Classifying spaces of finite groups of tame representation type

David J. Benson
Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

2020 Mathematics Subject Classification. Primary: 20J06, Secondary: 16E45, 55P35, 55P60, 55S30
Key words and phrases. A_{∞} algebras, cohomology of groups, cosingularity categories, dihedral groups, generalised quaternion groups, Hochschild cohomology, loop spaces, Massey products, p-completed classifying space, projective special linear group, projective special unitary group, semidihedral groups, singularity categories

[^0]
Contents

Preface 5
Chapter 1. Introduction and background 7
1.1. Introduction 7
1.2. Notation and conventions 9
1.3. $\quad A_{\infty}$ algebras and quasi-isomorphisms 10
1.4. Hochschild cohomology 12
1.5. The Gerstenhaber circle product 14
1.6. Bousfield-Kan p-completion 15
1.7. Classifying spaces and fusion systems 16
1.8. Abelian Sylow subgroups 18
1.9. Singularity and cosingularity categories 19
1.10. Tame blocks 20
1.11. Cohomology of complete intersections 21
1.12. Koszul duality for graded algebras 22
1.13. The cyclic case 23
Chapter 2. The dihedral case 25
2.1. Introduction 25
2.2. Dihedral 2-groups 26
2.3. $H H^{*} H^{*} B \mathrm{D}$ 27
2.4. $\quad A_{\infty}$ structure of $H^{*} B \mathrm{D}$ 29
2.5. Loops on $B \mathrm{D}_{2}^{\wedge}$ 31
2.6. $\quad H H^{*} \mathrm{kD}$ 32
2.7. Groups with dihedral Sylow 2-subgroups 33
2.8. Loops on $B G_{2}^{\wedge}$: one class of involutions 35
2.9. A differential graded model 40
2.10. Duality for $Q\left[s^{-1}\right]$-modules 42
2.11. Some indecomposables 44
2.12. Classification of indecomposables 45
2.13. Loops on $B G_{2}^{\wedge}$: two classes of involutions 46
2.14. A related symmetric tensor category 50
Chapter 3. The semidihedral case 53
3.1. Introduction 53
3.2. Semidihedral groups 54
3.3. Resolutions for kSD 57
3.4. Loops on $B \mathrm{SD}_{2}^{\wedge}$ 58
3.5. Groups with semidihedral Sylow 2-subgroups 60
3.6. One class of involutions, one of order four 62
3.7. Ext and Hochschild cohomology over $H^{*} B G$ 67
3.8. A_{∞} structure of $H_{*} \Omega B G_{2}^{\wedge}$ 70
3.9. A differential graded model 72
3.10. Duality for $Q\left[\hat{z}^{-1}\right]$-modules 73
3.11. The singularity category of $C^{*} B G$ 74
3.12. Two classes of involutions, one of elements of order four 75
3.13. Ext and Hochschild cohomology 77
3.14. A_{∞} structure, a DG model, and duality 80
3.15. One class of involutions, two of elements of order four 81
Chapter 4. The generalised quaternion case 85
4.1. Introduction 85
4.2. Generalised quaternion groups 85
4.3. $\quad H H^{*} H^{*} B \mathrm{Q}$ 87
4.4. Loops on $B \mathrm{Q}_{2}^{\wedge}$ 88
4.5. Isoclinism 89
4.6. Groups with generalised quaternion Sylow 2-subgroups 90
4.7. One class of elements of order four 91
4.8. Two classes of elements of order four 94
4.9. Non-formality 95
Chapter 5. Beyond tame 101
5.1. Introduction 101
5.2. Formality 101
5.3. Polynomial versus exponential growth 102
5.4. An exponential compact Lie example 103
5.5. An exponential finite group example 104
5.6. Reflection groups 106
5.7. Groups of Lie type in non-defining characteristic 106
5.8. An exotic example: $B \operatorname{Sol}(q)$ 108
5.9. Some questions 109
Bibliography 111
Index 119

Preface

The purpose of this document is to describe the A_{∞} algebra structures on the cochains on the classifying space $C^{*} B G$, and on the chains on the loop space of the classifying space $C_{*} \Omega B G_{2}^{\wedge}$, when G is a finite group with dihedral, semidihedral, or generalised quaternion Sylow 2-subgroups. These are the groups whose group algebras have tame representation type. In some cases, we are able to completely describe the singularity and cosingularity categories of these, while in others this seems to be more difficult.

Part of the point of this work is to describe a variety of computational techniques for approaching questions such as these. The main tool in the dihedral and semidihedral case, as it was in the cyclic case $[\mathbf{2 2}, \mathbf{2 3}]$, is to put a grading on the basic algebra of the principal block. This gives rise to a double grading on group cohomology, and a triple grading on the Hochschild cohomology of the group cohomology. This technique gives us no information in the generalised quaternion case, but an explicit computation involving minimal resolutions comes to our rescue in this case.

One curious outcome of this work is that if G has semidihedral or generalised quaternion Sylow 2-subgroups, and no normal subgroup of index two, then $C^{*} B G$ is formal, meaning that it is quasi-isomorphic to its cohomology $H^{*} B G$ with zero differential, see Theorems 3.7.16 and 4.7.4. The same happens in one of the other cases with semidihedral Sylow 2-subgroups, see Theorem 3.13.13. This also happens for finite groups with elementary abelian Sylow 2-subgroups in characteristic two, but necessary and sufficient conditions for this to occur are not known.

Acknowledgements. The investigations described in this work grew out of work with John Greenlees $[\mathbf{2 2}, \mathbf{2 3}]$ in which we described the situation for finite groups with cyclic Sylow p-subgroups. I would like to take the opportunity to thank him for his influence on this work, which would not have been carried out without his input and encouragement. My thanks go to the University of Warwick (visits supported by EPSRC grant EP/P031080/1) and the Isaac Newton Institute in Cambridge (programme 'Groups, representations and applications: new perspectives', supported by EPSRC grant EP/R014604/1), both of whose hospitality allowed me extensive discussions with Greenlees in 2019, early 2020, and 2022, leading to the work from which this grew. I thank Srikanth Iyengar for patiently explaining various pieces of commutative algebra to me, and David Craven for correspondence about the structure of tame blocks and various errors in the literature. I have flagged these under the index entry "errors."

Finally, this work would probably never have happened without the confinement imposed by the Covid-19 pandemic, but there's frankly no way I'm going to thank this cursèd virus.

CHAPTER 1

Introduction and background

1.1. Introduction

This paper is a sequel to Benson and Greenlees $[\mathbf{2 2}, \mathbf{2 3}]$. In those papers, we examined the structure of $H^{*} B G$ and $H_{*} \Omega B G$ as A_{∞} algebras, for finite groups G with cyclic Sylow p-subgroups, over a field k of characteristic p, and elucidated the structure of their singularity and cosingularity categories. Here, we examine the case of blocks with dihedral, semidihedral, or (generalised) quaternion defect groups in characteristic two. The reason for the interest in this class of blocks is that these are the ones where the group algebra has tame representation type. The results are given in the introductory sections of the three chapters, dealing with the three types of defect groups. The ring structure on the homology of the loop space $H_{*} \Omega B G_{2}^{\wedge}$ was first computed by Levi $[\mathbf{1 6 7}]$ in these cases. The following table shows where the discussions of the various cases can be found. Note that for tame type, the homotopy type of $B G$ is determined by the number of conjugacy classes of elements of order two and four; see Sections 2.7, 3.5, and 4.6.

Sylowp-subgroup	ccls of elts of order		$H H^{*}$ of		$\begin{gathered} H H^{*} C^{*} B G \\ \cong \\ H H^{*} C_{*} \Omega B G_{2}^{\wedge} \end{gathered}$	A_{∞} structure of	
	$\begin{gathered} \text { of } \\ 2 \end{gathered}$	$\begin{array}{r} \text { der } \\ 4 \end{array}$	$H^{*} B G$	$H_{*} \Omega B G_{2}^{\wedge}$		$H^{*} B G$	$H_{*} \Omega B G_{2}^{\wedge}$
Cyclic	-	-	[22]	[22]	[22]	[23]	[23]
Dihedral	1	1	2.8.6	2.8.9	2.8.12	2.8.7	2.8.10
	2	1	2.13.4	2.13.7	2.13 .9	2.13.5	2.13.8
	3	1	2.3.2	[200], 2.6.3	[200], 2.6.3	2.4.2	2.5
Semidihedral	1	1	3.7.7	3.7.4	3.7.18	3.7.16	3.8.2
	2	1	3.13 .3	3.14 .1	3.13 .15	3.13 .13	3.14 .2
		2					
	2	2		[114]	[114]		3.4
Generalised quaternion	1	1	4.7.5	4.7.5	4.7.5	4.7.4	4.7.5
	1	2	4.8.4			4.9.2	
	1	3	4.3.3	[135]	[135]		4.4

For ease of reference, we list here the cohomology algebras in the various cases of Sylow subgroups, and the loop space homology in those cases where the group is not p-nilpotent (because if G is p-nilpotent then $H_{*} \Omega B G_{p}^{\wedge} \cong \mathrm{k} G / O^{p}(G)$). The degrees are written homologically, followed by the degrees coming from the internal grading in the cases where they exist.

Cohomology algebras $H^{*} B G \cong \operatorname{Ext}{ }_{k G}^{*}(\mathrm{k}, \mathrm{k})$
Cyclic, order p^{n}, inertial index $q \mid(p-1)$:

$$
\mathrm{k}[x] \otimes \Lambda(t), \quad|x|=-\left(2 q, p^{n}\right), \quad|t|=-\left(2 q-1, p^{n}-\left(p^{n}-1\right) / q\right) .
$$

Klein four group, one class of involutions:

$$
\mathbf{k}[\xi, \eta, t] /\left(\xi \eta+t^{3}\right), \quad|\xi|=|\eta|=-(3,3), \quad|t|=-(2,2) .
$$

Klein four group, three classes of involutions:

$$
\mathrm{k}[x, y], \quad|x|=|y|=-(1,1) .
$$

Dihedral, order $4 q(q \geqslant 2)$, one class of involutions:

$$
\mathrm{k}[\xi, \eta, t] /(\xi \eta), \quad|\xi|=-(3, q+1, q), \quad|\eta|=-(3, q, q+1), \quad|t|=-(2, q, q) .
$$

Dihedral, order $4 q(q \geqslant 2)$, two classes of involutions:

$$
\mathrm{k}[\xi, y, t] /(\xi y), \quad|\xi|=-(3, q+1, q), \quad|y|=-(1,0,1), \quad|t|=-(2, q, q) .
$$

Dihedral, order $4 q(q \geqslant 2)$, three classes of involutions:

$$
\mathrm{k}[x, y, t] /(x y), \quad|x|=-(1,1,0), \quad|y|=-(1,0,1), \quad|t|=-(2, q, q) .
$$

Semidihedral, order $8 q(q \geqslant 2)$, one class of involutions, one of elements of order four:

$$
\mathrm{k}[x, y, z] /\left(x^{2} y+z^{2}\right), \quad|x|=-(3, q+1), \quad|y|=-(4,4 q), \quad|z|=-(5,3 q+1) .
$$

Semidihedral, order $8 q(q \geqslant 2)$, two classes of involutions, one of elements of order four:

$$
\mathbf{k}[x, y, z] /\left(x^{2} y+z^{2}\right), \quad|x|=-(1,1-q), \quad|y|=-(4,4 q), \quad|z|=-(3, q+1) .
$$

Semidihedral, order $8 q(q \geqslant 2)$, one class of involutions, two of elements of order four:

$$
\mathbf{k}[y, z, w, v] /\left(y^{3}, v y, y z, v^{2}+z^{2} w\right), \quad|y|=-1, \quad|z|=-3, \quad|w|=-4, \quad|v|=-5 .
$$

Semidihedral, order $8 q(q \geqslant 2)$, two classes of involutions, two of elements of order four:

$$
\mathrm{k}[x, y, z, w] /\left(x y, y^{3}, y z, z^{2}+x^{2} w\right), \quad|x|=|y|=-1, \quad|z|=-3, \quad|w|=-4 .
$$

Quaternion or generalised quaternion of order $8 q$, one class of elements of order four:

$$
\mathrm{k}[z] \otimes \Lambda(y), \quad|z|=-4, \quad|y|=-3 .
$$

Generalised quaternion of order $8 q$, two classes of elements of order four:

$$
\mathrm{k}[y, z] /\left(y^{4}\right), \quad|y|=-1, \quad|z|=-4 .
$$

Quaternion of order 8, three classes of elements of order four:

$$
\mathrm{k}[u, v, z] /\left(u^{2}+u v+v^{2}, u^{2} v+u v^{2}\right), \quad|u|=|v|=-1, \quad|z|=-4 .
$$

Generalised quaternion of order $8 q(q \geqslant 2)$, three classes of elements of order four:

$$
\mathrm{k}[x, y, z] /\left(x y, x^{3}+y^{3}\right), \quad|x|=|y|=-1, \quad|z|=-4 .
$$

Loop space homology $H_{*} \Omega B G_{p}^{\wedge}$

Cyclic, order p^{n}, inertial index $q \mid(p-1)(q \geqslant 2)$:

$$
\mathbf{k}[\tau] \otimes \Lambda(\xi), \quad|\tau|=\left(2 q-2, p^{n}-\left(p^{n}-1\right) / q\right), \quad|\xi|=\left(2 q-1, p^{n}\right)
$$

Dihedral, order $4 q(q \geqslant 1)$, one class of involutions:

$$
\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, \beta \mid \alpha^{2}=0, \beta^{2}=0\right\rangle, \quad|\tau|=(1, q, q), \quad|\alpha|=(2, q+1, q), \quad|\beta|=(2, q, q+1) .
$$

Dihedral, order $4 q(q \geqslant 2)$, two classes of involutions:

$$
\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, Y \mid \alpha^{2}=0, Y^{2}=0\right\rangle, \quad|\tau|=(1, q, q), \quad|\alpha|=(2, q+1, q), \quad|Y|=(0,0,1)
$$

Semidihedral, order $8 q(q \geqslant 2)$, one class of involutions, one of elements of order four:

$$
\Lambda(\hat{x}, \hat{y}) \otimes \mathrm{k}[\hat{z}], \quad|\hat{x}|=(2, q+1), \quad|\hat{y}|=(3,4 q), \quad|\hat{z}|=(4,3 q+1) .
$$

Semidihedral, order $8 q(q \geqslant 2)$, two classes of involutions, one of elements of order four:

$$
\Lambda(\hat{x}, \hat{y}) \otimes \mathrm{k}[\hat{z}], \quad|\hat{x}|=(0,1-q), \quad|\hat{y}|=(3,4 q), \quad|\hat{z}|=(2, q+1)
$$

Semidihedral, order $8 q(q \geqslant 2)$, one class of involutions, two of elements of order four:

$$
\Lambda(\eta) \otimes \mathrm{k}\left\langle\hat{y}, \hat{z} \mid \hat{y}^{2}=\hat{z}^{2}=0\right\rangle, \quad|\eta|=1, \quad|\hat{y}|=0, \quad|\hat{z}|=2 .
$$

Quaternion or generalised quaternion, one class of elements of order four:

$$
\Lambda(\hat{z}) \otimes \mathrm{k}[\hat{y}], \quad|\hat{z}|=3, \quad|\hat{y}|=2 .
$$

Quaternion or generalised quaternion, two classes of elements of order four:

$$
\Lambda(\hat{y}, \hat{z}) \otimes \mathrm{k}[\eta], \quad|\hat{y}|=0, \quad|\hat{z}|=3, \quad|\eta|=2 .
$$

1.2. Notation and conventions

In this chapter, we give some of the background, and set the stage for this project. We begin with the notations and conventions used throughout.

We use the following standard group theoretic notations. For a finite group G, we write $O_{p}(G)$ for the largest normal p-subgroup of G and $O_{p^{\prime}}(G)$ for the largest normal p^{\prime}-subgroup, i.e., the largest normal subgroup of order not divisible by p. When $p=2$, we write $O(G)$ for $O_{2^{\prime}}(G)$, the largest normal odd order subgroup of G.

We write $O^{p}(G)$ for the smallest normal subgroup of G for which the quotient is a p-group, and $O^{p^{\prime}}(G)$ for the smallest normal subgroup for which the quotient is a p^{\prime}-group.

We write $\Gamma L\left(n, p^{m}\right), G L\left(n, p^{m}\right)$, and $S L\left(n, p^{m}\right)$ for the groups of semi-linear automorphisms, linear automorphisms, and special (i.e., determinant one) linear automorphisms of a vector space of dimension n over $\mathbb{F}_{p^{m}}$. We write $P \Gamma L\left(n, p^{m}\right), P G L\left(n, p^{m}\right)$, and $P S L\left(n, p^{m}\right)$ for the corresponding groups of projective transformations, namely the quotients of these groups by the subgroups of scalar transformations. Similarly, we write $\Gamma U\left(n, p^{m}\right), G U\left(n, p^{m}\right)$, and $S U\left(n, p^{m}\right)$ for the corresponding groups of unitary transformations of a vector space of dimension n over $\mathbb{F}_{p^{2 m}}$ with respect to the conjugation given by the Frobenius automorphism of order two of the field. We write $P \Gamma U\left(n, p^{m}\right), P G U\left(n, p^{m}\right)$, and $P S U\left(n, p^{m}\right)$ for the quotient by the subgroup of scalar transformations. Closely related groups $S L^{ \pm}\left(2, p^{m}\right), S U^{ \pm}\left(2, p^{m}\right)$
will be defined in Section 3.5, and their isoclinic groups $S L^{\circ}\left(2, p^{m}\right)$ and $S U^{\circ}\left(2, p^{m}\right)$ will be defined in Section 4.5.

All chains, cochains, homology and cohomology will have coefficients in a field k. So when we write $C^{*} X, H^{*} X, C_{*} X, H_{*} X$, we mean $C^{*}(X ; \mathrm{k}), H^{*}(X ; \mathrm{k}), C_{*}(X ; \mathrm{k}), H_{*}(X ; \mathrm{k})$ respectively. Since we are interested in both homology and cohomology, we shall write all degrees homologically, so that for example cohomology elements are given negative degrees.

We shall frequently use the fact that $C^{*} B G$, regarded as a differential graded algebra, is quasi-isomorphic to the differential graded algebra of endomorphisms of a projective resolution of the trivial module, $\operatorname{End}_{\mathrm{k} G}\left(P_{*}\right)$. Such a quasi-isomorphism induces an isomorphism in cohomology $H^{*} B G \cong \operatorname{Ext}_{\mathrm{k} G}^{*}(\mathrm{k}, \mathrm{k})$. The link between the two is given by the RothenbergSteenrod construction, as explained for example in [196], or Section 4 of [25].

1.3. A_{∞} algebras and quasi-isomorphisms

The concept of A_{∞} algebra was introduced by Stasheff [205,206] , and further information can be found in Kadeishvili [151], Keller [154,155], Boardman and Vogt [27].

Recall that an A_{∞} algebra over a field k is a \mathbb{Z}-graded vector space \mathfrak{a} with graded maps $m_{n}: \mathfrak{a}^{\otimes n} \rightarrow \mathfrak{a}$ of degree $n-2$ for $n \geqslant 1$ satisfying

$$
\begin{equation*}
\sum_{r+s+t=n}(-1)^{r+s t} m_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)=0 \tag{1.3.1}
\end{equation*}
$$

for $n \geqslant 1$.
REmark 1.3.2. The first few cases of (1.3.1) are as follows.

$$
\begin{aligned}
m_{1} m_{1} & =0 \\
m_{1} m_{2} & =m_{2}\left(m_{1} \otimes \mathrm{id}+\mathrm{id} \otimes m_{1}\right) \\
m_{2}\left(\mathrm{id} \otimes m_{2}-m_{2} \otimes \mathrm{id}\right) & =m_{1} m_{3}+m_{3}\left(m_{1} \otimes \mathrm{id} \otimes \mathrm{id}+\mathrm{id} \otimes m_{1} \otimes \mathrm{id}+\mathrm{id} \otimes \mathrm{id} \otimes m_{1}\right) .
\end{aligned}
$$

The map m_{1} is therefore a differential. The map m_{2} is not necessarily associative, but it is a derivation with respect to m_{1}, and induces an associative product on $H_{*} \mathfrak{a}$. The map m_{3} induces the Massey triple product on $H_{*} \mathfrak{a}$.

Example 1.3.3. A DG algebra (differential graded algebra) \mathfrak{a} can be regarded as an A_{∞} algebra with m_{1} the differential, m_{2} the product, and $m_{i}=0$ for $i>2$.

A morphism of A_{∞} algebras $f: \mathfrak{a} \rightarrow \mathfrak{a}^{\prime}$ consists of graded maps $f_{n}: \mathfrak{a}^{\otimes n} \rightarrow \mathfrak{a}^{\prime}$ of degree $n-1$ satisfying

$$
\begin{equation*}
\sum_{r+s+t=n}(-1)^{r+s t} f_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)=\sum_{i_{1}+\cdots+i_{r}=n}(-1)^{\sigma} m_{r}^{\prime}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{r}}\right) \tag{1.3.4}
\end{equation*}
$$

where in the sum on right hand side, $\sigma=\sum_{j=1}^{r-1}(r-j)\left(i_{j}-1\right)$ and m_{r}^{\prime} are the operations in B.

Remark 1.3.5. The first two cases of (1.3.4) are as follows.

$$
\begin{aligned}
& f_{1} m_{1}=m_{1}^{\prime} f_{1} \\
& f_{1} m_{2}=m_{2}^{\prime}\left(f_{1} \otimes f_{1}\right)+m_{1}^{\prime} f_{2}+f_{2}\left(m_{1} \otimes \mathrm{id}+\mathrm{id} \otimes m_{1}\right)
\end{aligned}
$$

Thus f_{1} is a map of complexes with respect to the differential m_{1}, and commutes with the product m_{2} up to a homotopy given by f_{2}.

Definition 1.3.6. The morphism f is said to be a quasi-isomorphism of A_{∞} algebras if f_{1} induces an isomorphism in homology with respect to the differentials m_{1}, m_{1}^{\prime}.

We say that an A_{∞} algebra \mathfrak{a} is formal if it is quasi-isomorphic to an A_{∞} algebra with $m_{i}=0$ for $i \neq 2$.

Example 1.3.7. If \mathfrak{a} is a DG algebra then it is formal as an A_{∞} algebra if and only if it is formal as a DG algebra; namely if and only if there are quasi-isomorphisms of DG algebras $\mathfrak{a} \leftarrow \mathfrak{a}^{\prime} \rightarrow H_{*} \mathfrak{a}$, where $H_{*} \mathfrak{a}$ is regarded as a DG algebra with zero differential.

A theorem of Kadeishvili [151] (see also Keller [154,155], Merkulov [181], Petersen [190]) may be stated as follows.

ThEOREM 1.3.8. Suppose that we are given an A_{∞} algebra \mathfrak{a} over a field k . Let $Z_{*}(\mathfrak{a})$ be the cocycles, $B^{*}(\mathfrak{a})$ be the coboundaries, and $H_{*}(\mathfrak{a})=Z_{*}(\mathfrak{a}) / B_{*}(\mathfrak{a})$, with respect to the differential m_{1}. Choose a vector space splitting $f_{1}: H_{*}(\mathfrak{a}) \rightarrow Z_{*}(\mathfrak{a}) \subseteq \mathfrak{a}$ of the quotient. Then the homology $H_{*} \mathfrak{a}$ has an A_{∞} structure with $m_{1}=0$ and m_{2} the multiplication on $H_{*} \mathfrak{a}$ induced by the multiplication on \mathfrak{a}, and f_{1} extends to a quasi-isomorphism of A_{∞} algebras $f: H_{*} \mathfrak{a} \rightarrow \mathfrak{a}$.

If \mathfrak{a} happens to carry auxiliary gradings respected by the maps m_{i} then $H_{*} \mathfrak{a}$ inherits the grading, and the A_{∞} algebra structure maps m_{i} on $H_{*} \mathfrak{a}$ and the quasi-isomorphism f can be chosen to respect the gradings.

Proof. The idea of the proof is an inductive procedure which goes as follows. The morphisms

$$
m_{2}\left(f_{1} \otimes f_{1}\right), f_{1} m_{2}: H_{*} \mathfrak{a} \otimes H_{*} \mathfrak{a} \rightarrow \mathfrak{a}
$$

are homotopic. In the presence of a grading on \mathfrak{a}, these maps preserve the grading, so a homogeneous homotopy can be chosen. This is a morphism $f_{2}: H_{*} \mathfrak{a} \rightarrow H_{*} \mathfrak{a} \rightarrow \mathfrak{a}$ of degree $(1,0)$ such that

$$
f_{1} m_{2}=m_{1} f_{2}+m_{2}\left(f_{1} \otimes f_{1}\right)
$$

Next, consider the map

$$
m_{2}\left(f_{1} \otimes f_{2}-f_{2} \otimes f_{1}\right)+f_{2}\left(1 \otimes m_{2}-m_{2} \otimes 1\right):\left(H_{*} \mathfrak{a}\right)^{\otimes 3} \rightarrow \mathfrak{a}
$$

of degree $(1,0)$. Composing with $m_{1}: \mathfrak{a} \rightarrow \mathfrak{a}$, a short calculation shows that we get zero. So we can add something in the image of f_{1} to get a coboundary. Thus there exist maps $m_{3}:\left(H_{*} \mathfrak{a}\right)^{\otimes 3} \rightarrow H_{*} \mathfrak{a}$ of degree $(1,0)$ and $f_{3}:\left(H_{*} \mathfrak{a}\right)^{\otimes 3} \rightarrow \mathfrak{a}$ of degree $(2,0)$ such that

$$
f_{1} m_{3}-m_{1} f_{3}=m_{2}\left(f_{1} \otimes f_{2}-f_{2} \otimes f_{1}\right)+f_{2}\left(1 \otimes m_{2}-m_{2} \otimes 1\right) .
$$

Continuing this way, we obtain maps m_{i} of degree $(i-2,0)$ giving an A_{∞} structure on $H_{*} \mathfrak{a}$, and f_{i} of degree $(i-1,0)$ giving a quasi-isomorphism $H_{*} \mathfrak{a} \rightarrow \mathfrak{a}$. Note that equation (1.3.4) simplifies slightly because $m_{1}=0$ on $H_{*} \mathfrak{a}$. If \mathfrak{a} is a DG algebra then it simplifies further, because $m_{i}=0$ for $i>2$ on \mathfrak{a}.

Definition 1.3.9. We say that an A_{∞} algebra \mathfrak{a} is minimal if $m_{1}=0$. Given any A_{∞} algebra \mathfrak{a}, a minimal A_{∞} algebra quasi-isomorphic to \mathfrak{a} is called a minimal model for \mathfrak{a}. Kadeishvili's Theorem 1.3 .8 says that every A_{∞} algebra \mathfrak{a} has a minimal model, and it is $H_{*} \mathfrak{a}$ endowed with a suitable A_{∞} structure. If \mathfrak{a} carries an internal grading preserved by the
structure maps then the structure maps on a minimal model may be taken to preserve the internal grading.

Remark 1.3.10. In the inductive procedure described in the proof of Theorem 1.3.8, if it happens that

$$
m_{2}\left(f_{1} \otimes f_{2}-f_{2} \otimes f_{1}\right)+f_{2}\left(1 \otimes m_{2}-m_{2} \otimes 1\right)=0
$$

then it follows that we may take $m_{i}:\left(H_{*} \mathfrak{a}\right)^{\otimes i} \rightarrow H_{*} \mathfrak{a}$ and $f_{i}:\left(H_{*} \mathfrak{a}\right)^{\otimes i} \rightarrow \mathfrak{a}$ to be zero for all $i \geqslant 3$. In this case, we deduce that \mathfrak{a} is formal. We shall apply this in Section 4.7 the case of finite groups with a generalised quaternion Sylow 2-subgroup and no normal subgroup of index two.

1.4. Hochschild cohomology

If \mathfrak{a} is an A_{∞} algebra, there is a spectral sequence

$$
\begin{equation*}
H H^{*} H_{*} \mathfrak{a} \Rightarrow H H^{*} \mathfrak{a} \tag{1.4.1}
\end{equation*}
$$

where the left hand side is the Hochschild cohomology of the homology algebra $H_{*} \mathfrak{a}$, not taking into account any higher structure. The right hand side is the Hochschild cohomology of \mathfrak{a}, which is described as follows (see $\S 3$ of Getzler and Jones [123], and Definition 12.6 of Stasheff [207]). The bar resolution $\mathbb{B}(\mathfrak{a})=\bigoplus_{n \geqslant 0} \mathfrak{a}^{\otimes(n+2)}$ has a differential defined by

$$
\begin{aligned}
& \partial\left(x \otimes\left[a_{1}|\ldots| a_{n}\right] \otimes y\right)=\sum_{j=0}^{n} \pm m_{j+1}\left(x, a_{1}, \ldots, a_{j}\right) \otimes\left[a_{j+1}|\ldots| a_{n}\right] \otimes y \\
& \quad+\sum_{0 \leqslant i+j \leqslant n} \pm x \otimes\left[a_{1}|\ldots| a_{i}\left|m_{j}\left(a_{i+1}, \ldots, a_{i+j}\right)\right| a_{i+j+1}|\ldots| a_{n}\right] \otimes y \\
& \quad+\sum_{j=0}^{n} \pm x \otimes\left[a_{1}|\ldots| a_{n-j}\right] \otimes m_{j+1}\left(a_{n-j+1}, \ldots, a_{n}, y\right)
\end{aligned}
$$

The signs are given by the usual sign rules. If the only non-vanishing m_{i} is m_{2} then this agrees with the classical notion of Hochschild cohomology of an algebra. If \mathfrak{a} is a DG algebra, so the only non-vanishing m_{i} are m_{1} and m_{2}, we can think of this as the total complex of the usual double complex defining Hochschild cohomology of a DG algebra.

If M is an \mathfrak{a} - \mathfrak{a}-bimodule, we have Hochschild cochains

$$
\operatorname{Hom}_{\mathfrak{a}, \mathfrak{a}}\left(\mathfrak{a}^{\otimes(n+2)}, M\right) \cong \operatorname{Hom}_{k}\left(\mathfrak{a}^{\otimes n}, M\right)
$$

with differential

$$
(\delta f)\left[a_{1}|\ldots| a_{n}\right]=m_{1} f\left[a_{1}|\ldots| a_{n}\right]+\sum_{0 \leqslant i+j \leqslant n} \pm f\left[a_{1}|\ldots| a_{i}\left|m_{j}\left(a_{i+1}, \ldots, a_{i+j}\right)\right| a_{i+j+1}|\ldots| a_{n}\right] .
$$

The homology of this complex is $H H^{*}(\mathfrak{a}, M)$. We write $H H^{*} \mathfrak{a}$ for $H H^{*}(\mathfrak{a}, \mathfrak{a})$. The filtration of $\mathbb{B}(\mathfrak{a})$ by number of bars gives a filtration of Hochschild cochains, giving rise to the conditionally convergent spectral sequence (1.4.1). See Section 5 of [22] for details. The differentials in this spectral sequence are determined by the maps m_{i}.

Kadeishvili [150] discusses the relationship between A_{∞} structure and Hochschild cohomology, and obtains the following.

Proposition 1.4.2. Suppose that the action of m_{i} on $H_{*} \mathfrak{a}$ is zero for $i=1$ and $2<i<n$. Then $m_{n}: H_{*} \mathfrak{a}^{\otimes n} \rightarrow H_{*} \mathfrak{a}$ is a Hochschild n-cocycle on $H_{*} \mathfrak{a}$, of internal (homological) degree $n-2$.

If $f: H_{*} \mathfrak{a} \rightarrow H_{*} \mathfrak{a}$ is a quasi-isomorphism to another A_{∞} structure m_{i}^{\prime} on $H_{*} \mathfrak{a}$ satisfying the same assumptions, with f_{1} equal to the identity, then $m_{n}-m_{n}^{\prime}$ is a Hochschild coboundary, and all such occur this way. Thus valid choices for m_{n} form a well defined class in degree $(-n, n-2)$ in $H H^{*} H_{*}$ a.

If \mathfrak{a} is graded and the A_{∞} structure preserves internal degree then m_{n} represents a Hochschild class of degree $(-n, n-2,0)$ on $H_{*} \mathfrak{a}$. Thus if, regarding \mathfrak{a} as a doubly graded algebra and ignoring the m_{n} with $n>2$, the Hochschild cohomology ring $H H^{*} H_{*} \mathfrak{a}$ has no non-zero elements of degree $(-n, n-2,0)$ with $n>2$, then the A_{∞} structure on \mathfrak{a} is formal.

Proof. Equation (1.3.1) implies that

$$
-m_{2}\left(\mathrm{id} \otimes m_{n}\right)+\sum_{r=0}^{n-1}(-1)^{r} m_{n}\left(\mathrm{id}^{\otimes r} \otimes m_{2} \otimes \mathrm{id}^{\otimes(n-r-1)}\right)+(-1)^{n} m_{2}\left(m_{n} \otimes \mathrm{id}\right)=0
$$

and so m_{n} is a Hochschild cocycle on the cohomology ring. If $f: H_{*} \mathfrak{a} \rightarrow H_{*} \mathfrak{a}$ is a quasiisomomorphism with f_{1} equal to the identity then equation 1.3.4 implies that

$$
\begin{aligned}
f_{1} m_{n}+\sum_{r=0}^{n-2}(-1)^{r} f_{n-1}\left(\mathrm{id}^{\otimes r}\right. & \left.\otimes m_{2} \otimes \mathbf{i d}^{\otimes(n-r-2)}\right) \\
& =m_{2}^{\prime}\left(f_{1} \otimes f_{n-1}\right)+(-1)^{n} m_{2}^{\prime}\left(f_{n-1} \otimes f_{1}\right)+m_{n}^{\prime}\left(f_{1} \otimes \cdots \otimes f_{1}\right)
\end{aligned}
$$

Now f_{1} is the identity and $m_{2}^{\prime}=m_{2}$, so this becomes
$m_{n}^{\prime}-m_{n}=-m_{2}\left(\mathrm{id} \otimes f_{n-1}\right)+\sum_{r=0}^{n-2}(-1)^{r} f_{n-1}\left(\mathrm{id}^{\otimes r} \otimes m_{2} \otimes \mathrm{id}^{\otimes(n-r-2)}\right)+(-1)^{n-1} m_{2}\left(f_{n-1} \otimes \mathrm{id}\right)$.
The right hand side is the formula for the Hochschild coboundary of f_{n-1}, which may be taken to be any $(n-1)$-cochain.

The last part follows by an easy inductive argument on n, beginning with $n=3$.
Definition 1.4.3. We say that an A_{∞} algebra \mathfrak{a} is intrinsically formal if given another A_{∞} algebra \mathfrak{a}^{\prime} and an isomorphism of associative algebras $H_{*} \mathfrak{a} \cong H_{*} \mathfrak{a}^{\prime}$ there is a quasiisomorphism $\mathfrak{a} \rightarrow \mathfrak{a}^{\prime}$ inducing it. Clearly an intrinsically formal A_{∞} algebra is formal.

If \mathfrak{a} carries an internal grading then the isomorphism $H_{*} \mathfrak{a} \cong H_{*} \mathfrak{a}^{\prime}$ is required to preserve the induced internal grading. So a graded A_{∞} algebra may be intrinsically formal while the corresponding ungraded algebra is not.

Remark 1.4.4. Proposition 1.4.2 implies that if there are no non-zero classes of degree $(-n, n-2)$ in $H H^{*} H_{*} \mathfrak{a}$ with $n>2$ then \mathfrak{a} is intrinsically formal. If \mathfrak{a} carries an internal grading then we only require that there are no non-zero classes of degree $(-n, n-2,0)$, which is a weaker condition.

THEOREM 1.4.5. Let $x_{1}, \ldots, x_{n}(n \geqslant 3)$ be elements of the homology of a $D G$ algebra \mathfrak{a}, and suppose that the Massey product $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is non-empty. Consider an A_{∞} structure on $H_{*} \mathfrak{a}$ given by Kadeishvili's theorem, and suppose that $m_{i}=0$ for $2<i \leqslant n-2$. Then

$$
\varepsilon m_{n}\left(x_{1}, \ldots, x_{n}\right) \in\left\langle x_{1}, \ldots, x_{n}\right\rangle
$$

where $\varepsilon=(-1)^{\sum_{j=1}^{n-1}(n-j)\left|x_{j}\right|}$.
Proof. This is described in Theorem 3.1 of Lu, Palmieri, Wu and Zhang [177], and corrected in Theorem 3.2 of Buijs, Moreno-Fernández and Murillo [45].

1.5. The Gerstenhaber circle product

Let A be an associative k-algebra and M an A - A-bimodule. Gerstenhaber [122], introduced a circle product on Hochschild cocycles of A, that are related to A_{∞} structure, as we now explain. If $f: \mathbb{B}(A) \rightarrow M$ is an m-cochain and $g: \mathbb{B}(A) \rightarrow M$ is an n-cochain, we define $f \circ_{i} g: \mathbb{B}(A) \rightarrow M$ to be the $(m+n-1)$-cochain given on the basis by

$$
f \circ_{i} g\left[a_{1}|\ldots| a_{i}\left|b_{1}\right| \ldots\left|b_{n}\right| a_{i+1}|\ldots| a_{m}\right]=f\left[a_{1}|\ldots| a_{i}\left|g\left[b_{1}|\ldots| b_{n}\right]\right| a_{i+1}|\ldots| a_{m}\right] .
$$

We then define the circle product

$$
f \circ g=\sum_{i=0}^{m}(-1)^{(n+1) i} f \circ_{i} g
$$

Example 1.5.1. The statement $m_{2} \circ m_{2}=0$ is equivalent to the associativity of multiplication, because

$$
\left(m_{2} \circ m_{2}\right)\left[a_{1}\left|a_{2}\right| a_{3}\right]=m_{2}\left(m_{2}\left(a_{1}, a_{2}\right), a_{3}\right)-m_{2}\left(a_{1}, m_{2}\left(a_{2}, a_{3}\right)\right)=\left(a_{1} a_{2}\right) a_{3}-a_{1}\left(a_{2} a_{3}\right)
$$

TheOrem 1.5.2. The circle product is related to the differential, the cup product, and Gerstenhaber bracket on cochains by the formulas

$$
\begin{aligned}
\delta f & =(-1)^{|f|+1} m_{2} \circ f-f \circ m_{2} \\
f \cup g & =\left(m_{2} \circ_{0} f\right) \circ_{m-1} g \\
f \circ \delta g-\delta(f \circ g) & +(-1)^{n-1} \delta f \circ g=(-1)^{n-1}\left(g \cup f-(-1)^{m n} f \cup g\right) \\
{[f, g] } & =f \circ g-(-1)^{|f||g|} g \circ f .
\end{aligned}
$$

where m_{2} is the multiplication in A.
Proof. This is proved in Sections 5-7 of [122].
In terms of the circle product, equation 1.3.1 can be rewritten as

$$
\begin{equation*}
\sum_{i+j=n+1}(-1)^{i} m_{i} \circ m_{j}=0 \tag{1.5.3}
\end{equation*}
$$

So suppose, for example, that \mathfrak{a} is an A_{∞} algebra with $m_{1}=0$, and $m_{i}=0$ for $2<i<n$. We saw in Proposition 1.4.2 that m_{n} is a Hochschild n-cocycle on $A=H_{*} \mathfrak{a}$. We can see this easily using this formulation, since the condition reduces to $m_{2} \circ m_{n}+(-1)^{n} m_{n} \circ m_{2}=0$, or equivalently $\delta m_{n}=0$. It also follows from this formulation that under these circumstances, for $n<i<2 n-2$ the condition is again that m_{i} should be a Hochschild n-cocycle, and if these are all coboundaries then they can be rechosen to be zero. Then the condition for $m_{2 n-2}$ is

$$
m_{2} \circ m_{2 n-2}+(-1)^{n} m_{n} \circ m_{n}+(-1)^{2 n-2} m_{2 n-2} \circ m_{2}=0
$$

which can be rewritten as

$$
\delta m_{2 n-2}=(-1)^{n} m_{n} \circ m_{n}
$$

Continuing this way, we obtain the following, which will help understand what is going on in Section 2.4.

Proposition 1.5.4. Let $n, t \geqslant 2$, and let \mathfrak{a} be an A_{∞} algebra, such that that for $i<t$ we have $m_{i}=0$ unless i is congruent to 2 modulo $n-2$. Then
(1) If t is not congruent to 2 modulo $n-2$ then m_{t} is a Hochschild cocycle.
(2) If $t=s(n-2)+2$ then m_{t} satisfies the coboundary condition

$$
\delta m_{s(n-2)+2}=\sum_{i=1}^{s-1}(-1)^{i n} m_{i(n-2)+2} \circ m_{(s-i)(n-2)+2}
$$

(3) Suppose that $H H^{i} H^{*} \mathfrak{a}=0$ for i not congruent to 2 modulo $n-2$. Then an A_{∞} structure on $H^{*} \mathfrak{a}$ quasi-isomorphic to that on \mathfrak{a} may be chosen with $m_{i}=0$ unless i is congruent to 2 modulo $n-2$.

1.6. Bousfield-Kan p-completion

We shall use the p-completion of Bousfield and Kan [34], namely the completion with respect to the field \mathbb{F}_{p} of p elements. We write X_{p}^{\wedge} for the p-completion of a space X. This comes with a natural map $X \rightarrow X_{p}^{\wedge}$, and has the following properties.

Theorem 1.6.1. The Bousfield-Kan p-completion has the following properties.
 $\tilde{H}_{*} Y$ if and only if it induces a weak homotopy equivalence between the completions $X_{p}^{\wedge} \rightarrow Y_{p}^{\wedge}$.
(ii) A space X is said to be \mathbb{F}_{p}-good, or p-good, if the map $\tilde{H}_{*} X \rightarrow \tilde{H}_{*} X_{p}^{\wedge}$ is an isomorphism, otherwise X is \mathbb{F}_{p}-bad, or p-bad. X is said to be \mathbb{F}_{p}-complete, or p complete, if $X \rightarrow X_{p}^{\wedge}$ is a weak homotopy equivalence. The following are equivalent: (a) X is p-good, (b) X_{p}^{\wedge} is p-complete, (c) X_{p}^{\wedge} is p-good. Thus if X is p-bad, then however many times we complete it, it remains p-bad.
(iii) If $\pi_{1} X$ is finite then X is p-good for all primes p. In this case, we have $\pi_{1} X_{p}^{\wedge} \cong$ $\pi_{1} X / O^{p}\left(\pi_{1} X\right)$.

Proof. Parts (i) and (ii) are proved in Section I.I. 5 of [34], while part (iii) is proved in Proposition I.VII.5.1 of [34].

Corollary 1.6.2. If G is a finite group then the classifying space $B G$ is p-good, its completion $B G_{p}^{\wedge}$ is a p-complete, nilpotent space and $\pi_{1}\left(B G_{p}^{\wedge}\right) \cong G / O^{p}(G)$. The space $B G$ is already p-complete if and only if G is a finite p-group.

The following are equivalent.
(1) $B G_{p}^{\wedge}$ is simply connected.
(2) $\Omega B G_{p}^{\wedge}$ is connected.
(3) G has no normal subgroup of index p.

Proof. This follows from Theorem 1.6.1.

REmARK 1.6.3. In general, for a nilpotent space X with finite dimensional homology groups, the Eilenberg-Moore spectral sequence is a spectral sequence of Hopf algebras converging to the homology of the loop space:

$$
\operatorname{Ext}_{H^{*} X}^{*, *}(\mathrm{k}, \mathrm{k}) \cong \operatorname{Cotor}_{H_{*} X}^{*, *}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \Omega X
$$

(Eilenberg-Moore [63], Smith [202]). If the finite group G is not p-nilpotent, then $B G$ is not a nilpotent space. However, $B G_{p}^{\wedge}$ is a nilpotent space, and $H^{*} B G_{p}^{\wedge} \cong H^{*} B G$. So we get a spectral sequence

$$
\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \Omega B G_{p}^{\wedge} .
$$

This expresses the cochain level statement for the DG algebra of endomorphisms

$$
\mathcal{E} n d_{C^{*} B G}(\mathrm{k}) \simeq C_{*} \Omega B G_{p}^{\wedge}
$$

It follows that we have a functor $\mathcal{H} \operatorname{Com}_{C^{*} B G}(\mathrm{k},-)$ from $C^{*} B G$-modules to $C_{*} \Omega B G_{p}^{\wedge}$-modules.
In the other direction, for any path connected space X the Rothenberg-Steenrod construction [196] gives

$$
\mathcal{E} n d_{C_{*} \Omega X}(\mathrm{k}) \simeq C^{*} X
$$

We can apply this either to $X=B G$ to obtain $\mathcal{E} n d_{\mathrm{k} G}(\mathrm{k}) \simeq C^{*} B G$ or to $X=B G_{p}^{\wedge}$ to obtain

$$
\varepsilon n d_{C_{*} \Omega B G_{p}^{\wedge}}(\mathrm{k}) \simeq C^{*} B G_{p}^{\wedge} \simeq C^{*} B G
$$

In the latter case, we get a functor $\mathcal{H o m}_{C_{*} \Omega B G_{p}^{\wedge}}(\mathrm{k},-)$ from $C_{*} \Omega B G_{p}^{\wedge}$-modules to $C^{*} B G$ modules.

Lemma 1.6.4 (The fibre lemma). Suppose that $F \rightarrow E \rightarrow B$ is a fibration sequence, and that the action of $\pi_{1}(B)$ on $H_{i} F$ is nilpotent for all $i \geqslant 0$. Then $E_{p}^{\wedge} \rightarrow B_{p}^{\wedge}$ is a fibration, with fibre homotopy equivalent to F_{p}^{\wedge}.

Proof. Recalling that our convention is that $H_{*} F$ denotes mod p homology, this is the case $R=\mathbb{F}_{p}$ of the Mod- R Fibre Lemma II.5.1 of Bousfield and Kan [34].

Proposition 1.6.5. Let G be a finite group, and embed G in a finite unitary group $G \rightarrow U(n)$. Then there are fibration sequences
(i) $U(n) / G \rightarrow B G \rightarrow B U(n)$, and
(ii) $(U(n) / G)_{p}^{\wedge} \rightarrow B G_{p}^{\wedge} \rightarrow B U(n)_{p}^{\wedge}$.

Proof. (i) Let $E U(n)$ be the complex Stiefel variety (or any contractible space on which $U(n)$ acts freely). Then we can use $E U(n)$ for $E G$, and the required fibration is

$$
U(n) / G \rightarrow E U(n) / G \rightarrow E U(n) / U(n)
$$

(ii) Since $\pi_{1}(B U(n))$ is trivial, this follows from Lemma 1.6.4 and part (i).

1.7. Classifying spaces and fusion systems

Let G be a finite group and k be a field of characteristic p. Let $E G$ be a contractible space with a free G-action, and let $B G$ be the quotient $E G / G$. Since $C_{*} E G$ is a free resolution of k as a $\mathrm{k} G$-module, the cohomology ring $H^{*} B G$ is isomorphic to the group cohomology $H^{*}(G, \mathrm{k})=\mathrm{Ext}_{\mathrm{k} G}^{*}(\mathrm{k}, \mathrm{k})$. Furthermore, if P_{*} is any projective resolution of k as a $\mathrm{k} G$-module, then the DG algebra $\operatorname{Hom}_{\mathrm{k} G}\left(P_{*}, P_{*}\right)$ is quasi-isomorphic to $C^{*} B G$.

By a theorem of Cartan and Eilenberg (Theorem XII.10.1 of [48], the cohomology $H^{*} B G$ only depends on the Sylow p-subgroup D of G and the fusion system on it defined by conjugation in G. This is defined as follows.

Definition 1.7.1. Let D be a Sylow p-subgroup of a finite group G. For subgroups H and K of D, we define $\operatorname{Hom}_{G}(H, K)$ to be the set of group homomorphisms from H to K that are induced by conjugation by some element of $G,\left\{\phi: H \rightarrow K \mid \exists g \in G \forall h \in H \phi(h)=g h g^{-1}\right\}$. The fusion category of G over D is the category $\mathcal{F}_{D}(G)$ whose objects are the subgroups of D, and whose morphisms are given by $\operatorname{Hom}_{G}(H, K)$. The fusion system of G over D consists of D together with the fusion category.

Abstract fusions systems are studied in the books of Aschbacher, Kessar and Oliver [7] and Craven [52]. There is a set of axioms, devised by Puig, and not every fusion system comes from a finite group in the above way. We shall assume that the saturation axiom is part of the definition.

Definition 1.7.2. Let D be a Sylow p-subgroup of a finite group G. A subgroup H of D is p-centric in G if $Z(H)$ is a Sylow p-subgroup of $C_{G}(H)$. This is equivalent to saying that $C_{G}(H)=Z(H) \times O_{p^{\prime}} C_{G}(H)$. The centric linking system of G over D is the category $\mathcal{L}_{D}(G)$ whose objects are the subgroups of D that are p-centric in G, and whose morphisms are the quotient of $\left\{g \in G \mid g g^{-1} \leqslant K\right\}$ by the action of $O_{p^{\prime}} C_{G}(H)$. There is an obvious functor $\mathcal{L}_{D}(G) \rightarrow \mathcal{F}_{D}(G)$.

Again, there is a set of axioms for an abstract centric linking system \mathcal{L} over a fusion system on a p-group D. A p-local finite group consists of a finite p-group D together with a fusion system \mathcal{F} over D and a centric linking system $\mathcal{L} \rightarrow \mathcal{F}$.

Given a p-local finite group $(D, \mathcal{F}, \mathcal{L})$, its classifying space $|\mathcal{L}|$ is defined to be the nerve of the category \mathcal{L}. It is a p-good space (Proposition 1.12 of Broto, Levi and Oliver [41]). The p-local finite $\operatorname{group}(D, \mathcal{F}, \mathcal{L})$ can be recovered from the homotopy type of $|\mathcal{L}|_{p}^{\wedge}$ (Theorem 7.4 of [41]).

THEOREM 1.7.3. The natural map $\left|\mathcal{L}_{D}(G)\right| \rightarrow B G$ is a mod p cohomology equivalence, and so induces a homotopy equivalence $\left|\mathcal{L}_{D}(G)\right|_{p}^{\wedge} \rightarrow B G_{p}^{\wedge}$.

Proof. This is the main theorem of Broto, Levi and Oliver [40].
THEOREM 1.7.4. For a p-local finite group ($D, \mathcal{F}, \mathcal{L}$), the cohomology $H^{*}|\mathcal{L}|$ is isomorphic to the ring of stable elements in $H^{*} B G$ in the sense of Cartan and Eilenberg, Theorem XII.10.1 of [48].

Proof. This is Theorem B of [41].
THEOREM 1.7.5. Suppose that G and G^{\prime} are finite groups, and there is a fusion preserving isomorphism from the Sylow p-subgroup D of G to that of G^{\prime}. Then there is a homotopy equivalence $B G_{p}^{\wedge} \rightarrow B G_{p}^{\prime \wedge}$.

Proof. For $p=2$ this is Theorem B of Oliver [188], while for odd primes it is Theorem B of Oliver [187].

The following stronger theorem was proved later, and Oliver's Theorem 1.7.5 is a consequence.

THEOREM 1.7.6. Given a fusion system \mathcal{F} on a finite p-group D, there exists a unique centric linking system \mathcal{L} over \mathcal{F}.

Proof. This was first proved by Chermak [49] using his theory of localities. The proof used the classification of finite simple groups. Later, Oliver recast the proof in terms of obstruction theory. His proof depends on the Meierfrankenfeld-Stellmacher classification of quadratic best offenders [180], which again relies on the classification of finite simple groups. Finally, a classification free proof was given by Glauberman and Lynd [125].

Using Theorem 1.7.6, given a fusion system \mathcal{F} on a p-group D, it determines first a linking system \mathcal{L} over \mathcal{F}, then the classifying space $|\mathcal{L}|$, then its p-completion $|\mathcal{L}|_{p}^{\wedge}$, and finally the cochains $C^{*}|\mathcal{L}|_{p}^{\wedge} \simeq C^{*}|\mathcal{L}|$.

Remark 1.7.7. The corresponding theorem for discrete p-toral groups is proved in Levi and Libman $[\mathbf{1 7 0}]$. This is relevant when trying to understand p-completed classifying spaces of compact Lie groups.

Remark 1.7.8. Let B be a block of the group algebra $\mathrm{k} G$ of a finite group G over k . It follows from the work of Alperin and Broué [2] that one can associate to B a fusion system \mathcal{F}_{B} describing the fusion of subpairs associated to the block. This is spelled out in Section 3 of Linckelmann [175]. Thus using Theorem 1.7.6, we can associate to B a linking system \mathcal{L}_{B}, and a classifying space $\left|\mathcal{L}_{B}\right|$, whose cohomology $H^{*}\left|\mathcal{L}_{B}\right|$ is the cohomology of B in the sense of Linckelmann [174]. In the case of a principal block, the defect groups are the Sylow p-subgroups of G, and the fusion system of the block is the same as the fusion system $\mathcal{F}_{G}(D)$ of the group.

Craven and Glesser [54] studied fusion systems on metacyclic groups. Theorem 1.1 of that paper shows that for dihedral, semidihedral and generalised quaternion 2-groups, all possible fusions systems are realised as fusion systems $\mathcal{F}_{D}(G)$ of some finite group G. It follows that when we discuss 2-completed classifying spaces of finite groups with these as Sylow 2-subgroups, we are really discussing the 2 -completed classifying spaces associated to any fusion system on such a 2-group, including classifying spaces of blocks with these as defect groups.

