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Abstract

This paper is devoted to investigating the rotating Boussinesq equa-
tions of inviscid, incompressible flows with both fast Rossby waves and
fast internal gravity waves. The main objective is to establish a rigor-
ous derivation and justification of a new generalized quasi-geostrophic
approximation in a channel domain with no normal flow at the upper
and lower solid boundaries, taking into account the resonance terms
due to the fast and slow waves interactions. Under these circumstances,
We are able to obtain uniform estimates and compactness without the
requirement of either well-prepared initial data (as in [10]) or domain
with no boundary (as in [17]). In particular, the nonlinear resonances
and the new limit system, which takes into account the fast waves
correction to the slow waves dynamics, are also identified without in-
troducing Fourier series expansion. The key ingredient includes the
introduction of (full) generalized potential vorticity.

Keyworks: Quasi-Geostrophic approximation, singular limit, Rossby
waves, internal gravity waves, bounded domain, fast-slow waves inter-
action, potential vorticity.

MSC2020: 76B15, 76B55, 76B65, 76M45, 86A10.

∗Laboratoire J.-L. Lions, BP187, 75252 Paris Cedex 05, France.
claude.bardos@gmail.com
†Department of Mathematics, Texas A&M University, College Station, TX 77843-3368,

USA stleonliu@gmail.com
‡Department of Mathematics, Texas A&M University, College Station, TX 77843-

3368, USA; Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Cambridge CB3 0WA UK; also Department of Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. titi@math.tamu.edu
and Edriss.Titi@damtp.cam.ac.uk

1

mailto:claude.bardos@gmail.com
mailto:stleonliu@gmail.com
mailto:titi@math.tamu.edu
mailto:Edriss.Titi@damtp.cam.ac.uk


Contents

1 Introduction 2
1.1 Asymptotic limit and boundary layer . . . . . . . . . . . . . . 5
1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 Notations and an extension Lemma . . . . . . . . . . . . . . . 8
2.2 Classical quasi-geostrophic approximation and the potential

vorticity formulation for inviscid flows . . . . . . . . . . . . . 10
2.3 The slow–fast waves structure: Linear analysis . . . . . . . . 12

3 Uniform-in-ε estimates of the Euler equations with fast Rossby
and gravity waves 15

4 Convergence theory 19
4.1 Convergence theory: Part 1, compactness . . . . . . . . . . . 19
4.2 Convergence theory: Part 2, convergence of the nonlinearities 23

1 Introduction

We consider an inviscid incompressible fluid in a periodic channel domain
Ω := Ωh × (0, h) ⊂ R3, with horizontal periodic domain Ωh := T2 = (0, 1)2

and vertical domain height h ∈ (0,∞). Denote by v ∈ R2 the horizontal
velocity, w ∈ R the vertical velocity, p ∈ R the pressure, and ρ ∈ R the
density, respectively. Let the following be the typical characteristic physical
scales for length, time, velocity, density, and pressure:

L length scale

U mean advective velocity

Te :=
L

U
eddy trunover time

TR := f−1 rotation time

ρb mean density

p mean pressure.

Furthermore, set ρ = ρ(z) to be the background density stratification, which
is assumed to be linear in the vertical coordinate, and decompose the density
into the sum of stratification ρ and deviation ρbθ, i.e.,

ρ = ρbθ + ρ
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The buoyancy (Brunt-Väisälä) frequency is defined as

N :=

(
−g∂zρ

ρb

)1/2

,

and the corresponding buoyancy time scale is

TN := N−1.

In this geophysical situation, one can introduce the following relevant non-
dimensional numbers:

the Rossby number Ro :=
U

Lf

the Froude number Fr :=
U

LN

the Euler number P :=
p

ρbU2

Γ :=
gL

U2
,

see, e.g., [34]. With such notations, the dimensionless rotating Boussinesq
equations are given by

∂tv + v · ∇hv + w∂zv +
1

Ro
v⊥ + P∇hp = 0, (1.1a)

∂tw + v · ∇hw + w∂zw + P∂zp− Γθ = 0, (1.1b)

∂tθ + v · ∇hθ + w∂zθ +
1

Γ · Fr2w = 0, (1.1c)

divh v + ∂zw = 0, (1.1d)

with

w|z=0,h = 0 i.e., the impermeable boundary condition, (1.1e)

see, e.g., [34].

In this paper, we consider the quasi-geostrophic scale where

• The Rossby number is small

Ro = ε� 1;
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• The flow is in geostropic balance, i.e., the rotation and the pressure
forces are in balance,

P =
1

Ro
;

• The Froude number is small and equal to the Rossby number,

Fr = Ro;

• The non-dimensional number Γ is in balance with the inverse of the
Froude number

Γ =
1

Fr
.

Then the rotating Buossinesq equations (1.1) become

∂tv + v · ∇hv + w∂zv +
1

ε
v⊥ +

∇hp
ε

= 0, (1.2a)

∂tw + v · ∇hw + w∂zw +
∂zp

ε
− θ

ε
= 0, (1.2b)

∂tθ + v · ∇hθ + w∂zθ +
w

ε
= 0, (1.2c)

divh v + ∂zw = 0, (1.2d)

with

w|z=0,h = 0. (1.2e)

We refer the reader to [34, section 7.4] for the detailed derivation of system
(1.2). We remark that, the small Rossby number, i.e. Ro � 1, induces the
fast Rossby waves, and the small Froude number, i.e. Fr � 1, induces the
fast internal gravity waves. In our setting, i.e., system (1.2), both Rossby
and gravity waves are fast and they are coupled. In particular, they have
the same scale.

The goal of this work is to investigate the asymptotic limit of system
(1.2) as ε → 0+ in the channel domain Ω., i.e., the quasi-geostrophic ap-
proximation, taking into account the fast-slow waves interaction and their
corresponding resonance terms.

