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Abstract. We study a nonlinear-nudging modification of the Azouani-Olson-Titi
continuous data assimilation (downscaling) algorithm for the 2D incompressible Navier-
Stokes equations. We give a rigorous proof that the nonlinear-nudging system is
globally well-posed, and moreover that its solutions converge to the true solution ex-
ponentially fast in time. Furthermore, we also prove that, once the error has decreased
below a certain order one threshold, the convergence becomes double-exponentially
fast in time, up until a precision determined by the sparsity of the observed data.
In addition, we demonstrate the applicability of the analytical and sharpness of the
results computationally.

1. Introduction

Many dissipative dynamical systems that model physical processes are chaotic and
highly sensitive to initial conditions. Hence, having incomplete information about ini-
tial conditions makes simulating these systems accurately a difficult task. To overcome
this issue in practice, the available spatially discrete observed data can be used to in-
form the model via a wide variety of techniques, collectively known as data assimilation.
Data assimilation can be done using a variety of different methods incorporate obser-
vations into the mathematical model generally using either statistical or continuous
techniques. In this paper, we focus on a continuous data assimilation (CDA) algo-
rithm, also known as the Azouani-Olson-Titi (AOT) algorithm. The CDA algorithm is
based on the mathematical theory that many dissipative evolution equations describ-
ing fluid flow have solutions that are, in large-time, determined uniquely by the values
of their solutions at a finite number of adequately distributed nodes or modes (see,
e.g. [44] and references therein). It incorporates observational data into the model at
the partial differential equation (PDE) level using a feedback control (nudging) term.
This paper investigates the convergence of a nonlinear-nudging version of the CDA
algorithm.

The CDA algorithm was first introduced in [4, 5] (see also [16, 54, 70, 71] for early
ideas in this direction). The algorithm considers a dissipative dynamical system

du

dt
= F(u),(1.1)

with an unknown initial condition. We denote a given interpolation of the observa-
tions of the unknown reference solution u at course spatial scales by Ih(u), where h is
some characteristic length scale of the the observational data (e.g., the average spatial
distance between observations). These observations are incorporated via a feedback
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control term in the following modified system

dv

dt
= F(v) + µ(Ih(u)− Ih(v)),(1.2a)

v(t = 0) = v0,(1.2b)

where µ > 0 is an adequately chosen positive relaxation (nudging) parameter and v0

is any sufficiently smooth initial condition. A wide class of standard interpolants Ih
are admissible by the analysis of [4] including, e.g., piecewise constant interpolation,
linear interpolation, and Fourier truncation, among others, making this algorithm very
adaptable for physical models and computationally inexpensive to implement. In the
context of the 2D incompressible Navier-Stokes equations with both no-slip and periodic
boundary conditions, the global well-posedness of (1.2) and exponential convergence
in time to the reference solution u of (1.1) were proven in [4]. This algorithm was
then investigated in the context of numerous dissipative dynamical systems under a
variety of assumptions including noisy data, incorrect parameters, incorrect models,
data provided discretely in time, and assimilation of only some instead of all state
variables, in, e.g., [1–3, 6, 8–14, 17–25, 30–33, 36–43, 45–50, 52, 53, 55–58, 61–69, 72–
74, 76, 79, 81–84] and the references therein.). In each of these papers exponential
convergence either to 0 or up to a certain measurable error regardless of the choice of
initial conditions, and the slight modification required to existing models makes the
CDA algorithm an efficient and effective data assimilation algorithm. Classical data
assimilation methods are generally statistical in nature, including the Kalman filter
and its variants as well as 4DVAR, but these methods are non-trivial to implement
and computationally much more expensive than simply running a simulation of the
dynamical system alone, making the CDA algorithm a more efficient and potentially
viable alternative for use in certain real world models (see, e.g., [21, 30, 31]).

The motivation for this work comes from the computational study [61], which intro-
duced and investigated a nonlinear version of the CDA algorithm in the context of the
Kuramoto-Sivashinsky equations. This nonlinear-nudging algorithm computationally
demonstrated super-exponential convergence in time to the reference solution for the
1D Kuramoto-Sivashinsky equations. This was later demonstrated with a similar mod-
ification in a computational study on the 2D magnetohydrodynamic equations in [55].
In [33], the authors adapted the nonlinear-nudging data assimilation schemes of [61] to
the context of the Lorenz equation, and proved exponential (but not super-exponential)
convergence. Note that another nonlinear approach to nudging was proposed and stud-
ied in [51], but using a very different method from that in the present work. In our case,
in order to simplify the practical implementation, we consider the following nonlinear-
nudging system of equations:

vt = F(v) + µN (Ih(u)− Ih(v)) + β(Ih(u)− Ih(v)),(1.3a)

v(x, 0) = v0(x),(1.3b)

where we denote, with γ ∈ [0, 1),

N (φ) :=

{
0, if ‖φ‖L2(Ω) = 0,

φ‖φ‖−γ
L2(Ω)

, if ‖φ‖L2(Ω) > 0.

Note that we formally recover the linear-nudging CDA algorithm when γ = 0. As
demonstrated computationally in [55, 61], we expect that once ‖Ih(u)−Ih(v)‖L2(Ω) < 1,
the error of the nonlinear-nudging algorithm should enjoy a super-exponential decay
rate and reach machine precision at an earlier time than the linear-nudging algorithm.
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We anticipate that this formulation should yield double exponential convergence of
the algorithm if γ ∈ (0, 1). The paradigm equations used to demonstrate the conver-
gence of this combined linear/nonlinear-nudging algorithm are the 2D incompressible
Navier-Stokes equations. Indeed we prove here, with certain reasonable assumptions
on Ih and given a sufficiently developed reference flow, a double-exponential decay rate
of the error, at least down to a level ε > 0, determined by h and the L2 norm (the
size) of the initial data of the reference solution u (but otherwise independent of the
initial data), and other physical parameters in the system (see Theorem 4.1 below for
details). We also prove that after the precision ε is reached, which happens in finite
time, the error continues to decay to zero at least at an exponential rate.

We believe the ε barrier for super-exponential convergence discussed above is likely
insurmountable due to 1) a direct observation from the method of proof (see Remark
4.2), and 2) a heuristic argument of the same observation for a more general dissipative
system in Appendix 7.1. Namely, as can be seen by the arguments Appendix 7.1,
the nonlinear term N (Ih(u) − Ih(v)) in (1.3a) forces the large spatial scales (e.g.,
low modes) to converge at a super-exponential rate; however, this process seems to
eventually destabilize the smaller spatial scales so much that they cannot be suppressed
and stabilized by the linear viscous effect, obstructing super-exponential convergence
after error becomes sufficiently small. Therefore, we expect to see super-exponential
convergence rates for early times, which then become merely exponential for later times
once the error becomes very small. Indeed, this is what we observe in the simulations
in Section 5.

The paper is organized as follows: in Section 2 we lay out notation and state def-
initions and preliminary theorems and results for reference; in Section 3 we prove a
global well-posedness result for the nonlinear-nudging system (2.3); in Section 4 we
prove the convergence results discussed above; in Section 5 we investigate our results
in simulations. Concluding remarks are in Section 6.

2. Preliminaries

The convergence of the nonlinear-nudging CDA algorithm will be proved in this paper
in the context of the 2D incompressible Navier-Stokes equations, as a paradigm, with
periodic boundary conditions. However, the result is equally valid for general dissipative
systems of equations with physical boundary conditions. We begin by stating some
preliminary theoretical foundations. First, the initial-boundary value problem

ut + u · ∇u− ν4u +∇p = f , in Ω× (0, T ),(2.1a)

∇ · u = 0, in Ω× (0, T ),(2.1b)

u(·, 0) = u0(·), in Ω,(2.1c)

determines the reference solution for the data assimilation system, where u is the
velocity, p is the pressure, ν > 0 is viscosity, Ω = T2 = R2/Z2 is the domain (and hence
the domain has unit length L = 1), T > 0, f is some forcing, u0 is the initial condition,
and the system is equipped with periodic boundary conditions.

The linear-nudging CDA algorithm applied to the 2D incompressible Navier-Stokes
equations (2.1) yields the system, with µ > 0 a constant,

vt + v · ∇v − ν4v +∇q̃ = f + µ(Ih(u)− Ih(v)), in Ω× (0, T ),(2.2a)

∇ · v = 0, in Ω× (0, T ),(2.2b)

v(·, 0) = v0(·), in Ω.(2.2c)



4 ELIZABETH CARLSON, ADAM LARIOS, AND EDRISS S. TITI

The nonlinear-nudging CDA algorithm applied to the 2D incompressible Navier-
Stokes equations (2.1) yields the system, with constants µ, β > 0,

vt + v · ∇v − ν4v +∇q = f + µN (Ih(u)− Ih(v))(2.3a)

+ β(Ih(u)− Ih(v)), in Ω× (0, T ),

∇ · v = 0, in Ω× (0, T ),(2.3b)

v(·, 0) = v0(·), in Ω.(2.3c)

We recall the following well-known spaces. Let

V = {u ∈ Ċ∞p (Ω) : ∇ · u = 0},

where Ċ∞p (Ω) is the space of infinitely differentiable, mean-free, periodic functions on

the torus. We denote H to be the closure of V in L2 and V to be the closure of V in
H1. The inner-product on H is the usual L2 inner-product,

(u,v) :=

∫
Ω

2∑
i,j=1

ui(x)vj(x)dx, u,v ∈ H,

and we denote the inner-product on V by

((u,v)) :=

∫
Ω

2∑
i,j=1

∂uj
∂xi

(x)
∂vj
∂xi

(x)dx, u,v ∈ V.

These yield the following norms.

‖u‖H :=
√

(u,u), ‖u‖V :=
√

((u,u)).

Note that the definiteness of the V-norm follows from the Poincaré inequality (see, e.g.,
[27], [35], [78]).

