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Abstract

Lars Onsager conjectured in 1949 that the Euler equations conserve kinetic energy
if the velocity field u ∈ L3((0, T );C0,α(T3)) with α > 1

3 . In the case that α < 1
3

energy dissipation can occur. In this work, we pursue an analogue of Onsager’s conjec-
ture for the conservation of energy of weak solutions to the hydrostatic Euler equations.
Classical spatial analytic solutions of the hydrostatic Euler equations are known to con-
serve the horizontal kinetic energy ∥u(·, t)∥2L2 +∥v(·, t)∥2L2 , where (u, v) is the horizontal
component of the velocity vector field.

Unlike the Euler equations, in the case of the hydrostatic Euler equations the vertical
velocity w is one degree spatially less regular with respect to the horizontal variables,
compared to the horizontal velocity (u, v). Consequently, we introduce the new notions
of type II and type III weak solutions (where a type I weak solution refers to the
canonical notion of weak solution). As a byproduct, this has its implications for the
various formulations of the analogue of the Onsager conjecture for the hydrostatic Euler
equations.

We first consider the standard notion of weak solution (type I) with the verti-
cal velocity w ∈ L2((0, T );L2(T3)), and show that if the horizontal velocity (u, v) ∈
L4((0, T );Bα

4,∞(T3)) with α > 1
2 then the horizontal kinetic energy is conserved. Note

that L4((0, T );C0,α(T3)) ⊂ L4((0, T );Bα
4,∞(T3)). A plausible explanation for the in-

crease from 1
3 to 1

2 in the regularity exponent is due to the aforementioned anisotropic
regularity in the velocity field. Finally, we also prove sufficient conditions for energy
conservation for type II and type III weak solutions of the hydrostatic Euler equations.
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1 Introduction

In this paper, we study the three-dimensional hydrostatic Euler equations with rotation (also
known as the reduced inviscid primitive equations of planetary scale oceanic and atmospheric
dynamics, i.e. without coupling to temperature), which are given [16]

∂tu+∇ · (uu)− Ωv + ∂xp = 0, (1.1)

∂tv +∇ · (vu) + Ωu+ ∂yp = 0, (1.2)

∂zp = 0, (1.3)

∇ · u = 0. (1.4)

Here u = (u, v, w) is the velocity field, p is the pressure and Ω ∈ R is the Coriolis param-
eter. We will also denote by uH = (u, v) the horizontal velocity vector field for notational
convenience.

It is already apparent from equation (1.4) that the vertical velocity w will have one
degree less spatial regularity in x and y than the horizontal velocities u and v. The fact that
the regularity of the velocity vector field is anisotropic will keep appearing when we study
regularity criteria which are sufficient for energy conservation.

In terms of the domain, the physical boundary-value problem for the system (1.1)-(1.4)
is usually studied in a three-dimensional channel

M = {(x, y, z) ∈ R3 : 0 ≤ z ≤ L, (x, y) ∈ R2}

subject to the no-normal flow boundary condition in the vertical direction

w(x, y, 0, t) = w(x, y, L, t) = 0. (1.5)

Furthermore, u, v, w and p are periodic of period 2L in x and y. We consider the above
system with the initial conditions

u(x, y, z, 0) = u0(x, y, z), v(x, y, z, 0) = v0(x, y, z). (1.6)

System (1.1)-(1.6) is ill-posed in any Sobolev space [34], while it is locally well-posed in the
space of analytic functions [29, 43].

For classical (analytic) solutions of the equations in the channel, we can extend the
solution in the z-direction by extending the vertical velocity w to be odd in z and the
horizontal velocities u and v to be even in z with periodic domain [−L,L]. The odd extension
of w is made possible by the no-normal flow boundary condition (1.5).

For classical solutions, these symmetry conditions are invariant under the equations [29,
34]. Without loss of generality we take L = 1

2
which makes the fundamental periodic domain

to be the flat unit torus T3. Therefore for classical solutions, studying the physical boundary-
value problem in the channel with the no-normal flow boundary conditions is equivalent to
posing the problem on the torus subject to the symmetry conditions given above for u and
p.

For this reason, throughout the paper, we will study weak solutions of the primitive
equations on the torus with periodic boundary conditions and subject to the symmetry
conditions. Notably, if such a weak solution satisfies suitable regularity assumptions such
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that one can make sense of the trace when z = 0, L, then the odd extension of w actually
satisfies the original physical boundary condition (1.5). Consequently, such a weak solution
solves the original boundary value problem in M . In all the cases we consider in this paper,
the weak solutions have sufficient regularity to interpret boundary condition (1.5) in a trace
sense.

One can observe that the horizontal kinetic energy

E(t) =

ˆ
T3

(
|u(x, t)|2 + |v(x, t)|2

)
dx

is a formally conserved quantity (i.e. it is conserved by classical solutions). From now on,
we will refer to this conserved quantity as the kinetic energy or simply the energy.

In this paper, we will show, loosely speaking, that the kinetic energy of weak solutions is
conserved if u and v are Hölder continuous with exponent bigger than 1

2
(we do not assume

this for w). This is in contrast to the corresponding result for the Euler equations, where the
critical exponent is 1

3
(for u, v and w). One might plausibly explain that the Hölder exponent

being higher in this case is due to the lower spatial regularity of the vertical velocity w.
The primitive equations model the planetary scale dynamics of the ocean and the atmo-

sphere. These equations can be derived as an asymptotic limit of the small aspect ratio (the
ratio of height to depth in a fluid) from the Rayleigh-Bénard (Boussinesq) system. These
equations have been the subject of a lot of attention over the years. So the overview that
will be given below will necessary be incomplete in summarising all the relevant work.

The primitive equations were first introduced in [61]. The viscous primitive equations were
studied in a mathematical context for the first time in [49–51] (in which the global existence of
weak solutions was established). The short time existence and uniqueness of strong solutions
was established in [31] (see also [67]). The global existence of strong solutions was then
proven in [16] (see also [40]), with results for different boundary conditions in [45, 46]. In
[33] the case with less regular initial data was investigated using a semigroup method. The
uniqueness of weak solutions was discussed in [10, 11, 38, 39, 42, 48, 55].

The inviscid primitive equations have also been the subject of many works. The linear ill-
posedness in Sobolev spaces for the inviscid case without rotation (i.e. Ω = 0) was established
in [60]. Subsequently, the nonlinear ill-posedness was proven in [32]. Then it was shown in
[15, 69] that smooth solutions to the inviscid primitive equations without rotation can develop
a finite-time singularity. These results were extended to the case with rotation in [34]. Then
in [29] it was proved that the lifespan of solutions can be prolonged by fast rotation for
“well-prepared” initial data. The papers [8, 9, 29, 30, 41, 43, 44, 54] investigated the local
well-posedness for analytic initial data.

The nonuniqueness (and global existence) of weak solutions with initial data in L∞ for
the inviscid primitive equations was established in [18]. The paper [18] also showed the
non-conservation of energy. To the knowledge of the authors, it is the only paper that uses
convex integration for these equations. It is then natural to consider an analogue of Onsager’s
conjecture for energy conservation in the hydrostatic Euler equations, which is the subject
matter of this contribution.

Onsager’s conjecture was first posed in [58] for the Euler equations. It states that if a
weak solution u of the Euler equations belongs to L3((0, T );C0,α(T3)) with α > 1

3
then the

spatial L2 norm of u is conserved. In this context, the L2 norm of the velocity field u has the
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physical interpretation of kinetic energy. The second half of the conjecture states that there
exist weak solutions of the Euler equations for α < 1

3
which do not conserve energy. Yet, it

was also shown in [4] that there exist weak solutions that only have L2 spatial regularity and
which do conserve energy.

The importance of Onsager’s conjecture was emphasised in [27], which gave a proof of the
first half of the conjecture under a slightly more strict assumption than C0,α, for α > 1

3
. A

complete proof of the first half was then given in [19]. A different approach was introduced
in [26] to prove the result, by deriving an equation of local energy balance with a defect term
(which describes the energy flux at the vanishing limit of small scales) to capture a possible
lack of regularity. The first half of the conjecture in the presence of wall boundaries was
proven in [5] (and references therein).

The second half of Onsager’s conjecture has also been proven by now. The first result in
this direction was by [63], which proved that there exist nontrivial weak solutions of the Euler
equation with compact support in time (which as a result do not conserve energy). The first
construction of a dissipative solution of the Euler equations was given by [64]. Subsequently
techniques from convex integration were applied to the Euler equations to prove the existence
of non-energy conserving solutions in C0,1/3− in [37], after gradual improvement in a sequence
of papers [12–14, 20–24, 35, 36] (and see references therein).

It is natural to ask whether one can consider analogues of Onsager’s conjecture for related
PDEs. In [2] the authors consider the analogue of the first half of Onsager’s conjecture and
establish the universality of the Onsager exponent 1

3
for conservation of entropy as well

as other companion laws in a general class of conservation laws (see also [3]). The paper
[6] looked at the Euler-α model, while [7] investigated several subgrid-scale α-models of
turbulence.

The goal of this paper is to establish a formulation of the Onsager conjecture for energy
conservation of weak solutions to the hydrostatic Euler equations, in particular we prove
results of the following type (where Bs

p,q(T3) is a Besov space, see Definition 2.4). The
concept of a weak solution for the hydrostatic Euler equations will be made precise later.

Theorem. Let u be a weak solution of the hydrostatic Euler equations (which assumes that
w ∈ L2((0, T );L2(T3))) and (u, v) ∈ L4((0, T );Bα

4,∞(T3)) with α > 1
2
. Then the horizontal

kinetic energy is conserved, in particular

∥u(t1, ·)∥2L2 + ∥v(t1, ·)∥2L2 = ∥u(t2, ·)∥2L2 + ∥v(t2, ·)∥2L2 ,

for almost every t1, t2 ∈ (0, T ).

This theorem suggests that the analogue of the Onsager exponent (i.e. the threshold for
energy conservation) for these equations is 1

2
. Throughout the paper the term ‘Onsager expo-

nent’ will denote the regularity threshold for a weak solution to conserve energy. Depending
on the context, this can either refer to a Besov, Hölder or Sobolev exponent.

This result is in contrast to the Onsager exponent for the incompressible Euler equations
which is 1

3
. See section 7 for a discussion of this increase of the Onsager exponent from 1

3
to

1
2
.
The proof of this result will use techniques from [26]. In particular we will establish

an equation that describes the time evolution of the conserved quantity (referred to as the
equation of local energy balance) which contains a ‘defect term’ (which can be interpreted
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as an energy flux at the vanishing limit of small scales or dissipation term). This defect
term captures the roughness in the weak solution which causes the anomalous dissipation of
energy and will be zero if the underlying weak solution is sufficiently regular.

We observe that there are two ways to approach the issue of the decrease in regularity of
w, as well as the nonlocality and anisotropic regularity imposed by equation (1.4).

1. Either one starts by imposing a regularity assumption on w and then proceeds to derive
a sufficient condition for energy conservation of weak solutions in terms of the horizontal
velocities.

2. Or one imposes sufficient regularity assumptions on the horizontal velocities such that
both the vertical velocity has sufficient regularity for a weak solution to be well-defined,
and the horizontal velocities are sufficiently regular for the energy to be conserved.

We will consider both these approaches in this paper. The first approach will be considered
in sections 2-4, while the second approach will be investigated in sections 5 and 6.

Throughout this paper, we will consider three types of weak solutions to the hydrostatic
Euler equations. We will refer to these notions as type I, II or III weak solutions. For later
reference, we already mention roughly what the differences between these notions are:

• A type I weak solution (see Definition 2.1) is the ‘canonical’ weak solution to the
hydrostatic Euler equations. For such a weak solution it is assumed that w ∈ L2(T3 ×
(0, T )) and u, v ∈ L∞((0, T );L2(T3)).

• For a type II weak solution (see Definition 4.16) it is assumed that w ∈ L2((0, T );L2(T;
B−s

2,∞(T2))) and u, v ∈ L∞((0, T );L2(T3)) ∩ L4((0, T );L4(T;Bσ′
4,2(T2))) for σ′ > s (here

L4(T;Bσ′
4,2(T2)) means L4(T) regularity in the vertical direction and Bσ′

4,2(T2) regularity
in the horizontal directions), where 0 < s < 1

2
.

• For a type III weak solution (see Definition 4.1) we assume that w ∈ L2((0, T );B−s
2,∞(T3))

and u, v ∈ L∞((0, T );L2(T3)) ∩ L4((0, T );Bσ′
4,2(T3)) for 0 < s < 1

2
and s < σ′.

Note that a difficulty in defining weak solutions where w is just a functional (i.e. type II
and III weak solutions) is to make sense of the products uw and vw as distributions. This is
done by using Bony’s paradifferential calculus. Furthermore, let us point out that boundary
condition (1.5) is imposed by using trace theorems. In the case of type II and type III weak
solutions the boundary condition will hold as a functional in a negative Besov space.

We now give an outline of the paper. In section 2 we establish the equation of local energy
balance for weak solutions of type I. We then introduce a criterion that ensures that the defect
term, in the local energy balance, is zero. In section 3 we investigate the adequate regularity
assumption necessary for the defect term to be zero, which then implies that the underlying
weak solution conserves energy. In other words, the goal is to interpret the criterion derived
in section 2. Such a sufficient condition for type I weak solutions (in terms of Besov spaces)
is stated in the theorem above, which will be proven in section 3.

Inspired by the quasilinear Lipschitz condition used in proving global existence and
uniqueness for the 2D Euler equations (see [52, 53, 70] for further details), we will sub-
sequently consider a logarithmic Hölder space. We will show that functions of this kind also
yield a zero defect term and solutions with such regularity conserve energy. The idea of this
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example is to show that the additional decay requirement of the mollified defect term (on
top of the Lipschitz decay) to ensure conservation of energy is only very weak. Such a result
was already proven for the case of the Euler equations by [17].

We will also show that in order to ensure energy conservation u and v can have a lower
Hölder exponent if w is Hölder continuous. Roughly speaking, if we assume that w(·, t) ∈
C0,β(T3) then if u(·, t), v(·, t) ∈ C0,α(T3) with α ≥ β > 0 and α > 1

2
− 1

2
β there is conservation

of energy. In particular, if u, v and w are all Hölder continuous with exponent bigger than 1
3

the energy is conserved (i.e. the ‘original’ Onsager conjecture is also true, which is consistent
with the general result for conservation laws in [2]).

