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1 Introduction

Given a K3 surface realized as a hypersurface in a weighted projective space
or a Gorenstein Fano toric variety, one may construct a mirror K3 surface
in various ways. Depending on the precise model, available descriptions of
mirror symmetry include the Greene-Plesser mirror, the Berglund-Hiibsch
transpose construction for invertible polynomials, Dolgachev—Nikulin—Pinkham’s
lattice-polarized K3 surfaces,and Batyrev’s reflexive polytope construction.
The multitude of descriptions raises the question of whether mirror construc-
tions are consistent. Comparing different mirror constructions often entails
making choices—one might need to specify a family containing a K3 surface
or a lattice polarization, for example—and thus it is important to establish

systematic methods for making these choices.
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Ebeling and Ploog studied invertible polynomials in three variables ob-

tained from Arnold’s classification of bimodal singularities in [EP13]; we list

these polynomials in Table [1]

Name f fr Dual
J30 2+ ay® + 27 2Oy +y° + 27 Z13

Zio | y+ayP+22 | Py+ayP+22 | Zig
Qa0 | Tz +ayP+ 22 | dy+ P+ | Zyg

Wio | 28+y?z+22 | a+y?+yz2 | Wi
Sio | Py+yiz+2? | P +ay+y? | Wiy
Uo | 2y +y°2+2° | @ +ay’ +y2° | Ui
Eig z° + 9% 4 222 z+y + 22 | Qo
Ey | "+ay’+2° | 2Ty+P+27 | Zig
Fs T oty 422 | Ey
VAT 2oy 4y + 22 | by +ayd 22| Zig
Zho 2oy + 3 + 22 2+ + 22 | Ea

Qu | 22+ +222 | 2*2+9° +222 | Qs

Q7 | Pz+ayP+22 | Py+yP+a? | Zap

Q1s 22z + P + 22 2+ a2t | B

Wir | 2®+222+9%2 | 2°%2+9y2 +9° | Sio

Wi | 27+ y?z + 22 Ty oyt | Wig
Sie | 2ty +x22 +yPr | 2ty a2t Pz | Sie
Sz | Sy + iz + 22 | S +ay? +y2? | Xop
Uses | 2°+y?24+y2? | 224+ y?24+y2? | U

Table 1: Strange duality of the bimodal singularities

In a series of papers, the first author and her collaborators have com-
pared mirror constructions for K3 surfaces obtained by extending the bi-
modal singularity polynomials to an invertible polynomial in four variables.
In [MU15], they observed there is an extension to an invertible polynomial
defining a K3 surface in weighted projective space for all but 4 examples,
showed Berglund-Hiibsch duality for these K3 surface invertible polynomi-
als can be viewed as a special case of Batyrev mirror symmetry, and com-

mented on potential relationships with homological mirror symmetry. These



observations are consistent with broader efforts to unify Berglund-Hiibsch
and Batyrev mirror symmetry, such as the construction of Clarke in [Clal7];
the relationship between Berglund-Hiibsch, Batyrev, and homological mirror
symmetry is treated in depth in [FK1§| and [DFKI1S].

In [Masl6a, Mas16bl, [Mas17], the first author studied the Dolgachev—
Nikulin—Pinkham mirror symmetry construction for K3 surfaces obtained
from bimodal singularities using an invertible polynomial in four variables.
Let Aks 2 U DU @ U @ Eg ® Eg be the K3 lattice, the unique (up to iso-
morphism) unimodular lattice of signature (3,19); here U is the unimodular
lattice of signature (1,1) and we take Eg to be negative definite. According
to [Dol96], if two K3 surfaces X and X are mirror, there should exist lattice
polarizations M < H?(X,Z) and M < H*(X,7) such that M+ = M @&nU,
where n is a positive integer and the perpendicular complement is computed
using the isomorphism H?*(X,Z) = Ags. In particular, rank M + rank M
must be equal to 20. Given a reflexive polytope A, we may obtain a K3 sur-
face X as a hypersurface in the toric variety P obtained by an appropriate
resolution of singularities of the normal fan of A. In this case, the obvious
lattice polarization to choose is Pica, the lattice generated by intersecting
X with the divisors of PA. The main results of [Masl6al, [Mas16b, [Mas17]
identify polar dual pairs of reflexive polytopes A and A° and associated K3
hypersurfaces in Gorenstein Fano toric varieties which satisfy Dolgachev—
Nikulin-Pinkham-style mirror symmetry using the lattices Pica and Picao
for all but five of the bimodal singularity pairs studied in [MU15].

Our first Main Theorem shows that the remaining five pairs of bimodal

singularity polynomials cannot be extended to invertible polynomials whose



Newton polytopes are polar dual reflexive polytopes A and A° such that

Pica and Picae yield mirror lattice polarizations in the sense of [Dol96].

Theorem A. For each of the bimodal singularity mirror pairs (B', B) being
(Zl?n ‘]370)7 (X2,07 Sl7>7 (W187 WlS)? (W177 Sl,O)a (U167 UlG)?

let f be the defining equation of B. Then, there does not exist an invertible
deformation F of f such that the Newton polytope of F is a reflexive polytope

A and rank Pica + rank Picao = 20.

Remark 1. Let A be a refiexive polytope obtained as the Newton polytope of a
four-variable invertible deformation of one of the bimodal singularities listed
in Theorem A, let Pa be the smooth toric variety determined by a maximal
projective subdivision of the normal fan of A, and let X be a regular K3

hypersurface in Pa. The map
r: HY(PA) — HYY(X)

is a natural restriction of the Hodge (1,1)-components.
The rank of the cokernel of r is known to be bounded by a toric correc-
tion term representing divisors of Pa whose intersection with X has multiple

components:

coker(r) > ZE*(F)F(FO%

where the sum is over all edges in A, (*(I") represents the number of lattice
points in the relative interior of an edge, and I'° is the polar dual of I'. By a

direct computation, in the course of the proof of the Main Theorem we will



show that the toric correction term is nonzero for all A associated to bimodal
singularities from the Main Theorem. Therefore the main theorem can be
rephrased as the statement that we cannot choose a reflexive Newton polytope

for the pairs

(Z137 J3,0)7 (X2,07 S17>7 (W187 WlS)? (W177 Sl,O)) (U167 U16)7

such that the natural restriction map r of the Hodge (1,1)-components is

surjective.

We can relax the requirements of Theorem A in two ways. First, it might
happen that the Newton polytope associated to an invertible polynomial is
simply not reflexive. In such cases, one may include the Newton polytope
in a larger reflexive polytope; the first author has pursued this strategy in
past work, including [MUI15]. A reflexive Newton polytope may also admit
inclusion in a larger reflexive polytope, yielding a different polarizing lattice.

Alternatively, we may fix our choice of reflexive polytope but choose the
polarizing lattice more carefully. This strategy has previously been pur-
sued in order to resolve the apparent contradiction between the Dolgachev—
Nikulin—Pinkham and Batyrev mirror symmetry constructions for K3 hyper-
surfaces in toric varieties. A proposal introduced by Rohsiepe in the preprint
[Roh04] and reviewed in [Whil5] describes an appropriate choice of polar-
izing lattices for K3 surfaces realized as hypersurfaces in Gorenstein Fano
toric varieties obtained from reflexive polytopes. The idea is to consider a
sublattice (Pica)ior of Pica given by the so-called toric divisors; these are

the divisors given by the pullback of the divisors of the ambient toric variety.



