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Abstract

We consider the three-dimensional incompressible Euler equations on a bounded
domain Ω with C3 boundary. We prove that if the velocity field u ∈ C0,α(Ω) with α > 0
(where we are omitting the time dependence), it follows that the pressure p ∈ C0,α(Ω).
In order to prove this result we use a local parametrisation of the boundary and a very
weak formulation of the boundary condition for the pressure, as was introduced in [C.
Bardos and E.S. Titi, Philos. Trans. Royal Soc. A, 380 (2022), 20210073]. Moreover,
we provide an example illustrating the necessity of this new very weak formulation of
the boundary condition for the pressure. This result is of importance for the proof of
the first half of the Onsager Conjecture, the sufficient conditions for energy conservation
of weak solutions to the three-dimensional incompressible Euler equations in bounded
domains.
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1 Introduction

Since the introduction of techniques from convex integration to fluid mechanics, especially
the incompressible Euler equations, it is known that there exist weak solutions of the Euler
equations [15, 17]. The existence of weak solutions of the general Cauchy problem was first
proven in [38]. Since then, the techniques of convex integration have been steadily improved
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to construct Hölder continuous solutions of the Euler equations in a sequence of papers
[4, 5, 13, 16, 27] (and see references therein). Reviews of these techniques can be found in
[6, 14].

Since it is possible to construct weak solutions of the Euler equations with compact
support by using convex integration, it is trivial to construct weak solutions on bounded
domains. However, such solutions have a trivial ‘interaction’ with the boundary, since they are
zero near the boundary. Because boundary effects play an important role in the understanding
of turbulence [3, 22], it is worthwhile to try to understand the interaction of weak solutions
with the boundary.

One essential element to that is the pressure. In this work, we consider the three-
dimensional Euler equations of an ideal incompressible fluid in a C3 bounded domain Ω ⊂ R3,
which are

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0, (1.1)

where u : Ω × (0, T ) → R3 is the velocity field and p : Ω × (0, T ) → R is the pressure. In
addition, we assume the following boundary condition

(u · n)|∂Ω= 0, (1.2)

where n is the outward normal vector to the boundary.
In standard treatments of mathematical fluid mechanics, such as [33], the pressure is

removed by using the Leray-Helmholtz decomposition. The pressure can then be recovered
via the equation

−∆p = (∇⊗∇) : (u⊗ u). (1.3)

The goal of this paper is to prove that in a C3 bounded domain Ω ⊂ R3 for velocity fields
with u ∈ C0,α(Ω) for α ∈ (0, 1), the pressure p ∈ C0,α(Ω) with the same exponent α.

This type of pressure regularity problem, to the knowledge of the authors, was first
considered in [10, 36]. It was proven in these papers that if u ∈ C0,α(Rn), then p ∈ C0,2α(Rn).
This result was then extended to Besov spaces in [9] (see also [8]).

If equation (1.3) is considered in the presence of boundaries, formally one can take the
normal component of the Euler equations in order to find

∂t(u · n) +
[
∇ · (u⊗ u)

]
· n+ ∂np = 0.

Following [3], for a C2 bounded domain the advective term can be written formally as follows
(where we are using the Einstein summation convention)[

∇ · (u⊗ u)
]
· n = ui∂iujnj = −

(
u⊗ u

)
: ∇n+ u · ∇(u · n).

We now calculate the second term in the above expression. To fix ideas, we do the calculation
and highlight the issue in two dimensions (but the three-dimensional case works the same
way), see also [3]. It should be stressed that these computations are done in the context of
smooth solutions. We will formally derive the boundary condition that will be rigorously
justified in this paper. In what follows τ will denote the tangent vector to the boundary in
the two-dimensional case, we compute that

u · ∇(u · n) = (u · τ)∂τ (u · n) + (u · n)∂n(u · n)

=
1

2
∂n(u · n)2 + ∂τ

(
(u · τ)(u · n)

)
− (u · n)∂τ (u · τ) = ∂n(u · n)2 + ∂τ

(
(u · τ)(u · n)

)
,
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where for the last equality we have used the incompressibility of the velocity field, i.e. that
∂τ (u · τ) = −∂n(u · n). Therefore we can write the normal component of the Euler equations
at the boundary as follows

∂np =
(
u⊗ u

)
: ∇n− ∂n(u · n)2 − ∂τ

(
(u · τ)(u · n)

)
− ∂t(u · n).

Since ∂t(u · n)|∂Ω= 0 and ∂τ
(
(u · τ)(u · n)

)
|∂Ω= 0, we conclude that the boundary condition

associated with equation (1.3) is

∂n
(
p+ (u · n)2

)
=

(
u⊗ u

)
: ∇n. (1.4)

In particular, one can easily show that if u ∈ C0,α(Ω) with α > 1
2
then ∂n(u ·n)2 = 0. In this

paper, however, we are also interested in the low regularity setting i.e. for α ∈ (0, 1
2
], so this

equality, as we will show later, does not generally hold. In fact, in section 8 we will construct
an example of a Hölder continuous incompressible velocity field u ∈ C0,α(Ω) satisfying the
boundary condition (u · n)|∂Ω= 0 for which ∂n(u · n)2|∂Ω /∈ D′(∂Ω).

We will study the problem given by equation (1.3) and Neumann boundary condition
(1.4). We will refer to equation (1.4) as the very weak boundary condition for the pressure,
in order to distinguish it from the usual weak boundary condition ∂np = (u ⊗ u) : ∇n. We
will prove that if u ∈ C0,α(Ω), then p ∈ C0,α(Ω) for any α > 0. Note that we will omit the
time dependence of the pressure and the velocity field throughout this paper, as it does not
play a role of significance here.

The reason we prove this regularity result in the setting of Hölder spaces is because these
spaces play an essential role in the theory of turbulence. As was first pointed out by Onsager
in [32], there is a relation between Hölder regularity of the velocity field of a fluid flow on the
one hand and the loss of energy via anomalous dissipation on the other hand. This relation
is referred to as Onsager’s conjecture.

Onsager’s conjecture was first proven on the torus in a series of works [7, 11, 20, 21].
Onsager’s conjecture was proven on bounded domains with C2 boundary in [1], after results
for the half plane in [34]. Then in [2] the first half of the conjecture was proven under only
an interior Hölder regularity assumption on the velocity field. For the proof in [1] the C0,α

regularity of the pressure was necessary. The purpose of this paper is to give a full proof of
this statement in the three-dimensional case.

In the two-dimensional setting, in [3] the pressure regularity condition was addressed.
In particular, it was shown that the velocity field and the pressure have the same Hölder
regularity for a bounded domain Ω in two dimensions. The very weak formulation of the
Neumann boundary condition for the pressure given in equation (1.4) was introduced in
[3]. This was an essential part of the proof, as it allows to construct a trace formula which
establishes that the normal derivative of p+(u ·n)2 is continuous in the H−2(∂Ω) norm near
the boundary. This is then applied in the elliptic estimates in order to establish the C0,α(Ω)
regularity of the pressure.

The goal of this paper is to extend the approach in [3] to three dimensions. In order to
go from two to three dimensions, several modifications of the proof are necessary. Instead of
a global parametrisation of the boundary, we need a local parametrisation of the boundary.

While this work was being completed, the paper [18] came to our attention. In that paper
the authors also prove a regularity result for the pressure, but with a different boundary
condition. In particular, the authors use the boundary condition ∂np = (u ⊗ u) : ∇n as
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opposed to the boundary condition (1.4). These two formulations of the boundary condition
are equivalent say if u · ∇(u · n)|∂Ω= 0.

As we stressed above, this is true for classical solutions as well as for the case when
u ∈ C0,α(Ω) with α > 1/2, but in the case when u ∈ C0,α(Ω) for 0 < α ≤ 1

2
we will show

in section 8 that u · ∇(u · n)|∂Ω in some cases is not even an element of D′(∂Ω). For this
reason, we prove the result with the weaker formulation of the boundary condition for the
pressure (1.4), which holds for all Hölder continuous velocity fields. Moreover, our proof is
more explicit because it relies on localisation arguments.

In [3] the proof relies on a global localisation which considers the velocity field near the
boundary and away from the boundary. In this contribution, we modify this localisation,
namely we introduce a partition of unity of the region near the boundary itself. The reason
for doing so is that in two dimensions, the boundary can be parametrised globally, but in
three dimensions this is not possible. That means that the near-boundary analysis has to be
done in a local coordinate system and then extended globally. We expect that our proof is
quite robust, i.e. it can be extended to higher dimensions without much effort and for other
hydrodynamical systems.

We will first give an imprecise version of the result that we will prove (the precise version
is stated in section 2).

Theorem 1.1. Let u ∈ C0,α(Ω) be a velocity field on a open set Ω ⊂ R3 with a C3 boundary
and let α ∈ (0, 1). Moreover we assume that u is divergence-free and that (u ·n)|∂Ω= 0 as the
boundary condition. Then by introducing a new weak formulation of the boundary condition
(1.4), it holds that

∥p∥C0,α(Ω ≤ C∥u⊗ u∥C0,α(Ω). (1.5)

Now we outline the proof of this result. In section 2 we introduce a parametrisation of
the boundary region (including the extension of the velocity field outside the domain Ω). In
particular we define the local coordinate system and state the differential operators in these
coordinates. The proof then proceeds in the following steps:

• We first mollify the velocity field, which is done in section 3. This is not as straight-
forward as in the torus or the whole space, as the mollified velocity uϵ has to satisfy
the boundary condition (1.2). One needs to split the velocity field into an interior and
boundary part. The parametrisation of the boundary region is then used to extend the
velocity field over the boundary.

• Then it is possible to use standard Schauder theory, as can be found in [23, 24, 26,
29, 30]. This will give us a candidate for a near the boundary truncated and mollified
pressure P ϵ, of which we are going to take the limit ϵ→ 0 at the end of the proof.

• We then prove that that the C0,α(Ω) norm of P ϵ is bounded by the C0,α(Ω) norm of
uϵ ⊗ uϵ uniformly in ϵ. In section 4 we derive the interior estimates, while in section
6 we obtain the boundary estimates. In order to deal with the boundary condition we
establish a trace lemma in section 5. In section 7 we then combine the estimates from
sections 4-6 and take the limit ϵ→ 0 to establish the regularity estimate from Theorem
1.1.
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Finally, in section 8 we provide an example that illustrates why the very weak boundary
condition (1.4) is necessary. To be more precise, we will construct an example of a velocity
field in C0,α(Ω) for 0 < α ≤ 1

2
with (u · n)|∂Ω= 0 for which ∂n(u · n)2|∂Ω /∈ D′(∂Ω). Therefore

one cannot consider the terms ∂np or ∂n(u · n)2 individually at the boundary (as they are
ill-defined).

In particular, ∂n(u · n)2 is not well-defined at the boundary and it is definitely not equal
to zero in the case when the velocity field u ∈ C0,α(Ω) for 0 < α ≤ 1

2
. As a result, it is

necessary to consider (as was done in (1.4)) the sum ∂n(p+(u ·n)2) together at the boundary
to obtain a well-defined boundary condition.

In appendices A and B we establish some Schauder-type estimates that will be used
throughout the paper. To conclude, in appendix C we will continue with the example given
in section 8 and show that ∂n(u · n)2 is not defined for a dense set of points away from the
boundary.