1.8. Abelian Sylow subgroups

Let G be a finite group with abelian Sylow p-subgroup D, and let k be a field of characteristic p. Then by a classical theorem of Burnside, the normaliser $N_{G}(D)$ controls G-fusion in D. See for example Theorem 7.1.1 of Gorenstein [126]. This implies that the inclusion $N_{G}(D) \hookrightarrow G$ induces an isomorphism of fusion systems $\mathcal{F}_{N_{G}(D)}(D) \rightarrow \mathcal{F}_{G}(D)$. It follows that the ring of stable elements in $H^{*} B D$ (see Theorem 1.7.4) is just the invariants of the normaliser. So we have the classical theorem of Swan.

Theorem 1.8.1. Suppose that G has an abelian Sylow p-subgroup D, and let k be a field of characteristic p. Then the inclusion $N_{G}(D) \rightarrow G$ and the quotient map $N_{G}(D) \rightarrow$ $N_{G}(D) / O_{p^{\prime}} N_{G}(D)$ induce isomorphisms

$$
H^{*} B G \cong H^{*} B N_{G}(D) \cong H^{*} B\left(N_{G}(D) / O_{p^{\prime}} N_{G}(D)\right) \cong H^{*} B D^{N_{G}(D) / C_{G}(D)}
$$

Proof. See Swan [209].

The consequence for the p-completed classifying space is the following.
Theorem 1.8.2. Suppose that G has an abelian Sylow p-subgroup D, and let k be a field of characteristic p. Then we have homotopy equivalences

$$
B\left(N_{G}(D) / O_{p^{\prime}} N_{G}(D)\right)_{p}^{\wedge} \leftarrow B N_{G}(D)_{p}^{\wedge} \rightarrow B G_{p}^{\wedge}
$$

Proof. By Theorem 1.8.1, the inclusion of a Sylow p-normaliser $N_{G}(D) \rightarrow G$ and the quotient $\operatorname{map} N_{G}(D) \rightarrow N_{G}(D) / O_{p^{\prime}} N_{G}(D)$ induce $\bmod p$ cohomology equivalences

$$
B\left(N_{G}(D) / O_{p^{\prime}} N_{G}(D)\right) \leftarrow B N_{G}(D) \rightarrow B G .
$$

Hence by Theorem 1.6.1 (i), after p-completion these give homotopy equivalences.
REmARK 1.8.3. The group $N_{G}(D) / O_{p^{\prime}} N_{G}(D)$ is isomorphic to a semidirect product of D by a p^{\prime}-subgroup H of $\operatorname{Aut}(D)$. This reduces the study of $B G_{p}^{\wedge}$ to the study of $B(D \rtimes H)_{p}^{\wedge}$.

We shall discuss the case where D is cyclic in Section 1.13 and the case where D is an elementary abelian 2-group in Theorem 5.2.2.

1.9. Singularity and cosingularity categories

Let \mathfrak{a} be an A_{∞} algebra over k. The derived category $\mathrm{D}(\mathfrak{a})$ has as its objects the A_{∞} modules over \mathfrak{a} and as arrows the homotopy classes of A_{∞} morphisms. In this category, quasi-isomorphisms automatically have inverses. For details, see Keller $[\mathbf{1 5 4}, \mathbf{1 5 5}]$, LefèvreHasegawa [165].

If $H_{*} \mathfrak{a}$ is commutative Noetherian, we define the bounded derived category $D^{\mathfrak{b}}(\mathfrak{a})$ to be the thick subcategory of $D(\mathfrak{a})$ whose objects are the modules with finitely generated homology.

We also need a suitable notion when $H_{*} \mathfrak{a}$ is not Noetherian, in order to deal with the case of $\mathfrak{a}=C_{*} \Omega B G_{p}^{\wedge}$. The appropriate condition there involves a suitable notion of Noether normalisation (Definition 3.7 of Greenlees and Stevenson [133]):

Definition 1.9.1. We say that $\mathfrak{b} \rightarrow \mathfrak{a}$ is a normalisation of $\mathfrak{a} \rightarrow \mathfrak{k}$ if both \mathfrak{a} and k are in the thick subcategory $\operatorname{Thick}(\mathfrak{b}) \subseteq \mathrm{D}(\mathfrak{b})$ generated by \mathfrak{b}. For example, if $H_{*} \mathfrak{a}$ is finitely presented then the set of generators in a finite presentation leads to a normalisation (Theorem 3.13 of [133]).

If $\mathfrak{b} \rightarrow \mathfrak{a}$ is a normalisation, we define the bounded derived category $D^{\mathfrak{b}}(\mathfrak{a})$ to be full subcategory of $D(\mathfrak{a})$ consisting of those objects whose restriction to \mathfrak{b} are in Thick $(\mathfrak{b}) \subseteq D(\mathfrak{b})$. Under suitable hypotheses this is independent of the normalisation (Propositions 4.3 and 7.2 of [133]).

We define the singularity category $D_{s g}(\mathfrak{a})$ to be the Verdier quotient of $D^{b}(\mathfrak{a})$ by the thick subcategory Thick(\mathfrak{a}) generated by \mathfrak{a}. We define the cosingularity category $\mathrm{D}_{\mathrm{csg}}(\mathfrak{a})$ to be the Verdier quotient of $D^{b}(\mathfrak{a})$ by the thick subcatgory Thick (k) generated by the field k.

We are interested in the cases of $C^{*} B G_{p}^{\wedge}$ and $C_{*} \Omega B G_{p}^{\wedge}$. Recall from Proposition 1.6.5 that we have a fibration sequence

$$
(U(n) / G)_{p}^{\wedge} \rightarrow B G_{p}^{\wedge} \rightarrow B U(n)_{p}^{\wedge}
$$

This gives rise to maps

$$
C^{*} B U(n)_{p}^{\wedge} \rightarrow C^{*} B G_{p}^{\wedge} \rightarrow C^{*}(U(n) / G)_{p}^{\wedge}
$$

and

$$
C_{*} \Omega(U(n) / G)_{p}^{\wedge} \rightarrow C_{*} \Omega B G_{p}^{\wedge} \rightarrow C_{*} U(n)_{p}^{\wedge}
$$

These have the property that $C^{*} B U(n)_{p}^{\wedge} \rightarrow C^{*} B G_{p}^{\wedge}$ and $C_{*} \Omega(U(n) / G)_{p}^{\wedge} \rightarrow C_{*} \Omega B G_{p}^{\wedge}$ are normalisations.

The following theorem expresses a version of Koszul duality between $C^{*} B G$ and $C_{*} \Omega B G_{p}^{\wedge}$ (cf. Remark 1.6.3).

Theorem 1.9.2. For a finite group G, the functor $\mathcal{H}_{\text {om }_{C}{ }^{*} B G}(\mathrm{k},-)$ induces a triangulated equivalence of bounded derived categories $\mathrm{D}^{\mathrm{b}}\left(C^{*} B G\right) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{p}^{\wedge}\right)$ that sends $C^{*} B G$ to k and sends k to $C_{*} \Omega B G_{p}^{\wedge}$. It induces triangulated equivalences

$$
\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \xrightarrow{\sim} \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{p}^{\wedge}\right), \quad \mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right) \xrightarrow{\sim} \mathrm{D}_{\mathrm{sg}}\left(C_{*} \Omega B G_{p}^{\wedge}\right) .
$$

Proof. This follows from Theorem 9.1 and Example (10.6) of [133].

1.10. Tame blocks

The trichotomy theorem of Drozd [62] (see also Crawley-Boevey [55]) for finite dimensional algebras states that every finite dimensional algebra is is of finite, tame or wild representation type, and these types are mutually exclusive. Roughly speaking, finite representation type means that there are only finitely many isomorphism classes of finitely generated indecomposable modules. Tame representation type means that the finitely generated indecomposables of any particular dimension (over an infinite field) come in one parameter families with finitely many exceptions, and wild representation type means that the module theory for a free algebra on two generators can be encoded in the category of finite dimensional modules for the given algebra. For details, see for example Section 4.4 of [15].

In the case of blocks of finite groups, the representation type only depends on the defect group.

Theorem 1.10.1. Let B be a block of $\mathrm{k} G$ with defect group D. Then
(i) B has finite representation type if and only if D is cyclic.
(ii) B has tame representation type if and only if $p=2$, and D is dihedral, generalised quaternion, or semidihedral.
(iii) In all other cases, B has wild representation type.

Proof. It follows from the work of Higman [139] that the representation type only depends on the defect group. For finite p-groups, the representation type was determined by Bondarenko and Drozd [33], see also Ringel [194].

Blocks with cyclic defect group were completely described in the work of Brauer [35] and Dade [58]. The case of tame representation type was the subject of extensive work of Erdmann [66-79], giving an almost complete description of the Morita types of these blocks. Our work leans heavily on these papers. To make life easy, it follows from a case by case analysis that for each isomorphism type of defect group of tame representation type and each fusion system on it, there is a principal block of some finite group G with the same fusion system, and all such have equivalent classifying spaces by Oliver's Theorem 1.7.5. Judicious choice of G minimises the work involved in understanding $C^{*} B G$ and $C_{*} \Omega B G_{2}^{\wedge}$.

REmARK 1.10.2. Finite dimensional local symmetric algebras of tame representation type are listed in Theorem III. 1 of Erdmann [74]. The group algebras of finite 2-groups among these are as given as follows. The dihedral groups have type III. 1 (c) with k a power of two (or type III. 1 (b) for the Klein four group), the semidihedral groups have type III. 1 (d'), and the generalised quaternion groups have type III. 1 (e^{\prime}). This is a slightly more precise statement than given in III. 13 of [74]; see also Sections 3.2 and 4.2 for further comments.

1.11. Cohomology of complete intersections

We shall need to compute $\operatorname{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})$ and $H H^{*}(R)$ in the case where $R=H^{*} B G$ is a complete intersection. For this reason, we give a brief review of cohomology of complete intersections, following Avramov [8], Sjödin [201] and Buchweitz and Roberts [44].

Let R be a complete intersection of the form Q / I, where $Q=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ is a positively graded polynomial ring and I is generated by a homogeneous regular sequence f_{1}, \ldots, f_{c} in \mathfrak{m}^{2}, where \mathfrak{m} is the ideal $\left(x_{1}, \ldots, x_{n}\right) .^{1}$ We can take partial derivatives in the usual way to give polynomials

$$
b_{i, k}=\frac{\partial f_{k}}{\partial x_{i}} \in Q
$$

We can then take their images in R, which we denote $\bar{b}_{i, k}$. But then there's a problem when it comes to second partial derivatives, because in characteristic two the second partial derivative of x^{2} with respect to x vanishes. To remedy this, the second divided partial derivative is defined to be the second term in the Taylor expansion of the polynomial, so that for example $\frac{\partial^{(2)}\left(x^{2}\right)}{\partial x^{2}}=1$. Thus we have $\frac{\partial^{2} f_{k}}{\partial x_{i}^{2}}=2 \frac{\partial^{(2)} f_{k}}{\partial x_{i}^{2}}$. So now set

$$
a_{i, j, k}= \begin{cases}\frac{\partial^{2} f_{k}}{\partial x_{i} \partial x_{j}} & i \neq j \\ \frac{\partial^{(2)} f_{k}}{\partial x_{i}^{2}} & i=j\end{cases}
$$

as an element of Q, and write $\bar{a}_{i, j, k}$ for the image of $a_{i, j, k}$ in R. These are the coefficients of the Hessian quadratic form q associated to the relations defining R, see Section 2 of [44].

Definition 1.11.1. Following [44], we define $\operatorname{Cliff}(q)$ to be the differential bigraded algebra over R with generators \hat{x}_{i} dual to the x_{i}, in degree $\left(-1,-\left|x_{i}\right|\right)(1 \leqslant i \leqslant n)$ and s_{k} dual to the f_{k}, in degree $\left(-2,-\left|f_{k}\right|\right)(1 \leqslant j \leqslant c)$. The multiplicative structure is given by making s_{j} central, and

$$
\hat{x}_{i} \hat{x}_{j}+\hat{x}_{j} \hat{x}_{i}=\sum_{k=1}^{c} \bar{a}_{i, j, k} s_{k} \quad(i \neq j), \quad \quad \hat{x}_{i}^{2}=\sum_{k=1}^{c} \bar{a}_{i, i, k} s_{k}
$$

The differential $d: \operatorname{Cliff}(\mathbf{q}) \rightarrow \operatorname{Cliff}(\mathbf{q})$ vanishes on A and on the s_{k}, and on the \hat{x}_{i} it is given by

$$
d\left(\hat{x}_{i}\right)=\sum_{k=1}^{c} \bar{b}_{i, k} s_{k} .
$$

[^1]Theorem 1.11.2. We have $\operatorname{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})=\mathrm{k} \otimes_{R} \operatorname{Cliff}(\mathrm{q})$.
Proof. This is proved in Sjödin [201] when the characteristic is not two. The general statement can be obtained from Avramov [8] by combining Theorem 10.2.1 (5) and Example 10.2.2 there.

Remark 1.11.3. According to Theorem 1.11.2, $\mathrm{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})$ is generated over k by elements \hat{x}_{i} in degree $\left(-1,-\left|x_{i}\right|\right)(1 \leqslant i \leqslant n)$ and s_{k} in degree $\left(-2,-\left|f_{k}\right|\right)(1 \leqslant k \leqslant c)$. The elements s_{k} generate a central polynomial subring over which $\operatorname{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})$ is a free module of rank 2^{n}. The relations express $\hat{x}_{i} \hat{x}_{j}+\hat{x}_{j} \hat{x}_{i}$ and \hat{x}_{i}^{2} as linear combinations of the s_{k} with coefficients in k given by the constant terms $a_{i, j, k}(0)$ of the polynomials $a_{i, j, k}$. These only depend on the quadratic parts of the polynomials f_{k}, so we have $f_{k}=\sum_{i, j=1}^{n} a_{i, j, k}(0) x_{i} x_{j}+$ terms of degree at least three.

REmARK 1.11.4. The algebra $\operatorname{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})$ carries a Hopf algebra structure for which the elements \hat{x}_{i} and s_{k} are primitive. This gives the multiplication on the graded dual Hopf algebra $\operatorname{Tor}_{*}^{R}(\mathrm{k}, \mathrm{k})$.

Theorem 1.11.5. We have $H H^{*}(R)=H^{*}(\operatorname{Cliff}(q), d)$, the cohomology of $\operatorname{Cliff}(q)$ with respect to the differential d.

Proof. This is Theorem 2.11 of Buchweitz and Roberts [44].
REmARK 1.11.6. Since the relations f_{k} are required to be in \mathfrak{m}^{2}, we have $b_{i, k} \in \mathfrak{m}$, so $b_{i, k}(0)=0$, and the differential d disappears on $\mathrm{k} \otimes_{R} \operatorname{Cliff}(\mathrm{q})$. So there is a natural map from $H^{*}(\operatorname{Cliff}(\mathrm{q}), d)$ to $\mathrm{k} \otimes_{R} \operatorname{Cliff}(\mathrm{q})$. This is the usual map $H H^{*}(R) \rightarrow \mathrm{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})$ obtained by applying $-\otimes_{R} \mathrm{k}$ to a bimodule resolution of R to obtain a module resolution of k .

1.12. Koszul duality for graded algebras

For graded commutative rings whose relations are quadratic, Koszul duality provides a computation of both Ext and Hochschild cohomology.

Definition 1.12.1. A Koszul algebra is a graded k-algebra R with the property that the minimal resolution of k as an R-module is linear. In other words, the maps in the minimal resolution are given by multiplication by linear combinations of the generators.

The relations in a Koszul algebra are quadratic, but not every graded algebra with quadratic relations is Koszul. However, a graded commutative algebra with quadratic relations is automatically Koszul.

If $R=\mathrm{k}\left\langle x_{1}, \ldots, x_{n}\right\rangle /(S)$ is a Koszul algebra, with S a set of quadratic relations, then the Koszul dual is

$$
R^{!}=\operatorname{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k}) \cong \mathrm{k}\left\langle\hat{x}_{1}, \ldots, \hat{x}_{n}\right\rangle /\left(S^{\perp}\right)
$$

If V is the vector space with basis x_{1}, \ldots, x_{n} then $\hat{x}_{1}, \ldots, \hat{x}_{n}$ is the dual basis for V^{*}. The relations S form a linear subspace of $V \otimes V$, and S^{\perp} is its annihilator in $V^{*} \otimes V^{*} \cong(V \otimes V)^{*}$.

Theorem 1.12.2. Let $R=\mathrm{k}\left\langle x_{1}, \ldots, x_{n}\right\rangle /(S)$ be a graded Koszul algebra, with S a set of quadratic relations, and let $R^{!}=\mathrm{k}\left\langle\hat{x}_{1}, \ldots, \hat{x}_{n}\right\rangle /\left(S^{\perp}\right)$ be the Koszul dual. Then as a k -algebra, the Hochschild cohomology $H H^{*} R$ can be computed as $H^{*}\left(R \otimes R^{!}, d\right)$, where the differential d given by $[e,-]$ where $e=x_{1} \otimes \hat{x}_{1}+\cdots+x_{n} \otimes \hat{x}_{n}$. Here, the variables $\hat{x}_{1}, \ldots, \hat{x}_{n}$ are put in homological degree -1 in the complex, while x_{1}, \ldots, x_{n} are in homological degree zero.

Proof. In this form, this is proved in Theorem 1.2 of Negron [186], but see also the paper of Buchweitz, Green, Snashall and Solberg [42], where this is described in a more basis dependent way.

REMARK 1.12.3. In the case of a complete intersection R with quadratic relations, of course S includes the commutativity relations, whereas the Koszul dual R ! is usually noncommutative. In this case, the complex given in Theorem 1.12.2 is isomorphic to (Cliff(q), d) appearing in Theorem 1.11.5. The advantage of this approach is that the same computation also computes $H H^{*} R^{!}$, but watching out for the change of degrees.

Remark 1.12.4. If R and $R^{!}$are Koszul dual algebras, there is a relation between the generating functions for the dimensions. For this purpose, it is necessary to give both R and $R^{!}$an extra grading with the generators in degree one, so that a generator in degree n now has degree $(1, n)$. The Koszul dual generator is then in degree $(1,-n)$. This extra grading makes sense because the relations are quadratic, and therefore homogeneous in the new grading. Let

$$
p_{R}(s, t)=\sum_{i, j} s^{i} t^{j} \operatorname{dim}_{\mathrm{k}} R_{i, j} .
$$

Then we have

$$
\begin{equation*}
p_{R^{\prime}}(s, t)=1 / p_{R}\left(-s t^{-1}, t^{-1}\right) . \tag{1.12.5}
\end{equation*}
$$

Without the internal grading, the formula reduces to the more well known formula

$$
p_{R^{\prime}}(s)=1 / p_{R}(-s) .
$$

For example, if $R=\mathrm{k}[x, y]$ with x in degree -2 and y in degree -4 then $R^{!}=\Lambda(\hat{x}, \hat{y})$ with \hat{x} in degree 1 and \hat{y} in degree 3. Then $p_{R}(s, t)=1 /\left(1-s t^{-2}\right)\left(1-s t^{-4}\right)$ and

$$
p_{R^{!}}(s, t)=\left(1-\left(-s t^{-1}\right) t^{2}\right)\left(1-\left(-s t^{-1}\right) t^{4}\right)=(1+s t)\left(1+s t^{3}\right) .
$$

1.13. The cyclic case

In this section, we summarise the results on groups with cyclic Sylow p-subgroups, from the papers $[\mathbf{2 2}, \mathbf{2 3}]$.

Let G be a finite group with cyclic Sylow p-subgroups, and let k be a field of characteristic p. Then by Theorem 1.8.2, the inclusion of a Sylow p-normaliser $N_{G}(D) \rightarrow G$ and the quotient map $N_{G}(D) \rightarrow N_{G}(D) / O_{p^{\prime}} N_{G}(D)$ induce homotopy equivalences

$$
B\left(N_{G}(D) / O_{p^{\prime}} N_{G}(D)\right)_{p}^{\wedge} \leftarrow B N_{G}(D)_{p}^{\wedge} \rightarrow B G_{p}^{\wedge}
$$

So it suffices to discuss the case $\mathbb{Z} / p^{n} \rtimes \mathbb{Z} / q$, where $q \geqslant 2$ is a divisor of $p-1$ and \mathbb{Z} / q acts faithfully on \mathbb{Z} / p^{n}. Indeed, even in the case of a block with cyclic defect group of order p^{n} and inertial index q, the p-completed classifying space (see Remark 1.7.8) has the same homotopy type.

So set

$$
\left.G=\langle g, s| g^{p^{n}}=1, s^{q}=1, \text { sgs }^{-1}=g^{\gamma}\right\rangle \cong \mathbb{Z} / p^{n} \rtimes \mathbb{Z} / q,
$$

where γ is a primitive q th root of unity modulo p^{n}. Setting

$$
U=\sum_{\substack{1 \leqslant j \leqslant p^{n}-1, j^{p} \equiv j\left(\bmod p^{n}\right)}} g^{j} / j,
$$

the group algebra is given by

$$
\mathrm{k} G=\mathrm{k}\left\langle s, U \mid U^{p^{n}}=0, s^{q}=1, s U=\gamma U s\right\rangle
$$

where γ is a primitive q th root of unity. This has a unique grading up to scalar multiplication. It is convenient to use a $\mathbb{Z}\left[\frac{1}{q}\right]$-grading and set $|s|=0,|U|=1 / q$. With this grading, the cohomology is the doubly graded ring given by $H^{*} B G=\mathrm{k}[x] \otimes \Lambda(t)$ with $|x|=\left(-2 q,-p^{n}\right)$ and $|t|=(-2 q+1,-h)$ with $h=p^{n}-\left(p^{n}-1\right) / q$. The A_{∞} structure is completely determined by

$$
m_{i}(t, \ldots, t)= \begin{cases}(-1)^{p^{n}\left(p^{n}-1\right) / 2} x^{h} & i=p^{n} \\ 0 & \text { otherwise }\end{cases}
$$

The homology of the loop space on the p-completion $H_{*} \Omega B G_{p}^{\wedge}$ looks very similar. We have

$$
H_{*} \Omega B G_{p}^{\wedge}=k[\tau] \otimes \Lambda(\xi)
$$

where $|\tau|=(2 q-2, h)$ and $|\xi|=\left(2 q-1, p^{n}\right)$. The A_{∞} structure is completely determined by

$$
m_{i}(\xi, \ldots, \xi)= \begin{cases}(-1)^{h(h-1) / 2} & i=h \\ 0 & \text { otherwise }\end{cases}
$$

Thus the roles of h and p^{n} have been reversed. There is one exceptional case. If $h=2$ then $q=2$ and $p^{n}=3$. In this case, the formula above gives $m_{2}(\xi, \xi)=-\tau^{3}$. Thus ξ is no longer an exterior variable, but rather we have the formal A_{∞} algebra $H_{*} \Omega B G_{p}^{\wedge}=k[\tau, \xi] /\left(\xi^{2}+\tau^{3}\right)$ in this case.

The category $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(\Omega B G_{p}^{\wedge}\right)$ is equivalent to $\mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{p}^{\wedge}\left[\tau^{-1}\right]\right)$. This is a finite Krull-Schmidt triangulated category with $(q-1)(h-1)$ isomorphism classes of indecomposable objects. The Auslander-Reiten quiver of this category is isomorphic to $\mathbb{Z} A_{h-1} / T^{q-1}$, a cylinder of height $h-1$ and circumference $q-1$. Here, T is the translation functor $\Sigma^{-2 q}=\Sigma^{-2}$. The triangulated shift Σ reverses the ends of the cylinder, so that there are $[h / 2]$ orbits of Σ on indecomposables.

The category $\mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(\Omega B G_{p}^{\wedge}\right)$ is equivalent to $\mathrm{D}^{\mathrm{b}}\left(C^{*} B G\left[x^{-1}\right]\right)$. This is a finite Krull-Schmidt triangulated category with $q\left(p^{n}-1\right)$ isomorphism classes of indecomposable objects. The Auslander-Reiten quiver is isomorphic to $\mathbb{Z} A_{p^{n}-1} / T^{q}$, a cylinder of height $p^{n}-1$ and circumference q. The translation functor this time is $T=\Sigma^{2(q-1)}$, and the triangulated shift Σ again reverses the ends of the cylinder, so that there are $\left(p^{n}-1\right) / 2$ orbits of Σ on indecomposables.

CHAPTER 2

The dihedral case

2.1. Introduction

In this chapter, we discuss the case of finite groups with dihedral Sylow 2-subgroups. The A_{∞} structure on the cohomology of dihedral groups is given in the following theorem.

Theorem 2.1.1. Let D be a dihedral group of order $4 q$, where $q \geqslant 2$ is a power of two, and let k be a field of characteristic two. Then as a ring, we have $H^{*} B \mathrm{D}=\mathrm{k}[x, y, t] /(x y)$ with $|x|=|y|=-1$ and $|t|=-2$. Up to quasi-isomorphism, the A_{∞} structure on $H^{*} B \mathrm{D}$ is determined by

$$
m_{2 q}(x, y, \ldots, x, y)=m_{2 q}(y, x, \ldots, y, x)=t
$$

We give an explicit A_{∞} structure within this quasi-isomorphism class in Theorem 2.4.2. It has $m_{i} \neq 0$ if and only if i is congruent to 2 modulo $2 q-2$. For completeness, we also describe the case $q=1$, which behaves differently.

The idea of the proof is to put a double grading on the group algebra kD. This gives a triple grading on $H^{*} B \mathrm{D}$, which then restricts the possibilities for the higher m_{i}. It is then easy to check that $m_{i}=0$ unless i is congruent to 2 modulo $2 q-2$. Then $m_{2 q}$ is interpreted as a Hochschild cocycle on $H^{*} B \mathrm{D}$, and quasi-isomorphism amounts to changing it by a Hochschild coboundary. We write down explicit formulas for all the m_{i}, using some Hochschild cohomology computations involving the circle product of Gerstenhaber.

Similar computations give the A_{∞} structure on the cohomology of a finite group G with dihedral Sylow 2-subgroups of order $4 q$. These groups were classified by Gorenstein and Walter. There are three possible 2-local structures, which are distinguished by the number of conjugacy classes of involutions (one, two or three). We examine the three possibilities in detail, and determine the A_{∞} structures on $H^{*} B G$ and $H_{*} \Omega B G_{2}^{\wedge}$ in each case. The case with three conjugacy classes is trivial, since G has a normal 2-complement in this case, so we concentrate on the remaining two cases.

Perhaps the most interesting case is the one where all involutions are conjugate, as this happens if and only if G has no subgroup of index two. In this case, if $q \geqslant 2$ we have

$$
H^{*} B G=\mathrm{k}[t, \xi, \eta] /(\xi \eta)
$$

with $|t|=-2$ and $|\xi|=|\eta|=-3$ (homological grading). If $q=1$ then $H^{*} B G=$ $\mathbf{k}[t, \xi, \eta] /\left(\xi \eta+t^{2}\right)$. This time, the A_{∞} structure is determined up to quasi-isomorphism by

$$
m_{2 q}(\xi, \eta, \ldots, \xi, \eta)=m_{2 q}(\eta, \xi \ldots, \eta, \xi)=t^{2 q+1}
$$

where the ξ and η alternate. Again the m_{i} are non-zero for i congruent to 2 modulo $2 q-2$, and zero otherwise, and we give an explicit description of the non-zero ones.

The A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ in this case is easier to describe than that of $H^{*} B G$. This is because there are only two non-zero m_{i}.

THEOREM 2.1.2. Let G be a finite group with dihedral Sylow 2-subgroups of order $4 q$ with $q \geqslant 1$, and with no normal subgroup of index two, and let k be a field of characteristic two. Then the ring structure on the homology of $\Omega B G_{2}^{\wedge}$ is given by

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, \beta \mid \alpha^{2}=\beta^{2}=0\right\rangle
$$

where $|\tau|=1,|\alpha|=|\beta|=2$. The A_{∞} structure is determined by

$$
m_{2 q+1}(\tau, \ldots, \tau)=s^{q}
$$

where $s=\alpha \beta+\beta \alpha$.
See Theorems 2.8.3 and 2.8.10 for details.
We describe a DG algebra Q which is quasi-isomorphic to $C_{*} \Omega B G_{2}^{\wedge}$, and use it to show that the degree 4 element $s=\alpha \beta+\beta \alpha$ is central. It may then be inverted, to obtain equivalences of categories

$$
\mathrm{D}^{\mathrm{b}}\left(Q\left[s^{-1}\right]\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\left[s^{-1}\right]\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)
$$

Finally, we observe that there is a Morita equivalence between $Q\left[s^{-1}\right]$ and one of the algebras discussed in $[\mathbf{2 2}]$. This allows us to carry over the classification theorem there, to classify the indecomposable objects in $\mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\left[s^{-1}\right]\right)$, and hence also of $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)$.

Theorem 2.1.3. Let G be a finite group with dihedral Sylow 2-subgroups of order $4 q$ with $q \geqslant 1$, and with no subgroup of index two, and let k be a field of characteristic two. Then $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right)$ is a finite Krull-Schmidt category with $4 q$ isomorphism classes of indecomposable objects, which come in q orbits of the suspension Σ, all of length four. The Auslander-Reiten quiver is isomorphic to $\mathbb{Z} A_{2 q} / T^{2}$, where T is the translation functor Σ^{2}.

This theorem is proved in Section 2.12 (Theorem 2.12.1). The corresponding theorem in the case where G has two conjugacy classes of involutions, so that G has a normal subgroup of index two but no normal subgroup of index four, is given in Theorem 2.13.10.

In contrast with Theorems 2.12.1 and 2.13.10, the category $\mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right)$ has infinite representation type.

2.2. Dihedral 2-groups

Let $\mathrm{D}=\left\langle g, h \mid g^{2}=h^{2}=(g h)^{2 q}=1\right\rangle$, a dihedral group of order $4 q$, with $q \geqslant 1$ a power of two, and let k be a field of characteristic two. As elements of kD , let $X=g-1$ and $Y=h-1$. Then the group algebra can be rewritten as

$$
\mathrm{kD}=\mathrm{k}\left\langle X, Y \mid X^{2}=Y^{2}=0,(X Y)^{q}=(Y X)^{q}\right\rangle
$$

This algebra has tame representation type, and the finitely generated $k G$-modules were classified by Ringel [195].

We shall regard kD as a $\mathbb{Z} \times \mathbb{Z}$-graded algebra, with $|X|=(1,0)$ and $|Y|=(0,1)$. With this bigrading, the relations are homogeneous. It is easy to compute the minimal resolution of k as a $\mathrm{k} G$-module, and hence the cohomology ring. Recall that we are using homological degrees throughout, so that cohomological degrees come out negative. We list first the homological degree, and then the two internal degrees.

The case $q=1$ behaves differently from $q \geqslant 2$, so we discuss this case first. If $q=1$ then $H^{*} B \mathrm{D} \cong \operatorname{Ext}_{\mathrm{k} G}^{*}(\mathrm{k}, \mathrm{k})$ is a formal A_{∞} algebra $\mathrm{k}[x, y]$ with $|x|=-(1,1,0)$ and $|y|=-(1,0,1)$.

One way to see that it has to be formal is that the values m_{i} for $i>2$ on non-zero elements land in zero groups for degree reasons.

We now assume, for the rest of this section, that $q \geqslant 2$. We have

$$
H^{*} B \mathrm{D} \cong \mathrm{Ext}_{\mathrm{kD}}^{*}(\mathrm{k}, \mathrm{k}) \cong \mathrm{k}[x, y, t] /(x y)
$$

where $|x|=-(1,1,0),|y|=-(1,0,1)$ and $|t|=-(2, q, q)$. The elements x and y in $H^{1} B \mathrm{D}$ are dual to X and Y in $J(\mathrm{kD}) / J^{2}(\mathrm{kD})$. The element

$$
t \in H^{2} B \mathrm{D} \cong \operatorname{Ext}_{\mathrm{kD}}^{1}(\Omega \mathrm{k}, \mathrm{k})
$$

is represented by the short exact sequence of bigraded modules

$$
0 \rightarrow \mathrm{k} \rightarrow M \oplus N \rightarrow \Omega \mathrm{k} \rightarrow 0
$$

where M and N are uniserial modules of length $2 q$. Examination of these uniserial kDmodules shows that we have Massey products

$$
\langle x, y, \ldots, x, y\rangle=\langle y, x, \ldots, y, x\rangle=t
$$

in $H^{*} B \mathrm{D}$. Here, in both expressions the arguments x and y alternate, and there are q of each, for a total of $2 q$ terms. Note that these Massey products are only well defined up to adding multiples of x^{2} and y^{2}. However, if we take the internal grading into account, the Massey product is well defined, with no ambiguity.

2.3. $H H^{*} H^{*} B \mathrm{D}$

Wishing to understand further the A_{∞} structure of the cohomology of dihedral groups, it follows from Proposition 1.4.2 and Lemma 2.4.1 that we should next compute the Hochschild cohomology $H H^{*} H^{*} B \mathrm{D}$. Since $H^{*} B \mathrm{D}$ is a hypersurface (i.e., a codimension one complete intersection), we can compute Hochschild cohomology using Theorem 1.11.5. So first we compute the algebra $\operatorname{Cliff}(\mathbf{q})$ for $H^{*} B \mathrm{D}$, where D is a dihedral group of order $4 q$ with $q \geqslant 2$. This will also be useful for computing $\operatorname{Ext}_{H^{*} B \mathrm{D}}^{* * *}(\mathrm{k}, \mathrm{k})$ using Theorem 1.11.2. Recall that $H^{*} B \mathrm{D}=\mathrm{k}[x, y, t] /(x y)$ with $|x|=-(1,1,0),|y|=-(1,0,1)$ and $|t|=-(2, q, q)$.

Proposition 2.3.1. The $D G$ algebra $\operatorname{Cliff}(\mathbf{q})$ is equal to $H^{*} B \mathrm{D}\langle\hat{x}, \hat{y}, \tau ; s\rangle$, where s is central, and $\hat{x}^{2}=0, \hat{y}^{2}=0, \hat{x} \hat{y}+\hat{y} \hat{x}=s, \tau^{2}=0, \hat{x} \tau=\tau \hat{x}, \hat{y} \tau=\tau \hat{y}$. The degrees are given by $|x|=(0,-1,-1,0),|y|=(0,-1,0,-1),|t|=(0,-2,-q,-q),|\hat{x}|=(-1,1,1,0)$, $|\hat{y}|=(-1,1,0,1),|\tau|=(-1,2, q, q),|s|=(-2,2,1,1)$. The differential is given by $d(\hat{x})=y s$, $d(\hat{y})=x s, d(\tau)=0, d(s)=0$.

Proof. Let $f(x, y, t)=x y$. Then we have

$$
\begin{array}{rlrlrl}
\frac{\partial f}{\partial x} & =y, & \frac{\partial f}{\partial y} & =x, & \frac{\partial f}{\partial z} & =0 \\
\frac{\partial^{(2)} f}{\partial x^{2}} & =0, & \frac{\partial^{(2)} f}{\partial y^{2}} & =0, & \frac{\partial^{(2)} f}{\partial z^{2}} & =0 \\
\frac{\partial^{2} f}{\partial x \partial y} & =1, & \frac{\partial^{2} f}{\partial x \partial z} & =0, & \frac{\partial^{2} f}{\partial y \partial z}=0 .
\end{array}
$$

Plugging these into Definition 1.11.1, we get the given relations and differential for Cliff(q).

TheOrem 2.3.2. Let G be a dihedral group of order $4 q$ with $q \geqslant 2$ a power of two, and let k be a field of characteristic two. The Hochschild cohomology $H H^{*} H^{*} B \mathrm{D}$ has generators s, t, τ, x, y, u, v with

$$
\begin{array}{ll}
|s|=(-2,2,1,1) & \\
|t|=(0,-2,-q,-q) & |\tau|=(-1,2, q, q) \\
|x|=(0,-1,-1,0) & |y|=(0,-1,0,-1) \\
|u|=(-1,0,0,0) & |v|=(-1,0,0,0) .
\end{array}
$$

The relations are given by $u^{2}=v^{2}=u v=\tau^{2}=0, x y=0, x v=y u=0, x s=y s=0$, and us $=v s$. The non-zero monomials and their degrees are as follows, with $i_{1}, i_{2} \geqslant 0$, $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$. The first two cases overlap for $i_{1}>0$, the first and third, and the second and fourth overlap for $i_{1}=0$.

$$
\begin{aligned}
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}, 2 i_{1}-2 i_{2}+2 \varepsilon_{1}, i_{1}+q\left(-i_{2}+\varepsilon_{1}\right), i_{1}+q\left(-i_{2}+\varepsilon_{1}\right)\right), \\
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}, 2 i_{1}-2 i_{2}+2 \varepsilon_{1}, i_{1}+q\left(-i_{2}+\varepsilon_{1}\right), i_{1}+q\left(-i_{2}+\varepsilon_{1}\right)\right), \\
&\left|x^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-\varepsilon_{1}-\varepsilon_{2},-i_{1}-2 i_{2}+2 \varepsilon_{1},-i_{1}+q\left(-i_{2}+\varepsilon_{1}\right), q\left(-i_{2}+\varepsilon_{1}\right)\right) \\
&\left|y^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-\varepsilon_{1}-\varepsilon_{2},-i_{1}-2 i_{2}+2 \varepsilon_{1}, q\left(-i_{2}+\varepsilon_{1}\right),-i_{1}+q\left(-i_{2}+\varepsilon_{1}\right)\right)
\end{aligned}
$$

(the top two coincide with the lower two when $i_{1}=0$, and are otherwise disjoint). There is only one monomial in degree $(-i, i-2,0,0)$ with $i>2$, namely $s^{q} t$, with

$$
\left|s^{q} t\right|=(-2 q, 2 q-2,0,0)
$$

Proof. By Theorem 1.11.5, $H H^{*} H^{*} B \mathrm{D}$ is the cohomology of the DG algebra Cliff (q). By Proposition 2.3.1, this is therefore as described in the theorem, with $u=x \hat{x}$ and $v=y \hat{y}$. Since $\partial(\hat{x} \hat{y})=(x \hat{x}+y \hat{y}) s$, we have $u s=v s$ in $H H^{*} H^{*} B \mathrm{D}$.

We also mention another approach to this computation, as this will become relevant in the proof of Proposition 2.8.9. Namely, we can use Theorem 1.12.2. This gives rise to the same complex as above. Here, the x_{i} are x, y and t and the \hat{x}_{i} are \hat{x}, \hat{y} and τ. The advantage of this approach is that it makes it easy to compute $H H^{*} A^{!}$using the same computation, but watching out for the changes of degrees. This approach also makes it clear that \hat{x} and \hat{y} are really just avatars for the elements X and Y of kD.

For the last statement, we note that for the last two coordinates to be zero, the monomial must be of one of the first two types. Then we have

$$
\begin{aligned}
i_{1}+q\left(-i_{2}+\varepsilon_{1}\right) & =0 \\
\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}\right)+\left(2 i_{1}-2 i_{2}+2 \varepsilon_{1}\right) & =-2
\end{aligned}
$$

Twice the first equation minus q times the second gives $\left(\varepsilon_{1}+\varepsilon_{2}\right) q+2 i_{1}=2 q$, and so i_{1} is either zero or q. If $i_{1}=0$ then $\varepsilon_{1}=\varepsilon_{2}=1$, which then implies $i_{2}=1$, and the resulting monomials have $i=2$. On the other hand, if $i_{1}=q$ then $\varepsilon_{1}=\varepsilon_{2}=0$, and again we have $i_{2}=1$, and the resulting monomial is $s^{q} t$.

2.4. A_{∞} structure of $H^{*} B \mathrm{D}$

In this section, we completely describe the A_{∞} structure of $H^{*} B \mathrm{D}$. This makes extensive use of Section 1.5, describing Gerstenhaber's circle product on Hochschild cochains and its relation to the structure maps of an A_{∞} algebra.

Let D be a dihedral group of order $4 q$ with $q \geqslant 2$ a power of two, and let k be a field of characteristic two.

Lemma 2.4.1. For any A_{∞} structure on $H^{*} B \mathrm{D}$ that preserves internal degrees, we have $m_{n}=0$ unless $n-2$ is divisible by $2 q-2$. In particular for $2<n<2 q$ we have $m_{n}=0$.

Proof. Looking at the degrees of the generators x, y and z, for any monomial ζ in $H^{*} B \mathrm{D}$ of degree (a, b, c) we have $a \equiv b+c(\bmod 2 q-2)$. So for an n-tuple $\left(\zeta_{1}, \ldots, \zeta_{n}\right)$, the degree of $m_{n}\left(\zeta_{1}, \ldots, \zeta_{i}\right)$ satisfies $a \equiv b+c+n-2(\bmod 2 q-2)$. It follows that for $m_{n}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ to be non-zero we must have $n-2 \equiv 0(\bmod 2 q-2)$.

Theorem 2.4.2. The A_{∞} structure on $H^{*} B \mathrm{D}$ is given as follows. The m_{n} are $\mathrm{k}[t]$ multilinear maps with $m_{n}=0$ for n not congruent to 2 modulo $2 q-2$. For $i, j \geqslant 1$,

$$
m_{2 q}\left(x^{i}, y, x, y, \ldots, x, y^{j}\right)=m_{2 q}\left(y^{j}, x, y, x, \ldots, y, x^{i}\right)=x^{i-1} y^{j-1} t
$$

where the arguments alternate between x and y, and the right hand side is zero unless either $i=1$ or $j=1 ; m_{2 q}$ is zero on all other tuples of monomials not involving t. The maps $m_{\ell(2 q-2)+2}$ with $\ell>1$ similarly vanish on all tuples of monomials not involving t, except the ones which look as above, but for some choice of indices:

$$
\begin{aligned}
1 \leqslant e_{1} \leqslant e_{2} \leqslant \cdots \leqslant e_{\ell-1}<e_{\ell-1}+(2 q-2)+ & 1 \leqslant e_{\ell-2}+2(2 q-2)+1 \\
& \leqslant \cdots \leqslant e_{1}+(\ell-1)(2 q-2)+1 \leqslant \ell(2 q-2)+2
\end{aligned}
$$

the exponents on the terms are increased by one (or correspondingly more if an index is repeated). The value on these tuples is $x^{i-1} y^{j-1} t^{\ell}$. Thus

$$
m_{\ell(2 q-2)+2}\left(x^{i+\alpha_{1}}, y^{\alpha_{2}}, x^{\alpha_{3}}, \ldots, x^{\alpha_{\ell(2 q-2)+1}}, y^{j+\alpha_{\ell(2 q-2)+2}}\right)=x^{i-1} y^{j-1} t^{\ell}
$$

where each α_{σ} is one plus the number of indices in the list above that are equal to σ.
REmARK 2.4.3. To illustrate this rather complicated looking condition, suppose that $q=4$. Then m_{8} is given by

$$
m_{8}\left(x^{i}, y, x, y, x, y, x, y^{j}\right)=m_{8}\left(y^{j}, x, y, x, y, x, y, x^{i}\right)=x^{i-1} y^{j-1} t
$$

and then m_{14} is the next non-zero m_{n}. The value of each of the following seven expressions is $x^{i-1} y^{j-1} t^{2}$:

$$
\begin{aligned}
& m_{14}\left(x^{i+1}, y, x, y, x, y, x, y^{2}, x, y, x, y, x, y^{j}\right) \\
& m_{14}\left(x^{i}, y^{2}, x, y, x, y, x, y, x^{2}, y, x, y, x, y^{j}\right) \\
& m_{14}\left(x^{i}, y, x^{2}, y, x, y, x, y, x, y^{2}, x, y, x, y^{j}\right) \\
& m_{14}\left(x^{i}, y, x, y^{2}, x, y, x, y, x, y, x^{2}, y, x, y^{j}\right) \\
& m_{14}\left(x^{i}, y, x, y, x^{2}, y, x, y, x, y, x, y^{2}, x, y^{j}\right) \\
& m_{14}\left(x^{i}, y, x, y, x, y^{2}, x, y, x, y, x, y, x^{2}, y^{j}\right) \\
& m_{14}\left(x^{i}, y, x, y, x, y, x^{2}, y, x, y, x, y, x, y^{j+1}\right)
\end{aligned}
$$

There are seven more such expressions with non-zero values of m_{14}, where x and y have been interchanged. A typical non-zero value of m_{20}, which is the next non-zero m_{n}, corresponding to $\ell=3$, is given by

$$
m_{20}\left(x^{i}, y, x, y^{2}, x, y^{2}, x, y, x, y, x, y, x^{2}, y, x, y, x^{2}, y, x, y^{j}\right)=x^{i-1} y^{j-1} t^{3}
$$

where the indices $4 \leqslant 6<13 \leqslant 17$ come from $e_{1}=4$, $e_{2}=6$. An example with a repeated index is

$$
m_{20}\left(x^{i}, y, x, y, x, y^{3}, x, y, x, y, x, y, x^{2}, y, x, y, x, y, x^{2}, y^{j}\right)=x^{i-1} y^{j-1} t^{3},
$$

with indices $6 \leqslant 6<13 \leqslant 19$ coming from $e_{1}=e_{2}=6$.
Proof of Theorem 2.4.2. By Lemma 2.4.1, for every A_{∞} structure preserving degrees, $m_{n}=0$ for $2<n<2 q$. So in order to determine $m_{2 q}$, we invoke Proposition 1.4.2. We have Massey products

$$
\langle x, y, \ldots, x, y\rangle=\langle y, x, \ldots, y, x\rangle=t
$$

well defined modulo the ideal generated by x and y. It follows from Theorem 1.4.5 that $m_{2 q}(x, y, \ldots, x, y)$ and $m_{2 q}(y, x, \ldots, y, x)$ are non-zero. So $m_{2 q}$ represents a non-zero Hochschild cohomology class in degree $(-2 q, 2 q-2,0,0)$ in $H H^{*} H^{*} B \mathrm{D}$. By Theorem 2.3.2, up to scalar multiplication, there is only one non-zero possibility for $m_{2 q}$ up to quasi-isomorphism. It is easy to check that the given formula for $m_{2 q}$ is indeed a Hochschild cocycle. Replacing t by a non-zero multiple of t if necessary (or by working over \mathbb{F}_{2}) makes this the correct Hochschild cohomology class.

Again using Lemma 2.4.1, we see that the next possible m_{n} after $m_{2 q}$ is $m_{4 q-2}$. Using (1.3.1), this has to satisfy

$$
\begin{gathered}
m_{2}\left(\mathrm{id} \otimes m_{4 q-2}\right)+\sum_{r=0}^{4 q-3} m_{4 q-2}\left(\mathrm{id}^{\otimes r} \otimes m_{2} \otimes \mathrm{id}^{\otimes(4 q-r-3)}\right)+m_{2}\left(m_{4 q-2} \otimes \mathrm{id}\right) \\
+\sum_{r=0}^{2 q-1} m_{2 q}\left(\mathrm{id}^{\otimes r} \otimes m_{2 q} \otimes \mathrm{id}^{\otimes 2 q-r-1}\right)=0 .
\end{gathered}
$$

Now the first three terms are the Hochschild coboundary of $m_{4 q-2}$, while the last sum is the Gerstenhaber circle product $m_{2 q} \circ m_{2 q}$, see Section 1.5. So as in Proposition 1.5.4, we rewrite the above equation as

$$
\begin{equation*}
\delta m_{4 q-2}=m_{2 q} \circ m_{2 q}, \tag{2.4.4}
\end{equation*}
$$

where δ is the Hochschild coboundary. Subject to this condition, $m_{4 q-2}$ is well defined modulo Hochschild coboundaries. But by Theorem 2.3.2, the Hochschild cohomology $H H^{*} H^{*} B \mathrm{D}$ is zero in degree $(-4 q+2,4 q-4,0,0)$, so any choice of $m_{4 q-2}$ satisfying (2.4.4) is valid. The one we have constructed satisfies this.

We continue by induction on ℓ. If we have constructed $m_{2 q}, m_{4 q-2}, \ldots, m_{(\ell-1)(2 q-2)+2}$, then the equation satisfied by $m_{\ell(2 q-2)+2}$ is

$$
\delta m_{\ell(2 q-2)+2}=\sum_{i+j=\ell} m_{i(2 q-2)+2} \circ m_{j(2 q-2)+2} .
$$

Again $H H^{*} H^{*} B \mathrm{D}$ is zero in degree $(-\ell(2 q-2)-2, \ell(2 q-2), 0,0)$, and so any choice of $m_{\ell(2 q-2)+2}$ satisfying this equation is valid. The one we have constructed satisfies this.

REmARK 2.4.5. Let us illustrate the way equation (2.4.4) works, with the example of Remark 2.4.3. We have

$$
\begin{aligned}
\left(m_{8} \circ m_{8}\right)\left(x^{i}, y, x, y^{2},\right. & \left.x, y, x, y, x, y, x, x, y, x, y^{j}\right) \\
& =m_{8}\left(x^{i}, y, x, m_{8}\left(y^{2}, x, y, x, y, x, y, x\right), x, y, x, y^{j}\right) \\
& =m_{8}\left(x^{i}, y, x, y t, x, y, x, y^{j}\right) \\
& =x^{i-1} y^{j-1} t^{2}
\end{aligned}
$$

and correspondingly,

$$
\begin{aligned}
\delta m_{14}\left(x^{i}, y, x, y^{2}, x\right. & \left., y, x, y, x, y, x, x, y, x, y^{j}\right) \\
& =m_{14}\left(x^{i}, y, x, y^{2}, x, y, x, y, x, y, x^{2}, y, x, y^{j}\right) \\
& =x^{i-1} y^{j-1} t^{2}
\end{aligned}
$$

2.5. Loops on $B \mathrm{D}_{2}^{\wedge}$

Since D is a finite 2-group, completing $B \mathrm{D}$ makes no difference to its homotopy type. So $\Omega B D_{2}^{\wedge}$ has contractible connected components, and is homotopy equivalent to D with the group multiplication. So we should expect to see the Eilenberg-Moore spectral sequence converging to kD.

Proposition 2.5.1. We have

$$
\operatorname{Ext}_{H^{*} B \mathrm{D}}^{*, *}(\mathrm{k}, \mathrm{k})=\Lambda(\tau) \otimes \mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=0, \hat{y}^{2}=0\right\rangle
$$

with

$$
|\tau|=(-1,2, q, q), \quad|X|=(-1,1,1,0), \quad|Y|=(-1,1,0,1)
$$

Proof. This follows by applying Theorem 1.11.2 to Proposition 2.3.1. The element s there is redundant, as it is equal to $\hat{x} \hat{y}+\hat{y} \hat{x}$.

The E^{2} page of the spectral sequence

$$
\mathrm{Ext}_{H^{*} B \mathrm{D}}^{* * *}(\mathrm{k}, \mathrm{k}) \Rightarrow \mathrm{kD}
$$

is given by the Proposition. There is a non-zero differential given by

$$
d^{2 q-1}(\tau)=(\hat{x} \hat{y}+\hat{y} \hat{x})^{q} .
$$

Then

$$
E^{2 q}=E^{\infty} \cong \mathrm{kD}=\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=0, \hat{y}^{2}=0,(\hat{x} \hat{y}+\hat{y} \hat{x})^{q}=0\right\rangle,
$$

concentrated in homological degree zero. Ungrading, X represents \hat{x} and Y represents \hat{y} to give an isomorphism with kD. Note that kD is isomorphic to its associated graded with respect to the radical filtration, which is reflected in the fact that there is no ungrading to be done in this case. In the generalised quaternion and semidihedral situations, this will be more of an issue.

2.6. $H H^{*} \mathrm{kD}$

In this section we use the spectral sequence

$$
\begin{equation*}
H H^{*} H^{*} B \mathrm{D} \Rightarrow H H^{*} C^{*} B \mathrm{D} \cong H H^{*} C_{*} \Omega B D \cong H H^{*} \mathrm{kD} \tag{2.6.1}
\end{equation*}
$$

to compute $H H^{*} \mathrm{kD}$. This is not needed in the rest of the paper, but is an illustration of the power of the internal $\mathbb{Z} \times \mathbb{Z}$-grading on kD . The only differential comes from the analysis of the map $m_{2 q}$ in the A_{∞} structure on $H^{*} B D$, and there is just one ungrading problem, which turns out to be the only difficult part of the computation.

Theorem 2.6.2. In the spectral sequence (2.6.1) we have $d^{2 q-1}(\tau)=s^{q}$.
Proof. We use the standard description of the Hochschild complex, see for example Section 5 of [22]. The element τ on the E^{2} page corresponds to the Hochschild cochain $\tilde{\tau}:\left[t^{i}\right] \mapsto i t^{i-1}$, all other monomials going to zero. Applying the formula for the differential, we have

$$
(\delta \tilde{\tau})[\underbrace{x, y, \ldots, x, y}_{2 q}]=\tilde{\tau}\left(m_{2 q}(x, y, \ldots, x, y)\right)=\tilde{\tau}(t)=1,
$$

and similarly

$$
(\delta \tilde{\tau})[\underbrace{y, x, \ldots, y, x}_{2 q}]=\tilde{\tau}\left(m_{2 q}(y, x, \ldots, y, x)\right)=\tilde{\tau}(t)=1,
$$

Since $s[x, y]=s[y, x]=1, \delta \tilde{\tau}$ takes the same values as s^{q}, and hence $\delta \tilde{\tau}=s^{q}$. Examining the locations of these terms in the filtration of the bar complex giving rise to the spectral sequence, we deduce that this corresponds to the differential $d^{2 q-1}$ taking τ to s^{q}.