Theorem 1.1 ([Roh04]). Let A and A° be polar dual three-dimensional re-

flezive polytopes. Then (Pica)t = (Picao )ior ®U and ((Pica)ior)t = Picae ®U.

It follows from Theorem that any of the bimodal singularities studied
in [MUI5] may be extended to a polynomial defining a K3 hypersurface in a
Gorenstein Fano toric variety in such a way that Batyrev mirror symmetry for
the hypersurface induces lattice mirror symmetry in the sense of Dolgachev—
Nikulin—Pinkham. Our second Main Theorem shows that we may make these

choices in a way compatible with Berglund-Hiibsch duality.

Theorem B. Let (B', B) be one of the bimodal singularity mirror pairs

(Z137 JS,O)) (X2,07 Sl7>7 (W187 W18>7 (W177 Sl,O)a (U167 Ulﬁ)?

and let f be the defining equation of B. Then there exists a reflexive polytope
A and an invertible deformation F of f such that the Newton polytope of F
is a subpolytope of A, the Newton polytope of FT is a subpolytope of A°, and
(Pica)t = (Picao )ior BU.

The plan of the paper is as follows. In Section [2| we review the various
mirror constructions, remark on the connection between Rohsiepe’s mirror
proposal and Morrison’s monomial-divisor mirror map, and establish nota-
tion. In Section [3| we prove Theorem A by a case-by-case analysis. In Sec-
tion [4] we prove Theorem B and describe an explicit choice of polytopes and

lattices in each case.



2 Mirror constructions

In this section, we review the mirror constructions we are comparing and

establish notation.

2.1 Berglund-Hiibsch duality

We briefly review the Berglund-Hiibsch duality construction in the form we
will use it. For more detail see, for example, [ABS14]. Let A = (a;;) be a
matrix of nonnegative integers, and consider the corresponding polynomial

F4 given by the sum of n + 1 monomials in n + 1 variables:

FA:ZHZE?M.

i=0 j=0
Definition 2.1. We say the polynomial F is invertible if the matrix A is
invertible, there exist positive integers ¢; such that Z?:o gja;; is the same
constant for all ¢, and the polynomial F4 has exactly one critical point, at

the origin.

Invertible polynomials were classified in [KS92]. They may be written
as sums of polynomials in disjoint variables of three atomic types: Fermat

Am—1

polynomials, of the form x7*, loops, of the form z{*zo+x5?x3+- - -+, " T+

am—1

x%mxy, and chains, of the form x{'xs + 25%xs + - - - + 2, T, + x40

Definition 2.2. We say an invertible polynomial F'4 satisfies the Calabi- Yau

condition if Z?:o ¢ = Z;-LZO q;-

If F4 is an invertible polynomial satisfying the Calabi-Yau condition, then

the weights (qo, . . . , ¢,) determine a weighted projective space WP(qo, - . ., ¢»)



and F4 determines a Calabi-Yau hypersurface X4 in this weighted projective
space. When n = 3, X4 is a K3 surface.

In general, Berglund-Hiibsch duality is a duality of orbifolds. Given an
appropriately chosen group of discrete symmetries G acting on a Calabi-Yau
hypersurface X 4, we obtain a mirror pair X4 /G and Xr/GT, where X 4r is
the Calabi-Yau hypersurface determined by the transpose matrix AT and GT
can be computed from the data of G and A. We will focus on the case where G
is trivial. In this case, GT consists of automorphisms of X 4= that are induced
by the multiplicative action of the torus (C*)"™! on the ambient weighted
projective space and act symplectically on X 47, preserving the holomorphic

form.

2.2 Batyrev’s duality and the monomial-divisor mirror
map

We review the mirror symmetry construction for Calabi-Yau hypersurfaces in
toric varieties described in [Bat94], examine the differences that arise in the
case of K3 surfaces, and establish notation. For a more detailed exposition,
see [CK99| for Calabi-Yau varieties or [Whil5|] for the K3 surface case. Let
N = 7ZF be an integral lattice, and let M = Hom(N,Z) be the dual lattice.
Let Ng = N®R and Mr = M ® R be the corresponding vector spaces.
The duality between N and M induces a real-valued pairing (v, w) between
elements of Ng and Mp.

A lattice polytope in Ng or My is the finite hull of a convex set of vectors

in the lattice. Given a lattice polytope A in Mg containing the origin, we



define its polar dual A° in Ny as

{veN]|(v,w)>—1foral we A}

If A° is also a lattice polytope, we say A and A° are reflerive. Note that
(A°)° = A. Reflexive polytopes in three and four dimensions are classified in
[KS97]: up to lattice isomorphism, there are 4,319 reflexive polytopes in three
dimensions and 473,800,776 in four dimensions. The authors of [KS97] also
specify a normal form that selects a unique representative of each equivalence
class.

Now, assume A is a reflexive polytope in Mk. We may obtain a fan R in
Nr by taking the normal fan to A, or, equivalently, by taking the fan over the
faces of A°. A fan obtained in this way determines a Gorenstein Fano toric
variety. A simplicial refinement X of the fan R such that the one-dimensional
cones are the lattice points of A° is called a mazimal projective subdivision of
the fan. In three dimensions, a maximal projective subdivision ¥ determines
a smooth toric variety, which we call Po. In four dimensions, the resulting
toric variety PA may have orbifold singularities. However, in either case, a
general anticanonical hypersurface in such a toric variety will be smooth.

The hypersurfaces obtained using three-dimensional reflexive polytopes
are smooth K3 surfaces, while four-dimensional reflexive polytopes determine
Calabi-Yau threefolds. Such a hypersurface will be a semiample divisor in
the ambient toric variety Pa, but need no longer be ample. Given a maximal
projective subdivision ¥ of the normal fan to A and a hypersurface X in Px,
we say X is X-reqular, or, if the context is clear, regular, if the intersection of

X with the torus T, is either empty or a smooth subvariety of codimension



1 for every cone o in X.

Given a face I' of a lattice polytope, we write ¢(I") for the number of
lattice points in I, and ¢*(T") for the number of lattice points in the relative
interior of I'. In [Bat94], for k£ > 4, Batyrev derived the following formulas
for the Hodge numbers of a regular Calabi-Yau k — 1-fold X obtained from

an n-dimensional reflexive polytope A C Mg by the above procedure:

P X)=0A) —k—1— > I+ Y srem (1)

codim I'°=1 codim I'°=2
PE2PUX) =0A) —k—1— > D)+ > oI (2)
codim I'=1 codim ['°=2

By reversing the roles of A and A°, we obtain formulas for the Hodge numbers
of the mirror k — 1-fold X°; we see hb(X) = h*21(X°) and h*21(X) =
B (X©).

Batyrev’s computation highlights the role of two important subspaces.

The so-called toric subspace Hul(X) of HY(X) is given by the pullback

tor

of H“'(PA) along the natural inclusion map, and has dimension ¢(A°) —

kE—1=3 odimroey £(I°). The polynomial deformation space HY 2N X)) s

poly

a subspace of H*21(X) isomorphic to the first-order polynomial deforma-

tions of X, and has dimension {(A) —k — 1 — > 1 (). We call

tor

Y codim re—s £ (I°)€*(I"), which measures the difference between HYN(X) and

HYY(X) or Hi ' (X) and H*=21(X), the toric correction term. Aspinwall,

Greene, and Morrison showed in [AGM93] that there is a natural isomorphism
between H.;H(X) and Hg;i’l(X °), induced by a correspondence between di-

visors and monomials which they termed the monomial-divisor mirror map.