2 Local parametrisation of the boundary

We introduce a coordinate system for the region near the boundary ∂Ω. We will assume
throughout that the domain Ω is simply connected.

We introduce ϕ : [0,∞) → [0, 1] to be a nonincreasing smooth function defined as follows
(for some δ > 0)

ϕ(x) :=

{
1, if dist(x, ∂Ω) ≤ δ,

0, if dist(x, ∂Ω) ≥ 2δ.
(2.1)

Now we introduce the sets (for a given open set U ⊂ ∂Ω)

Vδ := {x ∈ R3| d(x, ∂Ω) < δ}, (2.2)

Vδ,U := {x ∈ Vδ| d(x, U) < δ}. (2.3)

The fact that ∂Ω is C3 means that around any point x0 ∈ ∂Ω there exist Cartesian coordinates
(x1, x2, x3) and a C3 function a : R2 → R such that the surface ∂Ω is locally parametrised
as (x1, x2, a(x1, x2)) on a subset Ux0 ⊂ ∂Ω. Then by the compactness of the boundary
∂Ω, we know that there exist finitely many sets U1, . . . , Um which cover the boundary (with
corresponding points x1, . . . , xm).

Locally on Ux0 , the inward normal vector to ∂Ω is given by

n = (n1, n2, n3) =
1√

1 +
∣∣ ∂a
∂x1

∣∣2 + ∣∣ ∂a
∂x2

∣∣2
(
∂a

∂x1
,
∂a

∂x2
,−1

)
.

We then introduce the coordinate system (see [3] and [39, Theorem 2.12])

x1 = σ1 + sn1(σ1, σ2), (2.4)

x2 = σ2 + sn2(σ1, σ2), (2.5)

x3 = a(σ1, σ2) + sn3(σ1, σ2), (2.6)
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for (σ1, σ2, s) ∈ [0, δ]3. This transformation is C2, as the normal vector n is C2. Alternatively,
equations (2.4)-(2.6) can be written as follows

x(σ1, σ2, s) = y(σ1, σ2) + s · n(σ1, σ2), (2.7)

where y moves on the local patch Ux0 of the surface ∂Ω and is given by y(σ1, σ2) = (y1, y2, y3) =
(σ1, σ2, a(σ1, σ2)). We introduce the following notation for the coordinate transformation

ϕx0(σ1, σ2, s) = x(σ1, σ2, s) = (x1, x2, x3). (2.8)

Taking the derivative of x in the normal coordinate s, we find that

∂sx = n(σ1, σ2) =

(
∂a

∂σ1
,
∂a

∂σ2
,−1

)
.

Now we calculate the partial derivatives of x with respect to the tangential variables. We
first calculate the partial derivatives of y to be

∂σ1y =

(
1, 0,

∂a

∂σ1

)
, ∂σ2y =

(
0, 1,

∂a

∂σ2

)
.

It is easy to see that these vectors are orthogonal to n(σ1, σ2). We note that ∂σ1n and ∂σ2n
are orthogonal to n by definition (as n has unit length). The tangent vectors at any point
(σ1, σ2, s) are then given by

τ1(σ1, σ2, s) = ∂σ1x = ∂σ1y + s∂σ1n,

τ2(σ1, σ2, s) = ∂σ2x = ∂σ2y + s∂σ2n,

which are orthogonal to n (as the component parts of the tangent vectors are). The vectors
τ1, τ2 and n form a basis for R3 for every point in Vδ,Ux0

. However, we observe that in general
this coordinate system is not orthogonal.

Now we turn to computing the gradient, divergence and Laplacian in this new coordinate
system. The Jacobian matrix of the coordinate transformation is given by

J :=
∂x

∂(σ1, σ2, s)
=

 1 + s∂σ1n1 s∂σ2n1 n1

s∂σ1n2 1 + s∂σ2n2 n2

∂σ1a+ s∂σ1n3 ∂σ2a+ s∂σ2n3 n3

 =
(
∂σ1y + s∂σ1n, ∂σ2y + s∂σ2n, n

)
.

(2.9)
As shown in the proof of Theorem 2.12 in [39], as the Jacobian has nonzero determinant at
x0, it is locally invertible and a C2 diffeomorphism.

We now introduce the following notation (for the sake of brevity)

aij :=
(
J−1(J−1)T

)
ij

for i, j = 1, 2, 3, (2.10)

b :=
√

det(JTJ). (2.11)

It is easy to see that (aij)
3
i,j=1 is a symmetric matrix, in fact it is the metric tensor that is

associated with the coordinate system (2.4)-(2.6).
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The gradient, the divergence and the Laplacian in the given coordinate system are given
by (see equations 9.60, 9.69 and 9.70 in [25])

∇f =
∂f

∂σ1

(
a11τ1 + a21τ2 + a31n

)
+
∂f

∂σ2

(
a12τ1 + a22τ2 + a32n

)
+
∂f

∂s

(
a13τ1 + a23τ2 + a33n

)
(2.12)

∇ · v =
1

b

[
∂

∂σ1
(bv1) +

∂

∂σ2
(bv2) +

∂

∂s
(bv3)

]
, (2.13)

∆f =
1

b

[
∂

∂σ1

(
b

[
a11

∂f

∂σ1
+ a12

∂f

∂σ2
+ a13

∂f

∂s

])
+

1

b

[
∂

∂σ2

(
b

[
a21

∂f

∂σ1
+ a22

∂f

∂σ2
+ a23

∂f

∂s

])
+

1

b

[
∂

∂s

(
b

[
a31

∂f

∂σ1
+ a32

∂f

∂σ2
+ a33

∂f

∂s

])
, (2.14)

where (v1, v2, v3) are the components of the vector v in the coordinates (σ1, σ2, s).
We recall that we showed earlier that the normal vector n has unit length and is orthogonal

to the other tangent vectors at every point in Vδ,Ux0
. This means in particular that (as (aij)

is the metric tensor)
a33 = 1, a31 = a13 = a21 = a12 = 0. (2.15)

We now introduce the operator ∆τ to be

∆τf :=
1

b

[
∂

∂σ1

(
b

[
a11

∂f

∂σ1
+ a12

∂f

∂σ2

])
+

1

b

[
∂

∂σ2

(
b

[
a21

∂f

∂σ1
+ a22

∂f

∂σ2

])
.

This allows us to rewrite the expression for the Laplacian as follows

∆f = ∆τf +
1

b

∂b

∂s

∂f

∂s
+
∂2f

∂s2
. (2.16)

Remark 2.1. We note that we could have derived the expression for the gradient, the diver-
gence and the Laplacian directly. We observe that there is the following relation between the
tangent vectors

∂

∂x1
= (J−1)11

∂

∂σ1
+ (J−1)21

∂

∂σ2
+ (J−1)31

∂

∂s
,

∂

∂x2
= (J−1)12

∂

∂σ1
+ (J−1)22

∂

∂σ2
+ (J−1)32

∂

∂s
,

∂

∂x3
= (J−1)13

∂

∂σ1
+ (J−1)23

∂

∂σ2
+ (J−1)33

∂

∂s
,

and similarly we have

∂

∂σ1
=

(
1 + s

∂n1

∂σ1
(σ1, σ2)

)
∂

∂x1
+ s

∂n2

∂σ1
(σ1, σ2)

∂

∂x2
+

(
∂a

∂σ1
+ s

∂n3

∂σ1

)
∂

∂x3
,

∂

∂σ2
= s

∂n1

∂σ2
(σ1, σ2)

∂

∂x1
+

(
1 + s

∂n2

∂σ2
(σ1, σ2)

)
∂

∂x2
+

(
∂a

∂σ2
+ s

∂n3

∂σ2

)
∂

∂x3
,

∂

∂s
= n1

∂

∂x1
+ n2

∂

∂x2
+ n3

∂

∂x3
= n.
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These relations stipulate how the vector components transform between the different bases,
this allows one to rewrite the differential operators in the coordinates from equations (2.4)-
(2.6) by rewriting the standard expressions for these operators in Cartesian coordinates.

Remark 2.2. We note that it is straightforward to extend coordinate system (2.4)-(2.6) to
higher dimensions. As in the three-dimensional case, one can rely on the compactness of the
boundary to obtain a finite number of surface patches to cover the boundary. The formulae
for the gradient, divergence and Laplacian operators have higher-dimensional generalisations
of the same form.

Remark 2.3. In order to have a working proof we require that ∂Ω ∈ C3. The reason is that this
implies that the normal vector n is a C2 function of (σ1, σ2). The Jacobian matrix J involves
tangential derivatives of n, which makes that J has C1 regularity. Since the divergence and
Laplacian involve first-order derivatives of J , we need J to be C1 and therefore cannot lower
the regularity requirement on the boundary.

We expect that by using the variational formulation of the equation with the same choice
of coordinates will allow us to weaken the boundary regularity requirement to C2 instead
of C3. Then one has to perform the Schauder-type estimates from section 6 in the weak
formulation, see for example [23].

Throughout the paper, we will consider a modified pressure defined by

P := p+ ϕ(u · n)2, (2.17)

where ϕ is a smooth cutoff function that was defined in (2.1). The result we will prove in
this paper can now be stated more precisely as follows.

Theorem 2.4. Let Ω be an open set in R3 with C3 boundary and assume that u ∈ C0,α(Ω)
for α ∈ (0, 1) is a velocity field which is divergence-free and satisfies (u ·n)|∂Ω= 0. Then there
is a unique function P ∈ C0,α(Ω) with the following properties:

1. It satisfies the following estimate

∥P∥C0,α ≤ C∥u⊗ u∥C0,α , (2.18)

the positive constant C depends only on Ω and α.

2. In any region Vδ,Ui
for i = 1, . . . ,m, the map s 7→ ∂sP (·, s) lies in the space C([0, δ);H−2(Ui))

where s ∈ [0, δ) is the normal coordinate and Ui is the local patch of the boundary. By
using a partition of unity over the patches U1, . . . , Um, the function ∂sP (·, s) can be
extended to a function in C([0, δ), H−2(∂Ω)), i.e. a function defined globally near the
boundary.

3. The function P satisfies the following equation in Ω

−∆P = (∇⊗∇) : (u⊗ u)−∆(ϕ(x)(u · n)2), (2.19)

which is satisfied in the sense of distributions. In particular, it means that for test
functions ψ ∈ D(Ω)

−
ˆ
Ω

P∆ψdx =

ˆ
Ω

uiuj∂i∂jψdx−
ˆ
Ω

ϕ(x)(u · n)2∆ψdx. (2.20)
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Moreover, P satisfies the boundary condition

∂nP =
(
u⊗ u

)
: ∇n on ∂Ω, (2.21)

where ∂n is the normal derivative. This equation holds in H−2(∂Ω). Moreover, the
average of P satisfies ˆ

Ω

P (x)dx =

ˆ
Ω

ϕ(x)(u · n)2dx, (2.22)

where (u · n)2 is defined locally on each patch Vδ,Ui
and extended globally by using the

partition of unity.

