
Classifying spaces of finite groups

of tame representation type

David J. Benson

Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE,
United Kingdom



2020 Mathematics Subject Classification. Primary: 20J06, Secondary: 16E45, 55P35,
55P60, 55S30

Key words and phrases. A∞ algebras, cohomology of groups, cosingularity categories,
dihedral groups, generalised quaternion groups, Hochschild cohomology, loop spaces,

Massey products, p-completed classifying space, projective special linear group, projective
special unitary group, semidihedral groups, singularity categories
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Preface

The purpose of this document is to describe the A∞ algebra structures on the cochains
on the classifying space C∗BG, and on the chains on the loop space of the classifying space
C∗ΩBG

∧
2 , when G is a finite group with dihedral, semidihedral, or generalised quaternion

Sylow 2-subgroups. These are the groups whose group algebras have tame representation
type. In some cases, we are able to completely describe the singularity and cosingularity
categories of these, while in others this seems to be more difficult.

Part of the point of this work is to describe a variety of computational techniques for
approaching questions such as these. The main tool in the dihedral and semidihedral case,
as it was in the cyclic case [22,23], is to put a grading on the basic algebra of the principal
block. This gives rise to a double grading on group cohomology, and a triple grading on the
Hochschild cohomology of the group cohomology. This technique gives us no information in
the generalised quaternion case, but an explicit computation involving minimal resolutions
comes to our rescue in this case.

One curious outcome of this work is that if G has semidihedral or generalised quaternion
Sylow 2-subgroups, and no normal subgroup of index two, then C∗BG is formal, meaning that
it is quasi-isomorphic to its cohomology H∗BG with zero differential, see Theorems 3.7.16
and 4.7.4. The same happens in one of the other cases with semidihedral Sylow 2-subgroups,
see Theorem 3.13.13. This also happens for finite groups with elementary abelian Sylow
2-subgroups in characteristic two, but necessary and sufficient conditions for this to occur
are not known.

Acknowledgements. The investigations described in this work grew out of work with
John Greenlees [22, 23] in which we described the situation for finite groups with cyclic
Sylow p-subgroups. I would like to take the opportunity to thank him for his influence on
this work, which would not have been carried out without his input and encouragement. My
thanks go to the University of Warwick (visits supported by EPSRC grant EP/P031080/1)
and the Isaac Newton Institute in Cambridge (programme ‘Groups, representations and
applications: new perspectives’, supported by EPSRC grant EP/R014604/1), both of whose
hospitality allowed me extensive discussions with Greenlees in 2019, early 2020, and 2022,
leading to the work from which this grew. I thank Srikanth Iyengar for patiently explaining
various pieces of commutative algebra to me, and David Craven for correspondence about
the structure of tame blocks and various errors in the literature. I have flagged these under
the index entry “errors.”

Finally, this work would probably never have happened without the confinement imposed
by the Covid-19 pandemic, but there’s frankly no way I’m going to thank this cursèd virus.
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CHAPTER 1

Introduction and background

1.1. Introduction

This paper is a sequel to Benson and Greenlees [22,23]. In those papers, we examined
the structure of H∗BG and H∗ΩBG as A∞ algebras, for finite groups G with cyclic Sylow
p-subgroups, over a field k of characteristic p, and elucidated the structure of their singularity
and cosingularity categories. Here, we examine the case of blocks with dihedral, semidihedral,
or (generalised) quaternion defect groups in characteristic two. The reason for the interest in
this class of blocks is that these are the ones where the group algebra has tame representation
type. The results are given in the introductory sections of the three chapters, dealing with
the three types of defect groups. The ring structure on the homology of the loop space
H∗ΩBG

∧
2 was first computed by Levi [167] in these cases. The following table shows where

the discussions of the various cases can be found. Note that for tame type, the homotopy
type of BG is determined by the number of conjugacy classes of elements of order two and
four; see Sections 2.7, 3.5, and 4.6.

Sylow ccls of elts HH∗ of HH∗C∗BG A∞ structure of

p-subgroup of order H∗BG H∗ΩBG
∧
2

∼= H∗BG H∗ΩBG
∧
2

2 4 HH∗C∗ΩBG
∧
2

Cyclic — — [22] [22] [22] [23] [23]

1 1 2.8.6 2.8.9 2.8.12 2.8.7 2.8.10

Dihedral 2 1 2.13.4 2.13.7 2.13.9 2.13.5 2.13.8

3 1 2.3.2 [200], 2.6.3 [200], 2.6.3 2.4.2 2.5

1 1 3.7.7 3.7.4 3.7.18 3.7.16 3.8.2

Semidihedral 2 1 3.13.3 3.14.1 3.13.15 3.13.13 3.14.2

1 2

2 2 [114] [114] 3.4

Generalised 1 1 4.7.5 4.7.5 4.7.5 4.7.4 4.7.5

quaternion 1 2 4.8.4 4.9.2

1 3 4.3.3 [135] [135] 4.4

For ease of reference, we list here the cohomology algebras in the various cases of Sylow
subgroups, and the loop space homology in those cases where the group is not p-nilpotent
(because if G is p-nilpotent then H∗ΩBG

∧
p
∼= kG/Op(G)). The degrees are written homo-

logically, followed by the degrees coming from the internal grading in the cases where they
exist.
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Cohomology algebras H∗BG ∼= Ext∗kG(k, k)

Cyclic, order pn, inertial index q|(p− 1):

k[x]⊗ Λ(t), |x| = −(2q, pn), |t| = −(2q − 1, pn − (pn − 1)/q).

Klein four group, one class of involutions:

k[ξ, η, t]/(ξη + t3), |ξ| = |η| = −(3, 3), |t| = −(2, 2).

Klein four group, three classes of involutions:

k[x, y], |x| = |y| = −(1, 1).

Dihedral, order 4q (q ⩾ 2), one class of involutions:

k[ξ, η, t]/(ξη), |ξ| = −(3, q + 1, q), |η| = −(3, q, q + 1), |t| = −(2, q, q).

Dihedral, order 4q (q ⩾ 2), two classes of involutions:

k[ξ, y, t]/(ξy), |ξ| = −(3, q + 1, q), |y| = −(1, 0, 1), |t| = −(2, q, q).

Dihedral, order 4q (q ⩾ 2), three classes of involutions:

k[x, y, t]/(xy), |x| = −(1, 1, 0), |y| = −(1, 0, 1), |t| = −(2, q, q).

Semidihedral, order 8q (q ⩾ 2), one class of involutions, one of elements of order four:

k[x, y, z]/(x2y + z2), |x| = −(3, q + 1), |y| = −(4, 4q), |z| = −(5, 3q + 1).

Semidihedral, order 8q (q ⩾ 2), two classes of involutions, one of elements of order four:

k[x, y, z]/(x2y + z2), |x| = −(1, 1− q), |y| = −(4, 4q), |z| = −(3, q + 1).

Semidihedral, order 8q (q ⩾ 2), one class of involutions, two of elements of order four:

k[y, z, w, v]/(y3, vy, yz, v2 + z2w), |y| = −1, |z| = −3, |w| = −4, |v| = −5.

Semidihedral, order 8q (q ⩾ 2), two classes of involutions, two of elements of order four:

k[x, y, z, w]/(xy, y3, yz, z2 + x2w), |x| = |y| = −1, |z| = −3, |w| = −4.

Quaternion or generalised quaternion of order 8q, one class of elements of order four:

k[z]⊗ Λ(y), |z| = −4, |y| = −3.

Generalised quaternion of order 8q, two classes of elements of order four:

k[y, z]/(y4), |y| = −1, |z| = −4.

Quaternion of order 8, three classes of elements of order four:

k[u, v, z]/(u2 + uv + v2, u2v + uv2), |u| = |v| = −1, |z| = −4.

Generalised quaternion of order 8q (q ⩾ 2), three classes of elements of order four:

k[x, y, z]/(xy, x3 + y3), |x| = |y| = −1, |z| = −4.
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Loop space homology H∗ΩBG
∧
p

Cyclic, order pn, inertial index q|(p− 1) (q ⩾ 2):

k[τ ]⊗ Λ(ξ), |τ | = (2q − 2, pn − (pn − 1)/q), |ξ| = (2q − 1, pn).

Dihedral, order 4q (q ⩾ 1), one class of involutions:

Λ(τ)⊗ k⟨α, β | α2 = 0, β2 = 0⟩, |τ | = (1, q, q), |α| = (2, q + 1, q), |β| = (2, q, q + 1).

Dihedral, order 4q (q ⩾ 2), two classes of involutions:

Λ(τ)⊗ k⟨α, Y | α2 = 0, Y 2 = 0⟩, |τ | = (1, q, q), |α| = (2, q + 1, q), |Y | = (0, 0, 1).

Semidihedral, order 8q (q ⩾ 2), one class of involutions, one of elements of order four:

Λ(x̂, ŷ)⊗ k[ẑ], |x̂| = (2, q + 1), |ŷ| = (3, 4q), |ẑ| = (4, 3q + 1).

Semidihedral, order 8q (q ⩾ 2), two classes of involutions, one of elements of order four:

Λ(x̂, ŷ)⊗ k[ẑ], |x̂| = (0, 1− q), |ŷ| = (3, 4q), |ẑ| = (2, q + 1).

Semidihedral, order 8q (q ⩾ 2), one class of involutions, two of elements of order four:

Λ(η)⊗ k⟨ŷ, ẑ | ŷ2 = ẑ2 = 0⟩, |η| = 1, |ŷ| = 0, |ẑ| = 2.

Quaternion or generalised quaternion, one class of elements of order four:

Λ(ẑ)⊗ k[ŷ], |ẑ| = 3, |ŷ| = 2.

Quaternion or generalised quaternion, two classes of elements of order four:

Λ(ŷ, ẑ)⊗ k[η], |ŷ| = 0, |ẑ| = 3, |η| = 2.

1.2. Notation and conventions

In this chapter, we give some of the background, and set the stage for this project. We
begin with the notations and conventions used throughout.

We use the following standard group theoretic notations. For a finite group G, we write
Op(G) for the largest normal p-subgroup of G and Op′(G) for the largest normal p′-subgroup,
i.e., the largest normal subgroup of order not divisible by p. When p = 2, we write O(G) for
O2′(G), the largest normal odd order subgroup of G.

We write Op(G) for the smallest normal subgroup of G for which the quotient is a p-group,
and Op′(G) for the smallest normal subgroup for which the quotient is a p′-group.

We write ΓL(n, pm), GL(n, pm), and SL(n, pm) for the groups of semi-linear automor-
phisms, linear automorphisms, and special (i.e., determinant one) linear automorphisms of a
vector space of dimension n over Fpm . We write PΓL(n, pm), PGL(n, pm), and PSL(n, pm)
for the corresponding groups of projective transformations, namely the quotients of these
groups by the subgroups of scalar transformations. Similarly, we write ΓU(n, pm), GU(n, pm),
and SU(n, pm) for the corresponding groups of unitary transformations of a vector space of di-
mension n over Fp2m with respect to the conjugation given by the Frobenius automorphism of
order two of the field. We write PΓU(n, pm), PGU(n, pm), and PSU(n, pm) for the quotient
by the subgroup of scalar transformations. Closely related groups SL±(2, pm), SU±(2, pm)
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will be defined in Section 3.5, and their isoclinic groups SL◦(2, pm) and SU◦(2, pm) will be
defined in Section 4.5.

All chains, cochains, homology and cohomology will have coefficients in a field k. So
when we write C∗X, H∗X, C∗X, H∗X, we mean C∗(X; k), H∗(X; k), C∗(X; k), H∗(X; k)
respectively. Since we are interested in both homology and cohomology, we shall write all
degrees homologically, so that for example cohomology elements are given negative degrees.

We shall frequently use the fact that C∗BG, regarded as a differential graded algebra,
is quasi-isomorphic to the differential graded algebra of endomorphisms of a projective reso-
lution of the trivial module, EndkG(P∗). Such a quasi-isomorphism induces an isomorphism
in cohomology H∗BG ∼= Ext∗kG(k, k). The link between the two is given by the Rothenberg–
Steenrod construction, as explained for example in [196], or Section 4 of [25].

1.3. A∞ algebras and quasi-isomorphisms

The concept of A∞ algebra was introduced by Stasheff [205,206], and further information
can be found in Kadeishvili [151], Keller [154,155], Boardman and Vogt [27].

Recall that an A∞ algebra over a field k is a Z-graded vector space a with graded maps
mn : a⊗n → a of degree n− 2 for n ⩾ 1 satisfying

(1.3.1)
∑

r+s+t=n

(−1)r+stmr+1+t(id
⊗r ⊗ms ⊗ id⊗t) = 0

for n ⩾ 1.

Remark 1.3.2. The first few cases of (1.3.1) are as follows.

m1m1 = 0,

m1m2 = m2(m1 ⊗ id + id⊗m1),

m2(id⊗m2 −m2 ⊗ id) = m1m3 +m3(m1 ⊗ id⊗ id + id⊗m1 ⊗ id + id⊗ id⊗m1).

The map m1 is therefore a differential. The map m2 is not necessarily associative, but it is
a derivation with respect to m1, and induces an associative product on H∗a. The map m3

induces the Massey triple product on H∗a.

Example 1.3.3. A DG algebra (differential graded algebra) a can be regarded as an A∞
algebra with m1 the differential, m2 the product, and mi = 0 for i > 2.

A morphism of A∞ algebras f : a → a′ consists of graded maps fn : a⊗n → a′ of degree
n− 1 satisfying

(1.3.4)
∑

r+s+t=n

(−1)r+stfr+1+t(id
⊗r ⊗ms ⊗ id⊗t) =

∑
i1+···+ir=n

(−1)σm′
r(fi1 ⊗ · · · ⊗ fir)

where in the sum on right hand side, σ =
∑r−1

j=1(r − j)(ij − 1) and m′
r are the operations in

B.

Remark 1.3.5. The first two cases of (1.3.4) are as follows.

f1m1 = m′
1f1,

f1m2 = m′
2(f1 ⊗ f1) +m′

1f2 + f2(m1 ⊗ id + id⊗m1).
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Thus f1 is a map of complexes with respect to the differential m1, and commutes with the
product m2 up to a homotopy given by f2.

Definition 1.3.6. The morphism f is said to be a quasi-isomorphism of A∞ algebras if
f1 induces an isomorphism in homology with respect to the differentials m1,m

′
1.

We say that an A∞ algebra a is formal if it is quasi-isomorphic to an A∞ algebra with
mi = 0 for i ̸= 2.

Example 1.3.7. If a is a DG algebra then it is formal as an A∞ algebra if and only if it
is formal as a DG algebra; namely if and only if there are quasi-isomorphisms of DG algebras
a← a′ → H∗a, where H∗a is regarded as a DG algebra with zero differential.

A theorem of Kadeishvili [151] (see also Keller [154,155], Merkulov [181], Petersen [190])
may be stated as follows.

Theorem 1.3.8. Suppose that we are given an A∞ algebra a over a field k. Let Z∗(a)
be the cocycles, B∗(a) be the coboundaries, and H∗(a) = Z∗(a)/B∗(a), with respect to the
differential m1. Choose a vector space splitting f1 : H∗(a) → Z∗(a) ⊆ a of the quotient.
Then the homology H∗a has an A∞ structure with m1 = 0 and m2 the multiplication on H∗a
induced by the multiplication on a, and f1 extends to a quasi-isomorphism of A∞ algebras
f : H∗a→ a.

If a happens to carry auxiliary gradings respected by the maps mi then H∗a inherits the
grading, and the A∞ algebra structure maps mi on H∗a and the quasi-isomorphism f can be
chosen to respect the gradings.

Proof. The idea of the proof is an inductive procedure which goes as follows. The
morphisms

m2(f1 ⊗ f1), f1m2 : H∗a⊗H∗a→ a

are homotopic. In the presence of a grading on a, these maps preserve the grading, so a
homogeneous homotopy can be chosen. This is a morphism f2 : H∗a → H∗a → a of degree
(1, 0) such that

f1m2 = m1f2 +m2(f1 ⊗ f1).
Next, consider the map

m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1) : (H∗a)⊗3 → a

of degree (1, 0). Composing with m1 : a → a, a short calculation shows that we get zero.
So we can add something in the image of f1 to get a coboundary. Thus there exist maps
m3 : (H∗a)⊗3 → H∗a of degree (1, 0) and f3 : (H∗a)⊗3 → a of degree (2, 0) such that

f1m3 −m1f3 = m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1).

Continuing this way, we obtain maps mi of degree (i− 2, 0) giving an A∞ structure on H∗a,
and fi of degree (i− 1, 0) giving a quasi-isomorphism H∗a→ a. Note that equation (1.3.4)
simplifies slightly because m1 = 0 on H∗a. If a is a DG algebra then it simplifies further,
because mi = 0 for i > 2 on a. □

Definition 1.3.9. We say that an A∞ algebra a is minimal if m1 = 0. Given any A∞
algebra a, a minimal A∞ algebra quasi-isomorphic to a is called a minimal model for a.
Kadeishvili’s Theorem 1.3.8 says that every A∞ algebra a has a minimal model, and it is
H∗a endowed with a suitable A∞ structure. If a carries an internal grading preserved by the
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structure maps then the structure maps on a minimal model may be taken to preserve the
internal grading.

Remark 1.3.10. In the inductive procedure described in the proof of Theorem 1.3.8, if
it happens that

m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1) = 0

then it follows that we may take mi : (H∗a)⊗i → H∗a and fi : (H∗a)⊗i → a to be zero for all
i ⩾ 3. In this case, we deduce that a is formal. We shall apply this in Section 4.7 the case
of finite groups with a generalised quaternion Sylow 2-subgroup and no normal subgroup of
index two.

1.4. Hochschild cohomology

If a is an A∞ algebra, there is a spectral sequence

(1.4.1) HH∗H∗a⇒ HH∗a,

where the left hand side is the Hochschild cohomology of the homology algebra H∗a, not
taking into account any higher structure. The right hand side is the Hochschild cohomology
of a, which is described as follows (see §3 of Getzler and Jones [123], and Definition 12.6 of
Stasheff [207]). The bar resolution B(a) =

⊕
n⩾0 a

⊗(n+2) has a differential defined by

∂(x⊗[a1| . . . |an]⊗ y) =
n∑
j=0

±mj+1(x, a1, . . . , aj)⊗ [aj+1| . . . |an]⊗ y

+
∑

0⩽i+j⩽n

±x⊗ [a1| . . . |ai|mj(ai+1, . . . , ai+j)|ai+j+1| . . . |an]⊗ y

+
n∑
j=0

±x⊗ [a1| . . . |an−j]⊗mj+1(an−j+1, . . . , an, y).

The signs are given by the usual sign rules. If the only non-vanishing mi is m2 then this
agrees with the classical notion of Hochschild cohomology of an algebra. If a is a DG algebra,
so the only non-vanishing mi are m1 and m2, we can think of this as the total complex of
the usual double complex defining Hochschild cohomology of a DG algebra.

If M is an a-a-bimodule, we have Hochschild cochains

Homa,a(a
⊗(n+2),M) ∼= Homk(a

⊗n,M)

with differential

(δf)[a1| . . . |an] = m1f [a1| . . . |an] +
∑

0⩽i+j⩽n

±f [a1| . . . |ai|mj(ai+1, . . . , ai+j)|ai+j+1| . . . |an].

The homology of this complex is HH∗(a,M). We write HH∗a for HH∗(a, a). The filtra-
tion of B(a) by number of bars gives a filtration of Hochschild cochains, giving rise to the
conditionally convergent spectral sequence (1.4.1). See Section 5 of [22] for details. The
differentials in this spectral sequence are determined by the maps mi.

Kadeishvili [150] discusses the relationship between A∞ structure and Hochschild coho-
mology, and obtains the following.
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Proposition 1.4.2. Suppose that the action of mi on H∗a is zero for i = 1 and 2 < i < n.
Then mn : H∗a

⊗n → H∗a is a Hochschild n-cocycle on H∗a, of internal (homological) degree
n− 2.

If f : H∗a→ H∗a is a quasi-isomorphism to another A∞ structure m′
i on H∗a satisfying

the same assumptions, with f1 equal to the identity, then mn−m′
n is a Hochschild coboundary,

and all such occur this way. Thus valid choices for mn form a well defined class in degree
(−n, n− 2) in HH∗H∗a.

If a is graded and the A∞ structure preserves internal degree then mn represents a Hoch-
schild class of degree (−n, n− 2, 0) on H∗a. Thus if, regarding a as a doubly graded algebra
and ignoring the mn with n > 2, the Hochschild cohomology ring HH∗H∗a has no non-zero
elements of degree (−n, n− 2, 0) with n > 2, then the A∞ structure on a is formal.

Proof. Equation (1.3.1) implies that

−m2(id⊗mn) +
n−1∑
r=0

(−1)rmn(id⊗r ⊗m2 ⊗ id⊗(n−r−1)) + (−1)nm2(mn ⊗ id) = 0

and so mn is a Hochschild cocycle on the cohomology ring. If f : H∗a → H∗a is a quasi-
isomomorphism with f1 equal to the identity then equation 1.3.4 implies that

f1mn +
n−2∑
r=0

(−1)rfn−1(id
⊗r ⊗m2 ⊗ id⊗(n−r−2))

= m′
2(f1 ⊗ fn−1) + (−1)nm′

2(fn−1 ⊗ f1) +m′
n(f1 ⊗ · · · ⊗ f1).

Now f1 is the identity and m′
2 = m2, so this becomes

m′
n−mn = −m2(id⊗ fn−1) +

n−2∑
r=0

(−1)rfn−1(id
⊗r ⊗m2⊗ id⊗(n−r−2)) + (−1)n−1m2(fn−1⊗ id).

The right hand side is the formula for the Hochschild coboundary of fn−1, which may be
taken to be any (n− 1)-cochain.

The last part follows by an easy inductive argument on n, beginning with n = 3. □

Definition 1.4.3. We say that an A∞ algebra a is intrinsically formal if given another
A∞ algebra a′ and an isomorphism of associative algebras H∗a ∼= H∗a

′ there is a quasi-
isomorphism a→ a′ inducing it. Clearly an intrinsically formal A∞ algebra is formal.

If a carries an internal grading then the isomorphism H∗a ∼= H∗a
′ is required to preserve

the induced internal grading. So a graded A∞ algebra may be intrinsically formal while the
corresponding ungraded algebra is not.

Remark 1.4.4. Proposition 1.4.2 implies that if there are no non-zero classes of degree
(−n, n − 2) in HH∗H∗a with n > 2 then a is intrinsically formal. If a carries an internal
grading then we only require that there are no non-zero classes of degree (−n, n−2, 0), which
is a weaker condition.

Theorem 1.4.5. Let x1, . . . , xn (n ⩾ 3) be elements of the homology of a DG algebra a,
and suppose that the Massey product ⟨x1, . . . , xn⟩ is non-empty. Consider an A∞ structure
on H∗a given by Kadeishvili’s theorem, and suppose that mi = 0 for 2 < i ⩽ n− 2. Then

εmn(x1, . . . , xn) ∈ ⟨x1, . . . , xn⟩,
13



where ε = (−1)
∑n−1

j=1 (n−j)|xj |.

Proof. This is described in Theorem 3.1 of Lu, Palmieri, Wu and Zhang [177], and
corrected in Theorem 3.2 of Buijs, Moreno-Fernández and Murillo [45]. □

1.5. The Gerstenhaber circle product

Let A be an associative k-algebra and M an A-A-bimodule. Gerstenhaber [122], intro-
duced a circle product on Hochschild cocycles of A, that are related to A∞ structure, as we
now explain. If f : B(A)→M is an m-cochain and g : B(A)→M is an n-cochain, we define
f ◦i g : B(A)→M to be the (m+ n− 1)-cochain given on the basis by

f ◦i g [a1| . . . |ai|b1| . . . |bn|ai+1| . . . |am] = f [a1| . . . |ai| g[b1| . . . |bn] |ai+1| . . . |am].

We then define the circle product

f ◦ g =
m∑
i=0

(−1)(n+1)if ◦i g.

Example 1.5.1. The statement m2 ◦m2 = 0 is equivalent to the associativity of multi-
plication, because

(m2 ◦m2)[a1|a2|a3] = m2(m2(a1, a2), a3)−m2(a1,m2(a2, a3)) = (a1a2)a3 − a1(a2a3).

Theorem 1.5.2. The circle product is related to the differential, the cup product, and
Gerstenhaber bracket on cochains by the formulas

δf = (−1)|f |+1m2 ◦ f − f ◦m2

f ∪ g = (m2 ◦0 f) ◦m−1 g

f ◦ δg − δ(f ◦ g) + (−1)n−1δf ◦ g = (−1)n−1(g ∪ f − (−1)mnf ∪ g)

[f, g] = f ◦ g − (−1)|f ||g|g ◦ f.
where m2 is the multiplication in A.

Proof. This is proved in Sections 5–7 of [122]. □

In terms of the circle product, equation 1.3.1 can be rewritten as

(1.5.3)
∑

i+j=n+1

(−1)imi ◦mj = 0.

So suppose, for example, that a is an A∞ algebra with m1 = 0, and mi = 0 for 2 < i < n.
We saw in Proposition 1.4.2 that mn is a Hochschild n-cocycle on A = H∗a. We can see this
easily using this formulation, since the condition reduces to m2 ◦mn + (−1)nmn ◦m2 = 0, or
equivalently δmn = 0. It also follows from this formulation that under these circumstances,
for n < i < 2n − 2 the condition is again that mi should be a Hochschild n-cocycle, and
if these are all coboundaries then they can be rechosen to be zero. Then the condition for
m2n−2 is

m2 ◦m2n−2 + (−1)nmn ◦mn + (−1)2n−2m2n−2 ◦m2 = 0,

which can be rewritten as
δm2n−2 = (−1)nmn ◦mn.

14



Continuing this way, we obtain the following, which will help understand what is going on
in Section 2.4.

Proposition 1.5.4. Let n, t ⩾ 2, and let a be an A∞ algebra, such that that for i < t
we have mi = 0 unless i is congruent to 2 modulo n− 2. Then

(1) If t is not congruent to 2 modulo n− 2 then mt is a Hochschild cocycle.
(2) If t = s(n− 2) + 2 then mt satisfies the coboundary condition

δms(n−2)+2 =
s−1∑
i=1

(−1)inmi(n−2)+2 ◦m(s−i)(n−2)+2.

(3) Suppose that HH iH∗a = 0 for i not congruent to 2 modulo n − 2. Then an A∞
structure on H∗a quasi-isomorphic to that on a may be chosen with mi = 0 unless
i is congruent to 2 modulo n− 2. □

1.6. Bousfield–Kan p-completion

We shall use the p-completion of Bousfield and Kan [34], namely the completion with
respect to the field Fp of p elements. We write X

∧
p for the p-completion of a space X. This

comes with a natural map X → X
∧
p , and has the following properties.

Theorem 1.6.1. The Bousfield–Kan p-completion has the following properties.

(i) A map of spaces X → Y induces a mod p reduced homology equivalence H̃∗X →
H̃∗Y if and only if it induces a weak homotopy equivalence between the completions
X

∧
p → Y

∧
p .

(ii) A space X is said to be Fp-good, or p-good, if the map H̃∗X → H̃∗X
∧
p is an

isomorphism, otherwise X is Fp-bad, or p-bad. X is said to be Fp-complete, or p-
complete, if X → X

∧
p is a weak homotopy equivalence. The following are equivalent:

(a) X is p-good, (b) X
∧
p is p-complete, (c) X

∧
p is p-good. Thus if X is p-bad, then

however many times we complete it, it remains p-bad.
(iii) If π1X is finite then X is p-good for all primes p. In this case, we have π1X

∧
p
∼=

π1X/O
p(π1X).

Proof. Parts (i) and (ii) are proved in Section I.I.5 of [34], while part (iii) is proved in
Proposition I.VII.5.1 of [34]. □

Corollary 1.6.2. If G is a finite group then the classifying space BG is p-good, its
completion BG

∧
p is a p-complete, nilpotent space and π1(BG

∧
p ) ∼= G/Op(G). The space BG

is already p-complete if and only if G is a finite p-group.
The following are equivalent.

(1) BG
∧
p is simply connected.

(2) ΩBG
∧
p is connected.

(3) G has no normal subgroup of index p.

Proof. This follows from Theorem 1.6.1. □
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Remark 1.6.3. In general, for a nilpotent space X with finite dimensional homology
groups, the Eilenberg–Moore spectral sequence is a spectral sequence of Hopf algebras con-
verging to the homology of the loop space:

Ext∗,∗H∗X(k, k) ∼= Cotor∗,∗H∗X
(k, k)⇒ H∗ΩX

(Eilenberg–Moore [63], Smith [202]). If the finite group G is not p-nilpotent, then BG is
not a nilpotent space. However, BG

∧
p is a nilpotent space, and H∗BG

∧
p
∼= H∗BG. So we get

a spectral sequence
Ext∗,∗H∗BG(k, k)⇒ H∗ΩBG

∧

p .

This expresses the cochain level statement for the DG algebra of endomorphisms

EndC∗BG(k) ≃ C∗ΩBG
∧

p .

It follows that we have a functor HomC∗BG(k,−) from C∗BG-modules to C∗ΩBG
∧
p -modules.

In the other direction, for any path connected space X the Rothenberg–Steenrod con-
struction [196] gives

EndC∗ΩX(k) ≃ C∗X.

We can apply this either to X = BG to obtain EndkG(k) ≃ C∗BG or to X = BG
∧
p to obtain

EndC∗ΩBG
∧
p
(k) ≃ C∗BG

∧

p ≃ C∗BG.

In the latter case, we get a functor HomC∗ΩBG
∧
p
(k,−) from C∗ΩBG

∧
p -modules to C∗BG-

modules.

Lemma 1.6.4 (The fibre lemma). Suppose that F → E → B is a fibration sequence, and
that the action of π1(B) on HiF is nilpotent for all i ⩾ 0. Then E

∧
p → B

∧
p is a fibration,

with fibre homotopy equivalent to F
∧
p .

Proof. Recalling that our convention is that H∗F denotes mod p homology, this is the
case R = Fp of the Mod-R Fibre Lemma II.5.1 of Bousfield and Kan [34]. □

Proposition 1.6.5. Let G be a finite group, and embed G in a finite unitary group
G→ U(n). Then there are fibration sequences

(i) U(n)/G→ BG→ BU(n), and
(ii) (U(n)/G)

∧
p → BG

∧
p → BU(n)

∧
p .

Proof. (i) Let EU(n) be the complex Stiefel variety (or any contractible space on which
U(n) acts freely). Then we can use EU(n) for EG, and the required fibration is

U(n)/G→ EU(n)/G→ EU(n)/U(n).

(ii) Since π1(BU(n)) is trivial, this follows from Lemma 1.6.4 and part (i). □

1.7. Classifying spaces and fusion systems

Let G be a finite group and k be a field of characteristic p. Let EG be a contractible space
with a free G-action, and let BG be the quotient EG/G. Since C∗EG is a free resolution
of k as a kG-module, the cohomology ring H∗BG is isomorphic to the group cohomology
H∗(G, k) = Ext∗kG(k, k). Furthermore, if P∗ is any projective resolution of k as a kG-module,
then the DG algebra HomkG(P∗, P∗) is quasi-isomorphic to C∗BG.

16



By a theorem of Cartan and Eilenberg (Theorem XII.10.1 of [48], the cohomology H∗BG
only depends on the Sylow p-subgroup D of G and the fusion system on it defined by
conjugation in G. This is defined as follows.

Definition 1.7.1. LetD be a Sylow p-subgroup of a finite groupG. For subgroupsH and
K of D, we define HomG(H,K) to be the set of group homomorphisms from H to K that are
induced by conjugation by some element of G, {ϕ : H → K | ∃g ∈ G ∀h ∈ H ϕ(h) = ghg−1}.
The fusion category of G over D is the category FD(G) whose objects are the subgroups of
D, and whose morphisms are given by HomG(H,K). The fusion system of G over D consists
of D together with the fusion category.

Abstract fusions systems are studied in the books of Aschbacher, Kessar and Oliver [7]
and Craven [52]. There is a set of axioms, devised by Puig, and not every fusion system
comes from a finite group in the above way. We shall assume that the saturation axiom is
part of the definition.

Definition 1.7.2. Let D be a Sylow p-subgroup of a finite group G. A subgroup H of
D is p-centric in G if Z(H) is a Sylow p-subgroup of CG(H). This is equivalent to saying
that CG(H) = Z(H) × Op′CG(H). The centric linking system of G over D is the category
LD(G) whose objects are the subgroups of D that are p-centric in G, and whose morphisms
are the quotient of {g ∈ G | gHg−1 ⩽ K} by the action of Op′CG(H). There is an obvious
functor LD(G)→ FD(G).

Again, there is a set of axioms for an abstract centric linking system L over a fusion
system on a p-group D. A p-local finite group consists of a finite p-group D together with a
fusion system F over D and a centric linking system L→ F.

Given a p-local finite group (D,F,L), its classifying space |L| is defined to be the nerve
of the category L. It is a p-good space (Proposition 1.12 of Broto, Levi and Oliver [41]). The
p-local finite group (D,F,L) can be recovered from the homotopy type of |L|∧p (Theorem 7.4
of [41]).

Theorem 1.7.3. The natural map |LD(G)| → BG is a mod p cohomology equivalence,
and so induces a homotopy equivalence |LD(G)|∧p → BG

∧
p .

Proof. This is the main theorem of Broto, Levi and Oliver [40]. □

Theorem 1.7.4. For a p-local finite group (D,F,L), the cohomology H∗|L| is isomor-
phic to the ring of stable elements in H∗BG in the sense of Cartan and Eilenberg, Theo-
rem XII.10.1 of [48].

Proof. This is Theorem B of [41]. □

Theorem 1.7.5. Suppose that G and G′ are finite groups, and there is a fusion preserving
isomorphism from the Sylow p-subgroup D of G to that of G′. Then there is a homotopy
equivalence BG

∧
p → BG′∧

p .

Proof. For p = 2 this is Theorem B of Oliver [188], while for odd primes it is Theorem B
of Oliver [187]. □

The following stronger theorem was proved later, and Oliver’s Theorem 1.7.5 is a conse-
quence.
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Theorem 1.7.6. Given a fusion system F on a finite p-group D, there exists a unique
centric linking system L over F.

Proof. This was first proved by Chermak [49] using his theory of localities. The proof
used the classification of finite simple groups. Later, Oliver recast the proof in terms of
obstruction theory. His proof depends on the Meierfrankenfeld–Stellmacher classification of
quadratic best offenders [180], which again relies on the classification of finite simple groups.
Finally, a classification free proof was given by Glauberman and Lynd [125]. □

Using Theorem 1.7.6, given a fusion system F on a p-group D, it determines first a linking
system L over F, then the classifying space |L|, then its p-completion |L|∧p , and finally the

cochains C∗|L|∧p ≃ C∗|L|.

Remark 1.7.7. The corresponding theorem for discrete p-toral groups is proved in Levi
and Libman [170]. This is relevant when trying to understand p-completed classifying spaces
of compact Lie groups.

Remark 1.7.8. Let B be a block of the group algebra kG of a finite group G over k. It
follows from the work of Alperin and Broué [2] that one can associate to B a fusion system
FB describing the fusion of subpairs associated to the block. This is spelled out in Section 3
of Linckelmann [175]. Thus using Theorem 1.7.6, we can associate to B a linking system
LB, and a classifying space |LB|, whose cohomology H∗|LB| is the cohomology of B in the
sense of Linckelmann [174]. In the case of a principal block, the defect groups are the Sylow
p-subgroups of G, and the fusion system of the block is the same as the fusion system FG(D)
of the group.

Craven and Glesser [54] studied fusion systems on metacyclic groups. Theorem 1.1 of
that paper shows that for dihedral, semidihedral and generalised quaternion 2-groups, all
possible fusions systems are realised as fusion systems FD(G) of some finite group G. It
follows that when we discuss 2-completed classifying spaces of finite groups with these as
Sylow 2-subgroups, we are really discussing the 2-completed classifying spaces associated to
any fusion system on such a 2-group, including classifying spaces of blocks with these as
defect groups.

1.8. Abelian Sylow subgroups

Let G be a finite group with abelian Sylow p-subgroup D, and let k be a field of charac-
teristic p. Then by a classical theorem of Burnside, the normaliser NG(D) controls G-fusion
in D. See for example Theorem 7.1.1 of Gorenstein [126]. This implies that the inclusion
NG(D) ↪→ G induces an isomorphism of fusion systems FNG(D)(D) → FG(D). It follows
that the ring of stable elements in H∗BD (see Theorem 1.7.4) is just the invariants of the
normaliser. So we have the classical theorem of Swan.