Similar problem has been studied in the case of “well-prepared” initial
data by Bourgeois and Beale in [10], where the convergence, as well as
the convergence rate, of solutions to that of quasi-geostrophic equations
((2.27) and (2.29), below) is proved. In particular, the well-prepared initial
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data are chosen so that there are only slow waves in the dynamics and
no contribution of the fast waves. That is, the initial data is close to the
geostrophic balance (see (2.16)–(2.18), below). We remark that [10] assumes
that ∂zp

0|z=0,h = 0 together with the balanced initial data. This guarantees
that the system of equations satisfy some symmetry, and eventually can be
extended periodically to a system into T3, i.e., there is no boundary effect
as if one has a virtual boundary. The general convergence theory when
∂zp

0|z=0,h 6= 0 is still open. Here p0 is the stream function associated with
the potential vorticity as in (2.26). The existence of weak solutions for these
quasi-geostrophic equations is established in [42,45]

Taking into account the fast waves, but without physical boundary (i.e.,
in T3), Embid and Majda studied the nonlinear resonances and established
the asymptotic limit of system (1.2) in [17, 18, 35]. The limiting system
is the quasi-geostrophic equation (2.27) with nonlinear resonances on the
right-hand side, while the velocity and the temperature in the limiting quasi-
geostrophic equations are given by (2.16) and (2.17), below, respectively.

In the case with vanishing viscosity, an Ekman boundary layer will arise
in the channel domain, which leads to Ekman pumping. This is verified
in [14], in the case with well-prepared initial data (i.e., slow waves only). To
the best of the authors’ knowledge, the asymptotic limit taking into account
both the fast waves and the Ekman pumping is open. The global well-
posedness of solutions to the quasi-geostrophic system with Ekman pumping
was established in [41].

In this paper, we introduce the notion of (full) generalized potential
vorticity (i.e., Φ and Ψ defined in (3.1) and (3.2), below, respectively),
which allows us to separately describe the slow and the fast waves of the dy-
namics of system (1.2) in a channel domain without introducing any bound-
ary layer. Moreover, the interaction between the slow and fast waves can
be easily tracked and investigated. Therefore, we are able to establish the
asymptotic limit as ε → 0+ in the channel for general initial data. In par-
ticular, we drop the requirement of well-prepared initial data or periodic
spatial domain required in [10] and [17], respectively. In addition, the fast
waves correction to the slow dynamics is identified as a new resonance term.

We remark that in our context, the terms slow (fast) waves and slow
(fast) dynamics, as well as well-prepared (ill-prepared or general) initial data
and balanced (unbalanced) initial data are interchangeable, respectively.
This terminology is widely used in the literature.

Before stating the main results in detail, we would like to put this work
in the context of the study of asymptotic limit in the following subsection.
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1.1 Asymptotic limit and boundary layer

We should stress that the following references are by no mean exhaustive.

The study of low Mach number limit of the compressible flows was pi-
oneered by Klainerman and Majda in [28, 29], where the convergence with
only slow waves (i.e., well-prepared initial data) was shown in domains with-
out boundary. In R3, Ukai in [52] showed the dispersion of the fast acoustic
waves and thus established the low Mach number limit with large acoustic
waves. As pointed out in [15], such dispersion in R3 is characterized by
the Strichartz estimate [27, 50]. In the case of T3, [31] showed the weak
convergence of low Mach number limit for compressible flows by investigat-
ing the nonlinear resonances of fast acoustic waves. The general theory of
fast singular limit was developed by Schochet in [48, 49] for hyperbolic sys-
tems, which was later extended to parabolic systems in [21]. We refer the
reader to [1,2,12,13,19,20,37,39] and the references therein for more studies
of low Mach number limit in domains without boundary. When there is
physical boundary in the underlying domain, the low Much number limit
of viscous flows may give rise to a boundary layer. This is first studied in
terms of eigenvalue-eigenfunction pairs in [24]. Recently in [38], by introduc-
ing uniform estimates in the co-normal Sobolev norm, together with some
L∞ estimates, the low Mach number limit of compressible viscous flows is
established in smooth domain with Navier-slip boundary condition and gen-
eral initial data. However, the corresponding low Mach number limit with
no-slip boundary condition is still open.

Meanwhile, in the vanishing viscosity limit of the incompressible Navier–
Stokes equations with no-slip boundary condition, the Prandtl boundary
layer was introduced by Prandtl in 1904 [44] and became the paradigm of
further mathematical studies. See, e.g., [16] for a derivation of the Prandtl
equations. However it turned out to be the most singular. The boundary
layer is due to the no-slip boundary condition for the Navier-Stokes and since
this effect is not present at the level of the Euler equation, a discontinuity
appears in the zero viscosity limit. Due to the nonlinearity of the problem
such singularity may escape from the boundary layer and propagate in the
fluid. This is one of the main source of turbulence, and as a consequence
the Prandtl boundary layer is strongly unstable, and therefore may exist
only for short time and under strict regularity hypothesis, see, e.g., [33, 46,
47]. A direct proof of such asymptotic limit, with the incompressible Euler
equations as the limiting equations, without introducing the boundary layer
correction can be found in [7, 40]. For general, smooth, but not analytic,
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initial data, the vanishing viscosity limit is still an open challenging problem.
The pioneer work in this direction is by Kato [25]. See, also, [8, 9] and
references therein for related results.

With fast rotation and vanishing viscosity (but no fast internal waves) in
a domain with no-slip boundary condition, the Ekman boundary layer may
arise, which is an important phenomenon in the atmospheric and oceanic
study (see, for instance, [34,43]). In [23] and [36], the asymptotic limit of fast
rotation and vanishing viscosity with the Ekman boundary layer correction
was established for flows with and without fast waves, respectively.

With only fast rotation in a domain without boundary (T3 or R3), the
asymptotic limit of the Euler or Navier–Stokes equations was studied in
[4–6], where the limit dynamics is characterized by two dimensions three
components (2D3C) flows, and the prolonging effect of fast rotation on the
life-span of the solution was established. Such a regularizing effect of fast
rotation was demonstrated in the case of a simple convection model in [3,
32]. See also [22, 30] for the study in the primitive equations, and [11]
for some examples in the study of mathematical geophysics, including the
aforementioned Ekman boundary layer.

As mentioned before, in this paper, we study the singular limit ε→ 0+ of
system (1.2) in the periodic channel domain Ω = T2 × (0, h). In particular,
it will be established that the fast rotation induced by strong Coriolis force
in (1.2a) suppresses the possible emergence of a boundary layer near the
boundary.

