,s)ds)0. 05
0 0
+ (/ V- Vi(x,s)ds)0.o+ + (/ V- Vi(zx,s)ds)d. Ve,
0 0
1 —_ =l -~
Quts =5 (6= VIV FIV ) + (¢ - V)G Fid )
+ (Ve V)@ Fi6 ) + (Ve - V)V FiV ).
Recalling that (V, V1) and (V, Vi) are complemented with the same initial data. Hence, we have
Pli—o=0 and  ¢i|i=0 = 0. (5.8)

5.2. Proof of Theorem 5.1. In this subsection, we prove Theorem 5.1. Thanks to Proposition 4.2, let
Vi and V be the global solution to equations (4.2)-(4.4) in L>(0,00;S N Sri2.1,7)) and L>(0,00;S N
Sr43,0,7(t)) for some 7 = 7(t),t € [0, 00), respectively. Next, we provide the energy estimate in the space
Sr.0,7(+) for equations (5.6)(5.7).

After applying similar calculation as in (3.1), we obtain that

)t V(||0z¢+||ro P 1100117 0,.) = T(IA™ 2Ty |2+ ATz e |?)

2dt(”¢+”TOT
<¢ VVi+¢-Vor+V Vo + = <¢+ VNV +iV) + by - V)G +ig)

)

5( V)@ i) + e (Q1,+,+ Qs+ +) e (Ql -t Q3,—,+> +e Q4 ¢+>
)
(

l\D\»—t

—{(¢- VV_+$~V¢_+V~V¢_+%(¢_ V)(V — VY 4= ( V) (¢ —ng)

5V )@= i6 )+ e (Quore = Qo) + €M (Quie — Qag ) + Q0 )

H/\
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<Ar TAG-VV,), AreTA¢+> -~ <AreTA($_VV_)’Ar€TA¢_>
Tp2 Tp2
<A7‘eTA 3-Vo,), ATeTA¢+> -~ <AreTA($.V¢7)’ATeTA¢7>
Tpl Tpl
<Ar67'A (V- Vo), ATeTA¢+> <A7’ AV . Vo), ATGTA¢_>
Tp4 Tp4
<ATeTA br - V(V +iV )),A’”eTA¢+> - <ATeTA(qb_ YV =iV, ATeTA¢_>
Tp2 Tp2
— (AT G4 V(G +iG ), ATy ) — (AT G- V(G- g ), AT )
Tpl Tpl
— (AT V(GG )), ATy ) — (AT V(G- g ), AT )
Tpd Tp4d
- @iQt(<AT€TA(Q1,+,+ - Q3,+,+)7AT€TA¢+> + <AT€TA(Q1,+,— = Q3,4,-); AT@TA¢—>)
Tpl,-,Tp5
— e (AN Qu = Qa ), AT ) + (AT~ Qa ) AT )
Tpl, ,Tp5
_ eQiQt<Ar67AQ47+,_7AreTA¢_> _ 672iﬂt<ATeTAQ47_l’+,ATeTA¢+>’
Tp1,Tp2,Tp4, Tp5 Tp1,Tp2,Tp4, Tp5

and
1d r TA . r+4i1 7AT
SglAe 49|12 =r| AT zeT g

_ <AreTA (3-VV), AreTA$> _ <AreTA(a. Vo), AT67A$>

Tp2 Tpl

<A7‘ TA( V), ATe TA¢> 2iQt<Ar6‘rA(QL+7+ +Q2,+’+)7Are‘rA$>

Tp4 Tpl,Tp2,Tp4, Tp5
— e—2iQt<Are7—A(Q1,_’_ + QQ,_7_),ATGTA$>,

Tpl,Tp2,Tp4,Tpb

where we have applied Lemmas 2.2-2.3. Tt is easy to verify from (5.7) and (5.8) that

o(x,t) de = / o, t)]t=o dx =0,
T2 T2
and therefore, applying the Poincaré inequality yields

o]l < [lA7e™ @l and (4]0, < ClAT™]l.

(5.10)

(5.11)
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In (5.9) and (5.10), we have labeled five types of terms by Tpl, - -- , Tp5, which we will present the esti-
mates. The rest lower order terms can be estimated in a similar manner and will be omitted. Temporally,
let V denote V4 and V, and ¢ denote ¢4 and ¢. The aforementioned five types of terms are described in
the following;:

e Type 1 (labeled as Tpl): terms that are trilinear in ¢, e.g.,
eint <AT6TA <(¢ . v)¢) , ATeTA¢>’ eint<Are‘rA ((v . ¢)¢) , ATeTA¢>’

and ejim<AreTA (/ (V- ¢z, s)) ds@z¢),AreTA¢>, j=0,%1,£2;
0

Type 2 (labeled as Tp2): terms that are bilinear in ¢ with no derivative of ¢, e.g.,
e-imt<ATeTA ((cb . V)V) , ATeTA(;S> and

ejmt<ATeTA((V : V)¢),A’“e”‘¢>, i=0,41,+2;

Type 3 (labeled as Tp3): terms that are bilinear in ¢ and a vertical derivative of ¢, e.g.,

ejmt<AreTA (/ (V-V(,s))dsd.¢), AT67A¢>, J=0,£1,£2;
0

Type 4 (labeled as Tp4): terms that are bilinear in ¢ and a horizontal derivative of ¢, e.g.,
eint<AreTA ((V . v)¢) , AT67A¢>7 eint<Are7'A ((v X (]5)‘/) , AT67A¢>,

and 6jmt<AreTA(/ (V~¢(w,s))d532V),AreTA¢>, i=0,+1,+2;
0

Type 5 (labeled as Tp5): terms that are linear in ¢, e.g.,
eint<A7‘e‘rA((V . V)V),AT67A¢>7 eint<A7‘eTA((v . V)V),AT67A¢>,

and eﬁm<ATe”‘(/ (V~V(m,s))d532V),AreTA¢>, i= 41,42,
0

5.2.1. Estimates of Type 1 — Type 4 terms. We start with Type 1 terms. Applying Lemmas A.1-A.3 yields

1
Tpl] SCT/O 1A+ 2674 6(2) 32 g2y (14774 6(2) | L2 r2) + [6(2) [ 2(r2)) d=

L' in z L in z

1 1
+ Gl A2 ) 10: 00, < CrllAT APl

where we have used the embedding L° < H! in the z-variable and the Holder inequality. Notice that,
for ¢ = ¢, the estimate is similar with obvious modification. Therefore, hereafter, unless pointed out
explicitly, we omit the estimates in the case of ¢ = ¢ and, similarly, V = V.

