Enhanced power graphs of groups are weakly
perfect

Peter J. Cameron® and Veronica Phan'

Abstract
A graph is weakly perfect if its clique number and chromatic num-
ber are equal. We show that the enhanced power graph of a finite
group G is weakly perfect: its clique number and chromatic number
are equal to the maximum order of an element of G. The proof re-
quires a combinatorial lemma. We give some remarks about related
graphs.

1 Introduction

The directed power graph of a finite group G, defined in [8], has the elements
of G as vertices, with an arc from x to y if y = 2" for some integer n.
This relation is reflexive and transitive, hence is a partial preorder. The
(undirected) power graph, defined in [5], is obtained by ignoring directions:
that is, x and y are joined if one is a power of the other. This graph is thus
the comparability graph of a partial preorder; a small extension of Dilworth’s
theorem shows that it is perfect, that is, every induced subgraph has clique
number equal to chromatic number.

Both these graphs were first defined for semigroups, but most work on
them has concerned groups.

According to the strong perfect graph theorem [6], a graph is perfect if
and only if it has no induced subgraph which is a cycle of odd length greater
than 3 or the complement of one.
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The enhanced power graph of G, defined in [1], again has vertex set G,
with x and y joined if there is an element z such that both = and y are powers
of z. (Equivalently, = and y are joined if and only if the group they generate
is cyclic.) It is shown in [4] that enhanced power graphs of finite groups are
universal, that is, every finite graph occurs as an induced subgraph of such
a graph. Thus, these graphs are not in general perfect.

Our purpose here is to show that enhanced power graphs are weakly per-
fect, that is, they have chromatic number equal to clique number. Indeed
our result is not restricted to finite groups, but applies to groups in which
all elements have finite and bounded order.

Theorem 1 Let G be a finite group, or a torsion group of bounded exponent.
Then the clique number and the chromatic number of G are both equal to the
maximal order of an element of G.

The result for clique number is known, and the proof is straightforward;
the result for chromatic number requires the following purely combinatorial
result. We note that the proof is constructive, so gives an easy algorithm for
colouring the enhanced power graph.

Theorem 2 For every natural number n, there exist subsets Ay, As, ..., A,
of {1,2,...,n} with the properties

o |[A,| =0(q) forqe{1,....,n}, where ¢ is Euler’s totient;
e iflem(q,q') < n, then A,NA, = 0, wherelem denotes the least common

multiple.

These theorems will be proved in the next two sections. In the final
section we give some concluding remarks.

Many further properties of power graphs and enhanced power graphs can
be found in [2] and [12].

2 Proof of Theorem 2

Let D be the set of fractions p/q (in their lowest terms) in (0, 1], for 1 < g < n.
We define a functionf : D — {1,2,...,n} by the rule

f(p/qa) = [np/q].

The key observation is the following;:



Ifp/q#p'/q and f(p/q) = f(¥'/¢), then lem(q,q') > n.

For, if f(p/q) = f('p/q’), then there exists m such that
m—1<np/q,np'/qd <m.

Thus |p/q—p'/¢'| < 1/n. On the other hand, |p/q—p'/¢/| is a rational number
whose numerator is at least 1 (since p/q # p'/q’), and the denominator is
lem(q, ¢'). So we have
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and so lem(q, ¢') > n, as required.

Now we let D, be the set of fractions in D with denominator ¢, so that
|D,| = ¢(q), and let A, = f(D,) C {1,...,n}. By our key observation we
see that

e the restriction of f to D, is injective, so |A,| = ¢(q);
e if ¢ # ¢ and lem(q,q') < n, then A,N A, = 0.

So the theorem is proved.

For example, here are the sets generated for n = 12 by the above proce-
dure.

Ay = {12}, Ay = {6}, A3 = {4,8}, Ay = {3,9},

As = {3,5,8,10}, Ag = {2,10}, A; = {2,4,6,7,9,11},

Ag = {2,5,8,11}, Ag = {2,3,6,7,10,11}, Ajo = {2,4,9,11},
An = {2,3,4,5,6,7,8,9,10, 11}, Aj» = {1,5,7, 11}.

3 Proof of Theorem 1

We begin with the observation that if a finite set of elements in a group has
the property that any two of its elements generate a cyclic group, then the
whole set generates a cyclic group. A proof can be found in [1, Lemma 32].
It follows that a maximal clique in the enhanced power graph is a maximal
cyclic subgroup of GG, and the clique number is equal to the order of the
largest cyclic subgroup, say n.



In order to find a colouring with n colours, we take {1,2,...,n} to be the
set of colours, with the subsets A, given by Theorem 2. We will use the set
A, to colour elements of order ¢. If two elements of order ¢ are joined, they lie
in the same cyclic subgroup of order ¢; this subgroup has ¢(q) generators, so
we have enough colours to give them all different colours. Other elements of
order ¢ are not joined to these ones, so we may re-use the same set of colours
for them. Now, if two elements of different orders ¢ and ¢’ are joined, they
generate a cyclic group of order lem(g, ¢'), which is at most n; so the sets of
colours assigned to them are disjoint. Thus, we obtain a proper colouring.