Theorem 1.8.1. Suppose that G has an abelian Sylow p-subgroup D, and let k be a
field of characteristic p. Then the inclusion NG(D) → G and the quotient map NG(D) →
NG(D)/Op′NG(D) induce isomorphisms

H∗BG ∼= H∗BNG(D) ∼= H∗B(NG(D)/Op′NG(D)) ∼= H∗BDNG(D)/CG(D).

Proof. See Swan [209]. □
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The consequence for the p-completed classifying space is the following.

Theorem 1.8.2. Suppose that G has an abelian Sylow p-subgroup D, and let k be a field
of characteristic p. Then we have homotopy equivalences

B(NG(D)/Op′NG(D))
∧

p ← BNG(D)
∧

p → BG
∧

p .

Proof. By Theorem 1.8.1, the inclusion of a Sylow p-normaliser NG(D) → G and the
quotient map NG(D)→ NG(D)/Op′NG(D) induce mod p cohomology equivalences

B(NG(D)/Op′NG(D))← BNG(D)→ BG.

Hence by Theorem 1.6.1 (i), after p-completion these give homotopy equivalences. □

Remark 1.8.3. The group NG(D)/Op′NG(D) is isomorphic to a semidirect product of D
by a p′-subgroup H of Aut(D). This reduces the study of BG

∧
p to the study of B(D ⋊H)

∧
p .

We shall discuss the case where D is cyclic in Section 1.13 and the case where D is an
elementary abelian 2-group in Theorem 5.2.2.

1.9. Singularity and cosingularity categories

Let a be an A∞ algebra over k. The derived category D(a) has as its objects the A∞
modules over a and as arrows the homotopy classes of A∞ morphisms. In this category,
quasi-isomorphisms automatically have inverses. For details, see Keller [154,155], Lefèvre-
Hasegawa [165].

If H∗a is commutative Noetherian, we define the bounded derived category Db(a) to be the
thick subcategory of D(a) whose objects are the modules with finitely generated homology.

We also need a suitable notion when H∗a is not Noetherian, in order to deal with the
case of a = C∗ΩBG

∧
p . The appropriate condition there involves a suitable notion of Noether

normalisation (Definition 3.7 of Greenlees and Stevenson [133]):

Definition 1.9.1. We say that b → a is a normalisation of a → k if both a and
k are in the thick subcategory Thick(b) ⊆ D(b) generated by b. For example, if H∗a is
finitely presented then the set of generators in a finite presentation leads to a normalisation
(Theorem 3.13 of [133]).

If b → a is a normalisation, we define the bounded derived category Db(a) to be full
subcategory of D(a) consisting of those objects whose restriction to b are in Thick(b) ⊆ D(b).
Under suitable hypotheses this is independent of the normalisation (Propositions 4.3 and 7.2
of [133]).

We define the singularity category Dsg(a) to be the Verdier quotient of Db(a) by the thick
subcategory Thick(a) generated by a. We define the cosingularity category Dcsg(a) to be the
Verdier quotient of Db(a) by the thick subcatgory Thick(k) generated by the field k.

We are interested in the cases of C∗BG
∧
p and C∗ΩBG

∧
p . Recall from Proposition 1.6.5

that we have a fibration sequence

(U(n)/G)
∧

p → BG
∧

p → BU(n)
∧

p .

This gives rise to maps

C∗BU(n)
∧

p → C∗BG
∧

p → C∗(U(n)/G)
∧

p
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and
C∗Ω(U(n)/G)

∧

p → C∗ΩBG
∧

p → C∗U(n)
∧

p .

These have the property that C∗BU(n)
∧
p → C∗BG

∧
p and C∗Ω(U(n)/G)

∧
p → C∗ΩBG

∧
p are

normalisations.
The following theorem expresses a version of Koszul duality between C∗BG and C∗ΩBG

∧
p

(cf. Remark 1.6.3).

Theorem 1.9.2. For a finite group G, the functor HomC∗BG(k,−) induces a triangulated

equivalence of bounded derived categories Db(C∗BG)
∼−→ Db(C∗ΩBG

∧
p ) that sends C∗BG to

k and sends k to C∗ΩBG
∧
p . It induces triangulated equivalences

Dsg(C
∗BG)

∼−→ Dcsg(C∗ΩBG
∧

p ), Dcsg(C
∗BG)

∼−→ Dsg(C∗ΩBG
∧

p ).

Proof. This follows from Theorem 9.1 and Example (10.6) of [133]. □

1.10. Tame blocks

The trichotomy theorem of Drozd [62] (see also Crawley-Boevey [55]) for finite dimen-
sional algebras states that every finite dimensional algebra is is of finite, tame or wild repre-
sentation type, and these types are mutually exclusive. Roughly speaking, finite representa-
tion type means that there are only finitely many isomorphism classes of finitely generated
indecomposable modules. Tame representation type means that the finitely generated in-
decomposables of any particular dimension (over an infinite field) come in one parameter
families with finitely many exceptions, and wild representation type means that the mod-
ule theory for a free algebra on two generators can be encoded in the category of finite
dimensional modules for the given algebra. For details, see for example Section 4.4 of [15].

In the case of blocks of finite groups, the representation type only depends on the defect
group.

Theorem 1.10.1. Let B be a block of kG with defect group D. Then

(i) B has finite representation type if and only if D is cyclic.
(ii) B has tame representation type if and only if p = 2, and D is dihedral, generalised

quaternion, or semidihedral.
(iii) In all other cases, B has wild representation type.

Proof. It follows from the work of Higman [139] that the representation type only
depends on the defect group. For finite p-groups, the representation type was determined
by Bondarenko and Drozd [33], see also Ringel [194]. □

Blocks with cyclic defect group were completely described in the work of Brauer [35]
and Dade [58]. The case of tame representation type was the subject of extensive work of
Erdmann [66–79], giving an almost complete description of the Morita types of these blocks.
Our work leans heavily on these papers. To make life easy, it follows from a case by case
analysis that for each isomorphism type of defect group of tame representation type and each
fusion system on it, there is a principal block of some finite group G with the same fusion
system, and all such have equivalent classifying spaces by Oliver’s Theorem 1.7.5. Judicious
choice of G minimises the work involved in understanding C∗BG and C∗ΩBG

∧
2 .
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Remark 1.10.2. Finite dimensional local symmetric algebras of tame representation type
are listed in Theorem III.1 of Erdmann [74]. The group algebras of finite 2-groups among
these are as given as follows. The dihedral groups have type III.1 (c) with k a power of
two (or type III.1 (b) for the Klein four group), the semidihedral groups have type III.1 (d′),
and the generalised quaternion groups have type III.1 (e′). This is a slightly more precise
statement than given in III.13 of [74]; see also Sections 3.2 and 4.2 for further comments.

1.11. Cohomology of complete intersections

We shall need to compute Ext∗R(k, k) and HH∗(R) in the case where R = H∗BG is a
complete intersection. For this reason, we give a brief review of cohomology of complete
intersections, following Avramov [8], Sjödin [201] and Buchweitz and Roberts [44].

Let R be a complete intersection of the form Q/I, where Q = k[x1, . . . , xn] is a positively
graded polynomial ring and I is generated by a homogeneous regular sequence f1, . . . , fc in
m2, where m is the ideal (x1, . . . , xn).1 We can take partial derivatives in the usual way to
give polynomials

bi,k =
∂fk
∂xi
∈ Q.

We can then take their images in R, which we denote b̄i,k. But then there’s a problem
when it comes to second partial derivatives, because in characteristic two the second partial
derivative of x2 with respect to x vanishes. To remedy this, the second divided partial
derivative is defined to be the second term in the Taylor expansion of the polynomial, so

that for example
∂(2)(x2)

∂x2
= 1. Thus we have

∂2fk
∂x2i

= 2
∂(2)fk
∂x2i

. So now set

ai,j,k =


∂2fk
∂xi∂xj

i ̸= j

∂(2)fk
∂x2i

i = j,

as an element of Q, and write āi,j,k for the image of ai,j,k in R. These are the coefficients of
the Hessian quadratic form q associated to the relations defining R, see Section 2 of [44].

Definition 1.11.1. Following [44], we define Cliff(q) to be the differential bigraded
algebra over R with generators x̂i dual to the xi, in degree (−1,−|xi|) (1 ⩽ i ⩽ n) and sk
dual to the fk, in degree (−2,−|fk|) (1 ⩽ j ⩽ c). The multiplicative structure is given by
making sj central, and

x̂ix̂j + x̂jx̂i =
c∑

k=1

āi,j,ksk (i ̸= j), x̂2i =
c∑

k=1

āi,i,ksk.

The differential d : Cliff(q)→ Cliff(q) vanishes on A and on the sk, and on the x̂i it is given
by

d(x̂i) =
c∑

k=1

b̄i,ksk.

1By negating degrees, results here apply equally well to negatively graded rings.
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Theorem 1.11.2. We have Ext∗R(k, k) = k⊗R Cliff(q).

Proof. This is proved in Sjödin [201] when the characteristic is not two. The gen-
eral statement can be obtained from Avramov [8] by combining Theorem 10.2.1 (5) and
Example 10.2.2 there. □

Remark 1.11.3. According to Theorem 1.11.2, Ext∗R(k, k) is generated over k by elements
x̂i in degree (−1,−|xi|) (1 ⩽ i ⩽ n) and sk in degree (−2,−|fk|) (1 ⩽ k ⩽ c). The elements
sk generate a central polynomial subring over which Ext∗R(k, k) is a free module of rank 2n.
The relations express x̂ix̂j + x̂jx̂i and x̂2i as linear combinations of the sk with coefficients in
k given by the constant terms ai,j,k(0) of the polynomials ai,j,k. These only depend on the
quadratic parts of the polynomials fk, so we have fk =

∑n
i,j=1 ai,j,k(0)xixj + terms of degree

at least three.

Remark 1.11.4. The algebra Ext∗R(k, k) carries a Hopf algebra structure for which the
elements x̂i and sk are primitive. This gives the multiplication on the graded dual Hopf
algebra TorR∗ (k, k).

Theorem 1.11.5. We have HH∗(R) = H∗(Cliff(q), d), the cohomology of Cliff(q) with
respect to the differential d.

Proof. This is Theorem 2.11 of Buchweitz and Roberts [44]. □

Remark 1.11.6. Since the relations fk are required to be in m2, we have bi,k ∈ m, so
bi,k(0) = 0, and the differential d disappears on k⊗R Cliff(q). So there is a natural map from
H∗(Cliff(q), d) to k ⊗R Cliff(q). This is the usual map HH∗(R) → Ext∗R(k, k) obtained by
applying −⊗R k to a bimodule resolution of R to obtain a module resolution of k.

1.12. Koszul duality for graded algebras

For graded commutative rings whose relations are quadratic, Koszul duality provides a
computation of both Ext and Hochschild cohomology.

Definition 1.12.1. A Koszul algebra is a graded k-algebra R with the property that the
minimal resolution of k as an R-module is linear. In other words, the maps in the minimal
resolution are given by multiplication by linear combinations of the generators.

The relations in a Koszul algebra are quadratic, but not every graded algebra with qua-
dratic relations is Koszul. However, a graded commutative algebra with quadratic relations
is automatically Koszul.

If R = k⟨x1, . . . , xn⟩/(S) is a Koszul algebra, with S a set of quadratic relations, then
the Koszul dual is

R! = Ext∗R(k, k) ∼= k⟨x̂1, . . . , x̂n⟩/(S⊥).

If V is the vector space with basis x1, . . . , xn then x̂1, . . . , x̂n is the dual basis for V ∗. The
relations S form a linear subspace of V ⊗V , and S⊥ is its annihilator in V ∗⊗V ∗ ∼= (V ⊗V )∗.

Theorem 1.12.2. Let R = k⟨x1, . . . , xn⟩/(S) be a graded Koszul algebra, with S a set of
quadratic relations, and let R! = k⟨x̂1, . . . , x̂n⟩/(S⊥) be the Koszul dual. Then as a k-algebra,
the Hochschild cohomology HH∗R can be computed as H∗(R ⊗ R!, d), where the differential
d given by [e,−] where e = x1⊗ x̂1 + · · ·+ xn⊗ x̂n. Here, the variables x̂1, . . . , x̂n are put in
homological degree −1 in the complex, while x1, . . . , xn are in homological degree zero.
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Proof. In this form, this is proved in Theorem 1.2 of Negron [186], but see also the
paper of Buchweitz, Green, Snashall and Solberg [42], where this is described in a more basis
dependent way. □

Remark 1.12.3. In the case of a complete intersection R with quadratic relations, of
course S includes the commutativity relations, whereas the Koszul dual R! is usually non-
commutative. In this case, the complex given in Theorem 1.12.2 is isomorphic to (Cliff(q), d)
appearing in Theorem 1.11.5. The advantage of this approach is that the same computation
also computes HH∗R!, but watching out for the change of degrees.

Remark 1.12.4. If R and R! are Koszul dual algebras, there is a relation between the
generating functions for the dimensions. For this purpose, it is necessary to give both R
and R! an extra grading with the generators in degree one, so that a generator in degree
n now has degree (1, n). The Koszul dual generator is then in degree (1,−n). This extra
grading makes sense because the relations are quadratic, and therefore homogeneous in the
new grading. Let

pR(s, t) =
∑
i,j

sitj dimkRi,j.

Then we have

(1.12.5) pR!(s, t) = 1/pR(−st−1, t−1).

Without the internal grading, the formula reduces to the more well known formula

pR!(s) = 1/pR(−s).
For example, if R = k[x, y] with x in degree −2 and y in degree −4 then R! = Λ(x̂, ŷ)

with x̂ in degree 1 and ŷ in degree 3. Then pR(s, t) = 1/(1− st−2)(1− st−4) and

pR!(s, t) = (1− (−st−1)t2)(1− (−st−1)t4) = (1 + st)(1 + st3).

1.13. The cyclic case

In this section, we summarise the results on groups with cyclic Sylow p-subgroups, from
the papers [22,23].

Let G be a finite group with cyclic Sylow p-subgroups, and let k be a field of characteristic
p. Then by Theorem 1.8.2, the inclusion of a Sylow p-normaliser NG(D) → G and the
quotient map NG(D)→ NG(D)/Op′NG(D) induce homotopy equivalences

B(NG(D)/Op′NG(D))
∧

p ← BNG(D)
∧

p → BG
∧

p .

So it suffices to discuss the case Z/pn ⋊ Z/q, where q ⩾ 2 is a divisor of p − 1 and Z/q
acts faithfully on Z/pn. Indeed, even in the case of a block with cyclic defect group of order
pn and inertial index q, the p-completed classifying space (see Remark 1.7.8) has the same
homotopy type.

So set
G = ⟨g, s | gpn = 1, sq = 1, sgs−1 = gγ⟩ ∼= Z/pn ⋊ Z/q,

where γ is a primitive qth root of unity modulo pn. Setting

U =
∑

1⩽j⩽pn−1,
jp≡j (mod pn)

gj/j,
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the group algebra is given by

kG = k⟨s, U | Upn = 0, sq = 1, sU = γUs⟩
where γ is a primitive qth root of unity. This has a unique grading up to scalar multiplication.
It is convenient to use a Z[1

q
]-grading and set |s| = 0, |U | = 1/q. With this grading, the

cohomology is the doubly graded ring given by H∗BG = k[x] ⊗ Λ(t) with |x| = (−2q,−pn)
and |t| = (−2q+1,−h) with h = pn−(pn−1)/q. The A∞ structure is completely determined
by

mi(t, . . . , t) =

{
(−1)p

n(pn−1)/2xh i = pn

0 otherwise.

The homology of the loop space on the p-completion H∗ΩBG
∧
p looks very similar. We

have
H∗ΩBG

∧

p = k[τ ]⊗ Λ(ξ)

where |τ | = (2q − 2, h) and |ξ| = (2q − 1, pn). The A∞ structure is completely determined
by

mi(ξ, . . . , ξ) =

{
(−1)h(h−1)/2 i = h

0 otherwise.

Thus the roles of h and pn have been reversed. There is one exceptional case. If h = 2 then
q = 2 and pn = 3. In this case, the formula above gives m2(ξ, ξ) = −τ 3. Thus ξ is no longer
an exterior variable, but rather we have the formal A∞ algebra H∗ΩBG

∧
p = k[τ, ξ]/(ξ2 + τ 3)

in this case.
The category Dsg(C

∗BG) ≃ Dcsg(ΩBG
∧
p ) is equivalent to Db(C∗ΩBG

∧
p [τ−1]). This is

a finite Krull–Schmidt triangulated category with (q − 1)(h − 1) isomorphism classes of
indecomposable objects. The Auslander–Reiten quiver of this category is isomorphic to
ZAh−1/T

q−1, a cylinder of height h− 1 and circumference q − 1. Here, T is the translation
functor Σ−2q = Σ−2. The triangulated shift Σ reverses the ends of the cylinder, so that there
are [h/2] orbits of Σ on indecomposables.

The category Dcsg(C
∗BG) ≃ Dsg(ΩBG

∧
p ) is equivalent to Db(C∗BG[x−1]). This is a finite

Krull–Schmidt triangulated category with q(pn − 1) isomorphism classes of indecomposable
objects. The Auslander–Reiten quiver is isomorphic to ZApn−1/T

q, a cylinder of height pn−1
and circumference q. The translation functor this time is T = Σ2(q−1), and the triangulated
shift Σ again reverses the ends of the cylinder, so that there are (pn − 1)/2 orbits of Σ on
indecomposables.
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CHAPTER 2

The dihedral case

2.1. Introduction

In this chapter, we discuss the case of finite groups with dihedral Sylow 2-subgroups.
The A∞ structure on the cohomology of dihedral groups is given in the following theorem.

Theorem 2.1.1. Let D be a dihedral group of order 4q, where q ⩾ 2 is a power of two,
and let k be a field of characteristic two. Then as a ring, we have H∗BD = k[x, y, t]/(xy)
with |x| = |y| = −1 and |t| = −2. Up to quasi-isomorphism, the A∞ structure on H∗BD is
determined by

m2q(x, y, . . . , x, y) = m2q(y, x, . . . , y, x) = t.

We give an explicit A∞ structure within this quasi-isomorphism class in Theorem 2.4.2.
It has mi ̸= 0 if and only if i is congruent to 2 modulo 2q − 2. For completeness, we also
describe the case q = 1, which behaves differently.

The idea of the proof is to put a double grading on the group algebra kD. This gives
a triple grading on H∗BD, which then restricts the possibilities for the higher mi. It is
then easy to check that mi = 0 unless i is congruent to 2 modulo 2q − 2. Then m2q is
interpreted as a Hochschild cocycle on H∗BD, and quasi-isomorphism amounts to changing
it by a Hochschild coboundary. We write down explicit formulas for all the mi, using some
Hochschild cohomology computations involving the circle product of Gerstenhaber.

Similar computations give the A∞ structure on the cohomology of a finite group G with
dihedral Sylow 2-subgroups of order 4q. These groups were classified by Gorenstein and
Walter. There are three possible 2-local structures, which are distinguished by the number
of conjugacy classes of involutions (one, two or three). We examine the three possibilities
in detail, and determine the A∞ structures on H∗BG and H∗ΩBG

∧
2 in each case. The case

with three conjugacy classes is trivial, since G has a normal 2-complement in this case, so
we concentrate on the remaining two cases.

Perhaps the most interesting case is the one where all involutions are conjugate, as this
happens if and only if G has no subgroup of index two. In this case, if q ⩾ 2 we have

H∗BG = k[t, ξ, η]/(ξη)

with |t| = −2 and |ξ| = |η| = −3 (homological grading). If q = 1 then H∗BG =
k[t, ξ, η]/(ξη + t2). This time, the A∞ structure is determined up to quasi-isomorphism
by

m2q(ξ, η, . . . , ξ, η) = m2q(η, ξ . . . , η, ξ) = t2q+1,

where the ξ and η alternate. Again the mi are non-zero for i congruent to 2 modulo 2q − 2,
and zero otherwise, and we give an explicit description of the non-zero ones.

The A∞ structure on H∗ΩBG
∧
2 in this case is easier to describe than that of H∗BG. This

is because there are only two non-zero mi.
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Theorem 2.1.2. Let G be a finite group with dihedral Sylow 2-subgroups of order 4q with
q ⩾ 1, and with no normal subgroup of index two, and let k be a field of characteristic two.
Then the ring structure on the homology of ΩBG

∧
2 is given by

H∗ΩBG
∧

2 = Λ(τ)⊗ k⟨α, β | α2 = β2 = 0⟩
where |τ | = 1, |α| = |β| = 2. The A∞ structure is determined by

m2q+1(τ, . . . , τ) = sq,

where s = αβ + βα.

See Theorems 2.8.3 and 2.8.10 for details.
We describe a DG algebra Q which is quasi-isomorphic to C∗ΩBG

∧
2 , and use it to show

that the degree 4 element s = αβ + βα is central. It may then be inverted, to obtain
equivalences of categories

Db(Q[s−1]) ≃ Db(C∗ΩBG
∧

2 [s−1]) ≃ Dcsg(C∗ΩBG
∧

2 ) ≃ Dsg(C
∗BG).

Finally, we observe that there is a Morita equivalence between Q[s−1] and one of the
algebras discussed in [22]. This allows us to carry over the classification theorem there, to
classify the indecomposable objects in Db(C∗ΩBG

∧
2 [s−1]), and hence also of Dsg(C

∗BG).

Theorem 2.1.3. Let G be a finite group with dihedral Sylow 2-subgroups of order 4q with
q ⩾ 1, and with no subgroup of index two, and let k be a field of characteristic two. Then
Dsg(C

∗BG) ≃ Dcsg(C∗ΩBG
∧
2 ) is a finite Krull–Schmidt category with 4q isomorphism classes

of indecomposable objects, which come in q orbits of the suspension Σ, all of length four. The
Auslander–Reiten quiver is isomorphic to ZA2q/T

2, where T is the translation functor Σ2.

This theorem is proved in Section 2.12 (Theorem 2.12.1). The corresponding theorem in
the case where G has two conjugacy classes of involutions, so that G has a normal subgroup
of index two but no normal subgroup of index four, is given in Theorem 2.13.10.

In contrast with Theorems 2.12.1 and 2.13.10, the category Dcsg(C
∗BG) ≃ Dsg(C∗ΩBG

∧
2 )

has infinite representation type.

2.2. Dihedral 2-groups

Let D = ⟨g, h | g2 = h2 = (gh)2q = 1⟩, a dihedral group of order 4q, with q ⩾ 1 a power
of two, and let k be a field of characteristic two. As elements of kD, let X = g − 1 and
Y = h− 1. Then the group algebra can be rewritten as

kD = k⟨X, Y | X2 = Y 2 = 0, (XY )q = (Y X)q⟩.
This algebra has tame representation type, and the finitely generated kG-modules were
classified by Ringel [195].

We shall regard kD as a Z× Z -graded algebra, with |X| = (1, 0) and |Y | = (0, 1). With
this bigrading, the relations are homogeneous. It is easy to compute the minimal resolution
of k as a kG-module, and hence the cohomology ring. Recall that we are using homological
degrees throughout, so that cohomological degrees come out negative. We list first the
homological degree, and then the two internal degrees.

The case q = 1 behaves differently from q ⩾ 2, so we discuss this case first. If q = 1 then
H∗BD ∼= Ext∗kG(k, k) is a formal A∞ algebra k[x, y] with |x| = −(1, 1, 0) and |y| = −(1, 0, 1).
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One way to see that it has to be formal is that the values mi for i > 2 on non-zero elements
land in zero groups for degree reasons.

We now assume, for the rest of this section, that q ⩾ 2. We have

H∗BD ∼= Ext∗kD(k, k) ∼= k[x, y, t]/(xy)

where |x| = −(1, 1, 0), |y| = −(1, 0, 1) and |t| = −(2, q, q). The elements x and y in H1BD
are dual to X and Y in J(kD)/J2(kD). The element

t ∈ H2BD ∼= Ext1kD(Ωk, k)

is represented by the short exact sequence of bigraded modules

0→ k→M ⊕N → Ωk→ 0,

where M and N are uniserial modules of length 2q. Examination of these uniserial kD-
modules shows that we have Massey products

⟨x, y, . . . , x, y⟩ = ⟨y, x, . . . , y, x⟩ = t

in H∗BD. Here, in both expressions the arguments x and y alternate, and there are q of
each, for a total of 2q terms. Note that these Massey products are only well defined up to
adding multiples of x2 and y2. However, if we take the internal grading into account, the
Massey product is well defined, with no ambiguity.

2.3. HH∗H∗BD

Wishing to understand further the A∞ structure of the cohomology of dihedral groups, it
follows from Proposition 1.4.2 and Lemma 2.4.1 that we should next compute the Hochschild
cohomology HH∗H∗BD. Since H∗BD is a hypersurface (i.e., a codimension one complete
intersection), we can compute Hochschild cohomology using Theorem 1.11.5. So first we
compute the algebra Cliff(q) for H∗BD, where D is a dihedral group of order 4q with q ⩾ 2.
This will also be useful for computing Ext∗,∗H∗BD(k, k) using Theorem 1.11.2. Recall that
H∗BD = k[x, y, t]/(xy) with |x| = −(1, 1, 0), |y| = −(1, 0, 1) and |t| = −(2, q, q).

Proposition 2.3.1. The DG algebra Cliff(q) is equal to H∗BD⟨x̂, ŷ, τ ; s⟩, where s is
central, and x̂2 = 0, ŷ2 = 0, x̂ŷ + ŷx̂ = s, τ 2 = 0, x̂τ = τ x̂, ŷτ = τ ŷ. The degrees are
given by |x| = (0,−1,−1, 0), |y| = (0,−1, 0,−1), |t| = (0,−2,−q,−q), |x̂| = (−1, 1, 1, 0),
|ŷ| = (−1, 1, 0, 1), |τ | = (−1, 2, q, q), |s| = (−2, 2, 1, 1). The differential is given by d(x̂) = ys,
d(ŷ) = xs, d(τ) = 0, d(s) = 0.

Proof. Let f(x, y, t) = xy. Then we have

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 0,

∂(2)f

∂x2
= 0,

∂(2)f

∂y2
= 0,

∂(2)f

∂z2
= 0,

∂2f

∂x∂y
= 1,

∂2f

∂x∂z
= 0,

∂2f

∂y∂z
= 0.

Plugging these into Definition 1.11.1, we get the given relations and differential for Cliff(q).
□

27



Theorem 2.3.2. Let G be a dihedral group of order 4q with q ⩾ 2 a power of two, and
let k be a field of characteristic two. The Hochschild cohomology HH∗H∗BD has generators
s, t, τ , x, y, u, v with

|s| = (−2, 2, 1, 1)

|t| = (0,−2,−q,−q) |τ | = (−1, 2, q, q)

|x| = (0,−1,−1, 0) |y| = (0,−1, 0,−1)

|u| = (−1, 0, 0, 0) |v| = (−1, 0, 0, 0).

The relations are given by u2 = v2 = uv = τ 2 = 0, xy = 0, xv = yu = 0, xs = ys = 0,
and us = vs. The non-zero monomials and their degrees are as follows, with i1, i2 ⩾ 0,
ε1, ε2 ∈ {0, 1}. The first two cases overlap for i1 > 0, the first and third, and the second and
fourth overlap for i1 = 0.

|si1ti2τ ε1uε2 | = (−2i1 − ε1 − ε2, 2i1 − 2i2 + 2ε1, i1 + q(−i2 + ε1), i1 + q(−i2 + ε1)),

|si1ti2τ ε1vε2| = (−2i1 − ε1 − ε2, 2i1 − 2i2 + 2ε1, i1 + q(−i2 + ε1), i1 + q(−i2 + ε1)),

|xi1ti2τ ε1uε2| = (−ε1 − ε2,−i1 − 2i2 + 2ε1,−i1 + q(−i2 + ε1), q(−i2 + ε1))

|yi1ti2τ ε1vε2| = (−ε1 − ε2,−i1 − 2i2 + 2ε1, q(−i2 + ε1),−i1 + q(−i2 + ε1))

(the top two coincide with the lower two when i1 = 0, and are otherwise disjoint). There is
only one monomial in degree (−i, i− 2, 0, 0) with i > 2, namely sqt, with

|sqt| = (−2q, 2q − 2, 0, 0).

Proof. By Theorem 1.11.5, HH∗H∗BD is the cohomology of the DG algebra Cliff(q).
By Proposition 2.3.1, this is therefore as described in the theorem, with u = xx̂ and v = yŷ.
Since ∂(x̂ŷ) = (xx̂+ yŷ)s, we have us = vs in HH∗H∗BD.

We also mention another approach to this computation, as this will become relevant in
the proof of Proposition 2.8.9. Namely, we can use Theorem 1.12.2. This gives rise to the
same complex as above. Here, the xi are x, y and t and the x̂i are x̂, ŷ and τ . The advantage
of this approach is that it makes it easy to compute HH∗A! using the same computation,
but watching out for the changes of degrees. This approach also makes it clear that x̂ and
ŷ are really just avatars for the elements X and Y of kD.

For the last statement, we note that for the last two coordinates to be zero, the monomial
must be of one of the first two types. Then we have

i1 + q(−i2 + ε1) = 0,

(−2i1 − ε1 − ε2) + (2i1 − 2i2 + 2ε1) = −2.

Twice the first equation minus q times the second gives (ε1 + ε2)q + 2i1 = 2q, and so i1 is
either zero or q. If i1 = 0 then ε1 = ε2 = 1, which then implies i2 = 1, and the resulting
monomials have i = 2. On the other hand, if i1 = q then ε1 = ε2 = 0, and again we have
i2 = 1, and the resulting monomial is sqt. □
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2.4. A∞ structure of H∗BD

In this section, we completely describe the A∞ structure of H∗BD. This makes extensive
use of Section 1.5, describing Gerstenhaber’s circle product on Hochschild cochains and its
relation to the structure maps of an A∞ algebra.

Let D be a dihedral group of order 4q with q ⩾ 2 a power of two, and let k be a field of
characteristic two.

Lemma 2.4.1. For any A∞ structure on H∗BD that preserves internal degrees, we have
mn = 0 unless n− 2 is divisible by 2q − 2. In particular for 2 < n < 2q we have mn = 0.

Proof. Looking at the degrees of the generators x, y and z, for any monomial ζ in
H∗BD of degree (a, b, c) we have a ≡ b + c (mod 2q − 2). So for an n-tuple (ζ1, . . . , ζn),
the degree of mn(ζ1, . . . , ζi) satisfies a ≡ b + c + n − 2 (mod 2q − 2). It follows that for
mn(ζ1, . . . , ζn) to be non-zero we must have n− 2 ≡ 0 (mod 2q − 2). □

Theorem 2.4.2. The A∞ structure on H∗BD is given as follows. The mn are k[t]-
multilinear maps with mn = 0 for n not congruent to 2 modulo 2q − 2. For i, j ⩾ 1,

m2q(x
i, y, x, y, . . . , x, yj) = m2q(y

j, x, y, x, . . . , y, xi) = xi−1yj−1t

where the arguments alternate between x and y, and the right hand side is zero unless either
i = 1 or j = 1; m2q is zero on all other tuples of monomials not involving t. The maps
mℓ(2q−2)+2 with ℓ > 1 similarly vanish on all tuples of monomials not involving t, except the
ones which look as above, but for some choice of indices:

1 ⩽ e1 ⩽ e2 ⩽ · · · ⩽ eℓ−1 < eℓ−1 + (2q − 2) + 1 ⩽ eℓ−2 + 2(2q − 2) + 1

⩽ · · · ⩽ e1 + (ℓ− 1)(2q − 2) + 1 ⩽ ℓ(2q − 2) + 2.

the exponents on the terms are increased by one (or correspondingly more if an index is
repeated). The value on these tuples is xi−1yj−1tℓ. Thus

mℓ(2q−2)+2(x
i+α1 , yα2 , xα3 , . . . , xαℓ(2q−2)+1 , yj+αℓ(2q−2)+2) = xi−1yj−1tℓ

where each ασ is one plus the number of indices in the list above that are equal to σ.

Remark 2.4.3. To illustrate this rather complicated looking condition, suppose that
q = 4. Then m8 is given by

m8(x
i, y, x, y, x, y, x, yj) = m8(y

j, x, y, x, y, x, y, xi) = xi−1yj−1t,

and then m14 is the next non-zero mn. The value of each of the following seven expressions
is xi−1yj−1t2:

m14(x
i+1, y, x, y, x, y, x, y2, x, y, x, y, x, yj)

m14(x
i, y2, x, y, x, y, x, y, x2, y, x, y, x, yj)

m14(x
i, y, x2, y, x, y, x, y, x, y2, x, y, x, yj)

m14(x
i, y, x, y2, x, y, x, y, x, y, x2, y, x, yj)

m14(x
i, y, x, y, x2, y, x, y, x, y, x, y2, x, yj)

m14(x
i, y, x, y, x, y2, x, y, x, y, x, y, x2, yj)

m14(x
i, y, x, y, x, y, x2, y, x, y, x, y, x, yj+1)
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There are seven more such expressions with non-zero values of m14, where x and y have been
interchanged. A typical non-zero value of m20, which is the next non-zero mn, corresponding
to ℓ = 3, is given by

m20(x
i, y, x, y2, x, y2, x, y, x, y, x, y, x2, y, x, y, x2, y, x, yj) = xi−1yj−1t3,

where the indices 4 ⩽ 6 < 13 ⩽ 17 come from e1 = 4, e2 = 6. An example with a repeated
index is

m20(x
i, y, x, y, x, y3, x, y, x, y, x, y, x2, y, x, y, x, y, x2, yj) = xi−1yj−1t3,

with indices 6 ⩽ 6 < 13 ⩽ 19 coming from e1 = e2 = 6.

Proof of Theorem 2.4.2. By Lemma 2.4.1, for every A∞ structure preserving de-
grees, mn = 0 for 2 < n < 2q. So in order to determine m2q, we invoke Proposition 1.4.2.
We have Massey products

⟨x, y, . . . , x, y⟩ = ⟨y, x, . . . , y, x⟩ = t,

well defined modulo the ideal generated by x and y. It follows from Theorem 1.4.5 that
m2q(x, y, . . . , x, y) and m2q(y, x, . . . , y, x) are non-zero. So m2q represents a non-zero Hoch-
schild cohomology class in degree (−2q, 2q− 2, 0, 0) in HH∗H∗BD. By Theorem 2.3.2, up to
scalar multiplication, there is only one non-zero possibility for m2q up to quasi-isomorphism.
It is easy to check that the given formula for m2q is indeed a Hochschild cocycle. Replacing
t by a non-zero multiple of t if necessary (or by working over F2) makes this the correct
Hochschild cohomology class.

Again using Lemma 2.4.1, we see that the next possible mn after m2q is m4q−2. Us-
ing (1.3.1), this has to satisfy

m2(id⊗m4q−2) +

4q−3∑
r=0

m4q−2(id
⊗r ⊗m2 ⊗ id⊗(4q−r−3)) +m2(m4q−2 ⊗ id)

+

2q−1∑
r=0

m2q(id
⊗r ⊗m2q ⊗ id⊗2q−r−1) = 0.

Now the first three terms are the Hochschild coboundary of m4q−2, while the last sum is the
Gerstenhaber circle product m2q ◦m2q, see Section 1.5. So as in Proposition 1.5.4, we rewrite
the above equation as

(2.4.4) δm4q−2 = m2q ◦m2q,

where δ is the Hochschild coboundary. Subject to this condition, m4q−2 is well defined modulo
Hochschild coboundaries. But by Theorem 2.3.2, the Hochschild cohomology HH∗H∗BD is
zero in degree (−4q + 2, 4q − 4, 0, 0), so any choice of m4q−2 satisfying (2.4.4) is valid. The
one we have constructed satisfies this.

We continue by induction on ℓ. If we have constructed m2q,m4q−2, . . . ,m(ℓ−1)(2q−2)+2,
then the equation satisfied by mℓ(2q−2)+2 is

δmℓ(2q−2)+2 =
∑
i+j=ℓ

mi(2q−2)+2 ◦mj(2q−2)+2.

Again HH∗H∗BD is zero in degree (−ℓ(2q − 2) − 2, ℓ(2q − 2), 0, 0), and so any choice of
mℓ(2q−2)+2 satisfying this equation is valid. The one we have constructed satisfies this. □
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Remark 2.4.5. Let us illustrate the way equation (2.4.4) works, with the example of
Remark 2.4.3. We have

(m8 ◦m8)(x
i, y, x, y2,x, y, x, y, x, y, x, x, y, x, yj)

= m8(x
i, y, x,m8(y

2, x, y, x, y, x, y, x), x, y, x, yj)

= m8(x
i, y, x, yt, x, y, x, yj)

= xi−1yj−1t2,

and correspondingly,

δm14(x
i, y, x, y2,x, y, x, y, x, y, x, x, y, x, yj)

= m14(x
i, y, x, y2, x, y, x, y, x, y, x2, y, x, yj)

= xi−1yj−1t2.

