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Bertram Düring1, Josephine Evans1, and Marie-Therese Wolfram1

1Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

In this paper we study the long-time behaviour of a kinetic formulation of an Elo-type rating model for
a large number of interacting players with variable strength. The model results in a non-linear mean-field
Fokker-Planck equation and we show the existence of steady states via a Schauder fixed point argument.
Our proof relies on the study of a related linear equation using hypocoercivity techniques.
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1 Introduction

In 2015 Jabin and Junca [31] introduced a kinetic version of the Elo rating model for two player zero sum
games. The Elo model was originally introduced by the Hungarian physicist Arpad Elo to rank chess players,
but variants of it are nowadays used in bingo, football, basketball and American football. In this model players
are characterised by their strength ρ, which is an unobservable characteristic, and their rating R, which is
observable. In the ideal situation the rating R of a player converges to their strength ρ over time as ratings are
updated.

We start by recalling the kinetic version of the Elo rating model [31]. Consider N ∈ N players who participate
in a sequence of two-player zero sum games. Each player is characterised by their respective rating R` (which
is observable) and strength ρ` (which is unobservable), ` ∈ {1, . . . , N}. When two players i, j ∈ {1, . . . , N} play
a game, their ratings are updated after the encounter using the following binary interaction rule:

R∗i = Ri +K (Sij − b(Ri −Rj)) , (1a)

R∗j = Rj +K (−Sij − b(Rj −Ri)) , (1b)

where K is a positive constant and Sij the outcome of the game. The random variable Sij takes values ±1 and, in
average, outcomes are assumed to depend on the difference in the underlying strength, that is E(Sij) = b(ρi−ρj).
Note that this assumption can be generalised to include, for example, draws, then Sij ∈ {−1, 0, 1} or to consider
continuous random variables Sij on the interval [−1, 1]. The function b is usually set to

b(z) = tanh(cz) with c ∈ R.

In general b is assumed to be an odd, sufficiently smooth function. Hence, in (1) the expected outcome of the
game based on the difference in ratings, that is b(Ri −Rj), is compared to the actual score and the ratings are
adjusted accordingly.
Jabin and Junca showed that the distribution of players f = f(ρ,R, t) satisfies the following Fokker-Planck
equation in the quasi-invariant limit in [31]:

∂tf(ρ,R, t) = ∂R (a[f ]f(ρ,R, t)) in Ω× (0,∞), (2)

with a given initial distribution f(ρ,R, t) = f0(ρ,R), and Ω ⊆ R2. The operator a is given by

a[f ] =

∫
Ω

(b(ρ− ρ′)− b(R−R′)) f(r′, ρ′, t) dρ′dR′. (3)

We observe that the distribution of players with respect to their ratings is translated by the ‘velocity’ a, which
depends on the difference between the expected outcome and the actual score (integrated against the agent
distribution).
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Note that interactions (1) are translation-invariant on R, since they depend on the difference between ratings
only. Similarly, if the initial datum f0 of the Fokker-Planck equation (2) is shifted by constants ρ0 and R0 in
R+, that is g0 = f0(ρ + ρ0, R + R0), then g(ρ,R, t) = f(ρ + ρ0, R + R0, t) is the solution to (2). Using energy
arguments, Jabin and Junca [31] show that solutions f to (2) concentrate on the diagonal as t → ∞. Hence,
the observable ratings R are guaranteed to converge to the unobservable strengths ρ, giving justification for the
validity of the kinetic Elo rating model in the many-agents and long-time limit.

Originating in statistical mechanics, in particular in rarefied gas dynamics, Boltzmann-type and Fokker-
Planck-type equations (and other kinetic models) have found new applications in socio-economic applications
in the past two decades, see [37] for an overview. Applications aside from Elo-type rating models [31, 21, 17]
include wealth distribution in societies [11, 22, 19, 20], opinion formation [36, 18, 3, 12, 23, 24], compartmental
epidemiology [15, 4] and others.

A generalisation of the original Elo model (2) with variable underlying strength ρ was proposed and inves-
tigated by Düring et al. [21]. Here the players’ strength changes in encounters and is influenced by random
fluctuations (introducing an additional diffusion term). We outline the details of the modelling in Section 2.1,
but note that the corresponding player distribution satisfies the following nonlinear Fokker-Planck equation,

∂tf(ρ,R, t) = ∂R (a[f ]f(ρ,R, t)) + γ∂ρ (a1[f ]f(ρ,R, t)) +
σ2

2
∂2
ρf(ρ,R, t) in Ω× (0,∞), (4)

where γ > 0 and

a1[f ] =

∫
Ω

b(ρ− ρ′)f(ρ′, r′, t) dρ′dR′.

In [21] existence of weak solutions to (4) was proved (for Ω ⊂ R2) and numerical experiments illustrated the
dynamics of the model. Some heuristic arguments on the long-time behaviour of solutions to (4) were given,
but no rigorous analysis carried out. In this paper we present an existence results of steady states to equation
(4). Since the diffusion part in (4) is singular, the equation is degenerate parabolic. Degenerate Fokker-Planck
equations frequently, despite their lack of coercivity, exhibit exponential convergence to equilibrium, a behaviour
which has been referred to by Villani as hypocoercivity [38]. This was subsequently extended [16] to a wide
variety of kinetic equations.

For linear kinetic Fokker-Planck equations most existing quantitative equilibration results are confined to
equations with explicit steady states, or even with linear (in the variables) drift terms, where the whole semigroup
can be written explicitly. It is sometimes possible to work with non-explicit steady states as in [9]. This result
requires precise bounds on the non-explicit steady state. The other option is to work in a perturbative setting
around an equation where the steady state is know as in [7]. In the present situation of (4), however, there is
no obvious choice of equation to perturb around. The non-explicitness of the steady state encountered here is
similar to the theory of non-equilibrium steady states in thermodynamics which appears in the kinetic theory
of gasses, see the review article [25] and references therein.

Linking the linear theory of hypocoercivity to non-linear equations is usually done through a linear stability
analysis. This provides another motivation for finding the steady state as it gives us something to linearise
around. The Vlasov Poisson Fokker-Planck equation is structurally similar to equation (4) studied here. The
linearised problem for this equation is studied in [2]. Often for non-linear kinetic equations the challenge in
this is to link the (typically small) spaces in which we can study the linearised equations with (typically larger)
spaces in which we expect the fully non-linear equation to be well-posed. This was done for the Boltzmann
equation in [29]. As our equation is well-posed in spaces with exponential weights (due to the boundedness of
the non-linear drift terms) we do not expect the same kind of problems to appear here. Studying the long-time
behaviour of the fully non-linear equation (4) is in general very challenging. This problem is strongly linked
to the problem of uniqueness for a steady state. We would need to have an entropy function which works for
data far from the steady state. For the Boltzmann equation and the kinetic Fokker-Planck equation this role is
played by the Boltzmann entropy. There are very few fully non-linear results giving conditional convergence to
equilibrium results [13, 14].

This paper is organised as follows: we discuss the underlying modeling assumption of the generalised Elo
model proposed by Düring et al. [21] in Section 2.1 and illustrate the dynamics of solutions with computational
experiments in Section 2.2. Section 3 presents the main contribution of the paper – the existence of steady
solutions. We conclude by discussing the link to hypocoercivity and future research directions in Section 4.

2 The kinetic Elo rating system with learning effects

In this section we recall the underlying modeling assumptions and present computational results, that motivate
and guide the presented analytical results.
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2.1 Modelling

We start by discussing the generalisation of the kinetic model proposed by Düring et al. [21]. We recall that
the rating R should ideally correspond to the underlying strength ρ, giving a way to rank and compare players,
whose intrinsic strength is not observable.