Theorem 2.6.3. The algebra $H H^{*} C^{*} B \mathrm{D} \cong H H^{*} C_{*} \Omega B \mathrm{D}_{2} \cong H H^{*} \mathrm{kD}$ has generators $s, t, x, y, u, v, w_{1}, w_{2}, w_{3}$ with $|s|=(0,1,1),|t|=(-2,-q,-q),|x|=(-1,-1,0)$, $|y|=(-1,0,-1),|u|=|v|=(-1,0,0),\left|w_{1}\right|=(0, q-1, q),\left|w_{2}\right|=(0, q, q-1),\left|w_{3}\right|=(0, q, q)$. These satisfy the degree zero relations

$$
w_{1}^{2}=w_{2}^{2}=w_{3}^{2}=w_{1} w_{2}=w_{1} w_{3}=w_{2} w_{3}=s w_{1}=s w_{2}=s w_{3}=s^{q}=0
$$

the degree -1 relations

$$
\begin{gathered}
v w_{1}=u w_{2}=u w_{3}=v w_{3}=x s=y s=0 \\
u s=v s, \quad x w_{2}=y w_{1}=u s^{q-1}, \quad x w_{3}=u w_{1}, \quad y w_{3}=v w_{2}
\end{gathered}
$$

and the degree -2 relations

$$
u^{2}=v^{2}=u v=x y=x v=y u=0 .
$$

Proof. By the centraliser decomposition, we have $\operatorname{dim}_{\mathrm{k}} H H^{n} \mathrm{kD}=4 n+q+3$. In the spectral sequence $H H^{*} H^{*} B \mathrm{D} \Rightarrow H H^{*} \mathrm{kD}$, we have $d^{2 q-1}(\tau)=s^{q}$. Let w_{1}, w_{2} and w_{3} be representative of $x \tau, y \tau$ and $(u+v) \tau$. If this is the only differential then the dimensions at the E^{∞} page already match those for $H H^{n} \mathrm{kD}$. This is because $H H^{0}$ is spanned by s^{i} $(1 \leqslant i \leqslant q), w_{1}, w_{2}$ and $w_{3}, H H^{1}$ is spanned by $u, v, u s^{i}=v s^{i}(1 \leqslant i \leqslant q), x, x w_{1}, x w_{3}$, $y, y w_{2}, y w_{3}$, and for $n \geqslant 2, H H^{n}$ is spanned by $t . H H^{n-2}$ together with the eight elements $x^{n}, x^{n} w_{1}, x^{n} w_{3}, y^{n}, y^{n} w_{2}, y^{n} w_{3}, x^{n-1} u$ and $y^{n-1} v$. So $d^{2 q-1}$ is the only differential, it's zero on all generators except τ, and we have $E^{2 q}=E^{\infty}$. The E^{∞} page is as above, but with $x w_{2}=y w_{1}=0$ It remains to ungrade the relations.

We begin with degree zero. The dimension of the algebra $H H^{0} \mathrm{kD}=Z(\mathrm{kD})$ is $q+3$, and it is spanned by $s^{i}=(X Y)^{i}+(Y X)^{i}$ with $0 \leqslant i \leqslant q-1$, together with the elements $w_{1}=(Y X)^{q-1} Y, w_{2}=(X Y)^{q-1} X$, and $w_{3}=(X Y)^{q}=(Y X)^{q}$. These have the required internal degrees, and satisfy the degree zero relations listed above. In particular, note that s^{q} is equal to zero and not to w_{3}, even though this has the right degree.

For the degree -1 and -2 relations, most have nothing lower in the filtration, in the right internal degree so they ungrade to the same relations. The exception is the relations $x w_{2}=y w_{1}=0$, which ungrade to give some multiples of $u s^{q-1}$. Since we can work over \mathbb{F}_{2}, the multiple is either zero or one, and by symmetry both are equal to the same multiple. The exact multiple is harder to determine, and a long computation in the centraliser decomposition shows that they are both equal to $u s^{q-1}$.

Remark 2.6.4. The algebra $H H^{*}$ kD was computed in Section 9 of Siegel and Witherspoon [200]. They chose a different basis, whose elements are not homogeneous with respect to our grading, and which complicates their relations. The relation $x w_{2}=y w_{1}=u s^{q-1}$ can be read off from their computation. See also Generalov [98], where the Hochschild cohomology is computed for algebras in Erdmann's class III.1 (c) [74] for any parameter q. The degree -2 relations depend on the parity of q, but are determined already on the E^{2} page of the spectral sequence. The same algebras in odd characteristic are discussed in Generalov [97], where generators of degree -3 and -4 also occur in the Hochschild cohomology.

2.7. Groups with dihedral Sylow 2-subgroups

The computation for groups with a dihedral Sylow 2-subgroup is analogous to the dihedral group case described above. These groups were classified by Gorenstein and Walter $[128,129]$, see also Bender and Glauberman $[11,12]$. The representation theory was investigated by Brauer [37, 38], Cabanes and Picaronny [46], Donovan and Freislich [61], Donovan [60], Erdmann $[66,68,74,75]$, Erdmann and Michler [78], Holm [141], Holm and Zimmermann [145], Kauer [152], Koshitani [159], Koshitani and Lassueur [160], Landrock [163], Linckelmann [173]. The cohomology rings were investigated by Martino and Priddy [179], Asai [5], Asai and Sasaki [6], Generalov et al. [10, 86, 88, 107, 109-111, 115], and the Hochschild cohomology in Generalov et al. [83, 90, 97, 98, 112, 113, 116, 117], Holm [143], Taillefer [210]. The homology of $\Omega B G_{2}^{\wedge}$ was computed by Levi [167].

Let G be a finite group with a dihedral Sylow 2 -subgroup D of order $4 q$ with $q \geqslant 1$, and let k be a field of characteristic two. Then by the main theorem of Gorenstein and Walter [129], there are three mutually exclusive cases, according to the fusion on the dihedral groups. By Theorem 1.1 of Craven and Glesser [54], these also represent the only possible fusion systems on dihedral 2-groups.

CASE 2.7.1. If G has one class of involutions then $G / O(G)$ is isomorphic to either the alternating group A_{7} or a subgroup of $P \Gamma L\left(2, p^{m}\right)$ with p^{m} a power of an odd prime, containing $P S L\left(2, p^{m}\right)$ with odd index. The principal block of $\mathrm{k} G$ has three isomorphism classes of simple modules.

CASE 2.7.2. If G has two classes of involutions then G has a normal subgroup of index two, but no normal subgroup of index four. In this case, $G / O(G)$ is a subgroup of $P \Gamma L\left(2, p^{m}\right)$ with p^{m} a power of an odd prime, containing $P G L\left(2, p^{m}\right)$ with odd index. The principal block of $\mathrm{k} G$ has two isomorphism classes of simple modules. In this case we have $q \geqslant 2$.

Case 2.7.3. If G has three classes of involutions then $O(G)$ is a normal complement in G to a Sylow 2-subgroup D, so that $G / O(G) \cong \mathrm{D}$ and $H^{*} B G \cong H^{*} B \mathrm{D}$. The principal block of $\mathrm{k} G$ is isomorphic to kD , and has one isomorphism class of simple modules, namely the trivial module.

Remark 2.7.1. For p is odd, we have

$$
\begin{aligned}
\left|P \Gamma L\left(2, p^{m}\right)\right| & =m\left(p^{m}-1\right) p^{m}\left(p^{m}+1\right) \\
\left|P G L\left(2, p^{m}\right)\right| & =\left(p^{m}-1\right) p^{m}\left(p^{m}+1\right) \\
\left|P S L\left(2, p^{m}\right)\right| & =\left(p^{m}-1\right) p^{m}\left(p^{m}+1\right) / 2
\end{aligned}
$$

and $\operatorname{PSL}\left(2, p^{m}\right)$ is simple for $p \geqslant 5$.
Proposition 2.7.2. Suppose that G has a dihedral Sylow 2-subgroup D. Then the homotopy type of $B G_{2}^{\wedge}$ is determined by $|\mathrm{D}|$ and the number of conjugacy classes of involutions.

Proof. This follows from Theorem 1.7.5 and the main theorem of [129] described above.

We shall deal with Cases 2.7.1 and 2.7.2 in turn. Case 2.7.1 is the most interesting, because this is the case where G has no subgroup of index two, so $\Omega B G_{2}^{\wedge}$ is connected. Case 2.7.2 is computationally quite similar, but $\Omega B G_{2}^{\wedge}$ has two connected components, and so we give the details anyway for completeness. Case 2.7.3 is easy because $\Omega B G_{2}^{\wedge}$ is homotopy equivalent to D. Nonetheless, the Eilenberg-Moore spectral sequence has an interesting differential in this case, as we saw in Section 2.5.

We end this section with a table of the various cases of algebras of dihedral type in characteristic two, in Erdmann's classification.

Erdmann [74]	Case	Group	H^{*}	$H H^{*}$
III.I(a)	-	-	107]	
III.I(b)	2.7.3	fours group		[51, 140]
III.I(${ }^{\prime}$)	-			
III.I(c)	2.7.3	dihedral	[185]	[98, 200]
III.I(c^{\prime})	-	-		
$\mathrm{D}(2 \mathcal{A})$	2.7.2	$\operatorname{PGL}(2, q), q \equiv 1(\bmod 4)$	$[6,115,179]$	
$\mathrm{D}(2 \mathcal{B})$	2.7.2	$\operatorname{PGL}(2, q), q \equiv 3(\bmod 4)$	$[6,88,179]$	[112, 113, 116]
$\mathrm{D}(3 \mathcal{A})_{1}$	2.7.1	$\operatorname{PSL}(2, q), q \equiv 1(\bmod 4)$	[6,9,179]	[90]
$\mathrm{D}(3 \mathcal{A})_{2}$	-	-		
$\mathrm{D}(3 \mathcal{B})_{1}$	2.7.1	Alternating group A_{7}	$[6,86,179]$	[90]
$\mathrm{D}(3 \mathcal{B})_{2}$	-	-		
$\mathrm{D}(3 \mathrm{D})_{1}$	-	-		[90]
$\mathrm{D}(3 \mathrm{D})_{2}$	-	-		
$\mathrm{D}(3 \mathcal{K})$	2.7.1	$\operatorname{PSL}(2, q), q \equiv 3(\bmod 4)$	[6, 10, 179]	[90]
$\mathrm{D}(3 \mathcal{L})$	-	-	[109]	
$\mathrm{D}(3 \mathrm{Q})$	-	-	[111]	
D(3R)	-	-	[110]	[83]

2.8. Loops on $B G_{2}^{\wedge}$: one class of involutions

In this section we begin the examination of Case 2.7.1. This is the case where G has a dihedral Sylow 2-subgroup D, and one conjugacy class of involution. In this case, G has no subgroup of index two, and it has three isomorphism classes of simple modules in the principal block.

Remark 2.8.1. As we have already mentioned, Theorem 1.7 .5 shows that up to quasiisomorphism, $C^{*} B G$ only depends on the fusion, and according to Proposition 2.7.2, for dihedral Sylow 2-subgroups this only depends on $|\mathrm{D}|$ and the number of simple modules. In fact more is true. Linckelmann [173] has proved that all blocks of finite groups with dihedral defect groups of a given order, and three isomorphism classes of simple modules, are derived equivalent. Explicit derived equivalences are described in that paper, and in the case of principal blocks, it can be checked that the derived equivalence may be chosen to take the trivial module to the trivial module. The endomorphism DGA of the trivial module is a derived invariant up to quasi-isomorphism, and is also quasi-isomorphic to $C^{*} B G$.

Let G be a group with dihedral Sylow 2-subgroup D of order $4 q, q \geqslant 1$, and one conjugacy class of involutions. By Proposition 2.7.2, for the purpose of studying $B G_{2}^{\wedge}$, we may assume that $G=P S L(2, p)$ for a suitable prime $p \equiv 1(\bmod 4)$. In this case, the principal block B_{0} of $\mathrm{k} G$ has three simple modules, k, M and N , whose Ext ${ }^{1}$ quiver is as follows:

The relations are

$$
e_{1} e_{2}=0, \quad e_{3} e_{4}=0, \quad\left(e_{4} e_{3} e_{2} e_{1}\right)^{q}=\left(e_{2} e_{1} e_{4} e_{3}\right)^{q}
$$

We put an internal grading on the basic algebra in this case by assigning degree $\left(\frac{1}{2}, 0\right)$ to e_{1} and e_{2} and degree $\left(0, \frac{1}{2}\right)$ to e_{3} and e_{4}. Thus we assign degree $\frac{1}{2}\left(n_{1}, n_{2}\right)$ to a path involving n_{1} arrows of type e_{1} or e_{2}, and n_{2} arrows of type e_{3} or e_{4}. This choice is appropriate, because the internal grading it induces in cohomology is compatible with restriction to the Sylow 2-subgroup.

REMARK 2.8.2. It is not clear a priori that there exists a grading on the principal block compatible with the restriction map in cohomology. This explains the need for the computation above. For a further discussion of gradings in this context, see Bogdanic [28].

Let \bar{e}_{1} be the element of $\operatorname{Hom}_{B}\left(P_{\mathrm{M}}, P_{\mathrm{k}}\right)$ opposite to e_{1}, and so on. Then the minimal resolution of k as a $\mathrm{k} G$-module takes the form

$$
\begin{aligned}
& \cdots \longrightarrow P_{\mathrm{M}} \oplus P_{\mathrm{k}} \oplus P_{\mathrm{k}} \oplus P_{\mathrm{N}} \xrightarrow{\left(\begin{array}{cccc}
\bar{e}_{1} & v & 0 & 0 \\
0 & \bar{e}_{1} \bar{e}_{2} & \bar{e}_{3} \bar{e}_{4} & 0 \\
0 & 0 & u & \bar{e}_{3}
\end{array}\right)} P_{\mathrm{k}} \oplus P_{\mathrm{k}} \oplus P_{\mathrm{k}} \xrightarrow{\left(\begin{array}{ccc}
\bar{e}_{1} \bar{e}_{2} & v & 0 \\
0 & e_{3} \bar{e}_{3} \bar{e}_{4}
\end{array}\right)} P_{\mathrm{k}} \oplus P_{\mathrm{k}} \\
&\left.\xrightarrow{\left(\begin{array}{c}
\bar{e}_{2} v \\
\bar{e}_{2} \bar{e}_{2} \\
0
\end{array}\right.} \begin{array}{l}
\bar{e}_{3} \bar{e}_{4} \\
\bar{e}_{4} u
\end{array}\right) \\
& P_{\mathrm{M}} \oplus P_{\mathrm{k}} \oplus P_{\mathrm{N}} \xrightarrow{\left(\begin{array}{ccc}
\bar{e}_{1} & 0 & 0 \\
0 & u & \bar{e}_{3}
\end{array}\right)} P_{\mathrm{k}} \oplus P_{\mathrm{k}} \xrightarrow{\left(\bar{e}_{1} \bar{e}_{2} \bar{e}_{3} \bar{e}_{4}\right)} P_{\mathrm{k}} \xrightarrow{\binom{\bar{e}_{2} v}{\bar{e}_{4} u}} P_{\mathrm{M}} \oplus P_{\mathrm{N}} \xrightarrow{\left(\bar{e}_{1}, \bar{e}_{3}\right)} P_{\mathrm{k}}
\end{aligned}
$$

where $u=\bar{e}_{1} \bar{e}_{2}\left(\bar{e}_{3} \bar{e}_{4} \bar{e}_{1} \bar{e}_{2}\right)^{q-1}$ and $v=\bar{e}_{3} \bar{e}_{4}\left(\bar{e}_{1} \bar{e}_{2} \bar{e}_{3} \bar{e}_{4}\right)^{q-1}$. This is the total complex of the following double complex.

So with this grading, if $q \geqslant 2$, the cohomology ring is given by $H^{*}(B G, \mathbf{k})=\mathbf{k}[\xi, \eta, t] /(\xi \eta)$ where

$$
|\xi|=-(3, q+1, q), \quad|\eta|=-(3, q, q+1), \quad|t|=-(2, q, q) .
$$

If $q=1$, we assume that k contains $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$, and then the generators and degrees are the same, but the relation is $\xi \eta+t^{3}$ instead of $\xi \eta$. The restrictions to D are given by

For $q=1$ there are no non-zero Massey products, and the A_{∞} structure is formal. For $q \geqslant 2$ we have Massey products

$$
\langle\xi, \eta, \ldots, \xi, \eta\rangle=\langle\eta, \xi, \ldots, \eta, \xi\rangle=t^{2 q+1} .
$$

In both expressions the arguments ξ and η alternate, and there are $2 q$ of them. These Massey products are only well defined up to adding elements of the ideal generated by ξ and η, but taking the grading into account, they are well defined with no ambiguity.

THEOREM 2.8.3. Let G be a finite group with dihedral Sylow 2-subgroups of order $4 q$ with $q \geqslant 1$ a power of two, and one class of involutions, and let k be a field of characteristic two. Then we have

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, \beta \mid \alpha^{2}=0, \beta^{2}=0\right\rangle .
$$

with

$$
|\tau|=(1, q, q), \quad|\alpha|=(2, q+1, q), \quad|\beta|=(2, q, q+1) .
$$

In homological degree $4 n$ we have monomials $(\alpha \beta)^{n}$ and $(\beta \alpha)^{n}$, in degree $4 n+2$ we have monomials $(\alpha \beta)^{n} \alpha$ and $(\beta \alpha)^{n} \beta$, and in odd degrees we have τ times all of these.

Proof. For $q \geqslant 1$, the Eilenberg-Moore spectral sequence converging to $H_{*} \Omega B G_{2}^{\wedge}$ has as its E_{2} page

$$
\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})=\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, \beta \mid \alpha^{2}=0, \beta^{2}=0\right\rangle
$$

where the generators have degrees

$$
|\tau|=(-1,2, q, q), \quad|\alpha|=(-1,3, q+1, q), \quad|\beta|=(-1,3, q, q+1)
$$

The four degrees are first homological, then internal to $H^{*} B G$, and finally the two gradings internal to $\mathrm{k} G$. The elements τ, α and β come from the generators t, η and ξ, while the element $s=\alpha \beta+\beta \alpha$ in degree $(-2,6,2 q+1,2 q+1)$ is the Eisenbud operator for the relation $\xi \eta=0$ in $H^{*} B G$. There is no room for non-zero differentials, and there are no ungrading problems, so $E_{2}=E_{\infty}=H_{*} \Omega B G_{2}^{\wedge}$.

Remark 2.8.4. Proposition II.4.1.5 of Levi [167] gets the correct additive structure for $H_{*} \Omega B G_{2}^{\wedge}$ but it is incorrectly claimed there that the ring structure is a polynomial tensor exterior algebra.

Note that the algebras $H^{*} B G$ and $H_{*} \Omega B G_{2}^{\wedge}$ are Koszul dual to each other. This will play a role in the computation of Hochschild cohomology.

Lemma 2.8.5. For any A_{∞} structure on $H^{*} B G$ that preserves internal degrees, we have $m_{i}=0$ unless $i-2$ is divisible by $2 q-2$. In particular, for $2<i<2 q$ we have $m_{i}=0$.

Proof. The proof is the same as the proof of Lemma 2.4.1.
Proposition 2.8.6. Let G be a group with a dihedral Sylow 2-subgroup D of order $4 q$ with $q \geqslant 2$ a power of two, and one conjugacy class of involutions, and let k be a field of characteristic two. The Hochschild cohomology $H H^{*} H^{*} B G$ has generators s, t, τ, ξ, η, u, v with

$$
\begin{array}{ll}
|s|=(-2,6,2 q+1,2 q+1) & \\
|t|=-(0,2, q, q) & |\tau|=(-1,2, q, q) \\
|\xi|=-(0,3, q+1, q) & |\eta|=-(0,3, q, q+1) \\
|u|=-(1,0,0,0) & |v|=-(1,0,0,0) .
\end{array}
$$

The relations are given by $u^{2}=v^{2}=u v=\tau^{2}=0, \eta u=\xi v=0, \xi s=\eta s=0$, and us $=v s$. The non-zero monomials and their degrees are as follows, with $i_{1}, i_{2} \geqslant 0, \varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.

$$
\begin{aligned}
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}, 6 i_{1}-2 i_{2}+2 \varepsilon_{1}, i_{1}+q\left(2 i_{1}-i_{2}+\varepsilon_{1}\right), i_{1}+q\left(2 i_{1}-i_{2}+\varepsilon_{1}\right)\right), \\
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}, 6 i_{1}-2 i_{2}+2 \varepsilon_{1}, i_{1}+q\left(2 i_{1}-i_{2}+\varepsilon_{1}\right), i_{1}+q\left(2 i_{1}-i_{2}+\varepsilon_{1}\right)\right), \\
&\left|\xi^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-\varepsilon_{1}-\varepsilon_{2},-3 i_{1}-2 i_{2}+2 \varepsilon_{1},-i_{1}+q\left(-i_{1}-i_{2}+\varepsilon_{1}\right), q\left(-i_{1}-i_{2}+\varepsilon_{1}\right)\right) \\
&\left|\eta^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-\varepsilon_{1}-\varepsilon_{2},-3 i_{1}-2 i_{2}+2 \varepsilon_{1}, q\left(-i_{1}-i_{2}+\varepsilon_{1}\right),-i_{1}+q\left(-i_{1}-i_{2}+\varepsilon_{1}\right)\right)
\end{aligned}
$$

There is only one monomial in degree $(-i, i-2,0,0)$ with $i>2$, namely $s^{q} t^{2 q+1}$, with

$$
\left|s^{q} t^{2 q+1}\right|=(-2 q, 2 q-2,0,0)
$$

Proof. As in Theorem 2.3.2, we use the approach of Theorems 1.11.5 and 1.12.2. Thus $H H^{*} H^{*} B G$ is the homology of the complex

$$
\left(H^{*} B G \otimes H_{*} \Omega B G_{2}^{\wedge}, \partial\right)
$$

where the generators t, ξ and η are in homological degree zero, the generators τ, α and β are in homological degree -1 , and the differential is given by $\partial=[e,-]$ where $e=t \otimes \tau+\xi \otimes \alpha+\eta \otimes \beta$. Thus setting $s=\alpha \beta+\beta \alpha$, we have $\partial(t)=0, \partial(\xi)=0, \partial(\eta)=0, \partial(\alpha)=\eta s, \partial(\tau)=0$,
$\partial(\beta)=\xi s$. The generators and relations for the homology of this complex are therefore as given, with $u=\xi \alpha$ and $v=\eta \beta$.

For the last statement, the computation is similar to the corresponding part of the proof of Theorem 2.3.2.

THEOREM 2.8.7. The A_{∞} structure on $H^{*} B G$ is given as follows. The m_{n} are $\mathrm{k}[t]-$ multilinear maps with $m_{n}=0$ for n not congruent to 2 modulo $2 q-2$, and for $i, j \geqslant 1$

$$
m_{2 q}\left(\xi^{i}, \eta, \xi, \eta, \ldots, \xi, \eta^{j}\right)=m_{2 q}\left(\eta^{j}, \xi, \eta, \xi, \ldots, \eta, \xi^{i}\right)=\xi^{i-1} \eta^{j-1} t^{2 q+1}
$$

where the arguments alternate between ξ and η, and the right hand side is zero unless either $i=1$ or $j=1 ; m_{2 q}$ is zero on all other tuples of monomials not involving t. The maps $m_{\ell(2 q-2)+2}$ with $\ell>1$ similarly vanish on all tuples of monomials not involving t, except the ones which look as above, but for some choice of indices in the tuple:

$$
\begin{aligned}
1 \leqslant e_{1} \leqslant e_{2} \leqslant \cdots \leqslant e_{\ell-1}<e_{\ell-1}+(2 q-2) & +1 \leqslant e_{\ell-2}+2(2 q-2)+1 \\
& \leqslant \cdots \leqslant e_{1}+(\ell-1)(2 q-2)+1 \leqslant \ell(2 q-2)+2
\end{aligned}
$$

the exponents on the terms are increased by one (or correspondingly more if an index is repeated). The value on these tuples is $\xi^{i-1} \eta^{j-1} t^{\ell(2 q+1)}$. Thus

$$
m_{\ell(2 q-2)+2}\left(x^{i+\alpha_{1}}, y^{\alpha_{2}}, x^{\alpha_{3}}, \ldots, x^{\alpha_{\ell(2 q-2)+1}}, y^{j+\alpha_{\ell(2 q-2)+2}}\right)=x^{i-1} y^{j-1} t^{\ell(2 q+1)}
$$

where each α_{σ} is one plus the number of indices in the list above that are equal to σ.
Proof. The proof is the same as the proof of Theorem 2.4.2, but using Lemma 2.8.5 and Proposition 2.8.6 in place of Lemma 2.4.1 and Theorem 2.3.2.

We now turn to the computation of the A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$. This is easier to describe than the A_{∞} structure on $H^{*} B G$.

Lemma 2.8.8. For any A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ that preserves internal degrees, we have $m_{i}=0$ unless $i-2$ is divisible by $2 q-1$. In particular, for $2<i<2 q+1$ we have $m_{i}=0$.

Proof. The proof is similar to the proof of Lemma 2.4.1. Looking at the degrees of the generators τ, α and β, for any monomial ζ in $H_{*} \Omega B G_{2}^{\wedge}$ we have $a \equiv b+c(\bmod 2 q-1)$. So for any i-tuple $\left(\zeta_{1}, \ldots, \zeta_{i}\right)$, the degree of $m_{i}\left(\zeta_{1}, \ldots, \zeta_{i}\right)$ satisfies $a \equiv b+c+i-2 \equiv 0$ $(\bmod 2 q-1)$. So for $m_{i}\left(\zeta_{1}, \ldots, \zeta_{i}\right)$ to be non-zero we must have $i-2 \equiv 0(\bmod 2 q-1)$.

Proposition 2.8.9. The Hochschild cohomology $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ has generators s, t, τ, ξ, η, u, and v in degrees

$$
\begin{array}{ll}
|s|=(0,4,2 q+1,2 q+1), & \\
|t|=-(1,1, q, q), & |\tau|=(0,1, q, q), \\
|\xi|=-(1,2, q+1, q), & |\eta|=-(1,2, q, q+1), \\
|u|=-(1,0,0,0), & |v|=-(1,0,0,0) .
\end{array}
$$

The relations are given by $\xi \eta=0, u^{2}=v^{2}=u v=\tau^{2}=0, \eta u=\xi v=0, \xi s=\eta s=0$, and $u s=v s$. The non-zero monomials and their degrees are given as follows, with $i_{1}, i_{2} \geqslant 0$, $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.

$$
\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-i_{2}-\varepsilon_{2}, 4 i_{1}-i_{2}+\varepsilon_{1},\left(2 i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1},\left(2 i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1}\right)
$$

$$
\begin{aligned}
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-i_{2}-\varepsilon_{2}, 4 i_{1}-i_{2}+\varepsilon_{1},\left(2 i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1},\left(2 i_{1}-i_{2}\right) q+i_{1}\right), \\
&\left|\xi^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-i_{1}-i_{2}-\varepsilon_{2},-2 i_{1}-i_{2}+\varepsilon_{1},-i_{1}+\left(-i_{1}-i_{2}+\varepsilon_{1}\right) q,\left(-i_{1}-i_{2}+\varepsilon_{1}\right) q\right), \\
&\left|\eta^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-i_{1}-i_{2}-\varepsilon_{2},-2 i_{1}-i_{2}+\varepsilon_{1},\left(-i_{1}-i_{2}+\varepsilon_{1}\right) q,-i_{1}+\left(-i_{1}-i_{2}+\varepsilon_{1}\right) q\right) .
\end{aligned}
$$

Thus there is only one monomial with degree $(-i, i-2,0,0)$ with $i>2$, namely

$$
\left|s^{q} t^{2 q+1}\right|=(-2 q-1,2 q-1,0,0)
$$

Proof. Again, as in Theorem 2.3.2, we use the approach of Theorem 1.12.2. This time, $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ is the homology of the complex

$$
\left(H_{*} \Omega B G_{2}^{\wedge} \otimes H^{*} B G, \partial\right)
$$

where the generators τ, α and β of $H_{*} \Omega B G_{2}^{\wedge}$ are in homological degree zero, the generators t, ξ, η of $H^{*} B G$ are in homological degree -1 , and the differential is given by $\partial=[e,-]$ where $e=\tau \otimes t+\alpha \otimes \xi+\beta \otimes \eta$. So the answer is the same as in Proposition 2.8.6 but with the degrees changed.

For the last statement, the computation is again similar to the corresponding part of the proof of Theorem 2.3.2.

Theorem 2.8.10. In Case 2.7.1, the A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ is determined by

$$
m_{2 q+1}(\tau, \tau, \ldots, \tau)=s^{q}
$$

where $s=\alpha \beta+\beta \alpha$. This implies that

$$
\begin{equation*}
m_{2 q+1}\left(f_{1}(\alpha, \beta) \tau, f_{2}(\alpha, \beta) \tau, \ldots, f_{2 q+1}(\alpha, \beta) \tau\right)=f_{1}(\alpha, \beta) \ldots f_{2 q+1}(\alpha, \beta) s^{q} \tag{2.8.11}
\end{equation*}
$$

and all m_{n} for $n>2$ on all other n-tuples of monomials give zero.
Proof. By Lemma 2.8.8, we have $m_{n}=0$ for $2<n<2 q+1$. So in order to determine $m_{2 q+1}$, we invoke Proposition 1.4.2. This shows that $m_{2 q+1}$ has to be a Hochschild cocycle, well defined up to adding Hochschild coboundaries. By Proposition 2.8.9, the dimension of $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ is one dimensional in degree $(-2 q-1,2 q-1,0,0)$. A representative for a non-zero cohomology class is given by (2.8.11). It is easy to check that this is a cocycle but not a coboundary. So by rescaling τ if necessary (or by working over \mathbb{F}_{2}) we may assume that either $m_{2 q+1}$ is either zero or as given in the theorem. In both cases we can check that the Gerstenhaber circle product $m_{2 q+1} \circ m_{2 q+1}$ is equal to the zero cocycle in degree $-4 q$.

As in the proof of Theorem 2.4.2, we can rewrite Equation 1.3.1 in degree $-4 q$ as

$$
\delta m_{4 q}=m_{2 q+1} \circ m_{2 q+1},
$$

which as we just saw, is zero. Now by Proposition 2.8 .9 again, $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ is zero in degree $(-4 q, 4 q-2,0,0)$. So $m_{4 q}$ is a Hochschild coboundary, and we can therefore take $m_{4 q}=0$, as it is only well defined modulo Hochschild coboundaries. At this point, for $\ell>2$, the equation we obtain for $m_{\ell(2 q-1)+2}$ is $\delta m_{\ell(2 q-1)+2}=0$. Again, $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ is zero in degree $(-\ell(2 q-1)-2, \ell(2 q-1), 0,0)$, and so we may take $m_{\ell(2 q-1)+2}=0$.

This argument shows that there are two possibilities for the A_{∞} structure up to isomorphism, namely the one given and the formal one with $m_{n}=0$ for all $n>2$. The latter is impossible, since it would imply that the A_{∞} structure on $H^{*} B G$ is also formal, which it is not.

REmARK 2.8.12. In the spectral sequence $H H^{*} H_{*} \Omega B G_{2}^{\wedge} \Rightarrow H H^{*} C_{*} \Omega B G_{2}^{\wedge}$, we have $d^{2 q}(\tau)=s^{q} t^{2 q}$. This implies that after inverting s (we discuss this later), we have

$$
H H^{*} C_{*} \Omega B G_{2}^{\wedge}\left[s^{-1}\right]=\mathrm{k}\left[s, s^{-1}\right][u, v, t] /\left(u^{2}, v^{2}, u v, t^{2 q}\right)
$$

Since $H H^{*} C^{*} B G \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge}$, this also computes $H H^{*} C^{*} B G\left[s^{-1}\right]$.

2.9. A differential graded model

Throughout this section, we work in Case 2.7.1, where G has dihedral Sylow 2-subgroups and one conjugacy class of involutions. As in [22], we produce a differential graded model Q for the A_{∞} algebra $H_{*} \Omega B G_{2}^{\wedge}$. The proofs are similar to the ones in that paper, but we spell out the details because there are some minor differences. One is that we are in characteristic two, so we don't need to be careful about signs; another is that a polynomial ring in one variable has been replaced by the noncommutative ring $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$.

Recall from Theorems 2.8.3 and 2.8.10 that

$$
H_{*} \Omega B G_{2}^{\wedge} \cong \Lambda(\tau) \otimes \mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)
$$

with $m_{2 q+1}$ determined by $m_{2 q+1}(\tau, \ldots, \tau)=s^{q}$, where $s=\alpha \beta+\beta \alpha$, and with all other m_{i} zero for $i>2$.

The generators of Q are elements $\tau_{1}, \ldots, \tau_{2 q}, \alpha, \beta$, where τ_{1} will eventually be seen to correspond to the element $\tau \in H_{*} \Omega B G_{2}^{\wedge}$. The relations and differential are as follows:

$$
\begin{aligned}
\alpha \tau_{i} & =\tau_{i} \alpha \\
\beta \tau_{i} & =\tau_{i} \beta \\
\alpha^{2} & =\beta^{2}=0 \\
d \alpha & =d \beta=0 \\
\sum_{j+k=i} \tau_{j} \tau_{k} & = \begin{cases}d \tau_{i} & 1 \leqslant i \leqslant 2 q \\
s^{q} & i=2 q+1 \\
0 & 2 q+2 \leqslant i \leqslant 4 q\end{cases}
\end{aligned}
$$

where $s=\alpha \beta+\beta \alpha$. The antipode is the algebra anti-automorphism given by $S\left(\tau_{i}\right)=$ $\tau_{i}, S(\alpha)=\alpha, S(\beta)=\beta$ (we are in characteristic two, so there are no signs), and the comultiplication is given by

$$
\Delta\left(\tau_{i}\right)=\tau_{i} \otimes 1+1 \otimes \tau_{i}, \quad \Delta(\alpha)=\alpha \otimes 1+1 \otimes \alpha, \quad \Delta(\beta)=\beta \otimes 1+1 \otimes \beta
$$

The degrees are given by $\left|\tau_{i}\right|=(2 i-1, i q, i q),|\alpha|=(2, q+1, q),|\beta|=(2, q, q+1)$, and $|s|=(4,2 q+1,2 q+1)$. We shall see that this algebra Q is quasi-isomorphic to $C_{*} \Omega B G_{2}^{\wedge}$.

Example 2.9.1. If $q=1$, the algebra Q is generated by $\tau_{1}, \tau_{2}, \alpha, \beta$ with

$$
\begin{array}{rlrl}
d(\alpha) & =0 & \alpha^{2} & =0 \\
d(\beta) & =0 & \beta^{2} & =0 \\
d\left(\tau_{1}\right) & =0 & \alpha \tau_{i} & =\tau_{i} \alpha \\
d\left(\tau_{2}\right) & =\tau_{1}^{2}+\tau_{2} \tau_{1}=s=\alpha \beta+\beta \alpha \\
& \beta \tau_{i} & =\tau_{i} \beta & \tau_{2}^{2}=0 \\
& &
\end{array}
$$

with $\left|\tau_{1}\right|=(1,1,1),\left|\tau_{2}\right|=(3,2,2),|\alpha|=(2,2,1),|\beta|=(2,1,2)$ and $|s|=(4,3,3)$.

Lemma 2.9.2. In the algebra Q, every element has a unique expression of the form

$$
f\left(\tau_{1}, \ldots, \tau_{2 q-1}\right)+\tau_{2 q} g\left(\tau_{1}, \ldots, \tau_{2 q-1}\right)
$$

with coefficients in $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$.
Proof. The algebra relations (ignoring the differential) say first that the elements $\tau_{1}, \ldots, \tau_{2 q}$ commute with α and β; and the remaining relations can be rewritten in the form

$$
\tau_{i} \tau_{2 q}=\tau_{2 q} \phi_{i}\left(\tau_{1}, \ldots, \tau_{2 q-1}\right)
$$

with $1 \leqslant i \leqslant 2 q$ (note that $\phi_{2 q}=0$). Thus all occurrences of $\tau_{2 q}$ may be moved to the beginning, and $\tau_{2 q}^{2}=0$. There are no relations among $\tau_{1}, \ldots, \tau_{2 q-1}$.

Definition 2.9.3. We shall refer to a monomial in $\tau_{1}, \ldots, \tau_{2 q-1}$, or $\tau_{2 q}$ times such a monomial, as a standard monomial in the variables $\tau_{1}, \ldots, \tau_{2 q}$. By the lemma, these monomials form a basis for Q over $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$.

Lemma 2.9.4. In the algebra Q, we have $d^{2}=0$.
Proof. The differential is given by

$$
d\left(f+\tau_{2 q} g\right)=\left(d f+\left(\tau_{1} \tau_{2 q-1}+\cdots+\tau_{2 q-1} \tau_{1}\right) g\right)+\tau_{2 q} d g
$$

For $1 \leqslant i \leqslant 2 q-1$, se see that $d d\left(\tau_{i}\right)$ has two terms for each way of writing i as a sum of three positive integers, and they cancel. So we have $d^{2}=0$ on the subalgebra they generate. Thus we have

$$
\begin{aligned}
d^{2}\left(f+\tau_{2 q} g\right) & \left.=d\left(d f+\left(\tau_{1} \tau_{2 q-1}+\cdots+\tau_{2 q-1} \tau_{1}\right) g\right)+\tau_{2 q} d g\right) \\
& =d^{2} f+\left(\tau_{1} \tau_{2 q-1}+\cdots+\tau_{2 q-1} \tau_{1}\right) d g+\left(\tau_{1} \tau_{2 q-1}+\cdots+\tau_{2 q-1} \tau_{1}\right) d g \\
& =0
\end{aligned}
$$

Proposition 2.9.5. The definitions above make Q into a cocommutative $D G$ Hopf algebra.

Proof. The above lemmas show that Q is a DG bialgebra. It is easy to check that the antipode satisfies the identity $S\left(x_{(1)}\right) x_{(2)}=x_{(1)} S\left(x_{(2)}\right)=0$ in Sweedler notation, for elements of non-zero degree this only needs checking on the generators, where it is clear. Cocommutativity also only needs checking on generators.

THEOREM 2.9.6. There is a quasi-isomorphism from the A_{∞} algebra $H_{*} \Omega B G_{2}^{\wedge}$ to the $D G$ algebra Q, sending α to α, β to β, and τ to τ_{1}.

Proof. First, we show that $H_{*} Q$ is isomorphic to $H_{*} \Omega B G_{2}^{\wedge}$ as an algebra over the noncommutative ring $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$. We define a $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$-module homomorphism $\delta: Q \rightarrow Q$ sending a monomial of the form $\tau_{1} \tau_{i} f$ to $\tau_{i+1} f$ for $1 \leqslant i \leqslant 2 q-1$, and all other standard monomials to zero. Thus $\delta\left(f+\tau_{2 q} g\right)=\delta(f)$. Then we have

$$
\begin{aligned}
\delta d\left(\tau_{1} \tau_{i} f\right) & =\delta\left(\tau_{1}\left(\tau_{1} \tau_{i-1}+\cdots+\tau_{i-1} \tau_{1}\right) f+\tau_{1} \tau_{i} d f\right) \\
& =\left(\tau_{2} \tau_{i-1}+\cdots+\tau_{i} \tau_{1}\right) f+\tau_{i+1} d f \\
d \delta\left(\tau_{1} \tau_{i} f\right) & =d\left(\tau_{i+1} f\right)=\left(\tau_{1} \tau_{i}+\cdots+\tau_{i} \tau_{1}\right) f+\tau_{i+1} d f \\
(\delta d+d \delta)\left(\tau_{1} \tau_{i} f\right) & =\tau_{1} \tau_{i} f
\end{aligned}
$$

while for $j>1$ we have

$$
\begin{aligned}
\delta d\left(\tau_{j} f\right) & =\delta\left(\left(\tau_{1} \tau_{j-1}+\cdots+\tau_{j-1} \tau_{1}\right) f+\tau_{j} d f\right)=\tau_{j} f \\
d \delta\left(\tau_{j} f\right) & =d(0)=0 \\
(\delta d+d \delta)\left(\tau_{j} f\right) & =\tau_{j} f .
\end{aligned}
$$

Thus $\delta d+d \delta$ is the identity on all monomials except those in the $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$-submodule spanned by 1 and τ_{1}, where it is zero. So δ defines a homotopy from the identity map of Q to the projection onto this submodule. It follows that $H_{*} Q$ is isomorphic to $H_{*} \Omega B G_{2}^{\wedge}$ as an algebra over $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)$, with τ_{1} corresponding to τ.

We have an A_{∞} morphism $f: A \rightarrow Q$ given by $f_{1}(\alpha)=\alpha, f_{1}(\beta)=\beta$, and

$$
f_{i}(\tau, \ldots, \tau)=\tau_{i}, \quad 1 \leqslant i \leqslant 2 q .
$$

The computation above shows that f_{1} is a quasi-isomorphism, and hence by definition so is f. This computation is a practical illustration of Kadeishvili's theorem [151].

Corollary 2.9.7. The bounded derived categories $\mathrm{D}^{\mathrm{b}}(Q), \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\right)$ and $\mathrm{D}^{\mathrm{b}}\left(C^{*} B G\right)$ are equivalent as triangulated categories.

Proof. This follows from Theorem 1.9.2, together with Theorem 2.9.6 above.
The element $s=\alpha \beta+\beta \alpha$ is central in Q, so it makes sense to invert it in the A_{∞} algebra $H_{*} \Omega B G_{2}^{\wedge}$.

Corollary 2.9.8. We have equivalences of triangulated categories

$$
\mathrm{D}^{\mathrm{b}}\left(Q\left[s^{-1}\right]\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\left[s^{-1}\right]\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) .
$$

Proof. Since $H_{*} \Omega B G_{2}^{\wedge}$ is periodic, with periodicity generator s, the effect on $\mathrm{D}^{\mathbf{b}}(Q)$ of inverting s is to quotient out the thick subcategory generated by k. So this corollary again follows from Theorem 1.9.2.

2.10. Duality for $Q\left[s^{-1}\right]$-modules

In this section, we continue to work in Case 2.7.1, where G has dihedral Sylow 2-subgroups and one conjugacy class of involutions.

Definition 2.10.1. We write K for $\mathrm{k}\langle\alpha, \beta\rangle /\left(\alpha^{2}, \beta^{2}\right)\left[s^{-1}\right]$, where $s=\alpha \beta+\beta \alpha$.
Lemma 2.10.2. The graded algebra K is simple. The trace form $K \otimes_{\mathrm{k}\left[s, s^{-1}\right]} K \rightarrow \mathrm{k}\left[s, s^{-1}\right]$ induces an isomorphism of K-modules

$$
K \cong \operatorname{Hom}_{\mathrm{k}\left[s, s^{-1}\right]}\left(K, \mathrm{k}\left[s, s^{-1}\right]\right)
$$

Proof. This is the algebra of endomorphisms of a graded vector space of dimension two over the graded field $\mathrm{k}\left[s, s^{-1}\right]$, with a basis element u in degree zero and a basis element v in degree one. The element α sends u to v and v to zero, while β sends v to su and u to zero. Thinking in terms of matrices over $\mathrm{k}\left[s, s^{-1}\right]$ this can be visualised as

$$
\alpha \mapsto\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad \beta \mapsto\left(\begin{array}{cc}
0 & s \\
0 & 0
\end{array}\right), \quad s \mapsto\left(\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right),
$$

giving an isomorphism

$$
K \cong \operatorname{Mat}_{2}\left(\mathrm{k}\left[s, s^{-1}\right]\right) .
$$

The trace form is given by multiplying matrices and taking the trace. It takes $\alpha \otimes \beta$ and $\beta \otimes \alpha$ both to s. It therefore induces an isomorphism of K-modules $K \cong \operatorname{Hom}_{\mathrm{k}\left[s, s^{-1}\right]}\left(K, \mathrm{k}\left[s, s^{-1}\right]\right)$ sending α to the homomorphism sending α to zero and β to s and sending β to the homomorphism sending α to s and β to zero.

If X is any K-module, we write $X^{*}=\operatorname{Hom}_{\mathrm{k}\left[s, s^{-1}\right]}\left(X, \mathrm{k}\left[s, s^{-1}\right]\right)$. Then using the lemma, we have

$$
\begin{aligned}
X^{*} & =\operatorname{Hom}_{\mathrm{k}\left[s, s^{-1}\right]}\left(X, \mathrm{k}\left[s, s^{-1}\right]\right) \\
& \cong \operatorname{Hom}_{\mathrm{k}\left[s, s^{-1}\right]}\left(K \otimes_{K} X, \mathrm{k}\left[s, s^{-1}\right]\right) \\
& \cong \operatorname{Hom}_{K}\left(X, \operatorname{Hom}_{\mathrm{k}\left[s, s^{-1}\right]}\left(K, \mathrm{k}\left[s, s^{-1}\right]\right)\right) \\
& \cong \operatorname{Hom}_{K}(X, K),
\end{aligned}
$$

and so we can just as well regard X^{*} as $\operatorname{Hom}_{K}(X, K)$.
Proposition 2.10.3. There is a quasi-isomorphism of $Q\left[s^{-1}\right]$-bimodules

$$
Q\left[s^{-1}\right] \rightarrow \Sigma Q\left[s^{-1}\right]^{*}
$$

Proof. The standard monomials form a free basis for $Q\left[s^{-1}\right]$ as a K-module. We construct a K-module homomorphism $Q\left[s^{-1}\right] \rightarrow \Sigma^{|\tau|} Q\left[s^{-1}\right]^{*}$ as follows. It takes all standard monomials to zero except 1 and τ_{1}. It takes 1 to the element of $Q\left[s^{-1}\right]^{*}$ taking value 1 on τ_{1} and zero on all other monomials, and it takes τ_{1} to the element of $Q\left[s^{-1}\right]^{*}$ taking value 1 on 1 and value zero on all other standard monomials. It is easy to check that this is a map of $Q\left[s^{-1}\right]$-bimodules, and a quasi-isomorphism.

Proposition 2.10.4. If X is a left $Q\left[s^{-1}\right]$-module and Y is a right $Q\left[s^{-1}\right]$-module, then there is a natural isomorphism of K-modules

$$
\operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, \operatorname{Hom}_{K}(Y, K)\right) \cong \operatorname{Hom}_{K}\left(Y \otimes_{Q\left[s^{-1}\right]} X, K\right)
$$

If Y is a $Q\left[s^{-1}\right]$-bimodule, this is an isomorphism of left $Q\left[s^{-1}\right]$-modules.
Proof. This is standard.
Corollary 2.10.5. If X is a homotopically projective $Q\left[s^{-1}\right]$-module then we have a quasi-isomorphism

$$
\operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, Q\left[s^{-1}\right]\right) \simeq \Sigma \operatorname{Hom}_{K}(X, K)
$$

Proof. We have

$$
\begin{aligned}
\operatorname{Hom}_{Q\left[\tau^{-1}\right]}\left(X, Q\left[s^{-1}\right]\right) & \simeq \operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, \Sigma Q\left[s^{-1}\right]^{*}\right) \\
& \cong \Sigma \operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, \operatorname{Hom}_{K}\left(Q\left[s^{-1}\right], K\right)\right) \\
& \cong \Sigma \operatorname{Hom}_{K}\left(Q\left[s^{-1}\right] \otimes_{Q\left[s^{-1}\right]} X, K\right) \\
& \cong \Sigma \operatorname{Hom}_{K}(X, K) .
\end{aligned}
$$

Theorem 2.10.6. Let X and Y be $Q\left[s^{-1}\right]$-modules, such that X homotopically projective, and its image in $\mathrm{D}^{\mathrm{b}}\left(Q\left[s^{-1}\right]\right)$ is compact. Then we have a duality

$$
\operatorname{Hom}_{Q\left[s^{-1}\right]}(X, Y)^{*} \cong \operatorname{Hom}_{Q\left[s^{-1}\right]}\left(Y, \Sigma^{-1} X\right)
$$

Proof. Since X is homotopically projective with compact image in $\mathrm{D}^{\mathbf{b}}\left(Q\left[s^{-1}\right]\right)$, we have quasi-isomorphisms

$$
\operatorname{Hom}_{Q\left[s^{-1}\right]}(X, Y) \simeq \operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, Q\left[s^{-1}\right]\right) \otimes_{Q\left[s^{-1}\right]} Y
$$

and

$$
\operatorname{Hom}_{Q\left[s^{-1}\right]}\left(\operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, Q\left[s^{-1}\right]\right), Q\left[s^{-1}\right]\right) \simeq X
$$

Combining the second of these with Corollary 2.10.5, we have

$$
\operatorname{Hom}_{Q\left[s^{-1]}\right.}\left(X, Q\left[s^{-1}\right]\right)^{*} \simeq \Sigma^{-1} X
$$

Hence using Proposition 2.10.4, we have

$$
\begin{aligned}
\operatorname{Hom}_{Q\left[s^{-1}\right]}(X, Y)^{*} & =\operatorname{Hom}_{K}\left(\operatorname{Hom}_{Q\left[s^{-1}\right]}(X, Y), K\right) \\
& \simeq \operatorname{Hom}_{K}\left(\operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, Q\left[s^{-1}\right]\right) \otimes_{Q\left[s^{-1}\right]} Y, K\right) \\
& \cong \operatorname{Hom}_{Q\left[s^{-1}\right]}\left(Y, \operatorname{Hom}_{K}\left(\operatorname{Hom}_{Q\left[s^{-1}\right]}\left(X, Q\left[s^{-1}\right]\right), K\right)\right) \\
& \simeq \operatorname{Hom}_{Q\left[s^{-1}\right]}\left(Y, \Sigma^{-1} X\right)
\end{aligned}
$$

2.11. Some indecomposables

Let G be a finite group with dihedral Sylow 2-subgroups and a single conjugacy class of involutions. Consider first A_{∞} modules over the A_{∞} algebra $B=H^{*} B G$. The quotient $B /\left(t^{2 q+1}\right)$ is formal, so ordinary modules over this ring pull back to A_{∞} modules over B. For $1 \leqslant i \leqslant 2 q$, let X_{i} be the module $B /\left(\eta, t^{i}\right)$ and X_{i}^{\prime} be the module $B /\left(\xi, t^{i}\right)$. Thus X_{i} has periodic resolution

$$
\cdots \xrightarrow{\binom{\xi t^{i}}{0}} B \oplus B \xrightarrow{\left(\begin{array}{l}
\eta t^{i} \\
0 \\
\xi
\end{array}\right)} B \oplus B \xrightarrow{\left(\begin{array}{l}
\xi t^{i} \\
0 \\
\eta
\end{array}\right)} B \oplus B \xrightarrow{\left(\eta, t^{i}\right)} B \rightarrow X_{i} \rightarrow 0
$$

and swapping η and ξ gives a resolution of X_{i}^{\prime}. In $\mathrm{D}^{\mathrm{b}}(B)$, the residue field k sits in a triangle

$$
B /(t) \rightarrow B /(\eta, t) \oplus B /(\xi, t) \rightarrow \mathrm{k}
$$

Furthermore, $B /(t)$ sits in a triangle

$$
\Sigma^{-2} B \xrightarrow{t} B \rightarrow B /(t) .
$$

So in $\mathrm{D}_{\mathrm{sg}}(B), B /(t)$ is isomorphic to zero, and k decomposes as $B /(\eta, t) \oplus B /(\xi, t)=X_{1} \oplus X_{1}^{\prime}$. The minimal resolutions of X_{i} and X_{i}^{\prime} are as follows.

$$
\begin{aligned}
& \cdots \rightarrow \Sigma^{-9} B \oplus \Sigma^{-6-2 i} B \xrightarrow{\left(\begin{array}{l}
\eta \\
t^{i} \\
0 \\
\xi
\end{array}\right)} \Sigma^{-6} B \oplus \Sigma^{-3-2 i} B \xrightarrow{\left(\begin{array}{c}
\xi \\
t^{i} \\
0 \\
\eta
\end{array}\right)} \Sigma^{-3} B \oplus \Sigma^{-2 i} B \xrightarrow{\left(\eta, t^{i}\right)} B \rightarrow X_{i} \rightarrow 0, \\
& \cdots \rightarrow \Sigma^{-9} B \oplus \Sigma^{-6-2 i} B \xrightarrow{\left(\begin{array}{c}
\xi t^{i} \\
0 \\
\eta
\end{array}\right)} \Sigma^{-6} B \oplus \Sigma^{-3-2 i} B \xrightarrow{\left(\begin{array}{c}
\eta \\
0 \\
0
\end{array}\right)} \Sigma^{-3} B \oplus \Sigma^{-2 i} B \xrightarrow{\left(\xi, t^{i}\right)} B \rightarrow X_{i}^{\prime} \rightarrow 0 .
\end{aligned}
$$

It follows that $\Sigma^{2} X_{i} \cong X_{i}^{\prime}$ and $\Sigma^{2} X_{i}^{\prime} \cong X_{i}$ in $\mathrm{D}_{\mathrm{sg}}(B)$. The category $\mathrm{D}_{\mathrm{sg}}(B)$ is periodic of period four, with periodicity generator $s=\alpha \beta+\beta \alpha$.