We continue section 3 by proving that it is possible to have different ‘horizontal’ and
‘vertical’ Onsager exponents. This is caused by the fact that the hydrostatic Euler equations
are anisotropic in terms of regularity of the velocity field. We will show that if u and v are
Hölder continuous with exponent α in the vertical and β in the horizontal directions (where
2α + β > 2, α > 1

3
and β > 2

3
) then the energy is conserved.

In section 4 we will consider type II and type III weak solutions, namely when w is allowed
to be functional that belongs to a negative Besov space. We follow the same procedure as
we did for type I weak solutions and prove an analogue of Onsager’s conjecture for types II
and III weak solutions. We again establish an equation of local energy balance with a defect
term and find sufficient criteria for the vanishing of the defect term.

For type III weak solutions we show that if w(·, t) ∈ B−s
2,∞(T3) for 0 < s < 1

4
then the the

condition (u, v) ∈ L4((0, T );B
1/2+s+
4,∞ (T3)) is sufficient for the conservation of energy. We also

show that the Onsager exponent cannot be higher than 3
4
, for any notion of weak solution.

Indeed, if (u, v) ∈ L4((0, T );B
3/4+
4,∞ (T3)) then a type III weak solution of the hydrostatic Euler

equations conserves energy, regardless of any regularity assumption on the vertical velocity
w. This is because the regularity assumption on u and v ensures via equation (1.4) that w
has enough regularity to make sense of the equation and also for energy to be conserved.

The arguments for type II weak solutions are the same as for type III so therefore we only
state the results without proof.

Finally, in sections 5 and 6 we formulate sufficient criteria for energy conservation solely
in terms of regularity assumptions on the horizontal velocities u and v. In section 5 we
formulate criteria in terms of Sobolev spaces, while in section 6 we formulate a criterion in
terms of Besov spaces.

In section 7 we conclude and give a plausible explanation for the increase in the Onsager
exponent from 1

3
for the Euler equations to 1

2
for the hydrostatic Euler equations with more

details. In the conclusion we also provide an overview of the different regularity criteria that
ensure conservation of energy. In particular, there seems to be a ‘family’ of Onsager con-
jectures for the hydrostatic Euler equations, which is due to the aforementioned anisotropic
regularity of the velocity field.

Appendix A gives an overview of the techniques from Bony’s paradifferential calculus that
are used in section 4. Finally, we note that many results in this paper could also have been
proven by using the commutator estimates approach as presented in [5, 19]. In appendix
B we give an example of a proof done by using commutator estimates, namely the proof of
Proposition 3.7.
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2 The equation of local energy balance

In this section, we establish the equation of local energy balance. We first define a notion of
weak solutions (type I) to the hydrostatic Euler equations as in [18].

Definition 2.1. A type I weak solution of the hydrostatic Euler equations on the domain
T3 × (0, T ) is given by a velocity field u = (u, v, w) : T3 × (0, T ) → R3 and a pressure
p : T3 × (0, T ) → R such that:

• u ∈ L2(T3 × (0, T )), u, v ∈ L∞((0, T );L2(T3)) and p ∈ L∞((0, T );L1(T3)).

• For all ϕ1, ϕ2 ∈ D(T3 × (0, T );R) the following equations hold

ˆ T

0

ˆ
T3

u∂tϕ1dx dt+

ˆ T

0

ˆ
T3

uu · ∇ϕ1dx dt+

ˆ T

0

ˆ
T3

Ωvϕ1dx dt (2.1)

+

ˆ T

0

ˆ
T3

p∂xϕ1dx dt = 0,

ˆ T

0

ˆ
T3

v∂tϕ2dx dt+

ˆ T

0

ˆ
T3

vu · ∇ϕ2dx dt−
ˆ T

0

ˆ
T3

Ωuϕ2dx dt (2.2)

+

ˆ T

0

ˆ
T3

p∂yϕ2dx dt = 0.

• For all ϕ3 ∈ D(T3 × (0, T );R), the following equation holds for the pressure

ˆ T

0

ˆ
T3

p∂zϕ3dxdt = 0. (2.3)

• For all ϕ4 ∈ D(T3 × (0, T );R) the incompressibility condition holds, i.e.

ˆ T

0

ˆ
T3

u · ∇ϕ4dx dt = 0. (2.4)

• It holds that w(x, y, 0, t) = w(x, y, 1, t) = 0 (we are considering the unit torus) for
almost all (x, y) ∈ T2 and t ∈ (0, T ). This ensures that the symmetry conditions are
obeyed, namely that uH and p are even in z and that w is odd in z. We will explain in
Remark 2.2 why this requirement makes sense.

Remark 2.2. If one wants to define the notion of a type I weak solution to the boundary-value
problem for the hydrostatic Euler equations in the three-dimensional channel M , one has to
ensure that the no-normal flow boundary conditions (1.5) in the vertical direction are obeyed
(i.e. w(x, y, 0, t) = w(x, y, L, t) = 0). Equivalently, if the physical problem is posed on the
unit torus T3 one has to ensure that the symmetry conditions are obeyed, which again means
that the boundary conditions (1.5) have to be imposed.

For type I weak solutions we know that u(·, t) ∈ L2(M) as well as that ∇ · u(·, t) =
0 ∈ L2(M). Then by the generalised trace theorem (see [65]) we know that

(
u · n(·, t)

)
|∂M∈

H−1/2(∂M). In particular, on the top and bottom of the channel u ·n = ±w, so the condition
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w|∂M= 0 (recall that the channel has no boundary in the horizontal directions) makes sense
as an equation in H−1/2(∂M).

By the same reasoning, we can impose the condition w(x, y, 0, t) = 0 on the torus. Once
again, this condition makes sense as a trace. Then a weak solution of hydrostatic Euler on
the torus obeying this condition can be viewed as a solution of the physical boundary-value
problem on the channel because one can do an even extension in the horizontal directions
and an even/odd extension in the vertical direction. For this reason, we will only consider
the problem on the torus here. But the results can be proven by the same methods in the
case of the channel.

We will make one remark about the pressure for later reference. One can write down the
following equation for the pressure

∆Hp = −(∇H ⊗∇H) :

ˆ
T

(
uH ⊗ uH

)
dz, (2.5)

where we recall that uH = (u, v) is a two-dimensional vector and ∆H is the Laplacian in x
and y. The solution is uniquely determined by the requirement that

´
T2 pdxdy = 0.

We will now show that we can weaken the regularity requirements on the test functions
ϕ1 and ϕ2 in the definition of a type I weak solution (Definition 2.1). We will need this result
later to prove an equation of local energy balance.

Lemma 2.3. Equations (2.1) and (2.2) still hold for test functions ϕ1, ϕ2 ∈ W 1,1
0 ((0, T );L2(T3))

∩ L2((0, T );H3(T3)).

Proof. Let φ ∈ W 1,1
0 ((0, T );L2(T3))∩L2((0, T );H3(T3)) be arbitrary. Then there exists a se-

quence {φn}∞n=1 ⊂ D(T3×(0, T )) such that φn → φ inW 1,1
0 ((0, T );L2(T3))∩L2((0, T );H3(T3)).

Now note that equations (2.1) and (2.2) hold for any φn, since they lie in D(T3 × (0, T )).
We observe that u∂tφn → u∂tφ in L1((0, T );L1(T3)) as n→ ∞ and therefore

ˆ T

0

ˆ
T3

u∂tφndx dt
n→∞−−−→

ˆ T

0

ˆ
T3

u∂tφdx dt.

Similarly, one can see that uu ·∇φn → uu ·∇φ in L1((0, T );L1(T3)) as n→ ∞, which means
that ˆ T

0

ˆ
T3

uu · ∇φndx dt
n→∞−−−→

ˆ T

0

ˆ
T3

uu · ∇φdx dt dt.

Recall that we have made a separate regularity assumption on the pressure (p ∈ L∞((0, T );
L1(T3))). We observe that p∂xφn → p∂xφ in L2((0, T );L1(T3)) as n → ∞. Thus it holds
that ˆ T

0

ˆ
T3

p∂xφndx dt
n→∞−−−→

ˆ T

0

ˆ
T3

p∂xφdx dt dt.

The convergence of the other terms works exactly the same way and hence we conclude the
proof.

We will also fix some notation. Let φ ∈ C∞
c (R3;R) be a radial standard C∞

c mollifier
with the property that

´
R3 φdx = 1. We define

φϵ(x) :=
1

ϵ3
φ

(
x

ϵ

)
.
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Moreover, we introduce the notation

uϵ := u ∗ φϵ.

Throughout the paper we will be using the Einstein summation convention.
We also recall the definition of Besov spaces. Note that there are several equivalent

definitions of Besov spaces, see, e.g., [1, 47] for more details.

Definition 2.4. For 1 ≤ p, q ≤ ∞ and s > 0, we say that a measurable function u : Tn → R
belongs to the Besov space Bs

p,q(Tn) if

∥u∥Bs
p,q

:= ∥u∥Lp + |u|Bs
p,q
<∞.

Here we have defined the Besov seminorm to be (for 1 ≤ q <∞)

|u|Bs
p,q

:=

(ˆ
Rn

∥∆⌊s⌋+1
h u∥qLp

dh

|h|n+sq

)1/q

.

For the case q = ∞, we define the alternative seminorm

|u|Bs
p,∞

:= sup
h∈Rn\{0}

1

|h|s
∥∆⌊s⌋+1

h u∥Lp . (2.6)

Note that ⌊·⌋ has been used here to denote the integer part. We have also introduced the
difference quotients through the following two equations

∆1
hu(x) := u(x+ h)− u(x),

∆m
h u(x) := ∆h(∆

m−1
h u(x)), m ≥ 2,

for x ∈ Tn and h ∈ Rn.

The equation of local energy balance will be stated in the following theorem.

Theorem 2.5. Let u be a type I weak solution of the hydrostatic Euler equations such that

u, v ∈ L4((0, T );L4(T3)). (2.7)

Then the following equation of local energy balance (which holds in the sense of distributions
with the space of test functions D(T3 × (0, T ))) is satisfied

∂t(u
2 + v2) +∇ ·

[
(u2 + v2)u

]
+ 2∇ · (pu) + 1

2
D(u) = 0. (2.8)

In the above we have introduced the defect term

D(u)(x, t) := lim
ϵ→0

ˆ
R3

[
∇φϵ(ξ) · δu(ξ;x, t)(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)

]
dξ, (2.9)

where
δu(ξ;x, t) := u(x+ ξ, t)− u(x, t).

The limit in equation (2.9) is independent of the choice of mollifier φϵ and the convergence
is in the space W−1,1((0, T );W−1,1(T3)).
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Proof. We first mollify equations (1.1) and (1.2) in space (with φϵ) and obtain that

0 = ∂tu
ϵ +∇ · (uu)ϵ − Ωvϵ + ∂xp

ϵ, (2.10)

0 = ∂tv
ϵ +∇ · (vu)ϵ + Ωuϵ + ∂yp

ϵ. (2.11)

These equations hold pointwise. We observe that uϵ, vϵ ∈ L∞((0, T );C∞(T3)). We note that
the terms in the system (2.10)-(2.11) have the following regularities: ∇ · (uu)ϵ,∇ · (vu)ϵ ∈
L2((0, T );C∞(T3)), Ωvϵ,Ωuϵ ∈ L∞((0, T );C∞(T3)) and ∂xp

ϵ, ∂yp
ϵ ∈ L∞((0, T );C∞(T3))

(and similarly for the terms in equation (2.11)). From this we conclude that

∂tu
ϵ, ∂tv

ϵ ∈ L2((0, T );C∞(T3)).

As a result, we obtain that

uϵ, vϵ ∈ H1((0, T );C∞(T3))∩L∞((0, T );C∞(T3)) ⊂ W 1,1((0, T );L2(T3))∩L2((0, T );H3(T3)).

Therefore, we multiply uϵ and vϵ by a function ψ ∈ D(T3 × (0, T );R) and consider ψuϵ and
ψvϵ as the test functions in our weak formulation for type I weak solutions, which is allowed
by Lemma 2.3. Adding the equations together gives

ˆ T

0

ˆ
T3

[
u∂t(u

ϵψ) + v∂t(v
ϵψ) + uu · ∇(uϵψ) + vu · ∇(vϵψ) + Ωvuϵψ − Ωuvϵψ (2.12)

+ p∂x(u
ϵψ) + p∂y(v

ϵψ)

]
dxdt = 0.

Now we multiply equations (2.10) and (2.11) by ψu and ψv respectively (they therefore
hold almost everywhere), integrate them in space and time and subtract them from equation
(2.12). This yields

ˆ T

0

ˆ
T3

[
u∂t(u

ϵψ)− uψ∂tu
ϵ + v∂t(v

ϵψ)− vψ∂tv
ϵ + uu · ∇(uϵψ)− ψu∇ · (uu)ϵ

+ vu · ∇(vϵψ)− ψv∇ · (vu)ϵ + p∂x(u
ϵψ)− uψ∂xp

ϵ + p∂y(v
ϵψ)− vψ∂yp

ϵ

]
dxdt = 0.

Now we deal with the different terms in turn, we observe by the Leibniz rule that (since uϵ, vϵ

and ψ are weakly differentiable in time)

ˆ T

0

ˆ
T3

[
u∂t(u

ϵψ)− uψ∂tu
ϵ + v∂t(v

ϵψ)− vψ∂tv
ϵ

]
dxdt =

ˆ T

0

ˆ
T3

[
(uuϵ + vvϵ)∂tψ

]
dxdt

= ⟨−∂t(uuϵ + vvϵ), ψ⟩,

where the brackets ⟨·, ·⟩ denote the distributional action. Note that we have used the fact
that ψ is C∞ to be able to justify the time derivative of the products uϵψ and vϵψ satisfies
the Leibniz rule.

Now we look at the pressure terms, we recall that ∂zp
ϵ = 0, as well as equation (2.3).