We denote the Leray projector as Pσ : L̇2(Ω) → H, where for smooth functions w,
Pσw = w−∇4−1∇·w, (the inverse Laplacian being computed with respect to periodic

boundary conditions and the mean-free condition), and Pσ is extended to L̇2(Ω) by
continuity (see, e.g., [27, 78]). We denote A : D(A)→ H and B : V × V → V ∗, where
A and B are continuous extensions of the operators

Au = −Pσ4u, u ∈ V,
B(u,v) = Pσ((u · ∇)v), u,v ∈ V,

where D(A) := V ∩H2(Ω). Note that A is a linear, self-adjoint, and positive definite
operator with compact inverse, so there exists an orthonormal basis of eigenfunctions
{wi}i∈N in H such that Awi = λiwi, with eigenvalues λi > 0 that are monotonically
nondecreasing in i (see, e.g., [27, 75, 78]). Moreover, observe in this case (the case of
periodic boundary conditions) that A = −4. Furthermore, the following versions of
Poincaré inequality hold,

λ1‖u‖2H ≤ ‖∇u‖2H for u ∈ V,
λ1‖∇u‖2H ≤ ‖Au‖2H for u ∈ D(A),

where λ1 = 4π2 is the first eigenvalue of the Stokes operator on Ω.
Moreover, the bilinear operator, B, has the property that

〈B(u,v),w〉V ∗,V = −〈B(u,w),v〉V ∗,V(2.4)
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for all u,v,w ∈ V ; below, we denote 〈·, ·〉 := 〈·, ·〉V ∗,V . This implies the following
identity

〈B(u,v),v〉 = 0(2.5)

for all u,v ∈ V . Finally, the following standard inequalities hold (see, e.g., [27, 44, 75,
77, 78])

| 〈B(u,v),w〉 | ≤ c‖u‖1/2H ‖u‖
1/2
V ‖v‖V ‖w‖

1/2
H ‖w‖

1/2
V , for u,v,w ∈ V,(2.6)

| 〈B(u,v),w〉 | ≤ c‖u‖1/2H ‖Au‖1/2H ‖v‖V ‖w‖H , for u ∈ D(A),v ∈ V,w ∈ H.(2.7)

In this setting of 2D periodic boundary conditions, the following identity holds (see,
e.g., [27, 75, 78])

(B(w,w), Aw) = 0 for every w ∈ D(A).(2.8)

This implies the identity

(B(u,w), Aw) + (B(w,u), Aw) = −(B(w,w), Au) for all u,w ∈ D(A).(2.9)

We assume that f ∈ L∞(0, T ;H) so that Pσf = f (without loss of generality, since
the gradient part of f can be absorbed into the pressure gradient). Formally applying
the Leray projection to (2.1) yields the equivalent evolution system

ut +B(u,u) + νAu = f ,(2.10)

u(x, 0) = u0(x).(2.11)

Similarly, the Leray projection can be formally applied to (2.2) to obtain the system

vt +B(v,v) + νAv = f + µPσ(Ih(u)− Ih(v)),(2.12)

v(x, 0) = v0(x).(2.13)

and to (2.3) to obtain the system

vt +B(v,v) + νAv = f + µPσN (Ih(u)− Ih(v)),(2.14)

+ βPσ(Ih(u)− Ih(v)),

v(x, 0) = v0(x).(2.15)

where for all w ∈ L2(Ω), we recall N (w) :=

{
‖w‖−γH w, ‖w‖H 6= 0,

0, ‖w‖H = 0.

Note that, with this choice of N , µ has units (length)2γ/(time)1+γ , whereas β has units
1/(time).

The pressure gradient can be recovered by employing the following corollary of de
Rham’s Theorem (see, e.g., [44, 78, 80]):

g = ∇p with p a distribution if and only if 〈g,h〉 = 0 for all h ∈ V.
Under this framework, we define the notion of a strong solution for the systems

(2.10), (2.12), and (2.14) (see, e.g., [27, 44, 75, 78]).

Definition 2.1. A strong solution of (2.10), (2.12), or (2.14) is a function u ∈
C([0, T ];V ) ∩ L2(0, T ;D(A)) such that the equality in the system (2.10), (2.12), or
(2.14) is satisfied in L2(0, T ;H), and its time derivative du

dt ∈ L
2(0, T ;H).

We cite the classical result of the existence of global strong solutions for (2.1)

Theorem 2.2. Given initial data u0 ∈ V and a forcing function f ∈ L2(0, T ;H), there
exists a unique strong solution to (2.10) u such that u ∈ C([0, T ];V ) ∩ L2(0, T ;D(A))
and du

dt ∈ L
2(0, T ;H).
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For (2.10), we denote the dimensionless Grashof number as

G =
1

λ1ν2
lim sup
t→∞

‖f(t)‖H .(2.16)

The following theorem, see, e.g., [27, 29, 44, 75, 78], details results on the large-time
behavior of the strong solutions to (2.1).

Theorem 2.3. Fix T > 0. Suppose that u is a strong solution of (2.1), corresponding
to the initial data u0 ∈ V . Then there exists a time t0 ≥ 0 which depends on ‖u0‖H
such that for all t ≥ t0,

‖u(t)‖2H ≤ 2G2ν2 and

t+T∫
t

‖u(τ)‖2V dτ ≤ 2 (1 + Tλ1ν)G2ν,(2.17)

moreover

‖u(t)‖2V ≤ 2λ1G
2ν2,

t+T∫
t

‖Au(τ)‖2Hdτ ≤ 2 (1 + Tλ1ν)λ1G
2ν.(2.18)

Furthermore, if f ∈ H is time-independent then

‖Au(t)‖2H ≤ λ2
1ν

2c(1 +G)4.(2.19)

We assume throughout the present work that the operator Ih is a linear operator
satisfying the following conditions

‖φ− Ih(φ)‖2L2(Ω) ≤ c0h
2‖∇φ‖2L2(Ω), for all φ ∈ Ḣ1(Ω),(2.20a) ∫

Ω
Ih(φ) = 0 whenever

∫
Ω
φ = 0.(2.20b)

In our theorems, we make various additional assumptions about the interpolant Ih. We
record these here for reference, though we note that some of our theorems hypothesize
only a subset of these assumptions.

I2
h = Ih,(2.21a)

(Ih(φ),ψ) = (φ, Ih(ψ)) for all φ,ψ ∈ L̇2(Ω),(2.21b)

(Ihφ,φ) ≥ 0 for all φ ∈ L̇2(Ω),(2.21c)

‖Ihφ‖L2(Ω) ≤ α‖φ‖L2(Ω) for some α > 0 and for all φ ∈ L̇2(Ω),(2.21d)

(Ihφ, Aφ) ≥ 0 and for all φ ∈ D(A).(2.21e)

Note that Fourier truncation and local averaging over finite volume elements are both
operators that satisfy (2.20) (see, e.g., [4, 15, 26, 59]). There seems to be a technical
constraint on allowing more general interpolants, cf. Remark 4.7. Since we are working
in a mean-free space Poincaré’s inequality applies, and combined with (2.20) we have
the following bound on ‖Ih(φ)‖L2(Ω):

‖Ih(φ)‖L2(Ω) ≤ ‖φ− Ih(φ)‖L2(Ω) + ‖φ‖L2(Ω),

≤
√
c0h‖∇φ‖L2(Ω) + λ

−1/2
1 ‖∇φ‖L2(Ω),

= (
√
c0h+ λ

−1/2
1 )‖∇φ‖L2(Ω).(2.22)

For uniqueness of solutions to the nonlinear-nudging system and the convergence of
the solutions of the nonlinear-nudging system to the unknown reference solution of
(2.1), we will make various assumptions on the linear interpolant Ih, namely (2.21c)
and (2.21d) above.
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For reference, we state the existence and convergence theorems of the linear-nudging
CDA algorithm as proved in [4].

Theorem 2.4. [4] Suppose Ih satisfies (2.20), v0 ∈ V , and µc0h
2 ≤ ν, where c0 is the

constant in (2.20). Then system (2.12) has a unique strong solution such that

v ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) and
dv

dt
∈ L2(0, T ;H),

for any T > 0. Furthermore, this solution depends continuously on the initial data v0

in the V norm.

Theorem 2.5. [4] Let Ω = T2 and let u be a solution to (2.10) with periodic boundary

conditions. Let Ih satisfy (2.20). Then provided µ ≥ 5λ1c
2νG2 and h ≤

(
1

10λ1c2c0G2

)1/2
,

for any v0 ∈ V the solution to (2.12) converges to the solution of (2.10) in H expo-
nentially fast as t→∞, with exponential rate µ/2.

Theorem 2.6. [4] Let Ω = T2 and let u be a solution to (2.10) with periodic boundary

conditions. Let Ih satisfy (2.20).Then provided µc0h
2 ≤ ν and µ ≥ 3νλ1(2c log(2c3/2 +

8c log(1 + G))G where c is a constant dependent on the size of the domain, for any
v0 ∈ V the solution to (2.12) converges to the solution of (2.10) in V exponentially
fast as t→∞, with exponential rate µ/2.

We will also employ the following elementary lemma, the proof of which is in the
Appendix.

Lemma 2.7. Fix γ ∈ (0, 1) and ε > 0. Given a > 0 and

δ := min

a/2, a
2−γ
2

 ε(
2−γ

2

) 2−γ
γ −

(
2−γ

2

) 2
γ


γ
2

 ,

then the function f : [0,∞) 7→ R defined by

f(x) = ax2 − δx2−γ ,

satisfies f(x) ≥ −ε for all x ≥ 0.

3. Global Existence and Uniqueness of the Nonlinear-Nudging System

Before we can prove convergence of the solutions of (2.3) to the reference solution u
of (2.1), we must demonstrate that solutions to (2.3) exist globally in time; we employ
fixed point methods. The advantage of this approach is many-fold, harnessing the prop-
erties of solutions to the Navier-Stokes equation directly and using the monotonicity
of the nonlinear-nudging term to best effect.

Remark 3.1. Note that in the theorems, in the following sections, we claim that we
critically assume 0 < µc0h

2 < ν, and we remark there is a constant 1 multiplying µ to
maintain proper units.