10



In the case of a K3 hypersurface in a three-dimensional toric variety, we
have £k — 2 = 1. Since all K3 surfaces have the same Hodge diamond, the
equality of Hodge numbers is trivial. As Dolgachev observed in [Dol96], and
as we will discuss in more detail in § 2.3} one may instead study the structure
of the Picard group of a K3 surface. For a regular K3 surface X obtained
from a three-dimensional reflexive polytope A C Mg, we have the following

inequality (see [Roh04] for a detailed discussion):

rankPic(X) > ((A°) —4— Y~ )+ Y (T)eI).  (3)
codim T°=1 codim T°=2
Here, ((A°)—4—=>" i 1oy {*(I'°) measures the rank of the subgroup of
so-called toric divisors (Pica)sor, generated by the pullback of the divisors in
the ambient space. The toric correction term measures the rank of a sublat-
tice Lo(A) corresponding to divisors of the ambient space whose intersection
with X splits into multiple components. Together, Picy,(X) and Lo(A) gen-
erate the lattice that we shall call Pica. We denote the rank of this lattice

by pa. We have the formula

pa=1L(A°) —4— Y 5(I°) + rank Lo(A). (4)

codim T°=1

The inequality rank Pic(X) > pa is inevitable, because non-isotrivial
families of K3 surfaces do not have constant Picard rank: Oguiso showed in
[Ogu00] that any analytic neighborhood in the base of a one-parameter, non-
isotrivial family of K3 surfaces has a dense subset where the Picard ranks of

the corresponding surfaces are strictly greater than the minimum Picard rank

11



of that family. On the other hand, Bruzzo and Grassi show in [BG12] that
when the K3 hypersurfaces are both smooth and ample, Pic(X) = (Pica)tor
for very general X. In this case, the toric correction term is 0, so (Pica)tor =
Pica. (Recall that a very general property holds outside a countable union
of proper closed subvarieties).

In our comparison of mirror constructions, we often begin with a polyno-
mial f and then explore different ways that this polynomial could be used to
represent a hypersurface in a toric variety. Combinatorially, the polynomial
corresponds to a choice of lattice points determined by its monomials, and
we are choosing different ways to include these points in a lattice polytope
(typically a reflexive polytope). Hypersurfaces obtained in this way need
not be isomorphic. However, by [DFKI1S8, Theorem 1.1], as long as f is not

divisible by one of its coordinates x;, they are birational.

2.3 Reconciling Batyrev and Dolgachev—Nikulin—Pinkham

mirror symmetry

Based on work by Nikulin and Pinkham, Dolgachev proposed in [Dol96] that
one should view mirror symmetry for K3 surfaces as a relationship between
moduli spaces of lattice-polarized K3 surfaces. Recall that a lattice is a
finitely-generated free Z-module equipped with a non-degenerate, symmetric
integer-valued form. Let Fg be the unimodular, negative definite ADFE lattice
of rank 8, and let U be the indefinite unimodular hyperbolic lattice, with
intersection form given by (¢ §). Then for any K3 surface X, there exists an
isomorphism ¢ : H*(X,Z) — Ags, where Ags :=U U S U @ Ex @ Ey is

the K3 lattice. A choice of such a ¢ is called a marking.

12



Suppose we are given an even, nondegenerate lattice M of signature (1,t)
and a primitive embedding M < Ags. (Recall that a lattice embedding is
primitive if the quotient of the ambient lattice by the image of the embedding
is a free abelian group.) We say X is M -polarized if there exists a primitive
embedding M — Pic(X), and we say X is marked M -polarized if there exists
a marking ¢ such that ¢~'(M) C Pic(X). In [Dol96], Dolgachev constructed
moduli spaces of marked M-polarized K3 surfaces satisfying an appropriate
pseudo-ampleness condition.

We say M is m-admissible if M+ = J @& M for some lattice J isomorphic
to mU. In this situation, we call M the marror of M. Note that rankM +
rankM = 20. The simplest case, and the one we will be concerned with in
what follows, is when M is 1-admissible. When this happens, (M) = J®M,
so not only is M the mirror of M, but M is the mirror of M. Furthermore,
one may view the moduli spaces of M- and M-polarized K3 surfaces as mirror
families.

Now, suppose we are given a family of K3 surfaces realized as hyper-
surfaces in a toric variety obtained from a reflexive polytope. To study the
Dolgachev—Nikulin—Pinkham mirror symmetry construction in this context,
one must choose a polarizing lattice. The choice is simplest when the toric
correction term is 0. When we calculate the toric correction term for each
of the 4319 isomorphism classes of three-dimensional reflexive polytopes, we
find that 1863 yield a toric correction term of 0, of which 53 correspond to
self-dual reflexive polytopes; thus, the 0 toric correction term case is com-
mon, but not the majority. Given a reflexive polytope A in one of these

1863 isomorphism classes, we let M be the space of divisors induced by the

13



ambient toric variety, Pica = (Pica)tor. Rohsiepe showed in [Roh04] that in
this case M is isomorphic to U @ Picae, so M is Picao = (Picae )tor. This
choice of polarizing lattice M is clearly symmetric: if we swap the roles of A
and A°, we also swap the roles of M and M. We may view this computation
as a confirmation that for toric K3 hypersurfaces, the monomial-divisor mir-
ror map is not merely an identification of groups, but extends to the lattice
structure.

For the remaining 2456 isomorphism classes, we cannot set M to (Pica )gor
and M to (Picao)tor because the ranks of the lattices are too small, and we
cannot set M to Pica and M to Picae because the ranks of those lattices
are too big. However, a computation described in [Roh04] shows that if
we choose M to be (Pica)ior, then M* is always isomorphic to U @ Picae.
Thus, we may reconcile the Batyrev and Dolgachev—Nikulin—Pinkham mirror
symmetry constructions if we polarize by the pullback of the divisors of the
ambient space on one side, and the full lattice generated by intersecting our

K3 surface with the ambient space divisors on the other side.

2.4 Picard lattices and intersection numbers

In Section |4} we illustrate the computation of Pica and (Pica )i for specific

cases of interest. We will use the following facts about lattices:

Corollary 2.1 (Corollary 1.6.2 [Nik80]). Let lattices S and T be primitively
embedded into the K3 lattice. Then S and T are orthogonal to each other in

the K3 lattice if and only if g5 ~ —qr, where qs (resp. qr) is the discriminant
form of S (resp. T).

14



Corollary 2.2 (Corollary 1.12.3 [Nik80]). Let S be an even lattice of signa-
ture (ty,t_) and A be an even unimodular lattice of signature (I,1_). There
exists a primitive embedding of S into A if and only if the following three

conditions are simultaneously satisfied.
(1) Iy —1- =0 mod 8,
(2) I_—t_->0andly —t, >0, and
(3) rank A — rank S > [(Ag).

Here Ag denotes the discriminant group of S, which is finitely-generated

abelian, and [(Ag) is the minimal number of generators of Asg.

We will use the following formulas to compute the Picard lattices from
toric data.

Let M be a three-dimensional lattice. Let {e, ez, e3} be the standard
basis of R® ~ M ®z R =: Mgr. Let A be a reflexive polytope in Mg. Denote
by DiVT(ﬁ’A) the set of all toric divisors in I?P;A.

The toric divisors are related by a linear system with three equations:

d+3

> (vi,e))Di=0  j=123 (5)

=1

where (, ) is the standard inner product in R3.
If one restricts a toric divisor D; € DivT(ﬁA) to the minimal model of a

generic section X, one has a divisor on X , which we denote by D,;.