3 Mollification of the velocity field

Lemma 3.1. Consider a velocity u ∈ C0,α(Ω) which is divergence-free and tangential to the
boundary (so (u ·n)|∂Ω= 0), there exists a family of divergence-free velocity fields uϵ ∈ C∞(Ω)
which converge to u in C0,β(Ω) for β ∈ (0, α) as ϵ→ 0. In addition, we have the estimate

∥uϵ∥C0,α(Ω) ≤ C∥u∥C0,α(Ω). (3.1)

Proof. We first introduce the three-dimensional vector stream function ψ to be the solution
of the following elliptic boundary-value problem (cf. [3, 12, 37]){

−∆ψ = ∇× u in Ω,

ψ = 0 on ∂Ω,
(3.2)

which can be derived from ∇ × ψ = u,∇ · ψ = 0 and ψ|∂Ω= 0. This elliptic problem has a
unique solution in H1

0 (Ω), while the equations hold in H−1(Ω) and the boundary condition
holds in the trace sense. We define

v := u−∇× ψ.

It is easy to check that ∇ · v = 0, ∇ × v = 0 and (v · n)|∂Ω= 0 (as ((∇ × ψ) · n)|∂Ω= 0 in
H−1/2(∂Ω) by the generalised Stokes theorem), and as a result we have that

∆v = ∆u−∇× (∆ψ) = ∇× (−∇× u+∆ψ) = 0.

This implies in particular that v ∈ C∞(Ω). Now since ∇ × v = 0, there exists q ∈ C∞(Ω)
such that v = ∇q. Then we find that

∆q = 0 in Ω, ∂nq = 0 on ∂Ω. (3.3)

Therefore we know that q is constant and hence v is equal to zero, and therefore u = ∇×ψ.
This implies in particular that ψ ∈ C1,α(Ω). Now we move on to the localisation argument.

First we consider a function ϕ1 ∈ C2
c (R3) such that supp(ϕ1) ⊂ V δ. We then introduce

a partition of unity ρ1, . . . , ρm of the sets Vδ,U1 , . . . , Vδ,Um (which cover the region near the
boundary). We define the following decompositions

ψ = ψb + ψi := ϕ1ψ + (1− ϕ1)ψ,

ψb = ϕ1ρ1ψ + . . .+ ϕ1ρmψ =: ψ1 + . . .+ ψm.
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We introduce a nonnegative radial mollifier φ with support in B0(1) and the property´
R3 φ(x)dx = 1. Moreover, we define

φϵ(x) :=
1

ϵ3
φ

(
x

ϵ

)
.

Observe that ψj ∈ C1,α
c (Vδ,Uj

) for j = 1, . . . ,m.
First we deal with the interior part of the velocity field, which we observe to have compact

support in Ω. We define the function

ψϵ
i (x) := φϵ ∗ ψi ∈ C∞

c (Ω),

for ϵ suitably small. Note that ψϵ
i converges to ψi in the C1(Ω) norm as ϵ → 0 by standard

mollification estimates. Moreover, it holds that ∥ψϵ
i∥C1,α(Ω) ≤ C∥ψi∥C1,α(Ω). Therefore uϵi :=

∇× ψϵ
i is the interior part of the mollified velocity and it satisfies the required properties.

Now we consider the boundary parts ψ1, . . . , ψm. In particular, we need to define an
extension for these functions in order to prove the mollification estimates. We consider an
odd extension of the form

ψ̃j|Vδ,Uj
(σ1, σ2, s) =

{
ψj(σ1, σ2, s) if s ≥ 0,

−ψj(σ1, σ2,−s) if s ≤ 0.
(3.4)

Recall that we assume the normal to point inward. Note that ψ̃j ∈ C1,α
c (Vδ,Uj

) and it can be

extended by zero outside Vδ,Uj
. We then observe that ψ̃ϵ

j ∈ C∞
c (Vδ,Uj

) and also ψ̃j(σ1, σ2, 0) =

0. The odd extension ensures that ψ̃ϵ
j(σ1, σ2, 0) = 0.

We now define the function

ψ̃ϵ := ψϵ
i +

m∑
j=1

ψ̃ϵ
j. (3.5)

We prove this converges to ψ in the C1(Ω) norm as ϵ→ 0. It is easy to see that

∥ψ − ψ̃∥C1(Ω) ≤ ∥(1− ϕ1)ψ − ψϵ
i∥C1(Ω) +

∥∥∥∥ϕ1ψ −
m∑
j=1

ψ̃ϵ
j

∥∥∥∥
C1(Ω)

≤ ∥ψi − ψϵ
i∥C1(Ω) +

m∑
j=1

∥ϕ1ρjψ − ψ̃ϵ
j∥C1(V δ,Uj

)
ϵ→0−−→ 0.

In addition, it holds that ψ̃ϵ → ψ in C1,α(Ω) and ∥ψ̃∥C1,α(Ω) ≤ C∥ψ∥C1,α for some constant

C. Now we take ũϵ := ∇× ψ̃ϵ ∈ C∞
c (R3), which satisfies the divergence-free condition. We

also get that ũϵ → u in C0,β(Ω) for β ∈ (0, α) and moreover, it holds that

∥ũϵ∥C0,α(Ω) ≤ C∥u∥C0,α(Ω).

Since ψ̃ϵ|∂Ω= 0, simple calculations show that (∇× ψ̃ϵ) · n|∂Ω= (uϵ · n)|∂Ω= 0.

Remark 3.2. We remark that this result also holds if the boundary ∂Ω is C2 instead of C3.
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Corollary 3.3. Since uϵ is C2,α(Ω), by standard elliptic theory there exists a unique function
pϵ ∈ C2,α(Ω) such that

−∆pϵ = (∇⊗∇) : (uϵ ⊗ uϵ) in Ω, (3.6)

∂np
ϵ = uϵ ⊗ uϵ : ∇n, on ∂Ω, (3.7)ˆ

Ω

pϵdx = 0. (3.8)

The whole point of mollifying the velocity is that it allows to find a candidate mollified
pressure pϵ by using standard Schauder theory. Since the mollified candidate pressure is
smooth, it allows us to do many estimates more easily after which we can take the limit
ϵ→ 0.

Remark 3.4. As was mentioned before, we will not directly work with boundary condition
(3.7), but we will introduce a weaker notion of boundary condition. We first observe that if
u ∈ C0,α(Ω) with α > 1

2
and (u · n)|∂Ω= 0, then it holds that

∂n(u · n)2|∂Ω= 0. (3.9)

We will use this to modify the boundary condition (3.7) as follows

∂n

[
p+ ϕ(u · n)2

]
=

(
u⊗ u

)
: ∇n on ∂Ω. (3.10)

This boundary condition will be referred to as the very weak boundary condition, in order
to distinguish it from the usual boundary condition ∂np = (u⊗u) : ∇n. The two notions are
equivalent when α > 1

2
.

In section 5 we will show that ∂n(p + (u · n)2) ∈ C0,α([0, δ);H−2(∂Ω)) for some δ > 0.
However, in section 8 we will give an example of a velocity field for which ∂n((u·n)2) /∈ D′(∂Ω).
This justifies the use of the very weak boundary condition, as for such a velocity field it is
not possible to consider ∂np|∂Ω independently (even as a distribution at the boundary).

In appendix C we will even show more, namely that in the example of section 8 the normal
derivative is not defined (as a distribution) on a dense set of points away from the boundary.

We note that the main difference of our approach compared to the one in [18] is that
we use the very weak boundary condition (3.10), while the authors of [18] use the standard
boundary condition.

4 Interior estimate

We will derive estimates for the pressure separately in the interior of the domain and in the
region near the boundary. We first establish the interior estimate. We now introduce several
cutoff functions. In order to separate the behaviour of the pressure near and far away from
the boundary, we recall that in equation (2.1) we defined the function ϕ. We consider the
parameters δ1, δ2 and δ3 such that (for some small γ < δ)

0 < δ1 < δ2 − γ < δ3 < δ − 2γ.
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We then introduce functions

ϕi(s) =

{
0 if 0 ≤ s ≤ δ1,

1 if s ≥ δ2 − γ,
ϕb(s) =

{
1 if 0 ≤ s < δ3 + γ,

0 if s ≥ δ − γ.

Observe that ϕ and ϕb are nonincreasing while ϕi is nondecreasing and that ϕi and ϕb are over-
lapping (but they are not a partition of unity). Once again, we write (for x ∈ Ω sufficiently
close to the boundary)

ϕi(x) := ϕi(d(x, ∂Ω)), ϕb(x) := ϕb(d(x, ∂Ω)).

Then we introduce the functions ϕb,1, . . . , ϕb,m through the definition

ϕb,j := ϕbρj.

We then define the functions

P ϵ(x) = pϵ(x) + ϕ(x)(uϵ(x) · n(x))2, (4.1)

P ϵ
i (x) = ϕi(x)P

ϵ(x) = ϕi(x)(p
ϵ(x) + ϕ(x)(uϵ(x) · n(x))2), (4.2)

P ϵ
b (x) = ϕb(x)P

ϵ(x) = ϕb(x)(p
ϵ(x) + (uϵ(x) · n(x))2), (4.3)

P ϵ
b,j(x) = ρj(x)ϕb(x)P

ϵ(x) = ρj(x)ϕb(x)(p
ϵ(x) + (uϵ(x) · n(x))2). (4.4)

Note that we used that ϕb(x)ϕ(x) = ϕb(x) which holds by definition of the cutoff functions.
We first prove an estimate for the interior pressure P ϵ

i .

Proposition 4.1. Let P ϵ
i be the function defined in equation (4.2). The following estimate

holds for the interior mollified pressure

∥P ϵ
i ∥C0,α(Ω) ≤ Ci∥uϵ ⊗ uϵ∥C0,α(Ω) +Di∥P ϵ∥L∞(Ω). (4.5)

Note that the constants Ci and Di are independent of ϵ.

Proof. We calculate that P ϵ
i satisfies the equation

−∆P ϵ
i = −(∆ϕi)P

ϵ − 2(∇ϕi) · ∇P ϵ − ϕi∆P
ϵ

= −(∆ϕi)P
ϵ − 2(∇ϕi) · ∇P ϵ − ϕi(∆(ϕ(uϵ · n)2) + ∆pϵ)

= −(∆ϕi)P
ϵ − 2(∇ϕi) · ∇P ϵ − ϕi(∆(ϕ(uϵ · n)2)− (∇⊗∇) : (uϵ ⊗ uϵ)).

We then decompose the interior pressure as P ϵ
i,1 and P ϵ

i,2 which satisfy that

−∆P ϵ
i,1 = −(∆ϕi)P

ϵ − 2(∇ϕi) · ∇P ϵ,

−∆P ϵ
i,2 = −ϕi(∆(ϕ(uϵ · n)2)− (∇⊗∇) : (uϵ ⊗ uϵ)).

We establish estimate (4.5) separately for P ϵ
i,1 and P ϵ

i,2. We recall that the Green’s function
of the operator −∆ is given by

G(x) :=
1

4π|x|
.
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This means that P ϵ
i,1 is given by

P ϵ
i,1 =

1

4π|x|
∗ (−(∆ϕi)P

ϵ − 2(∇ϕi) · ∇P ϵ).

which allows us to conclude estimate (4.5) for P ϵ
i,1.

By the Schauder estimate for the Dirichlet problem established in Theorem A.1 we know
that P ϵ

i,2 also satisfies estimate (4.5), which concludes the proof.

Now we move on to establishing the estimates for the boundary layer pressure.