Theorem 3.2. Let T > 0. Suppose Ih satisfies (2.20), 0 < µc0h
2 < ν, and 0 < βc0h

2 <
ν. Fix 0 < γ < 1. Let v0 ∈ V be initial data and f ∈ H be the time-independent forcing
function for (2.14). Let u ∈ C([0, T ];V )∩L2(0, T ;D(A)) be a strong solution to system
(2.10) with initial data u0 ∈ V and the same forcing function f . Then there exists a
strong solution v ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) to system (2.14).
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Proof. First, we show that

g(v) = f + µPσN (Ih(u− v)) + βPσIh(u− v)

maps elements v ∈ L2(0, T ;V ) to L2(0, T ;H). By assumption f ∈ H and hence trivially∫ T
0 |f |

2dx = T |f |2 <∞, so we only need to prove that the second and third terms reside

in L2(0, T ;H):

∫ T

0
‖PσN (Ih(u− v))‖2Hdt(3.1)

≤
∫ T

0
‖N (Ih(u− v))‖2L2(Ω)dt =

∫ T

0
‖Ih(u− v)‖2(1−γ)

L2(Ω)
dt

≤ (λ
−1/2
1 + h

√
c0)2(1−γ)

∫ T

0
‖u− v‖2(1−γ)

V dt

≤ 22(1−γ)(λ
−1/2
1 + h

√
c0)2(1−γ)

∫ T

0

(
‖u‖2(1−γ)

V + ‖v‖2(1−γ)
V

)
dt

≤ 22(1−γ)(λ
−1/2
1 + h

√
c0)2(1−γ)T γ

(
‖u‖2(1−γ)

L2(0,T ;V )
+ ‖v‖2(1−γ)

L2(0,T ;V )

)
<∞,

where for the second inequality, we applied (2.22). The same analysis with γ = 0
shows that the third term is also in L2(0, T ;H). Thus, g(v) ∈ L2(0, T ;H) for any
v ∈ L2(0, T ;V ). Next, we show g : L2(0, T ;V ) → L2(0, T ;H) is continuous. To this
end, let vk → v in L2(0, T ;V ). For the sake of contradiction suppose there exists
an ε0 > 0 and a subsequence {vkj} such that ‖g(vkj ) − g(v)‖L2(0,T ;H) ≥ ε0. Since
‖vkj −v‖L2(0,T ;V ) → 0, there exists a subsequence {vkjl} such that ‖vkjl (t)−v(t)‖V →
0 for almost every t ∈ [0, T ]. This implies that ‖Ih(u − vkjl ) − Ih(u − v)‖H → 0

pointwise a.e. in time by (2.22), so that ‖g(vkjl )− g(v)‖2H → 0 pointwise a.e. in time.

Furthermore, there exists w ∈ L2(0, T ;V ) such that ‖Ih(u − vkjl )‖H ≤ ‖w‖V for all

kjl ∈ N and for a.e. t ∈ [0, T ]; then∫ T

0
‖g(vkjl )− g(v)‖2Hdt

≤
∫ T

0

(
µ‖Ih(u− vkjl )‖

1−γ
H + µ‖Ih(u− v)‖1−γH

+ β‖Ih(vkjl − u)‖H + β‖Ih(v − u)‖H
)2
dt

≤
∫ T

0

(
µ‖w‖2(1−γ)

V + β‖w‖2V + µ‖Ih(u− v)‖1−γH + β‖Ih(u− v)‖H
)2

<∞,

where the finiteness follows directly from the bounds computed in (3.1). Hence, by the
Lebesgue Dominated Convergence Theorem, g(vkjl ) → g(v) strongly in L2(0, T ;H).

This is a contradiction, and hence g : L2(0, T ;V )→ L2(0, T ;H) is continuous.
Given v ∈ L2(0, T ;V ), consider the system

ũt +B(ũ, ũ) + νAũ = g(v),(3.2)

ũ(x, 0) = v0(x).(3.3)

Let F (v) = ũ ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) be the unique strong solution to (3.2),
guaranteed by Theorem 2.2 since g(v) ∈ L2(0, T ;H) (hence F is well-defined).
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To show that F is continuous, take a sequence {vk} ⊂ L2(0, T ;V ) with vk → v in
L2(0, T ;V ), with the associated sequence of solutions F (vk) = ũk to (3.2). Let M > 0
be such that ‖vk‖L2(0,T ;V ) ≤M for all k ∈ N. Take the H inner-product of (3.2) with
Aũk and use standard energy-estimate techniques to obtain

1

2

d

dt
‖ũk‖2V + ν‖Aũk‖2H ≤

1

2ν
‖g(vk)‖2H +

ν

2
‖Aũk‖2H

hence

d

dt
‖ũk‖2V + ν‖Aũk‖2H ≤

1

ν
‖g(vk)‖2H ,

which implies that, since the initial data is independent of k,

‖ũk(t)‖2V + ν

∫ t

0
‖Aũk‖2Hdt ≤ ‖ũk(0)‖2V +

1

ν

∫ t

0
‖g(vk)‖2Hdt(3.4)

≤ ‖v0‖2V +
2

ν
T‖f‖2H +

Cγ(µ, h)

ν
T γ(‖u‖2(1−γ)

L2(0,T ;V )
+ ‖vk‖

2(1−γ)
L2(0,T ;V )

)

+
C(β, h)

ν
(‖u‖2L2(0,T ;V ) + ‖vk‖2L2(0,T ;V ))

≤ ‖v0‖2V +
2

ν
T‖f‖2H +

Cγ(h, µ)

ν
T γ(‖u‖2(1−γ)

L2(0,T ;V )
+M2(1−γ))

+
C(β, h)

ν
(‖u‖2L2(0,T ;V ) +M2),

where Cγ(h, µ) = 22−γµ2

(
√
c0h+ λ

− 1
2

1

)2(1−γ)

and C(h, β) = 4β2

(
√
c0h+ λ

− 1
2

1

)2

.

By (3.4), we know that {ũk} is uniformly bounded in C([0, T ];V ) ∩ L2(0, T ;D(A)).
We show that {ũk} is a Cauchy sequence. Let m ≥ k and wm,k = ũm− ũk; then wm,k

satisfies

d

dt
wm,k + νAwm,k +B(ũk,wm,k) +B(wm,k, ũk) +B(wm,k,wm,k) = g(vk)− g(vm).

(3.5)

Taking the inner product with Awm,k in H and applying (2.8), (2.9),

1

2

d

dt
‖wm,k‖2V + ν‖Awm,k‖2H = (B(wm,k,wm,k), Aũk) + (g(vk)− g(vm), Awm,k).

(3.6)

Thus, employing Poincaré’s and Young’s inequalities,

1

2

d

dt
‖wm,k‖2V + ν‖Awm,k‖2H ≤ c‖wm,k‖

1
2
H‖Awm,k‖

1
2
H‖wm,k‖V ‖Aũk‖H(3.7)

+ ‖g(vk)− g(vm)‖H‖Awm,k‖H

≤ c
4
3λ
− 1

3
1 ν−3‖Aũk‖

4
3
H‖wm,k‖2V

+
ν

2
‖Awm,k‖2H +

1

ν
‖g(vk)− g(vm)‖2H ,

which yields

d

dt
‖wm,k‖2V + ν‖Awm,k‖2H ≤ 2c

4
3λ
− 1

3
1 ν−3‖Aũk‖

4
3
H‖wm,k‖2V +

2

ν
‖g(vk)− g(vm)‖2H

(3.8)
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which implies, with c̃ = 2c
4
3λ
− 1

3
1 ν−3

d

dt
‖wm,k‖2V ≤ c̃‖AũK‖

4
3
H‖wm,k‖2V +

2

ν
‖g(vk)− g(vm)‖2H(3.9)

and by Grönwall’s inequality, (since wk,m(0) = 0),

‖wk,m(t)‖2V ≤
∫ t

0
exp

(
c̃

∫ t

s
‖Aũk(τ)‖

4
3
Hdτ

)
2

ν
‖g(vk(s))− g(vm(s))‖2Hds(3.10)

≤ exp

(
c̃

∫ T

0
‖Aũk(τ)‖

4
3
Hdτ

)∫ T

0

2

ν
‖g(vk(s))− g(vm(s))‖2Hds(3.11)

Thus, taking the supremum and applying Hölder’s inequality,

sup
0≤t≤T

‖wk,m(t)‖2V ≤ exp

c̃(∫ T

0
‖Aũk(τ)‖2Hdτ

) 2
3

T
1
3

 ‖g(vk(s))− g(vm(s))‖2L2(0,T ;H).

(3.12)

By the uniform bound on ‖Aũk(τ)‖2L2(0,T ;H) and since g is continuous, we have the

{ũk} is Cauchy in the C([0, T ];V ) norm hence it converges to some ũ ∈ C([0, T ];V ).
Next, we directly integrate (3.8), using wk,m(0) = 0, to obtain

ν

∫ T

0
‖Awm,k‖2Hds ≤ c̃

(∫ T

0
‖Aũk(s)‖2Hds

) 2
3

T
1
3

(
sup

0≤t≤T
‖wm,k‖2V

)
(3.13)

+
2

ν
‖g(vk)− g(vm)‖2L2(0,T ;H),

which implies that {Aũk} is Cauchy in L2(0, T ;H) and converges to Aũ in this norm.

Next, we show that dũk
dt →

dũ
dt in L2(0, T ;H). First we observe that, via (2.7),

‖B(ũk, ũk)−B(ũ, ũ)‖H + ‖B(ũk, ũ)‖H + ‖B(ũk, ũk − ũ)‖H

≤c‖ũk − ũ‖
1
2
H‖Aũk −Aũ‖

1
2
H‖ũ‖V + c‖ũk‖

1
2
H‖Aũk‖

1
2
H‖ũk − ũ‖V .(3.14)

And thus,∫ T

0
‖B(ũk − ũ, ũk − ũ)‖2Hdt ≤ c

1

λ1
‖ũ‖2L∞(0,T ;V )‖Aũk −Aũ‖2L2(0,T ;H)

+ c‖ũk − ũ‖2L∞(0,T ;V )‖ũk‖L2(0,T ;H)‖Aũk‖L2(0,T ;H),

which from the fact that ũk → ũ strongly in C([0, T ];V ) ∩ L2(0, T ;D(A)) implies
B(ũk, ũk) converges to B(ũ, ũ) in L2(0, T ;H). Since

dũk
dt

= −νAũk −B(ũk, ũk) + g(vk),(3.15)

the right-hand side converges in L2(0, T ;H) thus dũk
dt converges to dũ

dt in L2(0, T ;H).