1.2 Main results

The first main result of this paper is the following:

Theorem 1.1 (Uniform-in-ε estimate). Consider the initial data

(vin, win, θin) ∈ H3(Ω)

of the solution (v, w, θ) to system (1.2), satisfying the compatibility condi-
tions divh vin + ∂zwin = 0 and win|z=0,h = 0. Then there exists T,Cin ∈
(0,∞), depending only on the initial data and independent of ε, such that

sup
0≤t≤T

wwv(t), w(t), θ(t)
ww
H3(Ω)

≤ Cin. (1.3)

Proof. The proof of this theorem is done in section 3.
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The local well-posedness theory of solutions in H3(Ω) to system (1.2) for
fixed ε ∈ (0, 1) is classical and thus is omitted here. See, for instance, [26].
With continuity arguments, the uniform estimate (1.3) implies the uniform-
in-ε local well-posedness with initial data as in the theorem.

Our second main result of this paper is to investigate the limit system,
as follows:

Theorem 1.2 (Convergence theory). Let T > 0 be as in Theorem 1.1, and
let (Φ,Ψ, H0, Hh, Z) be defined as in (3.1)–(3.5), below. Then there exists a
subsequence of ε that as ε→ 0+, one has the following convergence in strong
topology:

Φ→ Φp in C([0, T ];H1(Ω)), (1.4)

H0, Hh → Hp,0, Hp,h in C([0, T ];H3/2(T2)), (1.5)

e∓i
t
ε (Ψ± iΨ⊥)→ ψp,± in C([0, T ];H1(Ω)), (1.6)

and

e∓i
t
ε (Z ± iZ⊥)→ zp,± in C([0, T ];H2(Ω)), (1.7)

and in suitable weak-∗ topology (see section 4.1), the limit

(Φp, Hp,0, Hp,h, ψp,±, zp pm) (1.8)

satisfies system (4.46), below.

Proof. This is done in section 4. In particular, the strong convergence can
be found in (4.11), (4.12), (4.22), and (4.23), respectively.

Remark 1. In this paper, we have not explored the well-posedness, in partic-
ular, the uniqueness, of solutions to the limit system (4.46). For this reason,
we only have the subsequence convergence in Theorem 1.2. However, if
one manages to show the well-posedness of solutions to system (4.46), the
convergence should be of the whole sequence of ε→ 0+.

The rest of this paper is organized as follows. In section 2, some prelim-
inaries will be provided, including the notations and a boundary-to-domain
extension (lifting) Lemma. The classical quasi-geostrophic approximation
with only slow waves, i.e., well-prepared initial data, will be reviewed in
section 2.2. The key linear slow-fast waves structure will be discussed in
section 2.3. Section 3 is dedicated to the proof of Theorem 1.1. This paper
will finish with the proof of Theorem 1.2 in section 4.
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2 Preliminaries

2.1 Notations and an extension Lemma

In this paper, we have been and will be using(
X1

X2

)⊥
=

(
−X2

X1

)
(2.1)

to denote the rotation of a two-dimensional vector. divh and curlh represent
the horizontal divergence and curl operators, respectively. Then for any two-
dimensional vector field X = (X1, X2)>, one has

divhX
⊥ = −curlhX and curlhX

⊥ = divhX. (2.2)

For any functions A and B, the X norms are written aswwA,BwwX =
wwAwwX +

wwBwwX . (2.3)

We will use ∆−1
D to represent the inverse Laplacian subject to the Dirich-

let boundary condition at z = 0, h and the periodic boundary condition
horizontally, i.e.,

∆∆−1
D A = A with (∆−1

D A)|z=0,h = 0. (2.4)

Therefore, the definition implies

∆∆−1
D = Id. (2.5)

However, observe that
∆−1
D ∆ 6= Id, (2.6)

which plays an important role in the proof of short time stability of analytic
Prandtl boundary layer [33,40].

Moreover, ∆−1
h is the inverse Laplacian in the horizontal variable with

zero mean value. Therefore, one has that

∆−1
h ∆hA = A−

∫
T2

Adxdy. (2.7)

We will need the following extension (lifting) Lemma:
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Lemma 1. There exists a bi-linear extension operator

Eb : D′(T2)×D′(T2) 7→ D′(Ω), (2.8)

such that for any A,B ∈ Hs− 1
2 (T2), Eb(A,B) ∈ Hs(Ω) satisfyingwwEb(A,B)

ww
Hs(Ω)

≤ Cs
wwA,Bww

Hs−1/2(T2)
, (2.9)

and
Eb(A,B)|z=0 = A and Eb(A,B)|z=h = B. (2.10)

Moreover, the following property holds:

∂tEb(A,B) = Eb(∂tA, ∂tB). (2.11)

Proof. Let χ0 : [0, h]→ [0, 1] be a C∞([0, h]) monotonic function such that

χ0(z) =

{
1 in z ∈ [0, h/4),

0 in z ∈ (3h/4, h].
(2.12)

Denote by, ~xh = (x, y)> ∈ T2, for A,B ∈ D′(T2),

A(x, y) =
∑
~k∈Z2

Ake
i2π~k·~xh , and B(x, y) =

∑
~k∈Z2

Bke
i2π~k·~xh . (2.13)

For z ∈ [0, h], we define

Eb(A,B) =
∑
~k∈Z2

Ake
i2π~k·~xhe−|

~k|zχ0(z)

+
∑
~k∈Z2

Bke
i2π~k·~xhe−|

~k|(h−z)(1− χ0(z)).
(2.14)

Then it is easy to verify that Eb(A,B) satisfies the properties in the Lemma.
This finishes the proof.