5 Trace lemma

It follows that P ϵ
b,j satisfies the following equation

−∆P ϵ
b,j = −(∆ϕbρj)P

ϵ − 2(∇ϕbρj) · ∇P ϵ +ϕbρj

(
(∇⊗∇) : (uϵ ⊗ uϵ)−∆

(
(uϵ ·n)2

))
. (5.1)

Now we need to write this equation in terms of the local coordinate system in the region
V δ,Uj

.

Lemma 5.1. Assume that x ∈ V δ,Uj
, then we have the following expression of equation (5.1)

(in terms of the local coordinates (σ1, σ2, s) defined in equations (2.4)-(2.6))

−∆τP
ϵ
b,j −

1

b

∂b

∂s

∂P ϵ
b,j

∂s
−
∂2P ϵ

b,j

∂s2
= −(∆ϕbρj)P

ϵ − 2∇τ (ϕbρj) · ∇τP
ϵ − 2∂s(ϕbρj)

∂P ϵ

∂s

+ ϕbρj

(
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+ 2

2∑
i=1

∂2

∂σi∂s

(
buϵi(u

ϵ · n)
)
+

∂2

∂s2
(
b(uϵ · n)2

)]
−∆τ

(
(uϵ · n)2)

)
− 1

b

∂b

∂s

∂(uϵ · n)2)
∂s

− ∂2(uϵ · n)2)
∂s2

)
, (5.2)

where the specific form of the differential operator ∇τ is given in the proof.

Proof. In the coordinate system (2.4)-(2.6) we can write the divergence as follows

(∇⊗∇) : (uϵ ⊗ uϵ) =
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+ 2

2∑
i=1

∂2

∂σi∂s

(
buϵi(u

ϵ · n)
)
+

∂2

∂s2
(
b(uϵ · n)2

)]
.

Moreover, we compute that (by using equation (2.16))

∆P ϵ
b,j = ∆τP

ϵ
b,j +

1

b

∂b

∂s

∂P ϵ
b,j

∂s
+
∂2P ϵ

b,j

∂s2
,

∆
(
(uϵ · n)2)

)
= ∆τ

(
(uϵ · n)2)

)
+

1

b

∂b

∂s

∂(uϵ · n)2)
∂s

+
∂2(uϵ · n)2)

∂s2
.
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We can now compute the gradient of the pressure to be (using (2.15))

∇P ϵ =
∂P ϵ

∂σ1

(
a11τ1 + a21τ2

)
+
∂P ϵ

∂σ2

(
a12τ1 + a22τ2

)
+
∂P ϵ

∂s
n,

and similarly we can compute the gradient of ϕbρj. By introducing the notation

∇τf :=
∂f

∂σ1

(
a11τ1 + a21τ2

)
+
∂f

∂σ2

(
a12τ1 + a22τ2

)
,

then we find that

(∇ϕbρj) · ∇P ϵ = ∇τ (ϕbρj) · ∇τP
ϵ + ∂s(ϕbρj)

∂P ϵ

∂s
.

These calculations allow us to express equation (5.1) as follows

−∆τP
ϵ
b,j −

1

b

∂b

∂s

∂P ϵ
b,j

∂s
−
∂2P ϵ

b,j

∂s2
= −(∆ϕbρj)P

ϵ − 2∇τ (ϕbρj) · ∇τP
ϵ − 2∂s(ϕbρj)

∂P ϵ

∂s

+ ϕbρj

(
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+ 2

2∑
i=1

∂2

∂σi∂s

(
buϵi(u

ϵ · n)
)
+

∂2

∂s2
(
b(uϵ · n)2

)]
−∆τ

(
(uϵ · n)2)

)
− 1

b

∂b

∂s

∂(uϵ · n)2)
∂s

− ∂2(uϵ · n)2)
∂s2

)
.

It is crucial to observe that the definition of P ϵ in equation (4.1) (i.e. combining the term
(uϵ ·n)2 as part of P ϵ) has the consequence that on the right-hand side of equation (5.2) there
are no terms which have second order derivatives in s (after some further manipulations,
which will be done in the proof of the next lemma). This makes it possible to establish
the following trace lemma, which will be crucial for the proof of the final regularity result
(Theorem 2.4).

Lemma 5.2. The following equation holds for ∂sP
ϵ
b for every region V δ,Uj

∂sP
ϵ
b,j(·, ·, s) = Λϵ

j(·, ·, s) +
ˆ δ

s

Θϵ
j(·, ·, s′)ds′, (5.3)

where Λϵ and Θϵ (which are specified in the proof) satisfy the local estimates

∥Λϵ
j∥C0,α([0,δ],H−1(Uj)) ≤ Cb∥uϵ ⊗ uϵ∥C0,α(Ω) +Db∥P ϵ∥L∞(Ω), (5.4)

∥Θϵ∥C0,α([0,δ],H−2(Uj)) ≤ Cb∥uϵ ⊗ uϵ∥C0,α(Ω) +Db∥P ϵ∥L∞(Ω). (5.5)

These estimates can then be put together to yield a global estimate for Λϵ and Θϵ for the
region near the boundary.

Proof. The proof will be done locally, i.e. for a given patch Vδ,Uj
⊂ Vδ, which can then be

extended to the whole region near the boundary using the partition of unity of U1, . . . , Um.
We start by rewriting equation (5.2) as follows

−
∂2P ϵ

b,j

∂s2
= ∆τP

ϵ
b,j +

1

b

∂b

∂s

∂P ϵ
b,j

∂s
− (∆ϕbρj)P

ϵ − 2∇τ (ϕbρj) · ∇τP
ϵ − 2∂s(ϕbρj)

∂P ϵ

∂s
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+ ϕbρj

(
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+ 2

2∑
i=1

∂2

∂σi∂s

(
buϵi(u

ϵ · n)
)
+
∂2b

∂s2
(uϵ · n)2 + ∂b

∂s

∂(uϵ · n)
∂s

]
−∆τ

(
(uϵ · n)2)

))
.

By integrating over s we find that (and integrating by parts)

∂sP
ϵ
b,j = −1

b

∂b

∂s
P ϵ
b,j + 2∂s(ϕbρj)P

ϵ − 2ϕbρj
b

2∑
i=1

∂

∂σi

(
buϵi(u

ϵ · n)
)
− ϕbρj

b
∂sb(u

ϵ · n)

+

ˆ δ

s

[
∆τP

ϵ
b,j − (∆ϕbρj)P

ϵ − 2∇τ (ϕbρj) · ∇τP
ϵ + ϕbρj

(
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+
∂2b

∂s2
(uϵ · n)2

]

−∆τ

(
(uϵ · n)2)

))
− ∂

∂s

(
1

b

∂b

∂s

)
P ϵ
b,j + 2∂2s (ϕbρj)P

ϵ − 2
∂

∂s

(
2ϕbρj
b

) 2∑
i=1

∂

∂σi

(
buϵi(u

ϵ · n)
)

− ∂

∂s

(
ϕbρj
b
∂sb

)
(uϵ · n)

]
ds′.

Now we introduce the notation

Λϵ := −1

b

∂b

∂s
P ϵ
b,j + 2∂s(ϕbρj)P

ϵ − 2ϕbρj
b

2∑
i=1

∂

∂σi

(
buϵi(u

ϵ · n)
)
− ϕbρj

b
∂sb(u

ϵ · n),

Θϵ := ∆τP
ϵ
b,j − (∆ϕbρj)P

ϵ − 2∇τ (ϕbρj) · ∇τP
ϵ + ϕbρj

(
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+
∂2b

∂s2
(uϵ · n)2

]

−∆τ

(
(uϵ · n)2)

))
− ∂

∂s

(
1

b

∂b

∂s

)
P ϵ
b,j + 2∂2s (ϕbρj)P

ϵ − 2
∂

∂s

(
2ϕbρj
b

) 2∑
i=1

∂

∂σi

(
buϵi(u

ϵ · n)
)

− ∂

∂s

(
ϕbρj
b
∂sb

)
(uϵ · n).

This yields equation (5.3).
Now we multiply the equation we derived for ∂sP

ϵ
b,j by a test function ϕ(σ1, σ2) ∈ H2(Uj).

We then integrate with respect to σ1 and σ2 once or twice, dependent on the term (such that
the terms P ϵ and uϵ ⊗ uϵ no longer have any derivatives). From this we obtain estimates
(5.4) and (5.5) for Λϵ and Θϵ .

One can see that Λϵ
j only contains first-order derivatives of uϵ with respect to σ1 and

σ2, which means that Λϵ(·, ·, s) ∈ H−1(Uj). The terms in Θϵ have at most second-order
derivatives in σ1 and σ2, so Θϵ lies in H−2(Uj).

6 Estimate of the boundary layer pressure

We will now establish an estimate for the boundary layer pressure, analogous to estimate
(4.1). As was calculated before, the local boundary layer pressure satisfies the problem

−∆P ϵ
b,j = −(∆ϕbρj)P

ϵ − 2∇τ (ϕbρj) · ∇τP
ϵ − 2∂s(ϕbρj)

∂P ϵ

∂s
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+ ϕbρj

(
1

b

[ 2∑
i,j=1

∂2

∂σi∂σj

(
buϵiu

ϵ
j

)
+ 2

2∑
i=1

∂2

∂σi∂s

(
buϵi(u

ϵ · n)
)
+

∂2

∂s2
(
b(uϵ · n)2

)]
−∆τ

(
(uϵ · n)2)

)
− 1

b

∂b

∂s

∂(uϵ · n)2)
∂s

− ∂2(uϵ · n)2)
∂s2

)
. in Vδ,Uj

,

∂nP
ϵ
b,j = ρj

(
u⊗ u : ∇n

)
, on ∂Ω ∩ Uj, P

ϵ
b,j = 0 on ∂Vδ,Uj

\∂Ω.

The local boundary Schauder-type estimate for P ϵ
b,j is given in the next proposition (for

each region Vδ,Uj
), the local estimates can then be patched together to yield a global estimate

for P ϵ
b on Vδ.

Proposition 6.1. The boundary layer pressure satisfies the following local estimate

∥P ϵ
b,j∥C0,α(Vδ,Uj

) ≤ C∥uϵ ⊗ uϵ∥C0,α(Vδ,Uj
) +D∥P ϵ

b,j∥L∞(Vδ,Uj
).

Proof. We first observe that there indeed exists a unique solution P ϵ
b,j because of Theorem

B.1. The estimate is derived in the proof of Theorem B.2.

7 Taking the limit ϵ→ 0

Now we see that by collecting the estimates from Propositions 4.1 and 6.1 we find that

∥P ϵ∥C0,α(Ω) ≤ ∥P ϵ
i ∥C0,α(Ω) + ∥P ϵ

b ∥C0,α(Ω) ≤ C∥uϵ ⊗ uϵ∥C0,α(Ω) +D∥P ϵ∥L∞(Ω). (7.1)

We will now show that the inequality still holds without the term D∥P ϵ∥L∞(Ω), up to an
enlarging of the constant C.

Proposition 7.1. The following estimate holds for P ϵ

∥P ϵ∥L∞(Ω) ≤ C∥uϵ ⊗ uϵ∥C0,α(Ω). (7.2)

Once again, the constant C does not depend on ϵ.

Proof. We argue by contradiction. If the inequality does not hold, there exists a subsequence
(which we still call P ϵ) such that

lim
ϵ→0

∥uϵ ⊗ uϵ∥C0,α(Ω)

∥P ϵ∥L∞(Ω)

= 0. (7.3)

Now we introduce the following functions

Gϵ :=
P ϵ

∥P ϵ∥L∞(Ω)

.