Similarly, applying Lemma 2.1 to Types 2 and 3 terms yields

1
T T T T 2
Tp2| SCT/O (1A ™AV (2) |2 (o2 + IV (D22 (r2y) (1A€A D(2) |2 (n2) + 16(2)) | 22(r2))” d=

L* in z L' in z

<Col[V 11,70

1 z
Tp3| <C, / [( / LA™ AV ()] 2oy + 1V ($) o ds) (HATeTAazgzs(z)nmz) . |az¢><z>|m<m))

L in z L? in z

2
r,0,7 and
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x (HA%%(z)m(m) n ¢><z>|L2<T2>)} 02 < CollVil s1.0019-l0n |6l

L2 in z

ror T CrullVIZia0 14117

r,0,7°

v

In order to estimate Type 4 terms, notice that Tp4 can be written as, with abuse of notations,

Tpd = Tpd, + Tp4,,
where

Tpd, ::ejmt<(V V)ATeT A, A’”e”‘¢> n ejmt<(V CATETAYY ATeTAq§>
+ eﬁm< /0 Z(v L ATeTAY(s)) dsd, V, A"eTA¢>7

Tpd, ::ejmt<AreTA((V V)g) — (V- V)ATe™ g, ATeTA¢>
+ ATV )V) = (V- ATeTAG)V, AT )

- ejmt<ATeTA ( / Z(v - ¢(s)) dsd.V) — / z(v CATe™¢(s)) ds0.V, Are”‘¢>.
0 0

Observing from (5.9) and (5.10), only for V' = Vi, Tp4, is nontrivial. Therefore, after substituting the

inequality |a|% < |5|% + |§|% for a+ 8 = £ in the Fourier representation of Tp4, (see the proof of Lemma
A.2 in the appendix), one can obtain that, for any é € (0, 1),

ITp4,| < ‘<(A%vi VAT e A, A’"eTAqb>‘ + )<(Vi : V)AT_%eTA¢,Ar+%eTA¢>‘
+ K(v . AT*%eTAgb)A%Vi,ATeTAng + ‘<(v AT eV Ar+%e”‘¢>>‘
+ ‘</z (V . AT7%67A¢(3)) ds@ZA%Vi,ATeTAd)N + ‘</z (V . AT7%67A¢(S)) dsd,Vy, AT+%eTA¢>’
0 0

1
<Cr [ (V@ lrsoree) + IVae)lmsscen) |40 [y o
0

L in z L' in z
1 z 1 1
+ Cr-/ |:/ ||AT+56TA¢(S)HL2(T2) ds % ||AT+56TA¢(Z)||L2(T2)
0 0
g L2 in z
L°° in z

X (”aZA%Vi(Z)”H1+5(T2) + Hani(z)HHHs(Tz)) dz < CrHV:I:H%+571’0||AT+%€TA¢”2’

L2 in z

where we have applied the Sobolev embedding inequality and the Hélder inequality. Meanwhile, applying
Lemmas A.4-A.6 to Tp4, yields

1
Tpds| <C; / A7 G2 oy | ATV ()| ey iz

1
+Cr7-/ HATJF%GTA(i)(z)H%Q(Tz)||AT+§eTAV(z)||Lz(T2)dz
0

+ CH|ATO.V || ATG])2 + Cor[| A2 eTA0, V|| A2 e g2
SCT'”VHT,LT WHE,O,T + CT'T||V||7-+

L AT EeTAG|2,

PEAE
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Remark 10. For the interested readers, we refer to [22] for an alternative estimate of Tp4,, where some

cancellations are taking care of. However, in this paper, such cancellations are not necessary and thus
omitted. Notably, the terms [[Vi||s ;5,0 in the estimate of Tp4, is the reason for the requirement (5.2).

o 1 d .o
5.2.2. Estimates of Type 5 terms. In this case, j # 0 and e/ = —— — I Therefore, Tp5 can be written

Qi dt
as, with abuse of notations,
1d 1
Tps= = —N + =
P =g’ talt
with
jQit
N=5 [<A”eTA((V VIV), AeTAG) + (ATTA((V VIV, AT )
) . (5.12)
+ <ATeTA (/ (V-V(s)) ds@ZV),ATeTA¢>],
0
jQit
R:=2- [8t<AreTA((V : V)V),ATeTAq§> + 8t<A’"eTA((V : V)V),A’"e”‘@
. —ft (5.13)
+ 8t<ATeTA (/ (V-V(s)) ds@ZV),ATeTAqSﬂ .
0
::Rg
It is straightforward to check that
N < Cr”V”r,l,T”VHT’—i—l,O,T ‘QS”T‘,O,T' (514)
Meanwhile, one has
R :27'<A”167A((V : V)V),ATeTA¢> n <ATeTA8t((V : V)V),Are”‘gb>
+ <AT€TA((V -V)V), AT@TA8t¢> =Ri1+Ri2+ Ri3.
It follows that, thanks to Lemma 2.1 and similar arguments as in section 5.2.1,
Riy < Cltl|[VIrs11,7 1V 42,07 19l 70,7 (5.15)

After applying the Leray projection (2.12) to (4.4), together with (4.2) and (4.3), for V = Vi or V, one
has