4 Further remarks

Our combinatorial lemma can deal with any set of element orders, as long
as the largest order n is given. Now there are groups in which the set of
element orders is {1,...,n} for some n. (For example, the orders of elements
in the alternating group A7 are 1,2,3,4,5,6,7.) But, as we show below, this
can only occur for finitely many values of n. So, at first glance, it seems we
may be able to simplify the argument for most groups by using the fact that
not all orders occur. We have not attempted to do so, and indeed it seems
unlikely that any simplification can be obtained.

Proposition 3 There are only finitely many values of n for which there
exists a finite group in which the set of element orders is {1,...,n}.

Proof We use the Gruenberg—Kegel graph of a group G (sometimes called
the prime graph): the vertices are the prime divisors of |G|, with vertices
p and ¢ joined if G contains an element of order pq. Gruenberg and Kegel
described this graph in an unpublished manuscript on the decomposition of
the augmentation ideal of the group ring; their main theorem, a description
of the groups whose Gruenberg—Kegel graph is disconnected, was published
by Gruenberg’s student Williams [11] and refined by later authors, notably
Kondrat’ev [9].

We will use the fact that the number of connected components of this
graph is at most 6, for any finite group.

Now suppose that G is a group in which the element orders are {1,2,...,n}.
If p is a prime in the interval (n/2,n|, then p is an isolated vertex in the
Gruenberg—Kegel graph of GG; so there can be at most five such primes. But,



in a strengthening of Bertrand’s postulate, Erdés [7] showed that the number
of primes in this interval tends to co with n. The result is proved.

The weak perfect graph theorem asserts that a graph is perfect if and only
if its complement is perfect. This does not hold for weakly perfect graphs.
However, we note that Jitender Kumar Parveen has recently posted on the
arXiv a paper showing (among other things) that the complement of the
enhanced power graph of a finite group is weakly perfect [10].

A related graph is the difference of the power graph and enhanced power
graph of the group G, which we will denote by A(G): x and y are joined
in this graph if they are joined in the enhanced power graph but not in the
power graph.

For a group G, let Q(G) denote the set of orders of elements of G. For
a positive integer n, let a(n) denote the size of the largest antichain in the
lattice of divisors of n. De Bruijn et al. [3] showed that, if n has m prime
factors (counted with multiplicity), then a maximum-size antichain consists
of all divisors with m/2 prime factors if m is even, and either all divisors
with |m/2] prime factors or all with [m/2] prime factors if m is odd. (This
is a generalisation of Sperner’s lemma.)

Proposition 4 For a finite group G, the clique number of A(G) is equal to
max{a(n) :n € Q(G)}.

Proof A clique S in A(G) is a clique in the enhanced power graph, and so
is contained in a cyclic group C. Now a cyclic group has the property that
if z and y are two elements for which the order of x divides the order of y,
then z is a power of y. It follows that the elements of S all have different
orders, and these form an antichain in the lattice of divisors of |C/.

Proposition 5 Let G be the symmetric group Ss on 8 letters. Then A(G)
is not weakly perfect.

Proof We have Q(G) = {1,2,3,4,5,6,7,8,10,12, 15}; so the clique number
of A(G) is equal to 2. But A(G) is not bipartite, since

{(1,2),(3,4,5),(6,7),(1,2,3),(4,5,6,7,8)}
induces a 5-cycle.

It is an interesting problem to describe the groups G for which A(G) is
weakly perfect, but we shall not discuss this here.

5



Acknowledgement The second author acknowledges the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for support and hospitality
during the programme Groups, representations and applications: new per-
spectives (supported by EPSRC grant no. EP/R014604/1), where he held a
Simons Fellowship.

References

1]

Ghodratallah Aalipour, Saieed Akbari, Peter J. Cameron, Reza Nikan-
dish and Farzad Shaveisi, On the structure of the power graph and the
enhanced power graph of a group, Electronic J. Combinatorics 24(3)
(2017), P3.16.

Ajay Kumar, Peter J. Cameron, Lavanya Selvaganesh and T. Tamizh
Chelvam, Recent developments on the power graph of finite groups — a
survey, AKCE Internat. J. Graphs Combinatorics 18 (2021), 65-94.

N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, On
the set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951),
191-193.

Peter J. Cameron, Graphs defined on groups, Internat. J Group Theory
11 (2022), 43-124.

I. Chakrabarty, S. Ghosh and M. K. Sen, Undirected power graphs of
semigroups, Semigroup Forum 78 (2009), 410-426.

M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong
perfect graph theorem, Ann. Math. 164 (2006), 51-229.

P. Erdés, A theorem of Sylvester and Schur, J. London Math. Soc. 9
(1934), 282-288.

A. V. Kelarev and S. J. Quinn, Directed graph and combinatorial prop-
erties of semigroups, J. Algebra 251 (2002), 16-26.

A. S. Kondrat’ev, Prime graph components of finite simple groups,
Mathematics of the USSR: Sbornik 67 (1990), 235-247.



[10] Jitender Kumar Parveen, The complement of enhanced power graph of
a finite group, arXiv 2207 .04641

[11] J. S. Williams, Prime graph components of finite groups, J. Algebra 69
(1981), 487-513.

[12] S. Zahirovié, 1. Bosnjak and R. Madars$z, A study of enhanced power
graphs of finite groups, J. Algebra Appl. 19 (2020), 20pp.