These functions solve the following boundary-value problem

−∆Gϵ =
1

∥P ϵ∥L∞(Ω)

((∇⊗∇) : (uϵ ⊗ uϵ)−∆(ϕ(uϵ · n)2) in Ω, (7.4)
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∂nGϵ =
1

∥P ϵ∥L∞(Ω)

(
u⊗ u : ∇n

)
on ∂Ω, (7.5)

ˆ
Ω

Gϵ(x)dx =
1

∥P ϵ∥L∞(Ω)

ˆ
Ω

ϕ(x)(uϵ · n)2dx. (7.6)

The sequence ∥Gϵ∥C0,α(Ω) is bounded. By using the Arzelà-Ascoli theorem we know that there
exists a subsequence, for which we also write Gϵ, converging strongly to a given function G
in C0(Ω). Note that it also converges in any Hölder space with exponent less than α, which
can be seen by using an interpolation inequality.

By assumption we know that ∥Gϵ∥L∞(Ω) = ∥G∥L∞(Ω) = 1. It follows by equation (7.3)
that the right-hand sides of equations (7.5) and (7.6) of the boundary-value problem for Gϵ

all go to zero as ϵ → 0 in the space C0,β(Ω) for β ∈ [0, α). This means that G satisfies the
equation

−∆G = 0 in Ω.

Next we show that ∂nG is well-defined and is equal to zero. Using Lemma 5.2, we know
that

∂sGϵ
b,j(·, ·, s) =

Λϵ
j(·, ·, s)
∥P ϵ∥L∞

+

ˆ δ

s

Θϵ
j(·, ·, s′)
∥P ϵ∥L∞

ds′.

We first observe that the map s 7→ ∂sGϵ
b,j(·, ·, s) is a map from [0, δ) to H−2(Uj). By using

estimates (5.4) and (5.5), we find that∥∥∥∥ Λϵ

∥P ϵ∥L∞

∥∥∥∥
C0,α([0,δ);H−1(Uj)]

≤ Cb

∥∥∥∥ uϵ ⊗ uϵ

∥P ϵ∥L∞

∥∥∥∥
C0,α(Ω)

+Db,∥∥∥∥ Θϵ

∥P ϵ∥L∞

∥∥∥∥
C0,α([0,δ);H−2(Uj)]

≤ Cb

∥∥∥∥ uϵ ⊗ uϵ

∥P ϵ∥L∞

∥∥∥∥
C0,α(Ω)

+Db,

which means that the sequence {∂sGϵ
b,j} is equicontinuous in s. We next show that for

every s ∈ [0, δ], the sequence {∂sGϵ(·, ·, s)} has a convergent subsequence. We have that the

sequence

{
Λϵ(·,·,s)
∥P ϵ∥L∞

}
is bounded uniformly in ϵ in H−1(Uj) for fixed s, then by the compact

embedding of H−1(Uj) into H
−2(Uj) we have a strongly convergent subsequence in H−2(Uj).

Now by examining the expression for ∂sP
ϵ
b,j in the proof of Lemma 5.2, it can be seen

that estimate (5.5) can be improved to∥∥∥∥ Θϵ

∥P ϵ∥L∞

∥∥∥∥
C0,α([0,δ);H−2+α(Uj)]

≤ Cb

∥∥∥∥ uϵ ⊗ uϵ

∥P ϵ∥L∞

∥∥∥∥
C0,α(Ω)

+Db,

where we have used Proposition 6.1 in bounding the term ∆τP
ϵ
b,j in the H−2+α(Uj) norm

(with respect to the variables σ1 and σ2).

This allows us to conclude that the sequence

{
Θϵ(·,·,s)
∥P ϵ∥L∞

}
has a convergent subsequence in

H−2(Uj) for fixed s ∈ [0, δ]. Therefore the same holds for the sequence

{
∂sGϵ(·, ·, s)

}
. By

the Arzela-Ascoli theorem we therefore conclude that the sequence {∂sGϵ} has a convergent
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subsequence in C0,α([0, δ];H−2(Uj)), we will refer to the limit as ∂sG. Moreover, the right-
hand side of equation (7.4) goes to zero in H−2(∂Ω). We conclude that (as ∂sG is continuous
in s)

∂sG(·, ·, 0) = 0 in H−2(∂Ω). (7.7)

Hence G satisfies the following boundary-value problem

−∆G = 0, in Ω (7.8)

∂nG|∂Ω= 0,

ˆ
Ω

G(x)dx = 0. (7.9)

The only solution to this boundary-value problem is G = 0, this is in contradiction with the
assumption ∥G∥L∞(Ω) = 1. Therefore inequality (7.2) must hold.

Remark 7.2. We are providing the full details of the proof of Proposition 7.1 also in part to
provide a corrected proof of Proposition 3.11 in [3]. In particular, equation (3.41) as given
in [3] is not correct. The statement itself of Proposition 3.11 in [3] is correct and the given
proof can be adapted by using the method outlined above.

Finally we are able to prove Theorem 2.4.

Proof of Theorem 2.4. By Lemma 3.1 we know that

∥uϵ ⊗ uϵ∥C0,α(Ω) ≤ ∥u⊗ u∥C0,α(Ω).

Moreover, we know that uϵ ⊗ uϵ converges to u ⊗ u in the C0,β(Ω) norm for any β ∈ [0, α).
This follows from standard mollification estimates and interpolation inequalities.

Then combining inequalities (7.1) and (7.2), we find that ∥P ϵ∥C0,α(Ω) is bounded. This
means that we are able to take a subsequence, which we also denote by P ϵ, which converges
in the C0(Ω) norm to the limit P ∈ C0,α(Ω).

By using Lemma 5.2, we find that

P (σ1, σ2, s)− P (σ1, σ2, 0) = lim
ϵ→0

(P ϵ(σ1, σ2, s)− P ϵ(σ1, σ2, 0))

=

ˆ s

0

m∑
j=1

lim
ϵ→0

(
Λϵ

j(σ1, σ2, s
′) +

ˆ δ

s′
Θϵ

j(σ1, σ2, s
′′)ds′′

)
ds′. (7.10)

By estimates (5.4) and (5.5), we know that the limits limϵ→0 Λ
ϵ and limϵ→0Θ

ϵ exist as elements
of C0,α([0, δ];H−2(∂Ω)). This implies that P ∈ C1([0, δ3 + ϵ], H−2(∂Ω)) near the boundary.
Because it holds that ∂sP

ϵ
b,j = ρj

(
uϵ⊗uϵ : ∇n

)
on Uj∩∂Ω, then by the established convergence

we conclude
∂sP (σ1, σ2, 0) = u⊗ u : ∇n,

which holds in H−2(Uj) (locally for every patch Uj and then extended globally by using a
partition of unity). This allows us to conclude that P ∈ C0,α(Ω) solves the boundary-value
problem stated in Theorem 2.4.
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8 The necessity of a very weak boundary condition

It has been argued before that we should consider the following weaker boundary condition

∂

∂n
(p+ (u · n)2) =

(
u⊗ u

)
: ∇n,

when u ∈ C0,α(Ω) for α ∈ (0, 1
2
], rather than the standard weak formulation of the boundary

condition ∂np = (u⊗ u) : ∇n. We present an example of a Hölder continuous incompressible
vector field u ∈ C0,α(Ω) for α ∈ (0, 1

2
] for which ∂n(u ·n)2 is not well-defined as a distribution

on ∂Ω when 0 < α < 1
2
; moreover, when α = 1

2
it is not equal to zero whenever it makes sense

as a distribution on ∂Ω, while the velocity field satisfies the boundary condition (u ·n)|∂Ω= 0.

Example 8.1. We consider the following stream function (for 0 < α ≤ 1
2
)

ψ(x, y, t) = − 1

π

∞∑
k=0

2−(α+1)k sin(2kπx) sin(2kπy), (8.1)

in the two-dimensional periodic channel, i.e.

Ω := T× [0, 1].

The velocity field corresponding to this stream function is given by

u1(x, y, t) = −
∞∑
k=0

2−αk sin(2kπx) cos(2kπy), (8.2)

u2(x, y, t) =
∞∑
k=0

2−αk cos(2kπx) sin(2kπy). (8.3)

We will refer to this velocity field as the Weierstrass flow.
We claim that the Weierstrass flow satisfies the following properties:

1. The velocity field u = (u1, u2) belongs to C
0,α(Ω) for every 0 < α ≤ 1.

2. It satisfies the boundary condition (u · n)|∂Ω= 0.

3. It is divergence-free in the sense of distributions.

4. It holds that ∂n(u · n)2|∂Ω /∈ D′(∂Ω).

We now present a proof of this claim.

Proof. 1) Let

uN1 (x, y) = −
N∑
k=0

2−αk sin(2kπx) cos(2kπy),

uN2 (x, y) =
N∑
k=0

2−αk cos(2kπx) sin(2kπy).
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Observe that the partial sums uN1 and uN2 are smooth C∞(Ω) functions, which converge
uniformly, as N → ∞, to u1 and u2, respectively. Therefore the limit u1 and u2 are continu-
ous.

Next, we prove that the Weierstrass flow is C0,α(Ω). We will only prove that u2 is Hölder
continuous, as the proof for u1 is similar. Observe that

u2(x+ h1, y + h2)− u2(x, y) =
∞∑
k=0

2−αk cos(2kπ(x+ h1)) sin(2
kπ(y + h2))

−
∞∑
k=0

2−αk cos(2kπx) sin(2kπy).

We can rewrite this as follows

u2(x+ h1, y + h2)− u2(x, y) =
∞∑
k=0

2−αk cos(2kπ(x+ h1))

(
sin(2kπ(y + h2))− sin(2kπy)

)
+

∞∑
k=0

2−αk

(
cos(2kπ(x+ h1))− cos(2kπx)

)
sin(2kπy)

=
∞∑
k=0

2−αk+1 cos(2kπ(x+ h2)) cos(2
k−1π(2x+ h2)) sin(2

k−1πh2)

+
∞∑
k=0

2−αk+1 sin(2k−1π(2x+ h1)) sin(2
k−1πh1) sin(2

kπy).

Splitting the above sum into parts 0 ≤ k ≤ p1, k > p1 respectively 0 ≤ k ≤ p2 and k > p2 for
some positive integers p1 and p2 satisfying 2

p1−1|h1| ≤ 1 < 2p1 |h1| and 2p2−1|h2| ≤ 1 < 2p2|h2|.
This implies

|u2(x+ h1, y + h2)− u2(x, y)| ≤
∞∑
k=0

2−αk+1|cos(2kπ(x+ h1))||cos(2k−1π(2y + h2))||sin(2k−1πh2)|

+
∞∑
k=0

2−αk+1|sin(2k−1π(2x+ h1))||sin(2k−1πh1)||sin(2kπy)| ≤
∞∑
k=0

2−αk+1|sin(2k−1πh2)|

+
∞∑
k=0

2−αk+1|sin(2k−1πh1)| ≤
p2∑
k=0

(
2−αk+1 · 2k−1π|h2|

)
+

∞∑
k=p2+1

2−αk+1

+

p1∑
k=0

(
2−αk+1 · 2k−1π|h1|

)
+

∞∑
k=p1+1

2−αk+1

= (2−α(p1+1) + 2−α(p2+1))
2

1− 2−α
+ π|h2|

1− 2(1−α)(p2+1)

1− 21−α
+ π|h1|

1− 2(1−α)(p1+1)

1− 21−α

≤ (2−αp1 + 2−αp2)
21−α

1− 2−α
+ π|h2|

2(1−α)(p2+1)

21−α − 1
+ π|h1|

2(1−α)(p1+1)

21−α − 1
.