15



As to the intersection numbers,

20 () — 2 if v; is a vertex.
D? = (6)

7

-2 if v; is in the interior of an edge.

Here v; is the face in A* that is dual to v;, and £*(1);) is the number of lattice

points in the interior of the face 1);. Moreover,

1 if v; and v; are next to each other on an edge.
¢*(mj;) + 1 if v; and v; are vertices that are connected

by an edge m;; whose dual is mj;.

0 otherwise.

(7)
For the above formulas (2), (3), see [Ful97, Chapter 5]; for further illustrations

of their use in the case of K3 hypersurfaces, see [Roh04].

3 Invertible deformations

In the following subsections, we prove our first Main Theorem by a case-by-

case analysis:

Theorem A. For each of the bimodal singularity mirror pairs (B', B) being

(Zl37 J3,0)7 (X2,07 Sl7>7 (W187 WlS)? (W177 Sl,O)u (U167 Ulﬁ)?

let f be the defining equation of B. Then, there does not exist an invertible

deformation F of f such that the Newton polytope of F is a reflexive polytope

16



A and rank Pica + rank Picao = 20.

3.1 Zlg and J3’0

The singularity J3 is defined by f = x5 + zy® + 22.

First, we choose a basis
e =(—1,5,—1,-1), e = (=1,0,2,—1), e = (=1, —1,—1,1)
of the group
M :={(i,j, k1) €Z* | i+3j+5k+9=0and k+1=0 mod 2} .

Then, the monomials X® XY3, and Z? correspond to the lattice points
(1,0,0), (0,1,0), and (0,0, 1), respectively.

On the other hand, for Z3, choose a basis

of the group
M’ = {(i,j,k,1) € Z* | i+ 2j + 6k + 9 = 0} .

Then the monomials X°Y, Y3, and Z? correspond to the lattice points
(5,0,—1), (=1,2,—1), (—1,—1, 1), respectively.

The possible choices of F' for Js are given by adding the monomial W°Z
or W18 to the polynomial f, since I should be an invertible polynomial.

Case (i): In the case that the deformation is F' = X®+ XY3+ Z24+W?°Z,

17



the Newton polytope of F' is not reflexive. Indeed, the Newton polytope of

F contains a facet

& = Conv{(1,0,0), (0,1,0), (—1,—3, —4)}.

However, the polar dual of the facet ® is easily computed to be the non-
integral vertex (—1, —1, 5/4) & Z3.

Case (ii): In the case that the deformation is F' = X6+ XY?3 + Z2 4+ W18
the Newton polytope of F'is reflexive. Indeed, the Newton polytope of F is

the convex hull

A = Conv {(1,0,0), (0,1,0), (0,0,1), (—2,—6,—9)} .

Then, the polar dual polytope is given by

A° =Conv{(8,—-1,-1), (-1,2,—-1), (—-1,—-1,1), (—1,—1,-1)}.

Since A° is an integral polytope, the polytope A is reflexive. In the [Sagl8]
database of reflexive polytopes, A and A° are index 745 and 4282, respec-
tively. The first author and a collaborator showed in [MUTL5] that A° contains
the Newton polytope of F'T as a subpolytope.

Next, we compute the toric contribution rank Ly(A).

Let I" be the edge of A given by

' = Conv{(0,0,1), (—2,-6,—-9)}.

18



One has its polar dual
['* = Conv{(-1,2,-1), (8 —1,—-1)}.
No other edge contributes to rank Lo(A). Thus,

rank Lo(A) = 2.

3.2 X270 and 517

The singularity S)7 is defined by f = 2y + %2 + 22.

First, we choose a basis
er = (1,1,—1,0), e = (—6,0,1,1), e3 = (—12,0,0, 3)
of the group
M= {(i,j,k1)€Z" | i+j+2k+4=0and j—i=0 mod 3}.

Then, the monomials X°Y, Y27, and Z? correspond to the lattice points
(5,5,—2), (—=1,0,0), and (—1,—2,1), respectively.

On the other hand, for X5, choose a basis
e, =(0,5,—1,-1), e), = (—1,5,0,—2), e = (0,—2,0,1)
of the group

M = {(i,j, k1) €Z* | i+j+3k+2l=0}.

19



Then, the monomials XY?2, Y Z2, and W X correspond to the lattice points
(—=1,1,0), (0,1,3), and (1,0,0), respectively.

The only possible choice of F is given by adding the monomial W7X to
the polynomial f, since F' should be an invertible polynomial. Note that this
monomial corresponds to the lattice point (0, —1,0). The Newton polytope

of F'is not reflexive. Indeed, the Newton polytope of F' contains a facet

® = Conv {(5,5,-2), (—1,0,0), (0, —1,0)}.

However, the polar dual of the facet ® is easily computed to be the non-
integral vertex (1, 1, 11/2) & Z3.
Similarly, the Newton polytope of F'T is not reflexive. Indeed, the Newton

polytope of F'T contains a facet

&' = Conv {(—1,1,0), (0,1,3), (1,0,0)}.

However, the polar dual of the facet @' is easily computed to be the non-

integral vertex (—1, —2, 1/3) & Z3.

3.3 Wig

The singularity Wig is defined by f = 27 + y*z + 22. This singularity is dual
to fT =27 + 9% + y2?%, another realization of Ws.

First, we choose a basis

er =(0,0,2,—1), ea = (1,1,1,—-1), e3 = (6,—1,0,—1)
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of the group

M :={(i,j,k,1) € Z* | 3i +4j + Tk + 14l = 0} .

Then the monomials X7, Y2Z, and Z? correspond to the lattice points
(=3,5,—1), (1,—1,0), and (0, —1,0), respectively.

On the other hand, choose a basis
el =(-1,-3,1,0), e5 = (1,5, —1,-1), e5 = (1,—1,0,0)
of the group
M’ = {(i,j,k,1) € Z*|i+j+ 4k + 2l = 0}.

In this basis, the monomials WX, Y2, and Y Z? correspond to the lattice
points (0,1,—1), (2,1,0), and (=1, —1, —1) respectively.
The possible choices of F are given by adding the monomial W'Y or
W8X to the polynomial f, since F' should be an invertible polynomial.
Case (i): In the case that the deformation is F = X" +Y?Z + Z2+ WY,
the Newton polytope of F' is not reflexive. Indeed, the Newton polytope of

F contains a facet

® = Conv {(—3,5,-1), (1,-1,0), (0,0,1)}.

However, the polar dual of the face ® is easily computed to be the non-
integral vertex (—7/2, —5/2, —1) & Z>.
Case (ii): In the case that the deformation is F = X" +Y?Z+ 722 +W8X,
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the Newton polytope of F'is reflexive. Indeed, the Newton polytope of F' is

the convex hull

A = Conv {(-3,5,-1), (1,—1,0), (=1,1,1), (0,—1,0)} .

Then, the polar dual polytope is given by

A° = Conv {(0,1,—2), (0,1,6), (2,1,0), (—4,—3,-2)}.

Since A° is an integral polytope, the polytope A is reflexive. In the [Sagl8]
database, A and A° are polytopes 9 and 4312, respectively.
Next, we compute the toric contribution rank Ly(A). Let ' be the edge
of A given by
I'=Conv{(-1,1,1), (=3,5,—1)}.

The polar dual of T" is

I'° =Conv{(2,1,0), (—4,-3,-2)},

and

(D) = (T°) = 1.