Thus, F (vk)→ F (v) in C([0, T ];V ) ∩ L2(0, T ;D(A)).
Next we show that F is a compact operator on L2(0, T ;V ). For any bounded se-

quence {vk} ⊂ L2(0, T ;V ) the estimate (3.4) holds, implying that {ũk} is uniformly
bounded, in particular, in L2(0, T ;D(A)), and the same arguments can be followed

(3.15) show uniform boundedness instead of convergence, i.e. {dũkdt } is uniformly

bounded in L2(0, T ;H). Thus, by Aubin’s Compactness Theorem, there exists a sub-
sequence {vkj} such that F (vkj ) = ũkj converges strongly in L2(0, T ;V ). Thus, F is a
(nonlinear) continuous compact operator.
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We implement a version of the Schauder Fixed Point Theorem which states that for
a closed, bounded, convex set B in a Banach space X, if F : X → X is a compact
operator such that F : B → B, then F has a fixed point in B, (see, e.g., [28]). For

given initial data v0 ∈ V , fix R >
‖v0‖2V
νλ1

. Set1

T∗ :=
R

νλ1R+ 1
ν2λ1
‖f‖2H +

Cγ(h,µ)
ν1+γλγ1

(
‖u‖2(1−γ)

L2(0,T ;V )
+R(1−γ)

)
+ C(h,β)

ν

(
‖u‖2

L2(0,T ;V )
+R

) .
and

B :=

{
v ∈ L2(0, T ;V ) :

∫ T∗

0
‖v‖2V ≤ R

}
,

Notice that T∗ <
1
νλ1

. Given any v ∈ B, we note that by definition F (v) = ũ ∈
C([0, T∗];V ) ∩ L2(0, T∗;D(A)) and thus ũ ∈ L2(0, T∗;V ). Moreover, using an identical
estimate to the first inequality in (3.4), except that we integrate over [0, T∗] and use
g(v) instead of g(vk), we obtain∫ T∗

0
‖ũ‖2V dt ≤ T∗‖v0‖2V +

1

ν
T 2
∗ ‖f‖2H

+ T 1+γ
∗

Cγ(h, µ)

ν

((∫ T∗

0
‖u‖2V

)1−γ

+

(∫ T∗

0
‖v‖2V

)1−γ)

+ T∗
C(β, h)

ν

(∫ T∗

0
‖u‖2V +

∫ T∗

0
‖v‖2V

)
≤ T∗

(
νλ1R+

1

ν
T∗‖f‖2H +

Cγ(h, µ)

ν
T γ∗

(
‖u‖2(1−γ)

L2(0,T ;V )
+R1−γ

)
+
C(β, h)

ν

(
‖u‖2L2(0,T ;V ) +R

))
≤ T∗

(
νλ1R+

1

ν2λ1
‖f‖2H +

Cγ(h, µ)

ν1+γλγ1

(
‖u‖2(1−γ)

L2(0,T ;V )
+R1−γ

)
+
C(β, h)

ν

(
‖u‖2L2(0,T ;V ) +R

))
≤ R

by the definition of T∗. In other words, ũ ∈ B, and hence, F : B → B. Since F is
compact on L2(0, T ;V ), there exists a fixed point of F in B, i.e., F (v) = v on [0, T∗].
Call this fixed point v1 ∈ C([0, T ];V )∩L2(0, T ;D(A)). Consider (3.2) with initial data
v1(T∗/2) (which is allowed, because solutions must be continuous in time). Now choose

R̃ > max
{
R,
‖v1(T∗/2)‖2V

νλ1

}
and

B̃ :=

{
v ∈ L2(0, T ;V ) :

∫ T̃∗

T∗/2
‖v‖2V ≤ R̃

}
(3.16)

and

T̃ ∗ :=
T∗
2

+ ∆T,

1It is straightforward, though slightly laborious, to check that the expression for T∗ is dimensionally
correct.
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where

∆T =
R̃

νλ1R̃+ 1
ν2λ1
‖f‖2H +

Cγ(h,µ)
ν1+γλγ1

(
‖u‖2(1−γ)

L2(0,T ;V )
+ R̃(1−γ)

)
+ C(h,β)

ν

(
‖u‖2

L2(0,T ;V )
+ R̃

) .
Notice that T∗/2 < T∗ < T̃∗, and notice moreover that the length ∆T of the interval
is slightly larger than that of the previous interval because the function x

a+bx1−γ+cx
is

monotonically increasing in x for a, b, c, x > 0. Integrating from T∗/2 to T̃∗ yields that

‖ũ‖2
L2(T∗/2,T̃∗;V )

≤ R̃ implying that ũ ∈ B. Hence, F has a fixed point v2 ∈ B̃ such

that F (v2) = v2 on [T∗/2, T̃∗], and moreover v2(T∗/2) = v1(T∗/2). By induction on

T̃∗, F has a fixed point v ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)). �

Remark 3.3. Alternatively one can use Schaefer’s Fixed Point Theorem in which one
does not have to bootstrap in time as in the above proof.

Theorem 3.4. Suppose Ih satisfies (2.20), (2.21a), and (2.21b). Then system (2.14)
with initial data v0 ∈ V possesses a unique strong solution.

Proof. Suppose v1 and v2 are two strong solutions to (2.3) with the same initial con-
dition. Let w1 = u− v1, w2 = u− v2, and V := v1 − v2 = w2 −w1. Then V solves
the system

dV

dt
+ νAV +B(V,v1) +B(v2,V) = µPσ (N (Ih(w1))−N (Ih(w2)))

− βIh(V)

∇ ·V = 0

V(x, 0) = 0.

We prove that N is a monotone operator on L2(Ω): given u1,u2 ∈ L2(Ω), with u1 6= u2

and non-zero (the proof is similar if for instance u2 = 0),

(‖u1‖−γH u1 − ‖u2‖−γH u2,u1 − u2)

= ‖u1‖2−γH + ‖u2‖2−γH − (‖u1‖−γH + ‖u2‖−γH )(u1,u2)

≥ ‖u1‖2−γH + ‖u2‖2−γH − (‖u1‖−γH + ‖u2‖−γH )‖u1‖H‖u2‖H
= ‖u1‖2−γH − ‖u1‖1−γH ‖u2‖H + ‖u2‖2−γH − ‖u2‖1−γH ‖u1‖H
= (‖u1‖1−γH − ‖u2‖1−γH )(‖u1‖H − ‖u2‖H)

≥ 0.

Since Ih is linear and satisfies (2.21b), we take the inner-product with V

1

2

d

dt
‖V‖2H + ν‖V‖2V

(3.17)

= −(B(V,v1),V) + µ(Pσ(N (Ih(w1))−N (Ih(w2))),V)− β(Ih(V),V)

= −(B(V,v1),V)− µ

(
Ih(w1)

‖Ih(w1)‖L2(Ω)
− Ih(w2)

‖Ih(w2)‖L2(Ω)
,w1 −w2

)
− β‖Ih(V)‖2

≤ −(B(V,v1),V)− µ

(
Ih

(
w1

‖Ih(w1)‖L2(Ω)
− w2

‖Ih(w2)‖L2(Ω)

)
,w1 −w2

)
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= −(B(V,v1),V)− µ

(
Ih

(
w1

‖Ih(w1)‖L2(Ω)
− w2

‖Ih(w2)‖L2(Ω)

)
, Ih(w1 −w2)

)
= −(B(V,v1),V)− µ (N (Ihw1)−N (Ihw2), Ih(w1)− Ih(w2))

where monotonicity now implies we can drop the middle term to obtain

≤ −(B(V,v1),V)

≤ c‖v1‖V ‖V‖H‖V‖V

≤ c2

2ν
‖v1‖2V ‖V‖2H +

ν

2
‖V‖2V .

Hence,

d

dt
‖V‖2H + ν‖V‖2V ≤

c2

ν
‖v1‖2V ‖V‖2H .

Integrating in time, we obtain

‖V(t)‖2H ≤ ‖V(0)‖2He
c2

ν

∫ t
0 ‖v1‖2V ds = 0.

Thus, v1 = v2, and strong solutions to (2.3) are unique. �

Remark 3.5. Notice that if β = 0, the proof for existence/uniqueness holds for the full
range of values of ‖Ih(u− v)‖H .

4. Convergence

In this section, we prove that solutions to (2.14) converge to the solution of (2.10) at
least exponentially. Given a prescribed error ε > 0, v a strong solution to (2.14) and
u a strong solution to (2.10), we prove that if ‖u − v‖ is not less than epsilon before
the exponential convergence of the solutions begins, then there is a small interval
in time in which ‖v − u‖ converges in finite time at least at a double-exponential
rate and in finite time in both the H and V norms up to the chosen small error ε.
To demonstrate the double-exponential convergence, we use the simple fact that for
y ∈ (0, 1], 1− y−γ ≤ log(yγ).

For the convergence in H, we make the assumption that Ih satisfies (2.20), (2.21c),
and (2.21d). For instance, interpolants given by projection onto low Fourier modes and
local averaging over finite volume elements satisfy these conditions. The proof for the
convergence in the V norm holds for the case for interpolants that satisfy (2.20) with the
additional assumption of (2.21e), which holds, e.g., in the case where Ih is a projection
onto low Fourier modes. Hence, the convergence theorems below will consider the
(2.14) initialized with data based on evolving (2.12) past a specific, sufficient large
time (depending only on known system parameters and observable data).