Let $A=B^{!}$be the A_{∞} algebra $H_{*} \Omega B G_{2}^{\wedge}$. For $1 \leqslant i \leqslant 2 q$, let $Y_{i}=\operatorname{Ext}_{B}^{*}\left(\mathrm{k}, X_{i}\right)$, the indecomposable A-module with generators u and v satisfying $\alpha u=0, \alpha v=0$, and

$$
\begin{aligned}
m_{i+1}(\tau, \ldots, \tau, u) & =v \\
m_{2 q+2-i}(\tau, \ldots, \tau, v) & =(\alpha \beta)^{q} u .
\end{aligned}
$$

Then in $\mathrm{D}_{\text {csg }}(A)$, we have $\Sigma^{2 i-1} Y_{i} \cong Y_{2 q+1-i}$, so this gives q isomorphism classes up to shift, all periodic with period four, for a total of $4 q$ isomorphism classes. Note that the ring A itself, as an object in $\mathrm{D}_{\text {csg }}(A)$, decomposes as $Y_{1} \oplus \Sigma^{2} Y_{1}$.

Here they are for $q=2$, with the $m_{j}(\tau, \ldots, \tau,-)$ represented by dotted lines:

Removing a finite number of nodes from the beginning of one of these diagrams does not alter the isomorphism class in $\mathrm{D}_{\text {csg }}(A)$.

2.12. Classification of indecomposables

We continue to work in Case 2.7.1 with $q \geqslant 1$, and write B for the A_{∞} algebra $H^{*} B G$ and $A=B^{!}$for the Koszul dual A_{∞} algebra $H_{*} \Omega B G_{2}^{\wedge}$. The way we classify the indecomposables in $\mathrm{D}_{\mathrm{csg}}(A) \cong \mathrm{D}_{\mathrm{sg}}(B)$ is via Morita equivalence, reducing to the classification theorem of [22].

Let $Y_{i}, 1 \leqslant i \leqslant 2 q$, be the modules described in the previous section. Then the regular representation of A decomposes as $Y_{1} \oplus \Sigma^{2} Y_{1}$.

Let E be the A_{∞} algebra $\operatorname{Hom}_{A}^{*}\left(Y_{1}, Y_{1}\right)$. This is the algebra with $m_{i}=0$ for $i \neq 2,2 q+1$, defined as follows. The multiplication m_{2} defines the k-algebra structure as $\mathrm{k}[s] \otimes \Lambda(\tau)$, with generators s and τ satisfying $|s|=(4,2 q+1,2 q+1),|\tau|=(1, q, q)$. We have

$$
m_{2 q+1}\left(s^{i_{1}} \tau, \ldots, s^{i_{2 q+1}} \tau\right)=s^{i_{1}+\cdots+i_{2 q+1}+q}
$$

and $m_{2 q+1}$ vanishes on all other tuples of monomials.
There is a right action of E on Y_{1} given by $m_{2}(u, \tau)=v, m_{2 q+1}(v, \tau, \ldots, \tau)=m_{2}\left(u, s^{q}\right)$. This makes Y_{1} into an A - E-bimodule, and $\operatorname{Hom}_{A}^{*}\left(Y_{1},-\right)$ induces an equivalence of derived categories $\mathrm{D}^{\mathrm{b}}(A) \simeq \mathrm{D}^{\mathrm{b}}(E)$ that sends A to $E \oplus \Sigma^{2} E$ and Y_{1} to E. It therefore also induces equivalences $\mathrm{D}_{\mathrm{csg}}(A) \simeq \mathrm{D}_{\mathrm{csg}}(E) \simeq \mathrm{D}^{\mathrm{b}}\left(E\left[s^{-1}\right]\right.$). Theorem 1.1 of $[\mathbf{2 2}]$ (with $a=1, b=2$, $h=2 q+1, \ell=q$) therefore gives the following.

Theorem 2.12.1. The triangulated categories

$$
\mathrm{D}_{\mathrm{sg}}(B) \simeq \mathrm{D}_{\mathrm{csg}}(A) \simeq \mathrm{D}^{\mathrm{b}}\left(A\left[s^{-1}\right]\right) \simeq \mathrm{D}_{\mathrm{csg}}(E) \simeq \mathrm{D}^{\mathrm{b}}\left(E\left[s^{-1}\right]\right)
$$

satisfy the Krull-Schmidt theorem, and have $4 q$ isomorphism classes of indecomposable objects, in q orbits of the shift functor Σ. The Auslander-Reiten quiver is isomorphic to $\mathbb{Z} A_{2 q} / T^{2}$, where T is the translation functor Σ^{-2}. This is a cylinder of height $2 q$ and circumference 2. The functor Σ switches the two ends of the cylinder.

Here is a picture of the Auslander-Reiten quiver in the case $q=4$; the left and right side should be identified to form a cylinder:

REmark 2.12.2. In contrast with Theorem 2.12.1, the category $\mathrm{D}_{\mathrm{sg}}(A) \simeq \mathrm{D}_{\mathrm{csg}}(B)$ has infinite representation type. This can be seen by examining the quotient $H_{*} \Omega B G_{2}^{\wedge} /\left(\tau, s^{q}\right)$. By Theorem 2.8.10, this is the formal A_{∞} algebra

$$
\mathrm{k}\left\langle\alpha, \beta \mid \alpha^{2}=0, \beta^{2}=0,(\alpha \beta)^{q}+(\beta \alpha)^{q}=0\right\rangle
$$

which has tame representation type (Ringel [195]). It would be interesting to know whether $\mathrm{D}_{\mathrm{sg}}(A)$ also has tame representation type.

2.13. Loops on $B G_{2}^{\wedge}$: two classes of involutions

We now turn to Case 2.7.2. This is the case where G has a dihedral Sylow 2-subgroup D of order $4 q$ with $q \geqslant 2$, and two conjugacy classes of involution. In this case, G has exactly one subgroup of index two, and it has two isomorphism classes of simple modules in the principal block.

Remark 2.13.1. It follows from the work of Holm [141] that the derived equivalence classes of algebras of dihedral type with two isomorphism classes of simple modules are determined by two parameters, namely a positive integer $k \geqslant 1$ and a field element $c \in\{0,1\}$. For a block of a finite group with dihedral defect group of order $4 q$, the parameter k is equal to q. Theorem 6.8 of Eisele [64] shows that the case $c=1$ cannot occur for a block of a finite group, so we have $c=0$. Note that by Corollary 2.3 of Generalov and Romanova [116], the cases $c=0$ and $c=1$ have different Hochschild cohomology rings, even in degree one.

By Holm [141] and Proposition 2.7.2, for the purposes of studying $B G_{2}^{\wedge}$ we may assume that $G=P G L(2, p)$ for a suitable prime $p \equiv 1(\bmod 4)$. In this case, the principal block B_{0} of $\mathrm{k} G$ belongs to Erdmann's class $\mathrm{D}(2 \mathcal{A})$. It has two simple modules k and M , whose Ext ${ }^{1}$ quiver is as follows:

Using Remark 2.13.1, the relations are

$$
e_{2} e_{1}=0, \quad e_{3}^{2}=0, \quad\left(e_{1} e_{2} e_{3}\right)^{q}=\left(e_{3} e_{1} e_{2}\right)^{q}
$$

We put an internal grading on the basic algebra in this case by assigning degree $\left(\frac{1}{2}, 0\right)$ to e_{1} and e_{2} and $(0,1)$ to e_{3}.

We have $H^{*} B G=\mathrm{k}[\xi, y, t] /(\xi y)$ where

$$
|\xi|=-(3, q+1, q), \quad|y|=-(1,0,1), \quad|t|=-(2, q, q) .
$$

The restrictions to D are given by $\operatorname{res}_{\mathrm{D}}(\xi)=x t$, $\operatorname{res}_{\mathrm{D}}(y)=y$, and $\operatorname{res}_{\mathrm{D}}(t)=t$. Massey products are determined by

$$
\langle\xi, y, \ldots, \xi, y\rangle=\langle y, \xi, \ldots, y, \xi\rangle=t^{q+1}
$$

The computation of Hochschild cohomology is again very similar, and we omit the details. The A_{∞} structure on $H^{*} B G$ again follows the same lines as in Theorem 2.4.2. This time, we only replace x by ξ, and again adjust the powers of t. So we have

$$
m_{2 q}\left(\xi^{i}, y, \xi, y, \ldots, \xi, y^{j}\right)=m_{2 q}\left(y^{j}, \xi, y, \xi, \ldots, y, \xi^{i}\right)=\xi^{i-1} y^{j-1} t^{q+1}
$$

The value of $m_{\ell(2 q-2)+2}$ on the tuples at the end of the theorem is replaced by $\xi^{i-1} y^{j-1} t^{\ell(q+1)}$.
Theorem 2.13.2. Let G be a finite group with dihedral Sylow 2-subgroups of order $4 q$ with $q \geqslant 2$ a power of two, and two classes of involutions, and let k be a field of characteristic two. Then we have

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, Y \mid \alpha^{2}=0, Y^{2}=0\right\rangle
$$

with

$$
|\tau|=(1, q, q), \quad|\alpha|=(2, q+1, q), \quad|Y|=(0,0,1)
$$

In homological degree $2 n$ we have monomials $(\alpha Y)^{n},(Y \alpha)^{n},(\alpha Y)^{n-1} \alpha$ and $(Y \alpha)^{n} Y$, and in odd degrees we have τ times all of these.

Proof. The Eilenberg-Moore spectral sequence has as its E_{2} page

$$
\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})=\Lambda(\tau) \otimes \mathrm{k}\left\langle\alpha, Y \mid \alpha^{2}=0, Y^{2}=0\right\rangle
$$

where the generators have degrees

$$
|\tau|=(-1,2, q, q), \quad|\alpha|=(-1,3, q+1, q), \quad|Y|=(-1,1,0,1)
$$

The Eisenbud operator for the relation $\eta y=0$ is $s=\alpha Y+Y \alpha$ in degree $(-2,4, q+1, q+1)$. Again there is no room for non-zero differentials, and no ungrading problems, so $E_{2}=E_{\infty}=$ $H_{*} \Omega B G_{2}^{\wedge}$.

Lemma 2.13.3. For any A_{∞} structure on $H^{*} B G$ that preserves internal degrees, we have $m_{n}=0$ unless $n-2$ is divisible by $q-2$. In particular, for $2<n<q$ we have $m_{n}=0$.

Proof. The proof is essentially the same as the proof of Lemma 2.4.1.
Proposition 2.13.4. Let G be a group with a dihedral Sylow 2-subgroup D of order $4 q$ with $q \geqslant 2$ a power of two, and two conjugacy classes of involutions, and let k be a field of characteristic two. The Hochschild cohomology $H H^{*} H^{*} B G$ has generators s, t, τ, ξ, y, u, v with

$$
|s|=(-2,4, q+1, q+1)
$$

$$
\begin{array}{ll}
|t|=-(0,2, q, q) & |\tau|=(-1,2, q, q) \\
|\xi|=-(0,3, q+1, q) & |y|=-(0,1,0,1) \\
|u|=-(1,0,0,0) & |v|=-(1,0,0,0) .
\end{array}
$$

The relations are given by $u^{2}=v^{2}=u v=\tau^{2}=0, y u=\xi v=0, \xi s=y s=0$, and us $=v s$. The non-zero monomials and their degrees are as follows, with $i_{1}, i_{2} \geqslant 0, \varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.

$$
\begin{aligned}
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}, 4 i_{1}-2 i_{2}+2 \varepsilon_{1}, i_{1}+q\left(i_{1}-i_{2}+\varepsilon_{1}\right), i_{1}+q\left(i_{1}-i_{2}+\varepsilon_{1}\right)\right), \\
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-2 i_{1}-\varepsilon_{1}-\varepsilon_{2}, 4 i_{1}-2 i_{2}+2 \varepsilon_{1}, i_{1}+q\left(i_{1}-i_{2}+\varepsilon_{1}\right), i_{1}+q\left(i_{1}-i_{2}+\varepsilon_{1}\right)\right), \\
&\left|\xi^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-\varepsilon_{1}-\varepsilon_{2},-3 i_{1}-2 i_{2}+2 \varepsilon_{1},-i_{1}+q\left(-i_{1}-i_{2}+\varepsilon_{1}\right), q\left(-i_{1}-i_{2}+\varepsilon_{1}\right)\right) \\
&\left|y^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-\varepsilon_{1}-\varepsilon_{2},-i_{1}-2 i_{2}+2 \varepsilon_{1}, q\left(-i_{2}+\varepsilon_{1}\right),-i_{1}+q\left(-i_{2}+\varepsilon_{1}\right)\right)
\end{aligned}
$$

There is only one monomial in degree $(-i, i-2,0,0)$ with $i>2$, namely

$$
\left|s^{q} t^{q+1}\right|=(-q, q-2,0,0)
$$

Proof. As in Theorem 2.3.2, we use the approach of Theorems 1.11.5 and 1.12.2. Thus $H H^{*} H^{*} B G$ is the homology of the complex

$$
\left(H^{*} B G \otimes H_{*} \Omega B G_{2}^{\wedge}, \partial\right)
$$

where the generators t, ξ and η are in homological degree zero, the generators τ, α and Y are in homological degree -1 , and the differential is given by $\partial=[e,-]$ where $e=$ $t \otimes \tau+\xi \otimes \alpha+y \otimes Y$. Thus setting $s=\alpha Y+Y \alpha$, we have $\partial(t)=0, \partial(\xi)=0, \partial(y)=0$, $\partial(\alpha)=y s, \partial(\tau)=0, \partial(Y)=\xi s$. The generators and relations for the homology of this complex are therefore as given, with $u=\xi \alpha$ and $v=y Y$.

For the last statement, the computation is similar to the corresponding part of the proof of Theorem 2.3.2.

TheOrem 2.13.5. The A_{∞} structure on $H^{*} B G$ is given as follows. The m_{n} are $\mathrm{k}[t]$ multilinear maps with $m_{n}=0$ for n not congruent to 2 modulo $2 q-2$, and for $i, j \geqslant 1$

$$
m_{2 q}\left(\xi^{i}, y, \xi, y, \ldots, \xi, y^{j}\right)=m_{2 q}\left(y^{j}, \xi, y, \xi, \ldots, y, \xi^{i}\right)=\xi^{i-1} y^{j-1} t^{q+1}
$$

where the arguments alternate between ξ and y, and the right hand side is zero unless either $i=1$ or $j=1 ; m_{2 q}$ is zero on all other tuples of monomials not involving t. The maps $m_{\ell(2 q-2)+2}$ with $\ell>1$ similarly vanish on all tuples of monomials not involving t, except the ones which look as above, but for some choice of indices in the tuple:

$$
\begin{aligned}
1 \leqslant e_{1} \leqslant e_{2} \leqslant \cdots \leqslant e_{\ell-1}<e_{\ell-1}+(2 q-2) & +1 \leqslant e_{\ell-2}+2(2 q-2)+1 \\
& \leqslant \cdots \leqslant e_{1}+(\ell-1)(2 q-2)+1 \leqslant \ell(2 q-2)+2
\end{aligned}
$$

the exponents on the terms are increased by one (or correspondingly more if an index is repeated). The value on these tuples is $\xi^{i-1} y^{j-1} t^{\ell(q+1)}$. Thus

$$
m_{\ell(2 q-2)+2}\left(x^{i+\alpha_{1}}, y^{\alpha_{2}}, x^{\alpha_{3}}, \ldots, x^{\alpha_{\ell(2 q-2)+1}}, y^{j+\alpha_{\ell(2 q-2)+2}}\right)=x^{i-1} y^{j-1} t^{\ell(q+1)}
$$

where each α_{σ} is one plus the number of indices in the list above that are equal to σ.
Proof. This is similar to the proof of Theorem 2.4.2, but using Lemma 2.13.3 and Proposition 2.13.4 instead of Lemma 2.4.1 and Theorem 2.3.2.

Lemma 2.13.6. For any A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ that preserves internal degrees, we have $m_{n}=0$ unless $n-2$ is divisible by $q-1$. In particular, for $2<n<q+1$ we have $m_{n}=0$.

Proof. Looking at the degrees of the generators τ, α and β, for any monomial ζ in $H_{*} \Omega B G_{2}^{\wedge}$ we have $a \equiv b(\bmod q-1)$. So for any n-tuple $\left(\zeta_{1}, \ldots, \zeta_{n}\right)$, the degree of $m_{n}\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ satisfies $a \equiv b+n-2(\bmod q-1)$. So for this expression to be non-zero we must have $n-2 \equiv 0(\bmod q-1)$.

Proposition 2.13.7. The Hochschild cohomology $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ has generators s, t, τ, ξ, η, u, and v in degrees

$$
\begin{array}{rlrl}
|s| & =(0,2, q+1, q+1), & & \\
|t| & =-(1,1, q, q), & & |\tau|=(0,1, q, q), \\
|\xi| & =-(1,2, q+1, q), & |y|=-(1,1,0,1), \\
|u| & =-(1,0,0,0), & |v|=-(1,0,0,0) .
\end{array}
$$

The relations are given by $\xi \eta=0, u^{2}=v^{2}=u v=\tau^{2}=0, \eta u=\xi v=0, \xi s=y s=0$, and $u s=v s$. The non-zero monomials and their degrees are given as follows, with $i_{1}, i_{2} \geqslant 0$, $\varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.

$$
\begin{aligned}
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-i_{2}-\varepsilon_{2}, 2 i_{1}-i_{2}+\varepsilon_{1},\left(i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1},\left(i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1}\right), \\
&\left|s^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-i_{2}-\varepsilon_{2}, 2 i_{1}-i_{2}+\varepsilon_{1},\left(i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1},\left(i_{1}-i_{2}+\varepsilon_{1}\right) q+i_{1}\right), \\
&\left|\xi^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} u^{\varepsilon_{2}}\right|=\left(-i_{1}-i_{2}-\varepsilon_{2},-2 i_{1}-i_{2}+\varepsilon_{1},-i_{1}+\left(-i_{1}-i_{2}+\varepsilon_{1}\right) q,\left(-i_{1}-i_{2}+\varepsilon_{1}\right) q\right), \\
&\left|y^{i_{1}} t^{i_{2}} \tau^{\varepsilon_{1}} v^{\varepsilon_{2}}\right|=\left(-i_{1}-i_{2}-\varepsilon_{2},-i_{1}-i_{2}+\varepsilon_{1},\left(-i_{2}+\varepsilon_{1}\right) q,-i_{1}+\left(-i_{2}+\varepsilon_{1}\right) q\right) .
\end{aligned}
$$

Thus there is only one monomial with degree $(-i, i-2,0,0)$ with $i>2$, namely

$$
\left|s^{q} t^{q+1}\right|=(-q-1, q-1,0,0)
$$

Proof. Again we use the approach of Theorem 1.12.2. This time, $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ is the homology of the complex

$$
\left(H_{*} \Omega B G_{2}^{\wedge} \otimes H^{*} B G, \partial\right),
$$

where the generators τ, α and Y of $H_{*} \Omega B G_{2}^{\wedge}$ are in homological degree zero, the generators t, ξ, y of $H^{*} B G$ are in homological degree -1 , and the differential is given by $\partial=[e,-]$ where $e=\tau \otimes t+\alpha \otimes \xi+Y \otimes y$. So the answer is the same as in Proposition 2.13.4 but with the degrees changed.

For the last statement, the computation is again similar to the corresponding part of the proof of Theorem 2.3.2.

Theorem 2.13.8. In Case 2.7.2, the A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ is determined by

$$
m_{q+1}(\tau, \tau, \ldots, \tau)=s^{q}
$$

where $s=\alpha Y+Y \alpha$. This implies that

$$
m_{q+1}\left(f_{1}(\alpha, Y) \tau, f_{2}(\alpha, Y) \tau, \ldots, f_{q+1}(\alpha, Y) \tau\right)=f_{1}(\alpha, Y) \ldots f_{q+1}(\alpha, Y) s^{q}
$$

and all m_{n} for $n>2$ on all other n-tuples of monomials give zero.

Proof. This is similar to the proof of Theorem 2.8.10, but using Lemma 2.13.6 and Proposition 2.13.7 in place of Lemma 2.8.8 and Proposition 2.8.9.

Everything from this point on is very similar to Case 2.7.1, so we simply state the relevant results.

REmARK 2.13.9. In the spectral sequence $H H^{*} H_{*} \Omega B G_{2}^{\wedge} \Rightarrow H H^{*} C_{*} \Omega B G_{2}^{\wedge}$, we have $d_{q}(\tau)=s^{q} t^{q}$. This implies that after inverting s we have

$$
H H^{*} C^{*} B G\left[s^{-1}\right] \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge}\left[s^{-1}\right] \cong \mathrm{k}\left[s, s^{-1}\right][u, v, t] /\left(u^{2}, v^{2}, u v, t^{q}\right)
$$

The differential graded model Q for $C_{*} \Omega B G_{2}^{\wedge}$ is essentially the same as that described in Section 2.9, except that β is replaced by Y in degree ($0,0,1$) , and the element $s=\alpha Y+Y \alpha$ is in degree $(2, q+1, q+1)$. So the generators for Q are $\tau_{1}, \ldots, \tau_{q}, \alpha, Y$, and the relations between the τ_{i} are given by

$$
\sum_{j+k=i} \tau_{j} \tau_{k}= \begin{cases}d \tau_{i} & 1 \leqslant i \leqslant q \\ s^{q} & i=q+1 \\ 0 & q+2 \leqslant i \leqslant 2 q\end{cases}
$$

The final theorem in Case 2.7.2 is as follows.
Theorem 2.13.10. The triangulated categories

$$
\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\left[s^{-1}\right]\right)
$$

satisfy the Krull-Schmidt theorem, and have $2 q$ isomorphism classes of indecomposable objects, in q orbits of the shift functor Σ. The Auslander-Reiten quiver is isomorphic to $\mathbb{Z} A_{2 q} / T$, where T is the translation functor Σ^{-2}. This is a cylinder of height $2 q$ and circumference one. The functor Σ switches the two ends of the cylinder.

Remark 2.13.11. Again, and for the same reason as in Remark 2.12.2, in contrast with Theorem 2.13.10 the category $\mathrm{D}_{\mathrm{sg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right)$ has infinite representation type. This time, the formal quotient is

$$
H_{*} \Omega B G_{2}^{\wedge} /\left(\tau, s^{q}\right)=\mathrm{k}\left\langle\alpha, Y \mid \alpha^{2}=Y^{2}=(\alpha Y)^{q}+(Y \alpha)^{q}=0\right\rangle
$$

2.14. A related symmetric tensor category

The first non-semisimple symmetric tensor category in characteristic two discussed in Benson and Etingof [20] is the category denoted \mathcal{C}_{3} and discussed in Section 5.2.3 of that paper. This has a basic algebra that is of dihedral type $\mathrm{D}(2 \mathcal{A})$ with $c=0$ and $k=1$ in Erdmann's classification [74], given by a quiver and relations

with relations

$$
a^{2}=0, \quad b c=0, \quad c b a=a c b
$$

This is not equivalent to a block of the group algebra of any finite group, but it is quite similar in behaviour.

This algebra admits a $\mathbb{Z} \times \mathbb{Z}$-grading with $|a|=(1,0),|b|=|c|=\left(0, \frac{1}{2}\right)$. The minimal resolution over this algebra is the total complex of the following double complex:

The cohomology is

$$
H^{*} \mathbb{C}_{3}=\operatorname{Ext}_{\mathrm{C}_{3}}^{*}(\mathrm{k}, \mathrm{k}) \cong \mathrm{k}[x, y, z] /\left(x z+y^{2}\right)
$$

with $|x|=(-1,-1,0),|y|=(-2,-1,-1),|z|=(-3,-1,-2)$. The elements x, y and z are given by shifts of degrees $(-1,0),(-1,-1)$ and $(-1,-2)$ in this diagram, killing the copies of P_{M} and given by the identity map on all copies of P_{k}. These maps commute, not just up to homotopy, and the relation $x z+y^{2}=0$ holds at the level of cocycles. So this Ext algebra is formal as an A_{∞} algebra. It is a Koszul algebra with Koszul dual

$$
H^{*} \mathrm{C}_{3}!\cong \mathrm{k}[\eta]\langle\xi, \zeta\rangle /\left(\xi^{2}, \zeta^{2}, \xi \zeta+\zeta \xi+\eta^{2}\right)
$$

with η central, degrees $|\xi|=(0,1,0),|\eta|=(1,1,1),|\zeta|=(2,1,2)$, and again formal as an A_{∞} algebra. As a module over $k[\eta]$ it is free of rank four, with basis $1, \xi, \zeta, \xi \zeta$.

Using Theorem 1.11.5, and setting $u=x \xi+z \zeta$, we have

$$
H H^{*} H^{*} \mathfrak{C}_{3}=k[x, y, z, \eta, u] /\left(x \eta^{2}, z \eta^{2}, u^{2}\right),
$$

with $|x|=(0,-1,-1,0),|y|=(0,-2,-1,-1),|z|=(0,-3,-1,-2),|\eta|=(-1,2,1,1)$, $|u|=(-1,0,0,0)$. Then $H H^{*} C^{*} \mathcal{C}_{3}$ is the same ring, but with the first two degrees added, so $|x|=(-1,-1,0),|y|=(-2,-1,-1),|z|=(-3,-1,-2),|\eta|=(1,1,1),|u|=(-1,0,0)$.

CHAPTER 3

The semidihedral case

3.1. Introduction

In this chapter, we study the A_{∞} algebras $H^{*} B G$ and $H_{*} \Omega B G_{2}^{\wedge}$ with coefficients in a field k of characteristic two, in the case where G is a finite group with semidihedral Sylow 2 -subgroup. These groups were classified by Alperin, Brauer and Gorenstein [1]. The simple groups of this type are the projective special linear groups $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$, the projective special unitary groups $P S U\left(3, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$, and the sporadic Mathieu group M_{11} of order 7920 .

We begin with the semidihedral group SD of order $8 q$ itself. The group algebra in this case was analysed by Bondarenko and Drozd [33], who gave a presentation as a quiver with relations, but with a socle ambiguity. We resolve that ambiguity in Theorem 3.2.1, where we prove that for suitable radical generators X and Y we have

$$
\mathrm{kSD}=\left\langle X, Y \mid X^{2}=0, Y^{2}=X(Y X)^{2 q-1}+(Y X)^{2 q}\right\rangle
$$

We then recall the structure of $H^{*} B \mathrm{SD}$ and compute $\operatorname{Ext}_{H^{*} B S D}^{*}(\mathrm{k}, \mathrm{k})$, and show how the Eilenberg-Moore sequence with this as E^{2} page converges to kSD.

There are four cases for the possible fusion in SD, leading to four types for cochains on the classifying space of a finite group with this fusion. Probably the most interesting is the case where G has no normal subgroup of index two. In that case, it turns out that the basic algebra of the principal block admits a grading, that endows the cohomology with a second, internal grading. Also, the cohomology rings of these groups have the structure of a complete intersection, which allows for easy computation of the Hochschild cohomology $H H^{*} H^{*} B G$. These facts together are what allows us to analyse the A_{∞} structure. The following theorem is proved in Sections 3.6 to 3.11 .

Theorem 3.1.1. Let G be a finite group with semidihedral Sylow 2-subgroups of order $8 q$ ($q \geqslant 2$ a power of two), and with no normal subgroup of index two, and let k be a field of characteristic two. Then the principal block B of $\mathrm{k} G$ has an essentially unique grading. This makes the cohomology ring

$$
H^{*} B G=\mathrm{k}[x, y, z] /\left(x^{2} y+z^{2}\right)
$$

doubly graded, with $|x|=(-3,-q-1),|y|=(-4,-4 q)$ and $|z|=(-5,-3 q-1)$. The cochain algebra $C^{*} B G$ is formal as an A_{∞} algebra. We have

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\hat{x}, \hat{y}) \otimes \mathrm{k}[\hat{z}]
$$

with $|\hat{x}|=(2, q+1),|\hat{y}|=(3,4 q)$ and $|\hat{z}|=(4,3 q+1)$. This is not formal, but the A_{∞} structure is given up to quasi-isomorphism by the $\mathrm{k}[\hat{z}]$-multilinear maps

$$
m_{3}(\hat{x}, \hat{y}, \hat{x})=\hat{z}^{2}, \quad m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x})=\hat{x} \hat{z}^{2}, \quad m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{y})=\hat{y} \hat{z}^{2}
$$

and all m_{i} with $i \geqslant 3$ vanish on all other triples of monomials not involving \hat{z}.
As part of this computation, we also compute Hochschild cohomology.
Theorem 3.1.2. Let G be a finite group with semidihedral Sylow 2-subgroups of order $8 q$ ($q \geqslant 2$ a power of two), and with no normal subgroups of index two, and let k be a field of characteristic two. Then

$$
H H^{*} H^{*} B G=H^{*} B G[\hat{x}, \hat{z}] /\left(\hat{x}^{2}+y \hat{z}^{2}, x^{2} \hat{z}^{2}\right)
$$

with

$$
\begin{gathered}
|x|=(0,-3,-q-1), \quad|y|=(0,-4,-4 q), \quad|z|=(0,-5,-3 q-1), \\
|\hat{x}|=(-1,3, q+1), \quad|\hat{z}|=(-1,5,3 q+1) .
\end{gathered}
$$

The algebra $H H^{*} C^{*} B G=H H^{*} C_{*} \Omega B G_{2}^{\wedge}$ is the same, but with

$$
\begin{gathered}
|x|=(-3,-q-1), \quad|y|=(-4,-4 q), \quad|z|=(-5,-3 q-1), \\
|\hat{x}|=(2, q+1), \quad|\hat{z}|=(4,3 q+1) .
\end{gathered}
$$

It should be possible to classify the indecomposable modules in the singularity category $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)$ in this case, given that $C^{*} B G$ is formal. After all, the singularity category of graded modules over $H^{*} B G$, which is equivalent to the category of maximal Cohen-Macaulay modules, is well understood. The obstruction is that we don't know whether every object in $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)$ is equivalent to an object with zero differential. We make further comments on this situation in Section 3.11.

The second case in which we are able to make essentially complete computations is where the Sylow 2-subgroups of G are semidihedral, G has a normal subgroup K of index two with generalised quaternion Sylow 2-subgroups, and K has no normal subgroups of index two. This case is very similar to the case discussed above. In particular, again it turns out that the basic algebra of the principal block admits a grading, that endows the cohomology with a second, internal grading. The computations are similar, except that the degrees of various elements have changed. Again the cochain algebra $C^{*} B G$ is formal as an A_{∞} algebra. The corresponding theorems can be found in Sections 3.12 to 3.14. And again, it should be possible to classify the indecomposable modules in $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)$ in this case, with the same obstruction as in the previous case.

The remaining case is the one where the Sylow 2-subgroups of G are semidihedral, G has a normal subgroup K of index two with dihedral Sylow 2-subgroups, and K has no normal subgroups of index two. In this case, $C^{*} B G$ is not formal, but we compute $H_{*}\left(\Omega B G_{2}^{\wedge}\right)$ (Theorem 3.15.3) using the method of squeezed resolutions from [16], since the EilenbergMoore spectral sequence is difficult to ungrade directly. The information in this case remains rather incomplete.

3.2. Semidihedral groups

The semidihedral group of order $8 q, q \geqslant 2$ a power of two, is given by the presentation

$$
\mathrm{SD}=\left\langle g, h \mid g^{4 q}=1, h^{2}=1, h g h^{-1}=g^{2 q-1}\right\rangle .
$$

Let k be a field of characteristic two. A modified version of the formulas of Bondarenko and Drozd [33] describes the group algebra kSD as follows. Set

$$
X=1+h, \quad Y=(1+h)\left(\sum_{i=0}^{q / 2-1} g^{4 i+1}+\sum_{i=q / 2+1}^{q} g^{4 i-1}\right)+g^{2 q}+h g^{4 q-1}
$$

Theorem 3.2.1. With this choice for X and Y, kSD has the presentation

$$
\mathrm{kSD}=\left\langle X, Y \mid X^{2}=0, Y^{2}=X(Y X)^{2 q-1}+(Y X)^{2 q}\right\rangle
$$

Proof. The elements X and Y are in $J(\mathrm{kSD})$, are independent modulo $J^{2}(\mathrm{kSD})$, so they generate kSD. We have $X^{2}=(1+h)^{2}=0$, so we must check the other relation. Set

$$
u=\sum_{i=0}^{q / 2-1} g^{4 i+1}+\sum_{i=q / 2+1}^{q} g^{4 i-1}
$$

so that $Y=(1+h) u+g^{2 q}+h g^{-1}$. Write N_{1}, N_{2} and N_{4} for the norm elements for $\langle g\rangle,\left\langle g^{2}\right\rangle$ and $\left\langle g^{4}\right\rangle$ respectively. Then we have $u^{2}=N_{4} g^{2}, u h+h u=N_{2} g h,(1+h) u(1+h)=N_{2} g(1+h)$, $((1+h) u)^{2}=0, u g=g u, g^{2 q} h=h g^{2 q}$, and $u\left(g^{-1}+g^{2 q+1}\right)=1+g^{2 q}$. So in the expression for Y, the first and second terms commute, as do the second and third. So squaring Y, we have square terms and cross terms between the first and third term:

$$
\begin{aligned}
Y^{2} & =0+1+g^{2 q}+(1+h) u h g^{-1}+h g^{-1}(1+h) u \\
& =1+g^{2 q}+u h g^{-1}+u g^{-1}+N_{2}+h g^{-1} u+g^{2 q+1} u \\
& =1+g^{2 q}+u\left(g^{-1}+g^{2 q+1}\right)+(u h+h u) g^{-1}+N_{2} \\
& =N_{2}(1+h) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
Y X & =(1+h) u(1+h)+\left(g^{2 q}+h g^{-1}\right)(1+h) \\
& =\left(N_{2} g+g^{2 q}+g^{2 q+1}\right)(1+h) .
\end{aligned}
$$

Since

$$
\begin{aligned}
(1+h)\left(N_{2} g+g^{2 q}+g^{2 q+1}\right)(1+h) & =(1+h) g^{2 q+1}(1+h) \\
& =\left(g^{-1}+g^{2 q+1}\right)(1+h),
\end{aligned}
$$

by induction on $m \geqslant 1$ we have

$$
(Y X)^{m}=\left(N_{2} g+g^{2 q}+g^{2 q+1}\right)\left(g^{-1}+g^{2 q+1}\right)^{m-1}(1+h) .
$$

We have $N_{2} g\left(g^{-1}+g^{2 q+1}\right)=0$, so this simplifies for $m \geqslant 2$ to

$$
(Y X)^{m}=\left(g^{2 q}+g^{2 q+1}\right)\left(g^{-1}+g^{2 q+1}\right)^{m-1}(1+h) .
$$

We also have $\left(g^{-1}+g^{2 q+1}\right)^{2 q-2}=\left(g^{-2}+g^{2}\right)^{q-1}=g^{2} N_{4}$, and so

$$
(Y X)^{2 q-1}=\left(g^{2 q}+g^{2 q+1}\right) g^{2} N_{4}(1+h)=\left(g^{2}+g^{3}\right) N_{4}(1+h),
$$

and

$$
\begin{aligned}
X(Y X)^{2 q-1} & =(1+h)\left(g^{2}+g^{3}\right) N_{4}(1+h) \\
& =\left(g^{2}+g^{3}+g^{2 q-2}+g^{2 q-3}\right) N_{4}(1+h)
\end{aligned}
$$

$$
=g N_{2}(1+h)
$$

Similarly, we have

$$
\left(g^{2 q}+g^{2 q+1}\right)\left(g^{-1}+g^{2 q+1}\right)^{2 q-1}=\left(g^{2 q}+g^{2 q+1}\right)\left(g^{-1}+g^{2 q+1}\right) g^{2} N_{4}=N_{1}
$$

and so $(Y X)^{2 q}=N_{1}(1+h)$. Thus

$$
\begin{aligned}
Y^{2} & =N_{2}(1+h) \\
& =\left(g N_{2}+N_{1}\right)(1+h) \\
& =X(Y X)^{2 q-1}+(Y X)^{2 q} .
\end{aligned}
$$

We thus have a surjective map from the algebra with the given presentation to kSD. The relations $X^{2}=0$ and $Y^{2}=X(Y X)^{2 q-1}+(Y X)^{2 q}$ imply that $Y^{2} X=X Y^{2}=0$, and that the element $Y^{3}=(Y X)^{2 q}=(X Y)^{2 q}$ is killed by X and Y, and is therefore in the socle. Thus the $8 q$ alternating words in X and Y, beginning with $1, X, Y$, and ending with $(X Y)^{2 q}=(Y X)^{2 q}$ span the algebra with the given presentation. The surjective map to kSD is therefore an isomorphism, and these alternating words form a basis.

Remark 3.2.2. The reference [33] uses a more complicated choice of generators, and gets the same relations, but only modulo the socle element $(X Y)^{2 q}=(Y X)^{2 q}$. It is erroneously stated without proof in Section 15 of Benson and Carlson $[\mathbf{1 7}]$, and in the papers of Generalov (page 530 of [95], page 164 of [99], page 279 of [100], and page 507 of [114]) that the group algebra of the semidihedral group is as given here, but without the extra term $(Y X)^{2 q}$ in the expression for Y^{2}. See also Theorem VIII. 3 of Erdmann [74], where these two possibilities are given, labelled III. 1 (d) and III. $1\left(\mathrm{~d}^{\prime}\right)$, but without deciding which is true. In Corollary 7.2 of Erdmann [71], and the tables at the back of [74] the incorrect choice is given. Theorem 3.2.1 shows that the correct answer is III.1 (d^{\prime}), whereas these sources state it as III.1 (d). It is shown in Proposition 5.1 of Białkowski, Erdmann, Hajduk, Skowroński and Yamagata [26] that these two algebras are not isomorphic.

Here is a diagram of the case $q=2$ (only accurate modulo the extra socle term in the expression for X^{2}).

This algebra has tame representation type, and its modules were classified by Bondarenko and Drozd [33], Crawley-Boevey $[\mathbf{5 6}, \mathbf{5 7}]$. The cohomology ring was computed first by

Munkholm [185] and later also by Evens and Priddy [80], and is as follows.

$$
\begin{equation*}
H^{*} B \mathrm{SD}=\mathrm{k}[x, y, z, w] /\left(x y, y^{3}, y z, z^{2}+x^{2} w\right) \tag{3.2.3}
\end{equation*}
$$

with $|x|=|y|=-1,|z|=-3$ and $|w|=-4$. Here, x and y are dual to X and Y.
This is not formal as an A_{∞} algebra (see Theorem 5.2.1). In the next section we compute a few of the higher multiplications.

Remark 3.2.4. The subalgebra \mathcal{A}_{1} of the Steenrod algebra generated by Sq^{1} and Sq^{2} is closely related to kSD , with presentation

$$
\mathrm{k}\left\langle\mathrm{Sq}^{1}, \mathrm{Sq}^{2} \mid\left(\mathrm{Sq}^{1}\right)^{2}=0,\left(\mathrm{Sq}^{2}\right)^{2}=\mathrm{Sq}^{1} \mathrm{Sq}^{2} \mathrm{Sq}^{1}\right\rangle
$$

This is like a (nonexistent) semidihedral group of order eight, but without the socle element in the second relation. So it has type III.(d) rather than III.(d)' in Erdmann's classification [74]. The cohomology is the same ring as above (3.2.3), but with a different A_{∞} structure.

3.3. Resolutions for kSD

In this section, we write out the minimal resolution of k over $k S D$. Since it is no extra work, we compute the minimal resolution of k over an algebra of type III.I(d) or III.I($\left.\mathrm{d}^{\prime}\right)$ in Erdmann's classification [74] of algebras of semidihedral type in characteristic two, given by the presentation

$$
\Lambda=\mathrm{k}\left\langle X, Y \mid X^{2}=0, Y^{2}=X(Y X)^{k-1}+\lambda(Y X)^{k}\right\rangle
$$

with $\lambda \in \mathrm{k}$ and $k \geqslant 2$. The case of the group algebra kSD of a semidihedral group of order $8 q$ with q a power of two is then recovered by setting $\lambda=1$ and $k=2 q$.

The minimal resolution of k is the total complex of the following double complex, where we have written v for $\bar{Y}(\bar{X} \bar{Y})^{k-1}$ and w for $(\bar{Y} \bar{X})^{k-1}(1+\lambda \bar{Y})$.

Here \bar{X} and \bar{Y} are the elements of $\operatorname{End}_{\Lambda}(\Lambda) \cong \Lambda^{\circ p}$ corresponding to X and Y in Λ.
The cohomology element x is represented by left shift composed with

$$
\begin{array}{cccc}
& (\bar{X} \bar{Y})^{k-2} \bar{X}(1+\lambda \bar{Y}) & \bar{Y}(1+\lambda \bar{Y}) & \cdots \\
(\bar{X} \bar{Y})^{k-2} \bar{X}(1+\lambda \bar{Y}) & \bar{Y}(1+\lambda \bar{Y}) & 1 & 1 \\
1 & 1 & 1 & \\
1 & 1 & 1 & \cdots
\end{array}
$$

The element y is represented by a map which is zero on most of the copies of Λ, and non-zero on the upper boundary:

The element z is represented by a shift two to the left and one down, composed with

$$
\begin{array}{cccc}
& (\bar{X} \bar{Y})^{k-1} & \bar{Y}+\lambda(\bar{X} \bar{Y})^{k-1} \bar{X} & \ldots \\
& & 1 & 1 \\
(\bar{X} \bar{Y})^{k-1} & \bar{Y}+\lambda(\bar{X} \bar{Y})^{k-1} \bar{X} & 1 & 1
\end{array}
$$

Finally, the element w is represented by a shift two to the left and two down. This strictly commutes with x, y and z.

In particular, we can read off from the structure and minimal resolution of kSD that part of the A_{∞} structure on $H^{*} B \mathrm{SD}$ is given over the central subalgebra $\mathbf{k}[w]$ by

$$
m_{4}(y, x, y, z)=w, \quad m_{2 k-1}(x, y, x, \ldots, y, x)=y^{2} .
$$

3.4. Loops on $B \mathrm{SD}_{2}^{\wedge}$

Since SD is a finite 2 -group, we have $\Omega B \mathrm{SD}_{2}^{\wedge} \simeq \mathrm{SD}$. So we should expect to see the Eilenberg-Moore spectral sequence converging to kSD.

Theorem 3.4.1. We have

$$
\operatorname{Ext}_{H^{*} B \mathrm{SD}}^{*, *}(\mathrm{k}, \mathrm{k})=\Lambda(\hat{w}) \otimes \mathrm{k}\left\langle\hat{x}, \hat{y}, \hat{z}, \eta \mid \hat{x}^{2}=\hat{y}^{2}=0, \hat{x} \hat{z}=\hat{z} \hat{x}, \eta \hat{y}=\hat{y} \eta\right\rangle
$$

where $|\hat{x}|=(-1,1),|\hat{y}|=(-1,1),|\hat{z}|=(-1,3),|\hat{w}|=(-1,4),|\eta|=(-2,3)$, and η is the Massey triple product $\langle\hat{y}, \hat{y}, \hat{y}\rangle$. The Poincaré series is

$$
\sum_{i, j=0}^{\infty} t^{i} u^{j} \operatorname{dim}_{\mathrm{k}} \operatorname{Ext}_{H^{*} B S \mathrm{D}}^{i,-j}(\mathrm{k}, \mathrm{k})=\frac{\left(1+t u^{4}\right)(1+t u)}{1-t u-t u^{3}-t^{2} u^{3}}
$$

Note that $\mathrm{Ext}^{i,-j}$ is homologically indexed $(-i, j)$, so that the coefficient of $t^{i} u^{j}$ is the dimension of the space of elements of degree $(-i, j)$.

Proof. The element w is a regular element, and its appearance in the relations is in terms that are at least cubic, so we have an algebra isomorphism

$$
\operatorname{Ext}_{H^{*} B S D}^{*, *}(\mathrm{k}, \mathrm{k}) \cong \Lambda(\hat{w}) \otimes \operatorname{Ext}_{R}^{*, *}(\mathrm{k}, \mathrm{k})
$$

where

$$
R=H^{*} B \mathrm{SD} /(w)=\mathrm{k}[x, y, z] /\left(x y, y^{3}, y z, z^{2}\right) .
$$

This algebra R is the fibre product of $\mathrm{k}[x, z] /\left(z^{2}\right) \rightarrow \mathrm{k}$ and $\mathrm{k}[y] /\left(y^{3}\right) \rightarrow \mathrm{k}$. So by Theorem A of Moore [182], Ext $_{R}^{*, *}(\mathrm{k}, \mathrm{k})$ is the coproduct over k of the algebras

$$
\begin{aligned}
\operatorname{Ext}_{\mathrm{k}[x, z] /\left(z^{2}\right)}^{*, *}(\mathrm{k}, \mathrm{k}) & =\mathrm{k}[\hat{x}, \hat{z}] /\left(\hat{x}^{2}\right) \\
\operatorname{Ext}_{\mathrm{k}[y] /\left(y^{3}\right)}^{*, *}(\mathrm{k}, \mathrm{k}) & =\mathrm{k}[\hat{y}, \eta] /\left(\hat{y}^{2}\right),
\end{aligned}
$$

where η is the Massey triple product $\langle\hat{y}, \hat{y}, \hat{y}\rangle$. So we have

$$
\operatorname{Ext}_{R}^{*, *}(\mathrm{k}, \mathrm{k})=\mathrm{k}\left\langle\hat{x}, \hat{y}, \hat{z}, \eta \mid \hat{x}^{2}=\hat{y}^{2}=0, \hat{x} \hat{z}=\hat{z} \hat{x}, \eta \hat{y}=\hat{y} \eta\right\rangle
$$

which has Poincaré series

$$
\sum_{i, j=0}^{\infty} t^{i} u^{j} \operatorname{dim}_{\mathrm{k}} \operatorname{Ext}_{R}^{i,-j}(\mathrm{k}, \mathrm{k})=\frac{1+t u}{1-t u-t u^{3}-t^{2} u^{3}}
$$

Finally, tensoring with $\Lambda(\hat{w})$ multiplies the Poincaré series by $\left(1+t u^{4}\right)$.
The differentials in the Eilenberg-Moore spectral sequence

$$
\operatorname{Ext}_{H^{*} B S D}^{*, *}(\mathrm{k}, \mathrm{k}) \Rightarrow \mathrm{kSD}
$$

are given by $d^{2}(\hat{z})=\eta \hat{x}+\hat{x} \eta$,

$$
E^{3}=\Lambda(\hat{w}) \otimes \mathbf{k}[\eta] \otimes \mathbf{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0\right\rangle
$$

then $d^{3}(\hat{w})=\eta^{2}$,

$$
E^{4}=E^{4 q-2}=\Lambda(\eta) \otimes \mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0\right\rangle
$$

and finally $d^{4 q-2}(\eta)=(\hat{x} \hat{y})^{2 q}+(\hat{y} \hat{x})^{2 q}$. So

$$
E^{4 q-1}=E^{\infty}=\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0,(\hat{x} \hat{y})^{2 q}=(\hat{y} \hat{x})^{2 q}\right\rangle,
$$

which is the associated graded of the group algebra kSD.

3.5. Groups with semidihedral Sylow 2-subgroups

Groups with semidihedral Sylow 2-subgroups were classified by Alperin, Brauer and Gorenstein [1], see also Wong $[\mathbf{2 1 2}, \mathbf{2 1 3}]$. By Section VIII of Brauer [37], or Proposition 1.1 of [1], there are four possibilities for the 2-fusion in a finite group G with semidihedral Sylow 2-subgroups, which are distinguished by the numbers of conjugacy classes of involutions and of elements of order four. By Theorem 1.1 of Craven and Glesser [54], these represent the only possible fusion systems on semidihedral 2 -groups.

To describe these, we first describe some particular finite groups with semidihedral Sylow 2-subgroups. First, we describe the groups $S L^{ \pm}\left(2, p^{m}\right)$ and $S U^{ \pm}\left(2, p^{m}\right)$. These are the subgroups of $G L\left(2, p^{m}\right)$, respectively $G U\left(2, p^{m}\right)$, consisting of elements of determinant ± 1. If $p^{m} \equiv 3(\bmod 4)$ then $S L^{ \pm}\left(2, p^{m}\right)$ has semidihedral Sylow 2 -subgroups, while if $p^{m} \equiv 1$ (mod 4) then $S U^{ \pm}\left(2, p^{m}\right)$ has semidihedral Sylow 2-subgroups. We remark that $S L\left(2, p^{m}\right)$ and $S U\left(2, p^{m}\right)$ are isomorphic.

Next, we describe the group denoted $P G L^{*}\left(2, p^{2 m}\right)$ in Section II. 2 of [1]. For p odd, the group $P \Gamma L\left(2, p^{2 m}\right)$ is a semidirect product of $P G L\left(2, p^{2 m}\right)$ by a cyclic group of order $2 m$ acting as Galois automorphisms. The group $P G L\left(2, p^{2 m}\right)$ has $P S L\left(2, p^{2 m}\right)$ as a normal subgroup of index two. Thus $P \Gamma L\left(2, p^{2 m}\right)$ contains three distinct subgroups, each having $P S L\left(2, p^{2 m}\right)$ as a subgroup of index two. One of these is $P G L\left(2, p^{2 m}\right)$, one is a semidirect product of $\operatorname{PSL}\left(2, p^{2 m}\right)$ by the Galois automorphism of order two, and the third one is the group we denote by $P G L^{*}\left(2, p^{2 m}\right)$. For example, $P G L^{*}(2,9)$ is isomorphic to the stabiliser of a point in the Mathieu group M_{11}. It is proved in Lemma 2.3 of Gorenstein $[\mathbf{1 2 7}]$ that the Sylow 2-subgroups of $P G L^{*}\left(2, p^{2 m}\right)$ are semidihedral.

CASE 3.5.1. G has one class of involutions and one class of elements of order four. In this case, G has no normal subgroup of index two. The group $G / O(G)$ has a simple normal subgroup with odd index, isomorphic to $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4), P S U\left(3, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$, or the Mathieu group M_{11}. The principal block of $k G$ has three isomorphism classes of simple modules.

CASE 3.5.2. G has two classes of involutions and one class of elements of order four. In this case, G has a normal subgroup K of index two with generalised quaternion Sylow 2-subgroups, and K has no normal subgroups of index two. The group $G / O(G)$ is either isomorphic to a subroup of $\Gamma L\left(2, p^{m}\right)$ containing $S L^{ \pm}\left(2, p^{m}\right)$ with odd index, for some prime power $p^{m} \equiv 3(\bmod 4)$, or it is isomorphic to a subgroup of $\Gamma U\left(2, p^{m}\right)$ containing $S U^{ \pm}\left(2, p^{m}\right)$ with odd index, for some prime power $p^{m} \equiv 1(\bmod 4)$. The principal block of $k G$ has two isomorphism classes of simple modules.

CASE 3.5.3. G has one class of involutions and two classes of elements of order four. In this case, G a normal subgroup K of index two with dihedral Sylow 2-subgroups, and K has no normal subgroups of index two. The group $G / O(G)$ is isomorphic to a subgroup of $P \Gamma L\left(2, p^{2 m}\right)$ containing $P G L^{*}\left(2, p^{2 m}\right)$ with odd index, for some odd prime p and positive integer m. The principal block of $k G$ has two isomorphism classes of simple modules.

CASE 3.5.4. G has two classes of involutions and two classes of elements of order four. In this case, $O(G)$ is a normal complement to a Sylow 2-subgroup SD, so that $G / O(G) \cong \mathrm{SD}$ and $H^{*} B G \cong H^{*} B S D$. The principal block of $\mathrm{k} G$ is isomorphic to kSD , and has one isomorphism class of simple modules, namely the trivial module.

Representation theory and cohomology of groups with semidihedral Sylow 2-subgroups, and more generally, blocks with semidihedral defect groups and finite dimensional algebras of semidihedral type, are discussed in Erdmann $[67,71,73-75,77]$, as well as Benson and Carlson [17], Bogdanic $[\mathbf{2 9}, \mathbf{3 0}]$, Brauer $[\mathbf{3 7}]$ (Section VIII), Carlson, Mazza and Thévenaz [47], Chin [50], Evens and Priddy [80], Generalov et al. [4, 87, 89, 91-93, 95, 99-106, 114, 119-121], Hayami [136,137], Holm [141, 142], Holm and Zimmermann [145], Kawai and Sasaki [153], Koshitani, Lassueur, and Sambale [162], Martino and Priddy [179], Müller [183], Olsson [189], Sasaki [198], Taillefer [210], Zhou and Zimmermann [214]. The homology of $\Omega B G_{2}^{\wedge}$ was computed by Levi $[\mathbf{1 6 7}]$.

Proposition 3.5.1. Suppose that G has a semidihedral Sylow 2-subgroup SD. Then the homotopy type of $B G_{2}^{\wedge}$ is determined by $|\mathrm{SD}|$ and the number of classes of involutions and of elements of order four. In particular, if G has no normal subgroup of index two, then the homotopy type of $B G_{2}^{\wedge}$ is determined by $|\mathrm{SD}|$.

Proof. This follows from Theorem 1.7.5 and the main theorem of [1] described above.

We end this section with a table of the various cases of algebras of semidihedral type in characteristic two. Note that the definition of semidihedral type in [74] is slightly broader than in $[\mathbf{7 1}, \mathbf{7 3}]$. In each case except $S D(3 \mathcal{K})$, there is a positive integer parameter k, which in our context is equal to $2 q$, and in some cases there are also further parameters. In the case of $S D(3 \mathcal{K})$ there are three integer parameters $a \geqslant b \geqslant c, a \geqslant 2$.