In the above we have used the fact that | sin z| ≤ |z| that 1 < 2p1|h1| ≤ 2 and 1 < 2p2|h2| ≤ 2.
In particular, this means that

2−αp1 ≤ |h1|α, 2−αp2 ≤ |h2|α.
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From this we are able to conclude that

|u2(x+ h1, y + h2)− u2(x, y)| ≤ (|h1|α + |h2|α)
21−α

1− 2−α
+ π

22−α

21−α − 1
|h2|α + π

22−α

21−α − 1
|h1|α

≤ 21−α

(
1

1− 2−α
+

2π

21−α − 1

)
|h|α,

where h = (h1, h2). Therefore u ∈ C0,α(Ω).
2) We demonstrate that the velocity field satisfies the boundary condition u2 = u · n = 0 on
∂Ω. Indeed, one can check that

u2(x, 0) =
∞∑
k=0

2−αk cos(2kπx) sin(2kπ · 0) = 0,

since the function is continuous and the series converges uniformly. Similarly, one can check
that u2(x, 1) = 0 and hence (u · n)|∂Ω= 0.
3) We will now show that the velocity field is divergence-free in the sense of distributions.
We can easily check that

∂xu
N
1 + ∂yu

N
2 = 0.

This means that the partial sums uN are weakly divergence-free, i.e.
ˆ
Ω

uN · ∇ϕdx = 0, ∀ϕ ∈ D(Ω;R).

Since uN1 and uN2 converge in L∞(Ω) to u1 and u2, therefore it follows that

ˆ
Ω

u · ∇ϕdx = 0.

We conclude that u is divergence-free in the sense of distributions.
4) Now we focus on the case when α ∈ (0, 1

2
) and show that ∂n(u · n)2|∂Ω cannot be defined

as an element of D′(∂Ω). In particular, this implies that ∂n(u · n)2 /∈ H−2(∂Ω). In fact, in
Appendix C we will show that away from the boundary ∂yu

2
2(·, y) cannot be defined as an

element of D′(T) for a dense set of points y ∈ [0, 1]. It should be noted that ∂yu2 is perfectly
well-defined as a distribution on the whole domain, but as we will show below ∂yu

2
2(·, y) might

not be a distribution.
In this section, we will consider the case y = 0, as this concerns the boundary condition.

More precisely first one observes that the function (for θ ∈ D(T))

U(y; θ) := ⟨u22(·, y), θ⟩ =
ˆ
T
u22(x, y)θ(x)dx (8.4)

belongs to C0,α(0, 1) and is equal to 0 for y = 0, 1.
Hence the existence of the derivative on the boundary (i.e. for y = 0) follows if the

following limit exists

lim
y→0+

1

y

ˆ
T
u22(x, y)θ(x)dx.
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As already observed in [3] this limit exists and is equal to 0 as long as 1
2
< α ≤ 1. To

explore the behaviour for the case 0 < α ≤ 1
2
we will consider the Weierstrass series defined

in equations (8.2) and (8.3) and as a consequence, in this situation one has

v(x, y) := (u2(x, y))
2 =

∞∑
k1,k2=0

(
2−α(k1+k2) cos(2k1πx) cos(2k2πx) sin(2k1y) sin(2k2y)

)
,

U(y; θ) =
∞∑

k1,k2=0

ˆ
T
v(x, y)θ(x)dx

=
∞∑

k1,k2=0

(ˆ
T
2−α(k1+k2) cos(2k1πx) cos(2k2πx)θ(x)dx

)
sin(2k1y) sin(2k2y).

(8.5)

The purpose of this section is to consider the case 0 < α ≤ 1
2
and to prove the following

proposition regarding the function U(y; θ) as defined in equation (8.5).

Proposition 8.2.

1. Suppose θ ∈ D(T) satisfies ˆ
T
θ(x)dx = 0, (8.6)

then the limit

lim
y→0+

1

y

ˆ
T
v(x, y)θ(x)dx

is well-defined and is equal to 0 .

2. Otherwise if 0 < α < 1
2
and ˆ

T
θ(x)dx ̸= 0, (8.7)

then it holds that

lim inf
y→0+

1

y

∣∣∣∣ˆ
T
v(x, y)θ(x)dx

∣∣∣∣ = ∞.

As a consequence the function

U(y; θ) =

ˆ
T
v(x, y)θ(x)dx (8.8)

does not have a well-defined derivative at the point y = 0 .

3. If α = 1
2
and ˆ

T
θ(x)dx ̸= 0, (8.9)

then we have that

lim inf
y→0+

1

y

∣∣∣∣ ˆ
T
v(x, y)θ(x)dx

∣∣∣∣ ≥ 2. (8.10)

Consequently, if the derivative of U(y, θ) exists it is not equal to zero.
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Proof. For the proof one first eliminates the nonresonant terms (i.e., the terms involving
k1 ̸= k2 ) and then a comparison argument is used. As such the subscripts R and NR are
used to denote the resonant and nonresonant parts of U , respectively.

Then one has the following.

Lemma 8.3. The functions

UNR(y, θ) :=
∞∑

k1,k2=0,k1 ̸=k2

(
2−α(k1+k2)

ˆ
T
cos(2k1πx) cos(2k2πx)θ(x)dx sin(2k1y) sin(2k2y)

)
(8.11)

belong to C1([0, 1]), moreover we have that ∂yUNR(y; θ)|y=0= 0.

Proof. One first recalls the following trigonometric identity

cos(2k1πx) cos(2k2πx) =
1

2
(cos((2k1 + 2k2)πx) + cos((2k1 − 2k2)πx)).

Then for k1 ̸= k2 and m > 0 it holds that

ˆ
T
cos(2k1πx) cos(2k2πx)θ(x)dx =

(−1)m

2(π(2k1 + 2k2))2m

ˆ
T
cos((2k1 + 2k2)πx)

d2m

dx2m
θ(x)dx

+
(−1)m

2(π(2k1 − 2k2))2m

ˆ
T
cos((2k1 − 2k2)πx)

d2m

dx2m
θ(x)dx,

(8.12)
moreover we have

d

dy
(sin(2k1πy) sin(2k2πy)) = 2k1π cos(2k1πy) sin(2k2πy)) + 2k2π sin(2k1πy) cos(2k2πy). (8.13)

Combining equations (8.12) and (8.13 ) one obtains that∣∣∣∣ ddy
(ˆ

T
cos(2k1πx) cos(2k2πx)θ(x)dx

)
sin(2k1y) sin(2k2y)

∣∣∣∣
≤ Cπ

(
1

2(π(2k1 + 2k2))2m
+

1

2((π(2k1 − 2k2))2m

)
(2k1 + 2k2)

ˆ
T

∣∣∣∣ d2mdx2m
θ(x)

∣∣∣∣dx (8.14)

which for m ≥ 1 constitute the terms of an absolutely converging series.
As a consequence the function

UNR(y; θ) =
∞∑

k1,k2=0,k1 ̸=k2

(
2−α(k1+k2)

ˆ
T
cos(2k1πx) cos(2k2πx)θ(x)dx sin(2k1πy) sin(2k2πy)

)

belongs to the space C1([0, 1]) and satisfies the relation:

∂yUNR(y; θ)|y=0= 0. (8.15)
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Therefore one only has to consider the resonant part of the Weierstrass series, which is

UR(y; θ) =
∞∑
k=0

2−2αk

( ˆ
T
(cos(2kπx))2θ(x)dx

)
(sin(2kπy)2. (8.16)

By using the identity

(cos(2kπx))2 =
1

2

(
1 + cos(2k+1πx)

)
, (8.17)

one has that

UR(y; θ) =
1

2

( ˆ
T
θ(x)dx

) ∞∑
k=0

(
2−2αk(sin(2kπy))2

)
+

1

2

∞∑
k=0

[
2−2αk

( ˆ
T
cos(2k+1πx)θ(x)dx

)
(sin(2kπy))2

]
.

Similarly as before, the functions

URNR(y; θ) =
1

2

∞∑
k=0

2−2αk

(ˆ
T
cos(2k+1πx)θ(x)dx

)
(sin(2kπy))2 (8.18)

are the terms of a series converging in C1([0, 1]) with derivative equal to 0 for y = 0. Hence
the completion of the proof now relies only on the analysis of the behaviour of the term

1

y
URR(y; θ) =

1

2y

ˆ
T
θ(x)dx

∞∑
k=0

2−2αk(sin(2kπy)2, (8.19)

which is equal to 0 when ˆ
T
θ(x)dx = 0. (8.20)

This proves point 1 of Proposition 8.2. To prove point 2 one introduces the sequence yn = 2−n

(which is converging to 0, as n→ ∞) and consider the expression

1

yn
URR(yn; θ) = 2n−1

∞∑
k=0

2−2αk(sin(2kπ2−n))2. (8.21)

We first observe that sin(2kπ2−n) = 0 for k ≥ n. Therefore, the above sum is actually given
by

1

yn
URR(yn; θ) = 2n−1

n−1∑
k=0

2−2αk(sin(2k−nπ))2. (8.22)

Now we observe that for 0 ≤ k ≤ n − 1 we have that 0 ≤ 2k−nπ ≤ π
2
. We recall that for

x ∈
[
0, π

2

]
it holds that sin(x) ≥ 2

π
x. Applying this to the series above gives

1

yn
URR(yn; θ) ≥ 2n−1

n−1∑
k=0

2−2αk

(
2

π
2k−nπ

)2

= 2−n+1

n−1∑
k=0

22k(1−α)

= 2−n+12
2n(1−α) − 1

22(1−α) − 1
=

2

22(1−α) − 1

(
2n(1−2α) − 2−n

)
.
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From the above we conclude that

lim inf
n→∞

1

yn
URR(yn; θ)


= ∞ if 0 < α < 1

2
,

≥ 2 if α = 1
2
,

≥ 0 if α > 1
2
.

(8.23)

Observing that

U(y, θ) = UNR(y, θ) + UR(y, θ) = UNR(y, θ) + URNR(y, θ) + URR(y, θ)

completes the proof of the point 2 of Proposition 8.2. Since for α > 1
2
we have that lim 2n(1−2α)

goes to 0 with n→ ∞ point 2 is not in contradiction with point 1 of Proposition 8.2

Remark 8.4. The definition of ∂n(u ·n)2 turns out to be a subtle issue for solutions in C0,α(Ω).
In the case α > 1

2
the definition is trivial, as was observed before. For 0 < α ≤ 1

2
it depends

on the mean of the function θ(x). The trace of the ∂yu
2
2 term remains well-defined as an

element of the dual of test functions with mean value 0, on the other hand it is no longer
defined when the mean value of the test functions is not 0 .

In two space variables in a domain Ω with a geodesic change of variable the same results
hold when introducing the Weierstrass flow as in equations (8.2) and (8.3). Now x is the
tangential variable and y the distance to ∂Ω .