No other edge contributes to rank Lq(A). Thus,

rank Lo(A) = 1.

In this case, the polytope AT corresponding to F'7 has vertices (0,1, —1),
(2,1,0), (=1,—1,—1), and (0,1,6). This polytope is not reflexive. Further-
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more, one may use the normal form for three-dimensional lattice polytopes
described in [KS92] and implemented in [Sagl8] to check that AT is not
isomorphic to any lattice sub-polytope of A°. Thus, for this choice of A,
Batyrev’s duality does not appear consistent with Berglund-Hiibsch duality.
In [MUI5], the first author and her collaborator showed how to choose a
reflexive polytope containing A that resolves this discrepancy. We will study

that polytope in more detail in Section [4]

3.4 W17 and Sl’o

The singularity S; g is defined by f = 2°y + vz + 22

First, we choose a basis

e =(0,5,—1,-1), es = (—=1,4,0,—1), e3 = (—1,—1,—1,1)

of the group

M = {(i,j,k,1) € Z* | 20 + 3j + 5k + 10l = 0} .

Then, the monomials X°Y, Y27, and Z? correspond to the lattice points
(0,1,0), (—=1,1,0), and (0,0, 1), respectively.

On the other hand, choose a basis

6/1 = (47 07 _170)7 6/2 = <_67 17 170)7 eg = (_370507 1)
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of the group
M :={(i,j, k1) €Z" | i+2j+ 4k +3l=0}.

Then the monomials X°, XY?2, and Y Z? correspond to the lattice points
(5,4,—1), (=1,0,—1), and (=1, —1,1) respectively.

The only possible choice of F' is given by adding the monomial W1 to
the polynomial f, since F' should be an invertible polynomial. Note that
on this side the monomial W1 corresponds to the lattice point (4, —6, —3).
However, with this choice the Newton polytope of F'is not reflexive. Indeed,

the Newton polytope of F' contains the facet
$ = Conv {(—1,1,0), (0,1,0), (4,—6,—-3)}.

However, the polar dual of the face ® is easily computed to be the non-

integral vertex (0, —1, 7/3) & Z3.

We consider whether we can obtain a reflexive Newton polytope by work-
ing on the other side, using the polynomial ¢ = X%+ XY?2 +Y Z? associated
to the singularity Wi7;. There are two possibilities for a projectivization G
of g, namely, G = g + W% or G = g + W"Z. We claim that in both cases,
the Newton polytope of G is not reflexive. Note that the monomials W1
and W7Z are respectively corresponding to lattice points (0, —1,—1) and
(0,—1,0).

If a projectivization is G = g + W1, the dual of the facet

Conv{(—1,0,—1),(—=1,-1,1),(0,—-1,-1)} = Conv{XY? Y Z* W'}
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in the Newton polytope of G is the vertex 1/3(2,2,1) € Z3. Thus, the
Newton polytope of GG is not reflexive.

If a projectivization is G = g + W7Z, the dual of the facet
Conv{(—1,0,—1), (5,4, —1),(0,—1,0)} = Conv{XY? X° W'Z}

in the Newton polytope of G is the vertex 1/3(—2,3,5) ¢ Z3. Thus, the

Newton polytope of GG is not reflexive.

3.5 U

The singularity Uyg is defined by f = 2° + y?z + y22. This singularity is

self-dual. First, we choose a basis
e1 = (4,-1,-1,0), e = (4,—1,0,—1), e3 = (5,0, —1,—1)
of the group
M :={(i,j,k,1) € Z* | 2 + 3j + 5k + 5l =0} .

Then the monomials X?, Y27, and Y Z? correspond to the lattice points
(—2,—2,3), (0,1,—1), and (1,0, —1), respectively.

On the other hand, choose a basis

6/1 = (07 _2707 1)7 6/2 = (07 _27 170)7 eé = (1737 _17 _1)
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of the group
M ={(i,j, k1) €Z" | i+j+2k+2l=0}.

Then the monomials WX?® Y2Z, and Y Z? correspond to the lattice points
(—1,—-1,0), (=1,0,—1), and (0, —1, —1), respectively.

The only possible choice of F' is given by adding the monomial W%X to
the polynomial f since F' should be an invertible polynomial; thus, we have
F =X +Y?Z+ Z*+W5X. Note that the monomial W%X corresponds
to the lattice point (0,0, 1).

The Newton polytope of F' is the polytope A given by:
A = Conv{(1,0,-1), (0,0,1), (—=2,-2,3), (0,1,—1)}.
The polar dual polytope of A is given by
A° = Conv{(-2,-2,-1), (—2,1,-1), (4,4,5), (1,-2,—-1)}.

Since the polytope A° is an integral polytope, the polytope A is reflexive.
The index of A in the [Sagl8] database is 1, and the index of A° is 4281.
Next, we compute the toric contribution rank Lg(A).

Let I be the edge in A given by

[' = Conv{(0,0,1), (-2,-2,3)}.
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The polar dual edge is
['* =Conv{(-2,1,-1), (1,-2,-1)},

and

FI)=1, (%) =2

No other edge contributes to rank Lo(A). Thus,

rank Lo(A) = ()i (I"°) = 2.

4 Mirror polytopes and mirror lattices

In this section, we examine Theorem B:

Theorem B. Let (B', B) be one of the bimodal singularity mirror pairs
(Z13, J30), (X0, S17), (Wis, Wis), (Wiz, Sio), (Uss, Uss),

and let f be the defining equation of B. Then there exists a reflexive polytope
A and an invertible deformation F of f such that the Newton polytope of F
is a subpolytope of A, the Newton polytope of FT is a subpolytope of A°, and
(Pica)t = (Picao )ior BU.

In practice, several different polytopes A may be available. In each case,
we describe a specific choice of A and verify that the lattices (Picao)ior and

U & Picp are orthogonal to each other in the K3 lattice, using the formulas

in Section 2.4
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4.1 Z13 and Jg’()

Recall from Sectionthat the singularity J3 o is defined by f = a®+axy*+22,
and may be extended to an invertible deformation F' = X6+ XY3 4+ 72+ W18

with a reflexive Newton polytope A given by:
A = Conv {(1,0,0), (0,1,0), (0,0,1), (=2,—6,-9)}.

We label the lattice points on the edges of A as

mi = (1,0,0), ms = (0,1,0), ms = (0,0, 1),
my = (_27 _67 _9)7 ms = (07 _27 _3)a me = (_]-7 _47 _6)7
my = (—1, -3, —4).

The polar dual polytope of A is given by
A° = Conv {(8,—1,-1), (-1,2,-1), (=1,-1,1), (=1, —1,—1)}.

Label the lattice points on the edges of A° by

1)1:(—1,—1,1>, 1)2:(—1,2,—1), 1)32(—1,—1,—1),
vy =(8,—-1,-1), wvs=(-1,-1,0), wvg=(-1,0,—-1),
U7 = (_L L, _1>7 Vg = (O’ -1, _1)’ Vg = (17 -1, _1)7

V1o = (2, —]., —].), V11 = (3, —1, —1), V12 = (4, —1, —]_>,
V13 = (57 _17 _1)7 V14 = (67 _17 _1)7 V15 = (77 _17 _1)7

vig = (5,0,—1), vz = (2,1,—1).

The Newton polytope of the deformation F7 = X0V + Y3 4+ Z2 4+ W of
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T = 2%y + 3 + 22 is a subpolytope of the polar dual A° of A.
As we have seen in the previous section, the toric contribution is rank Ly(A) =

2. Moreover, one has

pa=4+13+2-3=16, pao=4+3+2-3=6.