0V — v0,, V. =B(V,VV). (5.16)
——
for V=V,
Here we use B to represent a generic bilinear term with respect to both of its arguments. With such
notations, after applying integration by parts, one can derive

Ris=-— 2y<A’“eTA((azv : V)GZV),ATeTA¢> - 1/<A’“eTA((8ZV V)W (V- V)@zV),AreTA8z¢>

+ <AreTA (B(V,VV)-V)V + (V- V)B(V, VV)), A’"eTA¢>

SCr,u(HVllr,LT||V||r+1,1,r||¢||r,1,r HWVlror VT2 lélror + VI -V 200 |<b||r,o,7),

(5.17)
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where we have applied Lemma 2.1 and similar arguments as in section 5.2.1. Similarly, according to
(5.6)—(5.7), for ¢ = ¢+ or ¢, one has, with abuse of notations

3t¢>(V82z¢+ej9it(/ozv~(¢+V)(s)ds)3z(¢+V)) S B(A,VB). (5.18)

A,Be{¢,V}

for ¢=¢+ and V=Vi

Therefore, R; 3 can be estimated as

Rig == v(ATe™((0.V - V)V + (V- V).V), A7e 0.6 )
_ ejQit<A7'+leTA((V . V)V)7AT_16TA((/OZ V- (¢ + V)(S) dS)aZ((b + V))>

_ Z <AT+16TA((V'v)V)vArflerAB(A’VB)> (5.19)
ABe{$,V}
<CrplVlr1VIr1,2,710:0lr0,7
+ Ce V1, IV 20 Ullr—10,r + 1V Ir—1,2,2) (1llr0,7 + [V [Ir0,7)-
The estimate of Ry is the same as R; (see (5.15), (5.17), and (5.19)). To estimate R3, one has, after
applying integration by parts,

Rs :2T'<AT“eTA (/z(v -V (s)) dsd.V), ATeTA¢>> - <ATeTA8t((V . V)V),AT67A¢>
0

- <ATeTA8t( / (V- V(s)) dsV),ATeTA82¢> n <A’“e”‘( / (V- V(s)) dsan),AreTA6t¢>
0 0
=:R31+ R3o+ R3 3+ R3 4.

As before,

R3,1 < CT|7L|||V||r+2,0,‘rHVHT+1,1,T”¢)HT,O,T~ (5'20)
The estimate of R3 o is the same as that of R; 2 in (5.17). Meanwhile, substituting representation (5.16)
in R3 3 leads to

Rss=— <AT67A ( /O v av(s) dsV),ATeTA62¢> . <Are”‘ ( /0 V() ds@tV),ATeTA62¢>

. <ATeTA (/Oz(v (0. V + B(V,VV))(s)) dsV), ATeTAaZ¢>

(5.21)
- <ATeTA (/ (V- V(s))ds(vd..V + B(V, VV))),AreTA8z¢>
0
SCT,V(||VHT+1,O,THV||7",2,T + ||V||7"+1,0,T||V||r,1,7' |V||7"+2,0,7') ||az¢) |T,O,T-
After substituting (5.18), R34 can be estimated as
Rys=— V<Are“4 ( / (V- V(s))dsdz. V), ATeTA82¢> - 1/<ATeTA((V V)a.V), ATeTA82¢>
0
_ ejQit<Ar+lerA (/ (V- V(S))dsazv)’ArqerA[(/ V- (¢p+V)(s)ds)d.(¢ + V)]>
0 0

(5.22)

- X <AT+16TA (/ (V- V(s))dsazv),A’“’leTAB(A,VB)>
ABE{¢,V} 0
SC’F,I/||V||T+1,0,T||V||T,2,T az(b”T,O,T
+ Cr||V||T+2,0,‘r||V||T+1,1,'r(H¢||r70,-r + ||V||T70,T)(||¢||7‘*1,177' + HVHTle,T)-
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We emphasize that, in the estimates above, we do not distinguish V4 and V, ¢4+ and ¢, i.e., we treat
all V and ¢ as if they are three-dimensional. The estimates in the case when they are two-dimensional are
similar with obvious modifications, and thus omitted. Consequently, combining (5.15)—(5.22) leads to the
estimate of R.

5.2.3. Finishing of proof of Theorem 5.1. Without loss of generality, we assume Q2| > 1. Combining the
estimates in subsections 5.2.1 and 5.2.2, from (5.9) and (5.10), yields, thanks to (5.11) and the Young
inequality,

d . 1
SF+vH < [+ 4 CK A+ Co(IVillgasno + IV-lg1s10)

dt
+CoFt 4+ CHY| X G+ Cry (K24 1) F
Cr Cr - (5.23)
2 Hz2
+ o 10Vl 4 10:V- o) K
2L K?24+1
(1ot 1) + S

where § € (0, 3) and
F =A™ + (o 70.- (5.24)
G = AT 2G| 4 AT T AL 4 AT R g, (5.25)
H =020+ 7.0.7 + 10:0-17 0.+ (5.26)
_||V||r+207'+ ||V+Hr+207'+ V- ||7‘+207'+ ||V+H3+1,1,T+ HV7H72~+1,1,T- (5.27)
Assume that, for the moment, we have
74 Co K3+ Cr (Vi g0 + Vol g45.00) + CrF2 + CoH? =0, (5.28)

which implies 7 < 7y and

71? < Co (7§ + 1)K + Cp(F + H).
On the other hand, recalling M as in (5.1), then according to Proposition 4.2, (4.8), and (4.9), there exist
Chw,v, Cr > 1 such that

K—i—/o (10: Ve ()21 + 19V (5)]2.1.,) ds < explesplexp(Crt + Car, )] = K(0), (5.29)

and

t
SOV 10+ IV 500) s < IVl 5 0KC0) (5.30)