While the original Elo model assumes that the underlying players’ strength is constant, Düring et al. proposed
that players’ strength changes over time in various ways: (i) gain of strength by learning from encounters, which
depends on the strength difference between the players; (ii) gain or loss of self-confidence due to winning or being
defeated in a game; and (iii) random performance fluctuations. In particular, they generalised the interaction
rule (1) to

R∗i = Ri +K (Sij − b(Ri −Rj)) , (5a)

R∗j = Rj +K (−Sij − b(Rj −Ri)) , (5b)

ρ∗i = ρi + γh(ρj − ρi) + η, (5c)

ρ∗j = ρj + γh(ρi − ρj) + η̃, (5d)

where η and η̃ are independent and identically distributed random variables with mean zero and variance σ2

(which account for daily fluctuations in the individual performance). The function h models individual learning.
Düring et al. proposed the following form (with parameters α, β ≥ 0)

h(ρi − ρj) = αh1(ρi − ρj) + βh2(ρi − ρj , Sij),

where h1 corresponds to the increase of strength and knowledge from encounters,

h1(z) = 1 + b(z). (6)

Since h1 is positive, both players are able to learn and improve in each game, depending on the difference in
strengths, and with a player with lower strength benefiting more. The function h2 models the gain or loss of
self-confidence if a player wins a game or is defeated in it – it is either positive or negative depending on the
actual outcome of the game and the expected outcome based on the difference in the players’ strength. Then
the distribution of players f satisfies the following Fokker-Planck equation in the quasi-invariant limit:

∂tf(ρ,R, t) = ∂R (a[f ]f(ρ,R, t)) + ∂ρ (c[f ]f(ρ,R, t)) +
σ2

2
∂2
ρf(ρ,R, t) in Ω× (0,∞),

where we assumed that the initial data f0 is normalised, the integral operator a is given by (3) and

c[f ] =

∫
Ω

[αh1(ρ′ − ρ) + βh2(ρ′ − ρ)] f(ρ′, R′, t) dρ′dR′. (7)

Since the positive function h1 results in a continuous increase of the players’ strength ρ over time, Düring et al.
studied a suitably shifted problem, which has a steady state. To this end they define

H(ρ,R, t) = αt,

and the function

g(ρ,R, t) := f(ρ+H(ρ,R, t), R, t). (8)

Then the function g satisfies the following Fokker-Planck equation

∂tg(ρ,R, t) = ∂R (a[g]g(ρ,R, t)) + ∂ρ (c̃[g]g(ρ,R, t)) +
σ2

2
∂2
ρg(ρ,R, t) in Ω× (0,∞), (9)

where

c̃[g] =

∫
Ω

[αb(ρ′ − ρ) + βh2(ρ′ − ρ)] g(ρ′, R′, t) dρ′dR′.

Equation (4) corresponds to (9) with β = 0, i.e. players improve their strength by participating in games, but
do not loose or gain confidence due to wins and losses. The presented analysis investigates the steady states of
this suitably shifted variant of the Elo model.
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Figure 1: Steady state player distribution f∞.

2.2 Numerical simulations

In the following we present several computational experiments which motivate and corroborate our analysis.
We simulate (4) on the unit square with no-flux boundary conditions, using Strang splitting and an upwind

finite volume discretisation in ρ and R proposed in [21]. The domain is discretised into squares of length h = 1
800 ,

the discrete time steps are set to ∆t = 2 × 10−6. We assume that agents are initially uniformly distributed,
hence f(ρ,R, t = 0) ≡ 1.

Figure 1 shows the computationally obtained steady state of players f∞ for σ2

2 = 0.05 after 2 × 105 time
steps. We observe the formation of a smoothed peak at (ρ,R) = (0.5, 0.5) (the centre of mass). The smaller the
diffusivity, the more concentrated f∞ (converging to the expected Delta Dirac steady state in the case σ2 = 0).
Figure 2 illustrates the evolution of different weighted relative energies, which we will investigate in Section 3.
In particular, we consider

E(f ; f∞) =

∫
R2

φ(ρ,R)|f(ρ,R, t)− f∞(ρ,R)|dρdR (10)

with a weight function φ = φβ = exp
(
β
√

1 + 4ρ2/γ + 2ρR+ γR2
)

or φ = f−1
∞ . We note that φβ will be

used in the analysis later. We compute the relative energies with respect to the computationally obtained
steady state density f∞ (we see in Figure 2 that the solution has indeed equilibrated). The evolution of (10)

(a) Weighted relative energies for φ = φ(β, γ). (b) Weighted relative energy for φ = f−1
∞

Figure 2: Decay of the relative energy (10) for different weights functions φ = φ(β, γ) defined by (12) and for
φ = f−1

∞ .

shows a staircase like decay – a phenomena often observed in linear kinetic Fokker Planck equations [1] and the
Boltzmann equation [28].
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3 Existence of steady states

3.1 Main Results

The previous discussion motivates the main result of this paper – an existence proof of steady states of the
following equation:

∂tf = −∂R (a[f ]f) + ∂ρ

(
σ2

2
∂ρf + γa1[f ]f

)
in R2 × (0,∞), (11)

with a[µ](ρ,R) = a1[µ](ρ)− a2[µ](R), where

a1[µ](ρ) =

∫
R2

b(ρ− ρ′)µ(ρ′, R′) dρ′dR′,

a2[µ](R) =

∫
R2

b(R−R′)µ(ρ′, R′) dρ′dR′.

Equation (11) is supplemented with initial condition f(ρ,R, 0) = f0(ρ,R) with
∫
R2 f0 dρdR = 1. Note that (11)

corresponds to (9) with β = 0 and α = γ.
We make the following assumption on the function b.

Assumption 3.1. We assume that b is an odd, smooth function on R and that there exist constants α > 0 and
C > 0 such that

|1− b(|z|)| ≤ Ce−α〈z〉.
We also recall the function φβ which is used in the analysis,

φβ = exp
(
β
√

1 + 4ρ2/γ + 2ρR+ γR2
)
. (12)

The following theorem states the main result of the paper.

Theorem 3.1. Let Assumption 3.1 be satisfied. Then there exists a steady solution f∞ to (11), which is a
probability measure on R2. Furthermore, f∞ is a smooth function with a bounded exponential moment.

We will prove existence of a steady state using Schauder’s fixed point argument. In doing so we consider
the following linearised transport equation for fixed probability measure µ,

∂tf = −∂R (a[µ]f) + ∂ρ

(
σ2

2
∂ρf + γa1[µ](ρ)f

)
. (13)

We will prove the existence of a steady state using the following steps:

• Step 1: Define a map G(µ), from the set of probability measures on R2 to itself by setting G(µ) to be the
unique steady state of (13).

• Step 2: Show that G(µ) is well-defined by a Harris’s theorem argument. This step will also give us some
bounds on G(µ). We will define a scale of exponential moments of the form

∫
R2 µφβdρdR and get bounds

on
∫
R2 G(µ)φβ dρdR for β sufficiently small.

• Step 3: We show that under Assumption 3.1 our bounds on G(µ) will allow us to show that if∫
R2

µφβ dρdR ≤M,

then ∫
R2

G(µ)φβ dρdR ≤ CMη,

where η is a constant we can find explicitly in terms of α from Assumption 3.1 and β. When β is small
enough we will have η < 1 which allows us to find a convex set of measures which is preserved by the
function G.

• Step 4: We then need to choose a topology to show that G is a continuous map with a compact image.
The results of step 2 will provide us with a natural topology and allow us to relate continuity of G with
respect to µ to continuity of the semigroup associated to the linear equation (13) with respect to µ. We
show continuity of the semigroup in Wasserstein distance and then convert this to continuity in our strong
topology using an interpolation argument and the regularising nature of (13). We have weak compactness
as a result of our moment estimates.