Erdmann [74]	[71, 73]	Case	Group	H^{*}	HH*
III.I(d)			-	[95]	[99]
III.I(${ }^{\prime}$)		3.5.4	semidihedral	[80, 95, 185]	[114, 143]
$S D(2 \mathcal{A})_{1}$	[71] II	3.5.3	$\begin{gathered} S U^{ \pm}\left(2, p^{m}\right) \\ p^{m} \equiv 1(\bmod 4) \end{gathered}$	[50, 91]	
$S D(2 \mathcal{A})_{2}$	[71] III	3.5.2	$P G L^{*}\left(2, p^{2 m}\right)$,	[50, 91]	
$S D(2 \mathcal{B})_{1}$	[71] IV	3.5.2	- [$\left.B_{1}\left(3 M_{10}\right)\right]$	[4]	[120]
$S D(2 \mathcal{B})_{2}$	[71] I	3.5.3	$\begin{gathered} S L^{ \pm}\left(2, p^{m}\right) \\ p^{m} \equiv 3(\bmod 4) \end{gathered}$	[50, 102]	[103, 104, 106]
$S D(2 \mathcal{B})_{3}$	[71] V	3.5.2	-	[4]	
$S D(3 \mathcal{A})_{1}$	[73] II, §5	3.5.1	$\begin{gathered} P S U\left(3, p^{m}\right), \\ p^{m} \equiv 1(\bmod 4) \end{gathered}$	[87]	[143]
$S D(3 \mathcal{A})_{2}$	[73] VII, §3	-	([91]	
$S D(3 \mathcal{B})_{1}$	[73] IV, §7		-	[92]	
$S D(3 \mathcal{B})_{2}$	[73] I, §7		-	[93]	
$S D(3 \mathrm{C})_{1}$	[73] VI, §3	-	-		
$S D(3 \mathcal{C})_{2}$	(excluded)	-	PSL -		
$S D(3 \mathcal{D})$	[73] III, §6	3.5.1	$\begin{gathered} P S L\left(3, p^{m}\right), p^{m} \equiv 3 \\ (\bmod 4), M_{11} \end{gathered}$	[87]	[143]
$S D(3 \mathcal{F})$	[73] VIII, §10	-	- -		
SD(3F)	[73] IX, §10				
$S D(3 \mathcal{K})$	[73] V, §9	-		[89]	[121]

Remarks 3.5.2. The types with three simple modules are all derived equivalent to an algebra in the family $S D(3 \mathcal{K})$ with uniquely determined values of $a \geqslant b \geqslant c$, by Theorem 4.8 of Holm [142]. For blocks with semidihedral defect group of order $8 q$ and three simple modules, these parameters are $2 q \geqslant 2 \geqslant 1$, so they are all derived equivalent.

Note that by Rickard $[192,193]$, for self-injective algebras, a derived equivalence induces a stable equivalence of Morita type. By a theorem of Happel (see for example Proposition 2.21.9 of Linckelmann [176]), for symmetric algebras, derived equivalence also induces an isomorphism in Hochschild cohomology.

Unfortunately, there are are some copying errors in $[\mathbf{7 3}, \mathbf{7 4}]$, and an incorrect correction in [53]. It is erroneously reported in statement (11.15) (c) of [73] (incorrectly labelled (11.5) (c)) that the principal block of M_{11} belongs to family IV. In Table 1 of [73], for family IV, P_{2} should be "as in I" and not "as in III"; the conditions for it to be a block should be $t=1$ and $k=2^{n-2}$, not the other way round. In the tables at the back of [74], the principal blocks of $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ are incorrectly assigned to $S D(3 \mathcal{B})_{1}$ rather than $S D(3 \mathcal{D})$. In case $S D(3 \mathcal{K})$, the parameters should be $a \geqslant b \geqslant c \geqslant 1, a \geqslant 2$ rather than $a \geqslant b \geqslant c \geqslant 2$. On pages 143-144 of [53], the correction there incorrectly states that both M_{11} and $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ belong to family $S D(3 \mathcal{B})_{1}$, and that there is only one simple module with a non-trivial self-extension; in fact, the family is $S D(3 \mathcal{D})$, and there are two such simple modules.

3.6. One class of involutions, one of order four

We begin with Case 3.5.1, where G has one class of involutions, and one class of elements of order four. In this case, G has no normal subgroup of index two, and Proposition 2.2 of [1] implies that $G / O(G)$ contains a simple normal subgroup with odd index. By the main theorem of that paper, the simple groups with semidihedral Sylow 2-subgroups are as follows.
(a) The projective special linear groups $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$.
(b) The projective special unitary groups $\operatorname{PSU}\left(3, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$.
(c) The sporadic Mathieu group M_{11} of order 7920 .

Let G be a finite group with semidihedral Sylow 2-subgroups of order $8 q$ and no normal subgroups of index two, and let k be a field of characteristic two. Let B be the principal block of $\mathrm{k} G$. The structure of the projective indecomposable B-modules was determined by Erdmann [67].

Remark 3.6.1. The one case not treated in $[\mathbf{6 7}]$ is $G=M_{11}$, which was treated in the thesis of Schneider [199], and also in unpublished work of Alperin.

The principal blocks of M_{11} and $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ are in family III of [73], which is $S D(3 \mathcal{D})$ of $[\mathbf{7 4}]$. The principal blocks $P S U\left(3, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$ are in family II of [73], which is $S D(3 \mathcal{A})_{1}$ of [74].

Remark 3.6.2. Fortunately, Proposition 3.5 .1 allows us to do the analysis for just one group for each size $8 q$ of semidihedral Sylow 2-subgroup. We choose to examine $\operatorname{PSL}\left(3, p^{m}\right)$, where the 2 -part of $p^{m}+1$ is $2 q$.

Let us look first at the cases of $\operatorname{PSL}(3,3)$ and M_{11}, whose principal blocks are Morita equivalent. There are three isomorphism classes of simple B-modules, all self-dual, denoted k, M and N . These have dimensions 1,12 and 26 in the case of $\operatorname{PSL}(3,3)$, and dimensions 1,44 and 10 in the case of M_{11}. Their projective covers are given by the following diagrams.

Note that N is periodic with period four, while k and M are not periodic. The quiver for B is

with relations

$$
e f=0, \quad b e=0, \quad f b=0, \quad d a=a e b, \quad c d=e b c, \quad f^{2}=b c a e, \quad a c=d^{3} .
$$

This gives a presentation for the basic algebra of B. This corresponds to the case discussed in Theorem VIII.9.12 (with $k=1, s=4, t=2$) and Proposition IX.6.6 (ii) (with $n=4$) of Erdmann [74],

The unique self-dual grading (up to scalar multiples) on this quiver algebra is given by

$$
|a|=|c|=\frac{3}{2}, \quad|b|=|e|=\frac{1}{2}, \quad|d|=1, \quad|f|=2 .
$$

We choose not to double these degrees, as the choice above makes the degrees in $H^{*} B G \cong$ $\mathrm{Ext}_{B}^{*}(\mathrm{k}, \mathrm{k})$ into integers with no common factor.

The principal blocks of the simple groups $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ are very similar, see Erdmann [67]. The only difference is that if the 2-part of $p^{m}+1$ is $4 q$ (with q a power of two) then there are more repetitions of the simple module N in its projective cover. The case treated above is $q=2$, and in the general case there are $2 q-1$ copies of N in the unserial module on the right hand side of the diagram instead of three. So the relation $a c=d^{3}$ is replaced by $a c=d^{2 q-1}$. The Morita type of the principal block only depends on q, and not on p^{m}. So for example, the principal blocks of $M_{11}, \operatorname{PSL}(3,3), \operatorname{PSL}(3,11)$ and $P S L(3,19)$ are Morita equivalent, with Sylow 2-subgroups of order 16, and the principal blocks of $\operatorname{PSL}(3,7)$ and $P S L(3,23)$ and $P S L(3,71)$ are all Morita equivalent, with Sylow 2 -subgroups of order 32 . The grading also needs to be adjusted, as follows.

Theorem 3.6.4. Let $G=\operatorname{PSL}\left(3, p^{m}\right)$, where the 2 -part of $p^{m}+1$ is $2 q(q \geqslant 2)$, or $G=M_{11}$ with $q=2$, and let k be a field of characteristic two. Then the basic algebra of the principal block is given by the quiver (3.6.3), with relations
$e f=0, \quad b e=0, \quad f b=0, \quad d a=a e b, \quad c d=e b c, \quad f^{2}=b c a e, \quad a c=d^{2 q-1}$.
The unique self dual grading, up to scalar multiples, on this algebra is given by

$$
|a|=|c|=q-\frac{1}{2}, \quad|b|=|e|=\frac{1}{2}, \quad|d|=1, \quad|f|=q
$$

Proof. The quiver with relations follows from the work of Erdmann [67]. Given the relations, the uniqueness of the grading up to scalars is easy linear algebra. Self duality just means that $|a|=|c|$ and $|b|=|e|$.

Remark 3.6.5. The given relations imply that

$$
\begin{aligned}
f^{3} & =b c a e f=0 \\
c a c & =c d^{2 q-1}=e b c d^{2 q-2}=e b e b c d^{2 q-3}=0 \\
a c a & =d^{2 q-1} a=d^{2 q-2} a e b=d^{2 q-3} a e b e b=0 \\
d^{2 q+1} & =a c d^{2}=a e b c d=a e b e b c=0
\end{aligned}
$$

Let $\alpha, \beta, \gamma, \delta, \varepsilon, \phi$ in $\operatorname{Ext}_{B}^{1}(\mathrm{k} \oplus \mathrm{M} \oplus \mathrm{N}, \mathrm{k} \oplus \mathrm{M} \oplus \mathrm{N})$ be the elements dual to a, b, c, d, e, f. These have degrees

$$
|\alpha|=|\gamma|=\left(-1,-q+\frac{1}{2}\right), \quad|\beta|=|\varepsilon|=\left(-1,-\frac{1}{2}\right), \quad|\delta|=(-1,-1), \quad|\phi|=(-1,-q),
$$

We can compute minimal resolutions of the simple modules as in $[\mathbf{1 7}]$, and the result is as follows when $q=2$. For larger values of q, the only difference is that the chains of copies of N in the resolutions of k and N are longer.

For all values of q, the minimal resolution of k takes the form

$$
\begin{aligned}
& \cdots \rightarrow P_{\mathrm{M}} \oplus P_{\mathrm{k}} \oplus P_{\mathrm{M}} \oplus P_{\mathrm{k}} \xrightarrow{\left(\begin{array}{cccc}
\bar{c} \bar{b} & 0 & 0 & 0 \\
f & \bar{e} & 0 & 0 \\
0 & \bar{e} \bar{a} \bar{c} & \bar{f} & 0 \\
0 & 0 & \bar{a} \bar{c} \bar{b} \bar{b}
\end{array}\right)} P_{\mathrm{N}} \oplus P_{\mathrm{M}} \oplus P_{\mathrm{M}} \oplus P_{\mathrm{k}} \xrightarrow{\left(\begin{array}{cccc}
\bar{d} & 0 & 0 & 0 \\
\bar{c} \bar{a} & \bar{f} & 0 & 0 \\
0 & \bar{a} \bar{c} \bar{b} & \bar{b} \\
0 & 0 & \bar{f} & \bar{e}
\end{array}\right)} P_{\mathrm{N}} \oplus P_{\mathrm{M}} \oplus P_{\mathrm{k}} \oplus P_{\mathrm{M}} \\
& \xrightarrow{\left(\begin{array}{cccc}
\bar{a} & \bar{b} & 0 & 0 \\
0 & \bar{f} & \bar{e} & 0 \\
0 & 0 & \bar{e} \bar{a} \bar{c} & \bar{f}
\end{array}\right)} P_{\mathrm{k}} \oplus P_{\mathrm{M}} \oplus P_{\mathrm{M}} \xrightarrow{\left(\begin{array}{ccc}
\bar{e} \bar{c} \bar{c} & \bar{f} & 0 \\
0 & \bar{a} \bar{c} \bar{b} & \bar{b}
\end{array}\right)} P_{\mathrm{M}} \oplus P_{\mathrm{k}} \xrightarrow{\left(\begin{array}{c}
\bar{c} \bar{b} \\
\bar{f} \\
\bar{f} \\
\bar{e}
\end{array}\right)} P_{\mathrm{N}} \oplus P_{\mathrm{M}} \xrightarrow{\left(\begin{array}{cc}
\bar{d} & 0 \\
\bar{e} \bar{a} & \bar{f}
\end{array}\right)} P_{\mathrm{N}} \oplus P_{\mathrm{M}} \xrightarrow{(\bar{a} \bar{b})} P_{\mathrm{k}}
\end{aligned}
$$

This is the total complex of the following double complex:

$$
\begin{align*}
& \begin{array}{cc}
P_{\mathrm{N}} \stackrel{\bar{d}}{\leftrightarrows} P_{\mathrm{N}} & \\
\downarrow_{\bar{a}} & \downarrow_{\bar{e} \bar{a}} \\
P_{\mathrm{k}} \stackrel{\bar{b}}{\longleftarrow} & P_{\mathrm{M}}
\end{array} \quad \cdots . \\
& P_{\mathrm{N}} \stackrel{\bar{d}}{\leftrightarrows} P_{\mathrm{N}} \stackrel{\bar{c} \bar{b}}{\leftrightarrows} \stackrel{\downarrow_{\mathrm{e}} \overline{\bar{a} \bar{c}} \bar{f}}{P_{\mathrm{M}}} \stackrel{\downarrow \bar{f}}{\leftrightarrows} P_{\mathrm{M}} \tag{3.6.6}
\end{align*}
$$

Here, \bar{a} is the element of $\operatorname{Hom}_{B}\left(P_{\mathrm{N}}, P_{\mathrm{k}}\right)$ opposite to a, and so on, so that the barred variables satisfy the reverse of the relations in the quiver.

The extensions α, \ldots, ϕ satisfy the following relations, which are easy to verify using the grading and the minimal resolutions above:

$$
\begin{gather*}
\alpha \varepsilon=0, \quad \beta \gamma=0, \quad \gamma \alpha=0, \quad \delta^{2}=0, \quad \varepsilon \beta=0 \\
\beta \varepsilon \phi^{2}=\phi^{2} \beta \varepsilon, \quad \varepsilon \phi^{2} \beta=0, \quad \alpha \gamma \delta=\delta \alpha \gamma, \quad \gamma \delta \alpha=0 \\
m_{3}(\alpha, \varepsilon, \beta)=\delta \alpha, \quad m_{3}(\beta, \gamma, \alpha)=0, \quad m_{3}(\gamma, \alpha, \varepsilon)=0, \tag{3.6.7}\\
m_{2 q-1}(\delta, \ldots, \delta)=\alpha \gamma, \quad m_{3}(\varepsilon, \beta, \gamma)=\gamma \delta, \quad m_{3}(\gamma, \delta \alpha, \varepsilon)=\varepsilon \phi^{2}, \\
m_{3}(\beta, \gamma \delta, \alpha)=\phi^{2} \beta, \quad m_{4}(\beta, \gamma, \alpha, \varepsilon)=\phi^{2}, \\
m_{4}\left(\gamma, \alpha, \varepsilon, \phi^{2} \beta\right)=m_{4}\left(\varepsilon \phi^{2}, \beta, \gamma, \alpha\right) .
\end{gather*}
$$

REmARK 3.6.8. The relation $\gamma \delta \alpha=0$ follows from the remaining relations in two ways:

$$
\begin{aligned}
& \gamma \delta \alpha=\gamma m_{3}(\alpha, \varepsilon, \beta)=m_{3}(\gamma, \alpha, \varepsilon) \beta=0, \\
& \gamma \delta \alpha=m_{3}(\varepsilon, \beta, \gamma) \alpha=\varepsilon m_{3}(\beta, \gamma, \alpha)=0 .
\end{aligned}
$$

The last relation describes the unlabelled copy of k at the top of the left end of $\Omega^{4}(k)$. When postmultiplied by ε or premultiplied by β, this relation follows from the remaining relations:

$$
\begin{aligned}
m_{4}\left(\gamma, \alpha, \varepsilon, \phi^{2} \beta\right) \varepsilon & =m_{4}\left(\gamma, \alpha, \varepsilon, \phi^{2} \beta \varepsilon\right)=m_{4}\left(\gamma, \alpha, \varepsilon, \beta \varepsilon \phi^{2}\right)=m_{3}\left(\gamma, m_{3}(\alpha, \varepsilon, \beta), \varepsilon \phi^{2}\right) \\
& =m_{3}\left(\gamma, \delta \alpha, \varepsilon \phi^{2}\right)=m_{3}(\gamma, \delta \alpha, \varepsilon) \phi^{2}=\varepsilon \phi^{4} \\
& =\varepsilon \phi^{2} m_{4}(\beta, \gamma, \alpha, \varepsilon)=m_{4}\left(\varepsilon \phi^{2}, \beta, \gamma, \alpha\right) \varepsilon, \\
\beta m_{4}\left(\gamma, \alpha, \varepsilon, \phi^{2} \beta\right) & =m_{4}(\beta, \gamma, \alpha, \varepsilon) \phi^{2} \beta=\phi^{4} \beta=\phi^{2} m_{3}(\beta, \gamma \delta, \alpha) \\
& =m_{3}\left(\phi^{2} \beta, \gamma \delta, \alpha\right)=m_{3}\left(\phi^{2} \beta, m_{3}(\varepsilon, \beta, \gamma), \alpha\right)=m_{4}\left(\phi^{2} \beta \varepsilon, \beta, \gamma, \alpha\right) \\
& =m_{4}\left(\beta \varepsilon \phi^{2}, \beta, \gamma, \alpha\right)=\beta m_{4}\left(\varepsilon \phi^{2}, \beta, \gamma, \alpha\right) .
\end{aligned}
$$

THEOREM 3.6.9. Let $G=\operatorname{PSL}\left(3, p^{m}\right)$, where the 2 -part of $p^{m}+1$ is $2 q$ ($q \geqslant 2$), or $G=M_{11}$ with $q=2$. The cohomology ring $H^{*} B G=\operatorname{Ext}_{B}^{*}(\mathrm{k}, \mathrm{k})$ is generated by the commuting elements

$$
x=\varepsilon \phi \beta, \quad y=m_{4}\left(\gamma, \alpha, \varepsilon, \phi^{2} \beta\right)=m_{4}\left(\varepsilon \phi^{2}, \beta, \gamma, \alpha\right), \quad z=\varepsilon \phi^{3} \beta,
$$

subject to one relation:

$$
H^{*} B G=\operatorname{Ext}_{B}^{*}(\mathrm{k}, \mathrm{k})=\mathrm{k}[x, y, z] /\left(x^{2} y+z^{2}\right)
$$

where $|x|=(-3,-q-1),|y|=(-4,-4 q)$ and $|z|=(-5,-3 q-1)$.
Proof. The structure of the cohomology ring of M_{11} was computed in [17], and is as above, if we ignore the internal degrees. The principal blocks of $\operatorname{PSL}\left(3, p^{m}\right)$ with $p^{m} \equiv 3$ $(\bmod 8)$ are Morita equivalent to that of M_{11}, and therefore give the same answer. The analogous computation with possibly larger values of q gives exactly the same answer for $P S L\left(3, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$. We show that the given elements satisfy these relations, using the relations (3.6.7). We begin by observing (as in Remark 3.6.8) that

$$
\begin{aligned}
\beta y & =\beta m_{4}\left(\gamma, \alpha, \varepsilon, \phi^{2} \beta\right)=m_{4}(\beta, \gamma, \alpha, \varepsilon) \phi^{2} \beta=\phi^{4} \beta \\
y \varepsilon & =m_{4}\left(\varepsilon \phi^{2}, \beta, \gamma, \alpha\right) \varepsilon=\varepsilon \phi^{2} m_{4}(\beta, \gamma, \alpha, \varepsilon)=\varepsilon \phi^{4}
\end{aligned}
$$

and so

$$
x^{2} y=(\varepsilon \phi \beta \varepsilon \phi)(\beta y)=(\varepsilon \phi \beta \varepsilon \phi)\left(\phi^{4} \beta\right)=\varepsilon \phi\left(\beta \varepsilon \phi^{2}\right) \phi^{3} \beta=\varepsilon \phi\left(\phi^{2} \beta \varepsilon\right) \phi^{3} \beta=\left(\varepsilon \phi^{3} \beta\right)\left(\varepsilon \phi^{3} \beta\right)=z^{2}
$$

Commutativity is automatic for elements of $H^{*} B G$, but also follows from the relations above:

$$
\begin{aligned}
& y x=(y \varepsilon)(\phi \beta)=\left(\varepsilon \phi^{4}\right)(\phi \beta)=(\varepsilon \phi)\left(\phi^{4} \beta\right)=(\varepsilon \phi)(\beta y)=x y \\
& z x=\left(\varepsilon \phi^{3} \beta\right)(\varepsilon \phi \beta)=(\varepsilon \phi)\left(\phi^{2} \beta \varepsilon\right)(\phi \beta)=(\varepsilon \phi)\left(\beta \varepsilon \phi^{2}\right)(\phi \beta)=(\varepsilon \phi \beta)\left(\varepsilon \phi^{3} \beta\right)=x z, \\
& z y=\left(\varepsilon \phi^{3}\right)(\beta y)=\left(\varepsilon \phi^{3}\right)\left(\phi^{4} \beta\right)=\left(\varepsilon \phi^{4}\right)\left(\phi^{3} \beta\right)=(y \varepsilon)\left(\phi^{3} \beta\right)=y z .
\end{aligned}
$$

REmARK 3.6.10. Since the homotopy type of $B G_{2}^{\wedge}$ only depends on the Sylow 2-subgroup and the fusion, the cohomology ring is the same for $G=\operatorname{PSU}\left(3, p^{m}\right)$ where the 2-part of $p^{m}-1$ is $2 q(q \geqslant 2)$.

It would be possible, but not necessary for the currrent purposes, to do a similar analysis for $\operatorname{PSU}\left(3, p^{m}\right)$ to that contained in this section. The quiver in that case is as follows

with relations

$$
b e=0, \quad a c a=a(e b c a)^{2 q-1} e b, \quad c a c=(e b c a)^{2 q-1} e b c, \quad a c a c a=0, \quad c a c a c=0 .
$$

This admits a self-dual grading given by $|a|=|c|=q,|b|=|e|=1-q$. The problem here, though, is that the method of $[\mathbf{1 7}]$ for computing with projective resolutions doesn't really apply, and this makes the details of the computations quite tedious.

3.7. Ext and Hochschild cohomology over $H^{*} B G$

Throughout this section, we are still working in Case 3.5.1. So we let G be a finite group with a semidihedral Sylow 2-subgroup of order $8 q$ and no normal subgroup of index two, and k a field of characteristic two. Our next task is to compute $\mathrm{Ext}_{H^{*} B G}^{* *}(\mathrm{k}, \mathrm{k})$ and $H H^{*} H^{*} B G$ by applying Theorems 1.11.2 and 1.11.5. Recall that by Theorem 3.6.9 and Remark 3.6.10 we have $H^{*} B G=\mathrm{k}[x, y, z] /\left(x^{2} y+z^{2}\right)$ with $|x|=(-3,-q-1),|y|=(-4,-4 q)$ and $|z|=(-5,-3 q-1)$. Let $f=x^{2} y+z^{2} \in \mathrm{k}[x, y, z]$. Then we have

$$
\begin{array}{rlrlrl}
\frac{\partial f}{\partial x} & =0, & & \frac{\partial f}{\partial y} & =x^{2}, & \\
\frac{\partial f}{\partial z} & =0 \\
\frac{\partial^{(2)} f}{\partial x^{2}} & =y, & \frac{\partial^{(2)} f}{\partial y^{2}} & =0, & & \frac{\partial^{(2)} f}{\partial z^{2}}=1 \\
\frac{\partial^{2} f}{\partial x \partial y} & =0, & & \frac{\partial^{2} f}{\partial x \partial z}=0, & & \frac{\partial^{2} f}{\partial y \partial z}=0 .
\end{array}
$$

Plugging these into Definition 1.11.1, for the algebra $\operatorname{Cliff}(\mathbf{q})$ we have variables $\hat{x}, \hat{y}, \hat{z}$ dual to x, y and z and s dual to f. These have degrees $|\hat{x}|=(-1,3, q+1),|\hat{y}|=(-1,4,4 q)$, $|\hat{z}|=(-1,5,3 q+1),|s|=(-2,10,6 q+2)$. Here, the first is the Ext degree, the second comes from the homological degree in $H^{*} B G$, and the third is the internal degree coming from the grading on the algebra B. So the degrees of the generators of $H^{*} B G$ come out as $|x|=(0,-3,-q-1),|y|=(0,-4,-4 q)$ and $|z|=(0,-5,-3 q-1)$. Then s is central, and
we have relations $\hat{x}^{2}=y s, \hat{y}^{2}=0, \hat{z}^{2}=s, \hat{x} \hat{y}+\hat{y} \hat{x}=0, \hat{x} \hat{z}+\hat{z} \hat{x}=0, \hat{y} \hat{z}+\hat{z} \hat{y}=0$. The relation $\hat{z}^{2}=s$ makes s a redundant generator, and we end up with

$$
\begin{equation*}
\operatorname{Cliff}(\mathrm{q})=H^{*} B G[\hat{x}, \hat{y}, \hat{z}] /\left(\hat{x}^{2}+y \hat{z}^{2}, \hat{y}^{2}\right) . \tag{3.7.1}
\end{equation*}
$$

The differential is given by

$$
\begin{equation*}
d \hat{x}=0, \quad d \hat{y}=x^{2} \hat{z}^{2}, \quad d \hat{z}=0 \tag{3.7.2}
\end{equation*}
$$

Theorem 3.7.3. We have

$$
\mathrm{Ext}_{H^{*} B G}^{* *}(\mathrm{k}, \mathrm{k})=\Lambda(\hat{x}, \hat{y}) \otimes \mathrm{k}[\hat{z}] .
$$

with degrees given by $|\hat{x}|=(-1,3, q+1)$, $|\hat{y}|=(-1,4,4 q)$ and $|\hat{z}|=(-1,5,3 q+1)$.
Proof. This follows from Theorem 1.11.2 and the computation (3.7.1) of Cliff(q).
Theorem 3.7.4. We have

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\hat{x}, \hat{y}) \otimes \mathbf{k}[\hat{z}]
$$

with $|\hat{x}|=(2, q+1),|\hat{y}|=(3,4 q)$ and $|\hat{z}|=(4,3 q+1)$.
Proof. Theorem 3.7.3 gives the E_{2} page of the spectral sequence

$$
\operatorname{Ext}_{H^{*} B G}^{* *}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \Omega B G_{2}^{\wedge}
$$

There is no room for differentials, and there are no ungrading problems.
Remark 3.7.5. This agrees with the answer given in Proposition II.4.2.6 of Levi [167].
Remark 3.7.6. When we compute the spectral sequence

$$
\operatorname{Ext}_{H_{*} \Omega B G_{2}^{\wedge}}^{* *}(k, k) \Rightarrow H^{*} B G
$$

we get $E_{2}=\mathrm{k}[x, y] \otimes \Lambda(z)$ with $|x|=(-1,-2,-q-1),|y|=(-1,-3,-4 q)$ and $|z|=$ $(-1,-4,-3 q-1)$. There are no differentials, but the relation $z^{2}=0$ then ungrades to give $z^{2}=x^{2} y$.

Theorem 3.7.7. The Hochschild cohomology ring of $H^{*} B G$ is given by

$$
H H^{*} H^{*} B G=H^{*} B G[\hat{x}, \hat{z}] /\left(\hat{x}^{2}+y \hat{z}^{2}, x^{2} \hat{z}^{2}\right)
$$

with

$$
\begin{gathered}
|x|=(0,-3,-q-1), \quad|y|=(0,-4,-4 q), \quad|z|=(0,-5,-3 q-1), \\
|\hat{x}|=(-1,3, q+1), \quad|\hat{z}|=(-1,5,3 q+1) .
\end{gathered}
$$

Proof. This follows from (3.7.1) and (3.7.2), using Theorem 1.11.5.
Proposition 3.7.8. There are no non-zero elements of degree $(-n, n-2,0)$ in the Hochschild cohomology $H H^{*} H^{*} B G$ with $n>2$.

Proof. By Theorem 3.7.4, we have a k-basis for $H H^{*} H^{*} B G$ consisting of the monomials $x^{i_{1}} y^{i_{2}} z^{\varepsilon_{3}} \hat{x}^{\varepsilon_{1}} \hat{z}^{i_{3}}$ with either $i_{1} \leqslant 1$ or $i_{3} \leqslant 1$. Suppose that such a monomial has degree $(-n, n-2,0)$. Comparing degrees, we have

$$
\begin{align*}
-n & =-\varepsilon_{1}-i_{3} \tag{3.7.9}\\
n-2 & =-3 i_{1}-4 i_{2}-5 \varepsilon_{3}+3 \varepsilon_{1}+5 i_{3} \tag{3.7.10}
\end{align*}
$$

$$
\begin{equation*}
0=-(q+1) i_{1}-4 q i_{2}-(3 q+1) \varepsilon_{3}+(q+1) \varepsilon_{1}+(3 q+1) i_{3} \tag{3.7.11}
\end{equation*}
$$

We shall show that there are no solutions in non-negative integers with $n>2$.
First we deal with the case $q=2$. In this case, equation (3.7.11) becomes

$$
\begin{equation*}
0=-3 i_{1}-8 i_{2}-7 \varepsilon_{3}+3 \varepsilon_{1}+7 i_{3} . \tag{3.7.12}
\end{equation*}
$$

Adding equations (3.7.10) and (3.7.12), we get

$$
\begin{equation*}
n-2=-6 i_{1}-12 i_{2}-12 \varepsilon_{3}+6 \varepsilon_{1}+12 i_{3} \tag{3.7.13}
\end{equation*}
$$

and so

$$
n \equiv 2 \quad(\bmod 6)
$$

If instead, we add equations (3.7.9) and (3.7.10) and subtract equation (3.7.12), we get $-2=4 i_{2}+2 \varepsilon_{3}-\varepsilon_{1}-3 i_{3}$, or

$$
\begin{equation*}
4 i_{2}+2 \varepsilon_{3}=\varepsilon_{1}+3 i_{3}-2 \tag{3.7.14}
\end{equation*}
$$

So ε_{1} and i_{3} determine i_{2} and ε_{3}, and then i_{1}. Let $n=6 a+2$, so that equation (3.7.13) becomes

$$
\begin{equation*}
a=-i_{1}-2 i_{2}+\varepsilon_{1}+2 i_{3} \geqslant 1 . \tag{3.7.15}
\end{equation*}
$$

From equation (3.7.9), we have $i_{3}=6 a+2-\varepsilon_{1}$. Then equation (3.7.14) gives $4 i_{2}+2 \varepsilon_{3}=$ $\varepsilon_{1}+18 a+6-3 \varepsilon_{1}-2$, so

$$
2 i_{2}=9 a+2-\varepsilon_{1}-\varepsilon_{3} .
$$

Finally, plugging these values of i_{2} and i_{3} into equation (3.7.15) gives

$$
\begin{aligned}
i_{1} & =a-2 i_{2}-2 \varepsilon_{3}+\varepsilon_{1}+2 i_{3} \\
& =a-9 a-2+\varepsilon_{1}+\varepsilon_{3}-2 \varepsilon_{3}+\varepsilon_{1}+12 a+4-2 \varepsilon_{1} \\
& =4 a+2-\varepsilon_{3}
\end{aligned}
$$

Since $a \geqslant 1$, we see that both i_{1} and i_{3} are greater than one, which is a contradiction. This completes the case $q=2$.

Now suppose that $q>2$. Reading equations (3.7.9), (3.7.10), and (3.7.11) modulo four, we see that $\varepsilon_{3}+i_{1}$ and $n=\varepsilon_{1}+i_{3}$ are both even, and are congruent modulo four. So if $n>2$ then $n \geqslant 4, i_{3} \geqslant 3$, and hence $i_{1} \leqslant 1$. So either $i_{1}=\varepsilon_{3}=0$ or $i_{1}=\varepsilon_{3}=1$. Adding equations (3.7.9) and (3.7.10), we get

$$
-2=-3 i_{1}-4 i_{2}-5 \varepsilon_{3}+2 \varepsilon_{1}+4 i_{3}
$$

Since $-3 i_{1}-5 \varepsilon_{3}$ is divisible by four, we deduce that $\varepsilon_{1}=1$.
In the case $i_{1}=\varepsilon_{3}=0, \varepsilon_{1}=1$ we get $i_{3}=i_{2}-1, n=i_{2}$. Equation (3.7.11) becomes

$$
\begin{aligned}
0 & =-4 q i_{2}+(q+1)+(3 q+1)\left(i_{2}-1\right) \\
& =(-q+1) i_{2}-2 q
\end{aligned}
$$

so i_{2} is not an integer, which is a contradiction.
In the case $i_{1}=\varepsilon_{3}=1, \varepsilon_{1}=1$ we get $i_{3}=i_{2}+1, n=i_{2}+2$. Equation (3.7.11) becomes

$$
\begin{aligned}
0 & =-(q+1)-4 q i_{2}-(3 q+1)+(q+1)+(3 q+1)\left(i_{2}+1\right) \\
& =(-q+1) i_{2}
\end{aligned}
$$

and so $i_{2}=0, n=2$, again a contradiction. So for $q>2$ there are no monomials of this form.

Theorem 3.7.16. In Case 3.5.1, with the grading inherited from the internal grading on the basic algebra of $\mathrm{k} G$, the A_{∞} structure of $H^{*} B G$ is intrinsically formal.

Proof. This follows from Propositions 1.4.2 and 3.7.8.
Remark 3.7.17. Another proof of formality, but which does not give intrinsic formality, in Theorem 3.7.16 is to notice that there are endomorphisms of the resolution (3.6.6) representing x, y and z, and strictly satisfying the relation $x^{2} y=z^{2}$. The endomorphism representing y just moves the whole diagram two places down and two places to the left. For x, we move three places to the left, but then we have to compose with the maps

Similarly, for z we move one place down and four to the left, and compose with the same maps. This defines a quasi-isomorphism from the cohomology ring Ext $\mathrm{E}_{\mathrm{k} G}^{*}(\mathrm{k}, \mathrm{k})$ to the DG algebra $\operatorname{End}_{\mathrm{k} G}^{*}\left(P_{\mathrm{k}}\right)$, which in turn is quasi-isomorphic to $C^{*} B G$.

Corollary 3.7.18. In Case 3.5.1, we have

$$
H H^{*} H^{*} B G \cong H H^{*} C^{*} B G \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge}
$$

Proof. The first isomorphism follows from Theorem 3.7.16, while the second is true for every group.

3.8. A_{∞} structure of $H_{*} \Omega B G_{2}^{\wedge}$

We continue to work in Case 3.5.1. So G is a finite group with a semidihedral Sylow 2-subgroup of order $8 q$ and no normal subgroup of index two, and k is a field of characteristic two.

Theorem 3.8.1. We have

$$
H H^{*} H_{*} \Omega B G_{2}^{\wedge}=\mathrm{k}[x, y, \hat{z}] \otimes \Lambda(\hat{x}, \hat{y}, z)
$$

with

$$
\begin{array}{ccc}
|x|=(-1,-2,-q-1), & |y|=(-1,-3,-4 q), & |z|=(-1,-4,-3 q-1), \\
|\hat{x}|=(0,2, q+1), & |\hat{y}|=(0,3,4 q), & |\hat{z}|=(0,4,3 q+1) .
\end{array}
$$

Proof. This is a routine computation using Theorems 1.11.5 and 3.7.4.
THEOREM 3.8.2. In Case 3.5.1, up to quasi-isomorphism, the maps m_{i} in the A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ may be taken to be the $\mathrm{k}[\hat{z}]$-multilinear maps determined by

$$
m_{3}(\hat{x}, \hat{y}, \hat{x})=\hat{z}^{2}, \quad m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x})=\hat{x} \hat{z}^{2}, \quad m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{y})=\hat{y} \hat{z}^{2}
$$

and all m_{i} with $i \geqslant 3$ vanish on all other triples of monomials not involving \hat{z}. We have $m_{3} \circ m_{3}=0$ (Gerstenhaber's circle product).

This is the unique A_{∞} algebra structure on this algebra, such that the map m_{3} represents the class $x^{2} y \hat{z}^{2}$ of degree $(-3,1,0)$ in the Hochschild cohomology $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$.

Proof. Comparing Theorem 3.7.4 with Theorem 3.8.1, we see that in the spectral sequence

$$
H H^{*} H_{*} \Omega B G_{2}^{\wedge} \Rightarrow H H^{*} C_{*} \Omega B G_{2}^{\wedge}
$$

we have $d^{2}(\hat{y})=x^{2} \hat{z}^{2}$, and no further differentials, and

$$
\begin{equation*}
E^{3}=E^{\infty}=\mathrm{k}[x, y, \hat{z}] /\left(x^{2} \hat{z}^{2}\right) \otimes \Lambda(\hat{x}, z) \tag{3.8.3}
\end{equation*}
$$

The relation $\hat{x}^{2}=0$ ungrades to $\hat{x}^{2}=y \hat{z}^{2}$, while the relation $z^{2}=0$ ungrades to $z^{2}=x^{2} y$. It follows that m_{3} on \hat{x}, \hat{x} and \hat{y} in $H_{*} \Omega B G_{2}^{\wedge}$ in some order is a non-zero multiple of \hat{z}^{2}.

In degree $(-3,1,0)$, the Hochschild cohomology $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$ is one dimensional, and is spanned by $x^{2} y \hat{z}^{2}$. Since the Hochschild cocycle m_{3} is only well defined modulo coboundaries, we examine the values of the coboundary of a 2 -cochain f_{2} on these elements. For degree reasons, we have $f_{2}(\hat{x}, \hat{x})=f_{2}(\hat{x}, \hat{y})=f_{2}(\hat{y}, \hat{x})=0$. Let $f_{2}(\hat{x}, \hat{x} \hat{y})=\lambda \hat{z}^{2}$ and $f_{2}(\hat{x} \hat{y}, \hat{x})=\mu \hat{z}^{2}$. Then we have

$$
\delta f_{2}(\hat{x}, \hat{x}, \hat{y})=\lambda \hat{z}^{2}, \quad \delta f_{2}(\hat{x}, \hat{y}, \hat{x})=(\lambda+\mu) \hat{z}^{2}, \quad \delta f_{2}(\hat{y}, \hat{x}, \hat{x})=\mu \hat{z}^{2} .
$$

Now everything is defined over \mathbb{F}_{2}. So working modulo these coboundaries, any assignment with

$$
m_{3}(\hat{x}, \hat{x}, \hat{y})+m_{3}(\hat{x}, \hat{y}, \hat{x})+m_{3}(\hat{y}, \hat{x}, \hat{x})=\hat{z}^{2}
$$

is valid. For symmetry we take $m_{3}(\hat{x}, \hat{y}, \hat{x})=\hat{z}^{2}$ and $m_{3}(\hat{x}, \hat{x}, \hat{y})=m_{3}(\hat{y}, \hat{x}, \hat{x})=0$.
Using the fact that m_{3} is a Hochschild cocycle, and $\hat{x} \hat{y}=\hat{y} \hat{x}$, we then have

$$
\begin{gathered}
m_{3}(\hat{x}, \hat{x}, \hat{x} \hat{y})=0, \quad m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{x})=0, \quad m_{3}(\hat{x} \hat{y}, \hat{y}, \hat{y})=0, \quad m_{3}(\hat{y}, \hat{y}, \hat{x} \hat{y})=0, \\
m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{y})=0, \quad m_{3}(\hat{y}, \hat{x} \hat{y}, \hat{x})=0, \quad m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y})=m_{3}(\hat{y} \hat{x}, \hat{x}, \hat{y}), \\
m_{3}(\hat{x}, \hat{y}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{y}, \hat{x}), \quad m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x})=\hat{x} m_{3}(\hat{x}, \hat{y}, \hat{x})=\hat{x} \hat{z}^{2}, \\
m_{3}(\hat{x}, \hat{y}, \hat{x} \hat{y})+m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{y})=\hat{y} \hat{z}^{2}, \quad \\
m_{3}(\hat{y} \hat{x}, \hat{y}, \hat{x})+m_{3}(\hat{y}, \hat{x}, \hat{y} \hat{x})=\hat{y} \hat{z}^{2},
\end{gathered}
$$

The 2-cochain f_{2} with $f_{2}(\hat{x} \hat{y}, \hat{x} \hat{y})=\hat{y} \hat{z}^{2}$, and $f_{2}=0$ on other monomials, has coboundary $\delta f_{2}(\hat{x}, \hat{y}, \hat{x} \hat{y})=\hat{y} \hat{z}^{2}$. So adding a multiple of δf_{2} to m_{3}, we can assume that $m_{3}(\hat{x}, \hat{y}, \hat{x} \hat{y})=0$. It then follows that

$$
\begin{gathered}
m_{3}(\hat{x}, \hat{y}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{y}, \hat{x})=0, \quad m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{y})=\hat{y} \hat{z}^{2} \\
m_{3}(\hat{x} \hat{y}, \hat{x} \hat{y}, \hat{x})=m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x} \hat{y})=0, \quad m_{3}(\hat{x} \hat{y}, \hat{x} \hat{y}, \hat{y})=m_{3}(\hat{y}, \hat{x} \hat{y}, \hat{x} \hat{y})=0, \\
m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{y}, \hat{x} \hat{y})=0, \quad m_{3}(\hat{x} \hat{y}, \hat{x} \hat{y}, \hat{x} \hat{y})=0
\end{gathered}
$$

Now, it is straightforward to compute directly that the Gerstenhaber circle product $m_{3} \circ m_{3}$ is the zero Hochschild cochain. Mostly all terms are zero, but there are a few cases that involve some cancellation, such as for example

$$
\begin{aligned}
\left(m_{3} \circ m_{3}\right) & (\hat{x}, \hat{y}, \hat{x}, \hat{x} \hat{y}, \hat{x}) \\
& =m_{3}\left(m_{3}(\hat{x}, \hat{y}, \hat{x}) \hat{x} \hat{y}, \hat{x}\right)+m_{3}\left(\hat{x}, m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y}), \hat{x}\right)+m_{3}\left(\hat{x}, \hat{y}, m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x})\right. \\
& =m_{3}\left(\hat{z}^{2}, \hat{x} \hat{y}, \hat{x}\right)+m_{3}\left(\hat{x}, \hat{y} \hat{z}^{2}, \hat{x}\right)+m_{3}\left(\hat{x}, \hat{y}, \hat{x} \hat{z}^{2}\right)=0+\hat{z}^{4}+\hat{z}^{4}=0 \\
\left(m_{3} \circ m_{3}\right) & (\hat{y}, \hat{x}, \hat{x} \hat{y}, \hat{x}, \hat{x} \hat{y}) \\
& =m_{3}\left(m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y}), \hat{x}, \hat{x} \hat{y}\right)+m_{3}\left(\hat{y}, m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x}), \hat{x} \hat{y}\right)+m_{3}\left(\hat{y}, \hat{x}, m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{x} \hat{y})\right)
\end{aligned}
$$

$$
=m_{3}\left(\hat{y} \hat{z}^{2}, \hat{x}, \hat{x} \hat{y}\right)+m_{3}\left(\hat{y}, \hat{x} \hat{z}^{2}, \hat{x} \hat{y}\right)+m_{3}(\hat{y}, \hat{x}, 0)=\hat{y} \hat{z}^{2}+\hat{y} \hat{z}^{2}+0=0 .
$$

By Proposition 1.5.4, we have $\delta m_{4}=m_{3} \circ m_{3}$, so m_{4} is a Hochschild cocycle. Since there are no non-zero Hochschild classes in degree $(-4,2,0)$, this makes m_{4} a coboundary, and so we can take $m_{4}=0$. Then $m_{4} \circ m_{3}+m_{3} \circ m_{4}$ vanishes, and so m_{5} is a Hochschild cocycle. Since there are no non-zero classes in degree $(-5,3,0)$, it follows that m_{5} is a coboundary, and may hence be taken to be zero. We could continue this way, but eventually there are non-zero elements of Hochschild cohomology in degree ($-n, n-2,0$). So instead, define an A_{∞} algebra \mathfrak{a} with with $H_{*} \mathfrak{a} \cong H_{*} \Omega B G_{2}^{\wedge}$, the same structure maps as $H_{*} \Omega B G_{2}^{\wedge}$ up to m_{3}, and $m_{i}=0$ for $i \geqslant 4$. Then the Koszul dual A_{∞} algebra $\mathfrak{b}=\operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(\mathfrak{a})}(\mathrm{k}, \mathrm{k})$ has homology isomorphic to $H^{*} B G$ as an associative algebra. To see this, we compute the spectral sequence $\mathrm{Ext}_{H_{*} \mathfrak{a}}^{*}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \mathfrak{b}$. The map m_{3} determines the d^{2} differential in this spectral sequence, and so the E^{3} page is given by (3.8.3). There is no room for further non-zero differentials or for ungrading problems, so this is also $H_{*} \mathfrak{b}$.

By Theorem 3.7.16, $H^{*} B G$ is intrinsically formal, and so \mathfrak{b} is quasi-isomorphic to $C^{*} B G$ as an A_{∞} algebra. This implies that

$$
\mathfrak{a} \simeq \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}(\mathfrak{b})}(\mathrm{k}, \mathrm{k}) \simeq \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}\left(H^{*} B G\right)}(\mathrm{k}, \mathrm{k}) \simeq H_{*} \Omega B G_{2}^{\wedge}
$$

3.9. A differential graded model

We continue to work with Case 3.5.1. Theorem 3.8.2 suggests that there may be a nice DG algebra quasi-isomorphic to $C_{*} \Omega B G_{2}^{\wedge}$. Since $C^{*} B G$ is formal, in order to produce such an algebra, we look at endomorphisms of the minimal resolution of k over $H^{*} B G$. This resolution is eventually periodic of period one, and takes the following form.

$$
\left.\cdots \rightarrow\left(H^{*} B G\right)^{4} \xrightarrow{\left(\begin{array}{ccc}
z & x y & \\
y & z & \\
y & y & x
\end{array}\right)}\left(H^{*} B G\right)^{4} \xrightarrow{\left(\begin{array}{cccc}
z & x y & \\
x & z & & \\
y & y & z & x y
\end{array}\right)}\left(H^{*} B G\right)^{4}\right)\left(H^{*} B G\right)^{3} \xrightarrow{\left(\begin{array}{lll}
y & x & z
\end{array}\right)} H^{*} B G \rightarrow \mathrm{k} .
$$

The map \hat{z} shifts one to the right by the 4×4 identity matrix, except at the right hand end:

$$
\cdots, \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lllll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 0 & 1
\end{array}\right) .
$$

This endomorphism is in the centre of the endomorphism ring of the resolution, and so we can regard everything as defined over $\mathrm{k}[\hat{z}]$.

Similarly, \hat{y} is given by shifting to the right and using the matrices

$$
\cdots, \quad\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),
$$

and \hat{x} is given by shifting to the right and using the matrices

$$
\cdots, \quad\left(\begin{array}{llll}
0 & y & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & y \\
0 & 0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & y \\
0 & 0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 1 & 0
\end{array}\right) .
$$

These matrices commute, and satisfy $\hat{y}^{2}=0$, but \hat{x}^{2} is not zero, but rather $y \hat{z}^{2}$. So we find a homotopy ξ from \hat{x}^{2} to zero:

$$
\cdots, \quad\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{llll}
0 & 0 & 0
\end{array}\right) .
$$

Then we have $\xi^{2}=0, d \xi=\hat{x}^{2}, \xi \hat{x}=\hat{x} \xi$, and $\xi \hat{y}+\hat{y} \xi=\hat{z}^{2}$.
THEOREM 3.9.1. Let Q be the $D G$ algebra over $\mathrm{k}[\hat{z}]$ generated by elements \hat{x}, \hat{y} and ξ with

$$
\begin{gathered}
d \hat{x}=0, \quad d \hat{y}=0, \quad \hat{y}^{2}=0, \quad \hat{x} \hat{y}=\hat{y} \hat{x}, \\
d \xi=\hat{x}^{2}, \quad \xi \hat{x}=\hat{x} \xi, \quad \xi^{2}=0, \quad \xi \hat{y}+\hat{y} \xi=\hat{z}^{2}
\end{gathered}
$$

and with degrees

$$
|\hat{x}|=(2, q+1), \quad|\hat{y}|=(3,4 q), \quad|\hat{z}|=(4,3 q+1), \quad|\xi|=(5,2 q+2) .
$$

Then Q is quasi-isomorphic to $C_{*} \Omega B G_{2}^{\wedge}$.
Proof. The algebra relations imply that this has a free $\mathrm{k}[\hat{z}]$-basis consisting of the elements $\hat{x}^{i} \hat{y}^{\varepsilon_{1}} \xi^{\varepsilon_{2}}$ with $i \geqslant 0, \varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$. The differential sends the basis elements with $\varepsilon_{2}=1$ bijectively to the basis elements with $i \geqslant 2$ and $\varepsilon_{2}=0$. So $H_{*} Q$ is the algebra $\mathrm{k}[\hat{z}] \otimes \Lambda(\hat{x}, \hat{y})$, which is isomorphic to $H_{*} \Omega B G_{2}^{\wedge}$. The A_{∞} structure on $H_{*} Q$ is not formal. Indeed, it is easy to check that m_{3} represents the Hochschild class $x^{2} y \hat{z}^{2}$. By Theorem 3.8.2, there is a unique A_{∞} structure on this algebra such that m_{3} represents this class. It follows that Q is quasi-isomorphic to $C_{*} \Omega B G_{2}^{\wedge}$.

REmARK 3.9.2. We can give an explicit quasi-isomorphism $H_{*} \Omega B G_{2}^{\wedge} \rightarrow Q$ as follows. The map f_{1} is the $k[\hat{z}]$-module homomorphism which sends each monomial $1, \hat{x}, \hat{y}, \hat{x} \hat{y}$ in $H_{*} \Omega B G_{2}^{\wedge}$ to the monomial with the same name in Q. The map f_{2} is given by

$$
f_{2}(\hat{x}, \hat{x})=\xi, \quad f_{2}(\hat{x}, \hat{x} \hat{y})=\xi \hat{y}, \quad f_{2}(\hat{x} \hat{y}, \hat{x})=\hat{y} \xi,
$$

and f_{2} is zero on all other pairs of monomials. All higher f_{i} are the zero map. From this information, we can inductively compute the higher multiplications m_{i} on $H_{*} \Omega B G_{2}^{\wedge}$, and they agree with those given in Theorem 3.8.2. For example, we have

$$
\begin{aligned}
m_{2}\left(f_{1} \otimes f_{2}-f_{2} \otimes f_{1}\right)(\hat{x}, \hat{y}, \hat{x}) & =0 \\
f_{2}\left(1 \otimes m_{2}-m_{2} \otimes 1\right)(\hat{x}, \hat{y}, \hat{x}) & =\xi \hat{y}+\hat{y} \xi=\hat{z}^{2}
\end{aligned}
$$

and so $m_{3}(\hat{x}, \hat{y}, \hat{x})=\hat{z}^{2}$.

3.10. Duality for $Q\left[\hat{z}^{-1}\right]$-modules

Continuing with Case 3.5.1, by Theorem 3.9.1, \hat{z} is central in Q. It therefore makes sense to invert it and examine $Q\left[\hat{z}^{-1}\right]$ as an algebra over the graded field $\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]$. This parallels Section 2.10, so we give fewer details.

If X is any $\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]$-module, we write

$$
X^{*}=\operatorname{Hom}_{\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]}\left(X, \mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]\right) \cong \operatorname{Hom}_{\mathrm{k}}(X, \mathrm{k})
$$

Proposition 3.10.1. There is a quasi-isomorphism of $Q\left[\hat{z}^{-1}\right]$-bimodules

$$
Q\left[\hat{z}^{-1}\right] \simeq \Sigma Q\left[\hat{z}^{-1}\right]^{*}
$$

Proof. The proof is similar to the proof of Proposition 2.10.3. Consider the basis of $Q\left[\hat{z}^{-1}\right]$ as a $\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]$-module given by the monomials $\hat{x}^{i} \hat{y}^{\varepsilon_{1}} \xi^{\varepsilon_{2}}$. The map of $\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]$-modules $Q\left[\hat{z}^{-1}\right] \rightarrow \Sigma^{|\hat{x} \hat{y}|} Q\left[\hat{z}^{-1}\right]^{*}$ sending all monomials to zero except that

$$
1 \mapsto(\hat{x} \hat{y} \mapsto 1), \quad \hat{x} \mapsto(\hat{y} \mapsto 1), \quad \hat{y} \mapsto(\hat{x} \mapsto 1), \quad \hat{x} \hat{y} \mapsto(1 \mapsto 1)
$$

and these maps take all other monomials to zero, is easily checked to be a quasi-isomorphism of $Q\left[\hat{z}^{-1}\right]$-bimodules. Now $|\hat{x} \hat{y}|=5$, and \hat{z} is a periodicity generator of degree four, so $\Sigma^{|\hat{x} \hat{y}|} Q\left[\hat{z}^{-1}\right]^{*} \cong \Sigma Q\left[\hat{z}^{-1}\right]^{*}$.