2.2 Classical quasi-geostrophic approximation and the po-
tential vorticity formulation for inviscid flows

In this section, we review the formal quasi-geostrophic approximation with
only slow waves of system (1.2), i.e., with well-prepared initial data. This
is done by first introducing the formal asymptotic expansion ansatz

ψ(x, y, z, t) := ψ0(x, y, z, t) + εψ1(x, y, z, t) (2.15)
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for ψ ∈ {v, w, p, θ}. Then, after substituting (2.15) in system (1.2) and
matching the O(ε−1) and O(1) terms, one has

(v0)⊥ +∇hp0 = 0, (2.16)

∂zp
0 − θ0 = 0, (2.17)

w0 = 0, (2.18)

∂tv
0 + v0 · ∇hv0 + w0∂zv

0 + (v1)⊥ +∇hp1 = 0, (2.19)

∂tw
0 + v0 · ∇hw0 + w0∂zw

0 + ∂zp
1 − θ1 = 0, (2.20)

∂tθ
0 + v0 · ∇hθ0 + w0∂zθ

0 + w1 = 0, (2.21)

divh v
0 + ∂zw

0 = 0, (2.22)

and

w0|z=0,h = 0. (2.23)

In addition, the O(ε) terms of (1.2d) and (1.2e) yield

divh v
1 + ∂zw

1 = 0, (2.24)

and

w1|z=0,h = 0. (2.25)

Following [10, 17], we introduce the potential vorticity formulation. In-
deed, from (2.16) and (2.17), it follows that

∆p0 = (∆h + ∂zz)p
0 = curlh v

0 + ∂zθ
0. (2.26)

In particular, the quantity on the right hand side of (2.26) is referred to as
the potential vorticity in the literature, and p0 is the corresponding steam
function. In fact, this terminology is justified by observing that the potential
vorticity is transported (see (2.27), below). After applying curlh to (2.19),
∂z to (2.21), and summing up the resulting equations, one arrives at Ertel’s
conservation (transport) of the potential vorticity, i.e.,

∂t∆p
0 + v0 · ∇h∆p0 = 0, (2.27)

where we have applied the fact, thanks to (2.16), (2.17), (2.18), and (2.22),
that

∂zv
0 · ∇hθ0 = 0, w0 = 0, and divh v

0 = 0. (2.28)
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In addition, thanks to (2.17), (2.21), and (2.25), one can show that

∂t(∂zp
0|z=0,h) + v0|z=0,h · ∇h(∂zp

0|z=0,h) = 0. (2.29)

The system formed by (2.16), (2.17), (2.27), and (2.29) is the well-known
potential vorticity formulation of the classical quasi-geostrophic approxima-
tion. In particular, (2.29) describes the evolution of ‘boundary conditions’
for the stream function p0, i.e., ∂zp

0|z=0,h, which is used to invert the Lapla-
cian in v0 = ∇⊥h p0 = ∇⊥h ∆−1

N (∆p0), where ∆−1
N here is the inverse Laplacian

with Neumann type boundary condition at z = 0, h and periodic boundary
condition horizontally. Observe from (2.29) that if ∂zp

0|z=0,h = 0 initially,
it remains zero. This is one of the underlying observation behind the well-
prepared initial data in [10]. In addition, observe that ∆−1

N is unique up
to a constant, which, without loss of generality, can be taken to be zero,
justifying the notation of inverse.

2.3 The slow–fast waves structure: Linear analysis

Our goal in this section is to investigate the linear slow-fast waves structure
of system (1.2). This will guide us to obtain uniform-in-ε estimates as well
as nonlinear waves interaction analysis in the next sections. Without loss
of generality, we write (vl, wl, θl) and pl, i.e., the linear variables, and the
linear system associated with system (1.2) as follows:

∂tvl +
1

ε
v⊥l +

∇hpl
ε

= 0, (2.30a)

∂twl +
∂zpl
ε

−θl
ε

= 0, (2.30b)

∂tθl +
wl
ε

= 0, (2.30c)

divh vl + ∂zwl = 0, (2.30d)

with

wl|z=0,h = 0 i.e., impermeable boundary condition, (2.30e)

and periodic boundary condition horizontally.

The linear version of Ertel’s conservation (transport) of the potential
vorticity (∂zθl + curlh vl) and the corresponding stream function pl read,
thanks to (2.30a), (2.30d), and (2.30e),

∆hpl + ∂zzpl = ∂zθl + curlh vl, ∂t(∆hpl + ∂zzpl) = ∂t(∂zθl + curlh vl) = 0.
(2.31a)
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Meanwhile, taking the trace of (2.30c) to the channel boundary yields

∂tθl|z=0,h = 0. (2.31b)

On the other hand, one can verify that

∂t(∇⊥h θl +∇hwl − ∂zvl) +
1

ε
(∇⊥h θl +∇hwl − ∂zvl)⊥ = 0. (2.31c)

Last but not least, integrating (2.30a) in the horizontal variables yields

∂t

∫
T2

vl(x, y, z) dxdy +
1

ε

(∫
T2

vl(x, y, z) dxdy

)⊥
= 0. (2.31d)

Moreover, observe that (2.30b) and (2.30c) imply

∂t(∂zpl|z=0,h) = 0. (2.32)

Equations (2.31a) and (2.31c) form the linear full generalized potential
vorticity equations. A few remarks about this linear structure are in order:

• While system (2.30) is stable with respect to the L2 norm, i.e., one
can get uniform-in-ε L2 estimate by taking the L2-inner product of
(2.30a), (2.30b), and (2.30c) with respect to vl, wl, and θl, the same
can not be said about the Hs estimate for s ≥ 1. This is due to
the absence of boundary condition for the higher order derivatives
of pl and wl. For this reason, only in the case of periodic spatial
domains (e.g., [17]), or in the case with well-prepared initial data and
∂zpl|z=0,h = 0 (e.g., [10]; see (2.32)), one can verify the uniform Hs

estimates and the asymptotic limit as ε→ 0+;

• On the other hand, (2.31a), (2.31c), and (2.31d) completely eliminate
pl, and in particular, the underlying quantities in this system are stable
with respect to any spatial derivatives. Therefore, one can get uniform-
in-ε Hs estimates without any restriction for these quantities;

• To be more precise, the estimates of the horizontal derivatives can
be achived from (2.30). Then from (2.31a), (2.31c), and (2.30d), one
can derive the estimates of ∂zθl, ∂zvl, and ∂zwl, respectively, in terms
of the horizontal derivatives. Bootstrap arguments will lead to Hs

estimates;
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• One can regard (2.31a) and (2.31b) as the equations of the slow waves
(dynamics), and (2.31c) and (2.31d) as the equations of the fast waves
(dynamics). That is, one is able to separate the slow and fast state
variables;

• From (2.30c) and (2.31c), one can conclude that as ε→ 0, wl,∇⊥h θl −
∂zvl ⇀ 0, weakly in the sense of distribution. This is consistent with
(2.16), (2.17), and (2.18).