Then we rewrite the pressure terms as follows

ˆ T

0

ˆ
T3

[
p∂x(u

ϵψ)− uψ∂xp
ϵ + p∂y(v

ϵψ)− vψ∂yp
ϵ

]
dxdt
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=

ˆ T

0

ˆ
T3

[
p∂x(u

ϵψ) + p∂y(v
ϵψ) + p∂z(w

ϵψ)− uψ∂xp
ϵ − vψ∂yp

ϵ − wψ∂zp
ϵ

]
dxdt

=

ˆ T

0

ˆ
T3

[
puϵ · ∇ψ + pϵu · ∇ψ

]
dxdt = ⟨−∇ · (puϵ + pϵu), ψ⟩,

where we have used the incompressibility ∇ ·uϵ = 0 condition in the above. Finally, we look
at the advective terms. We first introduce a defect term and calculate it to be

Dϵ(u) :=

ˆ
R3

dξ

[
∇φϵ(ξ) · δu(ξ;x, t)(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)

]
= −∇ ·

[
(u2 + v2)u

]ϵ
+ u · ∇(u2 + v2)ϵ + 2u∇ · (uu)ϵ + 2v∇ · (vu)ϵ − 2uu · ∇uϵ − 2vu · ∇vϵ − (u2 + v2)∇ · uϵ

= −∇ ·
[
(u2 + v2)u

]ϵ
+ u · ∇(u2 + v2)ϵ + 2u∇ · (uu)ϵ + 2v∇ · (vu)ϵ − 2uu · ∇uϵ − 2vu · ∇vϵ.

Subsequently, we can write the advective terms as follows
ˆ T

0

ˆ
T3

[
uu · ∇(uϵψ)− ψu∇ · (uu)ϵ + vu · ∇(vϵψ)− ψv∇ · (vu)ϵ

]
dxdt

=

ˆ T

0

ˆ
T3

[
ψuu · ∇uϵ − ψu∇ · (uu)ϵ + ψvu · ∇vϵ − ψv∇ · (vu)ϵ + (uuϵ + vvϵ)u · ∇ψ

]
dxdt

=

ˆ T

0

ˆ
T3

[
− 1

2
ψDϵ(u)−

1

2
ψ∇ ·

[
(u2 + v2)u

]ϵ
+

1

2
ψu · ∇(u2 + v2)ϵ + (uuϵ + vvϵ)u · ∇ψ

]
dxdt

=

ˆ T

0

ˆ
T3

[
− 1

2
ψDϵ(u) +

1

2

[
(u2 + v2)u

]ϵ
· ∇ψ − 1

2
(u2 + v2)ϵu · ∇ψ + (uuϵ + vvϵ)u · ∇ψ

]
dxdt

=

〈
− 1

2
Dϵ(u)−∇ · ((uuϵ + vvϵ)u) +

1

2
∇ ·
((
u2 + v2

)ϵ
u−

(
(u2 + v2)u

)ϵ)
, ψ

〉
.

Once again we have used the incompressibility condition here. Then we end up with the
following distributional equation (again for all ψ ∈ D(T3 × (0, T )))〈

∂t(uu
ϵ + vvϵ) +∇ · (puϵ + pϵu) +

1

2
Dϵ(u) +∇ · ((uuϵ + vvϵ)u) (2.13)

+
1

2
∇ ·
((

(u2 + v2)u
)ϵ − (u2 + v2

)ϵ
u

)
, ψ

〉
= 0.

Now we consider the convergence of the different terms as ϵ→ 0. We first observe that since
u, v ∈ L∞((0, T );L2(T3)) it holds that

uuϵ + vvϵ
ϵ→0−−→ u2 + v2 in L∞((0, T );L1(T3)).

Now we recall the assumption that u, v ∈ L4((0, T );L4(T3)). By equations (1.3) and (2.5),
one has p ∈ L2((0, T );L2(T3)). Therefore,

puϵ + pϵu
ϵ→0−−→ 2pu in L1((0, T );L1(T3)).

Now again by assumption (2.7) it holds that

uuϵ + vvϵ
ϵ→0−−→ u2 + v2 in L2((0, T );L2(T3)).
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In particular one has (uuϵ+vvϵ)u
ϵ→0−−→ (u2+v2)u in L1((0, T );L1(T3)). From this we conclude

that (
(u2 + v2)u

)ϵ − (u2 + v2
)ϵ
u

ϵ→0−−→ 0 in L1((0, T );L1(T3)).

Finally, we need to consider the convergence of the defect term Dϵ as ϵ→ 0. We first observe
thatDϵ(u) is well-defined as a function in L1((0, T );L1(T3)) for any ϵ > 0 due to the following
bound

∥Dϵ(u)(·, t)∥L1 ≤ Cϵ∥δu(·, t)∥L2(∥δu(·, t)∥2L4 + ∥δv(·, t)∥2L4).

In the above Cϵ is a constant which depends on ϵ > 0. We already saw that δu(|δu|2+|δv|2) ∈
L1((0, T );L1(T3)), therefore Dϵ(u) ∈ L1((0, T );L1(T3)) for any ϵ > 0.

Regarding the limit ϵ→ 0, by virtue of equation (2.13) one has

Dϵ(u) = −2∂t(uu
ϵ+vvϵ)−2∇·(puϵ+pϵu)−2∇·((uuϵ+vvϵ)u)−∇·

((
(u2+v2)u

)ϵ−(u2+v2)ϵu).
In the above we have proven that the right-hand side converges in W−1,1((0, T );W−1,1(T3))
and is independent of the choice of mollifier. We call its limit D(u). As a result,

D(u) = −2
(
∂t(u

2 + v2) +∇ · (2pu) +∇ · ((u2 + v2)u)
)
,

which holds in the sense of distributions, that is〈
∂t(u

2 + v2) +∇ · (2pu) + 1

2
D(u) +∇ · ((u2 + v2)u), ψ

〉
= 0,

for every test function ψ ∈ D(T3 × (0, T )).

It should be mentioned that it is possible to include the viscous terms when deriving
the equation of local energy balance, but this is not needed for our purposes here. Now we
introduce a criterion which ensures that the defect term, D(u), is zero. Note that the term
D(u) can be physically interpreted as an energy flux at the limit of vanishing small spatial
scales, i.e. as ϵ→ 0, and hence is the source of dissipation of energy in the case of not smooth
enough type I weak solutions.

Proposition 2.6. Let u be a type I weak solution of the hydrostatic Euler equations and
assume that u, v ∈ L4((0, T );L4(T3)). Let C ∈ L1(0, T ) and assume that σ ∈ L∞

loc(R) is a
nonnegative real-valued function with the property that σ(|ξ|) → 0 as |ξ| → 0. Suppose u
satisfies the inequality

ˆ
T3

|δu(ξ;x, t)|
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx ≤ C(t)|ξ|σ(|ξ|). (2.14)

Then D(u) = 0.

Proof. Observe that

|Dϵ(u)| =
1

2

∣∣∣∣ ˆ
R3

∇φϵ(ξ) · δu(ξ;x, t)
[
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

]
dξ

∣∣∣∣
≤
ˆ
R3

|∇φϵ(ξ)||δu(ξ;x, t)|
[
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

]
dξ.

12



Integrating this inequality over T3 × (0, T ) gives us that

ˆ T

0

ˆ
T3

|Dϵ(u)|dxdt ≤
ˆ T

0

dt

ˆ
R3

|∇φϵ(ξ)|
ˆ
T3

|δu(ξ;x, t)|(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)dxdξ

≤
ˆ T

0

C(t)dt

ˆ
R3

1

ϵ3
|∇ξφ(ξ/ϵ)||ξ|σ(|ξ|)dξ.

Note that we are allowed to use Fubini’s theorem because the integrand is absolutely inte-
grable (as u(·, t) ∈ L2(T3) and u(·, t), v(·, t) ∈ L4(T3)). Now by using that

´ T
0
C(t)dt < ∞

and the change of variable ξ = ϵz, we find that

ˆ T

0

ˆ
T3

|Dϵ(u)|dxdt ≲
ˆ
T3

|∇ξφ(z)||ξ|σ(|ξ|)dz =
ˆ
T3

|∇zφ(z)||z|σ(ϵ|z|)dz.

Thanks to the assumption that σ(|ξ|) → 0 as |ξ| → 0, we find that Dϵ(u) → 0, in L1(T3 ×
(0, T )) as ϵ→ 0 by the Lebesgue dominated convergence theorem. Therefore D(u) = 0.

The goal of the next section is to interpret criterion (2.14), i.e. by finding the biggest
function space for which bound (2.14) holds.

3 Proof of conservation of energy

We will prove several different sufficient conditions for (2.14) to hold. We will then prove
that if condition (2.14) is satisfied, conservation of energy holds. In particular, one can make
different regularity assumptions for w due to the aforementioned anisotropy of the velocity
field. In this section, we consider type I weak solutions (cf. Definition 2.1), i.e. we assume
that w ∈ L2((0, T );L2(T3)).

First we will find a suitable Besov space such that condition (2.14) is satisfied. Later
in this section we will introduce the logarithmic Hölder space in order to show that even if
the solution is in a slightly weaker function space the function σ in equation (2.14) is still
o(1) as |ξ| → 0. We will also show that the Onsager exponent (the regularity threshold for
energy conservation) can be lowered if w is Hölder continuous. Finally, we will show that
there can be a different Onsager exponent in the vertical direction compared to the horizontal
directions.

Criterion (2.14) seems to dictate the condition u(·, t), v(·, t) ∈ Bα
3,∞(T3) with α > 1

3
,

because it is possible to bound |δu| by

|δu| ≤ |δu|+ |δv|+ |δw|.

The first two terms in this equation multiplied by the term (|δu|2 + |δv|2) in equation (2.14)
give us products of the form |δu|3, |δv|3, |δu||δv|2 and |δv||δu|2. Because we want to treat
the horizontal velocities on an equal footing, we want to impose the same conditions on
the horizontal velocities. The terms in Dϵ(u) with only horizontal velocities should have
sufficient regularity such that the function σ in equation (2.14) is o(1) as |ξ| → 0. This seems
to necessitate the assumption u(·, t), v(·, t) ∈ Bα

3,∞(T3) with α > 1
3
.
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These conditions alone do not ensure energy conservation, because in that case one needs
to assume that w(·, t) ∈ Bα

3,∞(T3) with α > 1
3
as well. That would be a very strong re-

quirement, because implicitly this imposes conditions on u and v via equation (1.4). These
conditions cannot be inferred directly however. Instead we need a stronger condition on u
and v, in order to not need any assumption on w (except for it being in L2((0, T );L2(T3)),
which is required in the definition of a type I weak solution).

3.1 Sufficient condition for energy conservation

We now prove a proposition which gives a sufficient condition for (2.14) to be true, which then
implies conservation of energy. This result coincides with the theorem from the introduction.

Proposition 3.1 (Conservation of energy). Let u be a type I weak solution of the hydrostatic
Euler equations and assume that u, v ∈ L4((0, T );Bα

4,∞(T3)) with α > 1
2
. Then D(u) = 0

(where D(u) was defined in equation (2.9)), which implies that the weak solution conserves
energy. That is,

∥u(t1, ·)∥2L2 + ∥v(t1, ·)∥2L2 = ∥u(t2, ·)∥2L2 + ∥v(t2, ·)∥2L2 , for a.e. t1, t2 ∈ (0, T ). (3.1)

Proof. By the definition of a type I weak solution for the hydrostatic Euler equations (Def-
inition 2.1) it is assumed that u ∈ L2((0, T );L2(T3)). Because u and v are in addition
assumed to be in L4((0, T );L4(T3)) then by Theorem 2.5 the defect term D(u) exists and is
well-defined. Moreover, the equation of local energy balance holds. By using the additional
regularity assumptions that u(·, t), v(·, t) ∈ Bα

4,∞(T3) with α > 1
2
we get that

ˆ
T3

|δu(ξ;x, t)|
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx

≤ ∥δu(ξ; ·, t)∥L2(∥δu(ξ; ·, t)∥2L4 + ∥δv(ξ; ·, t)∥2L4)

≤ 2∥u(·, t)∥L2|ξ|2α
(∥∥∥∥δu(ξ; ·, t)|ξ|α

∥∥∥∥2
L4

+

∥∥∥∥δv(ξ; ·, t)|ξ|α

∥∥∥∥2
L4

)
≤ 2∥u(·, t)∥L2|ξ|2α

(
∥u(·, t)∥2Bα

4,∞
+ ∥v(·, t)∥2Bα

4,∞

)
.

Because 2α > 1, we can take (in the notation of Proposition 2.6)

σ(|ξ|) := |ξ|2α−1,

which indeed goes to zero as |ξ| tends to zero. Finally, we observe that

C(t) = ∥u(·, t)∥L2

(
∥u(·, t)∥2Bα

4,∞
+ ∥v(·, t)∥2Bα

4,∞

)
∈ L1(0, T ),

since ∥u(·, t)∥L2 ∈ L2(0, T ) and ∥u(·, t)∥Bα
4,∞
, ∥v(·, t)∥Bα

4,∞
∈ L4(0, T ). Therefore the condi-

tions of Proposition 2.6 are satisfied and as a consequence it follows that D(u) = 0.
Now according to equation (2.8) we have

∂t(u
2 + v2) +∇ ·

[
(u2 + v2 + 2p)u

]
= 0,
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which holds in the sense of distributions. Hence for any ψ ∈ D(T3 × (0, T );R) we have that

ˆ T

0

ˆ
T3

(u2 + v2)∂tψdxdt = −
ˆ T

0

ˆ
T3

∇ψ ·
((

u2 + v2 + 2p

)
u

)
dxdt.

Let 0 < t1 < t2 < T and choose the following test function

ψ(t) =

ˆ t

0

(
ϕϵ(t

′ − t1)− ϕϵ(t
′ − t2)

)
dt′.

Here ϕ is a C∞
c (R;R) mollifier such that

´
R ϕ(t)dt = 1, suppϕ ⊂ (−1, 1) and ϕϵ(t) =

ϵ−1ϕ(t/ϵ). Note that ψ is zero for t ∈ (0, t1 − ϵ) ∪ (t2 + ϵ, T ) (i.e. suppψ ⊂ (0, T )), for
ϵ sufficiently small. The derivative of this test function is given by

∂tψ(t) = ϕϵ(t− t1)− ϕϵ(t− t2).