• Step 5: The above allows us to apply Schauder’s fixed point theorem to the map G. This gives us the
existence of a steady state to the non-linear equation. Furthermore, from our study of G and the fact that
the steady state is a fixed point of G this also give us that the steady state has a smooth density (from
the regularising estimates in step 4) and

∫
R2 fφdρdR ≤M (from the bounds found in step 3).
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3.1.1 Discussion of the linear equation (13)

Before we begin the main technical proofs we comment that the analysis relies strongly on an understanding of
both the steady states and convergence to the steady states for (13). This is a linear Fokker-Planck equation
and is in some ways very similar to equations which have been studied using hypocoercivity theory, particularly
by Villani in [38].

A key example of an equation to which we can apply the theory in [38] is the kinetic Fokker-Planck equation
of the following form:

∂tf = −v∂xf + ∂xφ(x)∂vf + ∂v

(
σ2

2
∂vf + vf

)
. (14)

Here the spatial variable x corresponds to the ratings R and the velocity v to the underlying strength ρ. We
can make a comparison of the different terms in this equation with terms in (13).

• σ2∂2
vf and σ2∂2

ρf both correspond to linear second order diffusions which are only present in one of the
two variables.

• The transport terms in x and R, that is −v∂x and −∂R(a1[µ](ρ)f), correspond to mixing between the
diffused and undiffused variables.

• The transport terms in v and ρ, that is ∂v(vf) and γ∂ρ(a1[µ](ρ)f), correspond to confining effects in the
diffused variables.

• The terms ∂xφ(x)∂vf and ∂R(a2[µ](R)f) both correspond to confining terms in the undiffused variables.
We should note here that these two terms are less directly comparable.

For both equations we expect the term that mixes between the diffused and undiffused variables to allow
the smoothing and spreading effect from the diffusion operator to affect the non-diffused variables. This is the
key effect in both hypoellipticity and hypocoercivity. We expect the combination of this with the presence of
confining terms in both variables to allow us to show convergence to equilibrium.

However, there are differences between (13) and (14) which mean the study of their long time behaviour is
very different. The most important of these differences is is that for (14) we can write down an explicit steady
state exp(−φ(x)− v2/2σ). This is not the case for (13). This does not just affect the amount of information we
have about the steady state it also vastly reduces the tools we have for studying the convergence to equilibrium.
Almost all hypocoercivity theories including [38] and [16] require us to work in spaces weighted against the
equilibrium state and to use explicit knowledge of this state when working in these spaces. There are a few
works where they are able to apply these theorems to equations with non-explicit steady states in a perturbative
setting [7, 30]. The only work we are aware of in a non-perturbative setting is [9]. We note that Harris’s theorem
in a good tool in this situation and has been successfully applied to linear kinetic equations with non-explicit
steady states in [10, 6, 27, 26].

Another additional challenge when working with (13) as compared to (14) is that the term that mixes the
diffused and undiffused variables is weaker in (13). Specifically, in the kinetic Fokker-Planck equation we will see
a diffusive effect similar to what would be produced by [v∂x, ∂v]

2 = ∂2
x at times of order t2. Working analogously

for (13) we expect to generate a diffusion in the R variables at second order in time similar to what would be
produced by the operator [a1[µ](ρ)∂R, ∂ρ]

2 = (∂ρa1[µ](ρ))2∂2
R. But since ∂ρa1[µ](ρ) → 0 exponentially fast as

|ρ| → ∞ we see that the diffusion effect in the R variables becomes weaker and weaker as |ρ| → ∞. Similar
effects were observed in case of a special relativistic kinetic Fokker-Planck equation, see [8]. We expect this
weak mixing to be especially challenging in our setting as our confining terms are bounded. This means we
expect to have exponential rather than Gaussian concentration of the steady states. The combination of these
two effects means that even if we had an explicit form for the steady states the Poincaré inequalities needed
in the theory of [38] would not be valid. In this respect we are also helped by using Harris’s theorem. As we
will see in more detail in the proof verifying the assumptions of Harris’s theorem only requires us to verify the
mixing property of the semigroup on a compact set. This means we do not need to worry that our mixing effect
becomes 0 as |ρ| → ∞.

3.1.2 Topologies and spaces

We will use the following function spaces, topologies and theorems in the main proof. We work in the space Pβ
defined by

Definition 3.1. We define Pβ to be the space of probability measures on R2 which have the property that∫
R2

φβ(ρ,R)µ(dρ, dR) <∞.

Here φβ is as defined in (12).
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We consider this as a subspace of the space Mβ defined by

Definition 3.2. We define Mβ to be the space of signed measures on R2 which satisfy∫
R2

φβ(ρ,R)|µ|(dρ, dR) <∞.

We can make Mβ a Banach space with the following norm.

Definition 3.3. We define a norm ‖ · ‖β on Mβ by

‖µ‖β =

∫
R2

φβ(ρ,R)|µ|(dρ, dR) <∞.

We consider two topologies on Pβ : the topology defined by the norm ‖ · ‖β and the topology defined by the
notion of weak convergence of measures. We recall Prokhorov’s theorem.

Theorem 3.2 (Prokhorov’s Theorem). Suppose that S is a metric space and P(S) is the space of probability
measures on S, then a collection of probability measures C is sequentially compact in the topology of weak
convergence of measures if and only if it is tight. Where we say the set C is tight if for every ε > 0 there exists
a compact set Kε ⊂ S such that for any µ ∈ C we have

µ(S \Kε) < ε.

Lemma 3.3. Any subset C of Pβ which is bounded with respect to the ‖ · ‖∗ norm is sequentially compact in
the topology of weak convergence of measures.

Proof. By Prokhorov’s theorem it is sufficient to prove that such a set is tight. Suppose that for every µ ∈ C
we have ∫

R2

φ(ρ,R)µ(dρ,dr) ≤M.

Then we know that φ−1 converges to 0 as ‖(ρ,R)‖ → ∞ so for every ε there exists a compact set Kε such that

φ−1(ρ,R) < ε/M, ∀(ρ,R) /∈ Kε.

Using this we have ∫
R2\Kε

µ(dρ,dR) =

∫
R2

(
φ(ρ,R)−11R2\Kε

)
(φ(ρ,R))µ(dρ, dR)

≤ ε

M

∫
R2

φ(ρ,R)µ(dρ, dR)

≤ ε.

Finally, we define the compact set used in Schauder’s fixed point theorem.

Definition 3.4. We write CM,β to be the set

CM,β := {µ |µ ∈ Pβ , ‖µ‖∗ ≤M},

for positive constants β,M . We note that by the results above CM,β is compact in the topology of weak conver-
gence of measures for any M,β.

3.2 Schauder fixed point argument

In order to apply Schauder’s fixed point argument we first need to define a function which will have a steady
state of f∞ as a fixed point.

Definition 3.5. For fixed µ, a probability measure, we write Sµt to be the linear semigroup associated to the
evolution governed by equation (13). Furthermore, when this equation has a unique steady state we write G(µ)
to be this steady state.

7



3.2.1 The function G is well-defined

In this section we prove the following proposition.

Proposition 3.1. For any probability measure µ on R2 there exists a unique steady state to equation (13).
Therefore, the function G is well-defined.

We prove this proposition after showing the following lemma first.

Lemma 3.4. For any µ there exists z1 such that |a1[µ](ρ)| > 1/2, whenever |ρ| > z1, and z2 such that
|a2[µ](R)| > 1/2, whenever |R| > z2.

Proof. We have that b(ρ − ρ′) → c as ρ → ∞. So by dominated convergence a1[µ](ρ) → c as ρ → ∞ and
a1[µ](ρ)→ −c as ρ→∞. The same behavior holds true for the operator a2[µ](R), but this time as a function
of R. We can also differentiate these functions to see that they are monotonically increasing. This gives the
result.