Now we shall write down the slow-fast waves of linear system (2.30).
Denote by

Φl(x, y, z, t) :=∂zθl + curlh vl (the potential vorticity), (2.33)

Ψl(x, y, z, t) :=∇⊥h θl +∇hwl − ∂zvl, (2.34)

Hl,0(x, y, t) :=θl|z=0, (2.35)

Hl,h(x, y, t) :=θl|z=h, (2.36)

and

Zl(z, t) :=

∫
T2

vl(x, y, z) dxdy. (2.37)

Correspondingly, let Φin, Ψin, H0,in, Hh,in, and Zin be the initial data at
t = 0 for Φl, Ψl, Hl,0, Hl,h, and Zl, respectively. In particular, Φl and Ψl

form the generalized potential vorticity, and are the main ingredient of, and
to be explored later in, this work. Then it follows from system (2.31), that

linear slow variables: Φl(t) ≡ Φin, Hl,0(t) ≡ H0,in, Hl,h(t) ≡ Hh,in,

linear fast variables: Ψl(t) = eit/ε
Ψin + iΨ⊥in

2
+ e−it/ε

Ψin − iΨ⊥in
2

,

and Zl(t) = eit/ε
Zin + iZ⊥in

2
+ e−it/ε

Zin − iZ⊥in
2

.

(2.38)
We claim that (Φl,Ψl, Hl,0, Hl,h, Zl) as in (2.38) provide complete in-

formation on the solutions of system (2.30). This can be seen by writing
(vl, wl, θl) in terms of (Φl,Ψl, Hl,0, Hl,h, Zl). First, taking divh and curlh to
(2.34) yields that, respectively, thanks to (2.30d) and (2.33),

∆hwl + ∂zzwl = divh Ψl (2.39)
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and

∆hθl + ∂zzθl = ∂zΦl + curlh Ψl or, equivalently

∆(θl − Eb(Hl,0, Hl,h)) = curlh Ψl + ∂zΦl −∆Eb(Hl,0, Hl,h). (2.40)

Note that, thanks to (2.10), (2.30e), (2.35), and (2.36),

wl|z=0,h = 0 and (θl − Eb(Hl,0, Hl,h))|z=0,h = 0.

Therefore, let ∆−1
D be the three-dimensional inverse Laplacian with Dirichlet

boundary condition on {z = 0, h} and periodic boundary condition in the
horizontal directions. From (2.39) and (2.40), one has

wl =∆−1
D divh Ψl (2.41)

and

θl =Eb(Hl,0, Hl,h) + ∆−1
D (curlh Ψl + ∂zΦl −∆Eb(Hl,0, Hl,h)). (2.42)

To calculate vl, let ∆−1
h be the two-dimensional inverse Laplace with zero

horizontal mean value. Then, thanks to (2.30d) and (2.33), one has

divh vl = −∂zwl and curlh vl = Φl − ∂zθl, (2.43)

and, therefore, it follows that

vl = Zl +∇h∆−1
h divh vl +∇⊥h ∆−1

h curlh vl,

or, after substituting (2.43), (2.41), and (2.42) in the above expression, one
has

vl =Zl −∇h∆−1
h ∂z(∆

−1
D divh Ψl)

+∇⊥h ∆−1
h [Φl − ∂zEb(Hl,0, Hl,h)

− ∂z∆−1
D (curlh Ψl + ∂zΦl −∆Eb(Hl,0, Hl,h))].

(2.44)

We remind the reader that (Φl,Ψl, Hl,0, Hl,h, Zl) are as in (2.38), with (Ψl, Zl)
being fast state variables and (Φl, Hl,0, Hl,h) slow state variables. Therefore,
one can decompose vl, wl, θl in terms of slow and fast waves in an unam-
biguous fashion.
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3 Uniform-in-ε estimates of the Euler equations
with fast Rossby and gravity waves

In this and the following sections, we will proceed to the nonlinear analysis.
In particular, we focus in this section on the uniform-in-ε estimates for
system (1.2) in this section. Inspired by the discussion in section 2.3, we
define

Φ(x, y, z, t) :=∂zθ + curlh v, (3.1)

Ψ(x, y, z, t) :=∇⊥h θ +∇hw − ∂zv, (3.2)

H0(x, y, t) :=θ|z=0, (3.3)

Hh(x, y, t) :=θ|z=h, (3.4)

and

Z(z, t) :=

∫
T2

v(x, y, z, t) dxdy. (3.5)

Recall that Φ and Ψ form the generalized potential vorticity. From
(1.2a), (1.2b), (1.2c), and (1.2d), one can write down the following equations

∂tcurlh v + v · ∇hcurlh v + w∂zcurlh v

+curlh v · divh v + ∂zv · ∇⊥hw −
∂zw

ε
= 0,

(3.6)

∂t∂zv + v · ∂zv + w∂z∂zv +
∂zv
⊥

ε
+
∇h∂zp
ε

+∂zv · ∇hv + ∂zw∂zv = 0,

(3.7)

∂t∇hw + v · ∇h∇hw + w∂z∇hw +
∇h∂zp
ε
− ∇hθ

ε

+(∇hv)>∇hw + ∂zw∇hw = 0,
(3.8)

∂t∇hθ + v · ∇h∇hθ + w∂z∇hθ +
∇hw
ε

+(∇hv)>∇hθ + ∂zθ∇hw = 0,
(3.9)

∂t∂zθ + v · ∇h∂zθ + w∂z∂zθ +
∂zw

ε
+∂zv · ∇hθ + ∂zw∂zθ = 0.