Because ψ has no spatial dependence, it follows that the spatial gradient vanishes. As a
result we get that

ˆ t1+ϵ

t1−ϵ

ˆ
T3

(u2 + v2)ϕϵ(t− t1)dxdt =

ˆ t2+ϵ

t2−ϵ

ˆ
T3

(u2 + v2)ϕϵ(t− t2)dxdt.

Then by using the Lebesgue differentiation theorem in the limit ϵ→ 0 [28, 68] we can conclude
that ˆ

T3

(
u2(x, t1) + v2(x, t1)

)
dx =

ˆ
T3

(
u2(x, t2) + v2(x, t2)

)
dx,

for almost every t1, t2 ∈ (0, T ), which is equation (3.1).

It now becomes plausible why the Onsager exponent is 1
2
and not 1

3
, the required regularity

in order to ensure that the function σ in criterion (2.14) is o(1) has to be distributed over
two terms in the product instead of three (the latter being the case for the Euler equations,
see [26] for more details). This will be discussed further in section 7.

3.2 Energy conservation for log-Hölder regularity

Note that it is also possible to satisfy criterion (2.14) by imposing a different regularity
condition on the solution. To this end, we introduce another function space.

Definition 3.2. Let U be a bounded and closed set. The logarithmic Hölder space C0,γ
log (U)

with 0 < γ < 1 consists of all continuous functions (i.e. in C0(U)) for which the following
seminorm is finite

|u|C0,γ
log

:= sup
x,y∈U,x ̸=y

|u(x)− u(y)|
|x− y|γ

(1 + log−(|x− y|)). (3.2)

It is straightforward to see that C0,γ
log (T3) ⊂ C0,γ(T3). One can also show that C0,γ

log (T3) is
a Banach space (see [25]). We now prove that type I weak solutions with logarithmic Hölder
continuity with exponent 1

2
have a defect term which is zero and hence conserve energy.
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Proposition 3.3. Suppose u is a type I weak solution of the hydrostatic Euler equations
and suppose that u, v ∈ L4((0, T );C

0,1/2
log (T3)). Then D(u) = 0, which then implies the

conservation of energy (3.1).

Proof. The proof is almost the same as the proof of Proposition 3.1. The only difference
being that we now have the inequality (for |ξ| < 1)

∥δu(ξ; ·, t)∥L2(∥δu(ξ; ·, t)∥2L4 + ∥δv(ξ; ·, t)∥2L4)

≤ 2∥u(·, t)∥L2|ξ| 1(
1− log(|ξ|)

)2 (∥u(·, t)∥2C0,1/2
log

+ ∥v(·, t)∥2
C

0,1/2
log

)
.

This means that in the notation of Proposition 2.6 we have that (again for |ξ| < 1)

σ(|ξ|) := 1(
1− log(|ξ|)

)2 ,
which clearly goes to zero as |ξ| → 0. Therefore the conditions of Proposition 2.6 are satisfied
and the defect term is zero. The proof that the solution conserves energy is analogous to the
proof of Proposition 3.1.

Remark 3.4. Note that C
0,1/2
log (T3) ̸⊂ Bα

4,∞(T3) with α > 1
2
. Therefore the above proposition

is not contained within Proposition 3.1.

Remark 3.5. We observe that the log-Hölder spaces can also be used for the original Onsager
conjecture for the Euler equations. We recall that in [26] it was proven that

ˆ
T3

|δu(ξ;x, t)|3dx ≤ C(t)|ξ|σ(|ξ|), (3.3)

ensures that the defect term is zero (in the equation of local energy balance for a weak
solution of the Euler equations) Here we used the same notation as in Proposition 3.1, where
u is a weak solution of the three-dimensional Euler equations. Now we observe that under
the assumption that u(·, t) ∈ C

0,1/3
log (T3) condition (3.3) is satisfied with the following choice

for σ

σ(|ξ|) := 1(
1− log(|ξ|)

)3 , |ξ| < 1.

It is clear that σ(|ξ|) → 0 as |ξ| → 0 and therefore there is conservation of energy. Note

that also in this case u(·, t) ∈ C
0,1/3
log (T3) is a different condition from u(·, t) ∈ Bα

3,∞(T3) with

α > 1
3
. Therefore log-Hölder spaces can be applied to prove the original Onsager conjecture.

It is also possible to consider even slower decay, e.g. a power of a logarithm. In addition,
one can also consider logarithmic Besov spaces. A result of this type for the Euler equations
was proven in [17].

The consideration of logarithmic Hölder spaces was inspired by the proof of global ex-
istence for the 2D Euler equations with the vorticity being bounded in L∞. In that case a
quasilinear Lipschitz condition is used of the form [52, 53, 70]

|u(x)− u(y)| ≤ Kφ(|x− y|),
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where we have defined

φ(r) :=

{
r(1− log r), r < 1,

1, r ≥ 1.

In order to generalise this condition we have introduced the concept of logarithmic Hölder
continuity.

3.3 Hölder regularity for the vertical velocity

Next we consider w to be Hölder continuous with some exponent β. In that case the Onsager
exponent (for u and v) can be lower, as we will see in the next proposition.

Proposition 3.6. Let u be a type I weak solution of the hydrostatic Euler equations and as-
sume that w ∈ Lp1((0, T );Bβ

p2,∞(T3)) with β > 0 and 1 ≤ p1, p2 ≤ ∞. Moreover, assume that
u, v ∈ Lq1((0, T );Bα

q2,∞(T3)) with 2p′1 ≤ q1, 2p
′
2 ≤ q2 (where p′1, p

′
2 are the Hölder conjugates

of p1 and p2) and 2α > 1− β (with α ≥ β). Then D(u) = 0, which implies conservation of
energy (3.1).

Proof. One can obtain the following estimatesˆ
T3

|δu(ξ;x, t)|
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx

≤ ∥δu(ξ; ·, t)∥Lp2 (∥δu(ξ; ·, t)∥2
L2p′2

+ ∥δv(ξ; ·, t)∥2
L2p′2

)

≤ |ξ|2α+β ∥δu(ξ; ·, t)∥Lp2

|ξ|β

(
∥δu(ξ; ·, t)∥2

L2p′2

|ξ|2α
+

∥δv(ξ; ·, t)∥2
L2p′2

|ξ|2α

)
≤ |ξ|2α+β∥u(·, t)∥Bβ

p2,∞
(∥u(·, t)∥2Bα

2p′2,∞
+ ∥v(·, t)∥2Bα

2p′2,∞
).

We have used the assumed Besov regularity of w in estimating the term ∥δu(ξ;·,t)∥Lp2

|ξ|β . We can

now take σ(|ξ|) := |ξ|2α+β−1 which goes to zero as |ξ| → 0 since 2α + β > 1 by assumption.
It is also the case that ∥u(·, t)∥Bβ

p2,∞
(∥u(·, t)∥2Bα

2p′2,∞
+ ∥v(·, t)∥2Bα

2p′2,∞
) ∈ L1(0, T ). We can then

apply Proposition 2.6 to conclude that D(u) = 0. By analogous reasoning to the proof of
Proposition 3.1 we conclude that the solution conserves energy.

3.4 Anisotropic sufficient conditions for energy conservation

As was mentioned before, the hydrostatic Euler equations are anisotropic in terms of regu-
larity. The vertical velocity w has a lower regularity than the horizontal velocities u and v.
However, one can observe from equation (1.4) that w is one degree less regular in the hori-
zontal variables but one degree more regular in the z-variable. We will use this observation
in the next proposition to show that there are ‘vertical’ and ‘horizontal’ Onsager exponents.
To this end, we introduce the following norm (for 0 < α < β < 1)

∥f∥Bα
3,∞(T;Bβ

3,∞(T2))
:= ∥f∥L3(T3) + sup

ξ∈R3\{0}

∥δf(· ; ξ)∥L3(T3)

|ξ|α
+ sup

ξh∈R2\{0}

∥δf(· ; (ξh, 0))∥L3(T3)

|ξ|β
.

(3.4)
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A function being in the space Bα
3,∞(T;Bβ

3,∞(T2)) means that it is Besov regular in the z-
direction with exponent α, while it has regularity β in the horizontal directions.

Proposition 3.7 (Horizontal and vertical Onsager exponents). Let u be a type I weak so-
lution of the hydrostatic Euler equations such that u, v ∈ L3((0, T );Bα

3,∞(T;Bβ
3,∞(T2))) with

β > 2
3
, α > 1

3
and 2α+β > 2. Under these assumptions it holds that D(u) = 0. In particular,

the weak solution conserves energy (3.1).

Proof. First we will restrict to the case β > 1, as otherwise α > 1
2
and then the result

was proven already in Proposition 3.1. By recalling equation (1.4), we find that ∂zw ∈
L3((0, T );Bα

3,∞(T;Bβ−1
3,∞ (T2))). This then implies that w ∈ L3((0, T );Bα+1

3,∞ (T;Bβ−1
3,∞ (T2))) (by

using the Lebesgue differentation theorem). So w has Bα+1
3,∞ regularity in the z-direction

and Bβ−1
3,∞ regularity in the horizontal directions. We take any ξ = (ξh, ξz) ∈ R3 with the

horizontal increment ξh ∈ R2 and the vertical increment ξz ∈ R. From this we obtain that

δu(ξ;x, t) = δu(ξz;x+ ξh, t) + δu(ξh;x, t).

We introduce the notation δuh := δu(ξh;x, t) and δuz := δu(ξz;x + ξh, t). We only look at
the ‘vertical’ part of the defect termˆ

T3

|δw(ξ;x, t)|
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx,

since the other partˆ
T3

(|δu(ξ;x, t)|+ |δv(ξ;x, t)|)
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx

automatically satisfies the conditions of Proposition 2.6 if α, β > 1
3
. For the ‘vertical’ part of

the defect term, we can derive the estimatesˆ
T3

|δw(ξ;x, t)|
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx

≤ 2

ˆ
T3

(|δwh|+ |δwz|)
(
|δuh|2 + |δuz|2 + |δvh|2 + |δvz|2

)
dx

≤ C(|ξ|β+1 + |ξ|3 + |ξ|2α+β−1 + |ξ|2α+1)∥w∥Bα+1
3,∞ (T;Bβ−1

3,∞ (T2))

·
(
∥u∥2

Bα
3,∞(T;Bβ

3,∞(T2))
+ ∥v∥2

Bα
3,∞(T;Bβ

3,∞(T2))

)
.

By assumption, we have that β + 1 > 1, 2α + β − 1 > 1 and 2α + 1 > 1. Moreover,
we know that C(t) = ∥w∥Bα+1

3,∞ (T;Bβ−1
3,∞ (T2))(∥u∥

2

Bα
3,∞(T;Bβ

3,∞(T2))
+ ∥v∥2

Bα
3,∞(T;Bβ

3,∞(T2))
) ∈ L1(0, T ).

Therefore by Proposition 2.6 it follows that D(u) = 0. By a similar argument as in the proof
of Proposition 3.1 we conclude that the solution conserves energy.

Notice that this proposition is not implied by Proposition 3.1 in the range 1
3
< α < 1

2
.

As was mentioned before, if α > 1
2
then this proposition is merely a weaker result than

Proposition 3.1. We can conclude from Proposition 3.7 that the Onsager exponents seem to
be ‘direction-dependent’, as can be expected from the fact that the regularity of the different
components of the velocity field in the hydrostatic Euler equations is anisotropic. In other
words, we can weaken the regularity requirement in the vertical direction at the expense of
a stronger regularity requirement in the horizontal directions.
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4 Negative Besov regularity for the vertical velocity

In the previous sections, in particular in Definition 2.1 of type I weak solutions, we assumed
that w ∈ L2((0, T );L2(T3)). It is difficult to find an equivalent regularity condition to
this assumption solely in terms of u and v. Implicity, w ∈ L2((0, T );L2(T3)) implies some
regularity of the horizontal divergence of (u, v).

In order to weaken the assumptions on w, in this section we introduce two different notions
of ‘very weak’ solutions of the hydrostatic Euler equations. In this context, ‘very weak’ means
that either w(·, t) ∈ B−s

2,∞(T3) (type III weak solution) or w(·, z, t) ∈ B−s
2,∞(T2) (type II weak

solution) for s > 0. Now because we need to make sense of the equation and in particular
the products uw and vw, we are obliged to make stronger regularity assumptions on u and v
compared to Definition 2.1. To this end, we will use techniques from paradifferential calculus.
A brief overview of these techniques that will be used in this paper are presented in Appendix
A, for the convenience of the reader.

In this section, we will mainly focus on type III weak solutions. We will prove sufficient
criteria for energy conservation for such solutions. The results will then be stated without
proof for type II weak solutions, as they are identical in nature.

4.1 Weak solutions with lower regularity on the vertical velocity

In order to define the notion of a type III weak solution, we let w be a functional on Besov
functions. We need to prove that the products uw and vw also have negative Besov regularity,
for this we use the paraproduct estimates.

We will find that for type III weak solutions, the Onsager exponent seems to increase.
We begin by introducing the notion of a type III weak solution.

Definition 4.1. We call a pair of a velocity field u = (u, v, w) : T3 × (0, T ) → R3 and a
pressure p : T3× (0, T ) → R a type III weak solution of the hydrostatic Euler equations with
regularity parameter s (where s > 0) if it satisfies the following conditions:

• w ∈ L2((0, T );B−s
2,∞(T3)), u, v ∈ L∞((0, T );L2(T3))∩L4((0, T );Bσ′

4,2(T3)) for some σ′ >
s and p ∈ L∞((0, T );L1(T3)).

• For all ϕ1, ϕ2 ∈ D(T3 × (0, T );R) the following equations hold

ˆ T

0

ˆ
T3

u∂tϕ1dx dt+

ˆ T

0

⟨uu,∇ϕ1⟩dt+
ˆ T

0

ˆ
T3

Ωvϕ1dx dt (4.1)

+

ˆ T

0

ˆ
T3

p∂xϕ1dx dt = 0,

ˆ T

0

ˆ
T3

v∂tϕ2dx dt+

ˆ T

0

⟨vu,∇ϕ2⟩dt−
ˆ T

0

ˆ
T3

Ωuϕ2dx dt (4.2)

+

ˆ T

0

ˆ
T3

p∂yϕ2dx dt = 0.