Remark 8.5. In fact the whole derivation which was detailed above is local in nature and
could be considered on the boundary ∂Ω or on any hyper surface Σ ⊂ ∂Ω. This leads to the
following theorem.

Theorem 8.6. Let Σ ⊂ Ω be a hypersurface with local geodesic coordinates, tangential coordi-
nate x and normal coordinate y. Suppose F (u) is a C1 function and consider the trace

∂yF (u)(x, y)|Σ.

Then:

1. If u ∈ C0,α(Ω) with 1
2
< α and (u · n)|∂Ω= 0, then the trace of ∂yF (u) on Σ is well-

defined.

2. Otherwise if 0 < α < 1
2
, the trace ∂yF (u) ̸= 0 on Σ is not well-defined even as an

element of y 7→ D′(Σ).

3. If α = 1
2
, even if the trace ∂yF (u) is well-defined, it is nonzero.

9 Conclusion

The result proven in this paper is a generalisation of the result proven in [3] from the 2D to the
3D incompressible Euler equations. We use the very weak boundary condition introduced
in [3] and moreover show its necessity, namely by constructing the example of a velocity
field for which ∂n(u · n)2|∂Ω /∈ D′(∂Ω), as outlined in section 8. One key difference with
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the work [3] is that we now use local parametrisations of the boundary as opposed to a
global parametrisation. Note that in principle our approach can be generalised easily without
many problems to any dimension, by using the higher-dimensional analogue of the coordinate
transformation (2.4)-(2.6).

This result constitutes the last part of the proof of the first half of the Onsager conjecture
(the sufficient conditions for energy conservation of weak solutions) in the presence of bound-
aries, which was given in [1]. Because the phenomenon of anomalous dissipation is intimately
related with low regularity weak solutions of the Euler equations, we expect the very weak
boundary condition considered in this work to have connections with the dissipation anomaly
and turbulence.
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A Schauder-type estimate for Dirichlet problem

In this appendix, we will prove a Schauder-type estimate that will be used in the main body
of the paper. We will use the Einstein summation convention in what follows. The estimate
is given in the following theorem.

Theorem A.1. Let v ∈ H1
0 (Ω) (where Ω ⊂ R3 is an open set with C3,α boundary for α > 0)

be the unique solution of the following problem{
∆v = ∂i∂j(Fij) in Ω,

v = 0 on ∂Ω,
(A.1)

where Fij ∈ C2,α(Ω). Then the following estimate holds

∥v∥C0,α(Ω) ≤ C∥F∥C0,α(Ω) (A.2)

Proof. We recall from [19, Theorem 1] that the Green’s function G exists and it satisfies the
following problem {

∆yG(x, y) = −δ(x− y) for x ∈ Ω,

G(x, y) = 0 for y ∈ ∂Ω.
(A.3)
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Moreover, from from [19, Theorem 1] we know that it satisfies the following pointwise
estimates (in the case of three dimensions)

|G(x, y)| ≤ C|x− y|−1, (A.4)

|DβG(x, y)| ≤ C|x− y|−2, (A.5)

|DγG(x, y)| ≤ C|x− y|−3, (A.6)

|DγG(x, y)−DγG(z, y)| ≤ |x− z|αmax{|x− y|−3−α, |z − y|−3−α}, (A.7)

|DγG(x, y)−DγG(z, y)| ≤ |x− z|max{|x− y|−4, |z − y|−4}, (A.8)

where β is a multi-index of order 1 and γ is a multi-index of order 2. Now using the Green’s
function we can write the solution as (where the partial derivatives are with respect to y)

v(x) = −
ˆ
Ω

G(x, y)∂i∂j(Fij(y))dy =

ˆ
Ω

∂iG(x, y)∂j(Fij(y)− Fij(x))dy −
ˆ
∂Ω

G(x, y)∂jFijnidS

= −
ˆ
Ω

∂i∂jG(x, y)(Fij(y)− Fij(x))dy +

ˆ
∂Ω

(Fij(y)− Fij(x))∂iG(x, y)njdS.

In the first line the last integral vanishes due to the properties of the Green’s function. Now
we derive the Schauder estimate (where we let x = (x1 + x2)/2 and δ = |x1 − x2|, see [28] for
a related derivation)

v(x1)− v(x2) = −
ˆ
Ω

∂i∂jG(x1, y)(Fij(y)− Fij(x1))dy +

ˆ
∂Ω

(Fij(y)− Fij(x1))∂iG(x1, y)njdy

−
ˆ
∂Ω

(Fij(y)− Fij(x2))∂iG(x2, y)njdy +

ˆ
Ω

∂i∂jG(x2, y)(Fij(y)− Fij(x2))dy

=

ˆ
Ω\Bδ(x)

(∂i∂jG(x1, y)− ∂i∂jG(x2, y))(Fij(x2)− Fij(y))dy

+ (Fij(x1)− Fij(x2))

ˆ
Ω\Bδ(x)

∂i∂jG(x1, y)dy −
ˆ
Ω∩Bδ(x)

(∂i∂jG(x1, y)(Fij(y)− Fij(x1))dy

+

ˆ
Ω∩Bδ(x)

(∂i∂jG(x2, y)(Fij(y)− Fij(x2))dy − (Fij(x1)− Fij(x2))

ˆ
∂Ω\Bδ(x)

∂iG(x1, y)dy

+

ˆ
∂Ω\Bδ(x)

[
∂iG(x2, y)− ∂iG(x1, y)

][
Fij(x2)− Fij(y)

]
njdy

+

ˆ
∂Ω∩Bδ(x)

(Fij(y)− Fij(x1))∂iG(x1, y)njdy −
ˆ
∂Ω∩Bδ(x)

(Fij(y)− Fij(x2))∂iG(x2, y)njdy

≤ Cδα = C|x1 − x2|α,

which follows from the following bounds (which rely on the pointwise estimates on the Green’s
function)
ˆ
Ω\Bδ(x)

(∂i∂jG(x1, y)− ∂i∂jG(x2, y))(Fij(x2)− Fij(y))dy ≤
ˆ
Ω\Bδ(x)

|x1 − x2||x2 − y|α

·max{|x1 − y|−4, |x2 − y|−4}dy ≲ δα,

(Fij(x1)− Fij(x2))

ˆ
Ω\Bδ(x)

∂i∂jG(x1, y)dy = (Fij(x1)− Fij(x2))

ˆ
∂(Ω\Bδ(x))

∂jG(x1, y)nidy
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≤ |x1 − x2|α
ˆ
∂(Ω\Bδ(x))

|x1 − y|−2dy ≲ δα,

ˆ
Ω∩Bδ(x)

(∂i∂jG(x1, y)(Fij(y)− Fij(x1))dy ≤
ˆ
Ω∩Bδ(x)

|x1 − y|−3+αdy ≲ δα,

(Fij(x1)− Fij(x2))

ˆ
∂Ω\Bδ(x)

∂iG(x1, y)dy ≤ |x1 − x2|α
ˆ
∂Ω\Bδ(x)

|x1 − y|−2dy ≲ δα,

ˆ
∂Ω\Bδ(x)

[
∂iG(x2, y)− ∂iG(x1, y)

][
Fij(x2)− Fij(y)

]
njdy

≤
ˆ
∂Ω\Bδ(x)

|x2 − x1|max{|x1 − y|−3, |x2 − y|−3}|x2 − y|α ≲ δα,

ˆ
∂Ω∩Bδ(x)

(Fij(y)− Fij(x1))∂iG(x1, y)njdy ≤
ˆ
∂Ω∩Bδ(x)

|x1 − y|−2+αdy ≲ δα,

the other bounds follow in a similar fashion. In the above we have used that |y − x1|−1, |y −
x2|−1 ≤ 2

δ
on Ω\Bδ(x) (which can be seen by using the reverse triangle inequality).

This concludes the proof of the Schauder estimate.

Remark A.2. This proof can be easily adapted to the case where terms of the form c(x)v
appear on the right-hand side.

B Schauder-type estimate for Dirichlet-Neumann prob-

lem

In section 6 we consider the pressure near the boundary. The resulting functions satisfy a
Dirichlet-Neumann problem of the following type

−∆v = f in Ω,

v = 0 in ΓD,

∂nv = g in ΓN .

(B.1)

Here Ω is still the domain, while ΓD and ΓN are open sets in ∂Ω such that ΓN = ∂Ω\ΓD. We
will first prove existence and uniqueness of solutions to this problem in the space H1

0,ΓD
(Ω),

which consists of the H1(Ω) functions with zero trace on ΓD. The weak formulation of the
problem is (as can be found in [35, p. 516])

ˆ
Ω

∇v · ∇ψdx =

ˆ
Ω

fψdx+

ˆ
ΓN

gψdσ, (B.2)

where ψ is an arbitrary test function in H1
0,ΓD

(Ω). We will first prove existence and unique-
ness, based on the method outlined in [35, Chapter 8].

Theorem B.1. The Dirichlet-Neumann problem (B.1) has a unique solution in H1
0,ΓD

(Ω).
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Proof. By Theorem 7.91 in [35], we know that the Poincaré inequality holds for functions in
H1

0,ΓD
(Ω). This means in particular that we may take the following norm

∥u∥H1
0,ΓD

:= ∥∇u∥L2 . (B.3)

Now we prove the existence and uniqueness for the Dirichlet-Neumann problem by using the
Lax-Milgram theorem. We introduce the bilinear form B : H1

0,ΓD
(Ω)×H1

0,ΓD
(Ω) → R which

is given by

B[v1, v2] :=

ˆ
Ω

∇v1 · ∇v2dx.

It is easy to verify that B is coercive and continuous in the space H1
0,ΓD

. Moreover, since
f ∈ L2(Ω) and g ∈ L2(∂Ω) it is easy to check that the map ψ 7→

´
Ω
fψdx +

´
ΓN
gψdσ is in

H−1
0,ΓD

(Ω). Therefore by the Lax-Milgram theorem there exists a unique solution in H1
0,ΓD

(Ω)
for the Dirichlet-Neumann problem given in equation (B.1).

Now for the sake of completeness we would like to establish a Schauder estimate for the
Dirichlet-Neumann problem, as it does not seem to be stated in standard references such as
[23, 24, 29]. In order to do so, we will rely on the approach given in [31]. We will prove the
following result.

Theorem B.2. Let ∂Ω∩Uj be a patch of ∂Ω given by the localisation. Let P ϵ
b,j be a solution

to the following problem−∆P ϵ
b,j = −(∆ϕbρj)P

ϵ − 2(∇ϕbρj) · ∇P ϵ + ϕbρj

(
(∇⊗∇) : (uϵ ⊗ uϵ)−∆

(
(uϵ · n)2

))
in Vδ,Uj

,

P ϵ = 0 on ∂Vδ,Uj
\(Uj ∩ ∂Ω), ∂nP

ϵ = ρj
(
u⊗ u : ∇n

)
on ∂Ω ∩ Uj.

(B.4)
Then P ϵ

b,j satisfies the following Schauder-type estimate

∥P ϵ
b,j∥C0,α(Vδ,Uj

) ≤ C∥uϵ ⊗ uϵ∥C0,α(Vδ,Uj
) +D∥P ϵ

b,j∥L∞(Vδ,Uj
). (B.5)

Proof. By Theorem B.1 we know that problem (B.4) has a unique solution inH1
0,∂Vδ,Uj

\(Uj∩∂Ω)(Ω).