(3.10)

Consequently, one has, from system (1.2), that

∂tΦ + v · ∇hΦ + w∂zΦ +N1 = 0, (3.11a)

∂tΨ + v · ∇hΨ + w∂zΨ +
1

ε
Ψ⊥ +N2 = 0, (3.11b)
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∂tH0 + v|z=0 · ∇hH0 = 0, (3.11c)

∂tHh + v|z=h · ∇hHh = 0, (3.11d)

∂tZ +
1

ε
Z⊥ +N3 = 0, (3.11e)

where

N1 :=curlh v · divh v + ∂zv · ∇⊥hw + ∂zv · ∇hθ + ∂zw∂zθ, (3.11f)

N2 :=((∇hv)>∇hθ)⊥ + ∂zθ · ∇⊥hw + (∇hv)>∇hw + ∂zw∇hw
− ∂zv · ∇hv − ∂zw∂zv, (3.11g)

N3 :=

∫
T2

∂z(wv) dxdy. (3.11h)

We continue with the uniform-in-ε estimates in the following steps: 1.
establish estimates for the horizontal derivatives; then 2. establish estimates
for the vertical derivatives; finally, 3. close the estimates.

Estimates for the horizontal derivatives

Let ∂h ∈ {∂x, ∂y} and α ∈ {0, 1, 2, 3}. Applying ∂αh to system (1.2) leads to

∂t∂
α
h v + (v · ∇h + w∂z)∂

α
h v +

1

ε
∂αh v

⊥ +
∇h∂αh p
ε

+∂αh (v · ∇hv + w∂zv)− (v · ∇h + w∂z)∂
α
h v = 0,

(3.12)

∂t∂
α
hw + (v · ∇h + w∂z)∂

α
hw +

∂z∂
α
h p

ε
−
∂αh θ

ε
+∂αh (v · ∇hw + w∂zw)− (v · ∇h + w∂z)∂

α
hw = 0,

(3.13)

∂t∂
α
h θ + (v · ∇h + w∂z)∂

α
h θ +

∂αhw

ε
+∂αh (v · ∇hθ + w∂zθ)− (v · ∇h + w∂z)∂

α
h θ = 0,

(3.14)

divh ∂
α
h v + ∂z∂

α
hw = 0, ∂hw|z=0,h = 0. (3.15)

Taking the L2-inner product of (3.12)–(3.14) with 2∂αh v, 2∂
α
hw, 2∂

α
h θ, respec-

tively, applying integration by parts, and summing up the resultants lead
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to

d

dt

ww∂αh v, ∂αhw, ∂αh θww2

L2(Ω)

= −2

∫
[∂αh (v · ∇hv + w∂zv)− (v · ∇h + w∂z)∂

α
h v] · ∂αh v d~x

−2

∫
[∂αh (v · ∇hw + w∂zw)− (v · ∇h + w∂z)∂

α
hw]× ∂αhw d~x

−2

∫
[∂αh (v · ∇hθ + w∂zθ)− (v · ∇h + w∂z)∂

α
h θ]× ∂αh θ

≤ C
wwv, w, θww1/2

H2(Ω)
×
wwv, w, θww5/2

H3(Ω)
,

(3.16)

for some generic constant C ∈ (0,∞), where in the last inequality we have
applied the Hölder inequality, the Gagliardo-Nirenberg inequality, and the
Sobolev embedding inequality.

Estimates for the vertical derivatives

As before, let ∂ ∈ {∂x, ∂y, ∂z} and β ∈ {0, 1, 2}. Applying ∂β to equations
(3.11a) and (3.11b) leads to

∂t∂
βΦ + (v · ∇h + w∂z)∂

βΦ + ∂βN1

+∂β(v · ∇hΦ + w∂zΦ)− (v · ∇h + w∂z)∂
βΦ = 0,

(3.17)

∂t∂
βΨ + (v · ∇h + w∂z)∂

βΨ +
1

ε
∂βΨ⊥ + ∂βN2

+∂β(v · ∇hΨ + w∂zΨ)− (v · ∇h + w∂z)∂
βΨ = 0.

(3.18)

Taking the L2-inner product of (3.17) and (3.18) with 2∂βΦ and 2∂βΨ,
respectively, applying integration by parts, and summing up the resultants
lead to

d

dt

ww∂βΦ, ∂βΨ
ww2

L2(Ω)
= −2

∫ (
∂βN1 · ∂βΦ + ∂βN2 · ∂βΨ

)
d~x

−2

∫
[∂β(v · ∇hΦ + w∂zΦ)− (v · ∇h + w∂z)∂

βΦ] · ∂βΦ d~x

−2

∫
[∂β(v · ∇hΨ + w∂zΨ)− (v · ∇h + w∂z)∂

βΨ] · ∂βΨ d~x

≤ C
wwv, w, θww2

H3(Ω)

wwΦ,Ψ
ww
H2(Ω)

+ C
wwv, w, θww

H3(Ω)

wwΦ,Ψ
ww2

H2(Ω)
,

(3.19)

for some absolute constant C ∈ (0,∞), where in the last inequality we have
applied the Hölder inequality, the Gagliardo-Nirenberg inequality, and the
Sobolev embedding inequality.
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Closing the estimates

Define the total “energy” functional by

E :=
wwΦ,Ψ

ww2

H2(Ω)
+
∑

∂h∈{∂x,∂y},
α∈{0,1,2,3}

ww∂αh v, ∂αhw, ∂αh θww2

L2(Ω)
. (3.20)

We observe that

1

C

wwv, w, θww2

H3(Ω)
≤ E ≤ C

wwv, w, θww2

H3(Ω)
, (3.21)

for some generic constant C ∈ (0,∞). Indeed, the right-hand side inequality
in (3.21) follows directly from the definition of Φ and Ψ in (3.1) and (3.2).
To show the left-hand side inequality, notice that

∂zv = −Ψ +∇⊥h θ +∇hw, ∂zθ = Φ− curlh v,

and

∂zw = −divh v.

Thus, ∑
α∈{0,1,2}

ww∂αh∂zv, ∂αh∂zw, ∂αh∂zθwwL2(Ω)
≤ CE.

Similarly, following a bootstrap argument on the derivatives implies the left-
hand side part of (3.21).