Corollary 3.10.2. If X is a homotopically projective $Q\left[\hat{z}^{-1}\right]$-module then we have a quasi-isomorphism

$$
\operatorname{Hom}_{Q\left[\hat{z}^{-1}\right]}\left(X, Q\left[\hat{z}^{-1}\right]\right) \simeq \Sigma \operatorname{Hom}_{\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]}\left(X, \mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]\right)
$$

Proof. The proof is essentially the same as that of Corollary 2.10.5.
Theorem 3.10.3. Let X and Y be $Q\left[\hat{z}^{-1}\right]$-modules, such that X is homotopically projective, and its image in $\mathrm{D}^{\mathrm{b}}\left(Q\left[\hat{z}^{-1}\right]\right)$ is compact. Then we have a duality

$$
\operatorname{Hom}_{Q\left[\hat{z}^{-1}\right]}(X, Y)^{*} \cong \operatorname{Hom}_{Q\left[\hat{z}^{-1}\right]}\left(Y, \Sigma^{-1} X\right)
$$

Proof. The proof is essentially the same as that of Theorem 2.10.6.

3.11. The singularity category of $C^{*} B G$

We examine the singularity category of $C^{*} B G$ in Case 3.5.1. By Theorem 3.7.16, the A_{∞} structure on $C^{*} B G$ is formal. This implies that the singularity category is given by $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(H^{*} B G\right)$ and the cosingularity category is given by $\mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right) \simeq$ $\mathrm{D}_{\mathrm{csg}}\left(H^{*} B G\right)$. We shall discuss $\mathrm{D}_{\mathrm{sg}}\left(H^{*} B G\right)$. If we were looking as just graded modules, this would be equivalent to the category of maximal Cohen-Macaulay modules over $H^{*} B G=$ $\mathrm{k}[x, y, z] /\left(x^{2} y+z^{2}\right)$. In characteristic zero, this algebra was part of the classification theorem of Knörrer [158] and Buchweitz, Greuel and Schreyer [43]. But in fact the proof goes through for this algebra in arbitrary characteristic, see for example Proposition 14.19 of Leuschke and Wiegand [166], and gives a category of bounded Cohen-Macaulay type (D_{∞}). They state the theorem for the complete local ring, but the arguments work just as well for graded modules over the graded ring.

THEOREM 3.11.1. Let k be a field of arbitrary characteristic. The following matrix factorisations describe all indecomposable MCM modules over $\mathbf{~}[x, y, z] /\left(x^{2} y+z^{2}\right)$ with $|x|=-3$, $|y|=-4,|z|=-5$. We take the module to be the cokernel of the first matrix, which is the image of the second matrix.
(1) $\left(\begin{array}{cc}z & y \\ -x^{2} & z\end{array}\right)\left(\begin{array}{cc}z & -y \\ x^{2} & z\end{array}\right)$, two generators in degrees $n, n-1$;
(2) $\left(\begin{array}{cc}z & x y \\ -x & z\end{array}\right)\left(\begin{array}{cc}z & -x y \\ x & z\end{array}\right)$, two generators in degrees n, $n+2$;
(3) $\left(\begin{array}{cccc}z & x y & 0 & 0 \\ -x & z & 0 & 0 \\ -y^{j} & 0 & z & x y \\ 0 & y^{j} & -x & z\end{array}\right)\left(\begin{array}{cccc}z & -x y & 0 & 0 \\ x & z & 0 & 0 \\ y^{j} & 0 & z & -x y \\ 0 & -y^{j} & x & z\end{array}\right)$ for some $j \geqslant 1$, four generators in
degrees $n, n+2, n+5-4 j, n+7-4 j$;
(4) $\left(\begin{array}{cccc}z & x y & 0 & 0 \\ -x & z & 0 & 0 \\ 0 & -y^{j+1} & z & x y \\ -y^{j} & 0 & -x & z\end{array}\right)\left(\begin{array}{cccc}z & -x y & 0 & 0 \\ x & z & 0 & 0 \\ 0 & y^{j+1} & z & -x y \\ y^{j} & 0 & x & z\end{array}\right)$ for some $j \geqslant 1$, four generators in
degrees n, $n+2, n+3-4 j, n+5-4 j$.
We write $(1)_{n},(2)_{n},(3)_{n, j}$ and $(4)_{n, j}$ for these modules. For each of these modules M, we have $\Omega(M) \cong \Sigma^{-5,-3 q-1}(M)$, so in $\mathrm{D}_{\mathrm{sg}}(M)$ we have $\Sigma^{4,3 q+1}(M) \cong M$. This periodicity is induced by the degree four element $\hat{z} \in H H^{*} C^{*} B G$, whose square is the Eisenbud operator for the relation $x^{2} y+z^{2}$.

The Auslander-Reiten quiver of this singularity category has type $\mathbb{Z} D_{\infty} / \Sigma^{4}$, and the modules above fit into this as follows.

The remaining question is this: Is every object in the singularity category of differential graded modules equivalent to a module with zero differential? If so, the classification above applies to $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)$.

We have $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right)$. Now the element $\hat{z} \in H_{*} \Omega B G_{2}^{\wedge}$ is the Eisenbud operator for the relation $x^{2} y=z^{2}$ in $H^{*} B G$. It comes from an element of $H H^{*} C_{*} \Omega B G_{2}^{\wedge}$ with the same name. It follows that \hat{z} is central, and we may invert it to obtain an equivalence

$$
\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\left[\hat{z}^{-1}\right]\right)
$$

3.12. Two classes of involutions, one of elements of order four

We now turn to the Case 3.5.2 of a finite group G with semidihedral Sylow 2-subgroup SD of order $8 q, q \geqslant 2$, with two classes of involutions and one class of elements of order four. In this case, G has a normal subgroup K of index two with generalised quaternion Sylow 2-subgroups, and K has no normal subgroups of index two.

The principal blocks of this type are all in Erdmann's classes $S D(2 \mathcal{A})_{1}$ and $S D(2 \mathcal{B})_{2}$. Class $S D(2 \mathcal{B})_{2}$ turns out to be the easier to deal with, so we take $G=S L^{ \pm}\left(2, p^{m}\right)$ with
$p^{m} \equiv 3(\bmod 4)$. The basic algebra of the principal block is given by the quiver

$$
\begin{equation*}
{ }^{a} G_{\mathrm{C}} \underset{\mathrm{k}_{c}}{\stackrel{b}{\longrightarrow}} \mathrm{M}_{欠}{ }_{d} \tag{3.12.1}
\end{equation*}
$$

with relations

$$
d b=b a c b a, \quad c d=a c b a c, \quad b c=d^{2 q-1}, \quad a^{2}=0
$$

These imply that

$$
\begin{aligned}
d^{2} b & =d b a c b a=b a c b a^{2} c b a=0, \\
c d^{2} & =a c b a c d=a c b a^{2} c b a c=0, \\
b c b & =d^{2 q-1} b=d^{2 q-3}\left(d^{2} b\right)=0, \\
c b c & =c d^{2 q-1}=\left(c d^{2}\right) d^{2 q-3}=0 .
\end{aligned}
$$

This admits a \mathbb{Z}-grading with $|a|=1-q,|b|=|c|=q-\frac{1}{2},|d|=1$.
The structures of the projective indecomposables are as follows:

Here, the case $q=2$ is as shown, and the dotted lines indicate that for $q>2$ there are more copies of M in the right arm of P_{M}.

The minimal resolution of the trivial module may be computed using the method of $[\mathbf{1 7}]$, and the result is as follows.

The minimal resolution is the total complex of the following double complex:

The cohomology ring in this case is therefore

$$
H^{*} B G=\mathrm{k}[x, y, z] /\left(x^{2} y+z^{2}\right)
$$

with

$$
|x|=(-1, q-1), \quad|y|=(-4,-4 q), \quad|z|=(-3,-q-1) .
$$

The situation is therefore very similar to Case 3.5.1.

3.13. Ext and Hochschild cohomology

Continuing with Case 3.5.2, the proofs of the following theorems are exactly as in the corresponding computations in Section 3.7 for Case 3.5.1.

Theorem 3.13.1. We have

$$
\mathrm{Ext}_{H^{*} B G}^{*}(\mathrm{k}, \mathrm{k})=\Lambda(\hat{x}, \hat{y}) \otimes \mathrm{k}[\hat{z}]
$$

with degrees given by $|\hat{x}|=(-1,1,1-q),|\hat{y}|=(-1,4,4 q)$ and $|\hat{z}|=(-1,3, q+1)$.
Theorem 3.13.2. We have

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\hat{x}, \hat{y}) \otimes \mathrm{k}[\hat{z}]
$$

with $|\hat{x}|=(0,1-q),|\hat{y}|=(3,4 q)$ and $|\hat{z}|=(2, q+1)$.
Theorem 3.13.3. We have

$$
H H^{*} H^{*} B G=H^{*} B G[\hat{x}, \hat{z}] /\left(\hat{x}^{2}+y \hat{z}^{2}, x^{2} \hat{z}^{2}\right)
$$

with $|x|=(0,-1, q-1),|y|=(0,-4,-4 q),|z|=(0,-3,-q-1),|\hat{x}|=(-1,1,1-q)$, $|\hat{z}|=(-1,3, q+1)$.

The proof of the following proposition follows along the same lines as the proof of Proposition 3.7.8, but the details are different, so we spell them out.

Proposition 3.13.4. There are no non-zero elements of degree $(-n, n-2,0)$ in the Hochschild cohomology $H H^{*} H^{*} B G$ with $n>2$.

Proof. We have a k -basis for $H H^{*} H^{*} B G$ consisting of the monomials $x^{i_{1}} y^{i_{2}} z^{\varepsilon_{3}} \hat{x}^{\varepsilon_{1}} \hat{z}^{i_{3}}$ with either $i_{1} \leqslant 1$ or $i_{3} \leqslant 1$. Suppose that such a monomial has degree $(-n, n-2,0)$. Comparing degrees, we have

$$
\begin{align*}
-n & =-\varepsilon_{1}-i_{3} \tag{3.13.5}\\
n-2 & =-i_{1}-4 i_{2}-3 \varepsilon_{3}+\varepsilon_{1}+3 i_{3} \tag{3.13.6}\\
0 & =(q-1) i_{1}-4 q i_{2}-(q+1) \varepsilon_{3}-(q-1) \varepsilon_{1}+(q+1) i_{3} . \tag{3.13.7}
\end{align*}
$$

We shall show that there are no solutions in non-negative integers with $n>2$.
First we deal with the case $q=2$. In this case, equation (3.13.7) becomes

$$
\begin{equation*}
0=i_{1}-8 i_{2}-3 \varepsilon_{3}-\varepsilon_{1}+3 i_{3} . \tag{3.13.8}
\end{equation*}
$$

Adding equations (3.13.6) and (3.13.8), we get

$$
\begin{equation*}
n-2=-12 i_{2}-6 \varepsilon_{3}+6 i_{3}, \tag{3.13.9}
\end{equation*}
$$

and so

$$
n \equiv 2 \quad(\bmod 6)
$$

If instead, we add equations (3.13.5) and (3.13.6) and subtract equation (3.13.8), we get $-2=4 i_{2}+\varepsilon_{1}-i_{3}$, or

$$
\begin{equation*}
4 i_{2}=-\varepsilon_{1}+i_{3}-2 . \tag{3.13.10}
\end{equation*}
$$

So i_{3} determines ε_{1} and i_{2}.
Let $n=6 a+2$, so that equation (3.13.9) gives

$$
\begin{equation*}
a=-2 i_{2}-\varepsilon_{3}+i_{3} \geqslant 1 . \tag{3.13.11}
\end{equation*}
$$

Equation (3.13.5) implies $i_{3}=6 a+2-\varepsilon_{1}$. Then equation (3.13.10) gives $i_{2}=\left(3 a-\varepsilon_{1}\right) / 2$. Plugging these values for i_{2} and i_{3} into equation (3.13.11) gives

$$
a=-3 a+\varepsilon_{1}-\varepsilon_{3}+6 a+2-\varepsilon_{1}=3 a+2-\varepsilon_{3},
$$

and so $\varepsilon_{3}=2 a+2$ is bigger than one. This contradiction completes the case $q=2$.

Now suppose that $q>2$. Reading equations (3.13.5), (3.13.6), and (3.13.7) modulo four, we see that $\varepsilon_{3}+i_{1}$ and $n=\varepsilon_{1}+i_{3}$ are both even, and are congruent modulo four. Since $n>2$, we have $n \geqslant 4, i_{3} \geqslant 3$, and hence $i_{1} \leqslant 1$. So either $i_{1}=\varepsilon_{3}=0$ or $i_{1}=\varepsilon_{3}=1$. Adding the equations (3.13.5) and (3.13.6), we get

$$
\begin{equation*}
-2=-i_{1}-4 i_{2}-3 \varepsilon_{3}+2 i_{3} . \tag{3.13.12}
\end{equation*}
$$

Since $-i_{1}-3 \varepsilon_{3}$ is divisible by four, we deduce that i_{3} is odd, and hence $\varepsilon_{1}=1$, and $n=1+i_{3}$.
Since $i_{1}=\varepsilon_{3}$ and $\varepsilon_{1}=1$, equation (3.13.7) becomes

$$
0=-4 q i_{2}-2 \varepsilon_{3}-(q-1)+(q+1) i_{3}
$$

and equation (3.13.12) gives

$$
2 i_{2}=1-2 \varepsilon_{3}+i_{3}
$$

Substituting, we get

$$
\begin{aligned}
0 & =-2 q\left(1-2 \varepsilon_{3}+i_{3}\right)-2 \varepsilon_{3}-(q-1)+(q+1) i_{3} \\
& =(1-q) i_{3}+(4 q-2) \varepsilon_{3}+1-3 q
\end{aligned}
$$

and so

$$
(4 q-2) \varepsilon_{3}=(q-1) i_{3}+(3 q-1)
$$

This is bigger than zero, so $\varepsilon_{3}=1$, which then gives $i_{3}=1$. Then by equation (3.13.5), $n=\varepsilon_{1}+i_{3}=2$, which is a contradiction.

THEOREM 3.13.13. In Case 3.5.2, with the grading inherited from the internal grading on the basic algebra of $\mathrm{k} G$, the A_{∞} structure of $H^{*} B G$ is formal.

REmARK 3.13.14. Another proof of formality, but which does not give intrinsic formality, in Theorem 3.13.13 is to notice that there are endomorphisms of the resolution (3.12.2) representing x, y and z, and strictly satisfying the relation $x^{2} y=z^{2}$. The endomorphism representing y just moves the whole diagram two places up and two places to the right. For x, we move one place to the right, but then we have to compose with the maps

			$\bar{c} \bar{a} \bar{b}$	\bar{c}
			1	1
	$\bar{c} \bar{a} \bar{b}$	\bar{c}	1	1
	1	1	1	1
$\bar{c} \bar{a} \bar{b}$	$\begin{array}{ll}\bar{c} & 1\end{array}$	1	1	1
	11	1	1	1

Similarly, for z we move one place up and two to the right, and compose with the same maps. This defines a quasi-isomorphism from the cohomology ring Ext ${ }_{\mathrm{k} G}^{*}(\mathrm{k}, \mathrm{k})$ to the DG algebra $\operatorname{End}_{\mathrm{k} G}^{*}\left(P_{\mathrm{k}}\right)$, which in turn is quasi-isomorphic to $C^{*} B G$.

Corollary 3.13.15. In Case 3.5.2, we have

$$
H H^{*} H^{*} B G \cong H H^{*} C^{*} B G \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge}
$$

Proof. The first isomorphism follows from Theorem 3.13.13, while the second is true for every group.

3.14. A_{∞} structure, a DG model, and duality

We continue to work in Case 3.5.2, and because the details are similar to those in Case 3.5.1, we skip some details. So G is a finite group with a semidihedral Sylow 2-subgroup of order $8 q$, and has a normal subgroup K of index two with generalised quaternion Sylow 2-subgroups, and K has no normal subgroup of index two.

Theorem 3.14.1. We have

$$
H H^{*} H_{*} \Omega B G_{2}^{\wedge}=\mathrm{k}[x, y, \hat{z}] \otimes \Lambda(\hat{x}, \hat{y}, z)
$$

with

$$
\begin{array}{ccc}
|x|=(-1,0, q-1), & |y|=(-1,-3,-4 q), & |z|=(-1,-2,-q-1), \\
|\hat{x}|=(0,0,1-q), & |\hat{y}|=(0,3,4 q), & |\hat{z}|=(0,2, q+1) .
\end{array}
$$

Proof. This is a routine computation using Theorems 1.11.5 and 3.13.2.
THEOREM 3.14.2. In Case 3.5.2, up to quasi-isomorphism, the maps m_{i} in the A_{∞} structure on $H_{*} \Omega B G_{2}^{\wedge}$ may be taken to be the $\mathrm{k}[\hat{z}]$-multilinear maps determined by

$$
m_{3}(\hat{x}, \hat{y}, \hat{x})=\hat{z}^{2}, \quad m_{3}(\hat{x}, \hat{x} \hat{y}, \hat{x})=\hat{x} \hat{z}^{2}, \quad m_{3}(\hat{y}, \hat{x}, \hat{x} \hat{y})=m_{3}(\hat{x} \hat{y}, \hat{x}, \hat{y})=\hat{y} \hat{z}^{2}
$$

and all m_{i} with $i \geqslant 3$ vanish on all other triples of monomials not involving \hat{z}. We have $m_{3} \circ m_{3}=0$ (Gerstenhaber's circle product).

This is the unique A_{∞} algebra structure on this algebra, such that the map m_{3} represents the class $x^{2} y \hat{z}^{2}$ of degree $(-3,1,0)$ in the Hochschild cohomology $H H^{*} H_{*} \Omega B G_{2}^{\wedge}$.

Proof. This is the same as the proof of Theorem 3.8.2.
Theorem 3.14.3. Let Q be the $D G$ algebra over $\mathrm{k}[\hat{z}]$ generated by elements \hat{x}, \hat{y} and ξ with

$$
\begin{gathered}
d \hat{x}=0, \quad d \hat{y}=0, \quad \hat{y}^{2}=0, \quad \hat{x} \hat{y}=\hat{y} \hat{x}, \\
d \xi=\hat{x}^{2}, \quad \xi \hat{x}=\hat{x} \xi, \quad \xi^{2}=0, \quad \xi \hat{y}+\hat{y} \xi=\hat{z}^{2}
\end{gathered}
$$

and with degrees

$$
|\hat{x}|=(0, q+1), \quad|\hat{y}|=(3,4 q), \quad|\hat{z}|=(2,3 q+1), \quad|\xi|=(1,2 q+2) .
$$

Then Q is quasi-isomorphic to $C_{*} \Omega B G_{2}^{\wedge}$.
Proof. This is proved in the same way as Theorem 3.9.1.
Since \hat{z} is central in Q, we may invert it. Let $Q\left[\hat{z}^{-1}\right]$ be the resulting DG algebra over $\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]$.

Proposition 3.14.4. There is a quasi-isomorphism of $Q\left[\hat{z}^{-1}\right]$-bimodules

$$
Q\left[\hat{z}^{-1}\right]^{*} \cong \Sigma Q\left[\hat{z}^{-1}\right]
$$

Corollary 3.14.5. If X is a homotopically projective $Q\left[\hat{z}^{-1}\right]$-module then we have a quasi-isomorphism

$$
\operatorname{Hom}_{Q\left[\hat{z}^{-1}\right]}\left(X, Q\left[\hat{z}^{-1}\right]\right) \simeq \Sigma \operatorname{Hom}_{\mathrm{k}\left[\hat{z}, \hat{z}^{-1}\right]}\left(X, \mathrm{k}\left[z, z^{-1}\right]\right)
$$

Theorem 3.14.6. Let X and Y be $Q\left[\hat{z}^{-1}\right]$-modules, such that X is homotopically projective, and its image in $\mathrm{D}^{\mathrm{b}}\left(Q\left[\hat{z}^{-1}\right]\right)$ is compact. Then we have a duality

$$
\operatorname{Hom}_{Q\left[\hat{z}^{-1}\right]}(X, Y)^{*} \cong \operatorname{Hom}_{Q\left[\hat{z}^{-1}\right]}\left(Y, \Sigma^{-1} X\right)
$$

3.15. One class of involutions, two of elements of order four

Now we consider Case 3.5.3, of a finite group G with semidihedral Sylow 2-subgroup SD of order $8 q, q \geqslant 2$, with one class of involutions and two classes of elements of order four. In this case, G has a normal subgroup K of index two with dihedral Sylow 2-subgroups, and K has no normal subgroups of index two. The group K is therefore in Case 2.7.1 of the classification of groups with dihedral Sylow 2-subgroups.

The principal blocks of this type are all in Erdmann's class $S D(2 \mathcal{A})_{2}$. This causes a problem with socle relations. To see this, let us look at the principal block B_{0} of the group $P G L^{*}\left(2, p^{2 m}\right)$. Let k and M be the two simple modules. In the case $q=2$, their projective covers are given by the following diagrams.

The quiver for B_{0} is

with relations

$$
b c=0, \quad(c b a)^{2 q}=(a c b)^{2 q}, \quad a^{2}=c b(a c b)^{2 q-1}+\lambda(c b a)^{2 q}
$$

with $\lambda \in \mathrm{k}$ unknown at this point. If $\lambda \neq 0$ then any non-trivial grading on this algebra has $|a|=0$ and $|b|+|c|=0$, which then induces the trivial grading on cohomology.

We begin with the case $q=2$. In this case, we can choose $G=M_{10}=P G L^{*}(2,9)$. Running the following Magma code, we find that the socle constant in the relations for the algebra of type $S D(2 \mathcal{A})_{2}$ is equal to one.

```
SetSeed(1441119655);
M11:=Group("M11");
M10:=Stabiliser(M11,1);
A:=BasicAlgebraOfPrincipalBlock(M10,GF(2));
e:=IdempotentGenerators(A) [1];
f:=IdempotentGenerators(A) [2];
a:=NonIdempotentGenerators(A)[1];
b:=NonIdempotentGenerators(A) [2];
```

```
c:=NonIdempotentGenerators(A) [3];
cc:=c*(1+a^5);
aa:=a+b*cc;
bb:=b;
cc*bb eq 0;
(aa*bb*cc)^4 eq (bb*cc*aa)^4;
aa^2 eq (bb*cc*aa)^3*bb*cc + (bb*cc*aa)^4;
```

It follows that there is no useful grading on the basic algebra, so we are going to have to resort to other means.

Martino $[\mathbf{1 7 8}]$ computed the cohomology ring for groups in Case 3.5.3 to be

$$
H^{*} B G=\mathrm{k}[y, z, w, v] /\left(y^{3}, v y, y z, v^{2}+z^{2} w\right)
$$

with $|y|=-1,|z|=-3,|w|=-4,|v|=-5$. Part of the A_{∞} structure is given by

$$
\begin{gathered}
m_{3}\left(z, y, y^{2}\right)=v, \quad m_{4}\left(y^{2}, y, y^{2}, y\right)=w \\
m_{4 q-1}(v, y, v, y, \ldots, y, v)=w^{2 q} y^{2}
\end{gathered}
$$

The computation of the Ext ring is similar to the case of the semidihedral group.
Theorem 3.15.1. In Case 3.5.3 we have

$$
\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})=\Lambda(\hat{w}) \otimes \mathrm{k}\left\langle\hat{y}, \hat{z}, \hat{v}, \hat{\eta} \mid \hat{y}^{2}=\hat{z}^{2}=0, \hat{v} \hat{z}=\hat{z} \hat{v}, \eta \hat{y}=\hat{y} \eta\right\rangle
$$

with $\eta=\langle\hat{y}, \hat{y}, \hat{y}\rangle,|\hat{y}|=(-1,1),|\hat{z}|=(-1,3),|\hat{w}|=(-1,4),|\hat{v}|=(-1,5),|\eta|=(-2,3)$.
In the Eilenberg-Moore spectral sequence

$$
\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \Omega B G_{2}^{\wedge}
$$

we have $d^{2}(\hat{v})=\eta \hat{z}+\hat{z} \eta$,

$$
E^{3}=\Lambda(\hat{w}) \otimes \mathbf{k}[\eta] \otimes \mathbf{k}\left\langle\hat{y}, \hat{z} \mid \hat{y}^{2}=\hat{z}^{2}=0\right\rangle
$$

then $d^{3}(\hat{w})=\eta^{2}$,

$$
E^{4}=E^{\infty}=\Lambda(\eta) \otimes k\left\langle\hat{y}, \hat{z} \mid \hat{y}^{2}=\hat{z}^{2}=0\right\rangle
$$

Ungrading, we have $|\hat{y}|=0,|\eta|=1,|\hat{z}|=2$, and since there are no lower terms in the filtration, we have $\hat{y}^{2}=0$, and $\eta^{2}=0$. However, the relation $\hat{z}^{2}=0$ is harder to ungrade.

To compute the ring structure of $H_{*} \Omega B G_{2}^{\wedge}$, and in particular the square of \hat{z}, we resort to the method of squeezed resolutions described in Benson [16]. It is easy to compute the minimal squeezed projective resolution for G, which is as follows.

$$
\cdots \xrightarrow{\left(\begin{array}{cc}
(\bar{c} \bar{b})^{2 q} & 0 \\
0 & (\bar{c} \bar{b})^{2 q}
\end{array}\right)} P_{\mathrm{M}} \oplus P_{\mathrm{M}} \xrightarrow{\left(\begin{array}{cc}
\bar{c} \bar{b} \bar{b} & 0 \\
0 & \bar{c} \bar{b} \bar{b}
\end{array}\right)} P_{\mathrm{M}} \oplus P_{\mathrm{M}} \xrightarrow{\left(\begin{array}{cc}
(\bar{c} \bar{a} \bar{b})^{2 q} & 0 \\
0 & (\bar{c} \bar{b})^{2 q}
\end{array}\right)} P_{\mathrm{M}} \oplus P_{\mathrm{M}} \xrightarrow{(\bar{b} \bar{a} \bar{b})} P_{\mathrm{k}} \rightarrow 0 .
$$

After the first step, this repeats with period two. Indeed, after the first step, it decomposes as a direct sum of two copies of the two-periodic complex

$$
\cdots \xrightarrow{(\bar{c} \bar{b})^{2 q}} P_{\mathrm{M}} \xrightarrow{\bar{c} \bar{a} \bar{b}} P_{\mathrm{M}} \xrightarrow{(\bar{c} \bar{a} \bar{b})^{2 q}} P_{\mathrm{M}}
$$

The point here is that $C_{*} \Omega B G_{2}^{\wedge}$ is quasi-isomorphic to the $k G$-endomorphism DG algebra of this squeezed resolution.

REMARK 3.15.2. There is an error in [16], which only shows up if $\Omega B G_{p}^{\wedge}$ is not connected, namely when $G / O^{p}(G)$ is not trivial. Namely, the augmentation in Theorem 3.4 of that paper should be to $\mathrm{k} G / O^{p}(G)$ rather than to k . This affects the computation of products in Section 4.6 of the paper, which we are using here.

The element $\hat{y} \in H_{*} \Omega B G_{2}^{\wedge}$ is represented by the map of complexes

The square of this map is not zero, but is null homotopic, with homotopy u given by

The element $\langle\hat{y}, \hat{y}, \hat{y}\rangle$ is represented by the map of complexes $u \hat{y}+\hat{y} u$:

and the element \hat{z} is represented by the map

Now $u \hat{y}+\hat{y} u$ does not commute with \hat{z}, but $(u \hat{y}+\hat{y} u)(1+\lambda \hat{y})$ does, so it is more convenient to set

$$
\eta=(u \hat{y}+\hat{y} u)(1+\lambda \hat{y}) .
$$

This is represented by the map

Thus $\hat{z}^{2}=0$, and $\hat{y} \hat{z}+\hat{z} \hat{y}$ is the periodicity generator of degree two, central in the endomorphism algebra:

Theorem 3.15.3. In Case 3.5.3, we have

$$
H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\eta) \otimes \mathrm{k}\left\langle\hat{y}, \hat{z} \mid \hat{y}^{2}=\hat{z}^{2}=0\right\rangle
$$

with $|\eta|=1,|\hat{y}|=0$ and $|\hat{z}|=2$.
It is interesting to note that the degree zero element \hat{y} is not central in $H_{*} \Omega B G_{2}^{\wedge}$, while $\hat{y} \hat{z}+\hat{z} \hat{y}$ is the central periodicity generator. This is very similar to what happens for groups with dihedral Sylow 2-subgroups in Case 2.7.2.

Part of the A_{∞} structure is given by $m_{3}(\hat{y}, \hat{y}, \hat{y})=\eta(1+\lambda \hat{y}), m_{2 q}(\eta, \ldots, \eta)=(\hat{y} \hat{z}+\hat{z} \hat{y})^{2 q}$.

CHAPTER 4

The generalised quaternion case

4.1. Introduction

In this chapter, we discuss the case of finite groups with generalised quaternion Sylow 2-subgroups.

We begin with the generalised quaternion group Q of order $8 q$ itself. The group algebra in this case was analysed by Dade [59], and we describe a modified version of his presentation as a quiver with relations. If $q=1$ and k contains \mathbb{F}_{4} then for suitable radical generators we have

$$
\mathrm{kQ}=\mathrm{k}\left\langle X, Y \mid X^{2}=Y X Y, \quad Y^{2}=X Y X, \quad X^{4}=Y^{4}=0\right\rangle
$$

If $q \geqslant 2$, and k is any field of characteristic two, for suitable radical generators X and Y we have

$$
\mathrm{kQ}=\mathrm{k}\left\langle X, Y \mid X^{2}=(Y X)^{2 q-1} Y+(X Y)^{2 q}, Y^{2}=(X Y)^{2 q-1} X+(Y X)^{2 q}, X^{4}=Y^{4}=0\right\rangle
$$

See Theorem 4.2.1 for details.
There are three cases for the possible fusion in Q, leading to three types of cochains on the classifying space of a finite group with this fusion. Probably the most interesting is the case where G has no normal subgroup of index two.

Theorem 4.1.1. Let G be a finite group with generalised quaternion Sylow 2-subgroup, and let k be a field of characteristic two. Then the following are equivalent:
(1) the A_{∞} algebra $C^{*} B G$ is formal,
(2) the A_{∞} algebra $H_{*} \Omega B G_{2}^{\wedge}$ is formal,
(3) G has no normal subgroup of index two.

This theorem follows from Theorem 4.7.4, Corollary 4.7.5, and Theorem 4.9.2.

4.2. Generalised quaternion groups

The generalised quaternion group of order $8 q, q$ a power of two, is given by the presentation

$$
\mathrm{Q}=\left\langle g, h \mid g^{2}=h^{2}=\left(g^{-1} h\right)^{2 q}\right\rangle .
$$

These relations imply that $g^{2}=h^{2}$ is central, and $g^{4}=h^{4}=1$. If $q=1$, this is the quaternion group of order eight.

Theorem 4.2.1. We have the following presentations for kQ.
(i) In the case $q=1$, suppose that k contains $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$, with $1+\omega+\omega^{2}=0$. Set

$$
X=g h+\omega g+\bar{\omega} h, \quad Y=g h+\bar{\omega} g+\omega h .
$$

Then

$$
\mathrm{kQ}=\mathrm{k}\left\langle X, Y \mid X^{2}=Y X Y, \quad Y^{2}=X Y X, \quad X^{4}=Y^{4}=0\right\rangle
$$

The automorphism $g \mapsto h \mapsto g h \mapsto g$ of Q of order three sends $X \mapsto \bar{\omega} X$ and $Y \mapsto \omega Y$.
(ii) For $q \geqslant 2$, and any field k of characteristic two, set
$u=g+h, \quad v=u^{4 q-3}+\sum_{2^{i}=2}^{q} u^{2 q-2^{i}}, \quad x=(g+1)+u, \quad y=(h+1)+u$,
and finally, $X=x+(x y)^{2 q-1}, Y=y+(y x)^{2 q-1}$. Then the group algebra has the following presentation:
$\mathrm{kQ}=\mathrm{k}\left\langle X, Y \mid X^{2}=(Y X)^{2 q-1} Y+(X Y)^{2 q}, Y^{2}=(X Y)^{2 q-1} X+(Y X)^{2 q}, X^{4}=Y^{4}=0\right\rangle$.
These relations imply that $(X Y)^{2 q}=X^{3}=(Y X)^{2 q}=Y^{3}$ is annihilated by X and Y, and hence lie in $\operatorname{Soc}(\mathrm{kQ})=J^{2 q}(\mathrm{kQ})$.
Proof. This follows Dade [59], with a change of variables in the second case. First, in both cases X and Y are in $J(\mathrm{kQ})$ and are linearly independent modulo $J^{2}(\mathrm{kQ})$, and therefore generate kQ .
(i) A somewhat long computation shows that $X^{2}=\left(1+g^{2}\right)(g h+\omega h+\bar{\omega} g)=Y X Y$, and hence $X^{4}=0$. Applying the automorphism of \mathbb{F}_{4}, we get $Y^{2}=X Y X$ and $Y^{4}=0$. These relations imply that kQ is spanned by $1, X, Y, X Y, Y X, X Y X, Y X Y$ and $X Y X Y=$ $Y X Y X$, so comparing dimensions, these relations define kQ .
(ii) By [59], the elements x and y in $J(\mathrm{kQ})$ satisfy

$$
\mathrm{kQ}=\left\langle x, y \mid x^{2}=y^{2}=(x y)^{2 q-1} x+(y x)^{2 q-1} y+(x y)^{2 q}, \quad x^{4}=y^{4}=0\right\rangle .
$$

These relations imply that $(x y)^{2 q}=x^{3}=(y x)^{2 q}=y^{3}$ spans $\operatorname{Soc}(\mathrm{kQ})=J^{2 q}(\mathrm{kQ}), x^{2}=y^{2}$ is central, and $J^{2 q+1}(\mathrm{kQ})=0$. Since X and Y are congruent to x and y modulo $J^{2 q-1}(\mathrm{kQ})$, it follows that monomials in X and Y of length at least three are equal to the corresponding monomials in x and y. So X and Y satisfy

$$
\begin{aligned}
& X^{2}=x^{2}+(x y)^{2 q-1} x=(y x)^{2 q-1} y+(x y)^{2 q}=(Y X)^{2 q-1} Y+(X Y)^{2 q} \\
& Y^{2}=y^{2}+(y x)^{2 q-1} x=(x y)^{2 q-1} x+(y x)^{2 q}=(X Y)^{2 q-1} Y+(Y X)^{2 q}
\end{aligned}
$$

and $X^{4}=Y^{4}=0$. Note that unlike x^{2} and y^{2}, the elements X^{2} and Y^{2} are not central.
Remark 4.2.2. It is erroneously stated on page 303 of [74], page 38 of [$\mathbf{9 4}$], and page 518 of [118] that the group algebra of the generalised quaternion group is as given here, but without the extra term $(X Y)^{2 q},(Y X)^{2 q}$ in the expressions for X^{2} and Y^{2}.

REmARK 4.2.3. In the case of the quaternion group of order eight, over a field containing \mathbb{F}_{4}, there is a $\mathbb{Z} / 3$-grading on the group algebra given by $|X|=1$ and $|Y|=-1$. This is the grading induced by the automorphism of order three.

In the case of the generalised quaternion groups of order at least 16, there is no non-trivial grading on the group algebra for which the generators X and Y are homogeneous, because of the socle terms in the relations.

It is known that $k Q$ has tame representation type, by embedding Q into a semidihedral group of twice the order. By a theorem of Green [131, Theorem 8], as long as k is algebraically closed, inducing an indecomposable kQ-module gives an indecomposable module for the semidihedral group. On the other hand, although the indecomposables for the semidihedral group are classified, nobody has been able to use this to classify indecomposable modules for generalised quaternion groups.

The cohomology ring for $q=1$ is

$$
H^{*} B G=\mathrm{k}[u, v, z] /\left(u^{2}+u v+v^{2}, u^{2} v+u v^{2}\right)
$$

with $|u|=|v|=1$ and $|z|=4$, and with u and v dual to $U=\bar{\omega} X+\omega Y=g h+h$ and $V=\omega X+\bar{\omega} Y=g h+g$.

For $q \geqslant 2$, we have

$$
H^{*} B G=\mathrm{k}[x, y, z] /\left(x y, x^{3}+y^{3}\right)
$$

again with $|x|=|y|=1$ and $|z|=4$, and with x and y dual to X and Y. See for example Rusin [197] or Martino and Priddy [179].

Note that if k contains \mathbb{F}_{4} then the cohomology of the quaternion group of order eight can be made to fit the same pattern by using the elements x, y in $H^{1} B G$ dual to X and Y in $J(\mathrm{kQ})$. These are homogeneous with respect to the grading described in Remark 4.2.3, so that the $\mathbb{Z} \times \mathbb{Z} / 3$-grading is given by $|x|=(-1,-1),|y|=(-1,1)$ and $|z|=(-4,0)$.

4.3. $H H^{*} H^{*} B \mathrm{Q}$

The cohomology ring $H^{*} B \mathrm{Q}=\mathrm{k}[x, y, z] /\left(x y, x^{3}+y^{3}\right)$ is a complete intersection of codimension two, so we can calculate $H H^{*} H^{*} B \mathrm{Q}$ and $\mathrm{Ext}_{H^{*} B \mathrm{Q}}^{*, *}(\mathrm{k}, \mathrm{k})$ using Theorems 1.11.5 and 1.11.2. We first compute $\operatorname{Cliff}(q)$.

Proposition 4.3.1. Let Q be a generalised quaternion group of order $8 q$ with q a power of two. Let k be a field of characteristic two, and if $q=1$, we suppose that k contains \mathbb{F}_{4}. Then the algebra $\operatorname{Cliff}(\mathrm{q})$ is equal to $H^{*} B \mathrm{Q}\left\langle\hat{x}, \hat{y}, \hat{z} ; s_{1}, s_{2}\right\rangle$, where s_{1} and s_{2} are central, and

$$
\hat{x}^{2}=\hat{y}^{2}=\hat{z}^{2}=0, \quad \hat{x} \hat{y}+\hat{y} \hat{x}=s_{1}, \quad \hat{x} \hat{z}=\hat{z} \hat{x}, \quad \hat{y} \hat{z}=\hat{z} \hat{y} .
$$

The degrees are given by $|\hat{x}|=|\hat{y}|=(-1,1),|\hat{z}|=(-1,4),\left|s_{1}\right|=(-2,2),\left|s_{2}\right|=(-2,3)$. The differential d on $\operatorname{Cliff}(\mathrm{q})$ is given by

$$
d(\hat{x})=y s_{1}+x^{2} s_{2}, \quad d(\hat{y})=x s_{1}+y^{2} s_{2}, \quad d(\hat{z})=d\left(s_{1}\right)=d\left(s_{2}\right)=0
$$

Proof. Let $f_{1}(x, y, z)=x y$ and $f_{2}(x, y, z)=x^{3}+y^{3}$, so that $H^{*} B \mathrm{Q}=\mathrm{k}[x, y, z] /\left(f_{1}, f_{2}\right)$. Then we have

$$
\begin{array}{clllll}
\frac{\partial f_{1}}{\partial x}=y, & \frac{\partial f_{1}}{\partial y}=x, & \frac{\partial f_{1}}{\partial z}=0, & \frac{\partial f_{2}}{\partial x}=x^{2}, & \frac{\partial f_{2}}{\partial y}=y^{2}, & \frac{\partial f_{2}}{\partial z}=0 \\
\frac{\partial^{(2)} f_{1}}{\partial x^{2}}=0, & \frac{\partial^{(2)} f_{1}}{\partial y^{2}}=0, & \frac{\partial^{(2)} f_{1}}{\partial z^{2}}=0, & \frac{\partial^{(2)} f_{2}}{\partial x^{2}}=x, & \frac{\partial^{(2)} f_{2}}{\partial y^{2}}=y, & \frac{\partial^{(2)} f_{2}}{\partial z^{2}}=0 \\
\frac{\partial^{2} f_{1}}{\partial x \partial y}=1, & \frac{\partial^{2} f_{1}}{\partial x \partial z}=0, & \frac{\partial^{2} f_{1}}{\partial y \partial z}=0, & \frac{\partial^{2} f_{2}}{\partial x \partial y}=0, & \frac{\partial^{2} f_{2}}{\partial x \partial z}=0, & \frac{\partial^{2} f_{2}}{\partial y \partial z}=0
\end{array}
$$

Plugging these into Definition 1.11.1, with s_{1} and s_{2} the degree -2 generators corresponding to the relations f_{1} and f_{2}, we get the given relations and differential for $\operatorname{Cliff}(\mathrm{q})$.

Remark 4.3.2. In the case of the quaternion group of order eight without assuming that k contains \mathbb{F}_{4}, the algebra $\operatorname{Cliff}(\mathrm{q})$ is equal to $H^{*} B \mathrm{Q}\left\langle\hat{u}, \hat{v}, \hat{z} ; s_{1}, s_{2}\right\rangle$, where s_{1} and s_{2} are central, and

$$
\hat{u}^{2}=\hat{v}^{2}=\hat{u} \hat{v}+\hat{v} \hat{u}=s_{1}, \quad \hat{u} \hat{z}=\hat{z} \hat{u}, \quad \hat{v} \hat{z}=\hat{z} \hat{v} .
$$

The degrees are given by $|\hat{u}|=|\hat{v}|=(-1,1),|\hat{z}|=(-1,4),\left|s_{1}\right|=(-2,2),\left|s_{2}\right|=(-2,3)$. The differential d on $\operatorname{Cliff}(\mathrm{q})$ is given by

$$
d(\hat{u})=v s_{1}+v^{2} s_{2}, \quad d(\hat{v})=u s_{1}+u^{2} s_{2}, \quad d(\hat{z})=d\left(s_{1}\right)=d\left(s_{2}\right)=0
$$

Theorem 4.3.3. The Hochschild cohomology $H^{*} H^{*} B \mathrm{Q}$ is

$$
\begin{aligned}
& H^{*} B \mathrm{Q}\left[\hat{z}, s_{1}, s_{2}, w_{1}, w_{2}\right] /\left(x^{2} w_{1}+y w_{2}, y^{2} w_{1}+x w_{2}\right. \\
& \left.\qquad x s_{1}+y^{2} s_{2}, y s_{1}+x^{2} s_{2}, w_{1} s_{1}+w_{2} s_{2}, w_{1}^{2}, w_{2}^{2}, w_{1} w_{2}, \hat{z}^{2}\right)
\end{aligned}
$$

where

$$
w_{1}=x \hat{x}+y \hat{y}, \quad w_{2}=y^{2} \hat{x}+x^{2} \hat{y}
$$

The generators have degrees $|\hat{z}|=(-1,4),\left|s_{1}\right|=(-2,2),\left|s_{2}\right|=(-2,3),\left|w_{1}\right|=(-1,0)$, $\left|w_{2}\right|=(-1,-1)$.

Proof. This follows from Theorem 1.11.5 and Proposition 4.3.1

4.4. Loops on $B \mathrm{Q}_{2}^{\wedge}$

Since Q is a finite 2-group, we have $\Omega B \hat{\mathrm{Q}_{2}} \simeq Q$. So we should expect to see the EilenbergMoore spectral sequence converging to $k Q$.

THEOREM 4.4.1. If Q is a generalised quaternion group of order $8 q$ with either $q \geqslant 2$ or k containing \mathbb{F}_{4}, then

$$
\operatorname{Ext}_{H^{*} B Q}^{*, *}(\mathrm{k}, \mathrm{k}) \cong \mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0\right\rangle \otimes \mathrm{k}[\hat{z}, s] /\left(\hat{z}^{2}\right)
$$

The degrees are given by $|\hat{x}|=|\hat{y}|=(-1,1),|\hat{z}|=(-1,4)$ and $|s|=(-2,3)$.
If Q is a quaternion group of order eight then

$$
\operatorname{Ext}_{H^{*} B Q}^{*, *}(\mathrm{k}, \mathrm{k}) \cong \mathrm{k}\left\langle\hat{u}, \hat{v} \mid \hat{u}^{2}=\hat{v}^{2}=\hat{u} \hat{v}+\hat{v} \hat{u}\right\rangle \otimes \mathrm{k}[\hat{z}, s] /\left(\hat{z}^{2}\right)
$$

The degrees are given by $|\hat{u}|=|\hat{u}|=(-1,1),|\hat{z}|=(-1,4)$ and $|s|=(-2,3)$.
Proof. In both cases, $H^{*} B \mathrm{Q}$ is a complete intersection, so we compute the Ext ring using Theorem 1.11.2. The algebra Cliff(q) is given by Proposition 4.3.1 and Remark 4.3.2. The generator s_{1} is redundant, so we eliminate it, and we write s for s_{2}.

For $q=1$, the differentials in the Eilenberg-Moore spectral sequence

$$
\mathrm{Ext}_{H^{*} B Q}^{*, *}(\mathrm{k}, \mathrm{k}) \Rightarrow \mathrm{kQ}
$$

are given by $d^{2}(s)=\hat{u}^{4}=\hat{v}^{4}=(\hat{u} \hat{v}+\hat{v} \hat{u})^{2}$ and $d^{3}(\hat{z})=s^{2}$.
If k contains \mathbb{F}_{4} then we can set $\hat{x}=\bar{\omega} \hat{u}+\omega \hat{v}$ and $\hat{y}=\omega \hat{u}+\bar{\omega} \hat{v}$, so that $\operatorname{Ext}_{H^{*} B Q}^{*, *}(\mathrm{k}, \mathrm{k})$ becomes

$$
\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0\right\rangle \otimes \mathrm{k}[\hat{z}, s] /\left(\hat{z}^{2}\right)
$$

We have $\hat{u} \hat{v}+\hat{v} \hat{u}=\hat{x} \hat{y}+\hat{y} \hat{x}$, and $d^{2}(s)=(\hat{x} \hat{y}+\hat{y} \hat{x})^{2}$, and $d^{2}\left(s^{2}\right)=0$. Then

$$
E^{3}=\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0,(\hat{x} \hat{y})^{2}=(\hat{y} \hat{x})^{2}\right\rangle \otimes k\left[\hat{z}, s^{2}\right] /\left(\hat{z}^{2}\right) .
$$

The differential $d^{3}(\hat{z})=s^{2}$ then gives

$$
E^{4}=E^{\infty}=\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0,(\hat{x} \hat{y})^{2}=(\hat{y} \hat{x})^{2}\right\rangle
$$

This is the associated graded of kQ with respect to the radical filtration, with \hat{x} representing X and \hat{y} representing Y.

The Eilenberg-Moore spectral sequence in the case $q \geqslant 2$ is similar, but the differentials happen in the opposite order. The first differential is $d^{3}(\hat{z})=s^{2}$, giving

$$
E^{4}=\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0\right\rangle \otimes k[s] /\left(s^{2}\right) .
$$

Then the next non-zero differential is $d^{4 q-2}(s)=(\hat{x} \hat{y}+\hat{y} \hat{x})^{2 q}$, so that

$$
E^{4 q-1}=E^{\infty}=\mathrm{k}\left\langle\hat{x}, \hat{y} \mid \hat{x}^{2}=\hat{y}^{2}=0,(\hat{x} \hat{y})^{2 q}=(\hat{y} \hat{x})^{2 q}\right\rangle .
$$

This is again the associated graded of kQ with respect to the radical filtration, with \hat{x} representing X and \hat{y} representing Y.

4.5. Isoclinism

In order to describe the finite groups with generalised quaterion Sylow 2-subgroups in the next section, we first discuss isoclinism and the groups $S L^{\circ}\left(2, p^{m}\right)$, which are isoclinic to the groups $S L^{ \pm}\left(2, p^{m}\right)$ described in Section 3.5. We restrict ourselves to the situation we need, rather than describing isoclinism in general.

Suppose that G is a finite group with a central subgroup of order two, $Z=\{1, z\}$, contained in a normal subgroup H of index $|G: H|=2$. Then we can make a new group of the same order as follows. Consider the maps

$$
\mathbb{Z} / 2 \rightarrow G \times \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2
$$

where $\mathbb{Z} / 4=\left\langle\gamma \mid \gamma^{4}=1\right\rangle$, the first map sends the generator of $\mathbb{Z} / 2$ to $\left(z, \gamma^{2}\right)$, and the second map sends G to $\mathbb{Z} / 2$ surjectively with kernel H, and $\mathbb{Z} / 4$ to $\mathbb{Z} / 2$ with kernel $\left\langle\gamma^{2}\right\rangle$. Let \tilde{G} be the kernel of the second map modulo the image of the first. Then \tilde{G} has the same order as G, and is said to be isoclinic to G. The group \tilde{G} has a normal subgroup of index two isomorphic to H, and a central subgroup of order two generated by $(z, 1)$ with $\tilde{G} /\langle(z, 1)\rangle \cong G /\langle z\rangle$, but G and \tilde{G} are not in general isomorphic.

If $\rho: G \rightarrow G L(n, \mathbb{C})$ is a complex representation of G with z represented as minus the identity, then we can obtain a complex representation of \tilde{G} by sending elements of the subgroup of index two isomorphic to H to the same matrices as before, but the elements outside are multiplied by the complex number i. The character table of \tilde{G} therefore looks just like that of G except that the character values of elements outside H on the representations with z acting as minus the identity have been multiplied by i. In particular, the character degrees are the same.

As an example, let G be a semidihedral group of order $8 q, q \geqslant 2$, with presentation

$$
G=\left\langle g, h \mid g^{4 q}=1, h^{2}=1, h g h^{-1}=g^{2 q-1}\right\rangle
$$

as in Section 3.2. The element z is $g^{2 q}$, and the normal subgroup H of index two is the (generalised) quaternion subgroup generated by g^{2} and $g h$. Then \tilde{G} is generated by $\tilde{g}=g \gamma$ and $\tilde{h}=h \gamma$, with $g^{2 q}$ identified with $\gamma^{2}=\tilde{h}^{2}$. We have

$$
\tilde{h} \tilde{g} \tilde{h}^{-1}=\gamma h g h^{-1}=\gamma g^{2 q-1}=\gamma^{2} \tilde{g}^{2 q-1}=\tilde{g}^{-1} .
$$

Thus

$$
\tilde{G}=\left\langle\tilde{g}, \tilde{h} \mid \tilde{g}^{4 q}=1, \tilde{h}^{2}=\tilde{g}^{2 q}, \tilde{h} \tilde{g} \tilde{h}^{-1}=\tilde{g}^{-1}\right\rangle
$$

which is a presentation for the generalised quaternion group of order $8 q$. Thus the semidihedral group and generalised quaternion group of the same order are isoclinic.

Now let p^{m} be an odd prime power, and let us apply the same process to the groups $S L^{ \pm}\left(2, p^{m}\right)$ and $S U^{ \pm}\left(2, p^{m}\right)$ described in Section 3.5. These have centres of order two, and normal subgroups $S L\left(2, p^{m}\right)$ and $S U\left(2, p^{m}\right)$ of index two with (generalised) quaternion Sylow 2 -subgroups. These data allow us to define isoclinic groups, which we shall denote $S L^{\circ}\left(2, p^{m}\right)$ and $S U^{\circ}\left(2, p^{m}\right)$, of the same orders as $S L^{ \pm}\left(2, p^{m}\right)$ and $S U^{ \pm}\left(2, p^{m}\right)$. The groups $S L^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ and $S U^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$ have generalised quaternion Sylow 2-subgroups, and will appear in Case 4.6.2 in the next section.

4.6. Groups with generalised quaternion Sylow 2-subgroups

Groups with generalised quaternion Sylow 2-subgroups were classified by Brauer and Suzuki [39], see also Section VII of Brauer [36], as well as Suzuki [208], Glauberman [124]. The main theorem is that if G has a generalised quaternion Sylow 2-subgroup then the involution in the centre of a Sylow 2-subgroup has central image in $G / O(G)$. So the quotient of $G / O(G)$ by this central involution has dihedral Sylow 2-subgroups of order $4 q$, and no odd order normal subgroups. Such groups were analysed by Gorenstein and Walter [129]. By Theorem 1.1 of Craven and Glesser [54], these also represent the only possible fusions systems on a generalised quaternion 2-group. As a consequence, there are three mutually exclusive possibilities for the fusion in G.

CASE 4.6.1. If G has one class of elements of order four then $G / O(G)$ is isomorphic to either the double cover $2 A_{7}$ of the alternating group A_{7}, or a subgroup of $\Gamma L\left(2, p^{m}\right)$ with p^{m} a power of an odd prime, containing $S L\left(2, p^{m}\right)$ with odd index. The principal block of $\mathrm{k} G$ has three isomorphism classes of simple modules.

Case 4.6.2. If G has two classes of elements of order four then G has a normal subgroup of index two, but no normal subgroup of index four. In this case, $G / O(G)$ contains a normal subgroup of odd index isomorphic to either $S L^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ or $S U^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$ (see Section 4.5). The principal block of $k G$ has two isomorphism classes of simple modules.

Case 4.6.3. If G has three classes of elements of order four then $O(G)$ is a normal complement in G to a Sylow 2-subgroup Q, so that $G / O(G) \cong \mathrm{Q}$ and $H^{*} B G \cong H^{*} B \mathrm{Q}$. The principal block of $\mathrm{k} G$ is isomorphic to kQ , and has one isomorphism class of simple modules, namely the trivial module.

Proposition 4.6.1. Suppose that G has generalised quaternion Sylow 2-subgroup Q. Then the homotopy type of $B G_{2}^{\wedge}$ is determined by $|\mathrm{Q}|$ and the number of conjugacy classes of elements of order four.

Proof. This follows from Theorem 1.7.5 and the classification theorem described above.