2.5. Loops on BD
∧
2

Since D is a finite 2-group, completing BD makes no difference to its homotopy type.
So ΩBD

∧
2 has contractible connected components, and is homotopy equivalent to D with

the group multiplication. So we should expect to see the Eilenberg–Moore spectral sequence
converging to kD.

Proposition 2.5.1. We have

Ext∗,∗H∗BD(k, k) = Λ(τ)⊗ k⟨x̂, ŷ | x̂2 = 0, ŷ2 = 0⟩
with

|τ | = (−1, 2, q, q), |X| = (−1, 1, 1, 0), |Y | = (−1, 1, 0, 1).

Proof. This follows by applying Theorem 1.11.2 to Proposition 2.3.1. The element s
there is redundant, as it is equal to x̂ŷ + ŷx̂. □

The E2 page of the spectral sequence

Ext∗,∗H∗BD(k, k)⇒ kD

is given by the Proposition. There is a non-zero differential given by

d2q−1(τ) = (x̂ŷ + ŷx̂)q.

Then
E2q = E∞ ∼= kD = k⟨x̂, ŷ | x̂2 = 0, ŷ2 = 0, (x̂ŷ + ŷx̂)q = 0⟩,

concentrated in homological degree zero. Ungrading, X represents x̂ and Y represents ŷ
to give an isomorphism with kD. Note that kD is isomorphic to its associated graded with
respect to the radical filtration, which is reflected in the fact that there is no ungrading to
be done in this case. In the generalised quaternion and semidihedral situations, this will be
more of an issue.
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2.6. HH∗kD

In this section we use the spectral sequence

(2.6.1) HH∗H∗BD⇒ HH∗C∗BD ∼= HH∗C∗ΩBD ∼= HH∗kD

to compute HH∗kD. This is not needed in the rest of the paper, but is an illustration of the
power of the internal Z×Z-grading on kD. The only differential comes from the analysis of
the map m2q in the A∞ structure on H∗BD, and there is just one ungrading problem, which
turns out to be the only difficult part of the computation.

Theorem 2.6.2. In the spectral sequence (2.6.1) we have d2q−1(τ) = sq.

Proof. We use the standard description of the Hochschild complex, see for example
Section 5 of [22]. The element τ on the E2 page corresponds to the Hochschild cochain
τ̃ : [ti] 7→ iti−1, all other monomials going to zero. Applying the formula for the differential,
we have

(δτ̃)[x, y, . . . , x, y︸ ︷︷ ︸
2q

] = τ̃(m2q(x, y, . . . , x, y)) = τ̃(t) = 1,

and similarly
(δτ̃)[y, x, . . . , y, x︸ ︷︷ ︸

2q

] = τ̃(m2q(y, x, . . . , y, x)) = τ̃(t) = 1,

Since s[x, y] = s[y, x] = 1, δτ̃ takes the same values as sq, and hence δτ̃ = sq. Examining
the locations of these terms in the filtration of the bar complex giving rise to the spectral
sequence, we deduce that this corresponds to the differential d2q−1 taking τ to sq. □

Theorem 2.6.3. The algebra HH∗C∗BD ∼= HH∗C∗ΩBD
∧
2
∼= HH∗kD has generators

s, t, x, y, u, v, w1, w2, w3 with |s| = (0, 1, 1), |t| = (−2,−q,−q), |x| = (−1,−1, 0),
|y| = (−1, 0,−1), |u| = |v| = (−1, 0, 0), |w1| = (0, q−1, q), |w2| = (0, q, q−1), |w3| = (0, q, q).
These satisfy the degree zero relations

w2
1 = w2

2 = w2
3 = w1w2 = w1w3 = w2w3 = sw1 = sw2 = sw3 = sq = 0,

the degree −1 relations

vw1 = uw2 = uw3 = vw3 = xs = ys = 0,

us = vs, xw2 = yw1 = usq−1, xw3 = uw1, yw3 = vw2,

and the degree −2 relations

u2 = v2 = uv = xy = xv = yu = 0.

Proof. By the centraliser decomposition, we have dimkHH
nkD = 4n + q + 3. In the

spectral sequence HH∗H∗BD ⇒ HH∗kD, we have d2q−1(τ) = sq. Let w1, w2 and w3 be
representative of xτ , yτ and (u + v)τ . If this is the only differential then the dimensions
at the E∞ page already match those for HHnkD. This is because HH0 is spanned by si

(1 ⩽ i ⩽ q), w1, w2 and w3, HH
1 is spanned by u, v, usi = vsi (1 ⩽ i ⩽ q), x, xw1, xw3,

y, yw2, yw3, and for n ⩾ 2, HHn is spanned by t.HHn−2 together with the eight elements
xn, xnw1, x

nw3, y
n, ynw2, y

nw3, x
n−1u and yn−1v. So d2q−1 is the only differential, it’s zero

on all generators except τ , and we have E2q = E∞. The E∞ page is as above, but with
xw2 = yw1 = 0 It remains to ungrade the relations.
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We begin with degree zero. The dimension of the algebra HH0kD = Z(kD) is q + 3,
and it is spanned by si = (XY )i + (Y X)i with 0 ⩽ i ⩽ q − 1, together with the elements
w1 = (Y X)q−1Y , w2 = (XY )q−1X, and w3 = (XY )q = (Y X)q. These have the required
internal degrees, and satisfy the degree zero relations listed above. In particular, note that
sq is equal to zero and not to w3, even though this has the right degree.

For the degree −1 and −2 relations, most have nothing lower in the filtration, in the
right internal degree so they ungrade to the same relations. The exception is the relations
xw2 = yw1 = 0, which ungrade to give some multiples of usq−1. Since we can work over
F2, the multiple is either zero or one, and by symmetry both are equal to the same multi-
ple. The exact multiple is harder to determine, and a long computation in the centraliser
decomposition shows that they are both equal to usq−1. □

Remark 2.6.4. The algebra HH∗kD was computed in Section 9 of Siegel and Wither-
spoon [200]. They chose a different basis, whose elements are not homogeneous with respect
to our grading, and which complicates their relations. The relation xw2 = yw1 = usq−1 can
be read off from their computation. See also Generalov [98], where the Hochschild cohomol-
ogy is computed for algebras in Erdmann’s class III.1 (c) [74] for any parameter q. The degree
−2 relations depend on the parity of q, but are determined already on the E2 page of the
spectral sequence. The same algebras in odd characteristic are discussed in Generalov [97],
where generators of degree −3 and −4 also occur in the Hochschild cohomology.

2.7. Groups with dihedral Sylow 2-subgroups

The computation for groups with a dihedral Sylow 2-subgroup is analogous to the di-
hedral group case described above. These groups were classified by Gorenstein and Wal-
ter [128, 129], see also Bender and Glauberman [11, 12]. The representation theory was
investigated by Brauer [37,38], Cabanes and Picaronny [46], Donovan and Freislich [61],
Donovan [60], Erdmann [66, 68, 74, 75], Erdmann and Michler [78], Holm [141], Holm
and Zimmermann [145], Kauer [152], Koshitani [159], Koshitani and Lassueur [160], Lan-
drock [163], Linckelmann [173]. The cohomology rings were investigated by Martino and
Priddy [179], Asai [5], Asai and Sasaki [6], Generalov et al. [10,86,88,107,109–111,115],
and the Hochschild cohomology in Generalov et al. [83, 90, 97, 98, 112, 113, 116, 117],
Holm [143], Taillefer [210]. The homology of ΩBG

∧
2 was computed by Levi [167].

Let G be a finite group with a dihedral Sylow 2-subgroup D of order 4q with q ⩾ 1, and let
k be a field of characteristic two. Then by the main theorem of Gorenstein and Walter [129],
there are three mutually exclusive cases, according to the fusion on the dihedral groups. By
Theorem 1.1 of Craven and Glesser [54], these also represent the only possible fusion systems
on dihedral 2-groups.

Case 2.7.1. If G has one class of involutions then G/O(G) is isomorphic to either the
alternating group A7 or a subgroup of PΓL(2, pm) with pm a power of an odd prime, con-
taining PSL(2, pm) with odd index. The principal block of kG has three isomorphism classes
of simple modules.

Case 2.7.2. If G has two classes of involutions then G has a normal subgroup of index
two, but no normal subgroup of index four. In this case, G/O(G) is a subgroup of PΓL(2, pm)
with pm a power of an odd prime, containing PGL(2, pm) with odd index. The principal
block of kG has two isomorphism classes of simple modules. In this case we have q ⩾ 2.
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Case 2.7.3. If G has three classes of involutions then O(G) is a normal complement in
G to a Sylow 2-subgroup D, so that G/O(G) ∼= D and H∗BG ∼= H∗BD. The principal block
of kG is isomorphic to kD, and has one isomorphism class of simple modules, namely the
trivial module.

Remark 2.7.1. For p is odd, we have

|PΓL(2, pm)| = m(pm − 1)pm(pm + 1),

|PGL(2, pm)| = (pm − 1)pm(pm + 1),

|PSL(2, pm)| = (pm − 1)pm(pm + 1)/2,

and PSL(2, pm) is simple for p ⩾ 5.

Proposition 2.7.2. Suppose that G has a dihedral Sylow 2-subgroup D. Then the homo-
topy type of BG

∧
2 is determined by |D| and the number of conjugacy classes of involutions.

Proof. This follows from Theorem 1.7.5 and the main theorem of [129] described above.
□

We shall deal with Cases 2.7.1 and 2.7.2 in turn. Case 2.7.1 is the most interesting,
because this is the case where G has no subgroup of index two, so ΩBG

∧
2 is connected.

Case 2.7.2 is computationally quite similar, but ΩBG
∧
2 has two connected components, and

so we give the details anyway for completeness. Case 2.7.3 is easy because ΩBG
∧
2 is homotopy

equivalent to D. Nonetheless, the Eilenberg–Moore spectral sequence has an interesting
differential in this case, as we saw in Section 2.5.

We end this section with a table of the various cases of algebras of dihedral type in
characteristic two, in Erdmann’s classification.

Erdmann [74] Case Group H∗ HH∗

III.I(a) — — [107]
III.I(b) 2.7.3 fours group [51,140]
III.I(b′) — —
III.I(c) 2.7.3 dihedral [185] [98,200]
III.I(c′) — —
D(2A) 2.7.2 PGL(2, q), q ≡ 1 (mod 4) [6,115,179]
D(2B) 2.7.2 PGL(2, q), q ≡ 3 (mod 4) [6,88,179] [112,113,116]
D(3A)1 2.7.1 PSL(2, q), q ≡ 1 (mod 4) [6,9,179] [90]
D(3A)2 — —
D(3B)1 2.7.1 Alternating group A7 [6,86,179] [90]
D(3B)2 — —
D(3D)1 — — [90]
D(3D)2 — —
D(3K) 2.7.1 PSL(2, q), q ≡ 3 (mod 4) [6,10,179] [90]
D(3L) — — [109]
D(3Q) — — [111]
D(3R) — — [110] [83]
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2.8. Loops on BG
∧
2 : one class of involutions

In this section we begin the examination of Case 2.7.1. This is the case where G has
a dihedral Sylow 2-subgroup D, and one conjugacy class of involution. In this case, G has
no subgroup of index two, and it has three isomorphism classes of simple modules in the
principal block.

Remark 2.8.1. As we have already mentioned, Theorem 1.7.5 shows that up to quasi-
isomorphism, C∗BG only depends on the fusion, and according to Proposition 2.7.2, for
dihedral Sylow 2-subgroups this only depends on |D| and the number of simple modules.
In fact more is true. Linckelmann [173] has proved that all blocks of finite groups with
dihedral defect groups of a given order, and three isomorphism classes of simple modules,
are derived equivalent. Explicit derived equivalences are described in that paper, and in the
case of principal blocks, it can be checked that the derived equivalence may be chosen to
take the trivial module to the trivial module. The endomorphism DGA of the trivial module
is a derived invariant up to quasi-isomorphism, and is also quasi-isomorphic to C∗BG.

Let G be a group with dihedral Sylow 2-subgroup D of order 4q, q ⩾ 1, and one conjugacy
class of involutions. By Proposition 2.7.2, for the purpose of studying BG

∧
2 , we may assume

that G = PSL(2, p) for a suitable prime p ≡ 1 (mod 4). In this case, the principal block B0

of kG has three simple modules, k, M and N, whose Ext1 quiver is as follows:

M
e2
((
k

e3
))

e1
jj N

e4

hh .

The relations are

e1e2 = 0, e3e4 = 0, (e4e3e2e1)
q = (e2e1e4e3)

q.

We put an internal grading on the basic algebra in this case by assigning degree (1
2
, 0) to e1

and e2 and degree (0, 1
2
) to e3 and e4. Thus we assign degree 1

2
(n1, n2) to a path involving n1

arrows of type e1 or e2, and n2 arrows of type e3 or e4. This choice is appropriate, because
the internal grading it induces in cohomology is compatible with restriction to the Sylow
2-subgroup.

Remark 2.8.2. It is not clear a priori that there exists a grading on the principal
block compatible with the restriction map in cohomology. This explains the need for the
computation above. For a further discussion of gradings in this context, see Bogdanic [28].

Let ē1 be the element of HomB(PM, Pk) opposite to e1, and so on. Then the minimal
resolution of k as a kG-module takes the form

· · · −→ PM ⊕ Pk ⊕ Pk ⊕ PN

(
ē1 v 0 0
0 ē1ē2 ē3ē4 0
0 0 u ē3

)
−−−−−−−−−−−→ Pk ⊕ Pk ⊕ Pk

(
ē1ē2 v 0
0 u ē3ē4

)
−−−−−−−−→ Pk ⊕ Pk(

ē2v 0
ē1ē2 ē3ē4
0 ē4u

)
−−−−−−−→ PM ⊕ Pk ⊕ PN

(
ē1 v 0
0 u ē3

)
−−−−−−→ Pk ⊕ Pk

( ē1ē2 ē3ē4 )−−−−−−→ Pk

( ē2vē4u )
−−−→ PM ⊕ PN

(ē1,ē3)−−−→ Pk

where u = ē1ē2(ē3ē4ē1ē2)
q−1 and v = ē3ē4(ē1ē2ē3ē4)

q−1. This is the total complex of the
following double complex.
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ē4u
oo

ē3ē4
��

Pk
u
oo
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So with this grading, if q ⩾ 2, the cohomology ring is given by H∗(BG, k) = k[ξ, η, t]/(ξη)
where

|ξ| = −(3, q + 1, q), |η| = −(3, q, q + 1), |t| = −(2, q, q).

If q = 1, we assume that k contains F4 = {0, 1, ω, ω̄}, and then the generators and degrees
are the same, but the relation is ξη + t3 instead of ξη. The restrictions to D are given by

resD(ξ) =

{
(x+ ωy)3

xt
resD(η) =

{
(x+ ω̄y)3

yt
resD(t) =

{
x2 + xy + y2 q = 1

t q ⩾ 2.

For q = 1 there are no non-zero Massey products, and the A∞ structure is formal. For q ⩾ 2
we have Massey products

⟨ξ, η, . . . , ξ, η⟩ = ⟨η, ξ, . . . , η, ξ⟩ = t2q+1.

In both expressions the arguments ξ and η alternate, and there are 2q of them. These Massey
products are only well defined up to adding elements of the ideal generated by ξ and η, but
taking the grading into account, they are well defined with no ambiguity.

Theorem 2.8.3. Let G be a finite group with dihedral Sylow 2-subgroups of order 4q with
q ⩾ 1 a power of two, and one class of involutions, and let k be a field of characteristic two.
Then we have

H∗ΩBG
∧

2 = Λ(τ)⊗ k⟨α, β | α2 = 0, β2 = 0⟩.
with

|τ | = (1, q, q), |α| = (2, q + 1, q), |β| = (2, q, q + 1).

In homological degree 4n we have monomials (αβ)n and (βα)n, in degree 4n + 2 we have
monomials (αβ)nα and (βα)nβ, and in odd degrees we have τ times all of these.

Proof. For q ⩾ 1, the Eilenberg–Moore spectral sequence converging to H∗ΩBG
∧
2 has

as its E2 page
Ext∗,∗H∗BG(k, k) = Λ(τ)⊗ k⟨α, β | α2 = 0, β2 = 0⟩
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where the generators have degrees

|τ | = (−1, 2, q, q), |α| = (−1, 3, q + 1, q), |β| = (−1, 3, q, q + 1).

The four degrees are first homological, then internal to H∗BG, and finally the two gradings
internal to kG. The elements τ , α and β come from the generators t, η and ξ, while the
element s = αβ+βα in degree (−2, 6, 2q+1, 2q+1) is the Eisenbud operator for the relation
ξη = 0 in H∗BG. There is no room for non-zero differentials, and there are no ungrading
problems, so E2 = E∞ = H∗ΩBG

∧
2 . □

Remark 2.8.4. Proposition II.4.1.5 of Levi [167] gets the correct additive structure for
H∗ΩBG

∧
2 but it is incorrectly claimed there that the ring structure is a polynomial tensor

exterior algebra.

Note that the algebras H∗BG and H∗ΩBG
∧
2 are Koszul dual to each other. This will

play a role in the computation of Hochschild cohomology.

Lemma 2.8.5. For any A∞ structure on H∗BG that preserves internal degrees, we have
mi = 0 unless i− 2 is divisible by 2q − 2. In particular, for 2 < i < 2q we have mi = 0.

Proof. The proof is the same as the proof of Lemma 2.4.1. □

Proposition 2.8.6. Let G be a group with a dihedral Sylow 2-subgroup D of order 4q
with q ⩾ 2 a power of two, and one conjugacy class of involutions, and let k be a field of
characteristic two. The Hochschild cohomology HH∗H∗BG has generators s, t, τ , ξ, η, u, v
with

|s| = (−2, 6, 2q + 1, 2q + 1)

|t| = −(0, 2, q, q) |τ | = (−1, 2, q, q)

|ξ| = −(0, 3, q + 1, q) |η| = −(0, 3, q, q + 1)

|u| = −(1, 0, 0, 0) |v| = −(1, 0, 0, 0).

The relations are given by u2 = v2 = uv = τ 2 = 0, ηu = ξv = 0, ξs = ηs = 0, and us = vs.
The non-zero monomials and their degrees are as follows, with i1, i2 ⩾ 0, ε1, ε2 ∈ {0, 1}.
|si1ti2τ ε1uε2 | = (−2i1 − ε1 − ε2, 6i1 − 2i2 + 2ε1, i1 + q(2i1 − i2 + ε1), i1 + q(2i1 − i2 + ε1)),

|si1ti2τ ε1vε2| = (−2i1 − ε1 − ε2, 6i1 − 2i2 + 2ε1, i1 + q(2i1 − i2 + ε1), i1 + q(2i1 − i2 + ε1)),

|ξi1ti2τ ε1uε2| = (−ε1 − ε2,−3i1 − 2i2 + 2ε1,−i1 + q(−i1 − i2 + ε1), q(−i1 − i2 + ε1))

|ηi1ti2τ ε1vε2| = (−ε1 − ε2,−3i1 − 2i2 + 2ε1, q(−i1 − i2 + ε1),−i1 + q(−i1 − i2 + ε1))

There is only one monomial in degree (−i, i− 2, 0, 0) with i > 2, namely sqt2q+1, with

|sqt2q+1| = (−2q, 2q − 2, 0, 0).

Proof. As in Theorem 2.3.2, we use the approach of Theorems 1.11.5 and 1.12.2. Thus
HH∗H∗BG is the homology of the complex

(H∗BG⊗H∗ΩBG
∧

2 , ∂),

where the generators t, ξ and η are in homological degree zero, the generators τ , α and β are in
homological degree−1, and the differential is given by ∂ = [e,−] where e = t⊗τ+ξ⊗α+η⊗β.
Thus setting s = αβ + βα, we have ∂(t) = 0, ∂(ξ) = 0, ∂(η) = 0, ∂(α) = ηs, ∂(τ) = 0,
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∂(β) = ξs. The generators and relations for the homology of this complex are therefore as
given, with u = ξα and v = ηβ.

For the last statement, the computation is similar to the corresponding part of the proof
of Theorem 2.3.2. □

Theorem 2.8.7. The A∞ structure on H∗BG is given as follows. The mn are k[t]-
multilinear maps with mn = 0 for n not congruent to 2 modulo 2q − 2, and for i, j ⩾ 1

m2q(ξ
i, η, ξ, η, . . . , ξ, ηj) = m2q(η

j, ξ, η, ξ, . . . , η, ξi) = ξi−1ηj−1t2q+1

where the arguments alternate between ξ and η, and the right hand side is zero unless either
i = 1 or j = 1; m2q is zero on all other tuples of monomials not involving t. The maps
mℓ(2q−2)+2 with ℓ > 1 similarly vanish on all tuples of monomials not involving t, except the
ones which look as above, but for some choice of indices in the tuple:

1 ⩽ e1 ⩽ e2 ⩽ · · · ⩽ eℓ−1 < eℓ−1 + (2q − 2) + 1 ⩽ eℓ−2 + 2(2q − 2) + 1

⩽ · · · ⩽ e1 + (ℓ− 1)(2q − 2) + 1 ⩽ ℓ(2q − 2) + 2.

the exponents on the terms are increased by one (or correspondingly more if an index is
repeated). The value on these tuples is ξi−1ηj−1tℓ(2q+1). Thus

mℓ(2q−2)+2(x
i+α1 , yα2 , xα3 , . . . , xαℓ(2q−2)+1 , yj+αℓ(2q−2)+2) = xi−1yj−1tℓ(2q+1)

where each ασ is one plus the number of indices in the list above that are equal to σ.

Proof. The proof is the same as the proof of Theorem 2.4.2, but using Lemma 2.8.5
and Proposition 2.8.6 in place of Lemma 2.4.1 and Theorem 2.3.2. □

We now turn to the computation of the A∞ structure on H∗ΩBG
∧
2 . This is easier to

describe than the A∞ structure on H∗BG.

Lemma 2.8.8. For any A∞ structure on H∗ΩBG
∧
2 that preserves internal degrees, we

have mi = 0 unless i − 2 is divisible by 2q − 1. In particular, for 2 < i < 2q + 1 we have
mi = 0.

Proof. The proof is similar to the proof of Lemma 2.4.1. Looking at the degrees of the
generators τ , α and β, for any monomial ζ in H∗ΩBG

∧
2 we have a ≡ b + c (mod 2q − 1).

So for any i-tuple (ζ1, . . . , ζi), the degree of mi(ζ1, . . . , ζi) satisfies a ≡ b + c + i − 2 ≡ 0
(mod 2q− 1). So for mi(ζ1, . . . , ζi) to be non-zero we must have i− 2 ≡ 0 (mod 2q− 1). □

Proposition 2.8.9. The Hochschild cohomology HH∗H∗ΩBG
∧
2 has generators s, t, τ ,

ξ, η, u, and v in degrees

|s| = (0, 4, 2q + 1, 2q + 1),

|t| = −(1, 1, q, q), |τ | = (0, 1, q, q),

|ξ| = −(1, 2, q + 1, q), |η| = −(1, 2, q, q + 1),

|u| = −(1, 0, 0, 0), |v| = −(1, 0, 0, 0).

The relations are given by ξη = 0, u2 = v2 = uv = τ 2 = 0, ηu = ξv = 0, ξs = ηs = 0, and
us = vs. The non-zero monomials and their degrees are given as follows, with i1, i2 ⩾ 0,
ε1, ε2 ∈ {0, 1}.
|si1ti2τ ε1uε2| = (−i2 − ε2, 4i1 − i2 + ε1, (2i1 − i2 + ε1)q + i1, (2i1 − i2 + ε1)q + i1),
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|si1ti2τ ε1vε2| = (−i2 − ε2, 4i1 − i2 + ε1, (2i1 − i2 + ε1)q + i1, (2i1 − i2 + ε1)q + i1),

|ξi1ti2τ ε1uε2| = (−i1 − i2 − ε2,−2i1 − i2 + ε1,−i1 + (−i1 − i2 + ε1)q, (−i1 − i2 + ε1)q),

|ηi1ti2τ ε1vε2| = (−i1 − i2 − ε2,−2i1 − i2 + ε1, (−i1 − i2 + ε1)q,−i1 + (−i1 − i2 + ε1)q).

Thus there is only one monomial with degree (−i, i− 2, 0, 0) with i > 2, namely

|sqt2q+1| = (−2q − 1, 2q − 1, 0, 0).

Proof. Again, as in Theorem 2.3.2, we use the approach of Theorem 1.12.2. This time,
HH∗H∗ΩBG

∧
2 is the homology of the complex

(H∗ΩBG
∧

2 ⊗H∗BG, ∂),

where the generators τ , α and β of H∗ΩBG
∧
2 are in homological degree zero, the generators

t, ξ, η of H∗BG are in homological degree −1, and the differential is given by ∂ = [e,−]
where e = τ ⊗ t+ α⊗ ξ + β ⊗ η. So the answer is the same as in Proposition 2.8.6 but with
the degrees changed.

For the last statement, the computation is again similar to the corresponding part of the
proof of Theorem 2.3.2. □

Theorem 2.8.10. In Case 2.7.1, the A∞ structure on H∗ΩBG
∧
2 is determined by

m2q+1(τ, τ, . . . , τ) = sq,

where s = αβ + βα. This implies that

(2.8.11) m2q+1(f1(α, β)τ, f2(α, β)τ, . . . , f2q+1(α, β)τ) = f1(α, β) . . . f2q+1(α, β)sq,

and all mn for n > 2 on all other n-tuples of monomials give zero.

Proof. By Lemma 2.8.8, we have mn = 0 for 2 < n < 2q + 1. So in order to determine
m2q+1, we invoke Proposition 1.4.2. This shows that m2q+1 has to be a Hochschild cocycle,
well defined up to adding Hochschild coboundaries. By Proposition 2.8.9, the dimension of
HH∗H∗ΩBG

∧
2 is one dimensional in degree (−2q − 1, 2q − 1, 0, 0). A representative for a

non-zero cohomology class is given by (2.8.11). It is easy to check that this is a cocycle but
not a coboundary. So by rescaling τ if necessary (or by working over F2) we may assume
that either m2q+1 is either zero or as given in the theorem. In both cases we can check that
the Gerstenhaber circle product m2q+1 ◦m2q+1 is equal to the zero cocycle in degree −4q.

As in the proof of Theorem 2.4.2, we can rewrite Equation 1.3.1 in degree −4q as

δm4q = m2q+1 ◦m2q+1,

which as we just saw, is zero. Now by Proposition 2.8.9 again, HH∗H∗ΩBG
∧
2 is zero in

degree (−4q, 4q − 2, 0, 0). So m4q is a Hochschild coboundary, and we can therefore take
m4q = 0, as it is only well defined modulo Hochschild coboundaries. At this point, for ℓ > 2,
the equation we obtain for mℓ(2q−1)+2 is δmℓ(2q−1)+2 = 0. Again, HH∗H∗ΩBG

∧
2 is zero in

degree (−ℓ(2q − 1)− 2, ℓ(2q − 1), 0, 0), and so we may take mℓ(2q−1)+2 = 0.
This argument shows that there are two possibilities for the A∞ structure up to isomor-

phism, namely the one given and the formal one with mn = 0 for all n > 2. The latter is
impossible, since it would imply that the A∞ structure on H∗BG is also formal, which it is
not. □
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Remark 2.8.12. In the spectral sequence HH∗H∗ΩBG
∧
2 ⇒ HH∗C∗ΩBG

∧
2 , we have

d2q(τ) = sqt2q. This implies that after inverting s (we discuss this later), we have

HH∗C∗ΩBG
∧

2 [s−1] = k[s, s−1][u, v, t]/(u2, v2, uv, t2q).

Since HH∗C∗BG ∼= HH∗C∗ΩBG
∧
2 , this also computes HH∗C∗BG[s−1].

2.9. A differential graded model

Throughout this section, we work in Case 2.7.1, where G has dihedral Sylow 2-subgroups
and one conjugacy class of involutions. As in [22], we produce a differential graded model Q
for the A∞ algebra H∗ΩBG

∧
2 . The proofs are similar to the ones in that paper, but we spell

out the details because there are some minor differences. One is that we are in characteristic
two, so we don’t need to be careful about signs; another is that a polynomial ring in one
variable has been replaced by the noncommutative ring k⟨α, β⟩/(α2, β2).

Recall from Theorems 2.8.3 and 2.8.10 that

H∗ΩBG
∧

2
∼= Λ(τ)⊗ k⟨α, β⟩/(α2, β2)

with m2q+1 determined by m2q+1(τ, . . . , τ) = sq, where s = αβ + βα, and with all other mi

zero for i > 2.
The generators of Q are elements τ1, . . . , τ2q, α, β, where τ1 will eventually be seen to

correspond to the element τ ∈ H∗ΩBG
∧
2 . The relations and differential are as follows:

ατi = τiα

βτi = τiβ

α2 = β2 = 0

dα = dβ = 0

∑
j+k=i

τjτk =


dτi 1 ⩽ i ⩽ 2q

sq i = 2q + 1

0 2q + 2 ⩽ i ⩽ 4q.

where s = αβ + βα. The antipode is the algebra anti-automorphism given by S(τi) =
τi, S(α) = α, S(β) = β (we are in characteristic two, so there are no signs), and the
comultiplication is given by

∆(τi) = τi ⊗ 1 + 1⊗ τi, ∆(α) = α⊗ 1 + 1⊗ α, ∆(β) = β ⊗ 1 + 1⊗ β.
The degrees are given by |τi| = (2i − 1, iq, iq), |α| = (2, q + 1, q), |β| = (2, q, q + 1), and
|s| = (4, 2q + 1, 2q + 1). We shall see that this algebra Q is quasi-isomorphic to C∗ΩBG

∧
2 .

Example 2.9.1. If q = 1, the algebra Q is generated by τ1, τ2, α, β with

d(α) = 0 α2 = 0 τ1τ2 + τ2τ1 = s = αβ + βα

d(β) = 0 β2 = 0 τ 22 = 0

d(τ1) = 0 ατi = τiα

d(τ2) = τ 21 βτi = τiβ

with |τ1| = (1, 1, 1), |τ2| = (3, 2, 2), |α| = (2, 2, 1), |β| = (2, 1, 2) and |s| = (4, 3, 3).
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Lemma 2.9.2. In the algebra Q, every element has a unique expression of the form

f(τ1, . . . , τ2q−1) + τ2qg(τ1, . . . , τ2q−1)

with coefficients in k⟨α, β⟩/(α2, β2).

Proof. The algebra relations (ignoring the differential) say first that the elements
τ1, . . . , τ2q commute with α and β; and the remaining relations can be rewritten in the
form

τiτ2q = τ2qϕi(τ1, . . . , τ2q−1)

with 1 ⩽ i ⩽ 2q (note that ϕ2q = 0). Thus all occurrences of τ2q may be moved to the
beginning, and τ 22q = 0. There are no relations among τ1, . . . , τ2q−1. □

Definition 2.9.3. We shall refer to a monomial in τ1, . . . , τ2q−1, or τ2q times such a mono-
mial, as a standard monomial in the variables τ1, . . . , τ2q. By the lemma, these monomials
form a basis for Q over k⟨α, β⟩/(α2, β2).

Lemma 2.9.4. In the algebra Q, we have d2 = 0.

Proof. The differential is given by

d(f + τ2qg) = (df + (τ1τ2q−1 + · · ·+ τ2q−1τ1)g) + τ2qdg.

For 1 ⩽ i ⩽ 2q − 1, se see that dd(τi) has two terms for each way of writing i as a sum of
three positive integers, and they cancel. So we have d2 = 0 on the subalgebra they generate.
Thus we have

d2(f + τ2qg) = d(df + (τ1τ2q−1 + · · ·+ τ2q−1τ1)g) + τ2qdg)

= d2f + (τ1τ2q−1 + · · ·+ τ2q−1τ1)dg + (τ1τ2q−1 + · · ·+ τ2q−1τ1)dg

= 0. □

Proposition 2.9.5. The definitions above make Q into a cocommutative DG Hopf alge-
bra.

Proof. The above lemmas show that Q is a DG bialgebra. It is easy to check that
the antipode satisfies the identity S(x(1))x(2) = x(1)S(x(2)) = 0 in Sweedler notation, for
elements of non-zero degree this only needs checking on the generators, where it is clear.
Cocommutativity also only needs checking on generators. □

Theorem 2.9.6. There is a quasi-isomorphism from the A∞ algebra H∗ΩBG
∧
2 to the DG

algebra Q, sending α to α, β to β, and τ to τ1.

Proof. First, we show that H∗Q is isomorphic to H∗ΩBG
∧
2 as an algebra over the

noncommutative ring k⟨α, β⟩/(α2, β2). We define a k⟨α, β⟩/(α2, β2)-module homomorphism
δ : Q → Q sending a monomial of the form τ1τif to τi+1f for 1 ⩽ i ⩽ 2q − 1, and all other
standard monomials to zero. Thus δ(f + τ2qg) = δ(f). Then we have

δd(τ1τif) = δ(τ1(τ1τi−1 + · · ·+ τi−1τ1)f + τ1τidf)

= (τ2τi−1 + · · ·+ τiτ1)f + τi+1df

dδ(τ1τif) = d(τi+1f) = (τ1τi + · · ·+ τiτ1)f + τi+1df

(δd+ dδ)(τ1τif) = τ1τif

41



while for j > 1 we have

δd(τjf) = δ((τ1τj−1 + · · ·+ τj−1τ1)f + τjdf) = τjf

dδ(τjf) = d(0) = 0

(δd+ dδ)(τjf) = τjf.

Thus δd+dδ is the identity on all monomials except those in the k⟨α, β⟩/(α2, β2)-submodule
spanned by 1 and τ1, where it is zero. So δ defines a homotopy from the identity map of Q
to the projection onto this submodule. It follows that H∗Q is isomorphic to H∗ΩBG

∧
2 as an

algebra over k⟨α, β⟩/(α2, β2), with τ1 corresponding to τ .
We have an A∞ morphism f : A→ Q given by f1(α) = α, f1(β) = β, and

fi(τ, . . . , τ) = τi, 1 ⩽ i ⩽ 2q.

The computation above shows that f1 is a quasi-isomorphism, and hence by definition so is
f . This computation is a practical illustration of Kadeishvili’s theorem [151]. □

Corollary 2.9.7. The bounded derived categories Db(Q), Db(C∗ΩBG
∧
2 ) and Db(C∗BG)

are equivalent as triangulated categories.

Proof. This follows from Theorem 1.9.2, together with Theorem 2.9.6 above. □

The element s = αβ+βα is central in Q, so it makes sense to invert it in the A∞ algebra
H∗ΩBG

∧
2 .

Corollary 2.9.8. We have equivalences of triangulated categories

Db(Q[s−1]) ≃ Db(C∗ΩBG
∧

2 [s−1]) ≃ Dcsg(C∗ΩBG
∧

2 ) ≃ Dsg(C
∗BG).

Proof. Since H∗ΩBG
∧
2 is periodic, with periodicity generator s, the effect on Db(Q) of

inverting s is to quotient out the thick subcategory generated by k. So this corollary again
follows from Theorem 1.9.2. □

2.10. Duality for Q[s−1]-modules

In this section, we continue to work in Case 2.7.1, whereG has dihedral Sylow 2-subgroups
and one conjugacy class of involutions.

Definition 2.10.1. We write K for k⟨α, β⟩/(α2, β2)[s−1], where s = αβ + βα.

Lemma 2.10.2. The graded algebra K is simple. The trace form K⊗k[s,s−1]K → k[s, s−1]
induces an isomorphism of K-modules

K ∼= Homk[s,s−1](K, k[s, s−1]).

Proof. This is the algebra of endomorphisms of a graded vector space of dimension two
over the graded field k[s, s−1], with a basis element u in degree zero and a basis element v in
degree one. The element α sends u to v and v to zero, while β sends v to su and u to zero.
Thinking in terms of matrices over k[s, s−1] this can be visualised as

α 7→
(

0 0
1 0

)
, β 7→

(
0 s
0 0

)
, s 7→

(
s 0
0 s

)
,

giving an isomorphism
K ∼= Mat2(k[s, s−1]).
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The trace form is given by multiplying matrices and taking the trace. It takes α⊗β and β⊗α
both to s. It therefore induces an isomorphism of K-modules K ∼= Homk[s,s−1](K, k[s, s−1])
sending α to the homomorphism sending α to zero and β to s and sending β to the homo-
morphism sending α to s and β to zero. □

If X is any K-module, we write X∗ = Homk[s,s−1](X, k[s, s−1]). Then using the lemma,
we have

X∗ = Homk[s,s−1](X, k[s, s−1])

∼= Homk[s,s−1](K ⊗K X, k[s, s−1])

∼= HomK(X,Homk[s,s−1](K, k[s, s−1]))
∼= HomK(X,K),

and so we can just as well regard X∗ as HomK(X,K).