Under these conditions, from (5.23), one can derive that

d 2 C’l‘l/
— < 1
SF+ DH < Cpy (K2 +1)F + o DH + o

Cy
[oF

(Ha VillZ1 .+ 10V ||r17)lC

(5.31)
Cr (1 Cr

1 N.
+|Q|(/c+ +) TRL

Therefore, multiplying (5.31) with e~ Jo(R2+1)(8) ds 1eads to
d

gy (FemCr JRUTn@d) 4 [ ?éf(;u 1)] HeCrw Ji 041 ds

<o (12

2 H 10V 2, ) KO 5 00 0
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CQ| (,CQ i 7_0 4 1) —Cro [P +1)(s) ds C{éb 8,Ne~Crov S 4+1)(s) ds

Integrating the above equation in time and recalling that F'(¢t = 0) = 0, one obtains

t ’
(F(t)e—cr,u fgt(lCz—Q—l)(S) ds) +/ [% _ Cgir (K(t/) + 1)]H(t/)e—cr,u fot (K?+1)(s) ds dr'
0

t
C - (k2 s)ds
< / (10 ()1, + 10V (¢, ) Kem o i P41 s gy

[0
t CTV 2 4 _c ft/(IC2+1)( )d ,
+/ I (5 W) 7 1) Tt (5.32)
0
e v
+/ Y 5 N (' )e~Crv Jo (KPH1)(s)ds gy/
o 1€
CTV CTV t . V
’2 IC(t) + ’ (IC(t ) + TO / atN —Cr [ (K?+1)(s) ds dt’7
1 Jo |Q‘

where we have applied (5.29) and, thanks to the definition of i,
K(t)e=Cro Js (K310 ()ds < o (5.33)

for some constant C' € (0,00). On the other hand, thanks to (5.14), (5.29), and (5.33), since N (¢ = 0) =0,
one can derive that

/ N —Cr [} "(K2+1)(s) ds dt — N(t)e_c“” JE(K2+1)(s) ds
t ’
+Cry / N(#)(K2(t') + 1)e=Crw Jo (KE+DE)ds g/
’ : (5.34)
< K(t)e Crv DD dpi ) 4 ¢, / (K2() + DK () F 5 ()e=Crw Jo (4D ds g/
< O, Fi(t) +Cru/ (K2(t') + 1)F2 (t') dt'.
Hence, (5.32) implies that, for ¢ € [0, T], since || > 1, after applying the young inequality,
/ H(t)dt' < m,c( JeCrv S UCT+1)(s) ds
€2
Cru 2/, A% Cro [HK2H1)(s) ds
+ 0 (/c (") +1)dt" | e“rv o (5.35)
0
Cry ! ’ 4 / Crv [H(K2+1)(s)d
+ |Q’| (K{t')+ 75 +1)dt’ x e“rv o s)ds,
where T € (0, 00] is given by the following constraints:
v Cp, v
T(s) >0 and 27T (K(s)+1)> 1> 0 for se€l0,7]. (5.36)

Since Q| > ], in particular, there exists a constant Cas,,. -, € (1,00) such that, for ¢ € (0,77,

/ H(t')dt' < mexp[exp[exp[exp[cM,V,m(t+1)]]]]. (5.37)
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Now we will be able to estimate 7. To ensure 7 > 0 in (5.36), from (5.28), (5.29), (5.30), and (5.37),
one has

t .1
T(t) _ _Cr/ e—Cr Ji K2 (S)ds(||V+H3/2+5,1,O + ||V—||3/2+6,1,0 + F% + H%) dt'
0
t ot ,
+ 79e Cr Jo K2 () dt" > T0 exp[exp[exp[exp[—(ff\/[,l,(t + D] (5.38)

~ 1

= Cr(IVollz 4500 + W) explexplexplexp[Cly,, -, (t + 1]]]]
0

for some constant Cj, ,,,Cj, ,, ., € (1,00). Notably, the function 7(¢) we obtain is bounded above by (4.15).

Therefore, for ¢t > 0 satisfying

explexplexplexp[(Chy, + Chrry )t + DI < 0

_ — (5.39)
20, (||Vol| 2 ——
(IVolls 1500 + |Qo|%)
it follows that 7(¢) > 0.

Consequently, under condition (5.2), (5.36) and (5.39) imply (5.3), and (5.37) implies (5.4) thanks to
(5.5). This completes the proof of Theorem 5.1.

Remark 11. After carefully tracking the estimates above, one can observe that Cj, , ~— oo as v — 0.
For the sake of presentation, we omit such details.

5.3. Proof of Theorem 5.2. In this section, we prove Theorem 5.2. We only sketch the proof for the
first two parts, and will provide detailed proof for the third part.

For the first part of the theorem, thanks to Remark 7, we know that when supg<;, ||V(t)||,+3,077(t) <
C,» the growth of IV (t) |r+2,1,7x) Will only be exponentially in time. Thus, the function K(t) appears in
the proof of Theorem 5.1 (e.g., (5.29) and (5.35)) becomes only exponentially in time. This reduces two
logarithms in the estimate of existence time and gives

T = o log(log(|0%]).
70, M,r,v
This can be seen as in (5.36) — (5.39).