As a consequence of the proof techniques in the proposition we also find the following result.

Lemma 3.5. For β sufficiently small there exists some positive constants C, λ such that for any two initial
data f1, f2 ∈ Pβ we have

‖Sµt (f1 − f2)‖β ≤ Ce−λt‖f1 − f2‖β
Then there exits a constant D > 0, not depending on µ, such that∫

R2

G(µ)φdρdR ≤ D sup
|(ρ′,R′)|≤r(µ)

φ(ρ′, R′).

Here, the function r(µ) is defined such that |(ρ′, R′)| < r(µ) implies that |ρ| < z1 and |R| ≤ max{1, 2γ}z2 and
|(ρ,R)| ≤ z3.

In this section we work with stochastic tools. Before we begin doing this we relate the linear equation (13)
to a Markov process. In particular, equation (13) is the Kolmogorov forward equation (equation which evolves
the law forward in time) related to the SDE for the continuous in time stochastic processes Rt and ρt,

dRt = a[µ](ρt, Rt) dt, (15a)

dρt = −a1[µ](ρt) dt+ σ dBt, (15b)

where B is a Brownian motion.
We prove both Proposition 3.1 and Lemma 3.5 by applying Harris’s theorem. We use the version of Harris’s

theorem found in [32], which we restate here. First we need to state their assumptions. The theorem is
for a Markov chain Xt with transition kernel Pt(x,A). Then the semigroup associated to our PDE will be
given by (Sµt f0)(A) =

∫
A

∫
Pt(x, y)f0(x) dxdy =

∫
A
ft(y) dy. We also have our PDE (13) is written ∂tf = Lf,

where L is the generator of Sµt . Then L∗ is the formal adjoint of L, and the generator of the semigroup
(Sµ∗t φ)(x) =

∫
Pt(x, dy)φ(y).

Assumption 3.2. The transition kernel has to satisfy the following two assumptions:

• For any compact set K, there is some y∗, such that for any δ > 0 there exists t(δ) such that Pt(δ)(x,B(y∗, δ)) >
0 ∀x ∈ K.

• For every t the transition kernel possesses a density pt(x, y) which is jointly continuous in x, y everywhere.

The second assumption is as follows.

Assumption 3.3. For some fixed T there exists a non-negative function V with V (x) → ∞ as |x| → ∞ and
two constants α ∈ (0, 1) and C ≥ 0 such that

E(V (X(n+1)T ) |XnT ) ≤ αV (XnT ) + C.

It is standard to verify this assumption by proving that

L∗V ≤ −λV + C,

where L∗ is the formal adjoint of the generator of the semigroup and λ,C > 0.

We then have the Theorem

8



Theorem 3.6 (Harris’s theorem, as in [32]). If we have a Markov process Xt that satisfies both Assumption 3.2
and Assumption 3.3. Then there exists a unique steady state probability measure for the Markov semigroup Pt.
Furthermore, we have that there exists constants C > 0 and λ > 0 such that

‖Pt(f1 − f2)‖V ≤ Ce−λt‖f1 − f2‖V .

where ‖f‖V =
∫
V (x)|f |(dx).

Before verifying the above assumptions we note that a more standard way of writing Harris’s theorem is to
replace Assumption 3.2 by the assumption that the semigroup Sµt has a uniformly over x0 in any compact set,
lower bound of the form

Sµt δx0 ≥ αν,

where α ∈ (0, 1) and ν is a probability measure. For our equation an assumption of this form could be verified
by applying the result of [5]. This would also be a more quantitative result. However, precisely applying the
Theorem of Bally and Kohatsu-Higa would take a lot of time relative to the less quantitative results given here.

We proceed by showing that the semigroup Sµt satisfies Assumption 3.2 and 3.3 for any µ.

Lemma 3.7. The linear semigroup Sµt satisfies Assumption 3.2 for any µ.

Before proving this lemma, we state two useful theorems from stochastic calculus.

Theorem 3.8 (Malliavin’s Theorem, see [33], Section 7.5). Given a d-dimensional SDE in Stratonovich form

dXt = V0(Xt) dt+

m∑
k=1

Vk(Xt) ◦ dBkt ,

with m independent Brownian motions. Furthermore, we define the set of vector fields

V0 = {V0}, Vn+1 = Vn ∪ {[Vk, U ] : k = 1, . . . ,m, U ∈ Vn}.

Then if there exists an m such that Vm spans R2 at each x, then the stochastic process Xt has a jointly continuous
transition kernel.

Theorem 3.9 (Strook-Varadhan support theorem, see [35]). Given a d-dimensional SDE in Stratonovich form

dXt = V0(Xt) dt+

m∑
k=1

Vk(Xt) ◦ dBkt , X0 = x,

the support of the law of Xt is the closure of the set of points reached at time t by the ODE

dx(t)

dt
= V0(x(t)) +

m∑
k=1

Vk(x(t))
dhk(t)

dt
,

when we let the hk range over the set of continuously differentiable functions.

Proof of Lemma 3.7. This part of the proof is very similar in spirit to the proof of the analagous result for
the Langevin equation found in [32]. The second part of the assumption is an immediate consequence of the
hypoellipticity of the equation. We can see that the SDE 15 satisfies the assumptions to apply Malliavin’s
version of Hörmander’s theorem. The vector field ∂ρ and [∂ρ, a[µ]∂R] = (∂ρa[µ](ρ))∂R span the tangent space
at every point (ρ,R) as ∂ρa[µ] > 0.

For the first part, as in Higham, Stuart and Mattingly [32], we use the Strook-Varadhan support theorem
[35]. Given this theorem we fix the point (ρ∗, R∗), which depends on µ, chosen so that a1[µ](ρ∗) = a2[µ](R∗) = 0.
Then fix δ and a compact set K. We have the control system(

dR/dt
dρ/dt

)
=

(
a1[µ](ρ)− a2[µ](R)
−γa1[µ](ρ) + σdv/dt

)
.

As a1[µ](ρ) is a smooth function this has the same reachable sets as the control system(
dR/dt
dρ/dt

)
=

(
a1[µ](ρ)− a2[µ](R)

dṽ/dt

)
. (16)
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Now for any ρ0 we can find ṽ such that ρ0 + ṽ(1) = ρ∗ and dṽ/dt = 0 for t > 1 and ṽ is smooth. With this
control we have that R(1) is somewhere in a ball of radius c around R0, so if R0 was in the original compact
set K, R(1) is now in a new compact set, K ′. Now there exist a T = T (δ,K) such that after time T the ODE

dR

dt
= −a2[µ](R)

when started inside K ′ will be in B(R∗, δ). Therefore, our control ṽ will move the equivalent control system to
a point in B((ρ∗, R∗), δ) after time T + 1. Consequently, the Strook-Varadhan support theorem 3.9 implies that

P ((ρt, Rt) ∈ B(ρ∗, R∗, δ)) > 0

if t > T + 1.

We now move onto the second assumption.

Lemma 3.10. The function φβ is a Foster-Lyapunov function for the semigroup Sµt , for β sufficiently small.
That is to say if L is the generator associated to Sµt ,

L∗φβ ≤ −λφβ +A1|(ρ,R)|≤B ,

for some strictly positive constants λ,A,B, again for β sufficiently small.