Now because ∂Ω ∈ C2 we can map Uj ∩ Ω by a C2 mapping ψ such that ψ(∂Ω ∩ Uj)
is flat (or alternatively, it is characterised by the second coordinate being 0) and ψ(Vδ,Uj

)
is the upper half of an open ball. If this is not possible, we can restrict to subsets of Uj

such that the part of the boundary which intersects with ∂Ω can be mapped to a flat set, by
compactness there are finitely many such sets. We can therefore transform the problem to
(see [29, Section 6.2] for concrete computations)

−aij(x)∂i∂jpϵ + bi(x)∂ip
ϵ(x) = −(∆ϕbρj)P

ϵ − 2(∇ϕbρj) · ∇P ϵ + ϕbρj

(
(∇⊗∇) : (uϵ ⊗ uϵ)

−∆
(
(uϵ · n)2

))
=: F ′ in ψ(Vδ,Uj

),

pϵ = 0 in ψ
(
∂Vδ,Uj

\(∂Ω ∩ Uj))
)
, ∂np

ϵ = ρj
(
u⊗ u : ∇n

)
if xn = 0.

(B.6)
We have replaced P ϵ by pϵ, in order to distinguish the ‘unknown’ from the source terms.
In addition, the uniform ellipticity is preserved by Lemma 6.2.1 in [29] (this is why the C2
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regularity assumption on the boundary is crucial). Now we want to homogenise the Neumann
boundary condition. One can find a function G ∈ C∞(∂Ω) such that

∂G

∂xn
= ρj

(
u⊗ u : ∇n

)
if xn = 0.

Then by taking (where F ′ is the forcing on the right-hand side of the equation in problem
B.6)

F1 = F ′ + aij∂i∂jG− bi∂iG,

F2 = −G,

we end up with the problem
−aij(x)∂i∂j∂jpϵ + bi(x)∂ip

ϵ(x) = F1 in ψ(Vδ,Uj
),

pϵ = F2 in ψ
(
∂Vδ,Uj

\(∂Ω ∩ Uj))
)
,

∂np
ϵ = 0 if xn = 0.

(B.7)

Then we take an even extension of F and ψ with respect to xn. We write ψ̂(Vδ,Uj
) for the

even extension of ψ(Vδ,Uj
) through xn = 0. This then leads to the problem{

−aij(x)∂i∂jpϵ + bi(x)∂ip
ϵ(x) = F1 in ψ̂(Vδ,Uj

),

pϵ = F2 on ∂ψ̂(Vδ,Uj
).

(B.8)

Now we will prove the Schauder estimate by the continuity method, see [23, Section 5.5.1]
for example. We first define the following operator

L := −aij(x)∂i∂j + bi(x)∂i,

which is the differential operator of the stated Dirichlet problem (B.8). Then we introduce
the continuous family of operators

Lt := (1− t)∆ + tL.

For all t ∈ [0, 1] the problem associated with Lt and the data F1 and F2 has a unique solution.
Now we need to prove that it satisfies the Schauder estimate from Theorem A.1. We define
the subset Σ ⊂ [0, 1] such that for all t ∈ Σ the estimate is satisfied. Now we will prove that
Σ is both open and closed and hence Σ = [0, 1]. We first observe that for t = 0 by Theorems
4.1 and A.1 estimate (B.5) holds.

We will first show that Σ is closed. Suppose we take a sequence tk → t, such that for
all tk estimate B.5 holds. Then by compactness we know that there exists a subsequence of
solutions to the problems with operators Ltk (which we label with vtk) converging uniformly
to vt (i.e. strong convergence in C0(Ω)). This means that the Schauder estimate also holds
for vt.

Now we have to show that Σ is open. We take an arbitrary t0 ∈ Σ. We denote by
uw = Ttw the solution to the problem

Lt0uw = (Lt0 − Lt)w + F1 in ψ̂(Vδ,Uj
), uw = F2 on ∂ψ̂(Vδ,Uj

).
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Then we observe that Lt0 − Lt = (t − t0)∆ + (t0 − t)L. By the assumed Schauder estimate
we get that (by an adaption of the proof of Theorem A.1)

∥Ttw1 − Ttw2∥C0,α ≤ c|t− t0|∥w1 − w2∥C0,α . (B.9)

Then if |t− t0| is sufficiently small, the mapping Tt is a contraction and hence the fixed point
solves the Dirichlet problem with the operator Lt. Therefore the Schauder estimate holds for
a small neighbourhood around t and hence Σ is open and therefore Σ = [0, 1] (as Σ cannot
be the empty set). In particular, estimate (B.5) is true for the case t = 1, which is what we
wanted to show.

C The normal derivative of the Weierstrass flow away

from the boundary

We recall that in Example 8.1 we constructed a flow (given in equations (8.2) and (8.3))
such that ∂n(u · n)2|∂Ω /∈ D′(∂Ω). In this appendix, we will show more, namely that actually
∂n(u ·n)2(·, y) /∈ D′(T) for any y = j

2m
, where j = 1, 2, . . . , 2m−1 and m ≥ 1. By reexamining

the proofs in section 8, one can check that for any y > 0 UNR(·; θ) and URNR(·; θ) are C1

functions.
We recall that URR was defined by

URR(y; θ) =
1

2

ˆ
T
θ(x)dx

∞∑
k=0

2−2αk(sin(2kπy)2, (C.1)

Now we will consider the following difference quotient for some y1 =
j
2m

(for some m ≥ 2 and
j = 1, 2, . . . , 2m)

URR(y1 + h; θ)− URR(y1; θ)

|h|
=

1

2|h|

ˆ
T
θ(x)dx

∞∑
k=0

2−2αk

[
(sin(2kπ(y1 + h))2 − (sin(2kπy1))

2

]
.

We will first rewrite the difference quotient as

URR(y1 + h; θ)− URR(y1; θ)

|h|
=

1

4|h|

ˆ
T
θ(x)dx

∞∑
k=0

2−2αk

[
cos(2k+1πy1)− cos(2k+1π(y1 + h))

]
=

1

2|h|

ˆ
T
θ(x)dx

∞∑
k=0

2−2αk sin(2kπ(2y1 + h)) sin(2kπh).

Now once again we select the sequence hn = 2−n, as we did in Example 8.1. Once again, we
notice that sin(2k−nπ) = 0 for k ≥ n, so we end up with the partial sum

URR(y1 + hn; θ)− URR(y1; θ)

|hn|
= 2n−1

ˆ
T
θ(x)dx

n−1∑
k=0

2−2αk sin(2kπ(2y1 + 2−n)) sin(2k−nπ)

= 2n−1

ˆ
T
θ(x)dx

n−1∑
k=0

2−2αk

[
sin(2k+1πy1) cos(2

k−nπ) + cos(2k+1πy1) sin(2
k−nπ)

]
sin(2k−nπ).
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Now we substitute our choice for y1. Since we are interested in the behaviour of URR as
n→ ∞ we may assume without loss of generality that m ≤ n. Then we obtain that

URR(y1 + hn; θ)− URR(y1; θ)

|hn|
= 2n−1

ˆ
T
θ(x)dx

n−1∑
k=0

2−2αk

[
sin(2k+1−mπj) cos(2k−nπ)

+ cos(2k+1−mπj) sin(2k−nπ)

]
sin(2k−nπ)

= 2n−1

ˆ
T
θ(x)dx

m−2∑
k=0

[
2−2αk sin(2k+1−mπj) cos(2k−nπ) sin(2k−nπ)

]
(C.2)

+ 2n−1

ˆ
T
θ(x)dx

m−1∑
k=0

[
2−2αk cos(2k+1−mπj)(sin(2k−nπ))2

]
(C.3)

+ 2n−1

ˆ
T
θ(x)dx

n−1∑
k=m

[
2−2αk(sin(2k−nπ))2

]
. (C.4)

We first investigate the third sum in line (C.4), we estimate

2n−1

ˆ
T
θ(x)dx

n−1∑
k=m

2−2αk(sin(2k−nπ))2 ≥ 2n−1

ˆ
T
θ(x)dx

n−1∑
k=m

2−2αk · 22k−2n+2

= 2−n+1

ˆ
T
θ(x)dx

n−1∑
k=m

22(1−α)k = 2−n+1

ˆ
T
θ(x)dx

[
22(1−α)n − 1

22(1−α) − 1
− 22(1−α)m − 1

22(1−α) − 1

]
=

ˆ
T
θ(x)dx · 2(1−2α)n+1

22(1−α) − 1
+ 2−n+1

ˆ
T
θ(x)dx

[
− 1

22(1−α) − 1
− 22(1−α)m − 1

22(1−α) − 1

]
.

Now we need to show that the other two sums remain bounded, we observe that for x ∈
[
0, π

2

]
we have that 2

π
x ≤ sin(x) ≤ x, as a consequence we obtain

2n−1

ˆ
T
θ(x)dx

m−1∑
k=0

[
2−2αk cos(2k+1−mπj)(sin(2k−nπ))2

]

≥ 2n−1

ˆ
T
θ(x)dx

m−1∑
k=0

[
2−2αk min{cos(2k+1−mπj)22k−2n+2, 2−2αk min{cos(2k+1−mπj)22k−2nπ2}

]

= 2−n−1

ˆ
T
θ(x)dx

m−1∑
k=0

[
2−2αk min{cos(2k+1−mπj)22k+2, 2−2αk min{cos(2k+1−mπj)22kπ2}

]
,

2n−1

ˆ
T
θ(x)dx

m−2∑
k=0

[
2−2αk sin(2k+1−mπj) cos(2k−nπ) sin(2k−nπ)

]

≥ 2n−1

ˆ
T
θ(x)dx

m−2∑
k=0

[
2−2αk min{sin(2k+1−mπj) cos(2k−nπ)2k−n+1, sin(2k+1−mπj) cos(2k−nπ)2k−nπ}

]

= 2−1

ˆ
T
θ(x)dx

m−2∑
k=0

[
2−2αk min{sin(2k+1−mπj) cos(2k−nπ)2k+1, sin(2k+1−mπj) cos(2k−nπ)2kπ}

]
.
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Therefore both sums can be either bounded from below independent of n or they go to zero
as n→ ∞. Because the sum in equation (C.4) is going to infinity, we conclude that if α < 1

2

we have that

lim inf
n→∞

∣∣∣∣URR(y1 + hn; θ)− URR(y1; θ)

hn

∣∣∣∣ = ∞, (C.5)

for points y1 of the form y1 = j
2m

for j = 1, . . . , 2m−1 and m ≥ 1. We conclude as a result
that ∂yu

2
2(·, y) cannot be defined as a distribution (i.e. as an element of D′(T)) for a dense

set of points y ∈ [0, 1].
In the case α = 1

2
we have that

lim inf
n→∞

∣∣∣∣URR(y1 + hn; θ)− URR(y1; θ)

hn

∣∣∣∣ ≥ ∣∣∣∣ ˆ
T
θ(x)dx

∣∣∣∣
·
∣∣∣∣2 + m−2∑

k=0

[
2−2αk−1min

{
sin(2k+1−mπj) cos(2kπ)2k+1, sin(2k+1−mπj) cos(2kπ)2kπ

}]∣∣∣∣,
it therefore depends on the values of j and m whether this lower bound is nonzero.
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