Similarly, for the second part of Theorem 5.2, thanks to Remark 7, when supg<; o, |V (#)[lr43,0,r < e
is small enough ||‘~/(t)||r+2,1’7(t) does not grow and thus the function K(¢) is uniformly-in-time bounded.
This reduces one more logarithm and gives
1
T = o lox(1)
70, M, 1,V
To show that the smallness condition (5.2) can be relaxed, recalling K in (5.27). Under our new assumption
on V, thanks to Remark 7, we have that Kz < 7+ Cnre 2t and Vi (t)ll3/246,1.0 + V= (8)]l3/246,1,0 <

=0 —e~ 3. Now recall from (5.38) that

Cru,Mm

' e t gt N gy
T(t) = (To - C’»«/ eCrlo K2 (VI3 01510 + V- l3jers1.0 + F2 + H?) dt’)e’cr Jo K2 dt",
0
in which we will ask for
t .
o~ Cr/ o KEOE (V501510 + V- lls/246,1.0)d
0

T Cr 4
0 eOra vt

o %t, / 70
Z To — Cr CM,V dt Z 53
0

Or,l/,M
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provided that C,., yr and C;. , are large enough. From this, one can conclude that the smallness assumption

can be relaxed and replaced by ||V0||g+5,o,o < Crvr®

_ Next we give the detailed proof to the third part of Theorem 5.2. Consider the initial data satisfying
WVollr+3,0m < % We set V' = 0 and replace the initial condition (5.8) of the perturbed system to

b9 =Vo, (¢£)o=0.
With more careful estimates, (5.23) becomes
d . L
ﬁF +vH < {T +Cr K27 + Cr(||v+||g+5,1,o + ||Vf||%+5,1,0>

+CF? 4 CTH%} x G+ C,,LF

e Cro — (5.40)
s 0 Villrar +110:V_|lp1- | KZH=
CTVTQ CT‘V
L OiN,
+ + 0] t
where § € (0, 3) and F,G, H are defined as in (5.24)—(5.26),
1
- ||V+||r+2 0,7 + HV Hr+2 0,7 + ||V+||r+1,1,‘r + ||V ||r+1,1,T7 L:=K-= + K + K27
and
i 1 1 1
7+ Co K27+ Cr (Vi llsgs,10 + 1V-ll3451,0) + C-FZ +CrHZ = 0. (5.41)
On the other hand, thanks to Remark 7, (4.8), and (4.9), there exist Cys,,, Cr,C' > 1 such that
L < Cpe ¢t =1K(2), (5.42)
t
o [0V @+ 10V s e ds < Co - and (5.4
t
v [ Ve g0+ IV 1,006 ds < OVl 50, (5.44)
With these conditions, from (5.40), one can derive that
d C, C C
L P4 vH <O LF + =22 (K + 1 s (10-V4 1 V|21, ) K+ L 4 SELGN,
dt +vil < B + |Q| ( + ) |Q|2 H +||r,1,7' + || HT,I,T + ‘Q| + |Q‘ t
and thus
d Cru C C
- OV-|[21, )+ L 4 SELGN, 4
= o (11 IOV, ) K+ TR L+ (5.45)

provided that || > Cyy.,.,, for some positive constant Cpy,.,, > 0. Multiplying (5.45) with e~ Jo L(s) ds

leads to
d

a(F@iCT’V fot L(S) dS) + %He—CT,V fot

Crv
= o2

s (102V 21,7 + 10V |2 ) oo™ i o)

T OT‘I_/TO Le CT,,fO (s)ds + |(7“27|V atNefcr,u fot L(s)d
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since |Q2] > |Qp] > 1, one

After integrating the above equation in time and recalling that F(t = 0) < 5
obtains

\
t ’
(F(t)e—Cr,u f(; L(s) ds) + / gH(t/)e_Cr’u fof L(s) ds dtl
0

C L O, .
< ﬂ|+/ (o= (e )|£’177+Hazv—(t/)H%LT)ICe Co 1 161t g

Q Q
+/ CTVTOL( ) —C, ufo L(s )dsdt + TVat ( ) —Cru [y L(s)dsdt/
o 0] o Qo]
< CM,v',l/,To / atN Crl,fo (s)ds dt'.
L IQol
According to (5.34), since now N(0) # 0 due to ¢, # 0, the estimate becomes
/ atN wao L(s)ds g4/ _ N(t)e_cr«" Jo(KP+1)(s)ds _ N(O)
+Cr / N(#)L(t')e=Cro Js L) ds gy
0
SCM,W(F ()+1)+CW//C VEE(t) dt.
Hence, (5.46) implies that, for ¢ € [0, T], after applying the young inequality, one has
/ H(t')dt' < OM””% (5.47)
€2

where T € (0, 0c] is given by the constraint
7(s) >0  for se][0,7].
Now we will be able to estimate 7. To ensure 7 > 0, from (5.41), (5.42), (5.44), and (5.47), one has
t o1 1 1
T(t) = —Cr/ e Cr S KEO (V1301510 + V- llsj2400 + F2 + H?) dt!
0
K2 (1) at’ (5.48)

+ e~ Jo

1 ~
> TOC;W,T,V - C;W,r,u,'rom(t + 1) - C’f’,l’”VO”%Jré,O,O
0
for some constant Cj, ., € (0,1),C;.,,Chy ., . € (1,00). Therefore, for ¢ > 0 satisfying

CEM T, VTO|QO|%
_— 4
L (5.49

M,r,v,1o

t+1<

and ||V0H %_;'_57070 Satlsfymg

!
TOC]VI,T,I/

||V0Hg+5,o,o< 2C,,

1
it follows that 7(¢) > 0. Consequently, (5.49) implies T = %
T0,M,r,v

9.2

. This completes the proof of Theorem
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6. GLOBAL EXISTENCE IN 2D WITH 2 =0

In this section, we show that the weak solution obtained in section 3 exists globally in time in the case
of 2D and Q = 0, provided that the initial data is small. This result is similar to the one in [44], where
system (1.1) with Dirichlet boundary condition is considered.