We now introduce a less restrictive assumption than (2.21b) namely, (2.21c), which
will be employed to show the convergence of all strong solutions of (2.14) to the cor-
responding unique reference solution of (2.10). Specifically, since we no longer assume
that (2.21b) holds, we do not necessarily have a unique strong solution to (2.14), but
we have global existence by Theorem 3.2. Therefore we will show in Theorem 4.1 be-
low that all the strong solutions to (2.14) under assumption (2.21c), regardless of their
uniqueness, converge to the unique strong reference solution of (2.10).

Theorem 4.1. Fix 0 < γ < 1. Let Ih be an interpolant satisfying (2.20), (2.21c), and
(2.21d). Let v ∈ C([0, T ];V )∩L2(0, T ;D(A)) be a strong solution to (2.14) with initial
data v0 ∈ V and time-independent forcing f ∈ H and u ∈ C([0, T ];V )∩L2(0, T ;D(A))
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the strong solution to (2.10) with initial data u0 ∈ V and the same forcing f . Fix
0 < ε� min{1, ‖u(0)− v(0)‖H}. Let µ, β be chosen so that

µ > max

{
5c2λ1G

2ν, αγc2λ1G
2ν,

αγ

γ

}
, β > c2λ1G

2ν(4.1)

where c is the specified constant in (2.6). Let ε > 0 be given so that

• µc0h
2 < ν/2,

• βc0h
2 < ν, and

• h ≤ aαγ(ε/2)γ/2(ν)1−γ/2

µ
√
c0

,

where2

a :=

((
2− γ

2

)(2−γ)/γ

−
(

2− γ
2

)2/γ
)γ/2

λ
(1−γ)/2
1 2γ/2−1

= (2− γ)1− γ
2 γγ/2λ

(1−γ)/2
1 2

γ
2
−2.

Then for all t ≥ t̃ (where t̃ is as prescribed in Theorem 2.3), ‖v − u‖2H → 0 at least
exponentially as in [4]. If ‖v(t̃)− u(t̃)‖H > ε, then there is a time interval [t0, t

∗] such
that ‖v − u‖2H → ε at a double-exponential rate. In particular,

‖v(t)− u(t)‖2H ≤ A exp
(
−b exp

(
µα−γγ(t− t0)

))
,

for all t < t∗, where A := exp
(
− 1
µα−γγ

)
and b := 1

µα−γγ (−(µα−γγ−1) log ‖w(t0)‖2H) >

0.

Proof. Assume the hypotheses and let w := v − u. We take the difference of (2.10)
and (2.14), yielding the system

wt +B(w,u) +B(v,w) + νAw = −µPσN (w)− βPσIh(w)(4.2a)

w(x, 0) = v0 − u0.(4.2b)

We take the action of (4.2a) with w and use the Lions-Magenes Lemma to obtain

1

2

d

dt
‖w‖2H + 〈B(w,u),w〉+ ν‖w‖2V = −µ(N (w),w)− β(Ih(w),w)(4.3)

Suppose without loss of generality that ‖w(0)‖H > 1. Since (Ihw,w) ≥ 0, the right-
hand side of (4.3) is non-positive, and thus

1

2

d

dt
‖w‖2H + 〈B(w,u),w〉+ ν‖w‖2V ≤ −β(Ih(w),w).(4.4)

Following the analysis of [18], we obtain the energy estimate

d

dt
‖w‖2H +

(
β − c2

ν
‖u‖2V

)
‖w‖2H ≤ 0.

Since we have chosen β > c2λ1G
2ν, we can continue to follow the analysis of [18] to

obtain exponential convergence for t ≥ t̃, t̃ being t0 given in Theorem 2.3.
If ‖w(t̃)‖2H < ε, then we are done. Otherwise, due to the exponential convergence

for t ≥ t̃ and the fact that w ∈ C([0, T ];V ), there is an interval [t0, t
∗] over which

ε < ‖w(t)‖2H < min

{
e
−α

γ

γµ ,

(
µα−γ

µα−γ + 1

)1/γ
}

2It is straight-forward to show that γ ∈ (0, 1) implies a > 0. A slightly more involved calculation

shows that a ≤ 1
2
λ
(1−γ)/2
1 .
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for t ∈ [t0, t
∗]. Thus, denoting η := α−γ and utilizing ‖Ihw‖H ≤ α‖w‖H , (2.6),

the Cauchy-Schwarz inequality, Young’s inequality, and Poincaré’s inequality, for a.e.
t ∈ [t0, t

∗],

1

2

d

dt
‖w‖2H + ν‖w‖2V

≤ −〈B(w,u),w〉 − µη(‖w‖−γH Ih(w),w)− β(Ihw,w)

≤ −〈B(w,u),w〉 − µη(‖w‖−γH Ih(w),w)

≤ −〈B(w,u),w〉+ µη[−‖w‖2−γH + ‖w‖−γH (w − Ihw,w)]

≤ c‖w‖H‖w‖V ‖u‖V − µη‖w‖2−γH + µη
√
c0h‖w‖V ‖w‖1−γH

≤ c2

2ν
‖u‖2V ‖w‖2H +

ν

2
‖w‖2V − µη‖w‖

2−γ
H +

µη
√
c0h

λ
(1−γ)/2
1

‖w‖2−γV .

By Theorem 2.3, ‖u(t)‖2V ≤ 2λ1G
2(ν)2 for all t ∈ [t0, T ], so condition (4.1) implies that

µ > c2

2ν ‖u‖
2
V for all t ∈ [t0, T ], and hence

1

2

d

dt
‖w‖2H +

ν

2
‖w‖2V −

µη
√
c0h

λ
(1−γ)/2
1

‖w‖2−γV ≤ c2

2ν
‖u‖2V ‖w‖2H − µη‖w‖

2−γ
H

≤ µη(‖w‖2H − ‖w‖
2−γ
H ).

We can write expression involving the ‖w‖V terms on the left-hand side in the form
of f(x) = ax2 − b(h)x2−γ , where x is taken to be ‖w‖V . By Lemma 2.7, the term b(h)
determines the minimum value of f(x) and it can be shown via the proof of Lemma 2.7

that h is small enough so that the condition ν
2‖w‖

2
V −

µη
√
c0h

λ
(1−γ)/2
1

‖w‖2−γV ≥ −ε/2 holds.

Note that h is bounded above by an expression involving the constant a.
As a consequence of our smallness condition on h,

1

2

d

dt
‖w‖2H − ε/2 ≤ µη(‖w‖2H − ‖w‖

2−γ
H )

or simply

d

dt
‖w‖2H ≤ 2µη(‖w‖2H − ‖w‖

2−γ
H ) + ε.(4.5)

Furthermore, we note that the first term on the right-hand side is negative, so
applying the fact that for y ∈ (0, 1] we have 1− y−γ ≤ log(yγ),

d

dt
‖w‖2H ≤ 2µη(1− ‖w‖−γH )‖w‖2H + ε

≤ 2µη(log ‖w‖γH)‖w‖2H + ε

= γµη(log ‖w‖2H)‖w‖2H + ε.(4.6)

Thus, we have two inequalities (4.5), a Bernoulli type differential inequality, and
(4.6), each of which provides different information. We analyze (4.5) first to directly
obtain convergence to ε in finite time.

By our initial assumptions, we note specifically that ‖w(t)‖2H > ε for all t ∈ [t0, t
∗],

and therefore for a.e. t ∈ [t0, t
∗],

d

dt
‖w‖2H ≤ 2(µη + 1)‖w‖2H − 2µη‖w‖2−γH .
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With z = ‖w‖γH ,

dz

dt
≤ γ(µη + 1)

(
z − µη

µη + 1

)
,

which can be rewritten as

d

dt
log

(
µη

µη + 1
− z
)
≥ γ(µη + 1)

and integrating from t0 to t∗,

z(t∗) ≤ µη

µη + 1
−
(

µη

µη + 1
− z(t0)

)
eγ(µη+1)(t∗−t0),

or in other words,

‖w(t∗)‖γH ≤
µη

µη + 1
−
(

µη

µη + 1
− ‖w(t0)‖γH

)
eγ(µη+1)(t∗−t0).

The right-hand side of this inequality approaches −∞ as t∗ →∞. Note that t∗ is fixed,
but since we have demonstrated that on this time interval ‖w(t)‖H decays in time, we
can extend t∗ until ‖w‖2H = ε.

We note that the decay rate itself is better characterized by utilizing the inequality
(4.6). Again, since ‖w(t)‖2 > ε for all t ∈ [t0, t

∗], then for a.e. t ∈ [t0, t
∗],

d

dt
‖w‖2H ≤ (γµη(log ‖w‖2H) + 1)‖w‖2H .

Substituting z = − log ‖w‖2H , we obtain

dz

dt
≥ γµηz − 1,

which is equivalent to stating that

d

dt
(log (µηγz − 1)) ≥ µηγ.

Integrating over the interval [t0, t
∗], we have that

z(t∗) ≥ 1

µηγ

(
1 + elog (µηγz(t0)−1)+µηγ(t∗−t0)

)
,

which can be rewritten as

log ‖w(t∗)‖2H ≤ −
1

µηγ

(
1 + elog (−(µηγ−1) log ‖w(t0)‖2H)+µηγ(t∗−t0)

)
.

This implies

‖w(t∗)‖2H ≤ A exp (−b exp (µηγ(t∗ − t0))) ,

where A := exp
(
− 1
µηγ

)
and b := 1

µηγ (−(µηγ − 1) log ‖w(t0)‖2H). Since this inequality

indicates that ‖w(t)‖2H decays monotonically at least double-exponentially, we note
that we can extend t∗ until ‖w(t∗)‖2H = ε.

Now, we note that convergence to 0 still holds, since, only using the assumptions on
µ and h,

1

2

d

dt
‖w‖2H + 〈B(w,u),w〉+ ν‖w‖2V = −µ(PσN (Ihw),w)

= −µ(|Ihw|−γIhw,w)− µ(Ihw,w)

≤ −µ(Ihw,w),

and therefore by Theorem 2.5, by our choice of µ and h, convergence to 0 still holds. �
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Remark 4.2. Note that in Theorem 4.1, convergence in finite time double-exponentially
holds by simply analyzing (4.6). If it was possible for the proof to be improved to shrink
ε to 0, then the inequality (4.5) demonstrates that we would still obtain convergence
in the H norm in finite time. The main roadblock keeping us from sending ε to 0 is
that, unlike in the linear-nudging case, where we can employ the inequality µc0h

2 < ν,
in the nonlinear-nudging case, the analogous inequality is µc0h

2‖w‖−γ < ν. Hence, as
‖w‖H → 0, eventually this bound will be violated.