Proposition 2.10.3. There is a quasi-isomorphism of Q[s−1]-bimodules

Q[s−1]→ ΣQ[s−1]∗.

Proof. The standard monomials form a free basis for Q[s−1] as a K-module. We con-
struct a K-module homomorphism Q[s−1] → Σ|τ |Q[s−1]∗ as follows. It takes all standard
monomials to zero except 1 and τ1. It takes 1 to the element of Q[s−1]∗ taking value 1 on τ1
and zero on all other monomials, and it takes τ1 to the element of Q[s−1]∗ taking value 1 on
1 and value zero on all other standard monomials. It is easy to check that this is a map of
Q[s−1]-bimodules, and a quasi-isomorphism. □

Proposition 2.10.4. If X is a left Q[s−1]-module and Y is a right Q[s−1]-module, then
there is a natural isomorphism of K-modules

HomQ[s−1](X,HomK(Y,K)) ∼= HomK(Y ⊗Q[s−1] X,K).

If Y is a Q[s−1]-bimodule, this is an isomorphism of left Q[s−1]-modules.

Proof. This is standard. □

Corollary 2.10.5. If X is a homotopically projective Q[s−1]-module then we have a
quasi-isomorphism

HomQ[s−1](X,Q[s−1]) ≃ ΣHomK(X,K).

Proof. We have

HomQ[τ−1](X,Q[s−1]) ≃ HomQ[s−1](X,ΣQ[s−1]∗)

∼= ΣHomQ[s−1](X,HomK(Q[s−1], K))

∼= ΣHomK(Q[s−1]⊗Q[s−1] X,K)
∼= ΣHomK(X,K). □

Theorem 2.10.6. Let X and Y be Q[s−1]-modules, such that X homotopically projective,
and its image in Db(Q[s−1]) is compact. Then we have a duality

HomQ[s−1](X, Y )∗ ∼= HomQ[s−1](Y,Σ
−1X).
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Proof. Since X is homotopically projective with compact image in Db(Q[s−1]), we have
quasi-isomorphisms

HomQ[s−1](X, Y ) ≃ HomQ[s−1](X,Q[s−1])⊗Q[s−1] Y

and
HomQ[s−1](HomQ[s−1](X,Q[s−1]), Q[s−1]) ≃ X.

Combining the second of these with Corollary 2.10.5, we have

HomQ[s−1](X,Q[s−1])∗ ≃ Σ−1X.

Hence using Proposition 2.10.4, we have

HomQ[s−1](X, Y )∗ = HomK(HomQ[s−1](X, Y ), K)

≃ HomK(HomQ[s−1](X,Q[s−1])⊗Q[s−1] Y,K)

∼= HomQ[s−1](Y,HomK(HomQ[s−1](X,Q[s−1]), K))

≃ HomQ[s−1](Y,Σ
−1X). □

2.11. Some indecomposables

Let G be a finite group with dihedral Sylow 2-subgroups and a single conjugacy class
of involutions. Consider first A∞ modules over the A∞ algebra B = H∗BG. The quotient
B/(t2q+1) is formal, so ordinary modules over this ring pull back to A∞ modules over B. For
1 ⩽ i ⩽ 2q, let Xi be the module B/(η, ti) and X ′

i be the module B/(ξ, ti). Thus Xi has
periodic resolution

· · ·

(
ξ ti

0 η

)
−−−−→ B ⊕B

(
η ti

0 ξ

)
−−−−→ B ⊕B

(
ξ ti

0 η

)
−−−−→ B ⊕B (η,ti)−−−→ B → Xi → 0

and swapping η and ξ gives a resolution of X ′
i. In Db(B), the residue field k sits in a triangle

B/(t)→ B/(η, t)⊕B/(ξ, t)→ k.

Furthermore, B/(t) sits in a triangle

Σ−2B
t−→ B → B/(t).

So in Dsg(B), B/(t) is isomorphic to zero, and k decomposes as B/(η, t)⊕B/(ξ, t) = X1⊕X ′
1.

The minimal resolutions of Xi and X ′
i are as follows.

· · ·→Σ−9B ⊕ Σ−6−2iB

(
η ti

0 ξ

)
−−−−→ Σ−6B ⊕ Σ−3−2iB

(
ξ ti

0 η

)
−−−−→ Σ−3B ⊕ Σ−2iB

(η,ti)−−→ B → Xi → 0,

· · ·→Σ−9B ⊕ Σ−6−2iB

(
ξ ti

0 η

)
−−−−→ Σ−6B ⊕ Σ−3−2iB

(
η ti

0 ξ

)
−−−−→ Σ−3B ⊕ Σ−2iB

(ξ,ti)−−→ B → X ′
i → 0.

It follows that Σ2Xi
∼= X ′

i and Σ2X ′
i
∼= Xi in Dsg(B). The category Dsg(B) is periodic of

period four, with periodicity generator s = αβ + βα.

Let A = B! be the A∞ algebra H∗ΩBG
∧
2 . For 1 ⩽ i ⩽ 2q, let Yi = Ext∗B(k, Xi), the

indecomposable A-module with generators u and v satisfying αu = 0, αv = 0, and

mi+1(τ, . . . , τ, u) = v,

m2q+2−i(τ, . . . , τ, v) = (αβ)qu.
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Then in Dcsg(A), we have Σ2i−1Yi ∼= Y2q+1−i, so this gives q isomorphism classes up to shift,
all periodic with period four, for a total of 4q isomorphism classes. Note that the ring A
itself, as an object in Dcsg(A), decomposes as Y1 ⊕ Σ2Y1.

Here they are for q = 2, with the mj(τ, . . . , τ,−) represented by dotted lines:

Y1 :
◦ β

// ◦ α
// ◦ β

// ◦ α
// ◦ β

// ◦ α
// ◦ β

// ◦

◦
β

// ◦ α
// ◦

β
// ◦ α

// ◦

Y2 :
◦ β

// ◦ α
// ◦ β

// ◦ α
// ◦ β

// ◦ α
// ◦

◦
β

// ◦ α
// ◦

β
// ◦ α

// ◦

Removing a finite number of nodes from the beginning of one of these diagrams does not
alter the isomorphism class in Dcsg(A).

2.12. Classification of indecomposables

We continue to work in Case 2.7.1 with q ⩾ 1, and write B for the A∞ algebra H∗BG and
A = B! for the Koszul dual A∞ algebra H∗ΩBG

∧
2 . The way we classify the indecomposables

in Dcsg(A) ∼= Dsg(B) is via Morita equivalence, reducing to the classification theorem of [22].
Let Yi, 1 ⩽ i ⩽ 2q, be the modules described in the previous section. Then the regular

representation of A decomposes as Y1 ⊕ Σ2Y1.
Let E be the A∞ algebra Hom∗

A(Y1, Y1). This is the algebra with mi = 0 for i ̸= 2, 2q+ 1,
defined as follows. The multiplication m2 defines the k-algebra structure as k[s]⊗Λ(τ), with
generators s and τ satisfying |s| = (4, 2q + 1, 2q + 1), |τ | = (1, q, q). We have

m2q+1(s
i1τ, . . . , si2q+1τ) = si1+···+i2q+1+q,

and m2q+1 vanishes on all other tuples of monomials.
There is a right action of E on Y1 given by m2(u, τ) = v, m2q+1(v, τ, . . . , τ) = m2(u, s

q).
This makes Y1 into an A-E-bimodule, and Hom∗

A(Y1,−) induces an equivalence of derived
categories Db(A) ≃ Db(E) that sends A to E ⊕ Σ2E and Y1 to E. It therefore also induces
equivalences Dcsg(A) ≃ Dcsg(E) ≃ Db(E[s−1]). Theorem 1.1 of [22] (with a = 1, b = 2,
h = 2q + 1, ℓ = q) therefore gives the following.

Theorem 2.12.1. The triangulated categories

Dsg(B) ≃ Dcsg(A) ≃ Db(A[s−1]) ≃ Dcsg(E) ≃ Db(E[s−1])

satisfy the Krull–Schmidt theorem, and have 4q isomorphism classes of indecomposable ob-
jects, in q orbits of the shift functor Σ. The Auslander–Reiten quiver is isomorphic to
ZA2q/T

2, where T is the translation functor Σ−2. This is a cylinder of height 2q and cir-
cumference 2. The functor Σ switches the two ends of the cylinder. □
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Here is a picture of the Auslander–Reiten quiver in the case q = 4; the left and right side
should be identified to form a cylinder:

Y1

$$

Σ2Y1
$$

Y1

Y2

::

$$

Σ2Y2

::

$$

Σ2Y3

::

$$

Y3

::

$$

Σ2Y3

Σ2Y4

::

$$

Y4

::

$$

Σ3Y4

::

$$

ΣY4

::

$$

Σ3Y4

ΣY3

::

$$

Σ3Y3

::

$$

ΣY2

::

$$

Σ3Y2

::

$$

ΣY2

Σ3Y1

::

ΣY1

::

Remark 2.12.2. In contrast with Theorem 2.12.1, the category Dsg(A) ≃ Dcsg(B) has
infinite representation type. This can be seen by examining the quotient H∗ΩBG

∧
2/(τ, s

q).
By Theorem 2.8.10, this is the formal A∞ algebra

k⟨α, β|α2 = 0, β2 = 0, (αβ)q + (βα)q = 0⟩,
which has tame representation type (Ringel [195]). It would be interesting to know whether
Dsg(A) also has tame representation type.

2.13. Loops on BG
∧
2 : two classes of involutions

We now turn to Case 2.7.2. This is the case where G has a dihedral Sylow 2-subgroup D
of order 4q with q ⩾ 2, and two conjugacy classes of involution. In this case, G has exactly
one subgroup of index two, and it has two isomorphism classes of simple modules in the
principal block.

Remark 2.13.1. It follows from the work of Holm [141] that the derived equivalence
classes of algebras of dihedral type with two isomorphism classes of simple modules are
determined by two parameters, namely a positive integer k ⩾ 1 and a field element c ∈ {0, 1}.
For a block of a finite group with dihedral defect group of order 4q, the parameter k is equal
to q. Theorem 6.8 of Eisele [64] shows that the case c = 1 cannot occur for a block of a finite
group, so we have c = 0. Note that by Corollary 2.3 of Generalov and Romanova [116], the
cases c = 0 and c = 1 have different Hochschild cohomology rings, even in degree one.

By Holm [141] and Proposition 2.7.2, for the purposes of studying BG
∧
2 we may assume

that G = PGL(2, p) for a suitable prime p ≡ 1 (mod 4). In this case, the principal block B0

of kG belongs to Erdmann’s class D(2A). It has two simple modules k and M, whose Ext1

quiver is as follows:

k
e2
**

e3
%%

M
e1

hh .
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Using Remark 2.13.1, the relations are

e2e1 = 0, e23 = 0, (e1e2e3)
q = (e3e1e2)

q.

We put an internal grading on the basic algebra in this case by assigning degree (1
2
, 0) to e1

and e2 and (0, 1) to e3.
We have H∗BG = k[ξ, y, t]/(ξy) where

|ξ| = −(3, q + 1, q), |y| = −(1, 0, 1), |t| = −(2, q, q).

The restrictions to D are given by resD(ξ) = xt, resD(y) = y, and resD(t) = t. Massey
products are determined by

⟨ξ, y, . . . , ξ, y⟩ = ⟨y, ξ, . . . , y, ξ⟩ = tq+1.

The computation of Hochschild cohomology is again very similar, and we omit the details.
The A∞ structure on H∗BG again follows the same lines as in Theorem 2.4.2. This time,
we only replace x by ξ, and again adjust the powers of t. So we have

m2q(ξ
i, y, ξ, y, . . . , ξ, yj) = m2q(y

j, ξ, y, ξ, . . . , y, ξi) = ξi−1yj−1tq+1.

The value of mℓ(2q−2)+2 on the tuples at the end of the theorem is replaced by ξi−1yj−1tℓ(q+1).

Theorem 2.13.2. Let G be a finite group with dihedral Sylow 2-subgroups of order 4q
with q ⩾ 2 a power of two, and two classes of involutions, and let k be a field of characteristic
two. Then we have

H∗ΩBG
∧

2 = Λ(τ)⊗ k⟨α, Y | α2 = 0, Y 2 = 0⟩
with

|τ | = (1, q, q), |α| = (2, q + 1, q), |Y | = (0, 0, 1).

In homological degree 2n we have monomials (αY )n, (Y α)n, (αY )n−1α and (Y α)nY , and in
odd degrees we have τ times all of these.

Proof. The Eilenberg–Moore spectral sequence has as its E2 page

Ext∗,∗H∗BG(k, k) = Λ(τ)⊗ k⟨α, Y | α2 = 0, Y 2 = 0⟩
where the generators have degrees

|τ | = (−1, 2, q, q), |α| = (−1, 3, q + 1, q), |Y | = (−1, 1, 0, 1).

The Eisenbud operator for the relation ηy = 0 is s = αY +Y α in degree (−2, 4, q+ 1, q+ 1).
Again there is no room for non-zero differentials, and no ungrading problems, so E2 = E∞ =
H∗ΩBG

∧
2 . □

Lemma 2.13.3. For any A∞ structure on H∗BG that preserves internal degrees, we have
mn = 0 unless n− 2 is divisible by q − 2. In particular, for 2 < n < q we have mn = 0.

Proof. The proof is essentially the same as the proof of Lemma 2.4.1. □

Proposition 2.13.4. Let G be a group with a dihedral Sylow 2-subgroup D of order 4q
with q ⩾ 2 a power of two, and two conjugacy classes of involutions, and let k be a field of
characteristic two. The Hochschild cohomology HH∗H∗BG has generators s, t, τ , ξ, y, u, v
with

|s| = (−2, 4, q + 1, q + 1)
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|t| = −(0, 2, q, q) |τ | = (−1, 2, q, q)

|ξ| = −(0, 3, q + 1, q) |y| = −(0, 1, 0, 1)

|u| = −(1, 0, 0, 0) |v| = −(1, 0, 0, 0).

The relations are given by u2 = v2 = uv = τ 2 = 0, yu = ξv = 0, ξs = ys = 0, and us = vs.
The non-zero monomials and their degrees are as follows, with i1, i2 ⩾ 0, ε1, ε2 ∈ {0, 1}.
|si1ti2τ ε1uε2| = (−2i1 − ε1 − ε2, 4i1 − 2i2 + 2ε1, i1 + q(i1 − i2 + ε1), i1 + q(i1 − i2 + ε1)),

|si1ti2τ ε1vε2| = (−2i1 − ε1 − ε2, 4i1 − 2i2 + 2ε1, i1 + q(i1 − i2 + ε1), i1 + q(i1 − i2 + ε1)),

|ξi1ti2τ ε1uε2| = (−ε1 − ε2,−3i1 − 2i2 + 2ε1,−i1 + q(−i1 − i2 + ε1), q(−i1 − i2 + ε1))

|yi1ti2τ ε1vε2| = (−ε1 − ε2,−i1 − 2i2 + 2ε1, q(−i2 + ε1),−i1 + q(−i2 + ε1))

There is only one monomial in degree (−i, i− 2, 0, 0) with i > 2, namely

|sqtq+1| = (−q, q − 2, 0, 0).

Proof. As in Theorem 2.3.2, we use the approach of Theorems 1.11.5 and 1.12.2. Thus
HH∗H∗BG is the homology of the complex

(H∗BG⊗H∗ΩBG
∧

2 , ∂),

where the generators t, ξ and η are in homological degree zero, the generators τ , α and
Y are in homological degree −1, and the differential is given by ∂ = [e,−] where e =
t ⊗ τ + ξ ⊗ α + y ⊗ Y . Thus setting s = αY + Y α, we have ∂(t) = 0, ∂(ξ) = 0, ∂(y) = 0,
∂(α) = ys, ∂(τ) = 0, ∂(Y ) = ξs. The generators and relations for the homology of this
complex are therefore as given, with u = ξα and v = yY .

For the last statement, the computation is similar to the corresponding part of the proof
of Theorem 2.3.2. □

Theorem 2.13.5. The A∞ structure on H∗BG is given as follows. The mn are k[t]-
multilinear maps with mn = 0 for n not congruent to 2 modulo 2q − 2, and for i, j ⩾ 1

m2q(ξ
i, y, ξ, y, . . . , ξ, yj) = m2q(y

j, ξ, y, ξ, . . . , y, ξi) = ξi−1yj−1tq+1

where the arguments alternate between ξ and y, and the right hand side is zero unless either
i = 1 or j = 1; m2q is zero on all other tuples of monomials not involving t. The maps
mℓ(2q−2)+2 with ℓ > 1 similarly vanish on all tuples of monomials not involving t, except the
ones which look as above, but for some choice of indices in the tuple:

1 ⩽ e1 ⩽ e2 ⩽ · · · ⩽ eℓ−1 < eℓ−1 + (2q − 2) + 1 ⩽ eℓ−2 + 2(2q − 2) + 1

⩽ · · · ⩽ e1 + (ℓ− 1)(2q − 2) + 1 ⩽ ℓ(2q − 2) + 2.

the exponents on the terms are increased by one (or correspondingly more if an index is
repeated). The value on these tuples is ξi−1yj−1tℓ(q+1). Thus

mℓ(2q−2)+2(x
i+α1 , yα2 , xα3 , . . . , xαℓ(2q−2)+1 , yj+αℓ(2q−2)+2) = xi−1yj−1tℓ(q+1)

where each ασ is one plus the number of indices in the list above that are equal to σ.

Proof. This is similar to the proof of Theorem 2.4.2, but using Lemma 2.13.3 and
Proposition 2.13.4 instead of Lemma 2.4.1 and Theorem 2.3.2. □
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Lemma 2.13.6. For any A∞ structure on H∗ΩBG
∧
2 that preserves internal degrees, we

have mn = 0 unless n − 2 is divisible by q − 1. In particular, for 2 < n < q + 1 we have
mn = 0.

Proof. Looking at the degrees of the generators τ , α and β, for any monomial ζ
in H∗ΩBG

∧
2 we have a ≡ b (mod q − 1). So for any n-tuple (ζ1, . . . , ζn), the degree of

mn(ζ1, . . . , ζn) satisfies a ≡ b+ n− 2 (mod q − 1). So for this expression to be non-zero we
must have n− 2 ≡ 0 (mod q − 1). □

Proposition 2.13.7. The Hochschild cohomology HH∗H∗ΩBG
∧
2 has generators s, t, τ ,

ξ, η, u, and v in degrees

|s| = (0, 2, q + 1, q + 1),

|t| = −(1, 1, q, q), |τ | = (0, 1, q, q),

|ξ| = −(1, 2, q + 1, q), |y| = −(1, 1, 0, 1),

|u| = −(1, 0, 0, 0), |v| = −(1, 0, 0, 0).

The relations are given by ξη = 0, u2 = v2 = uv = τ 2 = 0, ηu = ξv = 0, ξs = ys = 0, and
us = vs. The non-zero monomials and their degrees are given as follows, with i1, i2 ⩾ 0,
ε1, ε2 ∈ {0, 1}.
|si1ti2τ ε1uε2| = (−i2 − ε2, 2i1 − i2 + ε1, (i1 − i2 + ε1)q + i1, (i1 − i2 + ε1)q + i1),

|si1ti2τ ε1vε2| = (−i2 − ε2, 2i1 − i2 + ε1, (i1 − i2 + ε1)q + i1, (i1 − i2 + ε1)q + i1),

|ξi1ti2τ ε1uε2| = (−i1 − i2 − ε2,−2i1 − i2 + ε1,−i1 + (−i1 − i2 + ε1)q, (−i1 − i2 + ε1)q),

|yi1ti2τ ε1vε2| = (−i1 − i2 − ε2,−i1 − i2 + ε1, (−i2 + ε1)q,−i1 + (−i2 + ε1)q).

Thus there is only one monomial with degree (−i, i− 2, 0, 0) with i > 2, namely

|sqtq+1| = (−q − 1, q − 1, 0, 0).

Proof. Again we use the approach of Theorem 1.12.2. This time, HH∗H∗ΩBG
∧
2 is the

homology of the complex
(H∗ΩBG

∧

2 ⊗H∗BG, ∂),

where the generators τ , α and Y of H∗ΩBG
∧
2 are in homological degree zero, the generators

t, ξ, y of H∗BG are in homological degree −1, and the differential is given by ∂ = [e,−]
where e = τ ⊗ t + α ⊗ ξ + Y ⊗ y. So the answer is the same as in Proposition 2.13.4 but
with the degrees changed.

For the last statement, the computation is again similar to the corresponding part of the
proof of Theorem 2.3.2. □

Theorem 2.13.8. In Case 2.7.2, the A∞ structure on H∗ΩBG
∧
2 is determined by

mq+1(τ, τ, . . . , τ) = sq,

where s = αY + Y α. This implies that

mq+1(f1(α, Y )τ, f2(α, Y )τ, . . . , fq+1(α, Y )τ) = f1(α, Y ) . . . fq+1(α, Y )sq,

and all mn for n > 2 on all other n-tuples of monomials give zero.
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Proof. This is similar to the proof of Theorem 2.8.10, but using Lemma 2.13.6 and
Proposition 2.13.7 in place of Lemma 2.8.8 and Proposition 2.8.9. □

Everything from this point on is very similar to Case 2.7.1, so we simply state the relevant
results.

Remark 2.13.9. In the spectral sequence HH∗H∗ΩBG
∧
2 ⇒ HH∗C∗ΩBG

∧
2 , we have

dq(τ) = sqtq. This implies that after inverting s we have

HH∗C∗BG[s−1] ∼= HH∗C∗ΩBG
∧

2 [s−1] ∼= k[s, s−1][u, v, t]/(u2, v2, uv, tq).

The differential graded model Q for C∗ΩBG
∧
2 is essentially the same as that described in

Section 2.9, except that β is replaced by Y in degree (0, 0, 1), and the element s = αY +Y α
is in degree (2, q + 1, q + 1). So the generators for Q are τ1, . . . , τq, α, Y , and the relations
between the τi are given by

∑
j+k=i

τjτk =


dτi 1 ⩽ i ⩽ q

sq i = q + 1

0 q + 2 ⩽ i ⩽ 2q.

The final theorem in Case 2.7.2 is as follows.

Theorem 2.13.10. The triangulated categories

Dsg(C
∗BG) ≃ Dcsg(C∗ΩBG

∧

2 ) ≃ Db(C∗ΩBG
∧

2 [s−1])

satisfy the Krull–Schmidt theorem, and have 2q isomorphism classes of indecomposable ob-
jects, in q orbits of the shift functor Σ. The Auslander–Reiten quiver is isomorphic to
ZA2q/T , where T is the translation functor Σ−2. This is a cylinder of height 2q and circum-
ference one. The functor Σ switches the two ends of the cylinder. □

Remark 2.13.11. Again, and for the same reason as in Remark 2.12.2, in contrast with
Theorem 2.13.10 the category Dsg(C∗ΩBG

∧
2 ) ≃ Dcsg(C

∗BG) has infinite representation type.
This time, the formal quotient is

H∗ΩBG
∧

2/(τ, s
q) = k⟨α, Y | α2 = Y 2 = (αY )q + (Y α)q = 0⟩.

2.14. A related symmetric tensor category

The first non-semisimple symmetric tensor category in characteristic two discussed in
Benson and Etingof [20] is the category denoted C3 and discussed in Section 5.2.3 of that
paper. This has a basic algebra that is of dihedral type D(2A) with c = 0 and k = 1 in
Erdmann’s classification [74], given by a quiver and relations

ka
99

b
**
M

c
hh

with relations
a2 = 0, bc = 0, cba = acb.

This is not equivalent to a block of the group algebra of any finite group, but it is quite
similar in behaviour.
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This algebra admits a Z × Z-grading with |a| = (1, 0), |b| = |c| = (0, 1
2
). The minimal

resolution over this algebra is the total complex of the following double complex:

...

��

PM

b̄
��

Pk
ā
oo

b̄c̄
��

· · ·

Pk

b̄c̄
��

Pk
ā

oo

b̄c̄
��

· · ·

PM

b̄
��

Pk
ā
oo

b̄c̄
��

Pk
ā

oo

b̄c̄
��

· · ·

Pk

b̄c̄
��

Pk
ā

oo

b̄c̄
��

Pk
ā

oo

b̄c̄
��

· · ·

PM

b̄
��

Pk
c̄ā
oo

b̄c̄
��

Pk
ā

oo

b̄c̄
��

Pk
ā

oo

b̄c̄
��

Pk
ā

oo

b̄c̄
��

· · ·

Pk Pk
ā

oo Pk
ā

oo Pk
ā

oo Pk
ā

oo · · ·
The cohomology is

H∗C3 = Ext∗C3
(k, k) ∼= k[x, y, z]/(xz + y2)

with |x| = (−1,−1, 0), |y| = (−2,−1,−1), |z| = (−3,−1,−2). The elements x, y and z are
given by shifts of degrees (−1, 0), (−1,−1) and (−1,−2) in this diagram, killing the copies
of PM and given by the identity map on all copies of Pk. These maps commute, not just up
to homotopy, and the relation xz + y2 = 0 holds at the level of cocycles. So this Ext algebra
is formal as an A∞ algebra. It is a Koszul algebra with Koszul dual

H∗C3
! ∼= k[η]⟨ξ, ζ⟩/(ξ2, ζ2, ξζ + ζξ + η2),

with η central, degrees |ξ| = (0, 1, 0), |η| = (1, 1, 1), |ζ| = (2, 1, 2), and again formal as an
A∞ algebra. As a module over k[η] it is free of rank four, with basis 1, ξ, ζ, ξζ.

Using Theorem 1.11.5, and setting u = xξ + zζ, we have

HH∗H∗C3 = k[x, y, z, η, u]/(xη2, zη2, u2),

with |x| = (0,−1,−1, 0), |y| = (0,−2,−1,−1), |z| = (0,−3,−1,−2), |η| = (−1, 2, 1, 1),
|u| = (−1, 0, 0, 0). Then HH∗C∗C3 is the same ring, but with the first two degrees added, so
|x| = (−1,−1, 0), |y| = (−2,−1,−1), |z| = (−3,−1,−2), |η| = (1, 1, 1), |u| = (−1, 0, 0).
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CHAPTER 3

The semidihedral case

3.1. Introduction

In this chapter, we study the A∞ algebras H∗BG and H∗ΩBG
∧
2 with coefficients in a

field k of characteristic two, in the case where G is a finite group with semidihedral Sylow
2-subgroup. These groups were classified by Alperin, Brauer and Gorenstein [1]. The simple
groups of this type are the projective special linear groups PSL(3, pm) with pm ≡ 3 (mod 4),
the projective special unitary groups PSU(3, pm) with pm ≡ 1 (mod 4), and the sporadic
Mathieu group M11 of order 7920.

We begin with the semidihedral group SD of order 8q itself. The group algebra in this
case was analysed by Bondarenko and Drozd [33], who gave a presentation as a quiver with
relations, but with a socle ambiguity. We resolve that ambiguity in Theorem 3.2.1, where
we prove that for suitable radical generators X and Y we have

kSD = ⟨X, Y | X2 = 0, Y 2 = X(Y X)2q−1 + (Y X)2q⟩.
We then recall the structure of H∗BSD and compute Ext∗H∗BSD(k, k), and show how the
Eilenberg–Moore sequence with this as E2 page converges to kSD.

There are four cases for the possible fusion in SD, leading to four types for cochains on
the classifying space of a finite group with this fusion. Probably the most interesting is the
case where G has no normal subgroup of index two. In that case, it turns out that the basic
algebra of the principal block admits a grading, that endows the cohomology with a second,
internal grading. Also, the cohomology rings of these groups have the structure of a complete
intersection, which allows for easy computation of the Hochschild cohomology HH∗H∗BG.
These facts together are what allows us to analyse the A∞ structure. The following theorem
is proved in Sections 3.6 to 3.11.

Theorem 3.1.1. Let G be a finite group with semidihedral Sylow 2-subgroups of order
8q (q ⩾ 2 a power of two), and with no normal subgroup of index two, and let k be a field
of characteristic two. Then the principal block B of kG has an essentially unique grading.
This makes the cohomology ring

H∗BG = k[x, y, z]/(x2y + z2)

doubly graded, with |x| = (−3,−q−1), |y| = (−4,−4q) and |z| = (−5,−3q−1). The cochain
algebra C∗BG is formal as an A∞ algebra. We have

H∗ΩBG
∧

2 = Λ(x̂, ŷ)⊗ k[ẑ]

with |x̂| = (2, q + 1), |ŷ| = (3, 4q) and |ẑ| = (4, 3q + 1). This is not formal, but the A∞
structure is given up to quasi-isomorphism by the k[ẑ]-multilinear maps

m3(x̂, ŷ, x̂) = ẑ2, m3(x̂, x̂ŷ, x̂) = x̂ẑ2, m3(ŷ, x̂, x̂ŷ) = m3(x̂ŷ, x̂, ŷ) = ŷẑ2,
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and all mi with i ⩾ 3 vanish on all other triples of monomials not involving ẑ.

As part of this computation, we also compute Hochschild cohomology.

Theorem 3.1.2. Let G be a finite group with semidihedral Sylow 2-subgroups of order 8q
(q ⩾ 2 a power of two), and with no normal subgroups of index two, and let k be a field of
characteristic two. Then

HH∗H∗BG = H∗BG[x̂, ẑ]/(x̂2 + yẑ2, x2ẑ2),

with

|x| = (0,−3,−q − 1), |y| = (0,−4,−4q), |z| = (0,−5,−3q − 1),

|x̂| = (−1, 3, q + 1), |ẑ| = (−1, 5, 3q + 1).

The algebra HH∗C∗BG = HH∗C∗ΩBG
∧
2 is the same, but with

|x| = (−3,−q − 1), |y| = (−4,−4q), |z| = (−5,−3q − 1),

|x̂| = (2, q + 1), |ẑ| = (4, 3q + 1).

It should be possible to classify the indecomposable modules in the singularity category
Dsg(C

∗BG) in this case, given that C∗BG is formal. After all, the singularity category of
graded modules over H∗BG, which is equivalent to the category of maximal Cohen–Macaulay
modules, is well understood. The obstruction is that we don’t know whether every object in
Dsg(C

∗BG) is equivalent to an object with zero differential. We make further comments on
this situation in Section 3.11.

The second case in which we are able to make essentially complete computations is where
the Sylow 2-subgroups of G are semidihedral, G has a normal subgroup K of index two with
generalised quaternion Sylow 2-subgroups, and K has no normal subgroups of index two.
This case is very similar to the case discussed above. In particular, again it turns out that
the basic algebra of the principal block admits a grading, that endows the cohomology with
a second, internal grading. The computations are similar, except that the degrees of various
elements have changed. Again the cochain algebra C∗BG is formal as an A∞ algebra. The
corresponding theorems can be found in Sections 3.12 to 3.14. And again, it should be
possible to classify the indecomposable modules in Dsg(C

∗BG) in this case, with the same
obstruction as in the previous case.

The remaining case is the one where the Sylow 2-subgroups of G are semidihedral, G has
a normal subgroup K of index two with dihedral Sylow 2-subgroups, and K has no normal
subgroups of index two. In this case, C∗BG is not formal, but we compute H∗(ΩBG

∧
2 )

(Theorem 3.15.3) using the method of squeezed resolutions from [16], since the Eilenberg–
Moore spectral sequence is difficult to ungrade directly. The information in this case remains
rather incomplete.

3.2. Semidihedral groups

The semidihedral group of order 8q, q ⩾ 2 a power of two, is given by the presentation

SD = ⟨g, h | g4q = 1, h2 = 1, hgh−1 = g2q−1⟩.
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Let k be a field of characteristic two. A modified version of the formulas of Bondarenko and
Drozd [33] describes the group algebra kSD as follows. Set

X = 1 + h, Y = (1 + h)

q/2−1∑
i=0

g4i+1 +

q∑
i=q/2+1

g4i−1

 + g2q + hg4q−1.

Theorem 3.2.1. With this choice for X and Y , kSD has the presentation

kSD = ⟨X, Y | X2 = 0, Y 2 = X(Y X)2q−1 + (Y X)2q⟩.

Proof. The elements X and Y are in J(kSD), are independent modulo J2(kSD), so
they generate kSD. We have X2 = (1 + h)2 = 0, so we must check the other relation. Set

u =

q/2−1∑
i=0

g4i+1 +

q∑
i=q/2+1

g4i−1

so that Y = (1+h)u+g2q+hg−1. Write N1, N2 and N4 for the norm elements for ⟨g⟩, ⟨g2⟩ and
⟨g4⟩ respectively. Then we have u2 = N4g

2, uh+ hu = N2gh, (1 + h)u(1 + h) = N2g(1 + h),
((1 + h)u)2 = 0, ug = gu, g2qh = hg2q, and u(g−1 + g2q+1) = 1 + g2q. So in the expression
for Y , the first and second terms commute, as do the second and third. So squaring Y , we
have square terms and cross terms between the first and third term:

Y 2 = 0 + 1 + g2q + (1 + h)uhg−1 + hg−1(1 + h)u

= 1 + g2q + uhg−1 + ug−1 +N2 + hg−1u+ g2q+1u

= 1 + g2q + u(g−1 + g2q+1) + (uh+ hu)g−1 +N2

= N2(1 + h).

On the other hand, we have

Y X = (1 + h)u(1 + h) + (g2q + hg−1)(1 + h)

= (N2g + g2q + g2q+1)(1 + h).

Since

(1 + h)(N2g + g2q + g2q+1)(1 + h) = (1 + h)g2q+1(1 + h)

= (g−1 + g2q+1)(1 + h),

by induction on m ⩾ 1 we have

(Y X)m = (N2g + g2q + g2q+1)(g−1 + g2q+1)m−1(1 + h).

We have N2g(g−1 + g2q+1) = 0, so this simplifies for m ⩾ 2 to

(Y X)m = (g2q + g2q+1)(g−1 + g2q+1)m−1(1 + h).

We also have (g−1 + g2q+1)2q−2 = (g−2 + g2)q−1 = g2N4, and so

(Y X)2q−1 = (g2q + g2q+1)g2N4(1 + h) = (g2 + g3)N4(1 + h),

and

X(Y X)2q−1 = (1 + h)(g2 + g3)N4(1 + h)

= (g2 + g3 + g2q−2 + g2q−3)N4(1 + h)
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= gN2(1 + h).

Similarly, we have

(g2q + g2q+1)(g−1 + g2q+1)2q−1 = (g2q + g2q+1)(g−1 + g2q+1)g2N4 = N1,

and so (Y X)2q = N1(1 + h). Thus

Y 2 = N2(1 + h)

= (gN2 +N1)(1 + h)

= X(Y X)2q−1 + (Y X)2q.

We thus have a surjective map from the algebra with the given presentation to kSD.
The relations X2 = 0 and Y 2 = X(Y X)2q−1 + (Y X)2q imply that Y 2X = XY 2 = 0, and
that the element Y 3 = (Y X)2q = (XY )2q is killed by X and Y , and is therefore in the
socle. Thus the 8q alternating words in X and Y , beginning with 1, X, Y , and ending with
(XY )2q = (Y X)2q span the algebra with the given presentation. The surjective map to kSD
is therefore an isomorphism, and these alternating words form a basis. □

Remark 3.2.2. The reference [33] uses a more complicated choice of generators, and gets
the same relations, but only modulo the socle element (XY )2q = (Y X)2q. It is erroneously
stated without proof in Section 15 of Benson and Carlson [17], and in the papers of Generalov
(page 530 of [95], page 164 of [99], page 279 of [100], and page 507 of [114]) that the group
algebra of the semidihedral group is as given here, but without the extra term (Y X)2q in the
expression for Y 2. See also Theorem VIII.3 of Erdmann [74], where these two possibilities are
given, labelled III.1 (d) and III.1 (d′), but without deciding which is true. In Corollary 7.2 of
Erdmann [71], and the tables at the back of [74] the incorrect choice is given. Theorem 3.2.1
shows that the correct answer is III.1 (d′), whereas these sources state it as III.1 (d). It is
shown in Proposition 5.1 of Bia lkowski, Erdmann, Hajduk, Skowroński and Yamagata [26]
that these two algebras are not isomorphic.

Here is a diagram of the case q = 2 (only accurate modulo the extra socle term in the
expression for X2).

k

k k

k k

k k

k k

k k

k k

k k

k

This algebra has tame representation type, and its modules were classified by Bondarenko
and Drozd [33], Crawley-Boevey [56, 57]. The cohomology ring was computed first by
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Munkholm [185] and later also by Evens and Priddy [80], and is as follows.

(3.2.3) H∗BSD = k[x, y, z, w]/(xy, y3, yz, z2 + x2w),

with |x| = |y| = −1, |z| = −3 and |w| = −4. Here, x and y are dual to X and Y .
This is not formal as an A∞ algebra (see Theorem 5.2.1). In the next section we compute

a few of the higher multiplications.