Consequently, (3.16) and (3.19) yield

d

dt
E ≤ CE3/2, (3.22)

for some generic constant C ∈ (0,∞). In particular, from (3.22) and (3.21),
one concludes that there exists T ∈ (0,∞), depending only on the initial
data and independent of ε, such that

sup
0≤t≤T

wwv(t), w(t), θ(t)
ww2

H3(Ω)
≤ C sup

0≤t≤T
E(t) ≤ 2C2

wwvin, win, θin

ww2

H3(Ω)
,

(3.23)
for the same constant C as in (3.21). This finishes the proof of Theorem
1.1.
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4 Convergence theory

4.1 Convergence theory: Part 1, compactness

What is left is to establish the convergence of the solutions to system (1.2) as
ε→ 0+, which we will do in two steps. In this subsection, we will conclude
the weak and strong compactness, thanks to the uniform estimate (3.23). In
the next subsection, we will deal with the convergence of the nonlinearities.

In the rest of this paper, we denote by T ∈ (0,∞) the uniform-in-ε
existence time established in section 3 at (3.23). Cin ∈ (0,∞) will denote a
constant that is independent of ε, different from line to line, depending only
on the initial data. With such notations, thanks to (3.23), by virtue of the
definitions of Φ, Ψ, H0, Hh, and Z in (3.1)–(3.5), respectively, we have

sup
0≤t≤T

(wwΦ(t),Ψ(t)
ww
H2(Ω)

+
wwH0(t), Hh(t)

ww
H5/2(T2)

+
wwZ(t)

ww
H3(Ω)

)
≤ Cin.

(4.1)
Similarly, from (3.11f)–(3.11h), it follows that

sup
0≤t≤T

(wwN1, N2, N3

ww
H2(Ω)

)
≤ Cin. (4.2)

From (3.11a)–(3.11e), one has, thanks to (3.23), (4.1), and (4.2), that

sup
0≤t≤T

(ww∂tΦ(t), ε∂tΨ(t)
ww
H1(Ω)

+
ww∂tH0(t), ∂tHh(t)

ww
H3/2(T2)

+
wwε∂tZ(t)

ww
H2(Ω)

)
≤ Cin.

(4.3)

Consequently, by virtue of the Aubin compactness theorem [51, Theorem
2.1], there exist

Φp,Ψp ∈ L∞(0, T ;H2(Ω)), Hp,0, Hp,h ∈ L∞(0, T ;H5/2(T2)),

and Zp, vp, wp, θp ∈ L∞(0, T ;H3(Ω)),
(4.4)

with

∂tΦp ∈ L∞(0, T ;H1(Ω), ∂tHp,0, ∂tHp,h ∈ L∞(0, T ;H3/2(T2), (4.5)

such that there exists a subsequence of ε that as ε→ 0+,

Φ,Ψ
∗
⇀ Φp,Ψp weak-∗ in L∞(0, T ;H2(Ω)), (4.6)

H0, Hh
∗
⇀ Hp,0, Hp,h weak-∗ in L∞(0, T ;H5/2(T2)), (4.7)

Z, v, w, θ
∗
⇀ Zp, vp, wp, θp weak-∗ in L∞(0, T ;H3(Ω)), (4.8)
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∂tΦ
∗
⇀ ∂tΦp weak-∗ in L∞(0, T ;H1(Ω)) (4.9)

∂tH0, ∂tHh
∗
⇀ ∂tHp,0, ∂tHp,h weak-∗ in L∞(0, T ;H3/2(T2)) (4.10)

and

Φ→ Φp in C([0, T ];H1(Ω)), (4.11)

H0, Hh → Hp,0, Hp,h in C([0, T ];H3/2(T2)) (4.12)

Furthermore, from (1.2c), (3.11b) and (3.11e), after sending ε→ 0+, one
can verify that wp = Ψp = Zp ≡ 0. In fact, after taking the inner product
of corresponding equations with ε and a test function in D′((0, T )×Ω) and
passing the limit ε→ 0+, it is easy to verify that wp = Ψp = Zp ≡ 0 in the
sense of distribution. Then it follows from the regularity of wp,Ψp, and Zp
that they are equal to zero. Following similar arguments from the definition,
it is easy to show that,

wp = 0, Φp = ∂zθp + curlh vp, ∇⊥h θp +∇hwp − ∂zvp = 0,

divh vp + ∂zwp = 0, Hp,0 = θp|z=0, Hp,h = θp|z=h,

and

∫
T2

vp(x, y, z) dxdy = 0,

(4.13)

or, equivalently, repeating similar calculation as in (2.39)–(2.44), one has

wp = 0, θp = Eb(Hp,0, Hp,h) + ∆−1
D (∂zΦp −∆Eb(Hp,0, Hp,h)),

and vp = ∇⊥h ∆−1
h [Φp − ∂zEb(Hp,0, Hp,h)

− ∂z∆−1
D (∂zΦp −∆Eb(Hp,0, Hp,h))].

(4.13’)

Remark 2. We can perform the following calculation to rewrite θp. Let
P := ∆−1

h [Φp − ∂zEb(Hp,0, Hp,h) − ∂z∆−1
D (∂zΦp − ∆Eb(Hp,0, Hp,h))]. Then

direct calculation shows that

∂zP =∆−1
h [∂zΦp − ∂zzEb(Hp,0, Hp,h)

− (∆−∆h)∆−1
D (∂zΦp −∆Eb(Hp,0, Hp,h))]

= Eb(Hp,0, Hp,h) + ∆−1
D (∂zΦp −∆Eb(Hp,0, Hp,h))︸ ︷︷ ︸

=θp

−
∫
T2

[
Eb(Hp,0, Hp,h) + ∆−1

D (∂zΦp −∆Eb(Hp,0, Hp,h))
]
dxdy︸ ︷︷ ︸

=:Q(z)

,
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where we have applied (2.5) and (2.7). Together with (4.13’), we have

θp = ∂z(P +

∫ z

0
Q(z′) dz′) and vp = ∇⊥h (P +

∫ z

0
Q(z′) dz′).

This is consistent with the classical theory of the quasi-geostrophic approx-
imation. See, for instance, [10,17].