Corollary 4.3. Assume the hypotheses of Theorem 4.1, except with assumption (2.21c)
replaced by assumption (2.21b). Then the unique strong solution of (2.14) satisfies the
same conclusions of Theorem 4.1.

Proof. Observe that assumption (2.21b) implies (2.21c). Therefore, by Theorem 3.4
under the more restrictive assumption (2.21b) (instead of (2.21c)), (2.14) has a global
unique strong solution. By Theorem 4.1 this unique strong solution converges to the
unique reference strong solution as claimed. �

In the following theorem, we provide a proof of the double-exponential and finite time
convergence of v to u in the V norm. In this setting, we require a slightly different
restriction on the interpolant, namely (2.21e).

Theorem 4.4. Fix 0 < γ < 1. Let Ih satisfy (2.20) and (2.21e). Let v ∈ C([0, T ];V )∩
L2(0, T ;D(A)) be a strong solution to (2.14) with initial data v0 ∈ V and forcing f ∈ H
and u ∈ C([0, T ];V )∩L2(0, T ;D(A)) the strong solution to the (2.10) with initial data
u0 ∈ V and the same forcing f . Fix 0 < ε� min{1, ‖u(0)− v0‖V }. Let µ, β be chosen
so that

µ > max

{
(
√
c0 + λ

−1/2
1 )γcλ2

1(ν)2(1 +G)4,
1

γλγ/2
, 3λ1νJG

}
,(4.7)

β > 3λ1νJG(4.8)

where c is the constant given by the inequality (2.7), and

J := 2c log
(

2c3/2
)

+ 4c log(1 +G).

Choose h such that

• h < 1 (where 1 has units of length, i.e., it is the linear size of the domain)
• µc0h

2 < ν and

• h ≤ a(ε/2)γ/2(ν)1−γ/2

µ
√
c0

,

where a :=

((
2−γ

2

)(2−γ)/γ
−
(

2−γ
2

)2/γ
)γ/2

λ
(1−2γ)/2
1 2γ/2−1. Then for all t > t̃ (where

t̃ is prescribed in Theorem 2.3), ‖v − u‖2V → 0 at least exponentially as in [4]. If
‖v(t̃) − u(t̃)‖ > ε, then there is a time interval [t0, t

∗] such that ‖v − u‖2V → ε at a
double-exponential rate. In particular,

‖v(t)− u(t)‖2V ≤ Ke−be
µγλγ/2(t−t0)

,

where K := e
− 1

µγλγ/2 and b := 1
µγλγ/2

(−(µγλγ/2 − 1) log ‖v(t0)− u(t0)‖2V ).

Remark 4.5. Note that in the case where Ih = Pm, the projection onto the Fourier
modes of index m < 1/h, it is clear that both (2.21e) and (2.21d) hold (with α = 1),
so the hypotheses of the theorem hold in this example.
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Proof. Let w := v−u. We take the difference of (2.10) with (2.14), yielding the system

wt +B(w,u) +B(v,w) + νAw = −µPσN (Ih(w))− βPσIh(w)(4.9)

w(x, 0) = v0 − u0.

Taking the H inner-product of (4.9) with Aw and applying the Lions-Magenes Lemma,
we obtain

1

2

d

dt
‖w‖2V + (B(u,w), Aw) + (B(w,u), Aw) + (B(w,w), Aw) + ν‖Aw‖2H

= −µ(N (w), Aw)− β(Ihw, Aw),

which can be rewritten (using (2.9)) as

1

2

d

dt
‖w‖2V − (B(w,w), Au) + ν‖Aw‖2H = −µ(N (w), Aw)− β(Ihw, Aw)

Suppose without loss of generality ‖w(0)‖V > 1. Via assumption (2.21e),

1

2

d

dt
‖w‖2V − (B(w,w), Au) + ν‖Aw‖2H ≤ −β(Ihw, Aw).

Following the analysis of [4], we obtain the estimate

d

dt
‖w‖2V +

1

2

[
β − J2

β
‖Au‖2H

]
‖w‖2V ≤ 0.(4.10)

Since β > 3λ1νJG, we can continue to follow the analysis to obtain exponential conver-
gence for t ≥ t̃, where t̃ is t0 from Theorem 2.3. If ‖w(t̃)‖2V < ε, then we are done. Oth-
erwise, due to the exponential convergence for t ≥ t̃ and the fact that w ∈ C([0, T ];V ),

there is an interval [t0, t
∗] over which ε < ‖w(t)‖2H < min

{
e
− 1

µγλ
γ/2
1 ,

(
µλ

γ/2
1

µλ
γ/2
1 +1

)1/γ
}

for t ∈ [t0, t
∗]. Using ‖Au‖2H ≤ cλ2

1(ν)2(1 + G)4 and (Ihw, Aw) ≥ 0, we have that for
a.e. t ∈ [t0, t

∗],

1

2

d

dt
‖w‖2V + ν‖Aw‖2H

≤ −(B(w,w), Au)− µc(h)‖w‖−γV (Ihw, Aw)− β(Ihw, Aw)

≤ −(B(w,w), Au)− µc(h)‖w‖−γV (Ihw, Aw)

= −(B(w,w), Au) + µc(h)[(1− ‖w‖−γV )‖w‖2V − ‖w‖2V
+ ‖w‖−γV (w − Ihw, Aw)]

≤ c‖w‖1/2H ‖Aw‖1/2H ‖w‖V ‖Au‖H
+ µc(h)(1− ‖w‖−γV )‖w‖2V
+ µc(h)

√
c0h‖w‖−γV ‖w‖V ‖Aw‖H − µc(h)‖w‖2V

≤ cλ1‖Aw‖H‖w‖V ‖Au‖H
+ µc(h)(1− ‖w‖−γV )‖w‖2V
+ µc(h)

√
c0h‖w‖1−γV ‖Aw‖H − µc(h)‖w‖2V

≤ cλ2
1

2ν
‖w‖2V ‖Au‖2H +

ν

2
‖Aw‖2H

+ µc(h)(1− ‖w‖−γV )‖w‖2V + µc(h)
√
c0h‖w‖1−γV ‖Aw‖H

− µc(h)‖w‖2V ,
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where c(h) = (
√
c0h+λ

−1/2
1 )−γ . Since h < 1, it follows that c(h) ≥ (

√
c0 +λ

−1/2
1 )−γ :=

η. Note also that this constant can be bounded above by a constant independent of h,

specifically, c(h) ≤ (λ−1/2)−γ = λ
γ/2
1 . Hence

1

2

d

dt
‖w‖2V +

ν

2
‖Aw‖2H +

[
µη − cλ2

1

2ν
‖Au‖2H

]
‖w‖2V

≤ µη(1− ‖w‖−γV )‖w‖2V +
µ
√
c0h

λ
(1−2γ)/2
1

‖Aw‖2−γH .

Since ‖Au(t)‖2H ≤ cλ2
1(ν)2(1 + G)4 for all t ∈ [t0, T ] due to Theorem 2.3, then

the condition (4.7) implies that µη − cλ21
2ν ‖Au‖2H ≥ 0. Secondly, the same reason-

ing in Theorem 4.1 utilizing Lemma 2.7 shows that h is sufficiently small so that(
ν
2‖Aw‖2H −

µ
√
c0h

λ
(1−2γ)/2
1

‖Aw‖2−γH

)
≥ −ε/2 for our given tolerance ε > 0. Hence, we

obtain the inequality

d

dt
‖w‖2V ≤ 2µλ

γ/2
1 (1− ‖w‖−γV )‖w‖2V + ε.(4.11)

Furthermore, we note that the first term on the right-hand side is negative, and
applying the fact that for y ∈ (0, 1] we have 1− y−γ ≤ log(yγ), we note that

d

dt
‖w‖2V ≤ 2µλγ/2(log ‖w‖γV )‖w‖2V + ε

= γµλγ/2(log ‖w‖2V )‖w‖2V + ε.(4.12)

Thus, we have two inequalities analogous to those in Theorem 4.1. We once again
analyze (4.11) first to directly obtain convergence to ε in finite time. By our initial
assumptions, we note specifically that ‖w(t)‖2V > ε for all t ∈ [t0, t

∗], and therefore for
a.e. t ∈ [t0, t

∗],

d

dt
‖w‖2V ≤ 2(µλ

γ/2
1 + 1)‖w‖2V − 2µλ

γ/2
1 ‖w‖

2−γ
V .

Using the same methods as in Theorem 4.1, we obtain

‖w(t∗)‖γV ≤
µλ

γ/2
1

µλ
γ/2
1 + 1

−

(
µλ

γ/2
1

µλ
γ/2
1 + 1

− ‖w(t0)‖γV

)
eγ(µλ

γ/2
1 +1)(t∗−t0),

and again note the right-hand side of this inequality approaches −∞ as t∗ →∞. Note
that t∗ was chosen fixed, but since we have demonstrated that on this time interval
that ‖w(t)‖V decays in time, we can extend t∗ until ‖w‖2V = ε.

As in Theorem 4.1 we note that the decay rate itself is better characterized by
utilizing the inequality (4.12). Since ‖w‖2V > ε for all t ∈ [t0, t

∗], then for a.e. t ∈ [t0, t
∗],

d

dt
‖w‖2V ≤ (γµλγ/2(log ‖w‖2V ) + 1)‖w‖2V .

Following similar steps to those in the proof of Theorem 4.1, we arrive at

log ‖w(t∗)‖2V ≤ −
1

µηγλγ/2

(
1 + elog (−(µγλγ/2−1) log ‖w(t0)‖2V )+µγλγ/2(t∗−t0)

)
‖w(t∗)‖2V ≤ Ke−be

µγλγ/2(t∗−t0)
,
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where K := e
− 1

µγλγ/2 and b := 1
µγλγ/2

(−(µγλγ/2−1) log ‖w(t0)‖2V ). Since this inequality

indicates that ‖w‖2V decays monotonically at least double-exponentially, we again note
that we can extend t∗ until ‖w(t∗)‖2V = ε.