Remark 3.2.4. The subalgebra A1 of the Steenrod algebra generated by Sq1 and Sq2 is
closely related to kSD, with presentation

k⟨Sq1, Sq2 | (Sq1)2 = 0, (Sq2)2 = Sq1Sq2Sq1⟩.
This is like a (nonexistent) semidihedral group of order eight, but without the socle element in
the second relation. So it has type III.(d) rather than III.(d)′ in Erdmann’s classification [74].
The cohomology is the same ring as above (3.2.3), but with a different A∞ structure.

3.3. Resolutions for kSD

In this section, we write out the minimal resolution of k over kSD. Since it is no extra
work, we compute the minimal resolution of k over an algebra of type III.I(d) or III.I(d′) in
Erdmann’s classification [74] of algebras of semidihedral type in characteristic two, given by
the presentation

Λ = k⟨X, Y | X2 = 0, Y 2 = X(Y X)k−1 + λ(Y X)k⟩
with λ ∈ k and k ⩾ 2. The case of the group algebra kSD of a semidihedral group of order
8q with q a power of two is then recovered by setting λ = 1 and k = 2q.

The minimal resolution of k is the total complex of the following double complex, where
we have written v for Ȳ (X̄Ȳ )k−1 and w for (Ȳ X̄)k−1(1 + λȲ ).

Λ

Ȳ

��

Λ
Ȳ

oo

w

��

· · ·oo

Λ

v

��

Λ
X̄

oo

v

��

· · ·oo

Λ

Ȳ

��

Λ
Ȳ

oo

w

��

Λ
Ȳ X̄
oo

v

��

Λ
X̄

oo

v

��

· · ·oo

Λ

v

��

Λ
X̄

oo

v

��

Λ
X̄

oo

v

��

Λ
X̄

oo

v

��

· · ·oo

Λ

Ȳ

��

Λ
Ȳ

oo

w

��

Λ
Ȳ X̄
oo

v

��

Λ
X̄

oo

v

��

Λ
X̄

oo

v

��

Λ
X̄

oo

v

��

· · ·oo

Λ Λ
X̄

oo Λ
X̄

oo Λ
X̄

oo Λ
X̄

oo Λ
X̄

oo · · ·oo
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Here X̄ and Ȳ are the elements of EndΛ(Λ) ∼= Λop corresponding to X and Y in Λ.
The cohomology element x is represented by left shift composed with

...

(X̄Ȳ )k−2X̄(1 + λȲ ) Ȳ (1 + λȲ ) · · ·

1 1

(X̄Ȳ )k−2X̄(1 + λȲ ) Ȳ (1 + λȲ ) 1 1

1 1 1 1 · · ·

The element y is represented by a map which is zero on most of the copies of Λ, and non-zero
on the upper boundary:

•

1

��

· · ·
1

oo

•

(Ȳ X̄)k−1

��
•

1

��

•
1

oo •
X̄

oo

•

(Ȳ X̄)k−1

��
•

1

��

•
1

oo •
X̄

oo

•

The element z is represented by a shift two to the left and one down, composed with

(X̄Ȳ )k−1 Ȳ + λ(X̄Ȳ )k−1X̄ · · ·

1 1

(X̄Ȳ )k−1 Ȳ + λ(X̄Ȳ )k−1X̄ 1 1

1 1 1 1 · · ·

Finally, the element w is represented by a shift two to the left and two down. This strictly
commutes with x, y and z.

In particular, we can read off from the structure and minimal resolution of kSD that part
of the A∞ structure on H∗BSD is given over the central subalgebra k[w] by

m4(y, x, y, z) = w, m2k−1(x, y, x, . . . , y, x) = y2.

3.4. Loops on BSD
∧
2

Since SD is a finite 2-group, we have ΩBSD
∧
2 ≃ SD. So we should expect to see the

Eilenberg–Moore spectral sequence converging to kSD.
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Theorem 3.4.1. We have

Ext∗,∗H∗BSD(k, k) = Λ(ŵ)⊗ k⟨x̂, ŷ, ẑ, η | x̂2 = ŷ2 = 0, x̂ẑ = ẑx̂, ηŷ = ŷη⟩
where |x̂| = (−1, 1), |ŷ| = (−1, 1), |ẑ| = (−1, 3), |ŵ| = (−1, 4), |η| = (−2, 3), and η is the
Massey triple product ⟨ŷ, ŷ, ŷ⟩. The Poincaré series is

∞∑
i,j=0

tiuj dimk Ext
i,−j
H∗BSD(k, k) =

(1 + tu4)(1 + tu)

1− tu− tu3 − t2u3
.

Note that Exti,−j is homologically indexed (−i, j), so that the coefficient of tiuj is the dimen-
sion of the space of elements of degree (−i, j).

Proof. The element w is a regular element, and its appearance in the relations is in
terms that are at least cubic, so we have an algebra isomorphism

Ext∗,∗H∗BSD(k, k) ∼= Λ(ŵ)⊗ Ext∗,∗R (k, k).

where
R = H∗BSD/(w) = k[x, y, z]/(xy, y3, yz, z2).

This algebra R is the fibre product of k[x, z]/(z2)→ k and k[y]/(y3)→ k. So by Theorem A
of Moore [182], Ext∗,∗R (k, k) is the coproduct over k of the algebras

Ext∗,∗k[x,z]/(z2)(k, k) = k[x̂, ẑ]/(x̂2)

Ext∗,∗k[y]/(y3)(k, k) = k[ŷ, η]/(ŷ2),

where η is the Massey triple product ⟨ŷ, ŷ, ŷ⟩. So we have

Ext∗,∗R (k, k) = k⟨x̂, ŷ, ẑ, η | x̂2 = ŷ2 = 0, x̂ẑ = ẑx̂, ηŷ = ŷη⟩
which has Poincaré series

∞∑
i,j=0

tiuj dimk Ext
i,−j
R (k, k) =

1 + tu

1− tu− tu3 − t2u3
.

Finally, tensoring with Λ(ŵ) multiplies the Poincaré series by (1 + tu4). □

The differentials in the Eilenberg–Moore spectral sequence

Ext∗,∗H∗BSD(k, k)⇒ kSD

are given by d2(ẑ) = ηx̂+ x̂η,

E3 = Λ(ŵ)⊗ k[η]⊗ k⟨x̂, ŷ | x̂2 = ŷ2 = 0⟩,
then d3(ŵ) = η2,

E4 = E4q−2 = Λ(η)⊗ k⟨x̂, ŷ | x̂2 = ŷ2 = 0⟩,
and finally d4q−2(η) = (x̂ŷ)2q + (ŷx̂)2q. So

E4q−1 = E∞ = k⟨x̂, ŷ | x̂2 = ŷ2 = 0, (x̂ŷ)2q = (ŷx̂)2q⟩,
which is the associated graded of the group algebra kSD.
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3.5. Groups with semidihedral Sylow 2-subgroups

Groups with semidihedral Sylow 2-subgroups were classified by Alperin, Brauer and
Gorenstein [1], see also Wong [212,213]. By Section VIII of Brauer [37], or Proposition 1.1
of [1], there are four possibilities for the 2-fusion in a finite group G with semidihedral Sylow
2-subgroups, which are distinguished by the numbers of conjugacy classes of involutions and
of elements of order four. By Theorem 1.1 of Craven and Glesser [54], these represent the
only possible fusion systems on semidihedral 2-groups.

To describe these, we first describe some particular finite groups with semidihedral Sylow
2-subgroups. First, we describe the groups SL±(2, pm) and SU±(2, pm). These are the
subgroups of GL(2, pm), respectively GU(2, pm), consisting of elements of determinant ±1.
If pm ≡ 3 (mod 4) then SL±(2, pm) has semidihedral Sylow 2-subgroups, while if pm ≡ 1
(mod 4) then SU±(2, pm) has semidihedral Sylow 2-subgroups. We remark that SL(2, pm)
and SU(2, pm) are isomorphic.

Next, we describe the group denoted PGL∗(2, p2m) in Section II.2 of [1]. For p odd,
the group PΓL(2, p2m) is a semidirect product of PGL(2, p2m) by a cyclic group of order
2m acting as Galois automorphisms. The group PGL(2, p2m) has PSL(2, p2m) as a normal
subgroup of index two. Thus PΓL(2, p2m) contains three distinct subgroups, each having
PSL(2, p2m) as a subgroup of index two. One of these is PGL(2, p2m), one is a semidirect
product of PSL(2, p2m) by the Galois automorphism of order two, and the third one is the
group we denote by PGL∗(2, p2m). For example, PGL∗(2, 9) is isomorphic to the stabiliser
of a point in the Mathieu group M11. It is proved in Lemma 2.3 of Gorenstein [127] that
the Sylow 2-subgroups of PGL∗(2, p2m) are semidihedral.

Case 3.5.1. G has one class of involutions and one class of elements of order four. In
this case, G has no normal subgroup of index two. The group G/O(G) has a simple normal
subgroup with odd index, isomorphic to PSL(3, pm) with pm ≡ 3 (mod 4), PSU(3, pm)
with pm ≡ 1 (mod 4), or the Mathieu group M11. The principal block of kG has three
isomorphism classes of simple modules.

Case 3.5.2. G has two classes of involutions and one class of elements of order four.
In this case, G has a normal subgroup K of index two with generalised quaternion Sylow
2-subgroups, and K has no normal subgroups of index two. The group G/O(G) is either
isomorphic to a subroup of ΓL(2, pm) containing SL±(2, pm) with odd index, for some prime
power pm ≡ 3 (mod 4), or it is isomorphic to a subgroup of ΓU(2, pm) containing SU±(2, pm)
with odd index, for some prime power pm ≡ 1 (mod 4). The principal block of kG has two
isomorphism classes of simple modules.

Case 3.5.3. G has one class of involutions and two classes of elements of order four. In
this case, G a normal subgroup K of index two with dihedral Sylow 2-subgroups, and K
has no normal subgroups of index two. The group G/O(G) is isomorphic to a subgroup of
PΓL(2, p2m) containing PGL∗(2, p2m) with odd index, for some odd prime p and positive
integer m. The principal block of kG has two isomorphism classes of simple modules.

Case 3.5.4. G has two classes of involutions and two classes of elements of order four. In
this case, O(G) is a normal complement to a Sylow 2-subgroup SD, so that G/O(G) ∼= SD
and H∗BG ∼= H∗BSD. The principal block of kG is isomorphic to kSD, and has one
isomorphism class of simple modules, namely the trivial module.
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Representation theory and cohomology of groups with semidihedral Sylow 2-subgroups,
and more generally, blocks with semidihedral defect groups and finite dimensional alge-
bras of semidihedral type, are discussed in Erdmann [67, 71, 73–75, 77], as well as Ben-
son and Carlson [17], Bogdanic [29, 30], Brauer [37] (Section VIII), Carlson, Mazza and
Thévenaz [47], Chin [50], Evens and Priddy [80], Generalov et al. [4, 87, 89, 91–93, 95,
99–106,114,119–121], Hayami [136,137], Holm [141,142], Holm and Zimmermann [145],
Kawai and Sasaki [153], Koshitani, Lassueur, and Sambale [162], Martino and Priddy [179],
Müller [183], Olsson [189], Sasaki [198], Taillefer [210], Zhou and Zimmermann [214]. The
homology of ΩBG

∧
2 was computed by Levi [167].

Proposition 3.5.1. Suppose that G has a semidihedral Sylow 2-subgroup SD. Then the
homotopy type of BG

∧
2 is determined by |SD| and the number of classes of involutions and

of elements of order four. In particular, if G has no normal subgroup of index two, then the
homotopy type of BG

∧
2 is determined by |SD|.

Proof. This follows from Theorem 1.7.5 and the main theorem of [1] described above.
□

We end this section with a table of the various cases of algebras of semidihedral type in
characteristic two. Note that the definition of semidihedral type in [74] is slightly broader
than in [71,73]. In each case except SD(3K), there is a positive integer parameter k, which
in our context is equal to 2q, and in some cases there are also further parameters. In the
case of SD(3K) there are three integer parameters a ⩾ b ⩾ c, a ⩾ 2.

Erdmann [74] [71,73] Case Group H∗ HH∗

III.I(d) — — [95] [99]
III.I(d′) 3.5.4 semidihedral [80,95,185] [114,143]
SD(2A)1 [71] II 3.5.3 SU±(2, pm) [50,91]

pm ≡ 1 (mod 4)
SD(2A)2 [71] III 3.5.2 PGL∗(2, p2m), [50,91]
SD(2B)1 [71] IV 3.5.2 — [B1(3M10)] [4] [120]
SD(2B)2 [71] I 3.5.3 SL±(2, pm) [50,102] [103,104,106]

pm ≡ 3 (mod 4)
SD(2B)3 [71] V 3.5.2 — [4]
SD(3A)1 [73] II, §5 3.5.1 PSU(3, pm), [87] [143]

pm ≡ 1 (mod 4)
SD(3A)2 [73] VII, §3 — — [91]
SD(3B)1 [73] IV, §7 — [92]
SD(3B)2 [73] I, §7 — [93]
SD(3C)1 [73] VI, §3 — —
SD(3C)2 (excluded) — —
SD(3D) [73] III, §6 3.5.1 PSL(3, pm), pm ≡ 3 [87] [143]

(mod 4), M11

SD(3F) [73] VIII, §10 — —
SD(3H) [73] IX, §10 —
SD(3K) [73] V, §9 — — [89] [121]
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Remarks 3.5.2. The types with three simple modules are all derived equivalent to an
algebra in the family SD(3K) with uniquely determined values of a ⩾ b ⩾ c, by Theorem 4.8
of Holm [142]. For blocks with semidihedral defect group of order 8q and three simple
modules, these parameters are 2q ⩾ 2 ⩾ 1, so they are all derived equivalent.

Note that by Rickard [192,193], for self-injective algebras, a derived equivalence induces
a stable equivalence of Morita type. By a theorem of Happel (see for example Proposi-
tion 2.21.9 of Linckelmann [176]), for symmetric algebras, derived equivalence also induces
an isomorphism in Hochschild cohomology.

Unfortunately, there are are some copying errors in [73, 74], and an incorrect correc-
tion in [53]. It is erroneously reported in statement (11.15) (c) of [73] (incorrectly labelled
(11.5) (c)) that the principal block of M11 belongs to family IV. In Table 1 of [73], for family
IV, P2 should be “as in I” and not “as in III”; the conditions for it to be a block should be
t = 1 and k = 2n−2, not the other way round. In the tables at the back of [74], the principal
blocks of PSL(3, pm) with pm ≡ 3 (mod 4) are incorrectly assigned to SD(3B)1 rather than
SD(3D). In case SD(3K), the parameters should be a ⩾ b ⩾ c ⩾ 1, a ⩾ 2 rather than
a ⩾ b ⩾ c ⩾ 2. On pages 143–144 of [53], the correction there incorrectly states that both
M11 and PSL(3, pm) with pm ≡ 3 (mod 4) belong to family SD(3B)1, and that there is only
one simple module with a non-trivial self-extension; in fact, the family is SD(3D), and there
are two such simple modules.

3.6. One class of involutions, one of order four

We begin with Case 3.5.1, where G has one class of involutions, and one class of elements
of order four. In this case, G has no normal subgroup of index two, and Proposition 2.2
of [1] implies that G/O(G) contains a simple normal subgroup with odd index. By the
main theorem of that paper, the simple groups with semidihedral Sylow 2-subgroups are as
follows.

(a) The projective special linear groups PSL(3, pm) with pm ≡ 3 (mod 4).

(b) The projective special unitary groups PSU(3, pm) with pm ≡ 1 (mod 4).

(c) The sporadic Mathieu group M11 of order 7920.

Let G be a finite group with semidihedral Sylow 2-subgroups of order 8q and no normal
subgroups of index two, and let k be a field of characteristic two. Let B be the principal
block of kG. The structure of the projective indecomposable B-modules was determined by
Erdmann [67].

Remark 3.6.1. The one case not treated in [67] is G = M11, which was treated in the
thesis of Schneider [199], and also in unpublished work of Alperin.

The principal blocks of M11 and PSL(3, pm) with pm ≡ 3 (mod 4) are in family III
of [73], which is SD(3D) of [74]. The principal blocks PSU(3, pm) with pm ≡ 1 (mod 4)
are in family II of [73], which is SD(3A)1 of [74].

Remark 3.6.2. Fortunately, Proposition 3.5.1 allows us to do the analysis for just one
group for each size 8q of semidihedral Sylow 2-subgroup. We choose to examine PSL(3, pm),
where the 2-part of pm + 1 is 2q.
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Let us look first at the cases of PSL(3, 3) and M11, whose principal blocks are Morita
equivalent. There are three isomorphism classes of simple B-modules, all self-dual, denoted
k, M and N. These have dimensions 1, 12 and 26 in the case of PSL(3, 3), and dimensions
1, 44 and 10 in the case of M11. Their projective covers are given by the following diagrams.

k

N M

k k

M N

k

M

k

N M

k

M

N

k N

M N

k N

N

Note that N is periodic with period four, while k and M are not periodic. The quiver for B
is

(3.6.3) Nd 77

c
((
k

b
**

a
ii M

e
hh f

hh

with relations

ef = 0, be = 0, fb = 0, da = aeb, cd = ebc, f 2 = bcae, ac = d3.

This gives a presentation for the basic algebra of B. This corresponds to the case discussed
in Theorem VIII.9.12 (with k = 1, s = 4, t = 2) and Proposition IX.6.6 (ii) (with n = 4) of
Erdmann [74],

The unique self-dual grading (up to scalar multiples) on this quiver algebra is given by

|a| = |c| = 3
2
, |b| = |e| = 1

2
, |d| = 1, |f | = 2.

We choose not to double these degrees, as the choice above makes the degrees in H∗BG ∼=
Ext∗B(k, k) into integers with no common factor.

The principal blocks of the simple groups PSL(3, pm) with pm ≡ 3 (mod 4) are very
similar, see Erdmann [67]. The only difference is that if the 2-part of pm + 1 is 4q (with
q a power of two) then there are more repetitions of the simple module N in its projective
cover. The case treated above is q = 2, and in the general case there are 2q−1 copies of N in
the unserial module on the right hand side of the diagram instead of three. So the relation
ac = d3 is replaced by ac = d2q−1. The Morita type of the principal block only depends on
q, and not on pm. So for example, the principal blocks of M11, PSL(3, 3), PSL(3, 11) and
PSL(3, 19) are Morita equivalent, with Sylow 2-subgroups of order 16, and the principal
blocks of PSL(3, 7) and PSL(3, 23) and PSL(3, 71) are all Morita equivalent, with Sylow
2-subgroups of order 32. The grading also needs to be adjusted, as follows.

Theorem 3.6.4. Let G = PSL(3, pm), where the 2-part of pm + 1 is 2q (q ⩾ 2), or
G = M11 with q = 2, and let k be a field of characteristic two. Then the basic algebra of the
principal block is given by the quiver (3.6.3), with relations

ef = 0, be = 0, fb = 0, da = aeb, cd = ebc, f 2 = bcae, ac = d2q−1.

The unique self dual grading, up to scalar multiples, on this algebra is given by

|a| = |c| = q − 1
2
, |b| = |e| = 1

2
, |d| = 1, |f | = q.
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Proof. The quiver with relations follows from the work of Erdmann [67]. Given the
relations, the uniqueness of the grading up to scalars is easy linear algebra. Self duality just
means that |a| = |c| and |b| = |e|. □

Remark 3.6.5. The given relations imply that

f 3 = bcaef = 0,

cac = cd2q−1 = ebcd2q−2 = ebebcd2q−3 = 0,

aca = d2q−1a = d2q−2aeb = d2q−3aebeb = 0,

d2q+1 = acd2 = aebcd = aebebc = 0.

Let α, β, γ, δ, ε, ϕ in Ext1B(k⊕M⊕ N, k⊕M⊕ N) be the elements dual to a, b, c, d, e,
f . These have degrees

|α| = |γ| = (−1,−q + 1
2
), |β| = |ε| = (−1,−1

2
), |δ| = (−1,−1), |ϕ| = (−1,−q),

We can compute minimal resolutions of the simple modules as in [17], and the result is
as follows when q = 2. For larger values of q, the only difference is that the chains of copies
of N in the resolutions of k and N are longer.

Ω(k) =

α β

N M

k k

M N

k

Ω2(k) =

δα

N

N ϕβ

N k M

N M

Ω3(k) =

εϕβ

k

ϕ2β N

M k

k M

N

Ω4(k) =

βεϕβ

M

ϕ3β k

k M N

M k

Ω5(k) =

εϕ3β ϕβεϕβ

k M

ϕ4β N M

N M k

k k M

M N

k

Ω6(k) =

(εϕβ)2

k

βεϕ3β N

N M k

N ϕ5β k M

N k M N

N M k

Ω7(k) =

ε(ϕβε)2

M

εϕ5β βεϕ3β k

k M N

ϕ6β N M k

M k

k M

N
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Ω(M) =

ε

k

N ϕ

k M

M

Ω2(M) =

βε εϕ

M k

k ϕ2 N

N M k

k M

Ω3(M) =

ϕβε εϕ2 βεϕ

M k M

M N ϕ3 k

k M N

M k

Ω4(M) =

εϕβε

k

N βεϕ2 εϕ3 ϕβεϕ

k M k M

M k ϕ4 N M

N M k

k M

Ω(N) =

γ δ

k N

M N

k N

N

Ω2(N) =

αγ γδ

N k

k M

M N k

k N

Ω3(N) =

αγδ

N

k N

M N

k N

Ω4(N) = N

For all values of q, the minimal resolution of k takes the form

· · · → PM⊕Pk⊕PM⊕Pk

 c̄b̄ 0 0 0
f̄ ē 0 0
0 ēāc̄ f̄ 0
0 0 āc̄b̄ b̄


−−−−−−−−−−→ PN⊕PM⊕PM⊕Pk

 d̄ 0 0 0
ēā f̄ 0 0
0 āc̄b̄ b̄ 0
0 0 f̄ ē


−−−−−−−−−→ PN⊕PM⊕Pk⊕PM(

ā b̄ 0 0
0 f̄ ē 0
0 0 ēāc̄ f̄

)
−−−−−−−−→ Pk ⊕ PM ⊕ PM

(
ēāc̄ f̄ 0
0 āc̄b̄ b̄

)
−−−−−−−−→ PM ⊕ Pk

(
c̄b̄ 0
f̄ ē

)
−−−−−→ PN ⊕ PM

(
d̄ 0
ēā f̄

)
−−−−−→ PN ⊕ PM

(ā b̄)−−−→ Pk

This is the total complex of the following double complex:

(3.6.6)

PN

ā
��

PN
d̄oo

ēā
��

Pk

ēāc̄
��

PM
b̄oo

f̄
��

· · ·

PN

ā
��

PN
d̄oo

ēā
��

PM
c̄b̄oo

f̄
��

PM
f̄
oo

āc̄b̄
��

Pk

ēāc̄
��

PM
b̄oo

f̄
��

PM
f̄
oo

āc̄b̄
��

Pk
ēoo

ēāc̄
��

· · ·

PN

ā
��

PN
d̄oo

ēā
��

PM
c̄b̄oo

f̄
��

PM
f̄
oo

āc̄b̄
��

Pk
ēoo

ēāc̄
��

PM
b̄oo

f̄
��

Pk PM
b̄oo PM

f̄
oo Pk

ēoo PM
b̄oo PM

f̄
oo · · ·
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Here, ā is the element of HomB(PN, Pk) opposite to a, and so on, so that the barred variables
satisfy the reverse of the relations in the quiver.

The extensions α, . . . , ϕ satisfy the following relations, which are easy to verify using the
grading and the minimal resolutions above:

αε = 0, βγ = 0, γα = 0, δ2 = 0, εβ = 0,

βεϕ2 = ϕ2βε, εϕ2β = 0, αγδ = δαγ, γδα = 0,

m3(α, ε, β) = δα, m3(β, γ, α) = 0, m3(γ, α, ε) = 0,(3.6.7)

m2q−1(δ, . . . , δ) = αγ, m3(ε, β, γ) = γδ, m3(γ, δα, ε) = εϕ2,

m3(β, γδ, α) = ϕ2β, m4(β, γ, α, ε) = ϕ2,

m4(γ, α, ε, ϕ
2β) = m4(εϕ

2, β, γ, α).

Remark 3.6.8. The relation γδα = 0 follows from the remaining relations in two ways:

γδα = γm3(α, ε, β) = m3(γ, α, ε)β = 0,

γδα = m3(ε, β, γ)α = εm3(β, γ, α) = 0.

The last relation describes the unlabelled copy of k at the top of the left end of Ω4(k). When
postmultiplied by ε or premultiplied by β, this relation follows from the remaining relations:

m4(γ, α, ε, ϕ
2β)ε = m4(γ, α, ε, ϕ

2βε) = m4(γ, α, ε, βεϕ
2) = m3(γ,m3(α, ε, β), εϕ2)

= m3(γ, δα, εϕ
2) = m3(γ, δα, ε)ϕ

2 = εϕ4

= εϕ2m4(β, γ, α, ε) = m4(εϕ
2, β, γ, α)ε,

βm4(γ, α, ε, ϕ
2β) = m4(β, γ, α, ε)ϕ

2β = ϕ4β = ϕ2m3(β, γδ, α)

= m3(ϕ
2β, γδ, α) = m3(ϕ

2β,m3(ε, β, γ), α) = m4(ϕ
2βε, β, γ, α)

= m4(βεϕ
2, β, γ, α) = βm4(εϕ

2, β, γ, α).

Theorem 3.6.9. Let G = PSL(3, pm), where the 2-part of pm + 1 is 2q (q ⩾ 2), or
G = M11 with q = 2. The cohomology ring H∗BG = Ext∗B(k, k) is generated by the commuting
elements

x = εϕβ, y = m4(γ, α, ε, ϕ
2β) = m4(εϕ

2, β, γ, α), z = εϕ3β,

subject to one relation:

H∗BG = Ext∗B(k, k) = k[x, y, z]/(x2y + z2)

where |x| = (−3,−q − 1), |y| = (−4,−4q) and |z| = (−5,−3q − 1).

Proof. The structure of the cohomology ring of M11 was computed in [17], and is as
above, if we ignore the internal degrees. The principal blocks of PSL(3, pm) with pm ≡ 3
(mod 8) are Morita equivalent to that of M11, and therefore give the same answer. The
analogous computation with possibly larger values of q gives exactly the same answer for
PSL(3, pm) with pm ≡ 3 (mod 4). We show that the given elements satisfy these relations,
using the relations (3.6.7). We begin by observing (as in Remark 3.6.8) that

βy = βm4(γ, α, ε, ϕ
2β) = m4(β, γ, α, ε)ϕ

2β = ϕ4β,

yε = m4(εϕ
2, β, γ, α)ε = εϕ2m4(β, γ, α, ε) = εϕ4,
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and so

x2y = (εϕβεϕ)(βy) = (εϕβεϕ)(ϕ4β) = εϕ(βεϕ2)ϕ3β = εϕ(ϕ2βε)ϕ3β = (εϕ3β)(εϕ3β) = z2.

Commutativity is automatic for elements of H∗BG, but also follows from the relations above:

yx = (yε)(ϕβ) = (εϕ4)(ϕβ) = (εϕ)(ϕ4β) = (εϕ)(βy) = xy

zx = (εϕ3β)(εϕβ) = (εϕ)(ϕ2βε)(ϕβ) = (εϕ)(βεϕ2)(ϕβ) = (εϕβ)(εϕ3β) = xz,

zy = (εϕ3)(βy) = (εϕ3)(ϕ4β) = (εϕ4)(ϕ3β) = (yε)(ϕ3β) = yz. □

Remark 3.6.10. Since the homotopy type of BG
∧
2 only depends on the Sylow 2-subgroup

and the fusion, the cohomology ring is the same for G = PSU(3, pm) where the 2-part of
pm − 1 is 2q (q ⩾ 2).

It would be possible, but not necessary for the currrent purposes, to do a similar analysis
for PSU(3, pm) to that contained in this section. The quiver in that case is as follows

N
c
((
k

a
ii

b
**
M

e
hh

with relations

be = 0, aca = a(ebca)2q−1eb, cac = (ebca)2q−1ebc, acaca = 0, cacac = 0.

This admits a self-dual grading given by |a| = |c| = q, |b| = |e| = 1− q. The problem here,
though, is that the method of [17] for computing with projective resolutions doesn’t really
apply, and this makes the details of the computations quite tedious.

3.7. Ext and Hochschild cohomology over H∗BG

Throughout this section, we are still working in Case 3.5.1. So we let G be a finite
group with a semidihedral Sylow 2-subgroup of order 8q and no normal subgroup of index
two, and k a field of characteristic two. Our next task is to compute Ext∗∗H∗BG(k, k) and
HH∗H∗BG by applying Theorems 1.11.2 and 1.11.5. Recall that by Theorem 3.6.9 and
Remark 3.6.10 we have H∗BG = k[x, y, z]/(x2y+z2) with |x| = (−3,−q−1), |y| = (−4,−4q)
and |z| = (−5,−3q − 1). Let f = x2y + z2 ∈ k[x, y, z]. Then we have

∂f

∂x
= 0,

∂f

∂y
= x2,

∂f

∂z
= 0,

∂(2)f

∂x2
= y,

∂(2)f

∂y2
= 0,

∂(2)f

∂z2
= 1,

∂2f

∂x∂y
= 0,

∂2f

∂x∂z
= 0,

∂2f

∂y∂z
= 0.

Plugging these into Definition 1.11.1, for the algebra Cliff(q) we have variables x̂, ŷ, ẑ dual
to x, y and z and s dual to f . These have degrees |x̂| = (−1, 3, q + 1), |ŷ| = (−1, 4, 4q),
|ẑ| = (−1, 5, 3q + 1), |s| = (−2, 10, 6q + 2). Here, the first is the Ext degree, the second
comes from the homological degree in H∗BG, and the third is the internal degree coming
from the grading on the algebra B. So the degrees of the generators of H∗BG come out as
|x| = (0,−3,−q − 1), |y| = (0,−4,−4q) and |z| = (0,−5,−3q − 1). Then s is central, and
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we have relations x̂2 = ys, ŷ2 = 0, ẑ2 = s, x̂ŷ + ŷx̂ = 0, x̂ẑ + ẑx̂ = 0, ŷẑ + ẑŷ = 0. The
relation ẑ2 = s makes s a redundant generator, and we end up with

(3.7.1) Cliff(q) = H∗BG[x̂, ŷ, ẑ]/(x̂2 + yẑ2, ŷ2).

The differential is given by

(3.7.2) dx̂ = 0, dŷ = x2ẑ2, dẑ = 0.

Theorem 3.7.3. We have

Ext∗∗H∗BG(k, k) = Λ(x̂, ŷ)⊗ k[ẑ].

with degrees given by |x̂| = (−1, 3, q + 1), |ŷ| = (−1, 4, 4q) and |ẑ| = (−1, 5, 3q + 1).

Proof. This follows from Theorem 1.11.2 and the computation (3.7.1) of Cliff(q). □

Theorem 3.7.4. We have

H∗ΩBG
∧

2 = Λ(x̂, ŷ)⊗ k[ẑ]

with |x̂| = (2, q + 1), |ŷ| = (3, 4q) and |ẑ| = (4, 3q + 1).

Proof. Theorem 3.7.3 gives the E2 page of the spectral sequence

Ext∗∗H∗BG(k, k)⇒ H∗ΩBG
∧

2 .

There is no room for differentials, and there are no ungrading problems. □

Remark 3.7.5. This agrees with the answer given in Proposition II.4.2.6 of Levi [167].

Remark 3.7.6. When we compute the spectral sequence

Ext∗∗
H∗ΩBG

∧
2
(k, k)⇒ H∗BG

we get E2 = k[x, y] ⊗ Λ(z) with |x| = (−1,−2,−q − 1), |y| = (−1,−3,−4q) and |z| =
(−1,−4,−3q − 1). There are no differentials, but the relation z2 = 0 then ungrades to give
z2 = x2y.

Theorem 3.7.7. The Hochschild cohomology ring of H∗BG is given by

HH∗H∗BG = H∗BG[x̂, ẑ]/(x̂2 + yẑ2, x2ẑ2),

with

|x| = (0,−3,−q − 1), |y| = (0,−4,−4q), |z| = (0,−5,−3q − 1),

|x̂| = (−1, 3, q + 1), |ẑ| = (−1, 5, 3q + 1).

Proof. This follows from (3.7.1) and (3.7.2), using Theorem 1.11.5. □

Proposition 3.7.8. There are no non-zero elements of degree (−n, n−2, 0) in the Hoch-
schild cohomology HH∗H∗BG with n > 2.

Proof. By Theorem 3.7.4, we have a k-basis for HH∗H∗BG consisting of the monomials
xi1yi2zε3x̂ε1 ẑi3 with either i1 ⩽ 1 or i3 ⩽ 1. Suppose that such a monomial has degree
(−n, n− 2, 0). Comparing degrees, we have

−n = −ε1 − i3(3.7.9)

n− 2 = −3i1 − 4i2 − 5ε3 + 3ε1 + 5i3,(3.7.10)
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0 = −(q + 1)i1 − 4qi2 − (3q + 1)ε3 + (q + 1)ε1 + (3q + 1)i3.(3.7.11)

We shall show that there are no solutions in non-negative integers with n > 2.
First we deal with the case q = 2. In this case, equation (3.7.11) becomes

(3.7.12) 0 = −3i1 − 8i2 − 7ε3 + 3ε1 + 7i3.

Adding equations (3.7.10) and (3.7.12), we get

(3.7.13) n− 2 = −6i1 − 12i2 − 12ε3 + 6ε1 + 12i3,

and so
n ≡ 2 (mod 6).

If instead, we add equations (3.7.9) and (3.7.10) and subtract equation (3.7.12), we get
−2 = 4i2 + 2ε3 − ε1 − 3i3, or

(3.7.14) 4i2 + 2ε3 = ε1 + 3i3 − 2.

So ε1 and i3 determine i2 and ε3, and then i1. Let n = 6a + 2, so that equation (3.7.13)
becomes

(3.7.15) a = −i1 − 2i2 + ε1 + 2i3 ⩾ 1.

From equation (3.7.9), we have i3 = 6a + 2 − ε1. Then equation (3.7.14) gives 4i2 + 2ε3 =
ε1 + 18a+ 6− 3ε1 − 2, so

2i2 = 9a+ 2− ε1 − ε3.
Finally, plugging these values of i2 and i3 into equation (3.7.15) gives

i1 = a− 2i2 − 2ε3 + ε1 + 2i3

= a− 9a− 2 + ε1 + ε3 − 2ε3 + ε1 + 12a+ 4− 2ε1

= 4a+ 2− ε3.
Since a ⩾ 1, we see that both i1 and i3 are greater than one, which is a contradiction. This
completes the case q = 2.

Now suppose that q > 2. Reading equations (3.7.9), (3.7.10), and (3.7.11) modulo four,
we see that ε3 + i1 and n = ε1 + i3 are both even, and are congruent modulo four. So if
n > 2 then n ⩾ 4, i3 ⩾ 3, and hence i1 ⩽ 1. So either i1 = ε3 = 0 or i1 = ε3 = 1. Adding
equations (3.7.9) and (3.7.10), we get

−2 = −3i1 − 4i2 − 5ε3 + 2ε1 + 4i3.

Since −3i1 − 5ε3 is divisible by four, we deduce that ε1 = 1.
In the case i1 = ε3 = 0, ε1 = 1 we get i3 = i2 − 1, n = i2. Equation (3.7.11) becomes

0 = −4qi2 + (q + 1) + (3q + 1)(i2 − 1)

= (−q + 1)i2 − 2q

so i2 is not an integer, which is a contradiction.
In the case i1 = ε3 = 1, ε1 = 1 we get i3 = i2 + 1, n = i2 + 2. Equation (3.7.11) becomes

0 = −(q + 1)− 4qi2 − (3q + 1) + (q + 1) + (3q + 1)(i2 + 1)

= (−q + 1)i2

and so i2 = 0, n = 2, again a contradiction. So for q > 2 there are no monomials of this
form. □
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Theorem 3.7.16. In Case 3.5.1, with the grading inherited from the internal grading on
the basic algebra of kG, the A∞ structure of H∗BG is intrinsically formal.

Proof. This follows from Propositions 1.4.2 and 3.7.8. □

Remark 3.7.17. Another proof of formality, but which does not give intrinsic formal-
ity, in Theorem 3.7.16 is to notice that there are endomorphisms of the resolution (3.6.6)
representing x, y and z, and strictly satisfying the relation x2y = z2. The endomorphism
representing y just moves the whole diagram two places down and two places to the left. For
x, we move three places to the left, but then we have to compose with the maps

c̄b̄ c̄

1 1 · · ·
c̄b̄ c̄ 1 1

1 1 1 1 · · ·
c̄b̄ c̄ 1 1 1 1

1 1 1 1 1 1 · · ·
Similarly, for z we move one place down and four to the left, and compose with the same
maps. This defines a quasi-isomorphism from the cohomology ring Ext∗kG(k, k) to the DG
algebra End∗kG(Pk), which in turn is quasi-isomorphic to C∗BG.