We now compute (Picae)ior. The collection {ms, mg, mz} consists of
linearly independent vectors. Let L be a lattice that is generated by divisors
Dy, Dy, D3 and D,. By taking the new generators {D;, —Dy + D3, —2D; +
3Dy —2D3 + Dy, Dy + Dy}, we have

By a direct computation, we have det L = —3 and sgn L = (1, 3).
Note that the intersection matrix of L with respect to the generators

{D1, Do, D3, D4} is given by

02 3 0
26 9 1
39 12 0
01 0 =2

The lattice L ~ U & A, is a primitive sublattice of the K3 lattice Ax3 =
U@ EP?. By definition, the lattice (Picao )0 is actually equal to the lattice
L. Moreover, since the order of the discriminant group Ay = L*/L coincides
with | det L| = 3, and the group Ay, is a finitely-generated Abelian group, we
have Ay ~ 7Z/3Z.
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We compute Pica. The vectors {vy, vs, vs} are linearly independent. Let

L' be the lattice that is generated by the divisors
B, - {VY?a VE’)) VZ;, ‘/Ga ‘/77 %7' . 'a‘/l57 ‘/1(61)7 ‘/1(62)7 ‘/1(71)7 ‘/1(72)}

Here, V; = Vi(l) + V;(Q) is a restricted toric divisor for ¢ = 17,18. By a
direct computation, we have det L' = —3 and sgn L' = (1, 15) with the aid of
Mathematica.

Note that the intersection matrix of L' with respect to the basis B’ is
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given by

o o6 o0 o 1 o0 O o o o o0 o o0 o0 1 1
6o-20 1 o o0 O O o o0 o o o0 o0 0 O
oo -20 0 0O o o o o o0 1 1 1 0 0
o1 o0 -221 0 O O O O O O o 0 0 O
1P o 1 -2 0 0O o0 o0 o0 0o o0 0 0 0 0
o o060 o0 o o -21 o0 o o0 o0 o0 o0 0 0 O
o o606 o0 o o0 1 -21 o0 0O 0 0 o0 0 0 O
oo o o0 o0 o0 1 -21 0 0O 0 0 0 0 O
o o6 o o o o0 o0 1 -2 1 0 0 0 0 0 O
o o6 o o o o0 o0 o 1 -2 1 0 0 0 0 O
o o060 o o o o0 o0 o oo 1 -2 1 0 0 0 O
o o6 1 0 o0 o0 o0 o o o0 1 -2 0 0 0 O
oo 1 0 O o0 o o o o o0 o0 -2 0 1 0
o o6 1 o0 o0 o0 o0 o o o o0 o 0 -2 0 1
1 o0 o o0 o o o o0 o o o 1 0 -2 0
1 6 o o o O O o0 o o o o0 o0 1 0 =2

We claim that the lattice L’ is a primitive sublattice of the K3 lattice
Ags = U® @ E?. If there were an overlattice L' € N’ C Ags, then,
[N/ : L']*det N' = det L/ = —3 = 1-(—3) would hold. Thus, one has
[N’ : L'l =1. Therefore, there does not exist a proper overlattice N’. Thus,
L’ is a primitive sublattice of the K3 lattice. By definition, the lattice Pica
is actually equal to the lattice L'.

Since rank L' > 12, there exists an even negative-definite lattice L” of
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rank 14 and det L” = 3 such that L' = U & L” holds. Moreover, since the
order of the discriminant group Ay, = L*/L’ coincides with | det L'| = 3, and
the group Ay is a finitely-generated Abelian group, we have Ay ~ Z/37Z.

We have seen that
i) det L=—-3=—det(U L).
11) AL >~ Z/3Z ~ AUGBL"

By Corollary , we conclude that the lattice L = (Picae )i and the lattice
U® L = U ® Pica are orthogonal to each other in the K3 lattice Ags.

In fact, one finds L” ~ Fg @ Fx.

4.2 XQ)O and 517

Recall that the only possible invertible deformation of Sy; is given by F =
XY +Y2Z4 Z? +W7X, with monomials corresponding to the lattice points
(5,5,—-2), (—=1,0,0), (=1,—2,1), and (0,—1,0). We showed in Section
that the Newton polytope of F' is not reflexive. We take the larger polytope

A given by

A = Conv {(—1,-2,1), (0,—1,0), (6,5, —2), (5,5,—2), (=1,2,—1)}.

This choice is motivated by the consideration that one should take a reflexive

polytope that contains two faces

@, = Conv {(—1,-2,1), (1,2, 1), (5,5,—2)},
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and

®, = Conv {(—1,-2,1), (~=1,2,—1), (0,—1,0)}.

By construction, the Newton polytope of F'is a subpolytope of A. We label

the lattice points on the edges of A as

my = (_17 _27 1)? mg = (07 _17())’ ms = (675a _2>a
ma = (5,5,-2), ms=(-1,2,—1), mg=(3,2,—1),
mr = (_1a070)

The polar dual polytope of A is given by

A° = Conv {(0,1,3), (1, —6,-12), (1,1,2), (—1,1,0), (0, —3,-7)}.

Since the polytope A° is an integral polytope, the polytope A is reflexive.
In the [Sagl8] database of reflexive polytopes, A has index 760 and A° has

index 3046. We label the lattice points on the edges of A° as

v1 = (0,1,3), vy = (1,1,2), vy = (—1,1,0),
v =(0,-3,-7), wvs=(1,-6,-12), wvs=(0,1,1),
vy = (0,—1,-2), vs = (1,0,0), vg = (1,—1,-2),
vip = (1,-2,-4), vy =(1,-3,-6), v =(1,—4,-8),
vz = (1, -5, -10).

The Newton polytope of the deformation FT = WX® 4+ XY?2 +YZ2 + W7
of fI' = 2% + xy? + y2z? is a subpolytope of the polar dual A° of A.

Next, we compute the toric contribution rank Lo(A).
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Let I be the edge in A given by

T = Conv {(—1,-2,1), (1,2, ~1)}.

One has its polar dual

I° = Conv{(1,1,2), (1,—6,—12)},

and

¢r)=1, I*(I°) =6.

In fact, no other edge that contributes to rank Ly(A). Thus,

rank Ly(A) = 6.

Moreover, one has

p(A)=5+8+6-3=16, p(A°)=5+2+6—23=10.

We now compute (Picao)ior. Let L be the lattice that is generated by the
divisors Dy, D5, Dg and D7, where the divisor D; corresponds to the lattice
point m;. By taking the new generators {Ds, Dy + D5, —Dy — D5 + Dg —
Dy, D7 — Dy}, we have

LeUe (7).

By a direct computation, we have det L = —7 and sgn L = (1, 3).
We claim that the lattice L is a primitive sublattice of the K3 lattice

Ags = U3 @ E$% If there were an overlattice L C N C Ags, then, [N :
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LP?det N =det L = =7 =1-(—7) would hold. Thus, one has [N : L] = 1.
Therefore, there does not exist a proper overlattice N. Thus, L is a primitive
sublattice of the K3 lattice. By definition, the lattice (Picas)ior is actually
equal to the lattice L. Moreover, since the order of the discriminant group
A = L*/L coincides with |det L| = 7, and the group A; is a finitely-
generated Abelian group, we have A, ~ Z/7Z.