Note that here ⟨·, ·⟩ denotes the spatial duality bracket between D′(T3) and D(T3).
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• For all ϕ3 ∈ D(T3 × (0, T );R) it holds that
ˆ T

0

ˆ
T3

p∂zϕ3dxdt = 0. (4.3)

• The velocity field u is divergence-free, i.e. for all ϕ4 ∈ D(T3 × (0, T );R) we have that

ˆ T

0

⟨u,∇ϕ4⟩dt = 0. (4.4)

• It must hold that for almost every t ∈ (0, T ) that

w(·, 0, t) = w(·, 1, t) = 0 in Bs−1
2,∞(T2). (4.5)

Remark 4.2. We first have to show that this definition makes sense, in particular we must
be able to show that the products uw(·, t) and vw(·, t) (which appear in equations (4.1) and
(4.2)) are distributions, i.e. are elements of the space D′(T3). To this end, we use Bony’s
paradifferential calculus. We observe that w(·, t) ∈ B−s

2,∞(T3) and also that u(·, t), v(·, t) ∈
Bσ′

2,∞(T3) for some σ′ > s. By applying Lemmas A.1 and A.2 we get that

Tuw(·, t), Tvw(·, t) ∈ B−s
1,∞(T3), Twu(·, t), Twv(·, t) ∈ Bσ′−s

1,∞ (T3),

R(u,w)(·, t), R(v, w)(·, t) ∈ Bσ′−s
1,∞ (T3).

From this we are able to conclude that uw(·, t), vw(·, t) ∈ B−s
1,∞(T3). Therefore we know

that uw, vw ∈ L1((0, T );B−s
1,∞(T3)) and hence they are distributions. In addition, we obtain

that the duality brackets between D′(T3) and D(T3) are equivalent to the duality brackets
between B−s

1,∞(T3) and Bs
1,∞(T3), i.e.

⟨uu,∇ϕ1⟩ = ⟨uu,∇ϕ1⟩B−s
1,∞×Bs

1,∞
, ⟨vu,∇ϕ1⟩ = ⟨vu,∇ϕ1⟩B−s

1,∞×Bs
1,∞
.

In particular, we conclude that equations (1.1) and (1.2) not only hold in the sense of distri-
butions, but in fact they hold in the space W−1,1((0, T );B−s−1

1,∞ (T3)).

The no-normal flow boundary condition in equation (4.5) will be made sense of by using a
trace theorem. In order to do so, we recall the following lemma from [66, Chapter 3, Lemma
1.1] or [62, Lemma 1.31].

Lemma 4.3. Let X be a Banach space. Assume that f, g ∈ L1((a, b);X). Then the following
two statements are equivalent:

1. The function f is equal almost everywhere to the primitive function of g, i.e.

f(z) = ξ +

ˆ z

0

g(z′)dz′, ξ ∈ X, for almost all z ∈ [a, b].

2. For all test functions ϕ5 ∈ D(a, b) it holds that

ˆ b

a

f(z′)ϕ′
5(z

′)dz′ = −
ˆ b

a

g(z′)ϕ5(z
′)dz′.

20



In particular, both statements imply that f is almost everywhere equal to a continuous function
from [a, b] to X.

By using this lemma we show that the boundary condition in (4.5) is well-defined.

Remark 4.4. Firstly, by using Lemma 4.3 with f = w, g = −∇H · uH , X = Bs−1
2,∞(T2),

[a, b] = [0, 1] and keeping t fixed, we get that w(·, z, t) is continuous as a function of the
z-variable (since Bs−1

2,∞(T2) is a Banach space). This subsequently means that the no-normal
boundary condition (1.5) for the vertical velocity is obeyed as an equation in the space
Bs−1

2,∞(T2). In particular, we are able to conclude from this that we can extend a solution on
the torus to a solution in the channel.

Remark 4.5. To establish an equation of local energy balance, we will need to make sense of
the products u2w, v2w and pw as distributions, utilising the fact that u(·, t), v(·, t) ∈ Bσ′

4,∞(T3)
for some σ′ > s. Again by Bony’s paradifferential calculus (see Appendix A), we find that

Tuu(·, t), Tvv(·, t) ∈ Bσ′

2,∞(T3), R(u, u)(·, t), R(v, v)(·, t) ∈ B2σ′

2,∞(T3).

From this we can conclude that u2(·, t), v2(·, t) ∈ Bσ′
2,∞(T3). Then we find that

Tu2w(·, t), Tv2w(·, t) ∈ B−s
1,∞(T3), Twu

2(·, t), Twv2(·, t) ∈ Bϵ
1,∞(T3),

R(w, u2)(·, t), R(w, v2)(·, t) ∈ Bϵ
1,∞(T3), for some ϵ > 0.

Therefore we deduce that u2w, v2w ∈ L1((0, T );B−s
1,∞(T3)), thus they belong to D′(T3 ×

(0, T );R). As a result, the action on D(T3 × (0, T )) makes sense and the equation of local
energy balance will hold in the sense of distributions.

Regarding the pressure, we observe from equations (1.3) and (2.5) by using elliptic reg-
ularity results that p ∈ L2((0, T );Hσ′

(T3)) ⊂ L2((0, T );Bσ′
2,∞(T3)) (because u2, v2, uv ∈

L2((0, T );Hσ′
(T3))). Therefore the pressure is more regular than L∞((0, T );L1(T3)), as was

assumed in the definition of a type III weak solution. Then by proceeding as before we can
show that pu ∈ L1((0, T );B−s

1,∞(T3)), which will be needed to establish the equation of local
energy balance.

Remark 4.6. Note that in the case s > 1
2
the regularity requirement w(·, t) ∈ B−s

2,∞(T3) already

follows from the regularity requirement on u and v. Indeed from u(·, t), v(·, t) ∈ Bσ′
4,2(T3) (for

some σ′ > s) and equation (4.4) we deduce that ∂zw(·, t) ∈ L2(T;Bσ′−1
2,∞ (T2)). Then we find

that w(·, t) ∈ L2(T;Bσ′−1
2,∞ (T2)). This can be seen by applying Lemma 4.3 and using the

no-normal flow boundary condition imposed in Definition 4.1.
Then we observe that w(·, t) ∈ Bσ′−1

2,∞ (T3) ⊂ B−s
2,∞(T3). The inclusion holds because

σ′ − 1 > s − 1 > −1
2
> −s. Equivalently, if u is a type III weak solution with regularity

parameter s ∈ (1
2
, 1), then u is in fact a type III weak solution with smaller regularity

parameter 1− s.
Naturally, if s ≥ 1 then ∂zw(·, t) will lie in L2(T3). Then by applying Lemma 4.3 we find

that w(·, t) ∈ L2(T3), which means that we are considering a type I weak solution.

Now we show that we can expand the space of test functions, as it was done in Lemma
2.3.

Lemma 4.7. The weak formulation in equations (4.1) and (4.2) for fixed s > 0 still holds
for test functions in ϕ1, ϕ2 ∈ W 1,1

0 ((0, T );L2(T3)) ∩ L4((0, T );Bs+1
1,∞(T3) ∩H3(T3)).

21



Proof. The proof works the same way as the proof for Lemma 2.3. We take an arbitrary
φ ∈ W 1,1

0 ((0, T );L2(T3)) ∩ L4((0, T );Bs+1
1,∞(T3) ∩ H3(T3)). Then we know that there ex-

ists a sequence {φn}∞n=1 ⊂ D(T3 × (0, T )) such that φn → φ in W 1,1
0 ((0, T );L2(T3)) ∩

L4((0, T );Bs+1
1,∞(T3) ∩H3(T3)) as n→ ∞.

The only convergence that we need to show that differs from the proof of Lemma 2.3
is for the integral

´ T
0
⟨uu,∇φn⟩B−s

1,∞×Bs
1,∞
dt (and the same integral for v). We observe that

∇φn
n→∞−−−→ ∇φ in L4((0, T );Bs

1,∞(T3)). This means that we can prove the convergence∣∣∣∣ˆ T

0

⟨uu,∇φn⟩B−s
1,∞×Bs

1,∞
dt−

ˆ T

0

⟨uu,∇φ⟩B−s
1,∞×Bs

1,∞
dt

∣∣∣∣
=

∣∣∣∣ ˆ T

0

⟨uu,∇φ−∇φn⟩B−s
1,∞×Bs

1,∞
dt

∣∣∣∣
≤
ˆ T

0

(
∥uu∥B−s

1,∞
∥∇φ−∇φn∥Bs

1,∞

)
dt ≤ ∥uu∥

L
4/3
t ((B−s

1,∞)x)
∥φ− φn∥L4

t ((B
s+1
1,∞)x)

n→∞−−−→ 0.

We recall that we assumed that u is L4 in time, while u is L2 in time, which implies that
uu ∈ L4/3((0, T );B−s

1,∞(T3)). Therefore the final inequality follows, which concludes the
proof.

4.2 The equation of local energy balance

Now that we have introduced the notion of a type III weak solution and extended the space
of test functions, we can establish an equation of local energy balance.

Theorem 4.8. Let u be a type III weak solution of the hydrostatic Euler equations with
regularity parameter s, then for all ψ ∈ D(T3 × (0, T )) it satisfies the following equation of
local energy balance

ˆ T

0

[ˆ
T3

(
u2∂tψ + v2∂tψ

)
dx+

〈
(u2 + v2 + 2p)u,∇ψ

〉
B−s

1,∞×Bs
1,∞

− 1

2

〈
D(u), ψ

〉
B−s

1,∞×Bs
1,∞

]
dt = 0. (4.6)

Here D(u) denotes the element in W−1,1((0, T );B−s−1
1,∞ (T3)) given by

D(u) := lim
ϵ→0

ˆ
R3

dξ

[
∇φϵ(ξ) · δu(ξ;x, t)(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)

]
.

The limit D(u) is independent of the choice of mollifier.

Remark 4.9. Notice that in particular, since L∞((0, T );Bs+1(T3)) ⊂ D(T3× (0, T );R), equa-
tion (4.6) holds in the sense of distributions (the duality brackets in this equation are equiv-
alent to the distributional action between D′(T3 × (0, T )) and D(T3 × (0, T ))). However, we
show in fact that the equation holds in the space W−1,1((0, T );B−s−1

1,∞ (T3)).
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Proof. Throughout the proof we will write duality brackets with explicit subscripts to make
clear in which spaces the elements lie as to make the proof more understandable. Any duality
bracket in this proof is equivalent to a distributional duality bracket, as ψ is a test function.

We first mollify equations (1.1) and (1.2) in space with φϵ and obtain

0 = ∂tu
ϵ +∇ · (uu)ϵ − Ωvϵ + ∂xp

ϵ, (4.7)

0 = ∂tv
ϵ +∇ · (vu)ϵ + Ωuϵ + ∂yp

ϵ. (4.8)

It holds that uϵ, vϵ ∈ L∞((0, T );C∞(T3)). We observe that (uu)ϵ, (vu)ϵ ∈ L1((0, T );C∞(T3))
and pϵ ∈ L∞((0, T );C∞(T3)), from this we can conclude that ∂tu

ϵ, ∂tv
ϵ ∈ L1((0, T );C∞(T3)),

which implies that uϵ, vϵ ∈ W 1,1((0, T );C∞(T3)) ∩ L∞((0, T );C∞(T3)).
As a result, we are able to apply Lemma 4.7 and use ψuϵ and ψvϵ as test functions in the

weak formulation in Definition 4.1 (for ψ ∈ D(T3 × (0, T );R)). Adding the equations for u
and v together gives that

ˆ T

0

[ˆ
T3

(
u∂t(u

ϵψ) + v∂t(v
ϵψ) + Ωvuϵψ − Ωuvϵψ + p∂x(u

ϵψ) + p∂y(v
ϵψ)

)
dx

+ ⟨uu,∇(uϵψ)⟩B−s
1,∞×Bs

1,∞
+ ⟨vu,∇(vϵψ)⟩B−s

1,∞×Bs
1,∞

]
dt = 0.

By multiplying equations (4.7) and (4.8) by uψ respectively vψ and subtracting them from
the previous equation, we get that

ˆ T

0

[ˆ
T3

(
u∂t(u

ϵψ)− uψ∂tu
ϵ + v∂t(v

ϵψ)− vψ∂tv
ϵ + p∂x(u

ϵψ)− uψ∂xp
ϵ

+ p∂y(v
ϵψ)− vψ∂yp

ϵ − ψu∇ · (uu)ϵ − ψv∇ · (vu)ϵ
)
dx+ ⟨uu,∇(uϵψ)⟩B−s

1,∞×Bs
1,∞

+ ⟨vu,∇(vϵψ)⟩B−s
1,∞×Bs

1,∞

]
dt

=

ˆ T

0

[ˆ
T3

(
u∂t(u

ϵψ)− uψ∂tu
ϵ + v∂t(v

ϵψ)− vψ∂tv
ϵ + p∂x(u

ϵψ)− uψ∂xp
ϵ

+ p∂y(v
ϵψ)− vψ∂yp

ϵ

)
dx+

〈
uu · ∇uϵ − u∇ · (uu)ϵ + vu · ∇vϵ − v∇ · (vu)ϵ, ψ

〉
B−s

1,∞×Bs
1,∞

+

〈
(uuϵ + vvϵ)u,∇ψ

〉
B−s

1,∞×Bs
1,∞

]
dt = 0.

We will mainly discuss the advective terms here, as the derivation of the equation of energy
for the other terms proceeds in the same way as Theorem 2.5. To handle them, we introduce
a defect term

Dϵ(u) :=

ˆ
R3

dξ

[
∇φϵ(ξ) · δu(ξ;x, t)(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)

]
= −∇ ·

[
(u2 + v2)u

]ϵ
+ u · ∇(u2 + v2)ϵ + 2u∇ · (uu)ϵ + 2v∇ · (vu)ϵ

− 2uu · ∇uϵ − 2vu · ∇vϵ.
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Notice that the equation holds in L1((0, T );B−s
1,∞(T3)), in particular in D′(T3 × (0, T );R).