Proof. First we compute

L∗φβ
φβ

=
β (−3a1[µ](ρ)ρ− γa2[µ](R)R− a2[µ](R)ρ)√

1 + 4ρ2/γ + 2ρR+ γR2

+
σ2

2

(
3βR2

(1 + 4ρ2/γ + 2ρR+ γR2)3/2
+

β2(R+ 4ρ/γ)2

1 + 4ρ2/γ + 2ρR+ γR2

)
This implies the following bound from above

L∗φβ
φβ

≤ β (−3a1[µ](ρ)ρ− γa2[µ](R)R+ c|ρ|)√
1 + 4ρ2/γ + 2ρR+ γR2

+
2σ2β

γ

(
1√

1 + 4ρ2/γ + 2ρR+ γR2
+ β

)
.

Using Lemma 3.4 we have that whenever |ρ| > z1 and |R| > z1 that

−3a1[µ](ρ)ρ− γa2[µ](R)R+ c|ρ| ≤ −c|ρ|/2− cγ|R|/2.

Furthermore, if |ρ| > z1 and |R| < z2, then

−3a1[µ](ρ)ρ− γa2[µ](R)R+ c|ρ| ≤ −c|ρ|/2.

And if |ρ| < z1 and |R| > max{1, 2/γ}z2, we have

−3a1[µ](ρ)ρ− γa2[µ](R)R+ c|ρ| ≤ −γc|R|/4.

Therefore, there exists some Λ which doesn’t depend on µ such that if |ρ| > z1 or |R| > max{1, 2/γ}z2, we have

L∗φβ
φβ

≤ −βΛ + +
2σ2β

γ

(
1√

1 + 4ρ2/γ + 2ρR+ γR2
+ β

)
.

Therefore, if β is small enough and |ρ| > z1, |R| > max{1, 2/γ}z2 and ρ,R large enough so that the second term
is small, specifically

|(ρ,R)| ≥ z3 :=
Λγ
4σ2 − β√
2/γ + γ/2

,

then
L∗φβ
φβ

≤ −βΛ/2.

Therefore, we have

L∗φβ ≤ −
1

2
βΛφβ + β

(√
γ/3c+ 2σ2 (1 + β)

γ
+

Λ

2

)
sup

|ρ|≤z1,|R|≤max{1,2γ}z2,|(ρ,R)|≤z3
φβ(ρ′, R′).

These calculations show that φβ satisfies the conditions to be a Foster-Lyapunov function when β is sufficiently
small.
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We now prove both Proposition 3.1 and Lemma 3.5 simultaneously.

Proof of Proposition 3.1 and Lemma 3.5. Using Lemma 3.7 and Lemma 3.10 we have that the Markov process
defined by (15) satisfies the condition of Harris’s theorem with Lyapunov function φβ . This gives the existence
and uniqueness of a steady state measure for this SDE, and gives the convergence result in the first part of
Lemma 3.5. For the other bound in Lemma 3.5 we recall the final inequality from the proof of Lemma 3.10,

L∗φβ ≤ −
1

2
βΛφβ + β

(√
γ/3c+ 2σ2 (1 + β)

γ
+

Λ

2

)
sup

|ρ|≤z1,|R|≤max{1,2γ}z2
φβ(ρ′, R′).

These calculations show that when β is sufficiently small, we have, for G(µ) being the steady state,∫
R2

G(µ)φβ dρdR ≤ 2

Λ

(√
γ/3c+ 2σ2 (1 + β)

γ
+

Λ

2

)
sup

|(ρ′,R′)|≤r(µ)

φβ(ρ′, R′).

This bound only depends on µ through its explicit dependence on z1, z2.

3.2.2 Finding a set which is preserved by the function G

In this section we prove the following proposition.

Proposition 3.2. Let M be sufficiently large, β sufficiently small and b satisfies Assumption 3.1. Then the
sets CM,β, defined in Definition 3.4 are preserved by the map G.

We begin with a lemma.

Lemma 3.11. Let µ ∈ CM,β and b satisfies Assumption 3.1. Then we can give explicit expressions for the
constants z1 and z2 appearing in Lemma 3.4 for M large. These are

z1 = log(4MC ′)/δ and z2 = log(4MC ′)/δ′, (17)

with constants δ and δ′ given by

δ =
2αβ
√

3

α
√
γ + β

√
3
, and δ′ =

2αβ
√

3γ

α
√
γ + β

√
3
.

We recall that β is a constant which is fixed in the proof of Lemma 3.10.

Proof. We begin with

|1− a1[µ](ρ)| = |
∫
R2

(1− b(ρ− ρ′))µ(ρ′, R′) dρ′dR′|

≤
∫
R2

|1− b(ρ− ρ′)|µ(ρ′, R′) dρ′dR′

=

∫
R2

|1− b(ρ− ρ′)| 1

φ(ρ′, R′)
φ(ρ′, R′)µ(ρ′, R′) dρ′dR′

≤ sup
ρ′,R′

(
|1− b(ρ− ρ′)| 1

φ(ρ′, R′)

)∫
R2

φ(ρ′, R′)φ(ρ′, R′) dρ′dR′

≤ CM sup
ρ′,R′

(
e−α〈ρ−ρ

′〉 1

φ(ρ′, R′)

)

≤ CM sup
ρ′

(
e−α〈ρ−ρ

′〉 exp

(
−β

√
1 +

3ρ′2

γ

))
=: MF (ρ).

Furthermore,
F (ρ) ≤ C ′ exp (−δ〈ρ〉) ,

with

δ =

√
12αβ

α
√
γ + β

√
3
.

This means that if 〈ρ〉 > log(4MC ′)/δ, then |a1[µ](ρ)| > 1/2.
In a similar way, we have

|1− a2[µ](R)| ≤ CM sup
ρ′,R′

(
e−α〈R−R

′〉 1

φ(ρ′, R′)

)
≤ CM sup

R′

(
exp

(
−α〈ρ− ρ′〉 − β

√
1 + 3γR2/4

))
=: MF̃ (R).
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Again,
F̃ (R) ≤ C ′ exp (−δ′〈R〉) ,

with

δ′ =
4αβ
√

3γ

2α+ β
√

3γ
.

Therefore,
|a2[µ](R)| > 1/2,

when

〈R〉 ≥ 1

δ′
log (2C ′M) .

When M is large, we can set
z1 = log(4MC ′)/δ and z2 = log(4MC ′)/δ′.

We now move on to the proof of proposition 3.2.

Proof of Proposition 3.2. We begin by recalling part of the result of Lemma 3.5 that∫
R2

G(µ)φβ dρdR ≤ 2

Λ

(√
γ/3c+ 2σ2 (1 + β)

γ
+

Λ

2

)
sup

|(ρ′,R′)|≤r(µ)

φβ(ρ′, R′).

When M is sufficiently large, z1, z2 limit the choice of r(µ). Let us work in the case 2/γ ≤ 1. We therefore are
interested in

sup
|ρ|<z1,|R|<max{1,2/γ}z2

φβ(ρ,R) ≤ exp

(
β

√
1 +

4

γ
z2

1 + 2z1z2 + γz2
2

)

= exp


√√√√β2 + log

(
2C ′M

c

)2
(

4(α
√
γ + β

√
3)2

12γα2
+ 2

(α
√
γ + β

√
3)(2α+ β

√
3γ)

24α2√γ
+ γ

(2α+ β
√

3γ)2

48α2γ

)
= exp

√log

(
2C ′M

c

)2
7

12
+ o(β)


≤ CMη,

where η =
√

7/12 + o(β). We then choose β so that η < 1. Therefore, we have for some constant C,∫
R2

µφβ dρdR ≤M ⇒
∫
R2

G(µ)φβ dρdR ≤ CMη.

Therefore, if M is large enough we will map the set CM,β onto itself.

3.2.3 Continuity of the function G

In this section we prove the following proposition.

Proposition 3.3. The function G from Pβ to Pβ is continuous with respect to the topology induced by the
norm ‖ · ‖β , and in the topology of weak convergence of measures.