We compute Pica. Let L' be a lattice that is generated by divisors
B = {Vi, Vi, Vi, Vi, Vi VL P i

Here, V; = Vi(l) + Vi(2) is a restricted toric divisor for ¢ = 8,...,13. By a
direct computation, we have det L' = —7 and sgn L' = (1, 15) with the aid of
Mathematica.

If there were an overlattice L' C N’ C Ak, then, [N’ : L']?*det N/ =
det L/ = =7 =1-(—7) would hold. Thus, one has [N’ : '] = 1. Therefore,
there does not exist an overlattice N’. Thus, L’ is a primitive sublattice of
the K3 lattice Axs. By definition, the lattice Pica is actually equal to the
lattice L.

Since rank L' > 12, there exists an even negative-definite lattice L” of
rank 14 and det L” = 7 such that L' = U & L” holds. Moreover, since the
order of the discriminant group Ay, = L™ /L' coincides with | det L'| = 7, and

the group Ay, is a finitely-generated Abelian group, we have Ay ~ Z/77Z.

We have seen that
i) det L = —7=—det(U® L').

11) AL ~ Z/?Z ~ AUEBL"
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By Corollary , we conclude that the lattice L = (Picae )t and the lattice
U® L' = U ® Pica are orthogonal to each other in the K3 lattice Ags.

In fact, using a list of [Nis96], one finds

L/:U@Aﬁ@Eg.

4.3 Wis

The singularity Wig is defined by f = 27 + 3?2 + 22. There are two possible
deformations, F} = X" +Y2Z4+Z24+ W'Y and Fy, = X"+ Y?Z + 72+ W8X.
In Section [3.3] we showed that the Newton polytope of F} is not reflexive,
and although the Newton polytope of F; is reflexive, its polar dual does not
contain the Newton polytope of Fy . Consider the larger lattice polytope A

given by

A = Conv {(—3,5,-1), (2,-1,0), (=1,1,1), (0,~1,0), (0,0,1)}.

The polytope A is reflexive and the Newton polytopes of F; and of Fj
are both subpolytopes of A. The Newton polytope of the deformation Fy =
WX+ Y24+YZ24+ W8 of fI' =27 + 3?2+ 2% is a subpolytope of the polar
dual A° of A. In the [Sagl8] database of reflexive polytopes, A has index 760
and A° has index 3046. These are precisely the same indices as the pair of
polytopes we identified for the X, and S;7 singularity in Section Thus,
the reflexive polytopes are isomorphic, and as before we have lattices given

by

(PicAo)tor ~U ® (714 _12)
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and
PicA =U & Ag P Eks.

4.4 W17 and Sl,()

Recall that the only possible invertible deformation of the singularity .S; ¢ is
given by F = X% 4+ Y27 + 7% + W'Y with monomials corresponding to
the lattice points (0,1,0), (—1,1,0), (0,0,1), and (4, —6, —3), respectively.
As we have seen in the previous section, the Newton polytope Ap of F' is
not reflexive. So, we take the larger reflexive polytopes that have Ap as a
subpolytope. In fact, there are two such possibilities as we shall see below.

Case (i) Let the polytope A be given by
A = Conv {(0,1,0), (0,0,1), (2,—2, —1), (=2,2, —1), (4,—6,—-3)} .

By construction, the Newton polytope of F' is a subpolytope of A. We

label the lattice points on the edges of A as

m; = (07 170)a my = (Oa07 1)7 m3 = (27 _27 _1)7
my = <_27 27 _1)7 ms = (47 _67 _3>7 meg = (37 _47 _2)7
mr = (2,-3,-1), mg=(1,-1,0), mg=(1,-2,-2),

myo = (_17 17 O)

The polar dual polytope of A is given by

A° = Conv {(—1,-1,1), (=2, —1,—1), (0,—1,—1), (5,4, 1), (—1,0,—1)}.
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We label the lattice points on the edges of A° as

v = (—1, -1, 1), Vg = (5,4, —1), V3 = (—1,0, —1),
vy =(-2,—-1,-1), vs=(0,—1,—-1), wvg=(2,2,—-1),
vr=(=1,=1,=1), ws= (4,3, —1), v=(32—1),

vio=(2,1,-1), oy = (1,0,—1)

Since the polytope A° is an integral polytope, the polytope A is reflexive.
The index of A in the SageMath database is 1959, while the index of A° is
1960. The Newton polytope of the deformation F7 = X°+ XY24+Y Z2+ W10
of fT' = x® + xy® + yz? is a subpolytope of the polar dual A° of A.

Next, we compute the toric contribution rank Lg(A).

Let I'; be an edge in A given by
I, = Conv {(0,0,1), (2,2, —1)}.
One has its polar dual
'Y = Conv {(0,—-1,-1), (5,4,—-1)},

and

KTy =1, 5% =4.

Let 'y be an edge in A given by

'y = Conv {(0,0,1), (4,—6,—3)}.
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One has its polar dual
'S = Conv{(=1,0,—1), (5,4, —1)},

and

F(Ty) =1, (3 =1.

In fact, no other edge contributes to rank Lo(A). Thus,
rank Lo(A) = I"(I'y)*(I']) + " (T)l*(I'5,) =4+ 1 =5.
Moreover, one has
p(A)=114+5-3=13, p(A°)=10+5—-3=12.

We now compute (Picao)ior. Let L be the lattice that is generated by the
divisors D1, Dy, Dy, D5, Dg, Do, D1o, where the divisor D; is on a generic hy-
persurface corresponding to the lattice point m;. By a direct computation,
we have det L = 20 and sgn L = (1, 6). Note that the lattice L contains
primitively the hyperbolic lattice U ~ (Dy + Dg — Dg, Dy — Dyg)z. By defi-
nition, a lattice generated by the restrictions of toric divisors is primitive in
the K3 lattice Axs. Moreover, since 20 = 4 -5 and 4 and 5 are coprime, we
have that the discriminant group Ay, of L is given by Ay ~ Z/207Z.

We calculate Pica. Let L’ be a lattice that is generated by divisors on a

generic hypersurface

B = {Vi, Vs, Vi, V6(1)> ‘/6(2)’ Vé(l), Vg(l), Vl(ol)a Vl(ll)’ Vé(z), ‘/;)(2)7 ‘/1(02)7 ‘/1(12)}.
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Here, V; = Vi(l) + \/;-(2) is a restricted toric divisor for ¢ = 6,8,9,10,11. By
a direct computation, we have det L' = 20 and sgn L’ = (1, 12). Moreover,
since 20 = 4-5 and 4 and 5 are coprime, we have that the discriminant group
Ay of L' is given by Ay ~ 7./20Z.

We claim that the lattice L' is a primitive lattice of the K3 lattice Axs =
U® @ EP?, which is of signature (14, 1) = (3,19). We have [, —t, =
3—1=2>0,1_—t_=19-12=72>0, and rank Ag3 —rank L' = 22—13 =
9> 1=1(Ag). Thus by Corollary 2.2] the lattice L’ is indeed a primitive
sublattice of the K3 lattice.

We have seen that
i) det L =20 = —det (U @ L).
i) Ap ~7/207 ~ Ayp.

By Corollary [2.1, we conclude that the lattices L = (Pica+)tor and U @

L' = U & Pica are orthogonal to each other in the K3 lattice Ags.