Now we can write the advective terms as follows
ˆ T

0

〈
uu · ∇uϵ − u∇ · (uu)ϵ + vu · ∇vϵ − v∇ · (vu)ϵ, ψ

〉
B−s

1,∞×Bs
1,∞

dt

=

ˆ T

0

〈
− 1

2
Dϵ(u)−∇ ·

[
(u2 + v2)u

]ϵ
+ u · ∇(u2 + v2)ϵ, ψ

〉
B−s

1,∞×Bs
1,∞

dt

=

ˆ T

0

〈
− 1

2
Dϵ(u), ψ

〉
B−s

1,∞×Bs
1,∞

+

〈[
(u2 + v2)u

]ϵ
− u(u2 + v2)ϵ,∇ψ

〉
B−s

1,∞×Bs
1,∞

dt.

We observe that

[
(u2 + v2)u

]ϵ
− u(u2 + v2)ϵ → 0 in B−s

1,∞(T3) by the paraproduct estimates

(see Remark 4.5 and Appendix A for more details). In particular, we have that (again for
some σ′ > s, by the properties of a type III weak solution as stated in Definition 4.1)∥∥∥∥[(u2 + v2)u

]ϵ
− u(u2 + v2)ϵ

∥∥∥∥
B−s

1,∞

≤
∥∥∥∥[(u2 + v2)u

]ϵ
− u(u2 + v2)

∥∥∥∥
B−s

1,∞

+

∥∥∥∥(u2 + v2)u− u(u2 + v2)ϵ
∥∥∥∥
B−s

1,∞

≤ ∥(u2 + v2)− (u2 + v2)ϵ∥Bσ′
2,∞

∥u∥B−s
2,∞

+

∥∥∥∥[(u2 + v2)u

]ϵ
− u(u2 + v2)

∥∥∥∥
B−s

1,∞

ϵ→0−−→ 0.

Finally, we need to prove that the defect term makes sense. First we claim that〈
Dϵ(u), ψ

〉
B−s

1,∞×Bs
1,∞

=

ˆ
R3

[
∇φϵ(ξ)⟨δu(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

]
dξ. (4.9)

This can be shown as follows. For the mollification (in space) uη of u, we have by Fubini’s
theorem 〈ˆ

R3

dξ ∇φϵ(ξ) · δuη(|δu|2 + |δv|2), ψ
〉

B−s
1,∞×Bs

1,∞

=

ˆ
R3

dξ

[
∇φϵ(ξ)⟨δuη(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

]
.

Now we observe that

−
ˆ
R3

dξ

[
∇φϵ(ξ)⟨δuη(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

]
+

ˆ
R3

dξ

[
∇φϵ(ξ)⟨δu(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

]
=

ˆ
R3

dξ

[
∇φϵ(ξ)⟨δ(u− uη)(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

]
≤ C∥u− uη∥B−s

2,∞
(∥u∥2

Bσ′
4,2

+ ∥v∥2
Bσ′

4,2
)∥ψ∥Bs

1,∞
dt

η→0−−→ 0.
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Moreover, it is straightforward to verify that〈
Dϵ(u)−

ˆ
R3

dξ ∇φϵ(ξ) · δuη(|δu|2 + |δv|2), ψ
〉

B−s
1,∞×Bs

1,∞

≤ C∥u− uη∥B−s
2,∞

(∥u∥2
Bσ′

4,2
+ ∥v∥2

Bσ′
4,2
)∥ψ∥Bs

1,∞

η→0−−→ 0.

Therefore claim (4.9) is true. Hence we have

⟨Dϵ(u), ψ⟩B−s
1,∞×Bs

1,∞
=

ˆ
R3

dξ

[
∇φϵ(ξ)⟨δu(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

]
≤ C∥ψ∥Bs

1,∞
∥u∥B−s

2,∞
(∥u∥2

Bσ′
4,2

+ ∥v∥2
Bσ′

4,2
) <∞.

In particular, Dϵ(u) makes sense as an element in L1((0, T );B−s
1,∞(T3)). The convergence as

ϵ→ 0 follows by looking at the equation we established (for fixed ϵ > 0)

Dϵ(u) = −2∂t(uu
ϵ+vvϵ)−2∇·(puϵ+pϵu)−2∇·((uuϵ+vvϵ)u)−∇·

((
(u2+v2)u

)ϵ−(u2+v2)ϵu).
As ϵ→ 0 the right-hand side converges in W−1,1((0, T );B−1−s

1,∞ (T3)) which means that Dϵ(u)
converges in the same space. Since the limit of the right-hand side is independent of the
choice of mollifier, hence the limit D(u) is independent of the choice of mollifier. Therefore we
conclude that the derived equation of local energy balance holds in the sense of distributions.

Remark 4.10. In order to make sense of the hydrostatic Euler equations for a type III
weak solution, the assumptions u, v ∈ L2((0, T );Bσ′

2,2(T3)) for some σ′ > s would have
been sufficient. To derive an equation of local energy balance however, the assumption
that u, v ∈ L4((0, T );Bσ′

4,2(T3)) is necessary.

4.3 Proof of conservation of energy

Now we prove an estimate on the defect term like in Proposition 2.6.

Proposition 4.11. Let u be a type III weak solution of the hydrostatic Euler equations with
regularity parameter s. Assume that for all ψ ∈ D(T3 × (0, T )) it holds that∣∣∣∣⟨δu(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

∣∣∣∣ ≤ C(t)|ξ|σ(|ξ|)∥ψ∥Bs
1,∞
, (4.10)

where C ∈ L1(0, T ) and σ ∈ L∞
loc(R) with the property that σ(|ξ|) → 0 as |ξ| → 0. Then

D(u) = 0, which implies that energy is conserved.

Proof. Under this assumption, we estimate the defect term as follows (by using identity (4.9))∣∣∣∣ ˆ T

0

〈
− 1

2
Dϵ(u), ψ

〉
B−s

1,∞×Bs
1,∞

dt

∣∣∣∣ = ∣∣∣∣ ˆ T

0

ˆ
R3

∇φϵ(ξ)⟨δu(|δu|2 + |δv|2), ψ⟩B−s
1,∞×Bs

1,∞
dξdt

∣∣∣∣
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≤
ˆ T

0

ˆ
R3

|∇φϵ(ξ)|
∣∣∣∣⟨δu(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

∣∣∣∣dξdt
≤
ˆ T

0

C(t)∥ψ∥Bs
1,∞
dt

ˆ
R3

|∇φϵ(ξ)||ξ|σ(|ξ|)dξ

≤
ˆ T

0

C(t)∥ψ∥Bs
1,∞
dt

ˆ
R3

|∇zφ(z)||z|σ(ϵ|z|)dz,

where in the last line we made a change of variable ξ = ϵz (like was done in Proposition
2.6). Using the dominated convergence theorem and the assumption on σ we deduce that
the right-hand side converges to 0 as ϵ→ 0. Therefore we conclude that D(u) = 0.

Next we give sufficient conditions that ensure that the defect term is zero, in particular
such that condition 4.10 is satisfied.

Proposition 4.12. Assume that u is a type III weak solution of the hydrostatic Euler equa-
tions with regularity parameter s and that u, v ∈ L4((0, T );Bα

4,∞(T3)) with α > 1
2
+ s. Then

D(u) = 0 in the sense of distributions. This then implies that the weak solution conserves
energy.

Proof. By Proposition 4.11 we have to prove bound (4.10). Using the paraproduct estimates
in Lemmas A.1 and A.2 as they were applied in Remark 4.5 (again for some σ′ > s as given
in Definition 4.1)∣∣∣∣⟨δu(|δu|2 + |δv|2), ψ⟩B−s

1,∞×Bs
1,∞

∣∣∣∣ ≤ ∥ψ∥Bs
1,∞

∥δu(|δu|2 + |δv|2)∥B−s
1,∞

≤ ∥ψ∥Bs
1,∞

∥δu∥B−s
2,∞

(∥δu∥2
Bσ′

4,2
+ ∥δv∥2

Bσ′
4,2
)

≤ ∥ψ∥Bs
1,∞

∥δu∥B−s
2,∞

(∥δu∥2
Bσ′

4,∞
+ ∥δv∥2

Bσ′
4,∞

).

From the second to the third line, σ′ has decreased for some arbitrarily small but nonzero
amount θ (such that σ′ is still larger than s). Now we need to show that (for some σ′ > s,
which can be arbitrarily close to s)

∥δu∥2
Bσ′

4,∞
+ ∥δv∥2

Bσ′
4,∞

≤ C(t)|ξ|σ(|ξ|).

We only derive this for the seminorms (i.e. the increments), as it is trivial for the L4 norm
part of the Besov norm. We consider the case s < 1

2
and α > 1

2
, the range s > 1

2
does

not give anything new (as was discussed in Remark 4.6). By shrinking α a bit if necessary
(but keeping it larger than 1

2
) and taking σ′ sufficiently small (but still larger than s), we

can ensure that σ′ + α < 1. This is necessary because if σ′ + α > 1, then the definition
of the Besov seminorm will contain a second-order increment which will make the following
computations invalid. For all 0 ̸= ξ ∈ R3 we obtain

|δu|Bσ′
4,∞

= sup
h∈R3\{0}

1

|h|σ′ ∥δξδhu∥L4 = |ξ|α sup
h∈R3\{0}

1

|h|σ′ |ξ|α
∥δξδhu∥L4

≤ |ξ|α sup
h∈R3\{0},|h|≤|ξ|

1

|h|σ′|ξ|α
∥δξδhu∥L4 + |ξ|α sup

h∈R3\{0},|h|≥|ξ|

1

|h|σ′ |ξ|α
∥δξδhu∥L4
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≤ |ξ|α sup
h∈R3\{0},|h|≤|ξ|

1

|h|σ′+α
∥δξδhu∥L4 + |ξ|α sup

h∈R3\{0},|h|≥|ξ|

1

|ξ|α+σ′ ∥δξδhu∥L4

≤ 4|ξ|α∥u∥
Bσ′+α

4,∞
.

We therefore conclude that∣∣∣∣⟨δu(|δu|2 + |δv|2), ψ⟩B−s
1,∞×Bs

1,∞

∣∣∣∣ ≤ |ξ|2α∥ψ∥Bs
1,∞

∥δu∥B−s
2,∞

(∥u∥2
Bσ′+α

4,∞
+ ∥v∥2

Bσ′+α
4,∞

).

By assumption it holds that ∥δu∥B−s
2,∞

(∥u∥2
Bσ′+α

4,∞
+ ∥v∥2

Bσ′+α
4,∞

) ∈ L1(0, T ), moreover we can

take σ(|ξ|) := |ξ|2α−1, which satisfies the assumptions of Proposition 4.11. Therefore by
Proposition 4.11 we conclude that D(u) = 0.

Finally, we are able to prove conservation of energy under sufficient regularity analogously
to Proposition 3.1.

Theorem 4.13. Let u be a type III weak solution of the hydrostatic Euler equations with
regularity parameter s such that u, v ∈ L4((0, T );Bα

4,∞(T3)) with α > 1
2
+ s. Then there is

conservation of energy. In other words, it holds that

∥u(t1, ·)∥2L2 + ∥v(t1, ·)∥2L2 = ∥u(t2, ·)∥2L2 + ∥v(t2, ·)∥2L2 , (4.11)

for almost all t1, t2 ∈ (0, T ).

Proof. By Proposition 4.12 we know that D(u) = 0 under the regularity assumptions. There-
fore we have the following equation of local energy balance

ˆ T

0

[ˆ
T3

(
u2∂tψ + v2∂tψ

)
dx+

〈
(u2 + v2 + 2p)u,∇ψ

〉
B−s

1,∞×Bs
1,∞

]
dt = 0.

We conclude proceeding exactly as in the proof of Proposition 3.1.

We observe that the there is an upper bound on the Onsager exponent, namely 3
4
. We

will show this in the following proposition.

Proposition 4.14. Let u be a type III weak solution of the hydrostatic Euler equations with
(arbitrary) regularity parameter s such that u, v ∈ L4((0, T );Bα

4,∞(T3)) with α > 3
4
. Then

conservation of energy (as in equation (4.11)) holds.

Proof. We first observe that w ∈ L2((0, T );Bα−1
2,∞ (T3)) by equation (1.4) and by applying

Lemma 4.3. Then we can bound the defect term in the following way (again by relying on
the paraproduct estimates, for some θ > 0)∣∣∣∣⟨δu(|δu|2 + |δv|2), ψ⟩

B
−1/4
1,∞ ×Bs

1/4,∞

∣∣∣∣ ≤ ∥ψ∥
B

1/4
1,∞

∥δu(|δu|2 + |δv|2)∥
B

−1/4
1,∞

≤ ∥ψ∥
B

1/4
1,∞

∥δu∥
B

−1/4
3,∞

(∥δu∥2
B

1/4+θ
3,∞

+ ∥δv∥2
B

1/4+θ
3,∞

).
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We take θ small enough such that α− θ > 3
4
. Now we obtain the bound

∥δu∥2
B

1/4+θ
3,∞

+ ∥δv∥2
B

1/4+θ
3,∞

≤ |ξ|2α−2θ− 1
2 (∥u∥2Bα

4,∞
+ ∥v∥2Bα

4,∞
),

the proof of which is analogous to the proof of Proposition 4.12. Then since 2α− 2θ− 1
2
> 1,

by Proposition 4.11 we conclude that D(u) = 0. Conservation of energy follows analogously
to the proof of Theorem 4.13.

Remark 4.15. The main point of this result is that the notion of a type III weak solution
will only have implications on the Onsager conjecture in the range 0 < s < 1

4
. This result

can also be seen in the following fashion: If u is a type III weak solution with regularity
parameter s such that u, v ∈ L4((0, T );Bα

4,∞(T3)), then by Remark 4.6 it follows that in fact
u is a Type III weak solution with regularity parameter s′ := 1

4
. Then by Theorem 4.13 the

result follows immediately, as α > 1
2
+ s′ = 3

4
.

4.4 Type II weak solutions

In this section, we introduce type II weak solutions and state sufficient conditions for such
solutions to conserve energy.