Corollary 3.7.18. In Case 3.5.1, we have

HH∗H∗BG ∼= HH∗C∗BG ∼= HH∗C∗ΩBG
∧

2 .

Proof. The first isomorphism follows from Theorem 3.7.16, while the second is true for
every group. □

3.8. A∞ structure of H∗ΩBG
∧
2

We continue to work in Case 3.5.1. So G is a finite group with a semidihedral Sylow
2-subgroup of order 8q and no normal subgroup of index two, and k is a field of characteristic
two.

Theorem 3.8.1. We have

HH∗H∗ΩBG
∧

2 = k[x, y, ẑ]⊗ Λ(x̂, ŷ, z)

with

|x| = (−1,−2,−q − 1), |y| = (−1,−3,−4q), |z| = (−1,−4,−3q − 1),

|x̂| = (0, 2, q + 1), |ŷ| = (0, 3, 4q), |ẑ| = (0, 4, 3q + 1).

Proof. This is a routine computation using Theorems 1.11.5 and 3.7.4. □

Theorem 3.8.2. In Case 3.5.1, up to quasi-isomorphism, the maps mi in the A∞ struc-
ture on H∗ΩBG

∧
2 may be taken to be the k[ẑ]-multilinear maps determined by

m3(x̂, ŷ, x̂) = ẑ2, m3(x̂, x̂ŷ, x̂) = x̂ẑ2, m3(ŷ, x̂, x̂ŷ) = m3(x̂ŷ, x̂, ŷ) = ŷẑ2,

and all mi with i ⩾ 3 vanish on all other triples of monomials not involving ẑ. We have
m3 ◦m3 = 0 (Gerstenhaber’s circle product).
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This is the unique A∞ algebra structure on this algebra, such that the map m3 represents
the class x2yẑ2 of degree (−3, 1, 0) in the Hochschild cohomology HH∗H∗ΩBG

∧
2 .

Proof. Comparing Theorem 3.7.4 with Theorem 3.8.1, we see that in the spectral se-
quence

HH∗H∗ΩBG
∧

2 ⇒ HH∗C∗ΩBG
∧

2

we have d2(ŷ) = x2ẑ2, and no further differentials, and

(3.8.3) E3 = E∞ = k[x, y, ẑ]/(x2ẑ2)⊗ Λ(x̂, z).

The relation x̂2 = 0 ungrades to x̂2 = yẑ2, while the relation z2 = 0 ungrades to z2 = x2y.
It follows that m3 on x̂, x̂ and ŷ in H∗ΩBG

∧
2 in some order is a non-zero multiple of ẑ2.

In degree (−3, 1, 0), the Hochschild cohomology HH∗H∗ΩBG
∧
2 is one dimensional, and is

spanned by x2yẑ2. Since the Hochschild cocycle m3 is only well defined modulo coboundaries,
we examine the values of the coboundary of a 2-cochain f2 on these elements. For degree
reasons, we have f2(x̂, x̂) = f2(x̂, ŷ) = f2(ŷ, x̂) = 0. Let f2(x̂, x̂ŷ) = λẑ2 and f2(x̂ŷ, x̂) = µẑ2.
Then we have

δf2(x̂, x̂, ŷ) = λẑ2, δf2(x̂, ŷ, x̂) = (λ+ µ)ẑ2, δf2(ŷ, x̂, x̂) = µẑ2.

Now everything is defined over F2. So working modulo these coboundaries, any assignment
with

m3(x̂, x̂, ŷ) +m3(x̂, ŷ, x̂) +m3(ŷ, x̂, x̂) = ẑ2

is valid. For symmetry we take m3(x̂, ŷ, x̂) = ẑ2 and m3(x̂, x̂, ŷ) = m3(ŷ, x̂, x̂) = 0.
Using the fact that m3 is a Hochschild cocycle, and x̂ŷ = ŷx̂, we then have

m3(x̂, x̂, x̂ŷ) = 0, m3(x̂ŷ, x̂, x̂) = 0, m3(x̂ŷ, ŷ, ŷ) = 0, m3(ŷ, ŷ, x̂ŷ) = 0,

m3(x̂, x̂ŷ, ŷ) = 0, m3(ŷ, x̂ŷ, x̂) = 0, m3(ŷ, x̂, x̂ŷ) = m3(ŷx̂, x̂, ŷ),

m3(x̂, ŷ, x̂ŷ) = m3(x̂ŷ, ŷ, x̂), m3(x̂, x̂ŷ, x̂) = x̂m3(x̂, ŷ, x̂) = x̂ẑ2,

m3(x̂, ŷ, x̂ŷ) +m3(x̂ŷ, x̂, ŷ) = ŷẑ2, m3(ŷx̂, ŷ, x̂) +m3(ŷ, x̂, ŷx̂) = ŷẑ2,

The 2-cochain f2 with f2(x̂ŷ, x̂ŷ) = ŷẑ2, and f2 = 0 on other monomials, has coboundary
δf2(x̂, ŷ, x̂ŷ) = ŷẑ2. So adding a multiple of δf2 to m3, we can assume that m3(x̂, ŷ, x̂ŷ) = 0.
It then follows that

m3(x̂, ŷ, x̂ŷ) = m3(x̂ŷ, ŷ, x̂) = 0, m3(ŷ, x̂, x̂ŷ) = m3(x̂ŷ, x̂, ŷ) = ŷẑ2,

m3(x̂ŷ, x̂ŷ, x̂) = m3(x̂, x̂ŷ, x̂ŷ) = 0, m3(x̂ŷ, x̂ŷ, ŷ) = m3(ŷ, x̂ŷ, x̂ŷ) = 0,

m3(x̂ŷ, x̂, x̂ŷ) = m3(x̂ŷ, ŷ, x̂ŷ) = 0, m3(x̂ŷ, x̂ŷ, x̂ŷ) = 0.

Now, it is straightforward to compute directly that the Gerstenhaber circle product
m3 ◦m3 is the zero Hochschild cochain. Mostly all terms are zero, but there are a few cases
that involve some cancellation, such as for example

(m3 ◦m3)(x̂, ŷ, x̂, x̂ŷ, x̂)

= m3(m3(x̂, ŷ, x̂)x̂ŷ, x̂) +m3(x̂,m3(ŷ, x̂, x̂ŷ), x̂) +m3(x̂, ŷ,m3(x̂, x̂ŷ, x̂)

= m3(ẑ
2, x̂ŷ, x̂) +m3(x̂, ŷẑ

2, x̂) +m3(x̂, ŷ, x̂ẑ
2) = 0 + ẑ4 + ẑ4 = 0,

(m3 ◦m3)(ŷ, x̂, x̂ŷ, x̂, x̂ŷ)

= m3(m3(ŷ, x̂, x̂ŷ), x̂, x̂ŷ) +m3(ŷ, m3(x̂, x̂ŷ, x̂), x̂ŷ) +m3(ŷ, x̂,m3(x̂ŷ, x̂, x̂ŷ))
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= m3(ŷẑ
2, x̂, x̂ŷ) +m3(ŷ, x̂ẑ

2, x̂ŷ) +m3(ŷ, x̂, 0) = ŷẑ2 + ŷẑ2 + 0 = 0.

By Proposition 1.5.4, we have δm4 = m3 ◦m3, so m4 is a Hochschild cocycle. Since there
are no non-zero Hochschild classes in degree (−4, 2, 0), this makes m4 a coboundary, and so
we can take m4 = 0. Then m4 ◦m3 + m3 ◦m4 vanishes, and so m5 is a Hochschild cocycle.
Since there are no non-zero classes in degree (−5, 3, 0), it follows that m5 is a coboundary,
and may hence be taken to be zero. We could continue this way, but eventually there are
non-zero elements of Hochschild cohomology in degree (−n, n− 2, 0). So instead, define an
A∞ algebra a with with H∗a ∼= H∗ΩBG

∧
2 , the same structure maps as H∗ΩBG

∧
2 up to m3,

and mi = 0 for i ⩾ 4. Then the Koszul dual A∞ algebra b = HomDb(a)(k, k) has homology
isomorphic to H∗BG as an associative algebra. To see this, we compute the spectral sequence
Ext∗H∗a(k, k) ⇒ H∗b. The map m3 determines the d2 differential in this spectral sequence,
and so the E3 page is given by (3.8.3). There is no room for further non-zero differentials or
for ungrading problems, so this is also H∗b.

By Theorem 3.7.16, H∗BG is intrinsically formal, and so b is quasi-isomorphic to C∗BG
as an A∞ algebra. This implies that

a ≃ HomDb(b)(k, k) ≃ HomDb(H∗BG)(k, k) ≃ H∗ΩBG
∧

2 . □

3.9. A differential graded model

We continue to work with Case 3.5.1. Theorem 3.8.2 suggests that there may be a nice
DG algebra quasi-isomorphic to C∗ΩBG

∧
2 . Since C∗BG is formal, in order to produce such

an algebra, we look at endomorphisms of the minimal resolution of k over H∗BG. This
resolution is eventually periodic of period one, and takes the following form.

· · · → (H∗BG)4

( z xy
x z
y z xy
y x z

)
−−−−−−−−→ (H∗BG)4

( z xy
x z
y z xy
y x z

)
−−−−−−−−→ (H∗BG)4(x z

y z xy
y x z

)
−−−−−−−→ (H∗BG)3

( y x z )−−−−−→ H∗BG→ k.

The map ẑ shifts one to the right by the 4× 4 identity matrix, except at the right hand end:

· · · ,
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
0 1 0 0
0 0 1 0
0 0 0 1

)
, ( 0 0 1 ) .

This endomorphism is in the centre of the endomorphism ring of the resolution, and so we
can regard everything as defined over k[ẑ].

Similarly, ŷ is given by shifting to the right and using the matrices

· · · ,
(

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)
,

(
0 0 0 0
1 0 0 0
0 1 0 0

)
, ( 1 0 0 ) ,

and x̂ is given by shifting to the right and using the matrices

· · · ,
(

0 y 0 0
1 0 0 0
0 0 0 y
0 0 1 0

)
,

(
1 0 0 0
0 0 0 y
0 0 1 0

)
, ( 0 1 0 ) .
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These matrices commute, and satisfy ŷ2 = 0, but x̂2 is not zero, but rather yẑ2. So we find
a homotopy ξ from x̂2 to zero:

· · · ,
(

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,

(
0 0 0 1
0 0 0 0
0 0 0 0

)
, ( 0 0 0 ) .

Then we have ξ2 = 0, dξ = x̂2, ξx̂ = x̂ξ, and ξŷ + ŷξ = ẑ2.

Theorem 3.9.1. Let Q be the DG algebra over k[ẑ] generated by elements x̂, ŷ and ξ
with

dx̂ = 0, dŷ = 0, ŷ2 = 0, x̂ŷ = ŷx̂,

dξ = x̂2, ξx̂ = x̂ξ, ξ2 = 0, ξŷ + ŷξ = ẑ2,

and with degrees

|x̂| = (2, q + 1), |ŷ| = (3, 4q), |ẑ| = (4, 3q + 1), |ξ| = (5, 2q + 2).

Then Q is quasi-isomorphic to C∗ΩBG
∧
2 .

Proof. The algebra relations imply that this has a free k[ẑ]-basis consisting of the
elements x̂iŷε1ξε2 with i ⩾ 0, ε1, ε2 ∈ {0, 1}. The differential sends the basis elements with
ε2 = 1 bijectively to the basis elements with i ⩾ 2 and ε2 = 0. So H∗Q is the algebra
k[ẑ] ⊗ Λ(x̂, ŷ), which is isomorphic to H∗ΩBG

∧
2 . The A∞ structure on H∗Q is not formal.

Indeed, it is easy to check that m3 represents the Hochschild class x2yẑ2. By Theorem 3.8.2,
there is a unique A∞ structure on this algebra such that m3 represents this class. It follows
that Q is quasi-isomorphic to C∗ΩBG

∧
2 . □

Remark 3.9.2. We can give an explicit quasi-isomorphism H∗ΩBG
∧
2 → Q as follows.

The map f1 is the k[ẑ]-module homomorphism which sends each monomial 1, x̂, ŷ, x̂ŷ in
H∗ΩBG

∧
2 to the monomial with the same name in Q. The map f2 is given by

f2(x̂, x̂) = ξ, f2(x̂, x̂ŷ) = ξŷ, f2(x̂ŷ, x̂) = ŷξ,

and f2 is zero on all other pairs of monomials. All higher fi are the zero map. From this
information, we can inductively compute the higher multiplications mi on H∗ΩBG

∧
2 , and

they agree with those given in Theorem 3.8.2. For example, we have

m2(f1 ⊗ f2 − f2 ⊗ f1)(x̂, ŷ, x̂) = 0,

f2(1⊗m2 −m2 ⊗ 1)(x̂, ŷ, x̂) = ξŷ + ŷξ = ẑ2,

and so m3(x̂, ŷ, x̂) = ẑ2.

3.10. Duality for Q[ẑ−1]-modules

Continuing with Case 3.5.1, by Theorem 3.9.1, ẑ is central in Q. It therefore makes sense
to invert it and examine Q[ẑ−1] as an algebra over the graded field k[ẑ, ẑ−1]. This parallels
Section 2.10, so we give fewer details.

If X is any k[ẑ, ẑ−1]-module, we write

X∗ = Homk[ẑ,ẑ−1](X, k[ẑ, ẑ−1]) ∼= Homk(X, k).

Proposition 3.10.1. There is a quasi-isomorphism of Q[ẑ−1]-bimodules

Q[ẑ−1] ≃ ΣQ[ẑ−1]∗.
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Proof. The proof is similar to the proof of Proposition 2.10.3. Consider the basis of
Q[ẑ−1] as a k[ẑ, ẑ−1]-module given by the monomials x̂iŷε1ξε2 . The map of k[ẑ, ẑ−1]-modules
Q[ẑ−1]→ Σ|x̂ŷ|Q[ẑ−1]∗ sending all monomials to zero except that

1 7→ (x̂ŷ 7→ 1), x̂ 7→ (ŷ 7→ 1), ŷ 7→ (x̂ 7→ 1), x̂ŷ 7→ (1 7→ 1)

and these maps take all other monomials to zero, is easily checked to be a quasi-isomorphism
of Q[ẑ−1]-bimodules. Now |x̂ŷ| = 5, and ẑ is a periodicity generator of degree four, so
Σ|x̂ŷ|Q[ẑ−1]∗ ∼= ΣQ[ẑ−1]∗. □

Corollary 3.10.2. If X is a homotopically projective Q[ẑ−1]-module then we have a
quasi-isomorphism

HomQ[ẑ−1](X,Q[ẑ−1]) ≃ ΣHomk[ẑ,ẑ−1](X, k[ẑ, ẑ−1]).

Proof. The proof is essentially the same as that of Corollary 2.10.5. □

Theorem 3.10.3. Let X and Y be Q[ẑ−1]-modules, such that X is homotopically projec-
tive, and its image in Db(Q[ẑ−1]) is compact. Then we have a duality

HomQ[ẑ−1](X, Y )∗ ∼= HomQ[ẑ−1](Y,Σ
−1X).

Proof. The proof is essentially the same as that of Theorem 2.10.6. □

3.11. The singularity category of C∗BG

We examine the singularity category of C∗BG in Case 3.5.1. By Theorem 3.7.16, the
A∞ structure on C∗BG is formal. This implies that the singularity category is given
by Dsg(C

∗BG) ≃ Dsg(H
∗BG) and the cosingularity category is given by Dcsg(C

∗BG) ≃
Dcsg(H

∗BG). We shall discuss Dsg(H
∗BG). If we were looking as just graded modules, this

would be equivalent to the category of maximal Cohen–Macaulay modules over H∗BG =
k[x, y, z]/(x2y + z2). In characteristic zero, this algebra was part of the classification theo-
rem of Knörrer [158] and Buchweitz, Greuel and Schreyer [43]. But in fact the proof goes
through for this algebra in arbitrary characteristic, see for example Proposition 14.19 of
Leuschke and Wiegand [166], and gives a category of bounded Cohen–Macaulay type (D∞).
They state the theorem for the complete local ring, but the arguments work just as well for
graded modules over the graded ring.

Theorem 3.11.1. Let k be a field of arbitrary characteristic. The following matrix fac-
torisations describe all indecomposable MCM modules over k[x, y, z]/(x2y+z2) with |x| = −3,
|y| = −4, |z| = −5. We take the module to be the cokernel of the first matrix, which is the
image of the second matrix.

(1)

(
z y
−x2 z

)(
z −y
x2 z

)
, two generators in degrees n, n− 1;

(2)

(
z xy
−x z

)(
z −xy
x z

)
, two generators in degrees n, n+ 2;

(3)


z xy 0 0
−x z 0 0
−yj 0 z xy

0 yj −x z



z −xy 0 0
x z 0 0
yj 0 z −xy
0 −yj x z

 for some j ⩾ 1, four generators in

degrees n, n+ 2, n+ 5− 4j, n+ 7− 4j;
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(4)


z xy 0 0
−x z 0 0
0 −yj+1 z xy
−yj 0 −x z



z −xy 0 0
x z 0 0
0 yj+1 z −xy
yj 0 x z

 for some j ⩾ 1, four generators in

degrees n, n+ 2, n+ 3− 4j, n+ 5− 4j.

We write (1)n, (2)n, (3)n,j and (4)n,j for these modules. For each of these modules M ,

we have Ω(M) ∼= Σ−5,−3q−1(M), so in Dsg(M) we have Σ4,3q+1(M) ∼= M . This periodicity is
induced by the degree four element ẑ ∈ HH∗C∗BG, whose square is the Eisenbud operator
for the relation x2y + z2.

The Auslander–Reiten quiver of this singularity category has type ZD∞/Σ
4, and the

modules above fit into this as follows.

...

(4)3
""

(4)3
""

(4)3

(3)2
""

<<

(3)2
""

<<

(4)2
""

<<

(4)2
""

<<

(4)2

(3)1
""

<<

(3)1
""

<<

(4)1
//

""

<<

(2) // (4)1
//

""

<<

(2) // (4)1

(1)

<<

(1)

<<

The remaining question is this: Is every object in the singularity category of differential
graded modules equivalent to a module with zero differential? If so, the classification above
applies to Dsg(C

∗BG).

We have Dsg(C
∗BG) ≃ Dcsg(C∗ΩBG

∧
2 ). Now the element ẑ ∈ H∗ΩBG

∧
2 is the Eisenbud

operator for the relation x2y = z2 in H∗BG. It comes from an element of HH∗C∗ΩBG
∧
2 with

the same name. It follows that ẑ is central, and we may invert it to obtain an equivalence

Dsg(C
∗BG) ≃ Dcsg(C∗ΩBG

∧

2 ) ≃ Db(C∗ΩBG
∧

2 [ẑ−1]).

3.12. Two classes of involutions, one of elements of order four

We now turn to the Case 3.5.2 of a finite group G with semidihedral Sylow 2-subgroup
SD of order 8q, q ⩾ 2, with two classes of involutions and one class of elements of order four.
In this case, G has a normal subgroup K of index two with generalised quaternion Sylow
2-subgroups, and K has no normal subgroups of index two.

The principal blocks of this type are all in Erdmann’s classes SD(2A)1 and SD(2B)2.
Class SD(2B)2 turns out to be the easier to deal with, so we take G = SL±(2, pm) with
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pm ≡ 3 (mod 4). The basic algebra of the principal block is given by the quiver

(3.12.1) ka
99

b
**
M

c
hh d

hh

with relations

db = bacba, cd = acbac, bc = d2q−1, a2 = 0.

These imply that

d2b = dbacba = bacba2cba = 0,

cd2 = acbacd = acba2cbac = 0,

bcb = d2q−1b = d2q−3(d2b) = 0,

cbc = cd2q−1 = (cd2)d2q−3 = 0.

This admits a Z-grading with |a| = 1− q, |b| = |c| = q − 1
2
, |d| = 1.

The structures of the projective indecomposables are as follows:

k

M k

k M

k k

M k

k M

k

M

k M

k

M M

k

k M

M

Here, the case q = 2 is as shown, and the dotted lines indicate that for q > 2 there are more
copies of M in the right arm of PM.

The minimal resolution of the trivial module may be computed using the method of [17],
and the result is as follows.

Ω(k) =

x

k

M M

k k

k k

M M

k

k

Ω2(k) =

x2

k

M M

M k

k k

M M

M k

Ω3(k) =

x3

k

z M

k k

M k

k M

k k

M
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Ω4(k) =

x4

k

xz M

k k

y M k

k k M

k k

M

k

Ω5(k) =

x5

k

x2z M

k k

xy M k

k k M

M M k k

k k M

k k k

M M

k

M

The minimal resolution is the total complex of the following double complex:

(3.12.2)

PM

b̄
��

PM
d̄
oo

b̄c̄āb̄
��

Pk

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

· · ·

PM

b̄
��

PM
d̄
oo

b̄c̄āb̄
��

Pk
c̄ā
oo

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

Pk

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

· · ·

PM

b̄
��

PM
d̄
oo

b̄c̄āb̄
��

Pk
c̄ā
oo

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

Pk
ā
oo

b̄c̄āb̄c̄
��

Pk Pk
ā
oo Pk

ā
oo Pk

ā
oo Pk

ā
oo Pk

ā
oo · · ·

The cohomology ring in this case is therefore

H∗BG = k[x, y, z]/(x2y + z2)

with
|x| = (−1, q − 1), |y| = (−4,−4q), |z| = (−3,−q − 1).

The situation is therefore very similar to Case 3.5.1.

3.13. Ext and Hochschild cohomology

Continuing with Case 3.5.2, the proofs of the following theorems are exactly as in the
corresponding computations in Section 3.7 for Case 3.5.1.

Theorem 3.13.1. We have

Ext∗∗H∗BG(k, k) = Λ(x̂, ŷ)⊗ k[ẑ]
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with degrees given by |x̂| = (−1, 1, 1− q), |ŷ| = (−1, 4, 4q) and |ẑ| = (−1, 3, q + 1). □

Theorem 3.13.2. We have

H∗ΩBG
∧

2 = Λ(x̂, ŷ)⊗ k[ẑ]

with |x̂| = (0, 1− q), |ŷ| = (3, 4q) and |ẑ| = (2, q + 1). □

Theorem 3.13.3. We have

HH∗H∗BG = H∗BG[x̂, ẑ]/(x̂2 + yẑ2, x2ẑ2)

with |x| = (0,−1, q − 1), |y| = (0,−4,−4q), |z| = (0,−3,−q − 1), |x̂| = (−1, 1, 1 − q),
|ẑ| = (−1, 3, q + 1). □

The proof of the following proposition follows along the same lines as the proof of Propo-
sition 3.7.8, but the details are different, so we spell them out.

Proposition 3.13.4. There are no non-zero elements of degree (−n, n − 2, 0) in the
Hochschild cohomology HH∗H∗BG with n > 2.

Proof. We have a k-basis for HH∗H∗BG consisting of the monomials xi1yi2zε3x̂ε1 ẑi3

with either i1 ⩽ 1 or i3 ⩽ 1. Suppose that such a monomial has degree (−n, n − 2, 0).
Comparing degrees, we have

−n = −ε1 − i3(3.13.5)

n− 2 = −i1 − 4i2 − 3ε3 + ε1 + 3i3(3.13.6)

0 = (q − 1)i1 − 4qi2 − (q + 1)ε3 − (q − 1)ε1 + (q + 1)i3.(3.13.7)

We shall show that there are no solutions in non-negative integers with n > 2.
First we deal with the case q = 2. In this case, equation (3.13.7) becomes

(3.13.8) 0 = i1 − 8i2 − 3ε3 − ε1 + 3i3.

Adding equations (3.13.6) and (3.13.8), we get

(3.13.9) n− 2 = −12i2 − 6ε3 + 6i3,

and so
n ≡ 2 (mod 6).

If instead, we add equations (3.13.5) and (3.13.6) and subtract equation (3.13.8), we get
−2 = 4i2 + ε1 − i3, or

(3.13.10) 4i2 = −ε1 + i3 − 2.

So i3 determines ε1 and i2.
Let n = 6a+ 2, so that equation (3.13.9) gives

(3.13.11) a = −2i2 − ε3 + i3 ⩾ 1.

Equation (3.13.5) implies i3 = 6a + 2− ε1. Then equation (3.13.10) gives i2 = (3a− ε1)/2.
Plugging these values for i2 and i3 into equation (3.13.11) gives

a = −3a+ ε1 − ε3 + 6a+ 2− ε1 = 3a+ 2− ε3,
and so ε3 = 2a+ 2 is bigger than one. This contradiction completes the case q = 2.
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Now suppose that q > 2. Reading equations (3.13.5), (3.13.6), and (3.13.7) modulo four,
we see that ε3 + i1 and n = ε1 + i3 are both even, and are congruent modulo four. Since
n > 2, we have n ⩾ 4, i3 ⩾ 3, and hence i1 ⩽ 1. So either i1 = ε3 = 0 or i1 = ε3 = 1. Adding
the equations (3.13.5) and (3.13.6), we get

(3.13.12) −2 = −i1 − 4i2 − 3ε3 + 2i3.

Since −i1−3ε3 is divisible by four, we deduce that i3 is odd, and hence ε1 = 1, and n = 1+i3.
Since i1 = ε3 and ε1 = 1, equation (3.13.7) becomes

0 = −4qi2 − 2ε3 − (q − 1) + (q + 1)i3

and equation (3.13.12) gives
2i2 = 1− 2ε3 + i3.

Substituting, we get

0 = −2q(1− 2ε3 + i3)− 2ε3 − (q − 1) + (q + 1)i3

= (1− q)i3 + (4q − 2)ε3 + 1− 3q

and so
(4q − 2)ε3 = (q − 1)i3 + (3q − 1).

This is bigger than zero, so ε3 = 1, which then gives i3 = 1. Then by equation (3.13.5),
n = ε1 + i3 = 2, which is a contradiction. □

Theorem 3.13.13. In Case 3.5.2, with the grading inherited from the internal grading
on the basic algebra of kG, the A∞ structure of H∗BG is formal.

Remark 3.13.14. Another proof of formality, but which does not give intrinsic formality,
in Theorem 3.13.13 is to notice that there are endomorphisms of the resolution (3.12.2)
representing x, y and z, and strictly satisfying the relation x2y = z2. The endomorphism
representing y just moves the whole diagram two places up and two places to the right. For
x, we move one place to the right, but then we have to compose with the maps

c̄āb̄ c̄

1 1 · · ·
c̄āb̄ c̄ 1 1

1 1 1 1 · · ·
c̄āb̄ c̄ 1 1 1 1

1 1 1 1 1 1 · · ·
Similarly, for z we move one place up and two to the right, and compose with the same
maps. This defines a quasi-isomorphism from the cohomology ring Ext∗kG(k, k) to the DG
algebra End∗kG(Pk), which in turn is quasi-isomorphic to C∗BG.

Corollary 3.13.15. In Case 3.5.2, we have

HH∗H∗BG ∼= HH∗C∗BG ∼= HH∗C∗ΩBG
∧

2 .

Proof. The first isomorphism follows from Theorem 3.13.13, while the second is true
for every group. □
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3.14. A∞ structure, a DG model, and duality

We continue to work in Case 3.5.2, and because the details are similar to those in
Case 3.5.1, we skip some details. So G is a finite group with a semidihedral Sylow 2-subgroup
of order 8q, and has a normal subgroup K of index two with generalised quaternion Sylow
2-subgroups, and K has no normal subgroup of index two.

Theorem 3.14.1. We have

HH∗H∗ΩBG
∧

2 = k[x, y, ẑ]⊗ Λ(x̂, ŷ, z)

with

|x| = (−1, 0, q − 1), |y| = (−1,−3,−4q), |z| = (−1,−2,−q − 1),

|x̂| = (0, 0, 1− q), |ŷ| = (0, 3, 4q), |ẑ| = (0, 2, q + 1).

Proof. This is a routine computation using Theorems 1.11.5 and 3.13.2. □

Theorem 3.14.2. In Case 3.5.2, up to quasi-isomorphism, the maps mi in the A∞ struc-
ture on H∗ΩBG

∧
2 may be taken to be the k[ẑ]-multilinear maps determined by

m3(x̂, ŷ, x̂) = ẑ2, m3(x̂, x̂ŷ, x̂) = x̂ẑ2, m3(ŷ, x̂, x̂ŷ) = m3(x̂ŷ, x̂, ŷ) = ŷẑ2,

and all mi with i ⩾ 3 vanish on all other triples of monomials not involving ẑ. We have
m3 ◦m3 = 0 (Gerstenhaber’s circle product).

This is the unique A∞ algebra structure on this algebra, such that the map m3 represents
the class x2yẑ2 of degree (−3, 1, 0) in the Hochschild cohomology HH∗H∗ΩBG

∧
2 .

Proof. This is the same as the proof of Theorem 3.8.2. □

Theorem 3.14.3. Let Q be the DG algebra over k[ẑ] generated by elements x̂, ŷ and ξ
with

dx̂ = 0, dŷ = 0, ŷ2 = 0, x̂ŷ = ŷx̂,

dξ = x̂2, ξx̂ = x̂ξ, ξ2 = 0, ξŷ + ŷξ = ẑ2,

and with degrees

|x̂| = (0, q + 1), |ŷ| = (3, 4q), |ẑ| = (2, 3q + 1), |ξ| = (1, 2q + 2).

Then Q is quasi-isomorphic to C∗ΩBG
∧
2 .

Proof. This is proved in the same way as Theorem 3.9.1. □

Since ẑ is central in Q, we may invert it. Let Q[ẑ−1] be the resulting DG algebra over
k[ẑ, ẑ−1].

Proposition 3.14.4. There is a quasi-isomorphism of Q[ẑ−1]-bimodules

Q[ẑ−1]∗ ∼= ΣQ[ẑ−1].

Corollary 3.14.5. If X is a homotopically projective Q[ẑ−1]-module then we have a
quasi-isomorphism

HomQ[ẑ−1](X,Q[ẑ−1]) ≃ ΣHomk[ẑ,ẑ−1](X, k[z, z−1]).
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Theorem 3.14.6. Let X and Y be Q[ẑ−1]-modules, such that X is homotopically projec-
tive, and its image in Db(Q[ẑ−1]) is compact. Then we have a duality

HomQ[ẑ−1](X, Y )∗ ∼= HomQ[ẑ−1](Y,Σ
−1X).

3.15. One class of involutions, two of elements of order four

Now we consider Case 3.5.3, of a finite group G with semidihedral Sylow 2-subgroup SD
of order 8q, q ⩾ 2, with one class of involutions and two classes of elements of order four. In
this case, G has a normal subgroup K of index two with dihedral Sylow 2-subgroups, and
K has no normal subgroups of index two. The group K is therefore in Case 2.7.1 of the
classification of groups with dihedral Sylow 2-subgroups.

The principal blocks of this type are all in Erdmann’s class SD(2A)2. This causes a
problem with socle relations. To see this, let us look at the principal block B0 of the group
PGL∗(2, p2m). Let k and M be the two simple modules. In the case q = 2, their projective
covers are given by the following diagrams.

k

M k

k M

k k

M k

k M

k

M

k

k

M

k

k

M

The quiver for B0 is

ka
99

b
**
M

c
hh

with relations

bc = 0, (cba)2q = (acb)2q, a2 = cb(acb)2q−1 + λ(cba)2q

with λ ∈ k unknown at this point. If λ ̸= 0 then any non-trivial grading on this algebra has
|a| = 0 and |b|+ |c| = 0, which then induces the trivial grading on cohomology.

We begin with the case q = 2. In this case, we can choose G = M10 = PGL∗(2, 9).
Running the following Magma code, we find that the socle constant in the relations for the
algebra of type SD(2A)2 is equal to one.

SetSeed(1441119655);

M11:=Group("M11");

M10:=Stabiliser(M11,1);

A:=BasicAlgebraOfPrincipalBlock(M10,GF(2));

e:=IdempotentGenerators(A)[1];

f:=IdempotentGenerators(A)[2];

a:=NonIdempotentGenerators(A)[1];

b:=NonIdempotentGenerators(A)[2];
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c:=NonIdempotentGenerators(A)[3];

cc:=c*(1+a^5);

aa:=a+b*cc;

bb:=b;

cc*bb eq 0;

(aa*bb*cc)^4 eq (bb*cc*aa)^4;

aa^2 eq (bb*cc*aa)^3*bb*cc + (bb*cc*aa)^4;

It follows that there is no useful grading on the basic algebra, so we are going to have to
resort to other means.

Martino [178] computed the cohomology ring for groups in Case 3.5.3 to be

H∗BG = k[y, z, w, v]/(y3, vy, yz, v2 + z2w)

with |y| = −1, |z| = −3, |w| = −4, |v| = −5. Part of the A∞ structure is given by

m3(z, y, y
2) = v, m4(y

2, y, y2, y) = w,

m4q−1(v, y, v, y, . . . , y, v) = w2qy2.

The computation of the Ext ring is similar to the case of the semidihedral group.

Theorem 3.15.1. In Case 3.5.3 we have

Ext∗,∗H∗BG(k, k) = Λ(ŵ)⊗ k⟨ŷ, ẑ, v̂, η̂ | ŷ2 = ẑ2 = 0, v̂ẑ = ẑv̂, ηŷ = ŷη⟩
with η = ⟨ŷ, ŷ, ŷ⟩, |ŷ| = (−1, 1), |ẑ| = (−1, 3), |ŵ| = (−1, 4), |v̂| = (−1, 5), |η| = (−2, 3).

In the Eilenberg–Moore spectral sequence

Ext∗,∗H∗BG(k, k)⇒ H∗ΩBG
∧

2

we have d2(v̂) = ηẑ + ẑη,

E3 = Λ(ŵ)⊗ k[η]⊗ k⟨ŷ, ẑ | ŷ2 = ẑ2 = 0⟩,
then d3(ŵ) = η2,

E4 = E∞ = Λ(η)⊗ k⟨ŷ, ẑ | ŷ2 = ẑ2 = 0⟩.
Ungrading, we have |ŷ| = 0, |η| = 1, |ẑ| = 2, and since there are no lower terms in the
filtration, we have ŷ2 = 0, and η2 = 0. However, the relation ẑ2 = 0 is harder to ungrade.

To compute the ring structure of H∗ΩBG
∧
2 , and in particular the square of ẑ, we resort

to the method of squeezed resolutions described in Benson [16]. It is easy to compute the
minimal squeezed projective resolution for G, which is as follows.

· · ·

(
(c̄āb̄)2q 0

0 (c̄āb̄)2q

)
−−−−−−−−−−→ PM ⊕ PM

(
c̄āb̄ 0
0 c̄āb̄

)
−−−−−−→ PM ⊕ PM

(
(c̄āb̄)2q 0

0 (c̄āb̄)2q

)
−−−−−−−−−−→ PM ⊕ PM

( b̄ āb̄ )−−−→ Pk → 0.

After the first step, this repeats with period two. Indeed, after the first step, it decomposes
as a direct sum of two copies of the two-periodic complex

· · · (c̄āb̄)2q−−−−→ PM
c̄āb̄−→ PM

(c̄āb̄)2q−−−−→ PM.

The point here is that C∗ΩBG
∧
2 is quasi-isomorphic to the kG-endomorphism DG algebra of

this squeezed resolution.
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Remark 3.15.2. There is an error in [16], which only shows up if ΩBG
∧
p is not connected,

namely when G/Op(G) is not trivial. Namely, the augmentation in Theorem 3.4 of that
paper should be to kG/Op(G) rather than to k. This affects the computation of products in
Section 4.6 of the paper, which we are using here.