Case (ii) Let the polytope A be given by
A= A(273,5710) = Conv {(1, 0, 0), (O, 1, O), (O, 0, 1), (—2, 2, —1), (4, —6, —3)}

By construction, the Newton polytope of F' is a subpolytope of A. We

label the lattice points on the edges of A as

my = (07 170)a my = (anv 1)7 mgz = (17070)7
my = <_27 27 _1)7 ms = (47 _67 _3>7 meg = (37 _47 _2)7
mr = (27 _27 _1)7 mg = (27 _37 _1)7 mg = (17 _27 _2)7

myo = (_17 17 O)
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The polar dual polytope of A is given by
A® = Conv {(—1,—1,1), (=1,—1, 1), (0,—1,-1), (5,4, —1), (=1,0,—1)}.
We label the lattice points on the edges of A° as

vV = (—1, -1, 1), Vg = (5,4, —1), V3 = (—1,0, —1),

Vg = (—1, -1, —1), Vs = (O, -1, —1), Vg = (2,2, —1),
vr= (=1,=1,0), ws=(4,3,—1), wvy=(3,2,—1),
Vg = (2, 1, —1), V1 = (1,0, —1)

Since the polytope A° is an integral polytope, the polytope A is reflexive.
The Newton polytope of the deformation F'T = X% + XY?2 + Y Z2 + W10 of
fT = 2® + 2y + y2? is a subpolytope of the polar dual A° of A.

The edges I'; and I'y defined in Case (i) are also edges of A and there is
no other contribution to rank Lo(A). Therefore, we have rank Ly(A) = 5.

Moreover, one has
p(A)=114+5-3=13, p(A°)=10+5—-3=12.

We now compute (Picao)ior. Let L be the lattice that is generated by
the divisors Dy, Do, D3, D7, Dg, D5, Dy, where the divisor D; is on a generic
hypersurface corresponding to the lattice point m;. By a direct computation,
we have det L = 20 and sgn L = (1, 6). Note that the lattice L contains
primitively the hyperbolic lattice U ~ (D1 + Dg — D7, D1 + Dy — 2D3).

By definition, a lattice generated by the restrictions of toric divisors is

primitive in the K3 lattice Ags. Moreover, since 20 = 4 -5 and 4 and 5 are
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coprime, we have that the discriminant group Ay of L is given by Ay ~ Z/
207Z.

Note that the lattices L in Cases (i) and (ii) are isometric.

We calculate Pica. Let L’ be a lattice that is generated by divisors on a

generic hypersurface
B/ — {‘/1’ ‘/27 ‘/4’ %(1)7 %(2)’ ‘/8(1)7 ‘/9(1)’ ‘/'1(01)7 ‘/1(11)7 %(2)’ ‘/;)(2)7 ‘/1(02), ‘/1(12)}

Here, V; = Vi(l) + V;(Q) is a restricted toric divisor for + = 6, 8,9, 10, 11.

By a direct computation, we have det L’ = 20 and sgn L' = (1, 12). More-
over, since 20 = 4 -5 and 4 and 5 are coprime, we have that the discriminant
group Ay of L is given by Ay ~ Z/20Z.

We claim that the lattice L' is a primitive lattice of the K3 lattice Axs =
U@ E$?, which is of signature (I, [_) = (3,19). We havel, —t, =3—1=
2>0,l_—t.=19—-12=72>0 and rank Agg3 —rank L =22 —-13 =9 >
1 =1(Ar). By Corollary the lattice L’ is indeed a primitive sublattice of
the K3 lattice.

We have seen that
i) det L =20 = —det (U @ L).
i) Ap ~7/207 ~ Ayp.
By Corollary [2.1, we conclude that the lattice L = (Picae)sor and the
lattice U@ L' = U @ Pica are orthogonal to each other in the K3 lattice Ags.
We can easily observe that in cases (i) and (ii), although the polytopes

are not isomorphic, but the lattices (Picae)ior and Pic A are respectively

1sometric.
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4.5 U16

The singularity Ug is defined by f = 2° + y?z + yz?, and consider a de-
formation F' = X° 4+ Y2Z + Y Z? + WX, and let the polytope A be given
by

A= Ap = Conv{(1,0,-1), (0,0,1), (=2,-2,3), (0,1,—1)}.

By construction, the Newton polytope of F'is a subpolytope of A. We label

the lattice points on the edges of A as

my = <1a07 _]->7 mo = (0707 1)7 mg = (_27 _273)7
ma=(0,1,-1), ms=(—1,-1,2).

The polar dual poltope of A is given by
A° = Conv{(-2,-2,-1), (-2,1,-1), (4,4,5), (1,-2,—1)}.
We label the lattice points on the edges of A° as

v =(=2,-2,-1), vy=(-2,1,—-1), vg = (4,4,5), wvy=(1,-2,-1),

vy = (—2,—1,-1), vg=(-2,0,—1), vy = (0,2,1), vs = (2,3,3),

vg = (—1,-2,-1), vo=1(0,—-2,-1), wv1; =(3,2,3), v1e = (2,0,1), -

vi3 = (—1,-1,0), v14 = (0,0, 1), v1s = (1,1, 2), v = (2,2,3),
vir = (3,3,4), vig = (—1,0,—1), v =(0,—1,-1)

Since the polytope A° is an integral polytope, the polytope A is reflexive.
The Newton polytope of the deformation F7 = WX? +Y2Z +Y Z? + WS of
T = 2% 4+ 9?2 + y2? is a subpolytope of the polar dual A° of A. As we have

seen in the previous section, the toric contribution is rank Ly(A) = 2.
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Moreover, one has
p(A)=194+2-3=18, p(A°)=5+2—-3=4.

We compute (Picae)tor. A collection {my, msg, ms} is alinearly-independent
vectors. Let L be a lattice that is generated by divisors D3 and D,. By tak-
ing the new generators {Ds, —D3 + D4}, we have L ~ U(3). It is known
that the discriminant group of U(3) is isomorphic to Z/9Z. By definition,
the lattice (Picae)tor is actually equal to the lattice L.

We compute Pica. A collection {vy, vs, v9} is a linearly-independent

vectors. Let L' be a lattice that is generated by divisors
B, = {‘/27 ‘/E’)a VZL, ‘/ﬁa ‘/77 ‘/87 ‘/107' . ‘a‘/177 ‘/1(81)7 ‘/1(82)a ‘/1(91)7 ‘/1(92)}

Here, V; = V;(l) + Vi(z) is a restricted toric divisor for 7 = 18, 19.

By a direct computation, we have det L' = —9 and sgn L' = (1,17) with
the aid of Mathematica.

Since rank L’ > 12, there exists an even negative-definite lattice L” of
rank 16 and det L” = 9 such that L' = U & L” holds. Moreover, set M to be
the intersection matrix of L' with respect to the basis B’, and by defining a

map

(D(Jfl, X2, X3,T4y,T5,T6, L7, T8y, L9y L10, L115 L12, L13, L14, L15, L16, L17, L18; S) =

-1
3(131 Tg T3 Ty Ty Teg L7 Tg T9g T10 T11 T12 T13 T14 Ti5 Tie L1t 51318) M
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and one can see that

(I)($1, L2, T3, Ty, X5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18; 9) S Z.

This means that there exists an element of order 9 in the discriminant group
of L'. Therefore, L™ /L' ~ 7Z/9Z.
Therefore, L*/L' ~ (L & U)*/(L & U). Thus, the lattice L’ is also a

primitive sublattice of Ags, and L' ~ (L & U)* holds.

We have seen that
i) det L=—-9=—det(U® L).
11) AL ~ Z/QZ ~ AU@L"

By Corollary , we conclude that the lattices L = (Picae )i and U & L' =

U @ Pica are orthogonal to each other in the K3 lattice Ags.
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