Representation theory and cohomology of groups with generalised quaternion Sylow 2subgroups, and more generally, blocks with generalised quaternion defect groups and finite dimensional algebras of quaternion type, are discussed in Erdmann $[\mathbf{6 9}, \mathbf{7 0}, \mathbf{7 2}, 74-76]$, as well as Bogdanic $[31,32]$, Cabanes and Picaronny [46], Carlson, Mazza and Thévenaz [47], Eisele [65], Erdmann and Skowroński [79], Generalov et al. [94,96, 108, 118], Hayami [135], Holm [142], Holm, Kessar and Linckelmann [144], Ivanov et al. [146-149], Kawai and Sasaki [153], Kessar and Linckelmann [156], Koshitani and Lassueur [161], Langer [164], Martino and Priddy [179], Müller [184], Olsson [189], Taillefer [210], Zhou and Zimmermann $[\mathbf{2 1 4}]$. The homology of $\Omega B G_{2}^{\wedge}$ was computed by Levi $[\mathbf{1 6 7}]$.

Remark 4.6.2. Let B be the principal block of $k G$. In Case 4.6.1, one can put a $(\mathbb{Z} \times \mathbb{Z})$ grading on the basic algebra of B, and in Case 4.6 .2 , one can put a \mathbb{Z}-grading on the basic algebra. In Case 4.6.3, there is no nontrivial grading. However, in all cases, these gradings are unhelpful, because they induce the trivial grading on cohomology.

We end this section with a table of the various cases of algebras of quaternion type in characteristic two, in Erdmann's classification. We note some minor misprints. In the appendix to $[\mathbf{7 0}]$, the entry $k+2$ in the Cartan matrix for type II should be $k+s$. In the entry for type $\mathrm{Q}(3 \mathcal{K})$ in the tables at the end of $[\mathbf{7 4}]$, the last column should say $q \equiv 3$ $\bmod 4$ rather than $q \equiv 1 \bmod 4$. It seems unclear what happened to type $\mathrm{Q}(2 \mathcal{B})_{2}$ of $[74]$ in the analysis of [69].

Erdmann [74]	[69, 70]	Case	Group	H^{*}	HH*
III.1(e)		-	-		[94]
III.1(e^{\prime})		4.6.3	$Q_{2^{n}}$	[185]	$[118,135]$
$\mathrm{Q}(2 \mathcal{A})$	[69] I	4.6.2	$\begin{gathered} S U^{\circ}\left(2, p^{m}\right), \\ p^{m} \equiv 1(\bmod 4) \end{gathered}$	[179]	
$\mathrm{Q}(2 \mathcal{B})_{1}$	[69] II	4.6.2	$\begin{gathered} S L^{\circ}\left(2, p^{m}\right), \\ p^{m} \equiv 3(\bmod 4) \end{gathered}$	[179]	[96, 108]
$\mathrm{Q}(2 \mathcal{B})_{2}$?	-	$p \rightarrow 3$ (
$\mathrm{Q}(2 \mathcal{B})_{3}$	[69] II $(k=1)$	-	-		
$\mathrm{Q}(3 \mathcal{A})_{1}$	[70] II	-	-		
$\mathrm{Q}(3 \mathcal{A})_{2}$	[70] III	4.6.1	$\begin{gathered} S L\left(2, p^{m}\right), \\ p^{m} \equiv 1(\bmod 4) \end{gathered}$	[179]	
Q(3B)	[70] IV	4.6.1	$2 A_{7}$	[179]	
Q(3C)	[70] I	-	-		
Q(3D)	[70] V	-	-		
$\mathrm{Q}(3 \mathcal{K})$	[70] VI	4.6.1	$\begin{gathered} S L\left(2, p^{m}\right), \\ p^{m} \equiv 3(\bmod 4) \end{gathered}$	[179]	

4.7. One class of elements of order four

Let G be a finite group with quaternion or generalised quaternion Sylow 2-subgroups of order $8 q$, and let k be a field of characteristic two. In this section we shall be interested in Case 4.6.1, and our approach will be to work directly with projective resolutions. Let us look first at the case of $S L(2,3) \cong \mathrm{Q}_{8} \rtimes \mathbb{Z} / 3$, with $q=1$. There are three isomorphism classes of
simple B-modules, all of dimension one, which we shall denote $\mathrm{k}, \boldsymbol{\omega}$ and $\overline{\boldsymbol{\omega}}$. Their projective covers are given by the following diagrams.

Note that $\mathrm{k}, \boldsymbol{\omega}$ and $\overline{\boldsymbol{\omega}}$ are all periodic with period four. The quiver for B is

with relations

$$
\begin{array}{cccc}
a b a=f d, & c d c=b f, & e f e=d b, \\
b a b=c e, & d c d=e a, & & f e f=a c, \\
a b f=0, & c d b=0, & & e f d=0 .
\end{array}
$$

These relations imply that

$$
\begin{equation*}
a c d=b a c=b f e=c e f=d b a=d c e=e a b=f d c=f e a=0 \tag{4.7.2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
c e a=b f d, \quad e a c=d b f, \quad a c e=f d b, \tag{4.7.3}
\end{equation*}
$$

and that the composite of any five arrows is zero.
For larger values of q, we can choose a prime power $p^{m} \equiv 3(\bmod 4)$ such that the 2-part of $p^{m}+1$ is $4 q$, and take $G=S L\left(2, p^{m}\right)$. In this case, we label the two non-trivial simple modules M and N rather than $\boldsymbol{\omega}$ and $\overline{\boldsymbol{\omega}}$. By (1.3) of [76] (see also Theorem VII.8.8 of [74]), the structures of the projectives are similar to the above, but longer. The quiver is the same, but the relations are as follows:

$$
\begin{gathered}
(a b)^{2 q-1} a=f d, \quad(c d)^{2 q-1} c=b f, \quad(e f)^{2 q-1} e=d b, \\
(b a)^{2 q-1} b=c e, \quad(d c)^{2 q-1} d=e a, \quad(f e)^{2 q-1} f=a c, \\
a b f=0, \quad c d b=0, \quad e f d=0 .
\end{gathered}
$$

Again, these imply relations (4.7.2) and (4.7.3), and that the composite of any $4 q+1$ arrows is zero.

We have

$$
B \cong \operatorname{End}_{B}(B)^{\mathrm{op}}=\operatorname{End}_{B}\left(P_{\mathrm{k}} \oplus P_{\mathrm{M}} \oplus P_{\mathrm{N}}\right)^{\mathrm{op}}
$$

and we write \bar{a} for the element of $\operatorname{Hom}_{B}\left(P_{\mathrm{N}}, P_{\mathrm{k}}\right)$ opposite to a, and so on. The relations satisfied by these are obtained by reversing those satisfied by the original elements.

Theorem 4.7.4. Let G be a finite group with quaternion or generalised quaternion Sylow 2 -subgroups and no normal subgroup of index two. Then

$$
H^{*} B G=\Lambda(y) \otimes k[z]
$$

is a formal A_{∞} structure. The degrees of the generators are $|y|=-3$ and $|z|=-4$.
Proof. The minimal resolution P_{*} of the trivial module over B is given by

$$
\ldots \xrightarrow{(\bar{d}, \bar{a})} P_{\mathrm{k}} \xrightarrow{\bar{a} \bar{c} \bar{c}=\bar{d} \bar{f} \bar{b}} P_{\mathrm{k}} \xrightarrow{\left(\frac{\bar{c}}{\bar{b}}\right)} P_{\mathrm{M}} \oplus P_{\mathrm{N}} \xrightarrow{\binom{\bar{c} \bar{d} \bar{f}}{\bar{c} \bar{b} \bar{a}}} P_{\mathrm{M}} \oplus P_{\mathrm{N}} \xrightarrow{(\bar{d}, \bar{a})} P_{\mathrm{k}}
$$

The cohomology $H^{*} B G \cong \operatorname{Ext}_{B}^{*}(\mathrm{k}, \mathrm{k})$ as an algebra is easily read off from this, and is as given in the theorem.

One choice of a map of minimal resolutions \tilde{y} representing y is as follows.

The element z lifts to the periodicity generator $\tilde{z}: P_{*} \rightarrow P_{*}$ of degree -4 . We have $\tilde{y} \tilde{z}=\tilde{z} \tilde{y}$, and we have the following homotopy u from $\tilde{y} \circ \tilde{y}$ to zero.

Thus $d u=\tilde{y} \circ \tilde{y}$. Moreover, it is easy to check that $u \tilde{y}=0$ and $\tilde{y} u=0$. Using the recipe of Kadeishvili given in the proof of Theorem 1.3.8 for computing the A_{∞} structure on $H^{*} B G$ from the differential graded algebra structure on $\operatorname{End}_{B}\left(P_{*}\right)$, this implies that for all $n>2$ we have $m_{n}(y, \ldots, y)=0$. Explicitly, let $A=\operatorname{End}_{B}\left(P_{*}\right)$ with m_{1} the differential and m_{2} the composition of endomorphisms. Then A is quasi-isomorphic to the A_{∞} algebra $C^{*} B G$. The map f_{1} takes $y^{\varepsilon} z^{i}$ to $\tilde{y}^{\varepsilon} \tilde{z}^{i}$, and f_{2} takes $\left(y z^{i_{1}}, y z^{i_{2}}\right)$ to $u z^{i_{1}+i_{2}}$ and the remaining monomials to zero. Then $u \tilde{y}=0$ implies that $m_{2}\left(f_{2} \otimes f_{1}\right)=0$ while $\tilde{y} u=0$ implies that $m_{2}\left(f_{1} \otimes f_{2}\right)=0$. We also check that $f_{2}\left(1 \otimes m_{2}-m_{2} \otimes 1\right)=0$. Now applying Remark 1.3.10, we may take $f_{i}=0$ and $m_{i}=0$ for $i \geqslant 3$ to deduce that $C^{*} B G$ is formal.

Corollary 4.7.5. Let G be a finite group with quaternion or generalised quaternion Sylow 2-subgroup, and with no normal subgroup of index two.
(i) We have $H H^{*} H^{*} B G \cong \Lambda(y, \hat{z}) \otimes \mathrm{k}[z, \hat{y}]$ with $|y|=(0,-3),|z|=(0,-4),|\hat{y}|=$ $(-1,3),|\hat{z}|=(-1,4)$.
(ii) We have $H H^{*} C^{*} B G \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge}$ has the same generators and relations, but the degrees are given by $|y|=-3,|z|=-4,|\hat{y}|=2,|\hat{z}|=3$.
(iii) We have $H_{*} \Omega B G_{2}^{\wedge} \cong \Lambda(\hat{z}) \otimes \mathrm{k}[\hat{y}]$ with $|\hat{z}|=3$ and $|\hat{y}|=2$. This is formal as an A_{∞} algebra.
(iv) We have $H H^{*} H_{*} \Omega B G_{2}^{\wedge} \cong \Lambda(y, \hat{z}) \otimes \mathrm{k}[z, \hat{y}]$ with $|y|=(-1,-2),|z|=(-1,-3)$, $|\hat{y}|=(0,2)$ and $|\hat{z}|=(0,3)$.
Theorem 4.7.6. The category
$\mathrm{D}_{\mathrm{sg}}\left(H^{*} B G\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(H_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}^{\mathrm{b}}\left(\Lambda(\hat{z}) \otimes \mathrm{k}\left[\hat{y}, \hat{y}^{-1}\right]\right)$
has four isomorphism classes of indecomposable objects. As objects in $\mathrm{D}^{\mathrm{b}}\left(\Lambda(\hat{z}) \otimes \mathrm{k}\left[\hat{y}, \hat{y}^{-1}\right]\right)$ they are $\mathrm{k}\left[\hat{y}, \hat{y}^{-1}\right]$ and $\Lambda(\hat{z}) \otimes \mathrm{k}\left[\hat{y}, \hat{y}^{-1}\right]$, with zero differential, and their odd shifts. Both have period two, with \hat{y} inducing the periodicity.

The category

$$
\mathrm{D}_{\mathrm{csg}}\left(H^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(H_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}^{\mathrm{b}}\left(\Lambda(y) \otimes \mathrm{k}\left[z, z^{-1}\right]\right)
$$

has eight isomorphism classes of indecomposable objects. As objects in $\mathrm{D}^{\mathrm{b}}\left(\Lambda(y) \otimes \mathrm{k}\left[z, z^{-1}\right]\right)$ they are $\mathrm{k}\left[z, z^{-1}\right]$ and $\Lambda(y) \otimes \mathrm{k}\left[z, z^{-1}\right]$ with zero differential, and their shifts. Both have period four, with z inducing the periodicity.

The category

$$
\mathrm{D}^{\mathrm{b}}\left(H^{*} B G\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C^{*} B G\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{2}^{\wedge}\right) \simeq \mathrm{D}^{\mathrm{b}}\left(H_{*} \Omega B G_{2}^{\wedge}\right)
$$

has a countable infinity of isomorphism classes of indecomposable objects, as follows. As objects of $\mathrm{D}^{\mathrm{b}}\left(H^{*} B G\right)$ for $n \geqslant 0$ there is an indecomposable module with generators u and v, with $z^{n} u=y v$, and there is one more indecomposable $\mathrm{k}[z]$. These all have zero differential.

4.8. Two classes of elements of order four

In this section, we examine Case 4.6.2, of a finite group G with generalised quaternion Sylow 2-subgroups of order $8 q$ and two classes of elements of order four. This implies that $q \geqslant 2$.

Theorem 4.8.1. Suppose that G is a finite group with generalised quaternion Sylow 2subgroups and two classes of elements of order four. Then

$$
H^{*} B G=\mathrm{k}[y, z] /\left(y^{4}\right),
$$

with $|y|=-1,|z|=-4$.
Proof. Without loss of generality, assume that $O(G)=1$. Then G has a central involution s, and the class of the central extension of $G /\langle s\rangle$ by $\langle s\rangle$, in the notation of Section 2.13, is $t+y^{2}$. So in the spectral sequence of the central extension, we have $d_{2}(w)=$ $t+y^{2}, d_{3}(w)=\mathrm{Sq}^{1}\left(t+y^{2}\right)=\xi+y t$, and $H^{*} B G=\mathrm{k}[\xi, y, t] /\left(\xi y, t+y^{2}, \xi+y t\right) \otimes \mathrm{k}\left[w^{4}\right]$. In this ring, we have $t=y^{2}, \xi=y t=y^{3}$, and $y^{4}=\xi y=0$. So letting z be a representative of w^{4} in $H^{*} B G$, the structure is as given.

Theorem 4.8.2. The Ext ring of $H^{*} B G$ is given by

$$
\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})=\Lambda(\hat{y}, \hat{z}) \otimes \mathrm{k}[\eta]
$$

with $\eta=\langle\hat{y}, \hat{y}, \hat{y}, \hat{y}\rangle,|\hat{y}|=(-1,1),|\hat{z}|=(-1,4)$, and $|\eta|=(-2,4)$.
Proof. The algebra $H^{*} B G$ is a complete intersection. The second partial derivatives of the relation all vanish, so this follows by an easy application of Theorem 1.11.2.

Corollary 4.8.3. We have $H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\hat{y}, \hat{z}) \otimes \mathrm{k}[\eta]$ with $\eta=\langle\hat{y}, \hat{y}, \hat{y}, \hat{y}\rangle,|\hat{y}|=0$, $|\hat{z}|=3$ and $|\eta|=2$.

Proof. There is no room for differentials in the Eilenberg-Moore spectral sequence

$$
\mathrm{Ext}_{H^{*} B G}^{*, *} \Rightarrow H_{*} \Omega B G_{2}^{\wedge}
$$

For the ungrading, the only issue is to choose the correct representative for \hat{y} so that it squares to zero. This is possible, because the group of connected components is $\mathbb{Z} / 2$, and the group algebra of this has a non-zero element that squares to zero.

Theorem 4.8.4. The Hochschild cohomology of $H^{*} B G$ is given by

$$
H H^{*} H^{*} B G=\Lambda(\hat{y}, \hat{z}) \otimes \mathrm{k}[y, z, \eta] /\left(y^{4}\right)
$$

with $|y|=(0,-1),|z|=(0,-4),|\hat{y}|=(-1,1),|\hat{z}|=(-1,4)$ and $|\eta|=(-2,4)$.
Proof. By Theorem 4.8.1, $H^{*} B G$ is a complete intersection, so this follows from Theorem 1.11.5.

ThEOREM 4.8.5. The Hochschild cohomology of $H_{*} \Omega B G_{2}^{\wedge}$ is given by

$$
H H^{*} H_{*} \Omega B G_{2}^{\wedge}=\Lambda(\hat{y}, \hat{z}, \hat{\eta}) \otimes \mathbf{k}[y, z, \eta]
$$

with $|\hat{y}|=(0,0),|\hat{z}|=(0,3),|\hat{\eta}|=(-1,-2),|y|=(-1,0),|z|=(-1,-3)$ and $|\eta|=(0,2)$.
Proof. By Corollary 4.8.3, $H_{*} \Omega B G_{2}^{\wedge}$ is a complete intersection, so this follows from Theorem 1.11.5.

The fact that in $\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})$ we have $\eta=\langle\hat{y}, \hat{y}, \hat{y}, \hat{y}\rangle$ implies that in the spectral sequence

$$
H H^{*} H_{*} \Omega B G_{2}^{\wedge} \Rightarrow H H^{*} C_{*} \Omega B G_{2}^{\wedge}
$$

we have a differential $d^{3}(\hat{\eta})=y^{4}$.

4.9. Non-formality

Our goal in this section is to prove that in Case 4.6.2, $C^{*} B G$ is not formal as an A_{∞} algebra. To do so, we shall show that the Massey triple product $\left\langle y^{2}, y^{2}, y^{2}\right\rangle$ vanishes, but $\left\langle y^{2}, y^{2}, y^{2}, y^{2}\right\rangle$ is equal to $y^{2} z$.

If G is $S L^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$ then G is an example of Case 4.6.2, and the principal block belongs to Erdmann's [74] class $Q(2 \mathcal{B})_{1}$, which is labelled I in the Appendix to [69]. If G is $S U^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 1(\bmod 4)$ then G is also an example of Case 4.6.2, and the principal block belongs to Erdmann's class $Q(2 \mathcal{A})$, which is labelled II in [69]. The two types are derived equivalent.

Type $Q(2 \mathcal{B})_{1}$ is the easier to handle, so we assume that we are in the case of $S L^{\circ}\left(2, p^{m}\right)$ with $p^{m} \equiv 3(\bmod 4)$. The quiver for the principal block B is

with relations

$$
b c=d^{2 q-1}, \quad d b=b a c b a, \quad c d=a c b a c, \quad a^{2}=c b a c b+\lambda(a c b)^{2}, \quad b a^{2}=0
$$

for some value of the parameter $\lambda \in \mathrm{k}$ that has not been determined. Note that these relations imply that

$$
\begin{gathered}
b c b=d^{2 q-1} b=d^{2 q-2} b a c b a=d^{2 q-3} b a c b a^{2} c b a=0, \\
c b c=c d^{2 q-1}=a c b a c d^{2 q-2}=a c b a^{2} c b a c d^{2 q-3}=0, \\
a^{2} c=c b a c b c+\lambda a c b a c b c=0 .
\end{gathered}
$$

The projective covers of the simple modules k and M have the following diagrams (beware of the extra socle term in the expression for a^{2}):

where the number of copies of M down the right hand side of the projective cover of M is $2 q-1$.

The minimal resolution of k is periodic with period four, and has the following form:
$\left.\cdots \rightarrow P_{\mathrm{k}} \oplus P_{\mathrm{M}} \xrightarrow{(\bar{a}, \bar{b})} P_{\mathrm{k}} \xrightarrow{\left(\bar{a}^{3}\right)} P_{\mathrm{k}} \xrightarrow{(\bar{a}+\lambda \bar{b} \bar{c} \bar{c} \bar{b} \bar{c})} P_{\mathrm{k}} \oplus P_{\mathrm{M}} \xrightarrow{(\bar{c} \bar{a} \bar{b} \bar{c}+\lambda \bar{c} \bar{a} \bar{b} \bar{c} \bar{a} \bar{b} \bar{c} \bar{d} \bar{b} \bar{b}}\right) P_{\mathrm{k}} \oplus P_{\mathrm{M}} \xrightarrow{(\bar{a}, \bar{b})} P_{\mathrm{k}}$
We lift $y \in \operatorname{Ext}_{\mathrm{kQ}}^{1}(\mathrm{k}, \mathrm{k})$ to a map \tilde{y} of resolutions as follows:

The composite \tilde{y}^{8} is zero, and we have the following homotopy u_{1} from \tilde{y}^{4} to zero:

This satisfies $u_{1}^{2}=0$ and $u_{1} \tilde{y}^{4}=\tilde{y}^{4} u_{1}$.
The composite $u_{1} \tilde{y}$ is given by the matrices

$$
\text { (0), } \quad\left(\lambda \bar{b} \bar{c} \bar{a} \bar{b} \bar{c}+\lambda^{2} \bar{a} \bar{b} \bar{c} \bar{c} \bar{a} \bar{b} \bar{c}\right), \quad\left(\begin{array}{cc}
0 & \bar{b} \bar{c} \bar{a} \bar{b} \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
\bar{a} & 0 \\
0 & 0
\end{array}\right)
$$

while $\tilde{y} u_{1}$ is given by the matrices
$(\bar{a}), \quad(0), \quad\left(\begin{array}{cc}0 & \bar{b} \bar{c} \bar{a} \bar{b}+\lambda \bar{a} \bar{b} \bar{c} \bar{a} \bar{b} \\ 0 & \lambda^{2} \bar{c} \bar{a} \bar{b} \bar{c} \bar{b} \bar{b}\end{array}\right), \quad\left(\begin{array}{ll}0 & \bar{b} \\ 0 & 0\end{array}\right)$
Since $u_{1} \tilde{y}+\tilde{y} u_{1}$ is non-zero, we need to find a homotopy from it to zero. The following is such a homotopy u_{2} :

$$
(0), \quad\left(0, \lambda \bar{b} \bar{c} \bar{a} \bar{b}+\lambda^{2} \bar{a} \bar{b} \bar{c} \bar{a} \bar{b} \bar{b}, \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\binom{1}{0}\right.
$$

Then $\tilde{y} u_{2}+u_{2} \tilde{y}$ is a homotopy from $\tilde{y}^{2} u_{1}+u_{1} \tilde{y}^{2}$ to zero, $\tilde{y}^{2} u_{2}+\tilde{y} u_{2} \tilde{y}+u_{2} \tilde{y}^{2}$ is a homotopy from $\tilde{y}^{3} u_{1}+u_{1} \tilde{y}^{3}$ to zero, and $\tilde{y}^{3} u_{2}+\tilde{y}^{2} u_{2} \tilde{y}+\tilde{y} u_{2} \tilde{y}^{2}+u_{2} \tilde{y}^{3}$ is a homotopy from $\tilde{y}^{4} u_{1}+u_{1} \tilde{y}^{4}=0$ to zero.

At the next stage, the relevant composites are given by the matrices

$$
\begin{array}{ccccc}
\tilde{y}^{3} u_{2}: & \binom{0}{0}, & \left(0, \lambda \bar{b} \bar{c} \bar{a} \bar{b}+\lambda^{2} \bar{a} \bar{b} \bar{c} \bar{a} \bar{b}\right), & (0,0), & \binom{\bar{a}^{2}}{0} \\
\tilde{y}^{2} u_{2} \tilde{y}: & \binom{\lambda^{3} \bar{a} \bar{b} \bar{c} \bar{a} \bar{b} \bar{c}}{0}, & (0,0), & \left(\bar{a}^{2}, 0\right), & \binom{0}{0} \\
\tilde{y} u_{2} \tilde{y}^{2}: & \binom{0}{0}, & (1,0), & (0,0), & \binom{0}{0} \\
u_{2} \tilde{y}^{3}: & \binom{1}{0}, & (0,0), & (0,0), & \binom{0}{0} .
\end{array}
$$

Thus $\tilde{y}^{3} u_{2}+\tilde{y}^{2} u_{2} \tilde{y}+\tilde{y} u_{2} \tilde{y}^{2}+u_{2} \tilde{y}^{3}+u_{1}^{2}$ is given by the matrices

$$
\binom{1+\lambda^{3} \bar{a} \bar{b} \bar{c} \bar{a} \bar{b} \bar{c}}{0}, \quad\left(1, \lambda \bar{b} \bar{c} \bar{a} \bar{b}+\lambda^{2} \bar{a} \bar{b} \bar{c} \bar{a} \bar{b}\right), \quad\left(\bar{a}^{2}, 0\right), \quad\binom{\bar{a}^{2}}{0} .
$$

This is homotopic to $\tilde{y}^{2} \tilde{z}$, which is given by the matrices

$$
\binom{1}{\lambda \bar{c} \bar{a} \bar{b} \bar{c}}, \quad(1,0), \quad\left(\bar{a}^{2}, 0\right) \quad\binom{\bar{a}^{2}}{0} .
$$

The following is such a homotopy u_{3} :

$$
\left(\begin{array}{cc}
\lambda^{2} \bar{a} & \lambda^{2} \bar{b} \bar{c} \bar{a} \bar{b}+\lambda^{3} \bar{a} \bar{b} \bar{c} \bar{c} \bar{b} \\
\lambda^{2} \bar{c} \bar{a} \bar{b} \bar{c} \bar{a} & \lambda \bar{c} \bar{a} \bar{b}
\end{array}\right), \quad(0,0), \quad(0), \quad\binom{0}{0}
$$

So we set

$$
\begin{aligned}
f_{1}(y) & =\tilde{y} \\
f_{2}\left(y, y^{3}\right) & =f_{2}\left(y^{3}, y\right)=f_{2}\left(y^{2}, y^{2}\right)=u_{1}, \\
f_{3}\left(y, y^{3}, y\right) & =u_{2}, \\
f_{3}\left(y^{2}, y^{2}, y^{2}\right) & =\tilde{y} u_{2}+u_{2} \tilde{y}, \\
f_{3}\left(y^{3}, y, y^{3}\right) & =\tilde{y}^{2} u_{2}+\tilde{y} u_{2} \tilde{y}+u_{2} \tilde{y}^{2}+\tilde{y}^{2} \tilde{z}, \\
f_{4}\left(y^{3}, y, y^{3}, y\right) & =f_{4}\left(y^{2}, y^{2}, y^{2}, y^{2}\right)=f_{4}\left(y, y^{3}, y, y^{3}\right)=u_{3}
\end{aligned}
$$

So we have $m_{3}=0, m_{1} f_{3}=m_{2}\left(f_{2} \otimes f_{1}+f_{1} \otimes f_{2}\right)$, and

$$
\begin{equation*}
m_{4}\left(y^{3}, y, y^{3}, y\right)=m_{4}\left(y^{2}, y^{2}, y^{2}, y^{2}\right)=m_{4}\left(y, y^{3}, y, y^{3}\right)=y^{2} z . \tag{4.9.1}
\end{equation*}
$$

We can now check that the values of $m_{1} f_{4}+f_{1} m_{4}$ and $m_{2}\left(f_{3} \otimes f_{1}+f_{2} \otimes f_{2}+f_{1} \otimes f_{3}\right)$ on the quadruples $\left(y^{3}, y, y^{3}, y\right),\left(y^{2}, y^{2}, y^{2}, y^{2}\right)$ and $\left(y, y^{3}, y, y^{3}\right)$ are all equal to

$$
\tilde{y}^{3} u_{2}+\tilde{y}^{2} u_{2} \tilde{y}+\tilde{y} u_{2} \tilde{y}^{2}+u_{2} \tilde{y}^{3}+u_{1}^{2} .
$$

Equation (4.9.1) may now be interpreted in terms of Hochschild cohomology, using Proposition 1.4.2. Since $m_{3}=0, m_{4}$ is a Hochschild cocycle. It represents the element $\eta^{2} y^{2} z$ in degree $(-4,2)$, which by Theorem 4.8.4 is non-zero.

At the next stage, the expression $m_{2}\left(f_{4} \otimes f_{1}+f_{3} \otimes f_{2}+f_{2} \otimes f_{3}+f_{1} \otimes f_{4}\right)$ sends the 5-tuple $\left(y^{2}, y^{2}, y^{2}, y^{2}, y^{2}\right)$ to $u_{3} \tilde{y}^{2}+\left(\tilde{y} u_{2}+u_{2} \tilde{y}\right) u_{1}+u_{1}\left(\tilde{y} u_{2}+u_{2} \tilde{y}\right)+\tilde{y}^{2} u_{3}$, which is

$$
(0), \quad\left(\begin{array}{ll}
\lambda^{2} \bar{a}^{3} & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\binom{\lambda^{2} \bar{a}^{3}}{0} .
$$

This is homotopic to zero, with homotopy u_{4} given by

$$
(0), \quad\left(\begin{array}{ll}
\lambda^{2} & \left.\lambda^{3} \bar{b} \bar{c} \bar{a} \bar{b}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad\binom{\lambda^{2}}{0} . . ~ . ~
\end{array}\right.
$$

Thus we can take $m_{5}=0$ and $f_{5}\left(y^{2}, y^{2}, y^{2}, y^{2}, y^{2}\right)=u_{4}$, to obtain

$$
m_{1} f_{5}+f_{1} m_{5}=m_{2}\left(f_{4} \otimes f_{1}+f_{3} \otimes f_{2}+f_{2} \otimes f_{3}+f_{1} \otimes f_{4}\right)
$$

THEOREM 4.9.2. If G is a finite group with generalised quaternion Sylow 2-subgroups and two classes of elements of order four, then $C^{*} B G$ and $C_{*} \Omega B G_{2}^{\wedge}$ are not formal as A_{∞} algebras.

Proof. We have just shown that $H^{*} B G$ is not formal, since we can choose m_{3} to be zero, but then m_{4} cannot be chosen to be zero. The fact that $H_{*} \Omega B G_{2}^{\wedge}$ is not formal follows from the relation $m_{4}(\tilde{y}, \tilde{y}, \tilde{y}, \tilde{y})=\eta$. This in turn follows from the fact that the Massey product $\langle\tilde{y}, \tilde{y}, \tilde{y}, \tilde{y}\rangle=\eta$ in Corollary 4.8.3 has no indeterminacy, see Theorem 1.4.5.

This finally allows us to compute $H H^{*} C^{*} B G \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge}$.
THEOREM 4.9.3. We have $H H^{*} C^{*} B G \cong H H^{*} C_{*} \Omega B G_{2}^{\wedge} \cong \Lambda(\hat{y}) \otimes \mathrm{k}[y, z, \eta] /\left(y^{4}, y^{2} \eta^{2}\right)$ with $|y|=-1,|z|=-4,|\hat{y}|=0, \eta=2$.

Proof. The computation above of m_{3} and m_{4} in $H^{*} B G$, together with Corollary 4.8.3 show that in the spectral sequence

$$
H H^{*} H^{*} B G \Rightarrow H H^{*} C^{*} B G
$$

we have $d^{2}=0$ and $d^{3}(\hat{z})=y^{2} \eta^{2}$. This then implies that η is a universal cycle, and $E_{4}=E_{\infty}$.
Ungrading $y^{4}=0$ in E_{∞}, we see that y^{4} has to be a linear combination of the elements $y^{2} z \eta$ and $z^{i} \eta^{2 i-2}$ with $i \geqslant 2$. Since $\tilde{y}^{8}=0$, the relation ungrading $y^{4}=0$ has to satisfy $y^{8}=0$, so it cannot involve the elements $z^{i} \eta^{2 i-2}$. So y^{4} is some multiple of $y^{2} z \eta$. But if it's a non-zero multiple then y^{8} is a non-zero multiple of $y^{2} z^{3} \eta^{3}$. This contradiction shows that $y^{4}=0$ in $H H^{*} H^{*} B G$.

Ungrading $y^{2} \eta^{2}=0$ in E_{∞}, we see that $y^{2} \eta^{2}$ is a linear combination of the elements $z^{i} \eta^{2 i+1}$ with $i \geqslant 1$. Again, since $\tilde{y}^{8}=0, y^{2} \eta^{2}$ is nilpotent, and so we have $y^{2} \eta^{2}=0$ in $H H^{*} H^{*} B G$.

It follows from this, that in the spectral sequence

$$
H H^{*} H_{*} \Omega B G_{2}^{\wedge} \Rightarrow H H^{*} C_{*} \Omega B G_{2}^{\wedge} \cong H H^{*} C^{*} B G
$$

we are forced to have $d^{2}(\hat{z})=y^{2} \eta^{2}, d^{3}(\hat{\eta})=y^{4}$, to give the same answer for $H H^{*} C^{*} B G$.

CHAPTER 5

Beyond tame

5.1. Introduction

In this chapter we discuss $C^{*} B G$ and $C_{*} \Omega B G_{p}^{\wedge}$ beyond the tame case. We've seen in our discussion of tame representation type, that $H_{*} \Omega B G_{p}^{\wedge}$ always has polynomial growth. Furthermore, there is always a finitely generated central subalgebra over which $H_{*} \Omega B G_{p}^{\wedge}$ is finitely generated as a module.

This is not always the case for finite groups. There is a dichotomy, discovered by Ran Levi, between polynomial and exponential growth for $H_{*} \Omega B G_{p}^{\wedge}$, and we discuss this in Section 5.3. We give examples both of exponential growth and of polynomial growth beyond tame representation type. For example, groups of Lie type in non-defining characteristic are always of polynomial growth, as we shall explain in Section 5.7.

The other aspect revealed by our discussion of tame representation type is that in some unexpected cases it turns out that $C^{*} B G$ is formal as an A_{∞} algebra. We begin with a discussion of this phenomenon.

5.2. Formality

One of the surprising aspects of our work is the discovery that $C^{*} B G$ is formal in two of the cases with semidihedral Sylow 2-subgroups, see Theorems 3.7.16 and 3.13.13, and also when G has generalised quaternion Sylow subgroups and no normal subgroup of index two, see Theorem 4.7.4. In this section, we discuss formality in general for the A_{∞} algebra $C^{*} B G$. We begin with finite p-groups.

ThEOREM 5.2.1. Let G be a finite p-group. Then the following are equivalent.
(i) The comultiplication on a minimal resolution of k as $a \mathrm{k} G$-module is strictly coassociative.
(ii) The A_{∞} algebra $C^{*} B G$ is formal.
(iii) $H^{*} B G$ is a polynomial ring.
(iv) $p=2$ and G is an elementary abelian 2-group.

Proof. (i) \Rightarrow (ii): Let P_{*} be a minimal resolution of k as a $\mathrm{k} G$-module. Then the differential on $\operatorname{Hom}_{\mathrm{k} G}\left(P_{*}, \mathbf{k}\right)$ is zero, and so $H^{*} B G \cong \operatorname{Hom}_{\mathrm{k} G}\left(P_{*}, \mathbf{k}\right)$ with the multiplication induced from the comultiplication on P_{*}. Since the comultiplication is coassociative, $\operatorname{Hom}_{\mathrm{k} G}\left(P_{*}, \mathrm{k}\right)$ is a DG algebra with zero differential, and is therefore formal.
(ii) \Rightarrow (iii): If $C^{*} B G$ is formal then the Eilenberg-Moore spectral sequence gives an isomorphism $\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k}) \cong \mathrm{k} G$. In particular, $\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})$ has finite total dimension over k , so $H^{*} B G$ has finite global dimension. It follows that it is regular, and hence a polynomial ring.
(iii) \Leftrightarrow (iv) is proved in Corollary 6.6 of Benson and Carlson [18].
(iv) \Rightarrow (i): If G is cyclic of order two then the reduced bar resolution is minimal, so G satisfies (i). If G is an elementary abelian 2-group then we express G as a direct product of cyclic groups of order two, and form the tensor product of their minimal resolutions. The comultiplication resulting from this is strictly coassociative.

As an illustration of the grading techniques, we prove the following, which also gives another proof of (iv) \Rightarrow (ii) in Theorem 5.2.1.

THEOREM 5.2.2. Suppose that G is a finite group with elementary abelian Sylow 2subgroup D, and k is a field of characteristic two. Then there is a grading on $\mathrm{k} G$ such that the A_{∞} algebra $C^{*} B G$ is intrinsically formal. In particular, without reference to grading, $C^{*} B G$ is formal.

Proof. By Theorem 1.8.2 and Remark 1.8.3, we can suppose that G is a semidirect product $D \rtimes H$, with H a p^{\prime}-subgroup of $\operatorname{Aut}(D)$.

Let $D=\left\langle g_{1}, \ldots, g_{r}\right\rangle \cong(\mathbb{Z} / 2)^{r}$. The group H acts on $k D$, and this gives a short exact sequene of $k H$-modules

$$
0 \rightarrow J^{2}(k D) \rightarrow J(k D) \rightarrow J(k D) / J^{2}(k D) \rightarrow 0 .
$$

Since p does not divide $|H|$, this sequence splits. Let U be an invariant complement to $J^{2}(k D)$ in $J(k D)$, and let X_{1}, \ldots, X_{r} be a basis for U. Then

$$
\mathrm{k} D=k\left[X_{1}, \ldots, X_{r}\right] /\left(X_{1}^{2}, \ldots, X_{r}^{2}\right) .
$$

We can put a grading on $\mathrm{k} D$ by setting $\left|X_{i}\right|=1$. Putting elements of H in degree zero then defines a grading on $k G$. This gives us an H-invariant grading on $H^{*} B D=k\left[x_{1}, \ldots, x_{r}\right]$ with $\left|x_{i}\right|=(-1,-1)$. Then the ring $H^{*} B G=\left(H^{*} B D\right)^{H}$ is doubly graded. The cohomological degrees of elements are equal to their internal degrees. The A_{∞} maps $m_{i}: H^{*} B G \rightarrow H^{*} B G$ have degrees $(i-2,0)$, see Theorem 1.3.8. So for $i>2$ we have $m_{i}=0$, since either the source or the target is zero.

REmARK 5.2.3. A discussion of formality for $C^{*} B G$ in the case of a compact Lie group G can be found in Benson and Greenlees [21]. The last section of this paper has an discussion of the literature.

5.3. Polynomial versus exponential growth

Definition 5.3.1. Let f be a real valued function on the non-negative integers. We say that f grows at most polynomially if there exists a polynomial function p such that for all $n \geqslant 0$ we have $|f(n)| \leqslant p(n)$.

In commutative algebra, we have the following theorem, characterising complete intersections.

Theorem 5.3.2 (Gulliksen [134], Theorem 2.3). Let R be a commutative local ring with residue field k . Then R is a complete intersection if and only if $\mathrm{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k})$ has polynomial growth.

The corresponding theorem for loop space homology of finite complexes is as follows.

Definition 5.3.3. Let f be a real valued function on the non-negative integers. We say that f grows at least semi-exponentially if there exists a constant $C>1$ such that for n large enough $\sum_{i=0}^{n}|f(i)| \geqslant C^{\sqrt{n}}$.

EXAMPLE 5.3.4. The partition function $p(n)$ satisfies $\log p(n) \sim \pi \sqrt{\frac{2 n}{3}}$ as $n \rightarrow \infty$, so $p(n)$ has semi-exponential growth.

Theorem 5.3.5 (Felix, Halperin and Thomas [81]). Let X be a simply connected finite $C W$ complex, and p a prime. Then $H_{n}\left(\Omega X ; \mathbb{F}_{p}\right)$ grows either at most polynomially, or at least semi-exponentially.

Remark 5.3.6. Anick [3] found examples where the growth is semi-exponential but not exponential, in the contexts of both Theorem 5.3.2 and Theorem 5.3.5.

Definition 5.3.7. A finite CW complex is said to be elliptic at p if if $H_{*}\left(\Omega X ; \mathbb{F}_{p}\right)$ has polynomial growth.

Using Theorem 5.3.5, Levi [169] proved the following.
THEOREM 5.3.8. For a finite group G, the loop space homology $H_{*} \Omega B G_{p}^{\wedge}$ grows either at most polynomially or at least semi-exponentially.

Examples are given in Levi $[\mathbf{1 6 8}, \mathbf{1 6 9}]$ of groups for which the homology contains a free algebra on two variables, so that the growth is exponential. No examples are currently known where the growth is at least semi-exponential but not exponential.

REmARK 5.3.9. A discussion of various derived notions of complete intersections, in the context of polynomial versus semi-exponential growth, can be found in Benson, Greenlees and Shamir [24], Greenlees, Hess and Shamir [132]. The hope is that for spaces of the form $B G_{p}^{\wedge}$ with G a finite group, these notions coincide, and describe when $H_{*} \Omega B G_{p}^{\wedge}$ has at most polynomial growth.

5.4. An exponential compact Lie example

For non-connected compact Lie groups, it is not hard to cook up examples of exponential growth. In this section, we give an example which is not only of exponential growth, but also formal. In Section 5.5 we give a finite group example based on this one.

Let $\mathrm{k}=\mathbb{Q}$, let T be an r-dimensional torus, and let $G=T \rtimes \mathbb{Z} / 2$, where the involution inverts every element of T. Then $H^{*} B T=\mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ with $\left|x_{i}\right|=2$ for $1 \leqslant i \leqslant r$, and $H^{*} B G$ is the subalgebra generated by $x_{i, j}=x_{i} x_{j}$ with $1 \leqslant i \leqslant j \leqslant r$. The relations are

$$
x_{i, i} x_{j, j}=x_{i, j}^{2}, \quad x_{i, i} x_{j, k}=x_{i, j} x_{i, k}, \quad x_{i, j} x_{k, \ell}=x_{i, k} x_{j, \ell}=x_{i, \ell} x_{j, k} .
$$

Here, distinct letters in the subscripts represent distinct indices. This is a Koszul algebra, so $\mathrm{Ext}_{H^{*} B G}^{*}(\mathrm{k}, \mathrm{k})$ is the Koszul dual, which is a non-commutative algebra generated by degree $(-1,2)$ elements $\hat{x}_{i, j}$ with relations

$$
\begin{gathered}
\hat{x}_{i, i}^{2}=0, \quad\left[\hat{x}_{i, i}, \hat{x}_{i, j}\right]=0, \quad\left[\hat{x}_{i, i}, \hat{x}_{j, j}\right]+\hat{x}_{i, j}^{2}=0, \\
{\left[\hat{x}_{i, i}, \hat{x}_{j, k}\right]+\left[\hat{x}_{i, j}, \hat{x}_{i, k}\right]=0, \quad\left[\hat{x}_{i, j}, \hat{x}_{k, \ell}\right]+\left[\hat{x}_{i, k}, \hat{x}_{j, \ell}\right]+\left[\hat{x}_{i, \ell}, \hat{x}_{j, k}\right]=0}
\end{gathered}
$$

Note that here, for elements x, x^{\prime} of odd degree, $\left[x, x^{\prime}\right]$ means $x x^{\prime}+x^{\prime} x$.

The Eilenberg-Moore spectral sequence

$$
\operatorname{Ext}_{H^{*} B G}^{*}(\mathbb{Q}, \mathbb{Q}) \Rightarrow H_{*} \Omega B G_{\mathbb{Q}}^{\wedge}
$$

has no room for differentials or ungrading problems, so $H_{*} \Omega B G_{\mathbb{Q}}^{\wedge}$ is the same ring as $\operatorname{Ext}_{H^{*} B G}^{*}(\mathbb{Q}, \mathbb{Q})$, but where the generators $\hat{x}_{i, j}$ are in degree one. For $r \geqslant 3$, this has exponential growth. For example, when $r=3$ it is a free module on eight generators over the free subalgebra $\mathbb{Q}\left\langle\hat{x}_{1,2}, \hat{x}_{1,3}, \hat{x}_{2,3}\right\rangle$, and the quotient by the ideal generated by $\hat{x}_{1,2}, \hat{x}_{1,3}, \hat{x}_{2,3}$ is an exterior algebra on $\hat{x}_{1,1}, \hat{x}_{2,2}, \hat{x}_{3,3}$. The Poincaré series for $r=3$ is given by

$$
\sum_{n=0}^{\infty} t^{n} \operatorname{dim}_{\mathrm{k}} H_{n} \Omega B G_{\mathbb{Q}}^{\wedge}=\frac{(1+t)^{3}}{1-3 t}=1+6 t+21 t^{2}+64 t^{3}+192 t^{4}+576 t^{5}+\cdots
$$

For general r, we have

$$
\sum_{n=0}^{\infty} t^{n} \operatorname{dim}_{\mathrm{k}} H^{2 n} B G=\frac{\sum_{i=0}^{\left\lfloor\frac{r}{2}\right\rfloor}\binom{r}{2 i} t^{i}}{(1-t)^{r}}, \quad \sum_{n=0}^{\infty} t^{n} \operatorname{dim}_{\mathrm{k}} H_{n} \Omega B G_{\mathbb{Q}}^{\wedge}=\frac{(1+t)^{r}}{\sum_{i=0}^{\left\lfloor\frac{r}{2}\right\rfloor}\binom{r}{2 i}(-t)^{i}} .
$$

This is an example of the general relation (1.12.5) between the Poincaré series of a Koszul algebra and its dual. To apply the formula literally, the variable t in the first sum is replaced by $s t^{-2}$, and in the second by $s t$.

Remark 5.4.1. It follows from the main theorem of Benson and Greenlees [21] that for this family of examples, the A_{∞} structure on $H^{*} B G$ is formal. Then since it is a Koszul algebra, it follows that the Koszul dual $H_{*} \Omega B G_{\mathbb{Q}}^{\wedge}$ is also formal.

5.5. An exponential finite group example

The loop space homology in the cases discussed in Chapters 2-4 is of polynomial growth, and almost commutative, in the sense that there is a central subring over which the whole ring is finitely generated as a module. In this section, for contrast, we examine a finite group example where $H_{*} \Omega B G_{p}^{\wedge}$ has exponential growth. We take our cue from what happened in the compact Lie example of Section 5.4. This is related to Levi's example but is somewhat simpler to analyse using our technique of introducing an internal grading on the group algebra.

Let p be an odd prime, k be a field of characteristic p, and let G be the group

$$
(\mathbb{Z} / p \times \mathbb{Z} / p) \rtimes \mathbb{Z} / 2
$$

given by the presentation

$$
\left\langle g, h, s \mid g^{p}=h^{p}=s^{2}=1, g h=h g, s g=g^{-1} s, s h=h^{-1} s\right\rangle .
$$

Let H be the subgroup of index two generated by g and h, and let $X=\sum_{i=1}^{p-1} g^{i} / i$ and $Y=\sum_{i=1}^{p-1} h^{i} / i$ as elements of $\mathrm{k} H \leqslant \mathrm{k} G$. Then we have the following presentation for the group algebra:

$$
\mathrm{k} G=\mathrm{k}\left\langle X, Y, s \mid X^{p}=Y^{p}=0, X Y=Y X, s X=-X s, s Y=-Y s, s^{2}=1\right\rangle
$$

We can put a double grading on this by setting $|X|=(1,0),|Y|=(0,1)$ and $|s|=(0,0)$. Then

$$
H^{*} B H=\mathrm{k}[u, v] \otimes \Lambda(x, y)
$$

with $|u|=(-2,-p, 0),|v|=(-2,0,-p),|x|=(-1,-1,0)$ and $|y|=(-1,0,-1)$. The cohomology ring $H^{*} B G$ is equal to the invariants of the action of s, which is the subring generated by $a=u^{2}, b=u v, c=v^{2}, \alpha=x u, \beta=x v, \gamma=y u, \delta=y v$, and $\varepsilon=x y$. Regarding a, b and c as polynomial generators and the rest as exterior generators, the further relations are:

$$
\begin{gathered}
a c=b^{2}, \quad a \beta=b \alpha, \quad b \beta=c \alpha, \quad a \delta=b \gamma, \quad b \delta=c \gamma, \quad a \varepsilon=\alpha \gamma, \quad b \varepsilon=\alpha \delta=\beta \gamma, \\
c \varepsilon=\beta \delta, \quad \alpha \beta=0, \quad \gamma \delta=0, \quad \alpha \varepsilon=0, \quad \beta \varepsilon=0, \quad \gamma \varepsilon=0, \quad \delta \varepsilon=0 .
\end{gathered}
$$

Ignoring the higher multiplications, this is a Koszul algebra, and so its Ext algebra is the Koszul dual, with eight generators and 16 relations:

$$
\begin{gathered}
\operatorname{Ext}_{H^{*} * B G}^{*, *}(\mathrm{k}, \mathrm{k})=\mathrm{k}\langle\hat{a}, \hat{b}, \hat{c}, \hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\delta}, \hat{\varepsilon}| \hat{a}^{2}=\hat{c}^{2}=[\hat{a}, \hat{b}]=[\hat{b}, \hat{c}]=[\hat{a}, \hat{c}]+\hat{b}^{2}=0, \\
{[\hat{a}, \hat{\alpha}]=[\hat{a}, \hat{\gamma}]=[\hat{c}, \hat{\beta}]=[\hat{c}, \hat{\delta}]=0} \\
{[\hat{a}, \hat{\beta}]+[\hat{b}, \hat{\alpha}]=[\hat{a}, \hat{\delta}]+[\hat{b}, \hat{\gamma}]=[\hat{b}, \hat{\beta}]+[\hat{c}, \hat{\alpha}]=[\hat{b}, \hat{\delta}]+[\hat{c}, \hat{\gamma}]=0} \\
[\hat{a}, \hat{\varepsilon}]+[\hat{\alpha}, \hat{\gamma}]=[\hat{b}, \hat{\varepsilon}]+[\hat{\alpha}, \hat{\delta}]+[\hat{\beta}, \hat{\gamma}]=[\hat{c}, \hat{\varepsilon}]+[\hat{\beta}, \hat{\delta}]=0\rangle .
\end{gathered}
$$

The degrees are

$$
\begin{array}{rll}
|\hat{a}|=(-1,4,2 p, 0), & |\hat{b}|=(-1,4, p, p), & |\hat{c}|=(-1,4,0,2 p), \quad|\hat{\alpha}|=(-1,3, p+1,0), \\
|\hat{\beta}|=(-1,3,1, p), & |\hat{\gamma}|=(-1,3, p, 1), & |\hat{\delta}|=(-1,3,0, p+1), \\
|\hat{\varepsilon}|=(-1,2,1,1) .
\end{array}
$$

Since the differentials in the Eilenberg-Moore spectral sequence preserve the two internal degrees, it is easy to see that there is no room for non-zero differentials. For example, $d^{n}(\hat{a})$ has last degree zero, so it can only involve \hat{a} and $\hat{\alpha}$. No monomial in these has the appropriate third degree.

Similarly, when we ungrade the E^{∞} page of the spectral sequence, there are no other monomials of the same internal degrees as the quadratic terms in the list, so the ungraded relations are the same as in E^{∞}. It follows that $H_{*} \Omega B G_{p}^{\wedge} \cong \mathrm{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})$ is as described above, but where the first two degrees have been added:

$$
\begin{array}{rll}
|\hat{a}|=(3,2 p, 0), & |\hat{b}|=(3, p, p), & |\hat{c}|=(3,0,2 p), \\
|\hat{\beta}|=(2,1, p), & |\hat{\gamma}|=(2, p, 1), & |\hat{\delta}|=(2,0, p+1), \\
|\hat{\delta}|=(1,1,1)
\end{array}
$$

This algebra contains for example the free algebra $k\langle\hat{\beta}, \hat{\gamma}\rangle$, and therefore has exponential growth.

To obtain this Poincaré series, we use the formula (1.12.5). For $R=H^{*} B G$ we have

$$
p_{R}(s, t)=\frac{1+s t^{-2}+4 s t^{-3}+s t^{-4}+s^{2} t^{-6}}{\left(1-s t^{-4}\right)^{2}}
$$

For $R^{!}=H_{*} \Omega B G_{p}^{\wedge}$ we have

$$
p_{R^{\prime}}(s, t)=1 / p_{R}\left(-s t^{-1}, t^{-1}\right)=\frac{\left(1+s t^{3}\right)^{2}}{1-s t-4 s t^{2}-s t^{3}+s^{2} t^{4}} .
$$

Setting $s=1$ and cancelling gives the required Poincaré series.
$\sum_{n=0}^{\infty} t^{n} \operatorname{dim}_{\mathrm{k}} H_{n} \Omega B G_{p}^{\wedge}=\frac{\left(1-t+t^{2}\right)^{2}}{1-3 t+t^{2}}=1+t+5 t^{2}+12 t^{3}+32 t^{4}+84 t^{5}+220 t^{6}+576 t^{7}+\cdots$
which agrees with the answer given in Section 2 of [16] in the case $p=3$.
Remark 5.5.1. A similar but more complicated analysis holds in larger rank. Let $G=$ $(\mathbb{Z} / p)^{r} \rtimes \mathbb{Z} / 2$ with the involution inverting every element of order p, and let H be the normal subgroup of index two. The group algebra $\mathrm{k} G$ has r internal gradings, one for each factor of H. The cohomology ring $H^{*} B G$ is equal to the invariants of the involution on $H^{*} B H$. This is again a Koszul algebra, with Koszul dual $\operatorname{Ext}_{H^{*} B G}^{*, *}(\mathrm{k}, \mathrm{k})$. There is no room for non-zero differentials in the Eilenberg-Moore spectral sequence, and no ungrading problems, so we have $H_{*} \Omega B G_{p}^{\wedge}=\operatorname{Ext}_{H^{*} B G}^{* *}(\mathrm{k}, \mathrm{k})$. This again has exponential growth, but the task of writing down the Poincaré series is more complicated.

5.6. Reflection groups

We do not want to give the impression that polynomial growth for $H_{*} \Omega B G_{p}^{\wedge}$ only happens for finite or tame representation type. We therefore mention the following. In the next two sections we give further examples of polynomial growth.

THEOREM 5.6.1. Suppose that G is a semidirect product $E \rtimes H$ with E an elementary abelian p-group (p odd), and H a p-adic reflection group of order prime to p, acting on E via the reduction modulo p of the reflection representation. Then $H^{*} B G$ is a polynomial tensor exterior algebra. In this case, $H_{*} \Omega B G_{p}^{\wedge}$ is also usually polynomial tensor exterior, and always has polynomial growth.