The element ŷ ∈ H∗ΩBG
∧
2 is represented by the map of complexes

· · · // PM ⊕ PM
//

( 0 0
1 0 )
��

PM ⊕ PM
//

( 0 0
1 0 )
��

Pk

(ā)
��

· · · // PM ⊕ PM
// PM ⊕ PM

// Pk

The square of this map is not zero, but is null homotopic, with homotopy u given by

· · · // PM ⊕ PM
//

( 0 0
0 0 )

��

(c̄āb̄)2q−1( 0 1
0 λ )

zz

PM ⊕ PM
//

( 0 0
0 0 )

��

( 0 1
0 λ )

yy

Pk

(ā2)

��

(c̄āb̄)2q−1c̄( 1
λ )

zz

· · · // PM ⊕ PM
// PM ⊕ PM

// Pk

The element ⟨ŷ, ŷ, ŷ⟩ is represented by the map of complexes uŷ + ŷu:

· · · // PM ⊕ PM
//

( 1 0
λ 1 )
��

PM ⊕ PM
//

(c̄āb̄)2q−1( 1 0
λ 1 )

��

PM ⊕ PM
//

( 1 0
λ 1 )
��

Pk

(c̄āb̄)2q−1c̄( ā
1+λā )

��

· · · // PM ⊕ PM
// PM ⊕ PM

// PM ⊕ PM
// PM ⊕ PM

// Pk ⊕ Pk

and the element ẑ is represented by the map

· · · // PM ⊕ PM
//

( 0 1
0 0 )
��

PM ⊕ PM
//

( 0 1
0 0 )
��

Pk

( c̄0 )
��

· · · // PM ⊕ PM
// PM ⊕ PM

// PM ⊕ PM
// PM ⊕ PM

// Pk

Now uŷ+ ŷu does not commute with ẑ, but (uŷ+ ŷu)(1 + λŷ) does, so it is more convenient
to set

η = (uŷ + ŷu)(1 + λŷ).

This is represented by the map

· · · // PM ⊕ PM
//

( 1 0
0 1 )
��

PM ⊕ PM
//

(c̄āb̄)2q−1( 1 0
0 1 )

��

PM ⊕ PM
//

( 1 0
0 1 )
��

Pk

(c̄āb̄)2q−1c̄( ā1 )
��

· · · // PM ⊕ PM
// PM ⊕ PM

// PM ⊕ PM
// PM ⊕ PM

// Pk ⊕ Pk
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Thus ẑ2 = 0, and ŷẑ+ ẑŷ is the periodicity generator of degree two, central in the endomor-
phism algebra:

· · · // PM ⊕ PM
//

( 1 0
0 1 )
��

PM ⊕ PM
//

( 1 0
0 1 )
��

Pk

( c̄āc̄ )
��

· · · // PM ⊕ PM
// PM ⊕ PM

// PM ⊕ PM
// PM ⊕ PM

// Pk

Theorem 3.15.3. In Case 3.5.3, we have

H∗ΩBG
∧

2 = Λ(η)⊗ k⟨ŷ, ẑ | ŷ2 = ẑ2 = 0⟩
with |η| = 1, |ŷ| = 0 and |ẑ| = 2. □

It is interesting to note that the degree zero element ŷ is not central in H∗ΩBG
∧
2 , while

ŷẑ+ ẑŷ is the central periodicity generator. This is very similar to what happens for groups
with dihedral Sylow 2-subgroups in Case 2.7.2.

Part of the A∞ structure is given by m3(ŷ, ŷ, ŷ) = η(1 +λŷ), m2q(η, . . . , η) = (ŷẑ+ ẑŷ)2q.
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CHAPTER 4

The generalised quaternion case

4.1. Introduction

In this chapter, we discuss the case of finite groups with generalised quaternion Sylow
2-subgroups.

We begin with the generalised quaternion group Q of order 8q itself. The group algebra
in this case was analysed by Dade [59], and we describe a modified version of his presentation
as a quiver with relations. If q = 1 and k contains F4 then for suitable radical generators we
have

kQ = k⟨X, Y | X2 = Y XY, Y 2 = XYX, X4 = Y 4 = 0⟩.
If q ⩾ 2, and k is any field of characteristic two, for suitable radical generators X and Y we
have

kQ = k⟨X, Y | X2 = (Y X)2q−1Y + (XY )2q, Y 2 = (XY )2q−1X + (Y X)2q, X4 = Y 4 = 0⟩.
See Theorem 4.2.1 for details.

There are three cases for the possible fusion in Q, leading to three types of cochains on
the classifying space of a finite group with this fusion. Probably the most interesting is the
case where G has no normal subgroup of index two.

Theorem 4.1.1. Let G be a finite group with generalised quaternion Sylow 2-subgroup,
and let k be a field of characteristic two. Then the following are equivalent:

(1) the A∞ algebra C∗BG is formal,
(2) the A∞ algebra H∗ΩBG

∧
2 is formal,

(3) G has no normal subgroup of index two.

This theorem follows from Theorem 4.7.4, Corollary 4.7.5, and Theorem 4.9.2.

4.2. Generalised quaternion groups

The generalised quaternion group of order 8q, q a power of two, is given by the presen-
tation

Q = ⟨g, h | g2 = h2 = (g−1h)2q⟩.
These relations imply that g2 = h2 is central, and g4 = h4 = 1. If q = 1, this is the
quaternion group of order eight.

Theorem 4.2.1. We have the following presentations for kQ.

(i) In the case q = 1, suppose that k contains F4 = {0, 1, ω, ω̄}, with 1 + ω + ω2 = 0.
Set

X = gh+ ωg + ω̄h, Y = gh+ ω̄g + ωh.
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Then

kQ = k⟨X, Y | X2 = Y XY, Y 2 = XYX, X4 = Y 4 = 0⟩.
The automorphism g 7→ h 7→ gh 7→ g of Q of order three sends X 7→ ω̄X and
Y 7→ ωY .

(ii) For q ⩾ 2, and any field k of characteristic two, set

u = g + h, v = u4q−3 +

q∑
2i=2

u2q−2i , x = (g + 1) + u, y = (h+ 1) + u,

and finally, X = x + (xy)2q−1, Y = y + (yx)2q−1. Then the group algebra has the
following presentation:

kQ = k⟨X, Y | X2 = (Y X)2q−1Y + (XY )2q, Y 2 = (XY )2q−1X + (Y X)2q, X4 = Y 4 = 0⟩.
These relations imply that (XY )2q = X3 = (Y X)2q = Y 3 is annihilated by X and
Y , and hence lie in Soc(kQ) = J2q(kQ).

Proof. This follows Dade [59], with a change of variables in the second case. First, in
both cases X and Y are in J(kQ) and are linearly independent modulo J2(kQ), and therefore
generate kQ.

(i) A somewhat long computation shows that X2 = (1 + g2)(gh+ωh+ ω̄g) = Y XY , and
hence X4 = 0. Applying the automorphism of F4, we get Y 2 = XYX and Y 4 = 0. These
relations imply that kQ is spanned by 1, X, Y , XY , Y X, XYX, Y XY and XYXY =
Y XY X, so comparing dimensions, these relations define kQ.

(ii) By [59], the elements x and y in J(kQ) satisfy

kQ = ⟨x, y | x2 = y2 = (xy)2q−1x+ (yx)2q−1y + (xy)2q, x4 = y4 = 0⟩.
These relations imply that (xy)2q = x3 = (yx)2q = y3 spans Soc(kQ) = J2q(kQ), x2 = y2 is
central, and J2q+1(kQ) = 0. Since X and Y are congruent to x and y modulo J2q−1(kQ), it
follows that monomials in X and Y of length at least three are equal to the corresponding
monomials in x and y. So X and Y satisfy

X2 = x2 + (xy)2q−1x = (yx)2q−1y + (xy)2q = (Y X)2q−1Y + (XY )2q

Y 2 = y2 + (yx)2q−1x = (xy)2q−1x+ (yx)2q = (XY )2q−1Y + (Y X)2q,

and X4 = Y 4 = 0. Note that unlike x2 and y2, the elements X2 and Y 2 are not central. □

Remark 4.2.2. It is erroneously stated on page 303 of [74], page 38 of [94], and page 518
of [118] that the group algebra of the generalised quaternion group is as given here, but
without the extra term (XY )2q, (Y X)2q in the expressions for X2 and Y 2.

Remark 4.2.3. In the case of the quaternion group of order eight, over a field containing
F4, there is a Z/3-grading on the group algebra given by |X| = 1 and |Y | = −1. This is the
grading induced by the automorphism of order three.

In the case of the generalised quaternion groups of order at least 16, there is no non-trivial
grading on the group algebra for which the generators X and Y are homogeneous, because
of the socle terms in the relations.
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It is known that kQ has tame representation type, by embedding Q into a semidihedral
group of twice the order. By a theorem of Green [131, Theorem 8], as long as k is algebraically
closed, inducing an indecomposable kQ-module gives an indecomposable module for the
semidihedral group. On the other hand, although the indecomposables for the semidihedral
group are classified, nobody has been able to use this to classify indecomposable modules
for generalised quaternion groups.

The cohomology ring for q = 1 is

H∗BG = k[u, v, z]/(u2 + uv + v2, u2v + uv2)

with |u| = |v| = 1 and |z| = 4, and with u and v dual to U = ω̄X + ωY = gh + h and
V = ωX + ω̄Y = gh+ g.

For q ⩾ 2, we have
H∗BG = k[x, y, z]/(xy, x3 + y3),

again with |x| = |y| = 1 and |z| = 4, and with x and y dual to X and Y . See for example
Rusin [197] or Martino and Priddy [179].

Note that if k contains F4 then the cohomology of the quaternion group of order eight
can be made to fit the same pattern by using the elements x, y in H1BG dual to X and Y
in J(kQ). These are homogeneous with respect to the grading described in Remark 4.2.3, so
that the Z× Z/3-grading is given by |x| = (−1,−1), |y| = (−1, 1) and |z| = (−4, 0).

4.3. HH∗H∗BQ

The cohomology ring H∗BQ = k[x, y, z]/(xy, x3 + y3) is a complete intersection of codi-
mension two, so we can calculate HH∗H∗BQ and Ext∗,∗H∗BQ(k, k) using Theorems 1.11.5
and 1.11.2. We first compute Cliff(q).

Proposition 4.3.1. Let Q be a generalised quaternion group of order 8q with q a power
of two. Let k be a field of characteristic two, and if q = 1, we suppose that k contains F4.
Then the algebra Cliff(q) is equal to H∗BQ⟨x̂, ŷ, ẑ; s1, s2⟩, where s1 and s2 are central, and

x̂2 = ŷ2 = ẑ2 = 0, x̂ŷ + ŷx̂ = s1, x̂ẑ = ẑx̂, ŷẑ = ẑŷ.

The degrees are given by |x̂| = |ŷ| = (−1, 1), |ẑ| = (−1, 4), |s1| = (−2, 2), |s2| = (−2, 3).
The differential d on Cliff(q) is given by

d(x̂) = ys1 + x2s2, d(ŷ) = xs1 + y2s2, d(ẑ) = d(s1) = d(s2) = 0.

Proof. Let f1(x, y, z) = xy and f2(x, y, z) = x3 +y3, so that H∗BQ = k[x, y, z]/(f1, f2).
Then we have

∂f1
∂x

= y,
∂f1
∂y

= x,
∂f1
∂z

= 0,
∂f2
∂x

= x2,
∂f2
∂y

= y2,
∂f2
∂z

= 0,

∂(2)f1
∂x2

= 0,
∂(2)f1
∂y2

= 0,
∂(2)f1
∂z2

= 0,
∂(2)f2
∂x2

= x,
∂(2)f2
∂y2

= y,
∂(2)f2
∂z2

= 0,

∂2f1
∂x∂y

= 1,
∂2f1
∂x∂z

= 0,
∂2f1
∂y∂z

= 0,
∂2f2
∂x∂y

= 0,
∂2f2
∂x∂z

= 0,
∂2f2
∂y∂z

= 0.

Plugging these into Definition 1.11.1, with s1 and s2 the degree −2 generators corresponding
to the relations f1 and f2, we get the given relations and differential for Cliff(q). □
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Remark 4.3.2. In the case of the quaternion group of order eight without assuming
that k contains F4, the algebra Cliff(q) is equal to H∗BQ⟨û, v̂, ẑ; s1, s2⟩, where s1 and s2 are
central, and

û2 = v̂2 = ûv̂ + v̂û = s1, ûẑ = ẑû, v̂ẑ = ẑv̂.

The degrees are given by |û| = |v̂| = (−1, 1), |ẑ| = (−1, 4), |s1| = (−2, 2), |s2| = (−2, 3).
The differential d on Cliff(q) is given by

d(û) = vs1 + v2s2, d(v̂) = us1 + u2s2, d(ẑ) = d(s1) = d(s2) = 0.

Theorem 4.3.3. The Hochschild cohomology HH∗H∗BQ is

H∗BQ[ẑ, s1, s2, w1, w2]/(x
2w1 + yw2, y

2w1 + xw2,

xs1 + y2s2, ys1 + x2s2, w1s1 + w2s2, w
2
1, w

2
2, w1w2, ẑ

2).

where
w1 = xx̂+ yŷ, w2 = y2x̂+ x2ŷ.

The generators have degrees |ẑ| = (−1, 4), |s1| = (−2, 2), |s2| = (−2, 3), |w1| = (−1, 0),
|w2| = (−1,−1).

Proof. This follows from Theorem 1.11.5 and Proposition 4.3.1 □

4.4. Loops on BQ
∧
2

Since Q is a finite 2-group, we have ΩBQ
∧
2 ≃ Q. So we should expect to see the Eilenberg–

Moore spectral sequence converging to kQ.

Theorem 4.4.1. If Q is a generalised quaternion group of order 8q with either q ⩾ 2 or
k containing F4, then

Ext∗,∗H∗BQ(k, k) ∼= k⟨x̂, ŷ | x̂2 = ŷ2 = 0⟩ ⊗ k[ẑ, s]/(ẑ2).

The degrees are given by |x̂| = |ŷ| = (−1, 1), |ẑ| = (−1, 4) and |s| = (−2, 3).
If Q is a quaternion group of order eight then

Ext∗,∗H∗BQ(k, k) ∼= k⟨û, v̂ | û2 = v̂2 = ûv̂ + v̂û⟩ ⊗ k[ẑ, s]/(ẑ2).

The degrees are given by |û| = |û| = (−1, 1), |ẑ| = (−1, 4) and |s| = (−2, 3).

Proof. In both cases, H∗BQ is a complete intersection, so we compute the Ext ring
using Theorem 1.11.2. The algebra Cliff(q) is given by Proposition 4.3.1 and Remark 4.3.2.
The generator s1 is redundant, so we eliminate it, and we write s for s2. □

For q = 1, the differentials in the Eilenberg–Moore spectral sequence

Ext∗,∗H∗BQ(k, k)⇒ kQ

are given by d2(s) = û4 = v̂4 = (ûv̂ + v̂û)2 and d3(ẑ) = s2.
If k contains F4 then we can set x̂ = ω̄û + ωv̂ and ŷ = ωû + ω̄v̂, so that Ext∗,∗H∗BQ(k, k)

becomes
k⟨x̂, ŷ | x̂2 = ŷ2 = 0⟩ ⊗ k[ẑ, s]/(ẑ2).

We have ûv̂ + v̂û = x̂ŷ + ŷx̂, and d2(s) = (x̂ŷ + ŷx̂)2, and d2(s2) = 0. Then

E3 = k⟨x̂, ŷ | x̂2 = ŷ2 = 0, (x̂ŷ)2 = (ŷx̂)2⟩ ⊗ k[ẑ, s2]/(ẑ2).
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The differential d3(ẑ) = s2 then gives

E4 = E∞ = k⟨x̂, ŷ | x̂2 = ŷ2 = 0, (x̂ŷ)2 = (ŷx̂)2⟩.
This is the associated graded of kQ with respect to the radical filtration, with x̂ representing
X and ŷ representing Y .

The Eilenberg–Moore spectral sequence in the case q ⩾ 2 is similar, but the differentials
happen in the opposite order. The first differential is d3(ẑ) = s2, giving

E4 = k⟨x̂, ŷ | x̂2 = ŷ2 = 0⟩ ⊗ k[s]/(s2).

Then the next non-zero differential is d4q−2(s) = (x̂ŷ + ŷx̂)2q, so that

E4q−1 = E∞ = k⟨x̂, ŷ | x̂2 = ŷ2 = 0, (x̂ŷ)2q = (ŷx̂)2q⟩.
This is again the associated graded of kQ with respect to the radical filtration, with x̂
representing X and ŷ representing Y .

4.5. Isoclinism

In order to describe the finite groups with generalised quaterion Sylow 2-subgroups in
the next section, we first discuss isoclinism and the groups SL◦(2, pm), which are isoclinic
to the groups SL±(2, pm) described in Section 3.5. We restrict ourselves to the situation we
need, rather than describing isoclinism in general.

Suppose that G is a finite group with a central subgroup of order two, Z = {1, z},
contained in a normal subgroup H of index |G : H| = 2. Then we can make a new group of
the same order as follows. Consider the maps

Z/2→ G× Z/4→ Z/2,
where Z/4 = ⟨γ | γ4 = 1⟩, the first map sends the generator of Z/2 to (z, γ2), and the second
map sends G to Z/2 surjectively with kernel H, and Z/4 to Z/2 with kernel ⟨γ2⟩. Let G̃ be
the kernel of the second map modulo the image of the first. Then G̃ has the same order as G,
and is said to be isoclinic to G. The group G̃ has a normal subgroup of index two isomorphic
to H, and a central subgroup of order two generated by (z, 1) with G̃/⟨(z, 1)⟩ ∼= G/⟨z⟩, but
G and G̃ are not in general isomorphic.

If ρ : G → GL(n,C) is a complex representation of G with z represented as minus the
identity, then we can obtain a complex representation of G̃ by sending elements of the
subgroup of index two isomorphic to H to the same matrices as before, but the elements
outside are multiplied by the complex number i. The character table of G̃ therefore looks just
like that of G except that the character values of elements outside H on the representations
with z acting as minus the identity have been multiplied by i. In particular, the character
degrees are the same.

As an example, let G be a semidihedral group of order 8q, q ⩾ 2, with presentation

G = ⟨g, h | g4q = 1, h2 = 1, hgh−1 = g2q−1⟩
as in Section 3.2. The element z is g2q, and the normal subgroup H of index two is the
(generalised) quaternion subgroup generated by g2 and gh. Then G̃ is generated by g̃ = gγ

and h̃ = hγ, with g2q identified with γ2 = h̃2. We have

h̃g̃h̃−1 = γhgh−1 = γg2q−1 = γ2g̃2q−1 = g̃−1.
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Thus
G̃ = ⟨g̃, h̃ | g̃4q = 1, h̃2 = g̃2q, h̃g̃h̃−1 = g̃−1⟩

which is a presentation for the generalised quaternion group of order 8q. Thus the semidi-
hedral group and generalised quaternion group of the same order are isoclinic.

Now let pm be an odd prime power, and let us apply the same process to the groups
SL±(2, pm) and SU±(2, pm) described in Section 3.5. These have centres of order two, and
normal subgroups SL(2, pm) and SU(2, pm) of index two with (generalised) quaternion Sylow
2-subgroups. These data allow us to define isoclinic groups, which we shall denote SL◦(2, pm)
and SU◦(2, pm), of the same orders as SL±(2, pm) and SU±(2, pm). The groups SL◦(2, pm)
with pm ≡ 3 (mod 4) and SU◦(2, pm) with pm ≡ 1 (mod 4) have generalised quaternion
Sylow 2-subgroups, and will appear in Case 4.6.2 in the next section.

4.6. Groups with generalised quaternion Sylow 2-subgroups

Groups with generalised quaternion Sylow 2-subgroups were classified by Brauer and
Suzuki [39], see also Section VII of Brauer [36], as well as Suzuki [208], Glauberman [124].
The main theorem is that if G has a generalised quaternion Sylow 2-subgroup then the
involution in the centre of a Sylow 2-subgroup has central image in G/O(G). So the quotient
of G/O(G) by this central involution has dihedral Sylow 2-subgroups of order 4q, and no
odd order normal subgroups. Such groups were analysed by Gorenstein and Walter [129].
By Theorem 1.1 of Craven and Glesser [54], these also represent the only possible fusions
systems on a generalised quaternion 2-group. As a consequence, there are three mutually
exclusive possibilities for the fusion in G.

Case 4.6.1. If G has one class of elements of order four then G/O(G) is isomorphic to
either the double cover 2A7 of the alternating group A7, or a subgroup of ΓL(2, pm) with pm

a power of an odd prime, containing SL(2, pm) with odd index. The principal block of kG
has three isomorphism classes of simple modules.

Case 4.6.2. If G has two classes of elements of order four then G has a normal subgroup
of index two, but no normal subgroup of index four. In this case, G/O(G) contains a normal
subgroup of odd index isomorphic to either SL◦(2, pm) with pm ≡ 3 (mod 4) or SU◦(2, pm)
with pm ≡ 1 (mod 4) (see Section 4.5). The principal block of kG has two isomorphism
classes of simple modules.

Case 4.6.3. If G has three classes of elements of order four then O(G) is a normal
complement in G to a Sylow 2-subgroup Q, so that G/O(G) ∼= Q and H∗BG ∼= H∗BQ. The
principal block of kG is isomorphic to kQ, and has one isomorphism class of simple modules,
namely the trivial module.

Proposition 4.6.1. Suppose that G has generalised quaternion Sylow 2-subgroup Q.
Then the homotopy type of BG

∧
2 is determined by |Q| and the number of conjugacy classes

of elements of order four.

Proof. This follows from Theorem 1.7.5 and the classification theorem described above.
□
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Representation theory and cohomology of groups with generalised quaternion Sylow 2-
subgroups, and more generally, blocks with generalised quaternion defect groups and finite
dimensional algebras of quaternion type, are discussed in Erdmann [69,70,72,74–76], as
well as Bogdanic [31,32], Cabanes and Picaronny [46], Carlson, Mazza and Thévenaz [47],
Eisele [65], Erdmann and Skowroński [79], Generalov et al. [94,96,108,118], Hayami [135],
Holm [142], Holm, Kessar and Linckelmann [144], Ivanov et al. [146–149], Kawai and
Sasaki [153], Kessar and Linckelmann [156], Koshitani and Lassueur [161], Langer [164],
Martino and Priddy [179], Müller [184], Olsson [189], Taillefer [210], Zhou and Zimmer-
mann [214]. The homology of ΩBG

∧
2 was computed by Levi [167].

Remark 4.6.2. Let B be the principal block of kG. In Case 4.6.1, one can put a (Z×Z)-
grading on the basic algebra of B, and in Case 4.6.2, one can put a Z-grading on the basic
algebra. In Case 4.6.3, there is no nontrivial grading. However, in all cases, these gradings
are unhelpful, because they induce the trivial grading on cohomology.

We end this section with a table of the various cases of algebras of quaternion type
in characteristic two, in Erdmann’s classification. We note some minor misprints. In the
appendix to [70], the entry k + 2 in the Cartan matrix for type II should be k + s. In the
entry for type Q(3K) in the tables at the end of [74], the last column should say q ≡ 3
mod 4 rather than q ≡ 1 mod 4. It seems unclear what happened to type Q(2B)2 of [74] in
the analysis of [69].

Erdmann [74] [69,70] Case Group H∗ HH∗

III.1(e) — — [94]
III.1(e′) 4.6.3 Q2n [185] [118,135]
Q(2A) [69] I 4.6.2 SU◦(2, pm), [179]

pm ≡ 1 (mod 4)
Q(2B)1 [69] II 4.6.2 SL◦(2, pm), [179] [96,108]

pm ≡ 3 (mod 4)
Q(2B)2 ? — —
Q(2B)3 [69] II (k = 1) — —
Q(3A)1 [70] II — —
Q(3A)2 [70] III 4.6.1 SL(2, pm), [179]

pm ≡ 1 (mod 4)
Q(3B) [70] IV 4.6.1 2A7 [179]
Q(3C) [70] I — —
Q(3D) [70] V — —
Q(3K) [70] VI 4.6.1 SL(2, pm), [179]

pm ≡ 3 (mod 4)

4.7. One class of elements of order four

Let G be a finite group with quaternion or generalised quaternion Sylow 2-subgroups of
order 8q, and let k be a field of characteristic two. In this section we shall be interested in
Case 4.6.1, and our approach will be to work directly with projective resolutions. Let us look
first at the case of SL(2, 3) ∼= Q8 ⋊Z/3, with q = 1. There are three isomorphism classes of
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simple B-modules, all of dimension one, which we shall denote k, ω and ω̄. Their projective
covers are given by the following diagrams.

k

ω ω̄

k k

ω ω̄

k

Pk

ω

ω̄ k

ω ω

ω̄ k

ω

Pω

ω̄

k ω

ω̄ ω̄

k ω

ω̄

Pω̄

Note that k, ω and ω̄ are all periodic with period four. The quiver for B is

(4.7.1)

k

a

��

d

~~

ω

c

==

f
++ ω̄

e

kk

b

TT

with relations

aba = fd, cdc = bf, efe = db,

bab = ce, dcd = ea, fef = ac,

abf = 0, cdb = 0, efd = 0.

These relations imply that

(4.7.2) acd = bac = bfe = cef = dba = dce = eab = fdc = fea = 0,

as well as

(4.7.3) cea = bfd, eac = dbf, ace = fdb,

and that the composite of any five arrows is zero.
For larger values of q, we can choose a prime power pm ≡ 3 (mod 4) such that the 2-part

of pm + 1 is 4q, and take G = SL(2, pm). In this case, we label the two non-trivial simple
modules M and N rather than ω and ω̄. By (1.3) of [76] (see also Theorem VII.8.8 of [74]),
the structures of the projectives are similar to the above, but longer. The quiver is the same,
but the relations are as follows:

(ab)2q−1a = fd, (cd)2q−1c = bf, (ef)2q−1e = db,

(ba)2q−1b = ce, (dc)2q−1d = ea, (fe)2q−1f = ac,

abf = 0, cdb = 0, efd = 0.

Again, these imply relations (4.7.2) and (4.7.3), and that the composite of any 4q+ 1 arrows
is zero.

We have
B ∼= EndB(B)op = EndB(Pk ⊕ PM ⊕ PN)op,
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and we write ā for the element of HomB(PN, Pk) opposite to a, and so on. The relations
satisfied by these are obtained by reversing those satisfied by the original elements.

Theorem 4.7.4. Let G be a finite group with quaternion or generalised quaternion Sylow
2-subgroups and no normal subgroup of index two. Then

H∗BG = Λ(y)⊗ k[z]

is a formal A∞ structure. The degrees of the generators are |y| = −3 and |z| = −4.

Proof. The minimal resolution P∗ of the trivial module over B is given by

· · · (d̄,ā)−−→ Pk
āēc̄= d̄f̄ b̄−−−−−→ Pk

( c̄b̄ )−−→ PM ⊕ PN

(
c̄d̄ f̄
ē b̄ā

)
−−−−−→ PM ⊕ PN

(d̄,ā)−−→ Pk

The cohomology H∗BG ∼= Ext∗B(k, k) as an algebra is easily read off from this, and is as
given in the theorem.

One choice of a map of minimal resolutions ỹ representing y is as follows.

Pk

( c̄b̄ )
//

(1)

��

PM ⊕ PN

(
c̄d̄ f̄
ē b̄ā

)
//

(āē,0)

��

PM ⊕ PN

( d̄ ā )
//

(
c̄d̄ 0
0 0

)
��

Pk
āēc̄= d̄f̄ b̄

//(
f̄ b̄
0

)
��

// Pk
//

(1)

��

PM ⊕ PN
// PM ⊕ PN

// Pk

Pk
āēc̄= d̄f̄ b̄

// Pk
( c̄b̄ )

// PM ⊕ PN(
c̄d̄ f̄
ē b̄ā

)// PM ⊕ PN
( d̄ ā )

// Pk

The element z lifts to the periodicity generator z̃ : P∗ → P∗ of degree −4. We have ỹz̃ = z̃ỹ,
and we have the following homotopy u from ỹ ◦ ỹ to zero.

Pk

( c̄b̄ )
//

(
f̄ b̄
0

)
��

PM ⊕ PN

(
c̄d̄ f̄
ē b̄ā

)
//

( āē 0 )

��

( ē 0
0 0 )

||

PM ⊕ PN

( d̄ ā )
//

( 0 0 )

��

( 0 0 )

||

Pk
āēc̄= d̄f̄ b̄

//

( 0
0 )

��

(0)

||

Pk

( c̄b̄ )
//

(
f̄ b̄
0

)
��

(
0
b̄

)
||

PM ⊕ PN
//

( āē 0 )

��

( ē 0
0 0 )

||

· · ·

( 0 0 )

��

PM ⊕ PN
( d̄ ā )

// Pk
āēc̄= d̄f̄ b̄

// Pk
( c̄b̄ )
// PM ⊕ PN(

c̄d̄ f̄
ē b̄ā

)// PM ⊕ PN
( d̄ ā )

// Pk
// 0

Thus du = ỹ ◦ ỹ. Moreover, it is easy to check that uỹ = 0 and ỹu = 0. Using the recipe of
Kadeishvili given in the proof of Theorem 1.3.8 for computing the A∞ structure on H∗BG
from the differential graded algebra structure on EndB(P∗), this implies that for all n > 2
we have mn(y, . . . , y) = 0. Explicitly, let A = EndB(P∗) with m1 the differential and m2 the
composition of endomorphisms. Then A is quasi-isomorphic to the A∞ algebra C∗BG. The
map f1 takes yεzi to ỹεz̃i, and f2 takes (yzi1 , yzi2) to uzi1+i2 and the remaining monomials to
zero. Then uỹ = 0 implies that m2(f2 ⊗ f1) = 0 while ỹu = 0 implies that m2(f1 ⊗ f2) = 0.
We also check that f2(1 ⊗ m2 − m2 ⊗ 1) = 0. Now applying Remark 1.3.10, we may take
fi = 0 and mi = 0 for i ⩾ 3 to deduce that C∗BG is formal. □

Corollary 4.7.5. Let G be a finite group with quaternion or generalised quaternion
Sylow 2-subgroup, and with no normal subgroup of index two.
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(i) We have HH∗H∗BG ∼= Λ(y, ẑ) ⊗ k[z, ŷ] with |y| = (0,−3), |z| = (0,−4), |ŷ| =
(−1, 3), |ẑ| = (−1, 4).

(ii) We have HH∗C∗BG ∼= HH∗C∗ΩBG
∧
2 has the same generators and relations, but

the degrees are given by |y| = −3, |z| = −4, |ŷ| = 2, |ẑ| = 3.
(iii) We have H∗ΩBG

∧
2
∼= Λ(ẑ)⊗ k[ŷ] with |ẑ| = 3 and |ŷ| = 2. This is formal as an A∞

algebra.
(iv) We have HH∗H∗ΩBG

∧
2
∼= Λ(y, ẑ) ⊗ k[z, ŷ] with |y| = (−1,−2), |z| = (−1,−3),

|ŷ| = (0, 2) and |ẑ| = (0, 3).

Theorem 4.7.6. The category

Dsg(H
∗BG) ≃ Dsg(C

∗BG) ≃ Dcsg(C∗ΩBG
∧

2 ) ≃ Dcsg(H∗ΩBG
∧

2 ) ≃ Db(Λ(ẑ)⊗ k[ŷ, ŷ−1])

has four isomorphism classes of indecomposable objects. As objects in Db(Λ(ẑ) ⊗ k[ŷ, ŷ−1])
they are k[ŷ, ŷ−1] and Λ(ẑ)⊗ k[ŷ, ŷ−1], with zero differential, and their odd shifts. Both have
period two, with ŷ inducing the periodicity.

The category

Dcsg(H
∗BG) ≃ Dcsg(C

∗BG) ≃ Dsg(C∗ΩBG
∧

2 ) ≃ Dsg(H∗ΩBG
∧

2 ) ≃ Db(Λ(y)⊗ k[z, z−1])

has eight isomorphism classes of indecomposable objects. As objects in Db(Λ(y) ⊗ k[z, z−1])
they are k[z, z−1] and Λ(y)⊗k[z, z−1] with zero differential, and their shifts. Both have period
four, with z inducing the periodicity.

The category

Db(H∗BG) ≃ Db(C∗BG) ≃ Db(C∗ΩBG
∧

2 ) ≃ Db(H∗ΩBG
∧

2 )

has a countable infinity of isomorphism classes of indecomposable objects, as follows. As
objects of Db(H∗BG) for n ⩾ 0 there is an indecomposable module with generators u and v,
with znu = yv, and there is one more indecomposable k[z]. These all have zero differential.

4.8. Two classes of elements of order four

In this section, we examine Case 4.6.2, of a finite group G with generalised quaternion
Sylow 2-subgroups of order 8q and two classes of elements of order four. This implies that
q ⩾ 2.

Theorem 4.8.1. Suppose that G is a finite group with generalised quaternion Sylow 2-
subgroups and two classes of elements of order four. Then

H∗BG = k[y, z]/(y4),

with |y| = −1, |z| = −4.

Proof. Without loss of generality, assume that O(G) = 1. Then G has a central
involution s, and the class of the central extension of G/⟨s⟩ by ⟨s⟩, in the notation of
Section 2.13, is t+ y2. So in the spectral sequence of the central extension, we have d2(w) =
t + y2, d3(w) = Sq1(t + y2) = ξ + yt, and H∗BG = k[ξ, y, t]/(ξy, t + y2, ξ + yt) ⊗ k[w4]. In
this ring, we have t = y2, ξ = yt = y3, and y4 = ξy = 0. So letting z be a representative of
w4 in H∗BG, the structure is as given. □
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Theorem 4.8.2. The Ext ring of H∗BG is given by

Ext∗,∗H∗BG(k, k) = Λ(ŷ, ẑ)⊗ k[η]

with η = ⟨ŷ, ŷ, ŷ, ŷ⟩, |ŷ| = (−1, 1), |ẑ| = (−1, 4), and |η| = (−2, 4).

Proof. The algebra H∗BG is a complete intersection. The second partial derivatives of
the relation all vanish, so this follows by an easy application of Theorem 1.11.2. □

Corollary 4.8.3. We have H∗ΩBG
∧
2 = Λ(ŷ, ẑ) ⊗ k[η] with η = ⟨ŷ, ŷ, ŷ, ŷ⟩, |ŷ| = 0,

|ẑ| = 3 and |η| = 2.

Proof. There is no room for differentials in the Eilenberg–Moore spectral sequence

Ext∗,∗H∗BG ⇒ H∗ΩBG
∧

2 .

For the ungrading, the only issue is to choose the correct representative for ŷ so that it
squares to zero. This is possible, because the group of connected components is Z/2, and
the group algebra of this has a non-zero element that squares to zero. □

Theorem 4.8.4. The Hochschild cohomology of H∗BG is given by

HH∗H∗BG = Λ(ŷ, ẑ)⊗ k[y, z, η]/(y4)

with |y| = (0,−1), |z| = (0,−4), |ŷ| = (−1, 1), |ẑ| = (−1, 4) and |η| = (−2, 4).

Proof. By Theorem 4.8.1, H∗BG is a complete intersection, so this follows from The-
orem 1.11.5. □

Theorem 4.8.5. The Hochschild cohomology of H∗ΩBG
∧
2 is given by

HH∗H∗ΩBG
∧

2 = Λ(ŷ, ẑ, η̂)⊗ k[y, z, η]

with |ŷ| = (0, 0), |ẑ| = (0, 3), |η̂| = (−1,−2), |y| = (−1, 0), |z| = (−1,−3) and |η| = (0, 2).

Proof. By Corollary 4.8.3, H∗ΩBG
∧
2 is a complete intersection, so this follows from

Theorem 1.11.5. □

The fact that in Ext∗,∗H∗BG(k, k) we have η = ⟨ŷ, ŷ, ŷ, ŷ⟩ implies that in the spectral sequence

HH∗H∗ΩBG
∧

2 ⇒ HH∗C∗ΩBG
∧

2

we have a differential d3(η̂) = y4.

4.9. Non-formality

Our goal in this section is to prove that in Case 4.6.2, C∗BG is not formal as an A∞
algebra. To do so, we shall show that the Massey triple product ⟨y2, y2, y2⟩ vanishes, but
⟨y2, y2, y2, y2⟩ is equal to y2z.

If G is SL◦(2, pm) with pm ≡ 3 (mod 4) then G is an example of Case 4.6.2, and the
principal block belongs to Erdmann’s [74] class Q(2B)1, which is labelled I in the Appendix
to [69]. If G is SU◦(2, pm) with pm ≡ 1 (mod 4) then G is also an example of Case 4.6.2,
and the principal block belongs to Erdmann’s class Q(2A), which is labelled II in [69]. The
two types are derived equivalent.
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Type Q(2B)1 is the easier to handle, so we assume that we are in the case of SL◦(2, pm)
with pm ≡ 3 (mod 4). The quiver for the principal block B is

ka
99

b
**
M

c
hh d

hh

with relations

bc = d2q−1, db = bacba, cd = acbac, a2 = cbacb+ λ(acb)2, ba2 = 0

for some value of the parameter λ ∈ k that has not been determined. Note that these
relations imply that

bcb = d2q−1b = d2q−2bacba = d2q−3bacba2cba = 0,

cbc = cd2q−1 = acbacd2q−2 = acba2cbacd2q−3 = 0,

a2c = cbacbc+ λacbacbc = 0.

The projective covers of the simple modules k and M have the following diagrams (beware
of the extra socle term in the expression for a2):

k

M k

k M

k k

M k

k M

k

M

k M

k M

M
...

k M

k M

M

where the number of copies of M down the right hand side of the projective cover of M is
2q − 1.