In addition, note that with these assumptions on the interpolant we can directly
obtain double-exponential and finite-in-time L2 convergence of ‖w‖2H to ε/λ1 due to
Poincaré’s inequality.

We again note that

1

2

d

dt
‖w‖2V − (B(w,w), Au) + ν‖Aw‖2H

= −µ (N (Ih(w)), Aw)

= −µ
(
|Ihw|−γIh(w), Aw

)
− µ (Ih(w), Aw) ,

≤ −µ (Ih(w), Aw) ,

using the assumption that (Ih(w), Aw) ≥ 0. By our choice of µ and h, we have by
Theorem 2.6 that exponential convergence still holds. �

Remark 4.6. Instead of considering the nonlinear-nudging CDA algorithm implemented
for all time, one could alternatively consider the case where fewer data points are
observed initially and utilize the linear-nudging CDA algorithm up until a computable
time T (see Appendix 7.3) where ‖w‖ < 1 for either the H or V norm (where the exact
upper bound is what is given in the hypotheses of Theorems 4.1 and 4.4 above). This
nonlinear term would then be given by setting β = 0 and N redefined as

N (φ) :=


0, if ‖φ‖L2(Ω) = 0,

φ‖φ‖−γ
L2(Ω)

, if 0 < ‖φ‖L2(Ω) < 1,

φ, if 1 ≤ ‖φ‖L2(Ω).

Then, one could “turn on” the nonlinearity by initializing the nonlinear-nudging CDA
system with data from the linear-nudging CDA system. In this setting, the h for the
linear-nudging data assimilation is fixed, and then, depending on the choice of ε, one
can determine whether to maintain or decrease h (or refine the grid on which one is
interpolating) in order to always guarantee double-exponential convergence. In other
words, the error of the convergence prescribed requires a tuning of the accuracy of the
interpolant: the smaller the error, the smaller we required h to be, i.e. the more accu-
rate the interpolant needed to be. For example, in the case of Fourier truncation, one
would need a greater number of observed wave modes, and in the case of volume inter-
polation, one would have to have knowledge of the average of the solution over smaller
volumes covering the domain. This implementation of the linear-nudging CDA algo-
rithm and subsequently the nonlinear-nudging CDA algorithm could be implemented
computationally as well, where the time to switch between the linear-nudging CDA
algorithm and the nonlinear-nudging CDA algorithm (with or without the linear piece)
is computed in Appendix 7.3 below.

Remark 4.7. One could also work through similar existence and convergence arguments
for type 2 interpolants, where Ih instead satisfies the bound

‖φ− Ih(φ)‖2L2(Ω) ≤
1
4c

2
0h

4‖φ‖2H2(Ω).(4.13)

However, it is not very illuminating nor does it necessarily expand our possible choice of
interpolants, as the methods of proof for the super-exponential convergence rely most
heavily on the other assumptions being made on Ih, notably, in Theorem 4.1 the proof
of the super-exponential convergence relies exclusively on the bounds (2.21c), (2.21d),
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while in Theorem 4.4 the proof for the super-exponential convergence relies exclusively
on the condition (2.21e) and (2.20). In particular, one needs that the nonlinear weight
can be bounded in the H and V norms, respectively, which is not provided by the
bound (2.22).

5. Computational Results

In this section, we present some simulations of the nonlinear-nudging data assimila-
tion algorithm discussed above, in the context of the 2D incompressible Navier-Stokes
equations with periodic boundary conditions, and forcing over a wide range of scales.
In particular, we demonstrate that the convergence rate is super-exponential in time,
until the error becomes quite small (‖ψ−ψDA‖L2 ≈ 5×10−12 in our trials, see notation
below), at which point the convergence becomes merely exponential, as discussed in
Remark 4.2 and Appendix 7.1. The results are shown in (5.2a).

All simulations were carried out using pseudo-spectral methods at the stream-function
level in our own Matlab code, and run using Matlab version 2020b. The mean-free
stream functions ψ and ψDA were determined by ∇⊥ψ = u and ∇⊥ψDA = v. Fourier
transforms were computed using Matlab’s fftn tool. The linear viscosity term was
handled implicitly using an integrating factor method Euler algorithm, as described
in, e.g., [60]. For the interpolation operator Ih, we used a projection onto low Fourier
modes. We used a uniform time step of ∆t = 3.1250×10−4, which is sufficient to satisfy
the advective CFL constraint. The nonlinear term was treated explicitly (respecting
the 2/3’s dealiasing rule), using the Basdevant formulation (see, e.g., [7, 34]). The peri-
odic domain was [−π, π)2 with a uniform mesh of 10242 grid points. Initial data u0 for
the “true” simulation generated by starting with zero initial data, and then running
the simulation until the energy, and enstrophy, appeared to be in an approximately
statistically steady state (judged visually), which happened at t ≈ 240. The energy
spectrum of the initial data ψ0, and the corresponding vorticity (4ψ0) are pictured in
Figure 5.1.

As for the forcing, in light of Remark 4.2, we were interested in a time-independent
force which injects energy at high wave modes in order to better see the effect of the
nonlinear-nudging data assimilation term (see 7.1 for further rationale). Therefore, we
determined a forcing by choosing normally distributed random values for the real and
complex part of each Fourier coefficient fk of the force with wavenumber between 16
and 64; namely, the set {k = (k1, k2)| 162 ≤ k2

1 +k2
2 ≤ 642} (in fact, only half of the

wavemodes were assigned and the rest were computed using the reality condition f−k =
fk). Matlab’s random number generator was initialized using rng(0) for consistency
and reproducibility. The curl of the forcing, and its energy spectrum, are pictured in
Figure 5.1.

Our parameters were chosen as follows: The Grashof number was G = 250, 000,
the viscosity was ν = 0.008, and h was chosen so that wavemodes of wavenum-
bers less than or equal to 32 were observed; that is, the wavemodes at wavenumbers{
k = (k1, k2)| 0 < k2

1 + k2
2 ≤ 322

}
were observed. For the nonlinear-nudging data as-

similation parameters, we choose γ = 0.1, and µ = β = 2. These parameter ranges were
not finely tuned to exhibit any special behavior, other than avoiding instability (seen,
e.g., when µ is too large). In our own tests (data not reported here), we observed that
modest changes in these parameter values did not yield significant qualitative changes
in the results, indicating qualitative robustness of the results.
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(a) Curl of initial velocity (b) Spectrum of initial ψ

(c) Curl of the forcing (d) Spectrum of curl of forcing

Figure 5.1. Initial data and forcing.
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(a) (log-linear plot) Blue curve: L2 error of the solution. Red line: Exponential fit up to time
t ≈ 0.15. Orange line: Exponential fit for 3.1 . t . 3.8.

(b) (linear-linear plot) Error minus (red line)
exponential fit.

(c) (linear-linear plot) Error minus (orange
line) exponential fit.

Figure 5.2. (A): L2 error between the assimilated and true solutions.
(B) and (C): deviations from exponential fits.
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These graphics in particular corroborate our analysis in terms of the failing of super-
exponential convergence due the ε-barrier being reached, as seen in Figure 5.2. In
particular, in Figure 5.2a, convergence appears exponential at early times, then be-
comes super-exponential, and finally returns to merely exponential at later times. The
deviations from an exponential fit was observed to be fairly small: 1.7× 10−4 at early
times (see Figure 5.2b) and 2.2× 10−14 at later times. In between these times, super-
exponential convergence is observed (see Figure 5.2a).

6. Conclusion

In this paper, we proved the existence of solutions to the nonlinear-nudging data as-
similation system under the same assumptions on the interpolant as that of the linear-
nudging data assimilation system. Uniqueness of solutions were proven to hold under
more stringent assumptions on the interpolant operator of the observed measurements.
With different assumptions on the interpolant, convergence of any corresponding solu-
tion to the nonlinear-nudging data assimilation to the true solution of the 2D incom-
pressible Navier-Stokes equations was shown to be obtained up to a prescribed error
in finite time at an at least double-exponential rate. In particular, any solution of
the nonlinear-nudging system, even in regimes where uniqueness might not hold, will
converge to the true solution. These results provide a theoretical foundation for the
computational results seen in simulations in [55, 61], and the present work.

7. Appendix

7.1. Heuristic argument for the ε-barrier. We analyze (1.3a) in the Navier-Stokes
case (2.10), i.e., F(v) = −B(v,v) − νAv + f , with Ih = Pm, i.e., projection onto the
low Fourier modes of index m < 1/h. This yields the equation

vt + νAv = B(v,v)− µ‖Pm(u− v)‖−γ
L2(Ω)

Pm(v − u)− βPm(v − u)(7.1)

Set w = v − u. Subtracting (7.1) from the reference system, one obtains

wt + νAw = B(v,v)−B(u,u)− µ‖Pmw‖−γ
L2(Ω)

Pmw − βPmw.(7.2)

Taking a (formal) inner-product with w and simplifying yields

1

2

d

dt
‖w‖2L2(Ω) + ν‖A1/2w‖2L2(Ω)(7.3)

= 〈B(v,v)−B(u,u),w〉 − µ‖Pmw‖−γ‖Pmw‖2L2(Ω) − β‖Pmw‖2L2(Ω).