To be more precious, let us consider V = (u,v) " (z, 2,t) with (2.7), i.e., the solution to system (1.1)
independent of the y-variable. It is easy to verify that

7 =0, (6.1a)
00 + 0, Po(uv) = 0, (6.1b)
Ol + WD — Dy Po (W) — ( / B,ii(z, s)ds) 8,1 — O — 10,1 = 0, (6.1¢)
00 + U0,V + 10, T — 0, Po(uv) — / O, u(x s)ds)@ v+ Qu—v0,,0 =0. (6.1d)

In addition, let €2 = 0. Then one can observe that 7 = 0 and v = 0 are invariant in time, a property that
is not true in the case of Q # 0. Consequently, with Q@ = 0 and Ty = Uy = 0, system (6.1) reduces to

Oy + 0,1 — 0, Po(i) — ( / Orii(e,5)ds) 0.~ vOi =0 with  O.lor.  (62)
0

We have the following theorem concerning the global existence of the weak solutions to (6.2) with Q = 0:

Theorem 6.1. Forr > 2 and 19 > 0, suppose that the initial data Ul—o = Uo € Sy0,7, With fol to(z,2)dz =

0 satisfies the smallness condition
vTo

c’
where Cr > 0 is a constant as in (6.5), below. Then the unique weak solution to system (6.2) exists globally
m time.

[o]lr.0,70 < (6.3)

Sketch of proof. Similarly to (3.1), we have
. r+2 TA~12 r TA~9 ~ Ar TA~
il + 020, = FIAT R AR — (Arem A0, A7)
- <Are”‘( / &cﬂ(oj,s)ds)@zﬂ, ATeTAa>
0

)l EerAa?,

2

< (#+ Collllro.r

thanks to Lemma A.1 and Lemma A.2.

It is easy to see that fo x,z)dz = 0. One can apply the Poincaré inequality to get ||u||,.0, < [|0:U||r0,7,
and consequently,

Sl + < (F+ Crlloilnor ) A el — Sl .

Assuming that
7+ Cp||0:1llr0,- = 0, (6.4)

one has

H 7.0+ + V101170 - < =il o,
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After applying the Gronwall inequality, one obtains

t
@17 0.7 + V/o 10:75() 17,0, (y¢”*ds < [0

Therefore, integrating (6.4) from 0 to t € (0,00) and applying the Holder inequality in the resultant lead
to

|E,O,T0'

t
ﬂw:mfa/N@MQmw@@
0

> 70— Cr(/ot Hazﬂ(s)Hf’O’T(s)e”sds) : (/Ot e_”sds)% (6.5)

Cr
> T — fHUoHno,m,
for some positive constant C, € (0, c0).

In summary, for the initial data satisfying (6.3), we have that 7(¢) > 0 for all ¢ > 0, and thus the
solution exists for all time. |

APPENDIX A. ESTIMATES OF NONLINEAR TERMS

In this appendix, we list the estimates of nonlinear terms in the analytic-Sobolev spaces S, ;. Lemma
A.1-A.2 will be used to prove the local well-posedness.

Lemma A.l1. For f,g,h €S, where r > 1, s >0, and 7 > 0, one has

1
358,T7

‘<AT€TA(f -Vg), ATeTAh>‘
1
S/O Cr {(HAT@TAf(Z)HLz(Tz) + 1 fo(IDIAF 2™ g(2) | L2 (o | A2 €74 (2) | 2 (2 (A1)

+ HA""‘%@TAf(Z) HL2(11‘2) ||AT+%eTAg(Z)HL2(T2) ||AT€TAh(Z)||L2(T2)] dz.

, where H = A"e™h. Using

Proof. First, notice that ‘<Are”‘(f . Vg),AreTAh>‘ = ‘<f . Vg,AreTAH>
the Fourier representation, we have,

flz,2) = Z fi(z)e =, (A.2a)

je2nz?
g(@,2) = Y gr(2)e™, (A.2D)
ke2nZ2
h(x,z) = Z hy(z)et®, and by definition, (A.2¢c)
le2nz?
Are™ A H(z,z) = > |I["e™MH(2)e®™®,  with Hj(z) = [1]"e™hy(2). (A.2d)
le2nZ?
Therefore,

1
(rvgaretm)| < [ 50 Ih@Ika e ()
0 jtktl=0
Since |l| = |7 + k| < |j| + | k|, we have the following inequalities:
U™ < (5] + kD" < Crllg]" + [k[7), e < emldlerkl,
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Applying these inequalities, we have
1 ~ . ~
(rvgareim) < [ 57 ClB@IRIEIST + e gre ) s
0 jikti=0

7]z + |1|2, therefore,

Since |k|,|4], 1] > 0, we have |k|z < (|j] + [I])% <

(5. w7
1

S/ D ColB@NRE G+ U)ok (5] + [kl7)em ey enthy (2)|d=
0 jik+i=0
1

< / S (LI R+ (Rl el )

0 jtk+i=0
1
x el ®leIU| £ ()] |k (2)]|ha(2)|dz = / (A1 + As + As + Ay)(2)dz=.
0

Thanks to Cauchy—Schwarz inequality, since r > 1, we have

Av= S0 Clk[FGEr e F e f (2 g (=) (2)]

G+k+1=0
1. . 1 Sl . 3 >
=Cr > {Ikmgk(znef"“' > Jl”zeT'”Ifj(2)||3+kre”+'“'|hjk(Z)d
ke2nz? jeanz?
k0 J#0,—k
1 1
Scr( Z |k3|72r)2( Z |k|2r+1627|k||gk(z)|2>2
ke2nz? ke2r7?
k#£0 k0
1 1
X sup [( S e fER) (Y j+k|2fe27'f+k|hjmﬁﬂ
ke2m22 L cona? jeanz?
5#0,~k

j#0,—k
< Cl|A™ e f(2) || 2oy | AT 2 €A g(2) || L2 (n2) | AT€ A R(2) || L2 (2

Similarly, we have
A= D" Colklt3 g E[emdlem Flen ) £ (2)][gr () | ()]

j+k+1=0
< G| AT 2e™ f(2)| 22y AT €™ g(2) || L2 (r2y | A€ AR (2) || L2 (72,

and

As= > Colk|z[gl2emdlem ™ () 1 ge (=) |hu(2)]

J+k+1=0
< Cll AT F ()l | AT 2 €A g (=) | 2oy | A7 2 €74 R(2) | 22y
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For A4, thanks to Cauchy—Schwarz inequality, since r > 1, we have