The minimal resolution of k is periodic with period four, and has the following form:

· · · → Pk ⊕ PM
(ā,b̄)−−→ Pk

(ā3)−−→ Pk

(
ā+λb̄c̄āb̄c̄

c̄

)
−−−−−−−→ Pk ⊕ PM

(
ā b̄c̄āb̄

c̄āb̄c̄+λc̄āb̄c̄ā d̄

)
−−−−−−−−−−−−→ Pk ⊕ PM

(ā,b̄)−−→ Pk

We lift y ∈ Ext1kQ(k, k) to a map ỹ of resolutions as follows:

Pk ⊕ PM

(1,0)

��

(ā,b̄)
// Pk

(ā3)
//

(ā2)

��

Pk

(
ā+λb̄c̄āb̄c̄

c̄

)
//

(
1
λc̄

)
��

Pk ⊕ PM

(
ā b̄c̄āb̄

c̄āb̄c̄+λc̄āb̄c̄ā d̄

)
//

(
1 0
0 c̄āb̄

)
��

Pk ⊕ PM
(ā,b̄)

//

(1,0)

��

Pk

Pk
(ā3)

// Pk (
ā+λb̄c̄āb̄c̄

c̄

) // Pk ⊕ PM(
ā b̄c̄āb̄

c̄āb̄c̄+λc̄āb̄c̄ā d̄

)// Pk ⊕ PM
(ā,b̄)

// Pk
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The composite ỹ8 is zero, and we have the following homotopy u1 from ỹ4 to zero:

Pk
(ā3)

//

(ā2)

��

Pk

(
ā+λb̄c̄āb̄c̄

c̄

)
//

(ā2)

��

(0)

��

Pk ⊕ PM

(
ā b̄c̄āb̄

c̄āb̄c̄+λc̄āb̄c̄ā d̄

)
//

(
ā2 0
0 0

)
��

(0,b̄c̄āb̄
+λāb̄c̄āb̄)

zz

Pk ⊕ PM
(ā,b̄)

//

(
ā2 0
0 0

)

��

(
0 b̄
0 λc̄b̄

)
yy

Pk
(ā3)

//

(ā2)

��

( ā0 )

��

Pk
// · · ·

Pk
(ā3)

// Pk (
ā+λb̄c̄āb̄c̄

c̄

) // Pk ⊕ PM(
ā b̄c̄āb̄

c̄āb̄c̄+λc̄āb̄c̄ā d̄

)// Pk ⊕ PM
(ā,b̄)

// Pk

This satisfies u21 = 0 and u1ỹ
4 = ỹ4u1.

The composite u1ỹ is given by the matrices

(0), (λb̄c̄āb̄c̄+ λ2āb̄c̄āb̄c̄),

(
0 b̄c̄āb̄
0 0

)
,

(
ā 0
0 0

)
while ỹu1 is given by the matrices

(ā), (0),

(
0 b̄c̄āb̄+ λāb̄c̄āb̄
0 λ2c̄āb̄c̄āb̄

)
,

(
0 b̄
0 0

)
Since u1ỹ + ỹu1 is non-zero, we need to find a homotopy from it to zero. The following is
such a homotopy u2:

(0), (0, λb̄c̄āb̄+ λ2āb̄c̄āb̄),

(
0 0
0 0

)
,

(
1
0

)
Then ỹu2 + u2ỹ is a homotopy from ỹ2u1 + u1ỹ

2 to zero, ỹ2u2 + ỹu2ỹ + u2ỹ
2 is a homotopy

from ỹ3u1+u1ỹ
3 to zero, and ỹ3u2+ ỹ2u2ỹ+ ỹu2ỹ

2+u2ỹ
3 is a homotopy from ỹ4u1+u1ỹ

4 = 0
to zero.

At the next stage, the relevant composites are given by the matrices

ỹ3u2 :

(
0
0

)
, (0, λb̄c̄āb̄+ λ2āb̄c̄āb̄), (0, 0),

(
ā2

0

)
ỹ2u2ỹ :

(
λ3āb̄c̄āb̄c̄

0

)
, (0, 0), (ā2, 0),

(
0
0

)
ỹu2ỹ

2 :

(
0
0

)
, (1, 0), (0, 0),

(
0
0

)
u2ỹ

3 :

(
1
0

)
, (0, 0), (0, 0),

(
0
0

)
.

Thus ỹ3u2 + ỹ2u2ỹ + ỹu2ỹ
2 + u2ỹ

3 + u21 is given by the matrices(
1 + λ3āb̄c̄āb̄c̄

0

)
, (1, λb̄c̄āb̄+ λ2āb̄c̄āb̄), (ā2, 0),

(
ā2

0

)
.

This is homotopic to ỹ2z̃, which is given by the matrices(
1

λc̄āb̄c̄

)
, (1, 0), (ā2, 0)

(
ā2

0

)
.
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The following is such a homotopy u3:(
λ2ā λ2b̄c̄āb̄+ λ3āb̄c̄āb̄

λ2c̄āb̄c̄ā λc̄āb̄

)
, (0, 0), (0),

(
0
0

)
So we set

f1(y) = ỹ,

f2(y, y
3) = f2(y

3, y) = f2(y
2, y2) = u1,

f3(y, y
3, y) = u2,

f3(y
2, y2, y2) = ỹu2 + u2ỹ,

f3(y
3, y, y3) = ỹ2u2 + ỹu2ỹ + u2ỹ

2 + ỹ2z̃,

f4(y
3, y, y3, y) = f4(y

2, y2, y2, y2) = f4(y, y
3, y, y3) = u3

So we have m3 = 0, m1f3 = m2(f2 ⊗ f1 + f1 ⊗ f2), and

(4.9.1) m4(y
3, y, y3, y) = m4(y

2, y2, y2, y2) = m4(y, y
3, y, y3) = y2z.

We can now check that the values of m1f4 + f1m4 and m2(f3⊗ f1 + f2⊗ f2 + f1⊗ f3) on the
quadruples (y3, y, y3, y), (y2, y2, y2, y2) and (y, y3, y, y3) are all equal to

ỹ3u2 + ỹ2u2ỹ + ỹu2ỹ
2 + u2ỹ

3 + u21.

Equation (4.9.1) may now be interpreted in terms of Hochschild cohomology, using Propo-
sition 1.4.2. Since m3 = 0, m4 is a Hochschild cocycle. It represents the element η2y2z in
degree (−4, 2), which by Theorem 4.8.4 is non-zero.

At the next stage, the expression m2(f4 ⊗ f1 + f3 ⊗ f2 + f2 ⊗ f3 + f1 ⊗ f4) sends the
5-tuple (y2, y2, y2, y2, y2) to u3ỹ

2 + (ỹu2 + u2ỹ)u1 + u1(ỹu2 + u2ỹ) + ỹ2u3, which is

(0),
(
λ2ā3 0

)
,

(
0 0
0 0

)
,

(
λ2ā3

0

)
.

This is homotopic to zero, with homotopy u4 given by

(0),
(
λ2 λ3b̄c̄āb̄

)
,

(
0 0
0 0

)
,

(
λ2

0

)
.

Thus we can take m5 = 0 and f5(y
2, y2, y2, y2, y2) = u4, to obtain

m1f5 + f1m5 = m2(f4 ⊗ f1 + f3 ⊗ f2 + f2 ⊗ f3 + f1 ⊗ f4).

Theorem 4.9.2. If G is a finite group with generalised quaternion Sylow 2-subgroups
and two classes of elements of order four, then C∗BG and C∗ΩBG

∧
2 are not formal as A∞

algebras.

Proof. We have just shown that H∗BG is not formal, since we can choose m3 to be
zero, but then m4 cannot be chosen to be zero. The fact that H∗ΩBG

∧
2 is not formal follows

from the relation m4(ỹ, ỹ, ỹ, ỹ) = η. This in turn follows from the fact that the Massey
product ⟨ỹ, ỹ, ỹ, ỹ⟩ = η in Corollary 4.8.3 has no indeterminacy, see Theorem 1.4.5. □

This finally allows us to compute HH∗C∗BG ∼= HH∗C∗ΩBG
∧
2 .

Theorem 4.9.3. We have HH∗C∗BG ∼= HH∗C∗ΩBG
∧
2
∼= Λ(ŷ)⊗k[y, z, η]/(y4, y2η2) with

|y| = −1, |z| = −4, |ŷ| = 0, η = 2.
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Proof. The computation above of m3 and m4 in H∗BG, together with Corollary 4.8.3
show that in the spectral sequence

HH∗H∗BG⇒ HH∗C∗BG

we have d2 = 0 and d3(ẑ) = y2η2. This then implies that η is a universal cycle, and E4 = E∞.
Ungrading y4 = 0 in E∞, we see that y4 has to be a linear combination of the elements

y2zη and ziη2i−2 with i ⩾ 2. Since ỹ8 = 0, the relation ungrading y4 = 0 has to satisfy
y8 = 0, so it cannot involve the elements ziη2i−2. So y4 is some multiple of y2zη. But if it’s
a non-zero multiple then y8 is a non-zero multiple of y2z3η3. This contradiction shows that
y4 = 0 in HH∗H∗BG.

Ungrading y2η2 = 0 in E∞, we see that y2η2 is a linear combination of the elements
ziη2i+1 with i ⩾ 1. Again, since ỹ8 = 0, y2η2 is nilpotent, and so we have y2η2 = 0 in
HH∗H∗BG. □

It follows from this, that in the spectral sequence

HH∗H∗ΩBG
∧

2 ⇒ HH∗C∗ΩBG
∧

2
∼= HH∗C∗BG

we are forced to have d2(ẑ) = y2η2, d3(η̂) = y4, to give the same answer for HH∗C∗BG.
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CHAPTER 5

Beyond tame

5.1. Introduction

In this chapter we discuss C∗BG and C∗ΩBG
∧
p beyond the tame case. We’ve seen in

our discussion of tame representation type, that H∗ΩBG
∧
p always has polynomial growth.

Furthermore, there is always a finitely generated central subalgebra over which H∗ΩBG
∧
p is

finitely generated as a module.
This is not always the case for finite groups. There is a dichotomy, discovered by Ran

Levi, between polynomial and exponential growth for H∗ΩBG
∧
p , and we discuss this in

Section 5.3. We give examples both of exponential growth and of polynomial growth beyond
tame representation type. For example, groups of Lie type in non-defining characteristic are
always of polynomial growth, as we shall explain in Section 5.7.

The other aspect revealed by our discussion of tame representation type is that in some
unexpected cases it turns out that C∗BG is formal as an A∞ algebra. We begin with a
discussion of this phenomenon.

5.2. Formality

One of the surprising aspects of our work is the discovery that C∗BG is formal in two of
the cases with semidihedral Sylow 2-subgroups, see Theorems 3.7.16 and 3.13.13, and also
when G has generalised quaternion Sylow subgroups and no normal subgroup of index two,
see Theorem 4.7.4. In this section, we discuss formality in general for the A∞ algebra C∗BG.
We begin with finite p-groups.

Theorem 5.2.1. Let G be a finite p-group. Then the following are equivalent.

(i) The comultiplication on a minimal resolution of k as a kG-module is strictly coas-
sociative.

(ii) The A∞ algebra C∗BG is formal.
(iii) H∗BG is a polynomial ring.
(iv) p = 2 and G is an elementary abelian 2-group.

Proof. (i)⇒ (ii): Let P∗ be a minimal resolution of k as a kG-module. Then the differ-
ential on HomkG(P∗, k) is zero, and so H∗BG ∼= HomkG(P∗, k) with the multiplication induced
from the comultiplication on P∗. Since the comultiplication is coassociative, HomkG(P∗, k) is
a DG algebra with zero differential, and is therefore formal.

(ii) ⇒ (iii): If C∗BG is formal then the Eilenberg–Moore spectral sequence gives an
isomorphism Ext∗,∗H∗BG(k, k) ∼= kG. In particular, Ext∗,∗H∗BG(k, k) has finite total dimension
over k, so H∗BG has finite global dimension. It follows that it is regular, and hence a
polynomial ring.

(iii) ⇔ (iv) is proved in Corollary 6.6 of Benson and Carlson [18].
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(iv) ⇒ (i): If G is cyclic of order two then the reduced bar resolution is minimal, so G
satisfies (i). If G is an elementary abelian 2-group then we express G as a direct product of
cyclic groups of order two, and form the tensor product of their minimal resolutions. The
comultiplication resulting from this is strictly coassociative. □

As an illustration of the grading techniques, we prove the following, which also gives
another proof of (iv) ⇒ (ii) in Theorem 5.2.1.

Theorem 5.2.2. Suppose that G is a finite group with elementary abelian Sylow 2-
subgroup D, and k is a field of characteristic two. Then there is a grading on kG such that
the A∞ algebra C∗BG is intrinsically formal. In particular, without reference to grading,
C∗BG is formal.

Proof. By Theorem 1.8.2 and Remark 1.8.3, we can suppose that G is a semidirect
product D ⋊H, with H a p′-subgroup of Aut(D).

Let D = ⟨g1, . . . , gr⟩ ∼= (Z/2)r. The group H acts on kD, and this gives a short exact
sequene of kH-modules

0→ J2(kD)→ J(kD)→ J(kD)/J2(kD)→ 0.

Since p does not divide |H|, this sequence splits. Let U be an invariant complement to
J2(kD) in J(kD), and let X1, . . . , Xr be a basis for U . Then

kD = k[X1, . . . , Xr]/(X
2
1 , . . . , X

2
r ).

We can put a grading on kD by setting |Xi| = 1. Putting elements of H in degree zero then
defines a grading on kG. This gives us an H-invariant grading on H∗BD = k[x1, . . . , xr] with
|xi| = (−1,−1). Then the ring H∗BG = (H∗BD)H is doubly graded. The cohomological
degrees of elements are equal to their internal degrees. The A∞ maps mi : H

∗BG→ H∗BG
have degrees (i − 2, 0), see Theorem 1.3.8. So for i > 2 we have mi = 0, since either the
source or the target is zero. □

Remark 5.2.3. A discussion of formality for C∗BG in the case of a compact Lie group G
can be found in Benson and Greenlees [21]. The last section of this paper has an discussion
of the literature.

5.3. Polynomial versus exponential growth

Definition 5.3.1. Let f be a real valued function on the non-negative integers. We say
that f grows at most polynomially if there exists a polynomial function p such that for all
n ⩾ 0 we have |f(n)| ⩽ p(n).

In commutative algebra, we have the following theorem, characterising complete inter-
sections.

Theorem 5.3.2 (Gulliksen [134], Theorem 2.3). Let R be a commutative local ring with
residue field k. Then R is a complete intersection if and only if Ext∗R(k, k) has polynomial
growth.

The corresponding theorem for loop space homology of finite complexes is as follows.
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Definition 5.3.3. Let f be a real valued function on the non-negative integers. We say
that f grows at least semi-exponentially if there exists a constant C > 1 such that for n large
enough

∑n
i=0 |f(i)| ⩾ C

√
n.

Example 5.3.4. The partition function p(n) satisfies log p(n) ∼ π
√

2n
3

as n → ∞, so

p(n) has semi-exponential growth.

Theorem 5.3.5 (Felix, Halperin and Thomas [81]). Let X be a simply connected finite
CW complex, and p a prime. Then Hn(ΩX;Fp) grows either at most polynomially, or at
least semi-exponentially.

Remark 5.3.6. Anick [3] found examples where the growth is semi-exponential but not
exponential, in the contexts of both Theorem 5.3.2 and Theorem 5.3.5.

Definition 5.3.7. A finite CW complex is said to be elliptic at p if if H∗(ΩX;Fp) has
polynomial growth.

Using Theorem 5.3.5, Levi [169] proved the following.

Theorem 5.3.8. For a finite group G, the loop space homology H∗ΩBG
∧
p grows either at

most polynomially or at least semi-exponentially.

Examples are given in Levi [168,169] of groups for which the homology contains a free
algebra on two variables, so that the growth is exponential. No examples are currently known
where the growth is at least semi-exponential but not exponential.

Remark 5.3.9. A discussion of various derived notions of complete intersections, in the
context of polynomial versus semi-exponential growth, can be found in Benson, Greenlees
and Shamir [24], Greenlees, Hess and Shamir [132]. The hope is that for spaces of the form
BG

∧
p with G a finite group, these notions coincide, and describe when H∗ΩBG

∧
p has at most

polynomial growth.

5.4. An exponential compact Lie example

For non-connected compact Lie groups, it is not hard to cook up examples of exponential
growth. In this section, we give an example which is not only of exponential growth, but
also formal. In Section 5.5 we give a finite group example based on this one.

Let k = Q, let T be an r-dimensional torus, and let G = T ⋊ Z/2, where the involution
inverts every element of T . Then H∗BT = Q[x1, . . . , xr] with |xi| = 2 for 1 ⩽ i ⩽ r, and
H∗BG is the subalgebra generated by xi,j = xixj with 1 ⩽ i ⩽ j ⩽ r. The relations are

xi,ixj,j = x2i,j, xi,ixj,k = xi,jxi,k, xi,jxk,ℓ = xi,kxj,ℓ = xi,ℓxj,k.

Here, distinct letters in the subscripts represent distinct indices. This is a Koszul algebra, so
Ext∗H∗BG(k, k) is the Koszul dual, which is a non-commutative algebra generated by degree
(−1, 2) elements x̂i,j with relations

x̂2i,i = 0, [x̂i,i, x̂i,j] = 0, [x̂i,i, x̂j,j] + x̂2i,j = 0,

[x̂i,i, x̂j,k] + [x̂i,j, x̂i,k] = 0, [x̂i,j, x̂k,ℓ] + [x̂i,k, x̂j,ℓ] + [x̂i,ℓ, x̂j,k] = 0.

Note that here, for elements x, x′ of odd degree, [x, x′] means xx′ + x′x.
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The Eilenberg–Moore spectral sequence

Ext∗H∗BG(Q,Q)⇒ H∗ΩBG
∧

Q

has no room for differentials or ungrading problems, so H∗ΩBG
∧

Q is the same ring as
Ext∗H∗BG(Q,Q), but where the generators x̂i,j are in degree one. For r ⩾ 3, this has ex-
ponential growth. For example, when r = 3 it is a free module on eight generators over the
free subalgebra Q⟨x̂1,2, x̂1,3, x̂2,3⟩, and the quotient by the ideal generated by x̂1,2, x̂1,3, x̂2,3
is an exterior algebra on x̂1,1, x̂2,2, x̂3,3. The Poincaré series for r = 3 is given by

∞∑
n=0

tn dimkHnΩBG
∧

Q =
(1 + t)3

1− 3t
= 1 + 6t+ 21t2 + 64t3 + 192t4 + 576t5 + · · ·

For general r, we have

∞∑
n=0

tn dimkH
2nBG =

∑⌊ r
2
⌋

i=0

(
r
2i

)
ti

(1− t)r
,

∞∑
n=0

tn dimkHnΩBG
∧

Q =
(1 + t)r∑⌊ r
2
⌋

i=0

(
r
2i

)
(−t)i

.

This is an example of the general relation (1.12.5) between the Poincaré series of a Koszul
algebra and its dual. To apply the formula literally, the variable t in the first sum is replaced
by st−2, and in the second by st.

Remark 5.4.1. It follows from the main theorem of Benson and Greenlees [21] that for
this family of examples, the A∞ structure on H∗BG is formal. Then since it is a Koszul
algebra, it follows that the Koszul dual H∗ΩBG

∧

Q is also formal.

5.5. An exponential finite group example

The loop space homology in the cases discussed in Chapters 2–4 is of polynomial growth,
and almost commutative, in the sense that there is a central subring over which the whole
ring is finitely generated as a module. In this section, for contrast, we examine a finite group
example where H∗ΩBG

∧
p has exponential growth. We take our cue from what happened in

the compact Lie example of Section 5.4. This is related to Levi’s example but is somewhat
simpler to analyse using our technique of introducing an internal grading on the group
algebra.

Let p be an odd prime, k be a field of characteristic p, and let G be the group

(Z/p× Z/p) ⋊ Z/2
given by the presentation

⟨g, h, s | gp = hp = s2 = 1, gh = hg, sg = g−1s, sh = h−1s⟩.
Let H be the subgroup of index two generated by g and h, and let X =

∑p−1
i=1 g

i/i and

Y =
∑p−1

i=1 h
i/i as elements of kH ⩽ kG. Then we have the following presentation for the

group algebra:

kG = k⟨X, Y, s | Xp = Y p = 0, XY = Y X, sX = −Xs, sY = −Y s, s2 = 1⟩.
We can put a double grading on this by setting |X| = (1, 0), |Y | = (0, 1) and |s| = (0, 0).
Then

H∗BH = k[u, v]⊗ Λ(x, y)

104



with |u| = (−2,−p, 0), |v| = (−2, 0,−p), |x| = (−1,−1, 0) and |y| = (−1, 0,−1). The
cohomology ring H∗BG is equal to the invariants of the action of s, which is the subring
generated by a = u2, b = uv, c = v2, α = xu, β = xv, γ = yu, δ = yv, and ε = xy. Regarding
a, b and c as polynomial generators and the rest as exterior generators, the further relations
are:

ac = b2, aβ = bα, bβ = cα, aδ = bγ, bδ = cγ, aε = αγ, bε = αδ = βγ,

cε = βδ, αβ = 0, γδ = 0, αε = 0, βε = 0, γε = 0, δε = 0.

Ignoring the higher multiplications, this is a Koszul algebra, and so its Ext algebra is the
Koszul dual, with eight generators and 16 relations:

Ext∗,∗H∗BG(k, k) = k⟨â, b̂, ĉ, α̂, β̂, γ̂, δ̂, ε̂ | â2 = ĉ2 = [â, b̂] = [b̂, ĉ] = [â, ĉ] + b̂2 = 0,

[â, α̂] = [â, γ̂] = [ĉ, β̂] = [ĉ, δ̂] = 0,

[â, β̂] + [b̂, α̂] = [â, δ̂] + [b̂, γ̂] = [b̂, β̂] + [ĉ, α̂] = [b̂, δ̂] + [ĉ, γ̂] = 0,

[â, ε̂] + [α̂, γ̂] = [b̂, ε̂] + [α̂, δ̂] + [β̂, γ̂] = [ĉ, ε̂] + [β̂, δ̂] = 0 ⟩.
The degrees are

|â| = (−1, 4, 2p, 0), |b̂| = (−1, 4, p, p), |ĉ| = (−1, 4, 0, 2p), |α̂| = (−1, 3, p+ 1, 0),

|β̂| = (−1, 3, 1, p), |γ̂| = (−1, 3, p, 1), |δ̂| = (−1, 3, 0, p+ 1), |ε̂| = (−1, 2, 1, 1).

Since the differentials in the Eilenberg–Moore spectral sequence preserve the two internal
degrees, it is easy to see that there is no room for non-zero differentials. For example, dn(â)
has last degree zero, so it can only involve â and α̂. No monomial in these has the appropriate
third degree.

Similarly, when we ungrade the E∞ page of the spectral sequence, there are no other
monomials of the same internal degrees as the quadratic terms in the list, so the ungraded
relations are the same as in E∞. It follows that H∗ΩBG

∧
p
∼= Ext∗,∗H∗BG(k, k) is as described

above, but where the first two degrees have been added:

|â| = (3, 2p, 0), |b̂| = (3, p, p), |ĉ| = (3, 0, 2p), |α̂| = (2, p+ 1, 0),

|β̂| = (2, 1, p), |γ̂| = (2, p, 1), |δ̂| = (2, 0, p+ 1), |ε̂| = (1, 1, 1).

This algebra contains for example the free algebra k⟨β̂, γ̂⟩, and therefore has exponential
growth.

To obtain this Poincaré series, we use the formula (1.12.5). For R = H∗BG we have

pR(s, t) =
1 + st−2 + 4st−3 + st−4 + s2t−6

(1− st−4)2
.

For R! = H∗ΩBG
∧
p we have

pR!(s, t) = 1/pR(−st−1, t−1) =
(1 + st3)2

1− st− 4st2 − st3 + s2t4
.

Setting s = 1 and cancelling gives the required Poincaré series.
∞∑
n=0

tn dimkHnΩBG
∧

p =
(1− t+ t2)2

1− 3t+ t2
= 1 + t+ 5t2 + 12t3 + 32t4 + 84t5 + 220t6 + 576t7 + · · ·
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which agrees with the answer given in Section 2 of [16] in the case p = 3.

Remark 5.5.1. A similar but more complicated analysis holds in larger rank. Let G =
(Z/p)r⋊Z/2 with the involution inverting every element of order p, and let H be the normal
subgroup of index two. The group algebra kG has r internal gradings, one for each factor of
H. The cohomology ring H∗BG is equal to the invariants of the involution on H∗BH. This
is again a Koszul algebra, with Koszul dual Ext∗,∗H∗BG(k, k). There is no room for non-zero
differentials in the Eilenberg–Moore spectral sequence, and no ungrading problems, so we
have H∗ΩBG

∧
p = Ext∗,∗H∗BG(k, k). This again has exponential growth, but the task of writing

down the Poincaré series is more complicated.

5.6. Reflection groups

We do not want to give the impression that polynomial growth for H∗ΩBG
∧
p only happens

for finite or tame representation type. We therefore mention the following. In the next two
sections we give further examples of polynomial growth.

Theorem 5.6.1. Suppose that G is a semidirect product E ⋊ H with E an elementary
abelian p-group (p odd), and H a p-adic reflection group of order prime to p, acting on E
via the reduction modulo p of the reflection representation. Then H∗BG is a polynomial
tensor exterior algebra. In this case, H∗ΩBG

∧
p is also usually polynomial tensor exterior,

and always has polynomial growth.

Proof. We have H∗BG = (H∗BE)H , the invariants of H on H∗BE. It follows from
a theorem of Solomon [203] that H∗BG is a polynomial algebra tensored with an exterior
algebra. So Ext∗H∗BG(k, k) is also polynomial tensor exterior, and has polynomial growth.
It then follows from the Eilenberg–Moore spectral sequence that H∗ΩBG

∧
p has polynomial

growth. □

Remark 5.6.2. In the theorem, if we use a single grading on kG by powers of the
radical, the polynomial generators for H∗BG lie in degrees (−2ni,−pni) and the exterior
ones in degrees (−2ni+1,−p(ni−1)−1), where ni runs over the degrees of the fundamental
invariants of the reflection group H. So the polynomial generators of Ext∗H∗BG(k, k) are in
degree (−1, 2ni − 1, p(ni − 1) + 1) and the exterior generators are in degrees (−1, 2ni, pni).
There is no room for non-zero differentials, but it occasionally happens that the exterior
relations ungrade to have non-zero squares and commutators in the polynomial part. An
example of this is the symmetric group of degree three at the prime three, with E = Z/3
and H = Z/2.

5.7. Groups of Lie type in non-defining characteristic

In this section, we describe why, if G is a finite group of Lie type in non-defining char-
acteristic p, H∗ΩBG

∧
p has polynomial growth. This is a consequence of a construction

of Quillen [191], elaborated in Friedlander [84,85], Fiedorowicz and Priddy [82], Wilker-
son [211], and Kleinerman [157].

Let G be a connected compact Lie group, and let G(pm) be the corresponding finite
group of Lie type over the finite field Fpm . Let ℓ be a prime different from p, and k a field
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of characteristic ℓ. Then there is an Adams operation ψp
m

: BG
∧

ℓ → BG
∧

ℓ and a homotopy
fibre square

BG(pm)
∧

ℓ
//

��

BG
∧

ℓ

id×id
��

BG
∧

ℓ

id×ψpm

// BG
∧

ℓ ×BG
∧

ℓ .

In the case of a twisted group of Lie type, ψp
m

is replaced by its composite with a diagram
automorphism, and the same homotopy fibre square results.

We consider the Eilenberg–Moore spectral sequence of this fibre square with coefficients
in k:

TorH
∗BG⊗H∗BG

∗,∗ (H∗BG,H∗BG)⇒ H∗BG(pm)

If ℓ is not a torsion prime for G then H∗BG is a polynomial ring. In this case, the spectral
sequence stops at the E2 page, and gives a finite filtration on H∗BG(pm) whose associated
graded is a polynomial algebra tensored with an exterior algebra. The degrees of the polyno-
mial generators are twice the degrees of suitable fundamental invariants of the Weyl group,
while the degrees of the exterior generators are one less.

If ℓ is an odd prime then there is no ungrading problem, and this gives the structure
of the cohomology as a polynomial tensor exterior algebra. On the other hand, if ℓ = 2,
it can happen that the exterior generators ungrade to give elements whose square is not
necessarily zero, but is expressible in terms of the other generators. The exact relations
can be difficult to determine. Independently of the exact relations, the answer is always a
complete intersection.

We now apply another Eilenberg–Moore spectral sequence (see Remark 1.6.3)

Ext∗,∗H∗BG(pm)(k, k)⇒ H∗ΩBG(pm)
∧

ℓ .

So the associated graded of H∗ΩBG(pm)
∧

ℓ is usually a polynomial tensor exterior algebra. If
ℓ = 2, the computation has to be made using Theorem 1.11.2. The result is that H∗ΩBG(pm)
has polynomial growth. It is finite as a module over its centre, and the centre is finitely
generated as a k-algebra.

Example 5.7.1 (Quillen [191]). Let G = U(n), of Lie type An−1. We have

H∗BU(n) = k[c1, . . . , cn],

where the ci are the Chern classes of degree 2n. Then G(pm) is the general linear group
GL(n, pm).

For ℓ odd, this gives

H∗BGL(n, pm) = k[cr, c2r, . . . , ctr]⊗ Λ(er, e2r, . . . , etr)

where r is the order of pm modulo ℓ, and t is the integer part of n/r. The degrees are
|cir| = −2ir, |eir| = −2ir + 1. Then the associated graded of H∗ΩBGL(n, pm)

∧

ℓ is

k[êr, ê2r, . . . , êtr]⊗ Λ(ĉr, ĉ2r, . . . , ĉtr)

with |êir| = 2ir − 2, |ĉir| = 2ir − 1. Beware that there is no reason why the answer should
be graded commutative, so it is not obvious how to ungrade the square zero relations for the
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ĉir. For example, in characteristic three we have

H∗ΩBGL(2, 2)
∧

3 = k[ê2, ĉ2]/(ĉ
2
2 + ê32),

see Section 1.13. But in any case, the answer has polynomial growth.
For ℓ = 2, we have r = 1 and t = n. In this case, if pm ≡ 1 (mod 4) we get the same

answer as above, but if pm ≡ 3 (mod 4) then we have

e2j =

j−1∑
a=0

cac2j−1−a.

Here, c2j−1−a is interpreted as zero if 2j− 1− a > n. This gives a complete intersection with
Krull dimension n, with n + ⌊n

2
⌋ generators e1, . . . , en, c2, c4, . . . and ⌊n

2
⌋ relations. So by

Theorem 1.11.2, the E2 term of the Eilenberg–Moore spectral sequence is finite as a module
over a central polynomial subring with ⌊n

2
⌋ generators. So H∗ΩBGL(n, pm)

∧

ℓ has polynomial
growth.

Example 5.7.2 (Kleinerman [157]). Let G = G2 and ℓ = 2. Two is a torsion prime for
G, and we have

H∗BG2 = k[d4, d6, d7].

The Eilenberg–Moore spectral sequence gives the associated graded of H∗BG2(p
m) (p an odd

prime) to be k[d4, d6, d7]⊗Λ(y3, y5, y6). Ungrading the relations gives y23 = y6, y
2
5 = y3d7+y6d4

and y26 = y5d7 + y6d6 (Grbić [130]). So H∗BG2(p
m) is the complete intersection

k[d4, d6, d7, y3, y5]/(y
2
5 + y3d7 + y23d4, y

4
3 + y5d7 + y23d6).

Using Theorem 1.11.2, we see that the E2 page of the Eilenberg–Moore spectral sequence
for H∗ΩBG2(p

m)
∧
2 is generated over the central subalgebra k[s10, s12] by elements d̂4, d̂6, d̂7,

ŷ3, ŷ5. The relations say that all squares and commutators of the latter elements are zero
except for

ŷ25 = [d̂7, ŷ3] = s10, [d̂7, ŷ5] = s12.

There is no room for differentials, but ungrading the E∞ page requires some work. This is
done in the paper of Levi and Seeliger [172], where they also compute the coproduct and
action of the dual Steenrod algebra. It turns out that E∞ as given above is isomorphic to
H∗ΩBG2(p

m)
∧
2 . The degrees are added, so that the elements d̂i and ŷi now have degree i−1,

and the elements sj have degree j − 2.
This is of polynomial growth, since it is finitely generated (actually free of rank 25) over

the central polynomial subalgebra k[s10, s12] with Poincaré series
∞∑
n=0

dimkHnΩBG2(p
m)

∧

2 =
(1 + t2)(1 + t3)(1 + t4)(1 + t5)(1 + t6)

(1− t8)(1− t10)
=

(1 + t3)(1 + t6)

(1− t2)(1− t5)
.

5.8. An exotic example: BSol(q)

Let q be an odd prime power, and let Sol(q) be the exotic Benson–Solomon 2-local
finite group. This was originally discussed as a configuration that was proved not to come
from a finite group in Solomon [204]. Its classifying space BSol(q) was then discussed in
Benson [14], and finally it was constructed as a fusion system and linking system by Levi
and Oliver [171]. Using the fibre square like the one in the previous section, the associated
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graded of H∗BSol(q) was computed in [14] to be a polynomial ring on generators in degrees
8, 12, 14 and 15 tensored with an exterior algebra on generators in degrees 7, 11, 13 and
14. The ungrading was carried out by Grbić [130], who computed it to be the codimension
three complete intersection

H∗BSol(q) = k[u8, u12, u14, u15, y7, y11, y13]/(f22, f26, f28)

where the (homological) degrees are minus the subscripts, and where

f22 = y211 + u8y
2
7 + u15y7,

f26 = y213 + u12y
2
7 + u15y11,

f28 = y47 + u14y
2
7 + u15y13.

Applying Theorem 1.11.2, we find that Ext∗∗H∗BSol(q)(k, k) is generated over a central sub-
algebra k[s22, s26, s28] by elements û8, û12, û14, û15, ŷ7, ŷ11, ŷ13. The degrees of the elements ûi
and ŷi are (−1, i), while the degrees of the sj are (−2, j). The relations say that all squares
and commutators of the latter elements are zero except for

ŷ211 = [û15, ŷ7] = s22, ŷ213 = [û15, ŷ11] = s26, [û15, ŷ13] = s28.

In the Eilenberg–Moore spectral sequence

Ext∗∗H∗BSol(q)(k, k)⇒ H∗ΩBSol(q)

there is no room for non-zero differentials, but ungrading the E∞ page takes more work.
This is done in the paper of Levi and Seeliger [172], where they also compute the coproduct
and action of the dual Steenrod algebra. It turns out that E∞ as given above is isomorphic
to H∗ΩBSol(q). The degrees are added, so that the ûi and ŷi now have degree i− 1 and the
sj have degree j − 2.

This is of polynomial growth, since it is finitely generated (actually free of rank 27) as a
module over the central polynomial subalgebra k[s22, s26, s28], with Poincaré series

∞∑
n=0

tn dimkHnΩBSol(q) =
(1 + t7)(1 + t11)(1 + t13)(1 + t14)(1 + t6)(1 + t10)(1 + t12)

(1− t20)(1− t24)(1− t26)

=
(1 + t7)(1 + t11)(1 + t14)

(1− t6)(1− t10)(1− t13)
.

5.9. Some questions

We end with some questions related to our computations.

Question 5.9.1 (John Greenlees). For a finite group G, is Db(C∗BG) generated by
C∗BP , where P is a Sylow p-subgroup of G?

In the cases where we have been able to describe the structure of the singularity category,
the answer to this question is yes. It is also yes in the case of a finite p-group, by the work
of Greenlees and Stevenson [133].

Question 5.9.2. The ring H∗BG acts on Db(C∗BG) ≃ Db(C∗ΩBG
∧
p ) and hence on

Dsg(C
∗BG) ≃ Dcsg(C∗ΩBG

∧
p ) and Dcsg(C

∗BG) ≃ Dsg(C∗ΩBG
∧
p ). What are the supports

of these? In particular, is the support of Dsg(C
∗BG) equal to the nucleus of G, as defined

in [19] and discussed further in [13]?
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Question 5.9.3. In the examples that have been computed so far for H∗ΩBG
∧
p , we have

the following.

(1) If the growth is polynomial then there is a central subring over which the homology
is finitely generated as a module.

(2) If the growth is semi-exponential then there is a free subalgebra on two generators,
which implies exponential growth.

To what extent are these true in general?

Is H∗ΩBG
∧
p always finitely presented as an algebra?

Is the Poincaré series
∞∑
n=0

tn dimkHnΩBG
∧

p

always a rational function of t?
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