Definition 4.16. A type II weak solution consists of a velocity field u = (u, v, w) : T3 ×
(0, T ) → R3 as well as a pressure p : T3 × (0, T ) → R together with a regularity parameter
0 < s < 1

2
, if the following conditions hold:

• w ∈ L2((0, T );L2(T;B−s
2,∞(T2))), u, v ∈ L∞((0, T );L2(T3)) ∩ L4((0, T );L2(T;Bσ′

4,2(T2)))
for some σ′ > s and where L2(T) refers to the regularity in the vertical direction.

• For all ϕ1, ϕ2 ∈ D(T3 × (0, T );R) it holds that
ˆ T

0

ˆ
T3

u∂tϕ1dx dt+

ˆ T

0

ˆ
T
⟨uu,∇ϕ1⟩dz dt+

ˆ T

0

ˆ
T3

Ωvϕ1dx dt (4.12)

+

ˆ T

0

ˆ
T3

p∂xϕ1dx dt = 0,

ˆ T

0

ˆ
T3

v∂tϕ2dx dt+

ˆ T

0

ˆ
T
⟨vu,∇ϕ2⟩dz dt−

ˆ T

0

ˆ
T3

Ωuϕ2dx dt (4.13)

+

ˆ T

0

ˆ
T3

p∂yϕ2dx dt = 0.

The brackets ⟨·, ·⟩ refer to the distributional duality between D′(T2) and D(T2).

• For all ϕ3 ∈ D(T3 × (0, T )) it holds that
ˆ T

0

ˆ
T3

p∂zϕ3dxdt = 0. (4.14)

• The velocity field u is divergence-free, in particular for all ϕ4 ∈ D(T3 × (0, T )) it holds
that ˆ T

0

ˆ
T
⟨u,∇ϕ4⟩dzdt = 0. (4.15)
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• Finally, for almost all t ∈ (0, T ) it holds that

w(·, 0, t) = w(·, 1, t) = 0 in B−s
2,∞(T2). (4.16)

In a similar fashion as it was argued in Remark 4.2, one can prove that uw(·, z, t), vw(·, z, t)
∈ B−s

1,∞(T2). We skip the details here. One should observe that the vertical velocity is
more regular for type II weak solutions compared to type III weak solutions, whereas the
opposite holds for the horizontal velocities. Hence, neither notion is stronger than the other
if 0 < s < 1

2
. In the case s > 1

2
, type III weak solutions are also type II weak solutions.

Finally, we observe that boundary condition (4.16) can be made sense of in a similar fashion
as it was argued in Remark 4.4.

Next we consider sufficient conditions for energy conservation. We only state the results
and omit the proofs, as they are very similar in nature as for the type III weak solutions, see
Lemma 4.7, Theorem 4.8, Propositions 4.11 and 4.12, Theorem 4.13 and Proposition 4.14.
We first state the equation of local energy balance.

Theorem 4.17. Let u be a type II weak solution of the hydrostatic Euler equations with
regularity parameter s. Then for all ψ ∈ D(T3× (0, T )) the following equation of local energy
balance is satisfied

ˆ T

0

[ˆ
T3

(
u2∂tψ + v2∂tψ

)
dx+

ˆ
T

〈
(u2 + v2 + 2p)u,∇ψ

〉
B−s

1,∞×Bs
1,∞

dz

− 1

2

ˆ
T

〈
D(u), ψ

〉
B−s

1,∞×Bs
1,∞

dz

]
dt = 0.

The defect term D(u) is given by

D(u) := lim
ϵ→0

ˆ
R3

dξ

[
∇φϵ(ξ) · δu(ξ;x, t)(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)

]
,

and is independent of the choice of mollifier.

Remark 4.18. Note that the duality brackets are now on the two-dimensional torus T2, while
for the type III weak solutions they were three-dimensional.

The usual sufficient condition for the defect term to be zero is given below.

Lemma 4.19. Let u be a type II weak solution of the hydrostatic Euler equations with
regularity parameter s. Moreover, assume that the following inequality holds for all ψ ∈
D(T3 × (0, T ))∣∣∣∣ˆ 1

0

⟨δu(|δu|2 + |δv|2), ψ⟩B−s
1,∞×Bs

1,∞
dz

∣∣∣∣ ≤ C(t)|ξ|σ(|ξ|)
ˆ 1

0

∥ψ∥Bs
1,∞(T2)dz,

where C ∈ L1(0, T ) and σ ∈ L∞
loc(R) has the property that σ(|ξ|) → 0 as |ξ| → 0. Then

D(u) = 0, which in turn implies conservation of energy.

Finally, we can state the sufficient condition for energy conservation for type II weak
solutions.
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Proposition 4.20. Let u be a type II weak solution of the hydrostatic Euler equations with
regularity parameter s such that u, v ∈ L4((0, T );Bα

4,∞(T;Bβ
4,∞(T2))) with α > 1

2
and β >

1
2
+ s, then the solution conserves energy. In particular, equation (4.11) holds.

Like in the case of type III weak solution, we have a result which is analogous to Propo-
sition 4.14.

Proposition 4.21. Let u be a type II weak solution of the hydrostatic Euler equations with
the property that u, v ∈ L4((0, T );Bα

4,∞(T;Bβ
4,∞(T2))) with α > 1

2
and β > 3

4
(note that this

space can be defined similarly to equation (3.4)). Then the weak solution conserves energy.

5 Sufficient conditions in terms of Sobolev spaces

In the next two sections, we give sufficient conditions for type I weak solutions (or at least
with similar regularity requirements to type I) to conserve energy solely in terms of the
horizontal velocities. In the previous sections, we started with a regularity assumption on
the vertical velocity and then derived sufficient conditions for energy conservation in terms
of the horizontal velocities (with sometimes additional assumptions on the vertical velocity).
However, these assumptions are not independent of each other by the anisotropic regularity
and the nonlocality imposed by (1.4).

The fact that the assumption that w ∈ L2(T3 × (0, T )) induces implicit assumptions on
the horizontal velocities can be seen as follows. The fact that the vertical velocity w has L2

spatial regularity means that either ∂xu and ∂yv are in L2((0, T );L2(T3)) or their potential
lack of regularity cancels in a particular way that is unclear at this point. In order to gain
a better understanding of this issue we want to look at the required regularity assumption
on the horizontal velocities u and v such that a regularity assumption on w is no longer
necessary for defining a weak solution or proving conservation of energy.

In this section we will prove such sufficient conditions in terms of Sobolev spaces and
Lebesgue spaces. These results complement our earlier results. As was shown in Propositions
2.6 and 3.1, condition (2.14) is sufficient for a type I weak solution with w ∈ L2(T3 × (0, T ))
to conserve energy. However, if we would like to avoid any explicit assumptions on w, two
separate conditions on u and v are necessary:

1. The horizontal velocities u and v need to have sufficient Hölder regularity with a given
exponent such that the function σ in equation (2.14) is o(1). This automatically implies
that their Hölder exponent must be bigger than 1

2
.

2. The vertical velocity w needs to satisfy some integrability condition in order for the
inequality (2.14) to hold, because δu needs to be bounded in some Lp space. Note that
we want to proceed here as we did for type I weak solutions.

From this reasoning we can conclude that we can either assume that u, v are in a sufficiently
regular Sobolev space such that both conditions are satisfied (by use of the Sobolev embedding
theorem), or we have to make two separate assumptions.

Proposition 5.1. Let u, v ∈ L3((0, T );C0,β(T3) ∩ W 1,p(T3)) with β > 1
2
and p > 1 or

alternatively u, v ∈ L3((0, T );W 1,p(T3)) with p > 6. Moreover, assume that
´
T∇H ·uHdz = 0
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and that together with the associated w (via equation (1.4)) the velocity field u satisfies the
weak formulation in equations (2.1)-(2.3). Then D(u) = 0. In particular, the weak solution
conserves energy (see equation (3.1)).

Proof. We first observe that the second case reduces to the first case by the Sobolev embed-
ding theorem, therefore we will only consider the first case. We first show that the defect term
is bounded. Now since u(·, t), v(·, t) ∈ W 1,p(T3), we know that ∂xu(·, t) + ∂yv(·, t) ∈ Lp(T3)
and by virtue of equation (1.4) and Lemma 4.3 it follows that w ∈ L3((0, T );Lp(T3)) with
p > 1. Using Hölder’s inequality we obtain that

∥δu(ξ; ·, t)(|δu(ξ; ·, t)|2 + |δv(ξ; ·, t)|2)∥L1 ≤ ∥δu(ξ; ·, t)∥Lp∥|δu(ξ; ·, t)|2 + |δv(ξ; ·, t)|2∥Lp/(p−1)

≤ ∥δu(ξ; ·, t)∥Lp

(
∥δu(ξ; ·, t)∥2L2p/(p−1) + ∥δv(ξ; ·, t)∥2L2p/(p−1)

)
.

Observe that u(·, t), v(·, t) ∈ L2p/(p−1)(T3) because of the fact that u(·, t), v(·, t) ∈ C0,β(T3)
with β > 1

2
.

In addition we see that

∥δu(·, t)∥Lp

(
∥δu(·, t)∥2L2p/(p−1) + ∥δv(·, t)∥2L2p/(p−1)

)
∈ L1(0, T ),

because we assumed that u, v and w have L3 temporal regularity.
Finally we need to check condition (2.14). We see that

∥δu(ξ; ·, t)(|δu(ξ; ·, t)|2 + |δv(ξ; ·, t)|2)∥L1 ≲ |ξ|2β∥δu(ξ; ·, t)∥Lp

·
(∥∥∥∥ δu|ξ|β (ξ; ·, t)

∥∥∥∥2
L2p/(p−1)

+

∥∥∥∥ δv|ξ|β (ξ; ·, t)
∥∥∥∥2
L2p/(p−1)

)
≲ 4|ξ|2β∥u(·, t)∥Lp∥1∥2L2p/(p−1)

(
∥u(·, t)∥2C0,β + ∥v(·, t)∥2C0,β

)
.

Thus by Proposition 2.6 D(u) = 0. Now energy conservation can be proven analogously to
the proof of Proposition 3.1.

6 Sufficient conditions in terms of Besov spaces

As was already mentioned in the previous section, the regularity assumption on w contains
(by means of equation (1.4)) implicit assumptions on the horizontal velocities u and v. In
this section we prove a criterion in terms of Besov spaces which is similar to the one in
Proposition 5.1.

Proposition 6.1. Assume that u, v ∈ L3((0, T );Bs
9
4
,∞(T3)) with s > 1 and

´
T∇H ·uHdz = 0,

such that they (together with the associated w via equation (1.4)) satisfy the weak formulation
given in equations (2.1)-(2.3). Then D(u) = 0, which implies that energy is conserved (see
equation (3.1)).

Proof. We first recall the following property of Besov spaces [1, 47]

∥∂αf∥
B

s−|α|
p,q

≤ ∥f∥Bs
p,q
, |α| < s. (6.1)
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This implies that ∂zw and hence w ∈ L3((0, T );Bs−1
9
4
,∞(T3)) by equation (1.4) and by applying

Lemma 4.3, in particular we obtain that w ∈ L3((0, T );L9/4(T3)). Subsequently by a Besov
embedding [47] we can conclude that

Bs
9/4,∞(T3) ⊂ B

s−1/2
18/5,∞(T3), s > 1.

Therefore u, v ∈ L3((0, T );Br
18/5,∞(T3)) with r > 1

2
. Now we estimate the defect term given

in equation (2.9) and use Proposition 2.6 to prove it is zero. By using Hölder’s inequality we
can derive that

ˆ
T3

|δu(ξ;x, t)|
(
|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2

)
dx

≤ ∥δu(ξ; ·, t)∥L9/4

(
∥δu(ξ; ·, t)∥2L18/5 + ∥δv(ξ; ·, t)∥2L18/5

)
.

We then get

∥δu(ξ; ·, t)∥L9/4(∥δu(ξ; ·, t)∥2L18/5 + ∥δv(ξ; ·, t)∥2L18/5)

≤ 2∥u(·, t)∥L9/4|ξ|2r
(∥∥∥∥δu(ξ; ·, t)|ξ|r

∥∥∥∥2
L18/5

+

∥∥∥∥δv(ξ; ·, t)|ξ|r

∥∥∥∥2
L18/5

)
≤ 2∥u(·, t)∥Bs−1

9/4,∞
|ξ|2r

(
∥u(·, t)∥2Br

18/5,∞
+ ∥v(·, t)∥2Br

18/5,∞

)
.

Hence condition (2.14) is satisfied. Finally, we need to prove the regularity in time. From
the derived conclusions that u, v ∈ L3((0, T );Br

18/5,∞(T3)) (with r > 1
2
) and w ∈ L3((0, T );

Bs−1
9/4,∞(T3)) (and s > 1) we observe that

∥u(·, t)∥Bs−1
9/4,∞

(
∥u(·, t)∥2Br

18/5,∞
+ ∥v(·, t)∥2Br

18/5,∞

)
∈ L1(0, T ).

Thus we conclude by Proposition 2.6 that D(u) = 0. Then by a similar argument to Propo-
sition 3.1 we find that the energy is conserved.

Remark 6.2. From the Besov embedding theorem [47] we can derive that

Bs
9/4,∞(T3) ⊂ Bt

4,∞(T3)

where s > 1 and t > 7
12
. It then obviously follows that the same embedding is true if t > 1

2
.

Therefore the result derived in Proposition 3.1 is stronger than the results from this section,
but for Proposition 3.1 we needed a separate regularity assumption on w.

Remark 6.3. Proposition 6.1 is in the context of type I weak solutions. It is also possible
to consider sufficient regularity conditions to both define a weak solution and prove energy
conservation in the context of type II and III weak solutions. This was discussed to some
extent in Remark 4.6 and Proposition 4.14.
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7 Conclusion

In this paper, we have proven that the Onsager exponent of the hydrostatic Euler equations
is at most 1

2
(for type I weak solutions). This result differs from the original Onsager con-

jecture for the Euler equations, where it has been established that the threshold for energy
conservation is 1

3
. As it was mentioned before, a technical explanation for this increase can

be given by looking again at the defect term

D(u)(x, t) :=
1

2
lim
ϵ→0

ˆ
R3

[
∇φϵ(ξ) · δu(ξ;x, t)(|δu(ξ;x, t)|2 + |δv(ξ;x, t)|2)

]
dξ.