First let us describe the main intuition. We start by showing that we can turn the question of continuity of G
into a question of continuity of the semigroup Sµt with respect to µ. We will see below that it is straightforward
to show that if µ1 and µ2 are close in total variation then we can show that Sµ1

t ν and Sµ2

t ν are close in
Wasserstein-1 distance by a stability estimate on the SDEs. As Sµt is a regularising semi-group for every µ, and
depends continuously on µ, we expect Wasserstein closeness of Sµ1

t , Sµ2

t to imply closeness in the ‖ · ‖∗ norm.
We would like to prove an inequality like

W1(ν1, ν2) ≤ ‖ν1 − ν2‖aβH(ν1, ν2),

where H(ν1, ν2) is a quantity that depends on some norm of ∇ν1,∇ν2. We were not able to prove such an
inequality, wich is why we use moments to control the tail behaviour.

We start by stating a sequence of lemmas to control and relate the different distances to each other.
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Lemma 3.12. There exists a function C(t) which is finite for t sufficiently large so that

‖G(µ1)−G(µ2)‖β ≤ C(t)‖Sµ1

t − S
µ2

t ‖′β .

Proof. We use the fact that for any t we have Sµt G(µ) = G(µ). We also have from the Harris’s theorem result
that there exists λ,D which depend on µ1 such that

‖Sµ1

t (f − g)‖β ≤ De−λt‖f − g‖β .

Using these two facts we have

‖G(µ1)−G(µ2)‖β = ‖Sµ1

t G(µ1)− Sµ2

t G(µ2)‖β
≤ ‖Sµ1

t (G(µ1)−G(µ2))‖β + ‖(Sµ1

t − S
µ2

t )G(µ2)‖β
≤ De−λt‖G(µ1)−G(µ2)‖β + ‖(Sµ1

t − S
µ2

t )G(µ2)‖β .

Rearranging this we have

(1−De−λt)‖G(µ1)−G(µ2)‖β ≤ ‖(Sµ1

t − S
µ2

t )G(µ2)‖β .

Next we show that in Wasserstein distances, we can control the difference between Sµ1

t and Sµ2

t .

Lemma 3.13. There exists a constant C > 0 such that for any ν we have

W1(Sµ1

t ν, Sµ2

t ν) ≤ CeCt (‖a1[µ1]− a1[µ2]‖∞ + ‖a2[µ1]− a2[µ2]‖∞)

Proof. We show this by construction of an explicit coupling of Sµ1

t ν and Sµ2

t ν. Let (R0, ρ0) be distributed with

law ν and construct two stochastic processes (R
(1)
t , ρ

(1)
t ) and (R

(2)
t , ρ

(2)
t ) as solutions to the SDEs

dR
(i)
t = a[µi](R

(i)
t , ρ

(i)
t ) dt,

dρ
(i)
t = −γa1[µi](ρ

(i)
t ) dt+ σ dWt,

where both SDEs have the same initial data (R0, ρ0) and the same Brownian motion (Wt)t≥0. Then the law of

((R
(1)
t , ρ

(1)
t ), (R

(2)
t , ρ

(2)
t )) defines a coupling of Sµ1

t ν and Sµ2

t ν. We can also compute

d
(
|R(1)
t −R

(2)
t |+ |ρ

(1)
t − ρ

(2)
t |
)
≤ sign(R

(1)
t −R

(2)
t )

(
a[µ1](R

(1)
t , ρ

(1)
t )− a[µ2](R

(2)
t , ρ

(2)
t )
)

dt

− γ sign(ρ
(1)
t − ρ

(2)
t )

(
a1[µ1](R

(1)
t , ρ

(1)
t )− a1[µ2](R

(2)
t , ρ

(2)
t )
)

dt

≤ C (‖a′[µ1]‖∞ + ‖a′1[µ1]‖∞)
(
|R(1)
t −R

(2)
t |+ |ρ

(1)
t − ρ

(2)
t |
)

dt

+ C (‖a1[µ1]− a1[µ2]‖∞ + ‖a2[µ1]− a2[µ2]‖∞) dt.

Integrating this and using the fact that the initial conditions are the same we get(
|R(1)
t −R

(2)
t |+ |ρ

(1)
t − ρ

(2)
t |
)
≤ CeCt (‖a1[µ1]− a1[µ2]‖∞ + ‖a2[µ1]− a2[µ2]‖∞) .

Taking expectations then gives our result.

We now need to prove a sequence of lemmas relating our distances to each other.

Lemma 3.14. For any Z, we have that

‖f − g‖∗ ≤
(∫

(f + g)φ1+a

)
sup

|(ρ,R)|>Z
φ(ρ,R)−a +

(∫
|(ρ,R)|<Z

|f − g|

)
sup

|(ρ,R)|<Z
φ(ρ,R).

Proof. For every Z we have

‖f − g‖∗ =

∫
|(ρ,R)|≤Z

|f − g|φ+

∫
(ρ,R)|>Z

|f − g|φ.

We then bound the first term by (∫
|(ρ,R)|<Z

|f − g|

)
sup

|(ρ,R)|<Z
φ(ρ,R).
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We then bound the second term by(∫
|(ρ,R)|≥Z

|f − g|φ1+aφ−a

)
≤
(∫

(f + g)φ1+a

)
sup

|(ρ,R)|>Z
φ−a.

Lemma 3.15. For any Z we have some constant C > 0 such that

∫
|(ρ,R)|≤Z

|f − g|dρdR ≤ C

(∫
|(ρ,R)|≤Z

(|∇f |2 + |∇g|2) dρdR

)1/4

(W1(f, g))
1/2

Proof. Let η be a smooth mollifying function. We have that∫
|(ρ,R)|≤Z

|f − g|dρdR = sup
‖ψ‖∞≤1

∫
|(ρ,R)|≤Z

(f − g)ψ dρdR.

We also have,

W1(f, g) = sup
‖ψ‖Lip≤1

∫
(f − g)ψ dρdR

Using these formulations, let us take ψ to have ‖ψ‖∞ ≤ 1. Furthermore, letting ηε = η(z/ε)/ε2, we can see∫
|(ρ,R)|≤Z

(f − g)ψ dρdR

=

∫
|(ρ,R)|≤Z

f(ψ − ηε ∗ ψ) dρdR+

∫
|(ρ,R)|≤Z

(f − g)ηε ∗ ψ dρdR+

∫
|(ρ,R)|≤Z

g(ψ − ηε ∗ ψ) dρdR

≤‖ηε ∗ ψ‖LipW1(f, g) +

∫
|(ρ,R)|≤Z

ψ (f − ηε ∗ f + g − ηε ∗ g) dρdR

≤‖ηε ∗ ψ‖LipW1(f, g) +

∫
z≤Z

∫
z′
ψ(z)ηε(z′) (f(z) + g(z)− f(z − z′)− g(z − z′)) dρdR

≤‖ηε ∗ ψ‖LipW1(f, g) + ‖ηε(z)|z|‖2
(∫

z≤Z

(
|∇f |2 + |∇g|2

)
dρdR

)1/2

≤Cε−1W1(f, g) + Cε

(∫
z≤Z

(
|∇f |2 + |∇g|2

)
dρdR

)1/2

.

Optimising over ε gives∫
|(ρ,R)|≤Z

(f − g)ψ dρdR ≤ CW1(f, g)1/2

(∫
z≤Z

(
|∇f |2 + |∇g|2

)
dρdR

)1/4

.

This implies our result.

Combining these two lemmas we have the following lemma.

Lemma 3.16. For any radially decreasing weight w(z) and any a > 0 we have,

‖f − g‖∗ ≤
(∫

(f + g)φ1+a

)
sup

|(ρ,R)|>Z
φ(ρ,R)−a + CW1(f, g)1/2

(∫
w(z)(|∇f |2 + |∇g|2)

)1/4

sup
|(ρ,R)|<Z

φ(ρ,R).