ST Gkl TR el e £ ()| gr (2)] [ (2)]

J+k+1=0
=Cr ) {T'J'If Y |k|r+%fm(z)eflk|j+k|r+%ef'j+k|hjkl}
jeanz2 ke2r7?
k#0,—j
1 1
~ S E . . ~ E
i+ (X 1) (X e AeR) )
jeanz? jeanz?
3#0 3#0
1 1
% .Sup2|:( Z |k|2r+1627|k||gk(z)|2>2( Z |j+k|2r+1627|_’l+k|hjk|2)2:|
A ke2nz?
k#0,—j k#0,—j

< Cr (AT F (@)l 22y + [fo(2)DIIAT 2™ g(2) | 2 (r2) | A7 2 ™ h(2) | 22y

Combining the estimates for A; to A4, we achieve the desired inequality. O

Lemma A.2. Forf,hESH_; sr and g,0.9 € Sy s 7, where r > 3 5, 8>0, and 7 > 0, one has

‘<A7"67A((/OZ V- f(:c,s)ds)azg),AreTAhH

<C|| AT 2T f|[[|82 gllr0.- | AT E TR,

Proof. First, <ATeTA((f02V . f(a:,s)ds)azg>,AreTAh>‘ = ’<(fOZV : f(a:,s)ds)@zg,AreTAH>‘. Owing to

the Fourier representation in (A.2) , we have

/ V- f(z,s)ds)d,g, A"e TAH / Z J- .f] €9 ®ds)d,g, Ae TAH>‘

Jje2nz?

/ > Cilil / | fi(s Ids 10-9% ()| (131" + [|")em e ¥t eTH 7y (2) | d2

0 jyk+i=0

<[ (e w e )
0

G+k+1=0

% eldlTlkl Tl (/ |fJ(s)|ds) 8.0k (2)||u(2)|dz =: By + By + Bs.
0

where we have substituted the following inequalities: for j + k+1 =0,

1

617 < (kI +102), U7 < Colg]" + kI
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Thanks to the Cauchy—Schwarz inequality, since r > 3 , we have

B — / S Gk e e ([ olds) 0.u ) () d:

0 jtk+i=0
1 z
o[ ¥ [|k|%|azgk<z>|ef’“ > ([ |fj<s>|ds)|j+kre”+’“'|h_j_k<z>|}dz
ke2nz? jeanz? 0
kA0
/ (S =) (3 bl o.u) e ) sup[( > e 3
k+£0 k+£0 kAOL® s conze
1
(X LR (o)) a:
je2n7?

1
< CT||AT'+§eTAf|| / HATGTA({?ZQ(Z)HLz(Tz)||ATleTAh(z)||L2('ﬂ*2)dZ
0
< CL|ATTEeTA S| ATem 4D, g[| ATe R,

For Bs, we have

B, = / > ol irtierilerElent / 1F3(5)1ds ) 10:0(2) 1 (2)] =

0 J+k+l 0

¢ [ % [l

0 ke2nZ?

S Lt [ eds)lg kR o)
0

je2nz?

S/O r{lazgo |+(Z|k| 2T) (Z|k|2r|ag (2)|2e 2r|k|) }
X sup [( Z |j|2r+1€27|j|||fj\\%g>%( Z |j+k|2r+1€2'rj+k||ﬁ_j_k(z)|2>é:|dz

kE€2mZ2 L seonz2 jeanz?
1
< ClA A [ (10:80(2)| + 147eT 0202 s ) 147567 h(E) ey d
0

< C|ATTEemAf|]|0 TemAp)|.

The estimate of Bz is similar to that of By, and one can obtain that
By < G| A2 emAf||||ATem 4. g]|[| A€ R .
Combine the estimates of By, By, and Bs, we obtain the desired result.

Lemma A.3. For f,g,h €S

41,877

(sl
1 1 1
< /O C, [(IIATe”‘g(z) Iz2(r) + 1o (2)DIA™F 2™ f(2)|[ L2 (r2) 1A 2 €74 h(2) || L2 (2

+ HAT+%67—Af(Z) ||L2('ﬂ‘2) ||AT+%€TAg(Z) HL2(T2) ||AT€TAh(Z) HLQ(T?):| dz.

where r > 1, s >0, and 7 > 0, one has

The proof of Lemma A.3 is almost the same as Lemma A.1, so we omit it.
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We will show lemmas which are essential in the study of effect of rotation. Lemma A.4 to Lemma A.6
are concerning the commutator estimates.

Lemma A.4. For f,g,h € Sr—‘—%,sn—: where r > 2, s >0, and T > 0, one has

‘<AreTA(f . vg)’Are'rAh> _ <f . vAreTAg7ArerAh>‘
1
< Cr/o A" f(2) |22y | A" g(2)] L2 (12) | A" h(2) | L2 (12)d 2
1
+c,7/ AT 2™ f(2) || Loy | AT 2 €749 (2) || L2 o2y || AT 2 €T AR(2) || 2 22y d2-
0

Next, we have

Lemma A.5. For f,g,h €S, where r > 2, s >0, and 7 > 0, one has

1
358,T7

‘<Ar€m((v ) f)g)’ArerAh> _ <(V ) Are‘rAf)g’A’re‘rAh>‘
< O [ 1A S s 1473 o |47 ot
+Cyr /0 1 |A™F2 €7 £(2) || 2 gre | A7 2 €74 g (2) | Loy | AT 2 €74 h(2) | 2 (2 2.
We start with the proof of Theorem A.4. The proof of Theorem A.5 will be similarly.

Proof of Lemma A.4. First, notice that ‘<A’"eTA(f . Vg),A’"eTAh>‘ = ‘<f . Vg7A’“eTAH> , where H =

ATe™h. We use Fourier representation of f,¢ and H, in which we can write

flx2)= Y fi(2)e?,

je2nz?
g(mvz): Z gk(z)eik.mv
ke2nZ?