It is clear from Proposition 2.6 that for the expression to be zero, the term σ in equation
(2.14) has to be o(1). The convergence to zero of σ as |ξ| → 0 can be very slight however.
This was illustrated by the consideration of the logarithmic Hölder space in Definition 3.2
and the proof that the defect term is zero in Proposition 3.3.

The difference with the defect term for the Euler equations, as stated in [26], is that in the
latter case there is a cubic term |δu|3 and that the vertical velocity has the same regularity
as the horizontal velocities in that case. This means that for the Euler equations the Besov
regularity necessary for σ to be o(1) can be equally distributed among the three terms in the
product |δu|3, leading to an Onsager exponent of 1

3
.

For the hydrostatic Euler equations, due to the anistropic nature of the equations, the
required Besov regularity (for σ to be o(1) in equation (2.14)) must be distributed on the
term |δuH |2, which leads to an Onsager exponent of 1

2
.

We would also like to summarise the different results presented in this paper. Unlike
the Euler equations, the hydrostatic Euler equations seem to have a ‘family’ of Onsager
conjectures. We now give an overview of these:

1. We first consider type I weak solutions (cf. Definition 2.1), i.e. we assume that w ∈
L2((0, T );L2(T3)). Then there are several subcases:

• Without any further assumptions, the Onsager exponent is 1
2
, cf. Proposition 3.1.

• Another sufficient condition for energy conservation is that u, v ∈ L4((0, T );

C
1/2
log (T3)), cf. Proposition 3.3.

• If we assume that w is Besov regular with exponent β, then the Onsager exponent
for the horizontal velocities is 1

2
− 1

2
β, cf. Proposition 3.6.

• If we assume that the horizontal velocities u and v are Besov regular with exponent
α in the z-direction (where 1

3
< α < 1

2
) and we make no additional assumption on

w, then the Onsager exponent in the horizontal directions is 2−2α, cf. Proposition
3.7.

2. Under the assumption that w ∈ L2((0, T );B−s
2,∞(T3)) (for s ≤ 1

2
), we can make sense of

the equation (with additional regularity assumptions on u and v). This is in the context
of type III weak solutions, as introduced in Definition 4.1. In the range 0 < s ≤ 1

4
, the

Onsager exponent is 1
2
+ s (cf. Proposition 4.12). For s ≥ 1

4
, the Onsager exponent is

3
4
(cf. Proposition 4.14).
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3. In section 4 we also considered the type II weak solutions, for which w ∈ L2((0, T );L2(T;
B−s

2,∞(T2))), see Definition 4.16. For such solutions we proved that they conserve energy

if u, v ∈ L4((0, T );Bα
4,∞(T;Bβ

4,∞(T2))) with α > 1
2
and β > 1

2
+ s, cf. Proposition 4.20.

Moreover, we prove that if α > 1
2
and β > 3

4
the solution conserves energy, regardless

of assumptions on w (cf. Proposition 4.21).

4. Finally, there is the case where we do not make explicit regularity assumptions on w
(neither for making sense of the equation nor for proving energy conservation) but only
on the horizontal velocities u and v. Then we considered two subcases in sections 5
and 6:

• In terms of Sobolev and Hölder spaces, we proved that u, v ∈ L3((0, T );C0,β(T3)∩
W 1,p(T3)) with p > 1 and β > 1

2
, or alternatively u, v ∈ L3((0, T );W 1,p(T3)) with

p > 6 suffices to define a w such that (u, v, w) is a type I weak solution which
conserves energy (cf. Proposition 5.1).

• Moreover, we proved that if u, v ∈ L3((0, T );Bs
9/4,∞(T3)) with s > 1 then we can

define w such that (u, v, w) is a type I weak solution which conserves energy (cf.
Proposition 6.1).

Note that the result of Proposition 4.14 is related to the results of sections 5 and
6. Namely, that for u, v ∈ L4((0, T );Bα

4,∞(T3)) with α > 3
4
it is implied that w ∈

L4((0, T );B
−1/4
3,∞ (T3)) such that (u, v, w) is a type III weak solution with regularity

parameter 1
4
which conserves energy, under the condition that the associated w is

periodic and satisfies the symmetry conditions.

The reason we have considered these different cases is that the vertical velocity w no
longer has its own dynamical equation but is constrained by the incompressibility instead,
therefore the equations are anisotropic and nonlocal. In order to establish an equation of
local energy balance, a regularity assumption on w is necessary. One needs the vertical
velocity to have sufficient regularity to make sense of a weak solution but on the other hand
regularity assumptions on w impose implicit regularity assumptions on u and v. This leads
us to consider different types of weak solutions to the hydrostatic Euler equations.

Then there are two ways to proceed. One either starts with a regularity assumption on
w to properly define a weak solution and then derive sufficient conditions for u and v to
ensure conservation of energy. Alternatively, one can impose sufficient conditions on u and v
to define a weak solution and then obtain sufficient conditions for energy conservation. This
range of possibilities leads to a ‘family’ of Onsager conjectures, which was summarised above
and is the content of this contribution.

Remark 7.1. We observe that it is possible to even extend this ‘family’ of Onsager conjectures
by combining the different ideas we used in this paper. For example, it is possible to derive
the horizontal and vertical Onsager exponents for type III weak solutions, similar to what
was done in Proposition 3.7 for type I weak solutions of the hydrostatic Euler equations.
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A Review of paradifferential calculus

We briefly recall some basic notions of paradifferential calculus, further details can be found
in [1, 56, 57]. We first introduce some basic notions of Littlewood-Paley theory, which can
again by found in [1]. Let ρ be a smooth function with support in the annulus of radii 3

4
and

8
3
. We let {ρj}∞j=−1 be a dyadic partition of unity, i.e.

ρ0(x) = ρ(x), ρj(x) = ρ(2−jx) for j = 1, 2, . . . , ρ−1(x) = 1−
∞∑
j=0

ρj(x).

Then the Littlewood-Paley blocks are defined as follows for f ∈ S ′(T3)

∆̂jf(ξ) = ρj(ξ)f̂(ξ), j = −1, 0, . . . .

Bony’s decomposition of a product is formally given by

fg = Tfg + Tgf +R(f, g).

Here Tfg and Tgf are called the paraproducts which are given by

Tfg =
∞∑

j=−1

j−2∑
i=−1

∆if∆jg, Tgf =
∞∑

j=−1

j−2∑
i=−1

∆ig∆jf.

The resonance term R(f, g) is given by

R(f, g) =
∑

|k−j|≤1

∆kf∆jg.

For the paraproducts we have the following estimates.

Lemma A.1 (Lemma 2.1 in [59]). Suppose that f ∈ Bα
p1,q1

(T3) and g ∈ Bβ
p2,q2

(T3) with

1

p
=

1

p1
+

1

p2
,

1

q
= min

{
1,

1

q1
+

1

q2

}
.

and 1
p1

+ 1
p2

≤ 1. Then the following holds:
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• For f ∈ Lp1(T3) and α ∈ R we have that

∥Tf (g)∥Bα
p,q

≤ C∥f∥Lp1∥g∥Bα
p2,q
.

• For α < 0 and β ∈ R it holds that

∥Tf (g)∥Bα+β
p,q

≤ (1− 2α)−1∥f∥Bα
p1,q1

∥g∥Bβ
p2,q2

.

For the resonance term the following estimate holds.

Lemma A.2 (Theorem 2.85 in [1]). Let f ∈ Bs1
p1,q1

(T3) and g ∈ Bs2
p2,q2

(T3) such that s1+s2 >
0 and take

1

p
=

1

p1
+

1

p2
≤ 1,

1

q
=

1

q1
+

1

q2
≤ 1.

Then the following estimate holds

∥R(f, g)∥
B

s1+s2
p,q

≤ ∥f∥Bs1
p1,q1

∥g∥Bs2
p2,q2

.

For further details and proofs we refer to [1, 59].

B Proof of Proposition 3.7 by using commutator esti-

mates

The results in this paper were proven by using an equation of local energy balance and
subsequently showing that the defect term in this equation is zero. Most of the results could
also have been proven by using commutator estimates (of the type first introduced in [19]).

In this section, we will present a proof of Proposition 3.7 to illustrate how one can prove
these results by using commutator estimates. We repeat the statement of Proposition 3.7
here.

Proposition B.1 (Horizontal and vertical Onsager exponents). Let u be a type I weak solu-
tion of the hydrostatic Euler equations such that u, v ∈ L3((0, T );
Bα

3,∞(T;Bβ
3,∞(T2))) with β > 2

3
, α > 1

3
and 2α + β > 2. We recall that the regularity as-

sumption means that u and v have Bα
3,∞(T) regularity in the z-direction, while they have

Bβ
3,∞(T2) regularity in the horizontal directions. Under these assumptions the weak solution

conserves energy.

Proof. We restrict to the case β > 1, as otherwise by the assumptions of the theorem we
would need α > 1

2
. Then both α and β are bigger than 1

2
and the conclusion of the proposition

was already proven in Proposition 3.1.
We take ϕ1 = (uϵ)ϵ and ϕ2 = (vϵ)ϵ in the weak formulation in Definition 2.1, transfer one

of the mollifications and add the equations together. This gives

ˆ T

0

ˆ
T3

uϵ∂tu
ϵdx dt+

ˆ T

0

ˆ
T3

vϵ∂tv
ϵdx dt+

ˆ T

0

ˆ
T3

(uu)ϵ · ∇uϵdx dt+
ˆ T

0

ˆ
T3

(vu)ϵ · ∇vϵdx dt

−
ˆ T

0

ˆ
T3

Ωuϵvϵdx dt+

ˆ T

0

ˆ
T3

Ωvϵuϵdx dt+

ˆ T

0

ˆ
T3

pϵ∂xu
ϵdx dt+

ˆ T

0

ˆ
T3

pϵ∂yv
ϵdx dt = 0.
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We observe that

−
ˆ T

0

ˆ
T3

Ωuϵvϵdx dt+

ˆ T

0

ˆ
T3

Ωvϵuϵdx dt = 0.

Regarding the pressure terms, we obtain
ˆ T

0

ˆ
T3

pϵ∂xu
ϵdx dt+

ˆ T

0

ˆ
T3

pϵ∂yv
ϵdx dt

=

ˆ T

0

ˆ
T3

pϵ∂xu
ϵdx dt+

ˆ T

0

ˆ
T3

pϵ∂yv
ϵdx dt+

ˆ T

0

ˆ
T3

pϵ∂zw
ϵdx dt = 0.

Concerning the advective terms, we only present the details in handling the integral
´ T
0

´
T3(uu)

ϵ·
∇uϵdx dt, as the derivation for the other advective term proceeds in a similar fashion. First
we look at the first and second terms of the divergence, we get that
ˆ T

0

ˆ
T3

(u2)ϵ∂xu
ϵdx dt+

ˆ T

0

ˆ
T3

(uv)ϵ∂yu
ϵdx dt

=

ˆ T

0

ˆ
T3

[
uϵuϵ +

ˆ
R3

(
φϵ(y)(δu(−y;x, t)⊗ δu(−y;x, t))

)
dy − (u− uϵ)⊗ (u− uϵ)

]
∂xu

ϵdx dt

+

ˆ T

0

ˆ
T3

[
uϵvϵ +

ˆ
R3

(
φy(y)δu(−y;x, t)⊗ δv(−y;x, t)

)
dy − (u− uϵ)⊗ (v − vϵ)

]
∂yu

ϵdx dt.

In the above we have used commutator estimates as introduced in [5, 19]. Then we do the
estimatesˆ T

0

ˆ
T3

[ˆ
R3

(
φϵ(y)(δu(−y;x, t)⊗ δu(−y;x, t))

)
dy − (u− uϵ)⊗ (u− uϵ)

]
∂xu

ϵdx dt

+

ˆ T

0

ˆ
T3

[ˆ
R3

(
φy(y)δu(−y;x, t)⊗ δv(−y;x, t)

)
dy − (u− uϵ)⊗ (v − vϵ)

]
∂yu

ϵdx dt

≤
[
ϵ2α∥u∥2

Bα
z (B

β
h )
+ ϵ2α∥u∥Bα

z (B
β
h )
∥v∥Bα

z (B
β
h )

]
ϵα−1∥u∥Bα

z (B
β
h )

≤ ϵ3α−1∥u∥2
Bα

z (B
β
h )

[
∥u∥Bα

z (B
β
h )
+ ∥v∥Bα

z (B
β
h )

]
.

Recall that we assumed that α > 1
3
, therefore these terms go to zero as ϵ→ 0.

Subsequently, we look at the third component. By using a commutator estimate, we see
that ˆ T

0

ˆ
T3

(uw)ϵ∂zu
ϵdx dt =

ˆ T

0

ˆ
T3

[
uϵwϵ +

ˆ
R3

(
φϵ(y)(δu(−y;x, t)⊗ δw(−y;x, t))

)
dy

− (u− uϵ)⊗ (w − wϵ)

]
∂zu

ϵdx dt.

We now make the estimateˆ T

0

ˆ
T3

[ˆ
R3

(
φϵ(y)(δu(−y;x, t)⊗ δw(−y;x, t))

)
dy − (u− uϵ)⊗ (w − wϵ)

]
∂zu

ϵdx dt

≤ 2ϵα∥u∥Bα
z (B

β
h )
· ϵβ−1∥w∥Bα+1

z (Bβ−1
h ) · ϵ

α−1∥u∥Bα
z (B

β
h )

≤ ϵ2α+β−2∥u∥2
Bα

z (B
β
h )
∥w∥Bα+1

z (Bβ−1
h ).
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Recall that we assumed that 2α + β > 2, so therefore the terms go to zero as ϵ → 0. Thus
we are left with the termsˆ T

0

ˆ
T3

(
uϵ
[
uϵ∂xu

ϵ + vϵ∂yu
ϵ + wϵ∂zu

ϵ

])
dxdt =

1

2

ˆ T

0

ˆ
T3

uϵ · ∇
(
(uϵ)2

)
dxdt = 0.

As a result, we get that∣∣∥uϵ(·, T )∥L2 + ∥vϵ(·, T )∥L2 − ∥uϵ(·, 0)∥L2 − ∥uϵ(·, 0)∥L2

∣∣ ϵ→0−−→ 0.

Hence energy is conserved.
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