This implies

‖f − g‖β ≤ C‖f + g‖1/(1+a)
β(1+a) W1(f, g)a/2(1+a)

(∫
w(z)

(
|∇f |2 + |∇g|2

))a/4(1+a)

.

This section is inspired partly from [10]. We extend the regularisation estimates from this paper by including
the weight ∂ρa1[µ](ρ) in front of the terms ∂Rf , this allows us to deal with the weak mixing term.
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Lemma 3.17. For any weight function m, with |∇m| ≤ Cm, ∂2
ρ2m ≤ Cm, we have

d

dt

∫
R2

mf2 dρdR ≤ C
∫
R2

mf2 dρdR− σ2

∫
R2

m(∂ρf)2 dρdR,

d

dt

∫
R2

m(∂ρf)2 dρdR ≤ C
∫
R2

mf2dρdR+ C

∫
R2

m(∂ρf)2 dρdR−
∫
R2

m∂ρa1∂ρf∂Rf dρdR

− σ2

∫
R2

m(∂2
ρ2f)2 dρdR,

d

dt

∫
R2

m∂ρf∂RfdρdR ≤ C
∫
R2

mf2 dρdR+ C

∫
m|∂ρf∂Rf |dρdR−

∫
R2

m∂ρa1(∂Rf)2 dρdR

− σ2

∫
R2

m(∂2
ρ2f)(∂2

ρ,Rf) dρdR,

d

dt

∫
R2

m(∂Rf)2 dρdR ≤ C
∫
R2

mf2dρdR+ C

∫
R2

m(∂Rf)2 dρdR− σ2

∫
R2

m(∂2
ρRf)2 dρdR.

Proof. These inequalities are all essentially calculations. Let us start with the first one,

d

dt

∫
R2

mf2 dρdR = 2

∫
R2

mf

(
−∂R((a1 − a2)f) +

σ2

2
∂2
ρ2f + γ∂ρ(a1f)

)
dρdR

= 2

∫
R2

(
(a1 − a2)∂R(mf)f − σ2

2
∂ρf∂ρ(mf)− γa1f∂ρ(mf)

)
dρdR

= 2

∫
R2

((a1 − a2)∂Rm− γa1∂ρm) f2 dρdR

+

∫
R2

(
(a1 − a2)m∂R(f2)− γa1m∂ρ(f

2)
)

dρdR

−
∫
R2

σ2

2
∂ρm∂ρ(f

2)dρdR− σ2

∫
R2

m(∂ρf)2 dρdR

=

∫
R2

(
(a1 − a2)∂Rm+ ∂Ra2m− γa1∂ρm+ γ∂ρa1m+

σ2

2
∂2
ρ2m

)
f2 dρdR

− σ2

∫
R2

m(∂ρf)2 dρdR,

d

dt

∫
R2

m(∂ρf)2 dρdR = 2

∫
R2

m∂ρf∂ρ

(
−∂R((a1 − a2)f) +

σ2

2
∂2
ρ2f + γ∂ρ(a1f)

)
dρdR

= 2

∫
R2

m∂ρf
(
−∂ρa1∂Rf + ∂Ra2∂ρf + (a2 − a1)∂2

ρRf
)

dρdR

+ 2

∫
R2

m∂ρf

(
σ2

2
∂3
ρ3f + γ∂2

ρ2a1f + 2γ∂ρa1∂ρf + γa1∂
2
ρ2f

)
dρdR

= −2

∫
R2

m∂ρa1(∂ρf)(∂Rf)dρdR+

∫
R2

(m∂Ra2 + (a1 − a2)∂Rm)) (∂ρf)2 dρdR

− σ2

∫
R2

m(∂2
ρ2f)2 dρdR+

σ2

2

∫
R2

(∂2
ρ2)(∂ρf)2 − γ

∫
R2

∂ρ(m∂
2
ρ2a1)f2 dρdR

+

∫
R2

(4γ∂ρa1m− γ∂ρ(a1m))(∂ρf)2 dρdR

= −2

∫
R2

m∂ρa1∂ρf∂Rf dρdR− σ2

∫
R2

m(∂2
ρ2f)2 dρdR− γ

∫
R2

∂ρ(m∂
2
ρ2a1)f2 dρdR

+

∫
R2

(
m(∂Ra2 + 3γ∂ρa1) + (a1 − a2)∂RmdρdR− γa1∂ρm+

σ2

2
∂2
ρ2m

)
(∂ρf)2 dρdR,
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d

dt

∫
R2

m∂ρf∂Rf dρdR =

∫
R2

m∂ρf∂R

(
−∂R((a1 − a2)f) +

σ2

2
∂2
ρ2f + γ∂ρ(a1f)

)
dρdR

+

∫
R2

m∂Rf∂ρ

(
−∂R((a1 − a2)f) +

σ2

2
∂2
ρ2f + γ∂ρ(a1f)

)
dρdR

=

∫
R2

m
(
∂2
R2a2f∂ρf + 3∂Ra2∂Rf∂ρf − ∂ρa1(∂Rf)2 − (a1 − a2)(∂ρf∂

2
R2f + ∂Rf∂

2
ρRf)

)
dρdR

+
σ2

2

∫
R2

m
(
∂ρf∂

2
ρ2Rf + ∂Rf∂

3
ρ3f
)

dρdR

+ γ

∫
R2

m
(
∂ρa1∂ρf∂Rf + a1∂ρf∂

2
ρRf + ∂2

ρ2a1f∂Rf + 2∂ρa1∂ρf∂Rf + a1∂Rf∂ρ2f
)

dρdR

=
1

2

∫
R2

(
∂2
R2a2∂ρmdρdR+ ∂2

ρ2a1∂Rm
)
f2 dρdR

−
∫
R2

m∂ρa1(∂Rf)2dρdR− σ2

∫
R2

m∂2
ρ2f∂

2
ρRf dρdR

+

∫
R2

(
2m∂Ra2 + (a1 − a2)∂Rm+

σ2

2
∂2
ρ2m+ 2γ∂ρa1m− γa1∂ρm

)
∂ρf∂Rf dρdR,

d

dt

∫
R2

m(∂Rf)2dρdR = 2

∫
R2

m∂Rf∂R

(
−∂R((a1 − a2)f) +

σ2

2
∂2
ρ2f + γ∂ρ(a1f)

)
dρdR

= 2

∫
R2

m(∂Rf)
(
∂2
R2a2f + 2∂Ra2∂Rf − (a1 − a2)∂2

R2f
)

dρdR

+ σ2

∫
R2

m∂Rf∂
3
Rρ2f dρdR+ 2γ

∫
R2

m∂Rf(∂ρa1∂Rf + a1∂
2
ρRf) dρdR

= −
∫
R2

∂R(m∂2
R2a2)f2m dρdR− σ2

∫
R2

m(∂2
ρRf)2 dρdR∫

R2

(
3m∂Ra2 + (a1 − a2)∂Rm+

σ2

2
∂2
ρ2m+ γm∂ρa1 − γa1∂ρm

)
(∂Rf)2 dρdR.

Using this lemma we can prove a first regularisation result.

Lemma 3.18. Suppose that m satisfies the conditions from the previous lemma, then we can choose A1, A2, A3

such that F(t, f) defined by

F(t, f) :=

∫
R2

[
m
(
f2 +A1t

2(∂ρf)2 +A2t
4(∂ρa1)(∂ρf)(∂Rf) +A3t

6(∂ρa1)2(∂Rf)2
)]

dρdR,

is a decreasing quantity for t sufficiently small. Specifically, that there exists a t∗ such that for t ≤ t∗ there is
some Λ with

d

dt
F(t, ft) ≤

∫
R2

f2m dρdR− Λ

∫
R2

m
(
(∂ρf)2 dρdR+ t4(∂ρa1)2(∂Rf)2

)
dρdR.