ATe H(x,2) = Y |I["e™MH(2)e*™.
le2nz?

Therefore,
= ‘<AT6TA(JC : VQ)7AT€TAh> - <f ) VATeTAg,ArerAhN
- ‘<(f : vQ)vAreTAH> — <f . VATeTAg,H>’
< Z /01 |fj(z)||k||gk(z)||l’:’l(z,’)"|l|7'e‘r\l| _ \k|7'67|k|‘dz,

j+k+1=0
By virtue of the following observation [38]:
For r > 1 and 7 > 0, and for all positive £, € R, we have
e e < Cule —nl(Je "+ r(E —al” el (A3)
with & = |l], n = |k|, and | —n| < |j|, inequality (A.3) implies

1
10 S [ BRI 5] (1 + R+ 5l ke az.
G+kti=070
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By the definition of H, and since e® < 1 4 xe” for any = > 0, we have
H(2)] = 17 em M ()] < 071+ it (=) < 07 1R (2)] + 73] + k) [ Eu(2)]-
Therefore, one obtains that
)] (15177 + Il 4+ 7 (117 + [Rl)er el
< (10 1u(2)] + 7151+ RD ) (1l + 1517) + )| (7Rl + 15])em kel
< () (K7 4+ 151770 + 7o Hu(2) (kI + [5]7) e Hlerla!,
Based on this, one has

1
1<Cr 3, /0|fj(z)||k||§k(Z)||j|\}All(z)||l|r(|kv*1+|j|7’*1)dz

G+k+1=0

1
+7C Y / |75 ()l (13| (2) (K| + 5] ¥leTdldz o= 1y + I,
j+k+1=0"0

Here

1 1
B=C S [ (I I + 1l ) de = [+ had.

G+k+1=0
Thanks to Cauchy—Schwarz inequality, since r > 2, we have

Li=Cr Y il gk )0 (=)

j+k+1=0
=Co D il Y Rl Iak ()15 + kI (2)]
je2nz? ke2nz?
3#0 k£0,—j
1 1
12— 2 . P 2
< (X FE) (X PILE)R)
jeanz? jeanz?
370 3#0
1 1
R 2 i ~ 2
< sup (30 a)E) (D 15+ R lhook(2)?)
jeanz? 2 2
ke2nZ ke2nZ
k#0,—j k#£0,—j

S Crl|A" f(2) |2 l|A"g(2) | L2 (r2) | AT R(2) [ L2 (12) -
Similarly, one gets
Iy < Cr[|A" f(2)l L2(r2) | A" 9(2) || L2 (v2) A" R(2) || L2 (12) -
Therefore,

1
1 <G [ 1A 1@ 179 e | A7) 200
0

Next, we estimate

1
B=rC S0 [ (e e ) )

G+k+1=0

1
1l ke Mg (2 [H) )z = [ I+ Taads.
0
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Thanks to Cauchy-Schwarz inequality, since r > 2, by using |j|z < |k|2 + |I|2, and |k|2 + |I]2 < 2|k|2|l|2
when |k| > 1 and |I| > 1, we have

In=7C Yy i1 e 1) kle™™ g (=) Hu(2)]

F+k+1=0
. 1 il P 3 N 1 7
<7C Y I (2 kel R e g ()1 R e g (2)]
F+k+1=0
3.k 10
3. . 1 1 . 1 1 7
<Cr 3 kE gl ST ()1 kR R (2)
ke2rz® j€2nz?
k#0 3#0,—k
1 1
SCrT( Z ‘k|272r)2( Z ‘k|2r+1627|k||§k(2)|2)2
ke2nz? ke2nz?
k0 k#0
1 1
. i 2 : k|G 3
x sup2< Z |j‘2r+1€27—|'ﬂ|fj(z)|2) ( Z |_]+k|2r+1627—|]+k‘|h7j,k(z)|2>
ke2nZ j€27rZ2 jE27TZz
J#0,—k J#0,—k

41 T T 1 T T 1 T
< CTT||A7+2€ Af(Z)HLz(Tz)HA +2€ Ag(Z)HLz(Tz)HA +2€ Ah(z)”Lz('ﬂ-z).
Similarly, one gets
5 T T 1 T T 1 T
Iy < Cyrl| A" 2674 £ (2) | 12 (o) [| A2 €74 (2) | 2 ro) | AT 2 €740 (2) | 2

Therefore,

1
12 < CTT/ ||Ar+%€TAf(Z)||L2(T2)HAT+%67—Ag(Z)||L2(T2)HAT-F%eTAh(Z)HLQ(Tz)dZ.
0

Lemma A.6. For f,g,0.9,h € STJF%’S,T, where r > 2, s >0, and 7 > 0, one has
’<ATeTA ((/ V.- f(z, s)ds)azg>,ATeTAh> — <829AT67A(/ V- f(w,s)ds),ATeTAh>‘
0 0
< Co|AT0.gll| AT FI AR + Corl| AT 2 €72 D, g | AT 2 €7 £|[| A2 ™.

Proof. Observe that Lemma A.6 follows directly from Lemma A.5. Indeed, if one replaces f by foz f(zx, s)ds
and g by 0,g in Lemma A.5, by the Holder inequality, one obtains that

‘<AT€TA<(/ V- f(ac,s)ds)@zg),AreTAh> - <8ZgATeTA(/ V- f(a:,s)ds),ATeTAh>‘
0 0

1 z
SCT/O ||AT/0 f(iB,S)dSHL2(T2)||ATaZg(Z)||L2(T2)||Arh(z)||L2(T2)dZ

1 z
+Cor / AT 4 / F(@, s)ds| p2(r2) | AT 2 €740, g(2) || L2 o2y | A 2 ™40 (2) || L2 (2 dz
0 0

<C, || ATO.g||| AT FIII| AR + Cor | AT 3T 48, g ||| AT eTA f|[| AT 24N
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