Denoting Qm := I − Pm and noting that ‖w‖2L2 = ‖Pmw‖2L2 + ‖Qmw‖2L2 ,

1

2

d

dt
‖w‖2L2(Ω) + ν‖A1/2w‖2L2(Ω) + β‖w‖2L2(Ω) + µ‖Pmw‖−γ

L2(Ω)
‖w‖2L2(Ω)

= 〈B(v,v)−B(u,u),w〉+ µ‖Pmw‖−γ
L2(Ω)

‖Qmw‖2L2(Ω) + β‖Qmw‖2L2(Ω)

Rearranging, we obtain

1

2

d

dt
‖w‖2L2(Ω) +

ν

2
‖PmA1/2w‖2L2(Ω) +

ν

2
‖A1/2w‖2L2(Ω)(7.4)

+ β‖w‖2L2(Ω) + µ‖Pmw‖−γ
L2(Ω)

‖w‖2L2(Ω)

= 〈B(v,v)−B(u,u),w〉+ µ‖Pmw‖−γ
L2(Ω)

‖Qmw‖2L2(Ω)

+ β‖Qmw‖2L2(Ω) −
ν

2
‖QmA1/2w‖2L2(Ω)
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We leave part of the dissipation on the left-hand side to absorb terms bounding
B(v,v) − B(u,u). The terms ‖Qmw‖2L2(Ω) and ‖Qmw‖2−γ

L2(Ω)
are the terms hinder-

ing the exponential convergence of v to the reference solution u, and hence we want
these last three terms to be negative overall. We expand the last three terms on the
right-hand side to obtain

∞∑
|k|=m+1

(µ‖Pmw‖−γ
L2 + β − ν

2
|k|2)|ŵk|2 ≤ 0.(7.5)

No matter how large one takes m (i.e., how small h is taken, since we generally take

m ∼ L/h2, where L is a characteristic length scale), as ‖w‖L2(Ω) → 0, ‖Pmw‖−γ
L2 →∞,

indicating there is a time at which the error becomes small enough that this term will
hurt the rate of convergence rather than help. Moreover, we see from (7.4) that the
larger β is chosen (e.g., in order to enhance the convergence rate of the small scales), the
more strongly the small scales (as measured by ‖Qmw‖2L2(Ω)) are destabilized. This

appears to be the reason why the super-exponential convergence rate is eventually
destroyed, as seen both in our analysis and in our simulations. We refer to this as a
“spill-over” effect; namely, the phenomenon that increased control of the large scales
leads to increased destabilization of the small scales. In the case of the Navier-Stokes
equations, the spill-over of energy into the small scales is controlled by the presence of
viscosity; namely, for large enough ν, the error in the small scales is damped strongly
enough to counteract the spill-over effect.

Marvelously, in the Navier-Stokes case, the exponential convergence still holds in
spite of the spill-over effect. This can be seen by writing (7.3) as

1

2

d

dt
‖w‖2L2(Ω) + ν‖A1/2w‖2L2(Ω)

(7.6)

= 〈B(v,v)−B(u,u),w〉 − (β + µ)‖Pmw‖2L2(Ω) + µ(‖Pmw‖2L2(Ω) − ‖Pmw‖2−γ
L2(Ω)

);

the final term becomes negative as ‖w‖L2(Ω) → 0, and hence exponential convergence
is maintained with an improved rate than for the standard linear-nudging CDA algo-
rithm thanks to the added µ in the linear term. In other words, although the rate
of convergence is no longer super exponential, the nonlinear-nudging term does not
become so malicious as ‖w‖L2(Ω) → 0 that it counteracts the standard exponential
convergence and in fact it still improves the exponential rate of convergence. This fur-
ther elucidates our comments in Remark 4.6, i.e., an exponential rate of convergence
can be maintained by the nonlinear-nudging term alone.

7.2. Proof of Lemma 2.7.

Proof. Let δ := min

a/2, a 2−γ
2

(
ε

( 2−γ
2 )

2−γ
γ −( 2−γ

2 )
2
γ

) γ
2

. Note that f(x) has two criti-

cal points at x = 0 and x =
(

(2−γ)δ
2a

) 1
γ
. We further note that f(x0) is a global minimum

since f(0) = 0,

f(x0) = a

((
(2− γ)δ

2a

) 1
γ

)2

− δ

((
(2− γ)δ

2a

) 1
γ

)2−γ
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= a
− 2−γ

γ δ
2
γ

((
2− γ

2

) 2
γ

−
(

2− γ
2

) 2−γ
γ

)
≤ 0,

f ′(x) ≥ 0 for all x ≥ x0, and f ′(x) ≤ 0 for x ≤ x0. Indeed, f ′(x) ≥ 0 for all x ≥ x0

since

f ′(x) ≥ 2ax− (2− γ)δx1−γ
0

= 2ax− (2− γ)δ

(
(2− γ)δ

2a

) 1−γ
γ

= 2a

(
x−

(
(2− γ)δ

2a

) 1
γ

)
= 2a(x− x0)

≥ 0,

and f ′(x) ≤ 0 for all x ≤ x0 since

f ′(x) ≤ 2ax0 − (2− γ)δx1−γ

= 2a

(
(2− γ)δ

2a

) 1
γ

− (2− γ)δx1−γ

= (2− γ)δ(

(
(2− γ)δ

2a

) 1−γ
γ

− x1−γ)

= (2− γ)δ(x1−γ
0 − x1−γ)

≤ 0.

Hence, f(x) ≥ f(x0) for all x ∈ R≥0. Thus, denoting

b :=

((
2− γ

2

) 2−γ
γ

−
(

2− γ
2

) 2
γ

)
,

our choice of δ yields

f(x) ≥ f(x0) ≥ a−
2−γ
γ

(
a

2−γ
2

(ε
b

) γ
2

) 2
γ

(−b) = −ε.

�

7.3. Computation of explicit times at which the nonlinear-nudging term in
the algorithm improves the convergence rate. Note that one can compute a time
ta at which u is in the absorbing ball (see, e.g. [44, 75, 78]) so that Theorem 2.3 applies
and the exponential decay in [4] holds. The decay of the nonlinear-nudging algorithm
is controlled by the exponential decay of the linear-nudging algorithm in [4] (see the
beginning of the proofs of Theorems 4.1,4.4) can be written explicitly as (for reference,
see, e.g., [18])

‖u(t)− v(t)‖2H ≤ ‖u(ta)− v(ta)‖2He1+r/2e−
r
2T

(t−ta),

where 1
νλ1

< T <∞ and

r = lim inf
t→∞

∫ t+T

t
β − 2c2

ν
‖u(s)‖2ds

≥ Tβ − 2c2

ν

(
2(1 + λ1Tν)νG2

)
> 0,
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and c is the constant from the inequality (2.6).
By the assumptions of Theorem 4.1, we need that ‖u(t0) − v(t0)‖H < RH , where

RH = min

{
e
− 1

βγλ
γ/2
1 ,

(
βλ

γ/2
1

βλ
γ/2
1 +1

)1/γ
}

, so we need to choose ta such that

‖u(ta)− v(ta)‖2He1+r/2e−
r
2T

(t−ta) < R2
H .

Bounding ‖u(ta)‖2H using Theorem 2.3 and using the bounds on r, we instead find a
time ta such that

‖u(ta)− v(ta)‖2He1+r/2e−
r
2T

(t−ta)

≤ 2(2(ν)2G2 + ‖v(ta)‖2H)e1+βT e−β/2−
c2

νT
(2(1+λ1Tβ)νG2)(t−ta)

< R2
H .

Thus, we determine the nonlinear-nudging system can be initialized from any time
t0 such that

t0 > ta −
log
{

R2
He
−1−βT

2(2(ν)2G2+‖v(ta)‖2H)

}
β/2− c2

Tν (2(1 + λ1νT )νG2)
.

There is no need to observe ‖v(ta)‖H at the fixed time ta; instead, the bound from [4]

‖v(ta)‖2H ≤ e−νλ1ta‖v0‖2H +
M

βνλ1
(1− e−νλta) := RHSH ,

where M is a constant such that ‖f + βPσIh(w))‖2H < M , can be used to choose a
time t0 such that

t0 > ta −
log
{

R2
He
−1−βT

2(2(ν)2G2+RHSH)
)
}

β/2− c2

Tν (2(1 + λ1νT )νG2)
.

For the setting of Theorem 4.4, we have the bound

‖u(t)− v(t)‖2V ≤ ‖u(ta)− v(ta)‖2eΓ+1+r/2e−
r
2T

(t−ta),

where λ1ν ≤ T <∞,

r = lim inf
t→∞

∫ t+T

t

1

2

(
β − J2

β
‖Au‖2H

)
ds >

5

6
JG > 0,

and

Γ = lim inf
t→∞

∫ t+T

t
max

{
1

2

(
β − J2

β
‖Au‖2H

)
, 0

}
ds ≥ r > 0,

with J = 2c log(2c3/2) + 4c log(1 +G) and c is the constant dependent on the domain
determined from the Brezis-Gallouet inequality. By the assumptions of Theorem 4.4,

we need that ‖u(t0) − v(t0)‖V < RV , where RV = min

{
e
− 1

βγλ
γ/2
1 ,

(
βλ

γ/2
1

βλ
γ/2
1 +1

)1/γ
}

, so

we need to choose t0 such that

‖u(ta)− v(ta)‖2V eΓ+1+r/2e−
r
2T

(t−ta) < R2
V .

Again, bounding ‖u(ta)‖2V using Theorem 2.3 and using the bounds on Γ and r, we
instead find a time ta such that

‖u(ta)− v(ta)‖2V eΓ+1+r/2e−
r
2T

(t−ta)
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≤ 2(2λ1(ν)2G2 + ‖v(ta)‖2)e1+βT e−
5
6
GJ(t−ta) < R2

V

Then, the nonlinear-nudging system can be initialized from any time t0 such that

t0 > ta −
6

5GJ
log

{
R2
V e
−(1+βT )

2(2λ1(ν)2G2 + ‖v(ta)‖2V )

}
.

Again, there is no need to observe ‖v(ta)‖V at the fixed time ta, since the bound from
[4]

‖v(ta)‖2V ≤ RHSV

:= e
54c4

(ν)3

(
1
ν
‖v0‖2H+ T

νβ
M
)2(

1
ν
‖v0‖2V + M

βνλ1

)2 (
‖v0‖2V +

4T

ν
M

)
where M is the same constant such that ‖f+βPσIh(w))‖2H < M , can be used to choose
a time t0 such that

t0 > ta −
6

5GJ
log

{
R2
V e
−(1+βT )

2 (2λ1(ν)2G2 + RHSV )

}
.
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