Proof. We can differentiate F using the identities from the previous lemma. This gives

d

dt
F(t, ft) ≤ C(1 +A1t

2 +A2t
4 +A3t

6)

∫
R2

f2m dρdR

+

∫
R2

m(2A1t+A1t
2C − σ2)(∂ρf)2 dρdR

+

∫
R2

m(∂ρa1)(4A2t
3 +A2t

4C −A1t
2)|(∂ρf)(∂Rf)|dρdR

+

∫
R2

m(∂ρa1)2(6A3t
5 + CA3t

6 −A2t
4)(∂Rf)2 dρdR

− σ2

∫
R2

m
(
A1t

2(∂2
ρ2f)2 +A2t

4∂ρa1(∂2
ρ2f)(∂2

ρRf) +A3t
6(∂ρa1)2(∂2

ρRf)2
)

dρdR.
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If A2 ≤ 4A1A3, then the last line will vanish. Splitting the third line up with Young’s inequality will give

d

dt
F(t, ft) ≤ C(1 +A1t

2 +A2t
4 +A3t

6)

∫
R2

f2mdρdR

+

∫
R2

m

(
2A1t+A1t

2C − σ2 +
1

2η

∣∣4A2t+A2t
2C −A1

∣∣) (∂ρf)2 dρdR

+

∫
R2

m
(

6A3t
5 + CA3t

6 −A2t
4 −+

η

2

∣∣4Att5 +A2Ct
6 −A1t

4
∣∣) (∂ρa1)2(∂Rf)2 dρdR

Now if we choose η = A1/A2 we have

d

dt
F(t, ft) ≤ C(t)

∫
R2

f2m dρdR− (σ2 −A2
1/2A2 + o(t))

∫
R2

m(∂ρf)2 dρdR

−
(
A2

2
t4 + o(t5)

)∫
R2

(∂ρa1)2(∂Rf)2 dρdR.

Therefore, if we set A1 = A2 = A3 = σ2 we will have

d

dt
F(t, ft) ≤ C(1 +A1t

2 +A2t
4 +A3t

6)

∫
R2

f2m dρdR− (σ2/2 + o(t))

∫
R2

m(∂ρf)2 dρdR

− (σ2/2 + o(t))t3
∫
R2

m(∂ρa1)2(∂Rf)2 dρdR.

Proof of proposition 3.3. We know that∫
R2

f2mdρdR =

∫
R2

|fφ||fmφ−1|dρdR ≤
∫
R2

|f |φ‖fmφ−1‖∞ dρdR.

Now, if µ ∈ CM,β then G(µ) is a C∞ density by Hörmander’s theorem; and, in particular, it is in L∞ and since
mφ−1 is in L∞ this means that ‖G(µ)mφ−1‖∞ <∞, though we can’t get uniform estimates on this over CM,β .

Integrating the result of the previous lemma gives

F(t, ft) ≤ C(t)‖ft
√
m‖22.

This implies that
d

dt
‖ft
√
m‖22 ≤ C‖ft

√
m‖22.

Furthermore, if µ1, µ2 ∈ CM,a(1+β) then

‖Sµ1

t G(µ2)− Sµ2

t G(µ2)‖β
≤ C‖Sµ1

t G(µ2) + Sµ1

t G(µ2)‖1/(1+a)W1(Sµ1

t G(µ2), Sµ1

t G(µ2))a/2(1+a)‖m(∂ρa1)2(∇f +∇g)‖a/4(1+a)
2

≤ C(t)M1/(1+a) (‖a1[µ1]− a1[µ2]‖∞ + ‖a2[µ1]− a2[µ2]‖∞)
a/2(1+a) ‖G(µ2)m‖a/2(1+a)

2

We know that ‖G(µ2)m‖2 <∞ as

‖G(µ2)m‖22 ≤ ‖G(µ2)φβ‖1‖G(µ2)mφ−1
β ‖∞,

and we know the second term is finite as G(µ2) is a continuous probability density so is in L∞. We also have
that

|a1[µ1](ρ)− a1[µ2](ρ)| ≤
∫
R2

|b(ρ− ρ′)||µ1(ρ,R)− µ2(ρ,R)|dρdR ≤ ‖b‖∞‖µ1 − µ2‖TV ≤ C‖µ1 − µ2‖β .

Therefore,

‖Sµ1

t G(µ2)− Sµ2

t G(µ2)‖β ≤ C(t)‖µ1 − µ2‖a/1(1+a)
β ‖G(µ2)m‖a/1(1+a)

2 .

Hence,

‖G(µ1)−G(µ2)‖β ≤ C(t)‖µ1 − µ2‖a/2(1+a)
β ‖G(µ2)m‖a/2(1+a)

2 .

This gives strong continuity of the map G from CM,(1+a)β to itself.
We also have that if µn → µ∞ weakly then ai[µn](ρ)→ ai[µ∞](ρ), so we also have that in this case

‖G(µn)−G(µ∞)‖β → 0.

Which implies convergence in total variation and hence that G(µn) converges weakly towards G(µ∞).
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3.2.4 Putting the steps together

We conclude by gathering the results of the previous section to prove our main Theorem 3.1. First we state
Schauder fixed point theorem as can be found in [34, Theorem 2.3.7].

Theorem 3.19 (Schauder Fixed Point Theorem). Let S be a non-empty, convex closed subset of a Hausdorff
topological vector space and F a mapping of S into itself so that F (S) is compact, then F has a fixed point.

Proof of Theorem 3.1. We apply Schauder’s fixed point theorem to the map G, the set CM,β with M large
enough and β small enough so that Propositions 3.1, 3.2 and 3.3 are valid. We work in the topology of weak
convergence of measure so that the set CM,β is clearly convex and is compact thanks to Lemma 3.3. The
function G is well-defined thanks to Proposition 3.1, continuous thanks to Proposition 3.3. This allows us to
verify all the conditions of Schauder’s fixed point theorem. Lastly we note that as we have shown that G(µ)
has ‖G(µ)‖β ≤M (Proposition 3.1) and is smooth thanks to Malliavin’s theorem then this properties are also
true for our steady state.

4 Conclusion and future research directions

In this paper we investigated the existence of steady states to a nonlinear Fokker-Planck equation, describing the
evolution of player ratings competing in zero sum games. The existence result is based on Schauder’s fixed point
theorem and investigating the behaviour of a corresponding linear problem using hypercoercivity techniques.
To this point we are not able to prove uniqueness or say anything about the trend to equilibrium. Hence the
most natural next steps in understanding the long-time behaviour of this equation are:

• Uniqueness of the steady state. It seems likely that for the equation studied here the steady state
will be unique. However, it is challenging to prove. The kinetic structure means that we cannot view the
steady state as the minimiser of a convex energy. The non-explicitness for the function G(µ) makes it
challenging to work with. Furthermore, it is difficult to see how we could convert our fixed point argument
into a contraction mapping argument.

• Linear and non-linear stability of the steady state. The linear stability of the steady state found
in this paper seems to be a much more tractable problem. The numerical results presented in Section 2.2
suggest that the solution to the non-linear equation is converging exponentially fast towards its steady
state in spaces weighted by φβ . This is also close to a typical situation for the application of hypocoercivity
theory. However, significant challenges remain. These are essentially the same as the those for the linear
equation (13). We are not able to use Harris’s theorem for the linearised equation as Harris’s theorem
requires the preservation of positivity.
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[17] B. Düring, M. Fischer, and M. Wolfram. An Elo-type rating model for players and teams of variable
strength. Phil. Trans. R. Soc. A, 2022.
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