Proof. We have $H^{*} B G=\left(H^{*} B E\right)^{H}$, the invariants of H on $H^{*} B E$. It follows from a theorem of Solomon $[\mathbf{2 0 3}]$ that $H^{*} B G$ is a polynomial algebra tensored with an exterior algebra. So $\mathrm{Ext}_{H^{*} B G}^{*}(\mathrm{k}, \mathrm{k})$ is also polynomial tensor exterior, and has polynomial growth. It then follows from the Eilenberg-Moore spectral sequence that $H_{*} \Omega B G_{p}^{\wedge}$ has polynomial growth.

REMARK 5.6.2. In the theorem, if we use a single grading on $k G$ by powers of the radical, the polynomial generators for $H^{*} B G$ lie in degrees $\left(-2 n_{i},-p n_{i}\right)$ and the exterior ones in degrees $\left(-2 n_{i}+1,-p\left(n_{i}-1\right)-1\right)$, where n_{i} runs over the degrees of the fundamental invariants of the reflection group H. So the polynomial generators of $\operatorname{Ext}_{H^{*} B G}^{*}(\mathrm{k}, \mathrm{k})$ are in degree $\left(-1,2 n_{i}-1, p\left(n_{i}-1\right)+1\right)$ and the exterior generators are in degrees $\left(-1,2 n_{i}, p n_{i}\right)$. There is no room for non-zero differentials, but it occasionally happens that the exterior relations ungrade to have non-zero squares and commutators in the polynomial part. An example of this is the symmetric group of degree three at the prime three, with $E=\mathbb{Z} / 3$ and $H=\mathbb{Z} / 2$.

5.7. Groups of Lie type in non-defining characteristic

In this section, we describe why, if G is a finite group of Lie type in non-defining characteristic $p, H_{*} \Omega B G_{p}^{\wedge}$ has polynomial growth. This is a consequence of a construction of Quillen [191], elaborated in Friedlander [84, 85], Fiedorowicz and Priddy [82], Wilkerson [211], and Kleinerman [157].

Let G be a connected compact Lie group, and let $G\left(p^{m}\right)$ be the corresponding finite group of Lie type over the finite field $\mathbb{F}_{p^{m}}$. Let ℓ be a prime different from p, and k a field
of characteristic ℓ. Then there is an Adams operation $\psi^{p^{m}}: B G_{\ell}^{\wedge} \rightarrow B G_{\ell}^{\wedge}$ and a homotopy fibre square

In the case of a twisted group of Lie type, $\psi^{p^{m}}$ is replaced by its composite with a diagram automorphism, and the same homotopy fibre square results.

We consider the Eilenberg-Moore spectral sequence of this fibre square with coefficients in k :

$$
\operatorname{Tor}_{*, *}^{H^{*} B G \otimes H^{*} B G}\left(H^{*} B G, H^{*} B G\right) \Rightarrow H^{*} B G\left(p^{m}\right)
$$

If ℓ is not a torsion prime for G then $H^{*} B G$ is a polynomial ring. In this case, the spectral sequence stops at the E_{2} page, and gives a finite filtration on $H^{*} B G\left(p^{m}\right)$ whose associated graded is a polynomial algebra tensored with an exterior algebra. The degrees of the polynomial generators are twice the degrees of suitable fundamental invariants of the Weyl group, while the degrees of the exterior generators are one less.

If ℓ is an odd prime then there is no ungrading problem, and this gives the structure of the cohomology as a polynomial tensor exterior algebra. On the other hand, if $\ell=2$, it can happen that the exterior generators ungrade to give elements whose square is not necessarily zero, but is expressible in terms of the other generators. The exact relations can be difficult to determine. Independently of the exact relations, the answer is always a complete intersection.

We now apply another Eilenberg-Moore spectral sequence (see Remark 1.6.3)

$$
\operatorname{Ext}_{H^{*} B G\left(p^{m}\right)}^{*, *}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \Omega B G\left(p^{m}\right)_{\ell}^{\wedge}
$$

So the associated graded of $H_{*} \Omega B G\left(p^{m}\right)_{\ell}^{\wedge}$ is usually a polynomial tensor exterior algebra. If $\ell=2$, the computation has to be made using Theorem 1.11.2. The result is that $H_{*} \Omega B G\left(p^{m}\right)$ has polynomial growth. It is finite as a module over its centre, and the centre is finitely generated as a k-algebra.

Example 5.7.1 (Quillen [191]). Let $G=U(n)$, of Lie type A_{n-1}. We have

$$
H^{*} B U(n)=\mathrm{k}\left[c_{1}, \ldots, c_{n}\right],
$$

where the c_{i} are the Chern classes of degree $2 n$. Then $G\left(p^{m}\right)$ is the general linear group $G L\left(n, p^{m}\right)$.

For ℓ odd, this gives

$$
H^{*} B G L\left(n, p^{m}\right)=\mathrm{k}\left[c_{r}, c_{2 r}, \ldots, c_{t r}\right] \otimes \Lambda\left(e_{r}, e_{2 r}, \ldots, e_{t r}\right)
$$

where r is the order of p^{m} modulo ℓ, and t is the integer part of n / r. The degrees are $\left|c_{i r}\right|=-2 i r,\left|e_{i r}\right|=-2 i r+1$. Then the associated graded of $H_{*} \Omega B G L\left(n, p^{m}\right)_{\ell}^{\wedge}$ is

$$
\mathrm{k}\left[\hat{e}_{r}, \hat{e}_{2 r}, \ldots, \hat{e}_{t r}\right] \otimes \Lambda\left(\hat{c}_{r}, \hat{c}_{2 r}, \ldots, \hat{c}_{t r}\right)
$$

with $\left|\hat{e}_{i r}\right|=2 i r-2,\left|\hat{c}_{i r}\right|=2 i r-1$. Beware that there is no reason why the answer should be graded commutative, so it is not obvious how to ungrade the square zero relations for the
$\hat{c}_{i r}$. For example, in characteristic three we have

$$
H_{*} \Omega B G L(2,2)_{3}^{\wedge}=\mathrm{k}\left[\hat{e}_{2}, \hat{c}_{2}\right] /\left(\hat{c}_{2}^{2}+\hat{e}_{2}^{3}\right)
$$

see Section 1.13. But in any case, the answer has polynomial growth.
For $\ell=2$, we have $r=1$ and $t=n$. In this case, if $p^{m} \equiv 1(\bmod 4)$ we get the same answer as above, but if $p^{m} \equiv 3(\bmod 4)$ then we have

$$
e_{j}^{2}=\sum_{a=0}^{j-1} c_{a} c_{2 j-1-a} .
$$

Here, $c_{2 j-1-a}$ is interpreted as zero if $2 j-1-a>n$. This gives a complete intersection with Krull dimension n, with $n+\left\lfloor\frac{n}{2}\right\rfloor$ generators $e_{1}, \ldots, e_{n}, c_{2}, c_{4}, \ldots$ and $\left\lfloor\frac{n}{2}\right\rfloor$ relations. So by Theorem 1.11.2, the E^{2} term of the Eilenberg-Moore spectral sequence is finite as a module over a central polynomial subring with $\left\lfloor\frac{n}{2}\right\rfloor$ generators. So $H_{*} \Omega B G L\left(n, p^{m}\right)_{\ell}^{\wedge}$ has polynomial growth.

Example 5.7.2 (Kleinerman [$\mathbf{1 5 7}]$). Let $G=G_{2}$ and $\ell=2$. Two is a torsion prime for G, and we have

$$
H^{*} B G_{2}=\mathrm{k}\left[d_{4}, d_{6}, d_{7}\right] .
$$

The Eilenberg-Moore spectral sequence gives the associated graded of $H^{*} B G_{2}\left(p^{m}\right)$ (p an odd prime) to be $\mathbf{k}\left[d_{4}, d_{6}, d_{7}\right] \otimes \Lambda\left(y_{3}, y_{5}, y_{6}\right)$. Ungrading the relations gives $y_{3}^{2}=y_{6}, y_{5}^{2}=y_{3} d_{7}+y_{6} d_{4}$ and $y_{6}^{2}=y_{5} d_{7}+y_{6} d_{6}($ Grbić $[\mathbf{1 3 0}])$. So $H^{*} B G_{2}\left(p^{m}\right)$ is the complete intersection

$$
\mathrm{k}\left[d_{4}, d_{6}, d_{7}, y_{3}, y_{5}\right] /\left(y_{5}^{2}+y_{3} d_{7}+y_{3}^{2} d_{4}, y_{3}^{4}+y_{5} d_{7}+y_{3}^{2} d_{6}\right)
$$

Using Theorem 1.11.2, we see that the E^{2} page of the Eilenberg-Moore spectral sequence for $H_{*} \Omega B G_{2}\left(p^{m}\right)_{2}^{\wedge}$ is generated over the central subalgebra $\mathbf{k}\left[s_{10}, s_{12}\right]$ by elements $\hat{d}_{4}, \hat{d}_{6}, \hat{d}_{7}$, \hat{y}_{3}, \hat{y}_{5}. The relations say that all squares and commutators of the latter elements are zero except for

$$
\hat{y}_{5}^{2}=\left[\hat{d}_{7}, \hat{y}_{3}\right]=s_{10}, \quad\left[\hat{d}_{7}, \hat{y}_{5}\right]=s_{12}
$$

There is no room for differentials, but ungrading the E^{∞} page requires some work. This is done in the paper of Levi and Seeliger [172], where they also compute the coproduct and action of the dual Steenrod algebra. It turns out that E^{∞} as given above is isomorphic to $H_{*} \Omega B G_{2}\left(p^{m}\right)_{2}^{\wedge}$. The degrees are added, so that the elements \hat{d}_{i} and \hat{y}_{i} now have degree $i-1$, and the elements s_{j} have degree $j-2$.

This is of polynomial growth, since it is finitely generated (actually free of rank 2^{5}) over the central polynomial subalgebra $k\left[s_{10}, s_{12}\right]$ with Poincaré series

$$
\sum_{n=0}^{\infty} \operatorname{dim}_{\mathrm{k}} H_{n} \Omega B G_{2}\left(p^{m}\right)_{2}^{\wedge}=\frac{\left(1+t^{2}\right)\left(1+t^{3}\right)\left(1+t^{4}\right)\left(1+t^{5}\right)\left(1+t^{6}\right)}{\left(1-t^{8}\right)\left(1-t^{10}\right)}=\frac{\left(1+t^{3}\right)\left(1+t^{6}\right)}{\left(1-t^{2}\right)\left(1-t^{5}\right)}
$$

5.8. An exotic example: $B \operatorname{Sol}(q)$

Let q be an odd prime power, and let $\operatorname{Sol}(q)$ be the exotic Benson-Solomon 2-local finite group. This was originally discussed as a configuration that was proved not to come from a finite group in Solomon [204]. Its classifying space $B \mathrm{Sol}(q)$ was then discussed in Benson [14], and finally it was constructed as a fusion system and linking system by Levi and Oliver [171]. Using the fibre square like the one in the previous section, the associated
graded of $H^{*} B \mathrm{Sol}(q)$ was computed in $[\mathbf{1 4}]$ to be a polynomial ring on generators in degrees $8,12,14$ and 15 tensored with an exterior algebra on generators in degrees $7,11,13$ and 14. The ungrading was carried out by Grbić [130], who computed it to be the codimension three complete intersection

$$
H^{*} B \operatorname{Sol}(q)=\mathrm{k}\left[u_{8}, u_{12}, u_{14}, u_{15}, y_{7}, y_{11}, y_{13}\right] /\left(f_{22}, f_{26}, f_{28}\right)
$$

where the (homological) degrees are minus the subscripts, and where

$$
\begin{aligned}
& f_{22}=y_{11}^{2}+u_{8} y_{7}^{2}+u_{15} y_{7}, \\
& f_{26}=y_{13}^{2}+u_{12} y_{7}^{2}+u_{15} y_{11}, \\
& f_{28}=y_{7}^{4}+u_{14} y_{7}^{2}+u_{15} y_{13} .
\end{aligned}
$$

Applying Theorem 1.11.2, we find that $\operatorname{Ext}_{H^{*} B \operatorname{Sol}(q)}^{* *}(\mathrm{k}, \mathrm{k})$ is generated over a central subalgebra $\mathbf{k}\left[s_{22}, s_{26}, s_{28}\right]$ by elements $\hat{u}_{8}, \hat{u}_{12}, \hat{u}_{14}, \hat{u}_{15}, \hat{y}_{7}, \hat{y}_{11}, \hat{y}_{13}$. The degrees of the elements \hat{u}_{i} and \hat{y}_{i} are $(-1, i)$, while the degrees of the s_{j} are $(-2, j)$. The relations say that all squares and commutators of the latter elements are zero except for

$$
\hat{y}_{11}^{2}=\left[\hat{u}_{15}, \hat{y}_{7}\right]=s_{22}, \quad \hat{y}_{13}^{2}=\left[\hat{u}_{15}, \hat{y}_{11}\right]=s_{26}, \quad\left[\hat{u}_{15}, \hat{y}_{13}\right]=s_{28}
$$

In the Eilenberg-Moore spectral sequence

$$
\operatorname{Ext}_{H^{*} B \operatorname{Sol}(q)}^{* *}(\mathrm{k}, \mathrm{k}) \Rightarrow H_{*} \Omega B \operatorname{Sol}(q)
$$

there is no room for non-zero differentials, but ungrading the E^{∞} page takes more work. This is done in the paper of Levi and Seeliger [172], where they also compute the coproduct and action of the dual Steenrod algebra. It turns out that E^{∞} as given above is isomorphic to $H_{*} \Omega B \operatorname{Sol}(q)$. The degrees are added, so that the \hat{u}_{i} and \hat{y}_{i} now have degree $i-1$ and the s_{j} have degree $j-2$.

This is of polynomial growth, since it is finitely generated (actually free of rank 2^{7}) as a module over the central polynomial subalgebra $\mathbf{k}\left[s_{22}, s_{26}, s_{28}\right]$, with Poincaré series

$$
\begin{aligned}
\sum_{n=0}^{\infty} t^{n} \operatorname{dim}_{\mathrm{k}} H_{n} \Omega B \operatorname{Sol}(q) & =\frac{\left(1+t^{7}\right)\left(1+t^{11}\right)\left(1+t^{13}\right)\left(1+t^{14}\right)\left(1+t^{6}\right)\left(1+t^{10}\right)\left(1+t^{12}\right)}{\left(1-t^{20}\right)\left(1-t^{24}\right)\left(1-t^{26}\right)} \\
& =\frac{\left(1+t^{7}\right)\left(1+t^{11}\right)\left(1+t^{14}\right)}{\left(1-t^{6}\right)\left(1-t^{10}\right)\left(1-t^{13}\right)}
\end{aligned}
$$

5.9. Some questions

We end with some questions related to our computations.
Question 5.9.1 (John Greenlees). For a finite group G, is $\mathrm{D}^{\mathrm{b}}\left(C^{*} B G\right)$ generated by $C^{*} B P$, where P is a Sylow p-subgroup of G ?

In the cases where we have been able to describe the structure of the singularity category, the answer to this question is yes. It is also yes in the case of a finite p-group, by the work of Greenlees and Stevenson [133].

Question 5.9.2. The ring $H^{*} B G$ acts on $\mathrm{D}^{\mathrm{b}}\left(C^{*} B G\right) \simeq \mathrm{D}^{\mathrm{b}}\left(C_{*} \Omega B G_{p}^{\wedge}\right)$ and hence on $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{csg}}\left(C_{*} \Omega B G_{p}^{\wedge}\right)$ and $\mathrm{D}_{\mathrm{csg}}\left(C^{*} B G\right) \simeq \mathrm{D}_{\mathrm{sg}}\left(C_{*} \Omega B G_{p}^{\wedge}\right)$. What are the supports of these? In particular, is the support of $\mathrm{D}_{\mathrm{sg}}\left(C^{*} B G\right)$ equal to the nucleus of G, as defined in [19] and discussed further in [13]?

QUESTION 5.9.3. In the examples that have been computed so far for $H_{*} \Omega B G_{p}^{\wedge}$, we have the following.
(1) If the growth is polynomial then there is a central subring over which the homology is finitely generated as a module.
(2) If the growth is semi-exponential then there is a free subalgebra on two generators, which implies exponential growth.
To what extent are these true in general?
Is $H_{*} \Omega B G_{p}^{\wedge}$ always finitely presented as an algebra?
Is the Poincaré series

$$
\sum_{n=0}^{\infty} t^{n} \operatorname{dim}_{\mathrm{k}} H_{n} \Omega B G_{p}^{\wedge}
$$

always a rational function of t ?

Bibliography

1. J. L. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261.
2. J. L. Alperin and M. Broué, Local methods in block theory, Ann. of Math. 110 (1979), no. 1, 143-157.
3. D. J. Anick, A counterexample to a conjecture of Serre, Ann. of Math. 115 (1982), no. 1, 1-33.
4. M. A. Antipov and A. I. Generalov, Cohomology of algebras of semidihedral type II, J. Math. Sci. 12 (2004), no. 1, 4681-4697.
5. T. Asai, A dimension formula for the cohomology rings of finite groups with dihedral Sylow 2-subgroups, Comm. Algebra 19 (1991), no. 11, 3173-3190.
6. T. Asai and H. Sasaki, The mod 2 cohomology algebras of finite groups with dihedral Sylow 2-subgroups, Comm. Algebra 21 (1993), no. 8, 2771-2790.
7. M. Aschbacher, R. Kessar, and B. Oliver, Fusion systems in algebra and topology, London Math. Soc. Lecture Note Series, vol. 391, Cambridge University Press, 2011.
8. L. L. Avramov, Infinite free resolutions, Six lectures on commutative algebra (J. Elias, J. M. Giral, R. M. Miró-Roig, and S. Zarzuela, eds.), Progr. in Math., vol. 166, Birkhäuser Verlag, Basel, 1998.
9. O. I. Balashov and A. I. Generalov, The Yoneda algebras for a certain class of dihedral algebras, Vestnik St. Petersburg Univ. Math. 32 (1999), no. 3, 1-8, (Russian, English summary).
10. , Cohomology of algebras of dihedral type II, St. Petersburg Math. J. 13 (2002), no. 1, 1-16.
11. H. Bender, Finite groups with dihedral Sylow 2-subgroups, J. Algebra 70 (1981), 216-228.
12. H. Bender and G. Glauberman, Characters of finite groups with dihedral Sylow 2-subgroups, J. Algebra 70 (1981), 200-215.
13. D. J. Benson, Cohomology of modules in the principal block of a finite group, New York Journal of Mathematics 1 (1995), 196-205.
14. Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Proceedings of the 1994 Durham conference on Geometry and Cohomology in Group Theory (P. Kropholler, G. Niblo, and R. Stöhr, eds.), London Math. Soc. Lecture Note Series, vol. 252, 1998, pp. 10-23.
15._, Representations and Cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics, vol. 30, Second Edition, Cambridge University Press, 1998.
15. __, An algebraic model for chains on $\Omega\left(B G_{p}^{\wedge}\right)$, Trans. Amer. Math. Soc. 361 (2009), 2225-2242.
16. D. J. Benson and J. F. Carlson, Diagrammatic methods for modular representations and cohomology, Comm. Algebra 15 (1987), 53-121.
17. _ Projective resolutions and Poincaré duality complexes, Trans. Amer. Math. Soc. 132 (1994), 447-488.
18. D. J. Benson, J. F. Carlson, and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), 40-73.
19. D. J. Benson and P. Etingof, Symmetric tensor categories in characteristic 2, Adv. in Math. 351 (2019), 967-999.
20. D. J. Benson and J. P. C. Greenlees, Formality of cochains on BG, Preprint, 2022.
21. \qquad , The singularity and cosingularity category of $C^{*} B G$ for groups with cyclic Sylow p-subgroup, Preprint, 2021.
23.__, Massey products in the homology of the loopspace of a p-completed classifying space: finite groups with cyclic Sylow p-subgroups, Proc. Edinb. Math. Soc. 64 (2021), no. 4, 908-915.
22. D. J. Benson, J. P. C. Greenlees, and S. Shamir, Complete intersections and mod p cochains, Algebr. Geom. Topol. 13 (2013), no. 1, 61-114.
23. D. J. Benson and H. Krause, Complexes of injective $k G$-modules, Algebra \& Number Theory 2 (2008), $1-30$.
24. J. Białkowski, K. Erdmann, A. Hajduk, A. Skowroński, and K. Yamagata, Socle equivalences of weighted surface algebras, J. Pure \& Applied Algebra 226 (2022), paper no. 106886, 31pp.
25. J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, vol. 347, Springer-Verlag, Berlin/New York, 1973.
26. D. Bogdanic, Graded blocks of group algebras with dihedral defect groups, Colloq. Math. 122 (2011), no. 2, 149-176.
27. \qquad , Gradings on semidihedral blocks with three simple modules, Bull. Int. Math. Virtual Inst. 5 (2015), no. 2, 141-152.
28. \qquad , Gradings on semidihedral blocks with two simple modules, Bull. Int. Math. Virtual Inst. 5 (2015), no. 2, 133-140.
29. , Gradings on quaternion blocks with three simple modules, Bull. Int. Math. Virtual Inst. 11 (2021), no. 2, 319-325.
32._, Gradings on quaternion blocks with two simple modules, Bull. Int. Math. Virtual Inst. 11 (2021), no. 2, 255-260.
30. V. M. Bondarenko and Y. A. Drozd, Representation type of finite groups, (transl. from Russian) J. Soviet Math. 20 (1982), 2515-2528.
31. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, vol. 304, Springer-Verlag, Berlin/New York, 1972.
32. R. Brauer, Investigations on group characters, Ann. of Math. 42 (1941), no. 4, 936-958.
33. , Some applications of the theory of blocks of characters of finite groups II, J. Algebra 1 (1964), 307-334.
34. , Some applications of the theory of blocks of characters of finite groups III, J. Algebra $\mathbf{3}$ (1966), 225-255.
35. __ On 2-blocks with dihedral defect group, Symposia Math. XIII (Convegno di Gruppi e loro Representazioni, INDAM, Rome, Academic Press, New York/London, 1974, pp. 367-393.
36. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. USA 45 (1959), 1757-1759.
37. C. Broto, R. Levi, and R. Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. Math. 151 (2003), 611-664.
38. _ The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779-856.
39. R.-O. Buchweitz, E. L. Green, N. Snashall, and Ø. Solberg, Multiplicative structures for Koszul algebras, Quarterly J. Math. (Oxford) 59 (2008), 441-454.
40. R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1987), 165-182.
41. R.-O. Buchweitz and C. Roberts, The multiplicative structure on Hochschild cohomology of a complete intersection, J. Pure \& Applied Algebra 219 (2015), 402-428.
42. U. Buijs, J. M. Moreno-Fernández, and A. Murillo, A_{∞} structures and Massey products, Mediterr. J. Math. 17 (2020), no. 1, Paper No. 31, 15pp.
43. M. Cabanes and C. Picaronny, Types of blocks with dihedral or quaternion defect groups, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 39 (1992), no. 1, 141-161.
44. J. F. Carlson, N. Mazza, and J. Thévenaz, Endotrivial modules over groups with quaternion or semidihedral Sylow 2-subgroup, J. Eur. Math. Soc. 15 (2013), no. 1, 157-177.
45. H. Cartan and S. Eilenberg, Homological algebra, Princeton Mathematical Series, no. 19, Princeton Univ. Press, 1956.
46. A. Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47-139.
47. A. Y. M. Chin, The cohomology rings of finite groups with semi-dihedral Sylow 2-subgroups, Bull. Austral. Math. Soc. 51 (1995), no. 3, 421-432.
48. C. Cibils and A. Solotar, Hochschild cohomology algebra of abelian groups, Arch. Math. (Basel) 68 (1997), no. 1, 17-21.
49. D. A. Craven, The theory of fusion systems, Cambridge Studies in Advanced Mathematics, vol. 131, Cambridge University Press, 2011.
50. \qquad , Representation theory of finite groups: A guidebook, Universitext, Springer-Verlag, Berlin/New York, 2019.
51. D. A. Craven and A. Glesser, Fusion systems on small p-groups, Trans. Amer. Math. Soc. 364 (2012), no. 11, 5945-5967.
52. W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. (3) 56 (1988), 451-483.
53. _ Functorial filtrations II: Clans and the Gel'fand problem, J. London Math. Soc. 40 (1989), no. 1, 9-30.
54. , Functorial filtrations III: semidihedral algebras, J. London Math. Soc. 40 (1989), no. 1, 31-39.
55. E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. 84 (1966), 20-48.
56. \qquad , Une extension de la théorie de Hall et Higman, J. Algebra 20 (1972), 570-609.
57. P. W. Donovan, Dihedral defect groups, J. Algebra 56 (1979), no. 1, 184-206.
58. P. W. Donovan and M.-R. Freislich, The indecomposable modular representations of certain groups with dihedral Sylow subgroup, Math. Ann. 238 (1978), no. 3, 207-216.
59. Y. A. Drozd, Tame and wild matrix problems, Representation Theory II, Lecture Notes in Mathematics, vol. 832, Springer-Verlag, Berlin/New York, 1980, pp. 242-258.
60. S. Eilenberg and J. C. Moore, Homology and fibrations I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helvetici 40 (1966), 199-236.
61. F. Eisele, p-Adic lifting problems and derived equivalences, J. Algebra 356 (2012), 90-114.
65._, Blocks with a generalized quaternion defect group and three simple modules over a 2-adic ring, J. Algebra 456 (2016), 294-322.
62. K. Erdmann, Principal blocks of groups with dihedral Sylow 2-subgroups, Comm. Algebra 5 (1977), no. 7, 665-694.
63. \qquad , On 2-blocks with semidihedral defect groups, Trans. Amer. Math. Soc. 256 (1979), 267-287.
64. \qquad Algebras and dihedral defect groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 88-114.
65. \qquad Algebras and quaterion defect groups I, Math. Ann. 281 (1988), no. 4, 545-560.
70.__ Algebras and quaterion defect groups II, Math. Ann. 281 (1988), no. 4, 561-582.
66. _ Algebras and semidihedral defect groups I, Proc. London Math. Soc. (3) 57 (1988), no. 1, 109-150.
72.__ On the number of simple modules of certain tame blocks and algebras, Arch. Math. (Basel) 51 (1988), no. 1, 34-38.
73._, Algebras and semidihedral defect groups II, Proc. London Math. Soc. (3) 60 (1990), no. 1, 123-165.
67. \qquad , Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin/New York, 1990.
68. \qquad , On the local structure of tame blocks, Représentations linéaires des groupes finis (M. Cabanes, ed.), Astérisque, vol. 181-182, Société Math. de France, 1990, pp. 173-189.
69. , On 2-modular representations of $G U_{2}(q), q \equiv 3 \bmod 4$, Comm. Algebra 20 (1992), no. 12, 3479-3502.
70. \qquad , On semisimple deformations of local semidihedral algebras, Arch. Math. (Basel) 63 (1994), no. 6, 481-487.
71. K. Erdmann and G. O. Michler, Blocks with dihedral defect groups in solvable groups, Math. Zeit. 154 (1977), no. 2, 143-151.
72. K. Erdmann and A. Skowroński, Algebras of generalized quaternion type, Adv. in Math. 349 (2019), 1036-1116.
73. L. Evens and S. Priddy, The cohomology of the semi-dihedral group, Conference on algebraic topology in honor of Peter Hilton (R. Piccinini and D. Sjerve, eds.), Contemp. Math., vol. 37, 1985, pp. 61-72.
74. Y. Félix, S. Halperin, and J.-C. Thomas, Elliptic spaces II, Enseign. Math. 39 (1993), 25-32.
75. Z. Fiedorowicz and S. Priddy, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Mathematics, vol. 674, Springer-Verlag, Berlin/New York, 1978.
76. M. A. Filippov and A. I. Generalov, Hochschild cohomology for algebras of dihedral type VII. The family $D(3 \mathcal{R})$, J. Math. Sci. 240 (2019), no. 4, 408-427.
77. E. M. Friedlander, Computations of K-theories of finite fields, Topology 15 (1976), no. 1, 87-109.
78. \qquad , Etale homotopy of simplicial schemes, Ann. of Math. Studies, vol. 104, Princeton Univ. Press, 1982.
79. A. I. Generalov, Cohomology of algebras of dihedral type I, J. Math. Sci. 112 (2002), no. 3, 4318-4331.
80. \qquad , Cohomology of algebras of semidihedral type I, St. Petersburg Math. J. 13 (2002), no. 4, 549573.
81. \qquad , Cohomology of algebras of dihedral type IV. The family $D(2 \mathcal{B})$, J. Math. Sci. 124 (2004), no. 1, 4719-4726.
82. \qquad , Cohomology of algebras of semidihedral type III. The family $S D(3 \mathcal{K})$, J. Math. Sci. 130 (2005), no. 3, 4689-4698.
90._, Hochschild cohomology of algebras of dihedral type I. The family $D(3 \mathcal{K})$ in characteristic 2 , St. Petersburg Math. J. 16 (2005), no. 6, 961-1012.
91.__ Cohomology of algebras of semidihedral type IV, J. Math. Sci. 134 (2006), no. 6, 2489-2510.
92._, Cohomology of algebras of semidihedral type V, J. Math. Sci. 140 (2007), no. 5, 676-689.
93.__ Cohomology of algebras of semidihedral type VI, J. Math. Sci. 147 (2007), no. 5, 7074-7083.
83. _ Hochschild cohomology of algebras of quaternion type I. Generalized quaternion groups, St. Petersburg Math. J. 18 (2007), no. 1, 37-76.
84. Cohomology of algebras of semidihedral type VII. Local algebras, J. Math. Sci. 161 (2009), no. 4, 530-536.
85. , Hochschild cohomology of algebras of quaternion type III. Algebras with a small parameter, J. Math. Sci. 156 (2009), no. 6, 877-900.
86. _ Hochschild cohomology of algebras of dihedral type II. Local algebras, J. Math. Sci. 171 (2010), no. $3,357-379$.
87. _ Hochschild cohomology of algebras of dihedral type III. Local algebras in characteristic 2, Vestnik St. Petersburg Univ. Math. 43 (2010), no. 1, 23-32.
99._, Hochschild cohomology of algebras of semidihedral type I. Group algebras of semidihedral groups, St. Petersburg Math. J. 21 (2010), no. 2, 163-201.
100._, Hochschild cohomology of algebras of semidihedral type II. Local algebras, J. Math. Sci. 180 (2012), no. 3, 278-314.
88. , Hochschild cohomology of the integral group ring of the semidihedral group, J. Math. Sci. 183 (2012), no. 5, 640-657.
102._, Cohomology of algebras of semidihedral type VIII, J. Math. Sci. 188 (2013), no. 5, 582-590.
103._, Hochschild cohomology of algebras of semidihedral type III. The family $S D(2 \mathcal{B})_{2}$ in characteristic 2, J. Math. Sci. 192 (2013), no. 2, 200-214.
104._, Hochschild cohomology of algebras of semidihedral type IV. The cohomology algebra for the family $S D(2 \mathcal{B})_{2}(k, t, c)$ in the case $c=0$, J. Math. Sci. 202 (2014), no. 3, 360-394.
105._, Hochschild cohomology of algebras of semidihedral type VI. The family $S D(2 \mathcal{B})_{2}$ in characteristic different from 2, J. Math. Sci. 222 (2017), no. 4, 404-416.
89. , Hochschild cohomology of algebras of semidihedral type VII. Algebras with a small parameter, J. Math. Sci. 232 (2018), no. 5, 622-634.
107._, Cohomology of algebras of dihedral type V, J. Math. Sci. 252 (2021), no. 6, 775-781.
90. A. I. Generalov, A. A. Ivanov, and S. O. Ivanov, The Hochschild cohomology of algebras of quaternion type II. The family $Q(2 \mathcal{B})_{1}$ in characteristic 2, J. Math. Sci. 151 (2008), no. 3, 2961-3009.
91. A. I. Generalov and N. V. Kosmatov, Computation of the Yoneda algebras for algebras of dihedral type, J. Math. Sci. 130 (2005), no. 3, 4699-4711.
92. \qquad , Projective resolutions and Yoneda algebras for algebras of dihedral type, Algebras and Representation Theory 10 (2007), no. 3, 241-256.
93. \qquad , Projective resolutions and Yoneda algebras for algebras of dihedral type: The family $D(3 \mathbb{Q})$, J. Math. Sci. 140 (2007), no. 2, 221-238.
94. A. I. Generalov and N. Yu. Kosovskaya, Hochschild cohomology for algebras of dihedral type IV. The family $D(2 \mathcal{B})(k, s, 0)$, J. Math. Sci. 209 (2015), no. 4, 522-548.
95. \qquad , Hochschild cohomology of algebras of dihedral type VIII. Hochschild cohomology algebra for the family $D(2 \mathcal{B})(k, s, 0)$ in characteristic 2, J. Math. Sci. 243 (2019), no. 4, 535-560.
96. A. I. Generalov and D. A. Nikulin, Hochschild cohomology of algebras of semidihedral type IX. Exceptional local algebras, J. Math. Sci. 247 (2020), no. 4, 507-517.
97. A. I. Generalov and E. A. Osiyuk, Cohomology of algebras of dihedral type III. The family $D(2 \mathcal{A})$, J. Math. Sci. 124 (2004), no. 1, 4741-4753.
98. A. I. Generalov and D. B. Romanova, Hochschild cohomology for algebras of dihedral type VI. The family $D(2 \mathcal{B})(k, s, 1)$, St. Petersburg Math. J. 27 (2016), no. 6, 923-940.
99. A. I. Generalov, D. B. Romanova, and I. M. Zilberbord, Hochschild cohomology for algebras of dihedral type V. The family $D(3 \mathcal{K})$ in characteristic different from 2, J. Math. Sci. 219 (2016), no. 3, 385-404.
100. A. I. Generalov and A. V. Semenov, Hochschild cohomology of algebras of quaternion type IV. Cohomology algebra for exceptional local algebras, J. Math. Sci. 247 (2020), no. 4, 518-549.
101. A. I. Generalov and A. A. Zaykovskiy, On the derived equivalence of algebras of semidihedral type with two simple modules, J. Math. Sci. 232 (2018), no. 5, 635-646.
102. Hochschild cohomology of algebras of semidihedral type VIII. The family $S D(2 \mathcal{B})_{1}$, J. Math. Sci. 240 (2019), no. 4, 395-407.
103. A. I. Generalov and I. M. Zilberbord, Hochschild cohomology of algebras of semidihedral type V. The family $S D(3 \mathcal{K})$, J. Math. Sci. 219 (2016), no. 4, 493-512.
104. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), no. 2, 267-288.
105. E. Getzler and J. D. S. Jones, A_{∞}-algebras and the cyclic bar complex, Illinois J. Math. 34 (1990), no. 2, 256-283.
106. G. Glauberman, On groups with a quaternion Sylow 2-subgroup, Illinois J. Math. 18 (1974), 60-65.
107. G. Glauberman and J. Lynd, Control of fixed points and existence and uniqueness of centric linking systems, Invent. Math. 206 (2016), no. 2, 441-484.
108. D. Gorenstein, Finite groups, Harper \& Row, 1968.
109. \qquad , Finite groups the centralizers of whose involutions have normal 2-complements, Canadian J. Math. 21 (1969), 335-357.
110. D. Gorenstein and J. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math. 6 (1962), 553-593.
129._, The characterization of finite groups with dihedral Sylow 2-subgroups I, II, III, J. Algebra 2 (1965), 85-151, 218-270, 354-393.
111. J. Grbić, The cohomology of exotic 2-local finite groups, Manuscripta Math. 120 (2006), no. 3, 307-318.
112. J. A. Green, On the indecomposable representations of a finite group, Math. Zeit. 70 (1959), 430-445.
113. J. P. C. Greenlees, K. Hess, and S. Shamir, Complete intersections in rational homotopy theory, J. Pure \& Applied Algebra 217 (2013), no. 4, 636-663.
114. J. P. C. Greenlees and G. Stevenson, Morita theory and singularity categories, Adv. in Math. 365 (2020), 107055, 51pp.
115. T. H. Gulliksen, On the deviations of a local ring, Math. Scand. 47 (1980), 5-20.
116. T. Hayami, Hochschild cohomology ring of the mod-2 group ring of the generalized quaternion group, Comm. Algebra 34 (2006), no. 11, 3985-4005.
117. , Hochschild cohomology ring of the integral group ring of the semidihedral group, Algebra Colloq. 18 (2011), no. 2, 241-258.
118. _ On Hochschild cohomology ring and integral cohomology ring for the semidihedral group, Internat. J. Algebra Comput. 28 (2018), no. 2, 257-290.
119. K. Hicks, The Loewy structure and basic algebra structure for some three-dimensional projective special unitary groups in characteristic 3, J. Algebra 202 (1998), 192-201.
120. D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381.
121. T. Holm, The Hochschild cohomology ring of a modular group algebra: the commutative case, Comm. Algebra 24 (1996), no. 6, 1957-1969.
122. \qquad , Derived equivalent tame blocks, J. Algebra 194 (1997), 178-200.
123. \qquad Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type, J. Algebra 211 (1999), no. 1, 159-205.
124. \qquad Hochschild cohomology of tame blocks, J. Algebra 271 (2004), 798-826.
125. T. Holm, R. Kessar, and M. Linckelmann, Blocks with a quaternion defect group over a 2-adic ring: the case \tilde{A}_{4}, Glasgow Math. J. 49 (2007), no. 1, 29-43.
126. T. Holm and A. Zimmermann, Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type, J. Algebra 320 (2008), no. 9, 3425-3437.
127. A. A. Ivanov, Hocschild cohomology of algebras of quaternionic type: the family $Q(2 \mathcal{B})_{1}(k, s, a, c)$ over a field of characteristic different from 2, Vestnik St. Petersburg Univ. Math. 43 (2010), no. 1, 54-62.
128. , Hochschild cohomology of algebras of quaternion type: the family $Q(2 \mathcal{B})_{1}$ in characteristic 3, J. Math. Sci. 183 (2012), no. 5, 658-674.
129. , The BV-algebra structure on the Hochschild cohomology of local algebras of quaternion type in characteristic 2, Journal of Mathematical Sciences 219 (2016), no. 3, 427-461.
130. A. A. Ivanov, S. O. Ivanov, Y. V. Volkov, and G. Zhou, BV structure on Hochschild cohomology of the group ring of quaternion group of order eight in characteristic two, J. Algebra 435 (2015), 174-203.
131. T. V. Kadeishvili, On the theory of homology of fiber spaces, Russian Math Surveys 35 (1980), no. 3, 231-238.
132. , The algebraic structure in the homology of an $A(\infty)$-algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), 249-252.
133. M. Kauer, Derived equivalence of graph algebras, Trends in the Representation Theory of Finite Dimensional Algebras (E. L. Green and B. Huisgen-Zimmermann, eds.), Contemp. Math., vol. 229, 1998, pp. 201-213.
134. H. Kawai and H. Sasaki, Cohomology algebras of 2-blocks of finite groups with defect groups of rank two, J. Algebra 306 (2006), no. 2, 301-321.
135. B. Keller, Introduction to A-infinity algebras and modules, Homology, Homotopy \& Appl. 3 (2001), 1-35, — Addendum, ibid. 4 (2002), 25-28.
136. , A-infinity algebras in representation theory, Representations of Algebras, Proceedings of the Ninth International Conference (Beijing 2000) (D. Happel and Y. B. Zhang, eds.), Beijing Normal University Press, 2002, Vol. I.
137. R. Kessar and M. Linckelmann, On perfect isometries for tame blocks, Bull. London Math. Soc. 34 (2002), no. 1, 46-54.
138. S. N. Kleinerman, The cohomology of Chevalley groups of exceptional Lie type, Mem. AMS, vol. 268, American Math. Society, 1982.
139. H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 80 (1987), 153-164.
140. S. Koshitani, A remark on blocks with dihedral defect groups in solvable groups, Math. Zeit. 179 (1982), no. 3, 401-406.
141. S. Koshitani and C. Lassueur, Splendid Morita equivalences for principal 2-blocks with dihedral defect groups, Math. Zeit. 294 (2020), 639-666.
142. , Splendid Morita equivalences for principal blocks with generalised quaternion defect groups, J. Algebra 558 (2020), 523-533.
143. S. Koshitani, C. Lassueur, and B. Sambale, Splendid Morita equivalences for principal blocks with semidihedral defect groups, Proc. Amer. Math. Soc. 150 (2021), no. 1, 41-53.
144. P. Landrock, The principal block of finite groups with dihedral Sylow 2-subgroups, J. Algebra 39 (1976), no. 2, 410-428.
145. M. Langer, Secondary multiplication in Tate cohomology of generalized quaternion groups, Homology, Homotopy \& Appl. 16 (2014), no. 1, 27-47.
146. K. Lefèvre-Hasegawa, Sur les A_{∞}-catégories, Thèse de doctorat, Université Paris VII, 2003.
147. G. Leuschke and R. Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Math. Society, 2012.
148. R. Levi, On finite groups and homotopy theory, Mem. AMS, vol. 567, American Math. Society, 1995.
149. \qquad A counter-example to a conjecture of Cohen, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994), Birkhäuser Verlag, Basel, 1996, pp. 261-269.
150. On homological rate of growth and the homotopy type of $\Omega B G_{p}^{\wedge}$, Math. Zeit. 226 (1997), 429-444.
151. R. Levi and A. Libman, Existence and uniqueness of classifying spaces for fusion systems over discrete p-toral groups, J. London Math. Soc. 91 (2015), 47-70.
152. R. Levi and R. Oliver, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 6 (2002), 917-990.
153. R. Levi and N. Seeliger, Loop space homology associated with the mod 2 Dickson invariants, Forum Math. 24 (2012), 1161-1182.
154. M. Linckelmann, A derived equivalence for blocks with dihedral defect groups, J. Algebra 164 (1994), 244-255.
155. \qquad , Transfer in Hochschild cohomology of blocks of finite groups, Algebras and Representation Theory 2 (1999), no. 2, 107-135.
156. \qquad , Fusion category algebras, J. Algebra 277 (2004), 222-235.
157. \qquad The block theory of finite dimensional algebra I, London Math. Soc. Student Texts, vol. 91, Cambridge University Press, 2018.
158. D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, A-infinity structure on Ext-algebras, J. Pure \& Applied Algebra 213 (2009), no. 11, 2017-2037.
159. J. R. Martino, Stable splittings and the Sylow 2-subgroups of $S L_{3}\left(\mathbb{F}_{q}\right)$, q odd, PhD Thesis, Northwestern University, 1988.
160. J. R. Martino and S. Priddy, Classification of BG for groups with dihedral or quarternion Sylow 2subgroups, J. Pure \& Applied Algebra 73 (1991), no. 1, 13-21.
161. U. Meierfrankenfeld and B. Stellmacher, The general FF-module theorem, J. Algebra 351 (2012), 1-63.
162. S. A. Merkulov, Strong homotopy algebras of a Kähler manifold, Int. Math. Res. Not. (1999), no. 3, 153-164.
163. W. F. Moore, Cohomology over fiber products of local rings, J. Algebra 321 (2009), 758-773.
164. W. Müller, Gruppenalgebren über nichtzyklishen p-Gruppen I. Die Dieder- und die Quasidiedergruppen, J. Reine \& Angew. Math. 266 (1974), 10-48.
184._, Gruppenalgebren über nichtzyklishen p-Gruppen II. Die Quaternionengruppe und die verallgemeinerten Quaternionengruppen, J. Reine \& Angew. Math. 267 (1974), 1-19.
165. H. J. Munkholm, Mod 2 cohomology of $D 2^{n}$ and its extensions by Z_{2}, Conference on Algebraic Topology, The University of Illinois at Chicago Circle, June 17-28, 1968 (V. Gugenheim, ed.), 1969, pp. 234-252.
166. C. Negron, The cup product on Hochschild cohomology via twisting cochains and applications to Koszul rings, J. Pure \& Applied Algebra 221 (2017), 1112-1133.
167. R. Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Camb. Phil. Soc. 137 (2004), 321-347.
168. \qquad , Equivalences of classifying spaces completed at the prime two, Mem. AMS, vol. 180, American Math. Society, 2006.
169. J. B. Olsson, On 2-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), no. 2, 212-241.
170. D. Petersen, A closer look at Kadeishvili's theorem, High. Struct. 4 (2020), no. 2, 211-221.
171. D. G. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586.
172. J. Rickard, Derived categories and stable equivalence, J. Pure \& Applied Algebra 61 (1989), 303-317. 193._, Derived equivalences as derived functors, J. London Math. Soc. 43 (1991), 37-48.
173. C. M. Ringel, The representation type of local algebras, Representations of Algebras, Lecture Notes in Mathematics, vol. 488, Springer-Verlag, Berlin/New York, 1974.
174. \qquad , The indecomposable representations of the dihedral 2-groups, Math. Ann. 214 (1975), 19-34.
175. M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. Amer. Math. Soc. 71 (1965), 872-875.
176. D. J. Rusin, The mod-2 cohomology of metacyclic 2-groups, J. Pure \& Applied Algebra 44 (1987), 315-328.
177. H. Sasaki, The mod 2 cohomology algebras of finite groups with semidihedral Sylow 2-subgroups, Comm. Algebra 22 (1994), 4123-4156.
178. G. J. A. Schneider, The Mathieu group M_{11}, MSc. Thesis, Oxford, 1979.
179. S. F. Siegel and S. J. Witherspoon, The Hochschild cohomology ring of a group algebra, Proc. London Math. Soc. (3) 79 (1999), 131-157.
180. G. Sjödin, A set of generators for $\operatorname{Ext}_{R}(k, k)$, Math. Scand. 38 (1976), no. 2, 199-210.
181. L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93.
182. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57-64.
183. R. Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra 28 (1974), 182-198.
184. J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
185. \qquad , Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc. 108 (1963), 293-312.
186. , H-spaces from a homotopy point of view, Lecture Notes in Mathematics, vol. 161, SpringerVerlag, Berlin/New York, 1970.
187. M. Suzuki, Applications of group characters, Finite Groups (M. Hall Jr., ed.), Proc. Symp. Pure Math., vol. 6, American Math. Society, 1962, pp. 101-105.
188. R. G. Swan, The p-period of a finite group, Illinois J. Math. 4 (1960), 341-346.
189. R. Taillefer, First Hochschild cohomology group and stable equivalence classification of Morita type of some tame symmetric algebras, Homology, Homotopy \& Appl. 21 (2019), no. 1, 19-48.
190. C. W. Wilkerson, Self-maps of classifying spaces, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974, Lecture Notes in Mathematics, vol. 418, Springer-Verlag, Berlin/New York, 1974, pp. 150-157.
191. W. J. Wong, On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2, J. Austral. Math. Soc. 4 (1964), 90-112.
192. \qquad , On finite groups with semi-dihedral Sylow 2-subgroups, J. Algebra 4 (1966), 52-63.
193. G. Zhou and A. Zimmermann, Classifying tame blocks and related algebras up to stable equivalences of Morita type, J. Pure \& Applied Algebra 215 (2011), no. 12, 2969-2986.

Index

abelian Sylow subgroups, 18
Adams operation, 106
A_{∞} algebra, 10, 29
alternating group $A_{7}, 33$
Auslander-Reiten quiver, 24, 26, 45, 46, 50, 75
bar resolution, 12
$B G_{p}^{\wedge}, 15$
block, 18
bounded derived category, 19
Bousfield-Kan p-completion, 15
centric linking system, 17
centric subgroup, 17
Chern classes, 107
circle product, 14
classifying space, 15,17
of a block, 18
Cliff(q), 21, 27, 67, 87
compact Lie group, 18, 102, 103, 106
complete intersection, 21, 27, 53, 87, 95, 102
completion, 15
cosingularity category, 19
cup product, 14
cyclic
defect group, 20
Sylow subgroups, 23
defect group, 20
derived
category, 19
complete intersection, 103
DG algebra, 10, 16, 40
differential
bigraded algebra, 21
graded algebra, 10, 16, 40
dihedral group, 25
divided partial derivative, 21
duality, $42,73,80$
Eilenberg-Moore spectral sequence, 16, 31, 36, $47,53,58,59,82,88,101,103,105$

Eisenbud operator, 37, 47, 75
elementary abelian 2-group, 101
elliptic space, 103
$\mathcal{E} n d_{C^{*} B G}(\mathrm{k}), 16$
errors, 37, 56, 62, 83, 86, 91
exponential growth, 102, 110
$\mathrm{Ext}_{R}^{*}(\mathrm{k}, \mathrm{k}), 21$
$\operatorname{Ext}_{\mathrm{k} G}^{*}(\mathrm{k}, \mathrm{k}), 16$
Ext ${ }^{1}$ quiver, 35, 46
fibre lemma, 16
finite p-group, 101
finite representation type, 20
formal A_{∞} algebra, 11, 12, 24, 26, 39, 44, 46, 50, $53,85,93,98,101$
free algebra, 20, 105, 110
Frobenius automorphism, 9
fusion
category, 17
system, $17,33,60$
of a block, 18
$\Gamma L\left(n, p^{m}\right), 9$
$\Gamma L\left(2, p^{m}\right), 90$
$\Gamma U\left(n, p^{m}\right), 9$
generalised quaternion group, 85
Gerstenhaber
bracket, 14
circle product, $14,30,70,71,80$
$G L\left(n, p^{m}\right), 9,107$
$G U\left(n, p^{m}\right), 9$
Hochschild cohomology, 13, 28, 37, 38, 47, 49, 68, 88
of an A_{∞} algebra, 12
of complete intersection, 22
$\mathcal{H o m}_{C^{*} B G}(\mathrm{k},-), 16$
$\mathcal{H o m}_{C_{*} \Omega B G_{p}^{\wedge}}(\mathrm{k},-), 16$
homotopically projective, 43, 74
Hopf algebra, 16, 22, 41
hypersurface, 27
intrinsically formal, 13, 70
involutions, 25, 33, 60
isoclinism, 89
Kadeishvili's Theorem, 11
Koszul duality, 20, 22, 103
Lie group, $18,102,103,106$
linear resolution, 22
linking system, 17
of a block, 18
loop space, 16
Massey product, 10, 13, 27, 30, 36, 47, 59, 95, 98
Mathieu group $M_{11}, 53,60,62$
metacyclic groups, 18
minimal
A_{∞} algebra, 11
model, 11
morphism of A_{∞} algebras, 10
nilpotent space, 15,16
normalisation, 19
$O(G), 9$
$O^{p^{\prime}}(G), 9$
$O_{p^{\prime}}(G), 9$
$O^{p}(G), 9$
$O_{p}(G), 9$
p-adic reflection group, 106
p-bad, 15
p-complete, 15
p-completion, 15
p-good, 15
p-local finite group, 17
p-nilpotent finite group, 7,16
partial derivatives, 21
partition function, 103
periodicity generator, $42,44,74,84,93$
$P \Gamma L\left(2, p^{m}\right), 33$
$P \Gamma L\left(n, p^{m}\right), 9$
$P \Gamma U\left(n, p^{m}\right), 9$
$P G L\left(2, p^{m}\right), 33$
PGL($\left.n, p^{m}\right), 9$
$P G L^{*}\left(2, p^{2 m}\right), 60,81$
$\operatorname{PGU}\left(n, p^{m}\right), 9$
$\pi_{1}\left(B G_{p}^{\wedge}\right), 15$
polynomial growth, 102, 109
projective
cover, 92
module, 92
resolution, 16, 91
transformations, 9
$\psi^{p^{n}}, 106$
$\operatorname{PSL}\left(n, p^{m}\right), 9$
$\operatorname{PSL}\left(2, p^{m}\right), 33$
$\operatorname{PSL}\left(3, p^{m}\right), 53,62$
$\operatorname{PSU}\left(n, p^{m}\right), 9$
$\operatorname{PSU}\left(3, p^{m}\right), 53,62$
quasi-isomorphism, 11
quaternion group, 85
quiver, $35,46,63,67,81,92,96$
reflection group, 106
representation type, 20
residue field, 102
Rothenberg-Steenrod construction, 10, 16
saturation axiom, 17
semi-exponential growth, 102, 110
semidihedral group, 53
singularity category, 19
$S L\left(2, p^{m}\right), 90$
$S L\left(n, p^{m}\right), 9$
$S L^{\circ}\left(2, p^{m}\right), 90,95$
$S L^{ \pm}\left(2, p^{m}\right), 60,90$
$\operatorname{Sol}(q), 108$
squeezed resolution, 82
$S U\left(n, p^{m}\right), 9$
$S U^{\circ}\left(2, p^{m}\right), 90,95$
$S U^{ \pm}\left(2, p^{m}\right), 60,90$
subpairs, 18
Swan's theorem, 18
Sylow subgroup, 7, 17
abelian, 18
dihedral, 25
generalised quaternion, 85
semidihedral, 53
tame
blocks, 20
representation type, 20
thick subcategory, 19
torus, 103
translation functor, $26,45,50$
trichotomy theorem, 20
unitary group, 9
Verdier quotient, 19
wild representation type, 20

[^0]: Abstract. Thanks to the work of Karin Erdmann, we know a great deal about the representation theory of blocks of finite groups with tame representation type. Our purpose here is to examine the p-completed classifying spaces of these blocks and their loop spaces. We pay special attention to the A_{∞} algebra structures, and singularity and cosingularity categories.

[^1]: ${ }^{1}$ By negating degrees, results here apply equally well to negatively graded rings.