Next, to handle the fast waves, i.e., Ψ and Z, following Schochet’s theory
[49], from (3.11b) and (3.11e), one has

∂t[e
∓i t

ε (Ψ± iΨ⊥)] = −v · ∇h[e∓i
t
ε (Ψ± iΨ⊥)]

−w∂z[e∓i
t
ε (Ψ± iΨ⊥)]− e∓i

t
ε (N2 ± iN⊥2 ),

(4.14)

and ∂t[e
∓i t

ε (Z ± iZ⊥)] = −e∓i
t
ε (N3 ± iN⊥3 ). (4.15)

From (4.14) and (4.15), thanks to (3.23), (4.1), and (4.2), it follows that

sup
0≤t≤T

(ww∂t[e∓i tε (Ψ(t)± iΨ⊥(t))]
ww
H1(Ω)

+
ww∂t[e∓i tε (Z(t)± iZ⊥(t))]

ww
H2(Ω)

+
wwe∓i tε (Ψ(t)± iΨ⊥(t))

ww
H2(Ω)

+
wwe∓i tε (Z(t)± iZ⊥(t))

ww
H3(Ω)

)
≤ Cin.

(4.16)
Therefore, by the Aubin compactness theorem [51, Theorem 2.1], there exist

ψp,± ∈ L∞(0, T ;H2(Ω)), zp,± ∈ L∞(0, T ;H3(Ω)),

∂tψp,± ∈ L∞(0, T ;H1(Ω)), and ∂tzp,± ∈ L∞(0, T ;H2(Ω)),
(4.17)

such that there exists a subsequence of ε that as ε→ 0+,

Ψ±
∗
⇀ ψp,± weak-∗ in L∞(0, T ;H2(Ω)), (4.18)

Z±
∗
⇀ zp,± weak-∗ in L∞(0, T ;H3(Ω)), (4.19)

∂tΨ±
∗
⇀ ∂tψp,± weak-∗ in L∞(0, T ;H1(Ω)), (4.20)

∂tZ±
∗
⇀ ∂tzp,± weak-∗ in L∞(0, T ;H2(Ω)), (4.21)

and

Ψ± → ψp,± in C([0, T ];H1(Ω)), (4.22)

Z± → zp,± in C([0, T ];H2(Ω)), (4.23)

where

Ψ± := e∓i
t
ε (Ψ(t)± iΨ⊥(t)) and Z± := e∓i

t
ε (Z(t)± iZ⊥(t)). (4.24)
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In particular, directly one can verify that

2Ψ− (ei
t
εψp,+ + e−i

t
εψp,−) = ei

t
ε (Ψ+ − ψp,+) + e−i

t
ε (Ψ− − ψp,−)

→ 0 in L∞(0, T ;H1(Ω)), as ε→ 0+,
(4.25)

and

2Z − (ei
t
ε zp,+ + e−i

t
ε zp,−) = ei

t
ε (Z+ − zp,+) + e−i

t
ε (Z− − zp,−)

→ 0 in L∞(0, T ;H2(Ω)), as ε→ 0+.
(4.26)

To conclude this section, we write the fast-slow-error decomposition of
v, w, θ. Let

W± :=
1

2
∆−1
D divh ψp,±, Θ± :=

1

2
∆−1
D curlh ψp,±, and

V± :=
1

2

(
zp,± −∇h∆−1

h ∂z∆
−1
D divh ψp,± −∇⊥h ∆−1

h ∂z∆
−1
D curlh ψp,±

)
.

(4.27)
Thanks to (4.17), one has that

W±,Θ±, V± ∈ L∞(0, T ;H3(Ω))

and ∂tW±, ∂tΘ±, ∂tV± ∈ L∞(0, T ;H2(Ω)).
(4.28)

Repeating the exact calculation as in (2.39)–(2.44) leads to

w =∆−1
D divh Ψ = ei

t
εW+︸ ︷︷ ︸

=:wfast,+

+ e−i
t
εW−︸ ︷︷ ︸

=:wfast,−

+werr, (4.29)

θ =Eb(H0, Hh) + ∆−1
D (curlh Ψ + ∂zΦ−∆Eb(H0, Hh))

= Eb(H0, Hh) + ∆−1
D (∂zΦ−∆Eb(H0, Hh))︸ ︷︷ ︸

=:θslow

+ ei
t
ε Θ+︸ ︷︷ ︸

=:θfast,+

+ e−i
t
ε Θ−︸ ︷︷ ︸

=:θfast,−

+ θerr,

(4.30)

and

v =Z −∇h∆−1
h ∂z(∆

−1
D divh Ψ)

+∇⊥h ∆−1
h [Φ− ∂zEb(H0, Hh)

− ∂z∆−1
D (curlh Ψ + ∂zΦ−∆Eb(H0, Hh))]

=
∇⊥h ∆−1

h [Φ−∂zEb(H0,Hh)

−∂z∆−1
D (∂zΦ−∆Eb(H0,Hh))]︸ ︷︷ ︸

=:vslow

+ ei
t
εV+︸ ︷︷ ︸

=:vfast,+

+ e−i
t
εV−︸ ︷︷ ︸

=:vfast,−

+verr,

(4.31)

23



where, thanks to (4.1), (4.17), (4.25), and (4.26), the error terms satisfy

sup
0≤t≤T

wwverr(t), werr(t), θerr(t)
ww
H3(Ω)

≤ Cin,

verr, werr, and θerr → 0 in L∞(0, T ;H2(Ω)), as ε→ 0+.
(4.32)

In addition, thanks to (2.9), (4.3), (4.6), (4.7), (4.11), (4.12) and (4.13’), we
have

sup
0≤t≤T

wwvslow, θslow

ww
H3(Ω)

≤ Cin and

sup
0≤t≤T

ww∂tvslow(t), ∂tθslow(t)
ww
H2(Ω)

≤ Cin.
(4.33)

Moreover, there exists a subsequence of ε that as ε→ 0+, we also have

vslow, θslow → vp, θp in C(0, T ;H2(Ω)),

and vslow, θslow
∗
⇀ vp, θp weak-∗ in L∞(0, T ;H3(Ω)),

as ε→ 0+.
(4.34)

4.2 Convergence theory: Part 2, convergence of the nonlin-
earities

In this section, we finish the convergence theory by investigating the con-
vergence of the nonlinearities.

Convergence of the slow waves (3.11a), (3.11c), and (3.11d)

First, we investigate N1, defined in (3.11f). Notice that N1 is quadratic.
substituting (4.29)–(4.31), we write

N1 = curlh vslow · divh vslow + ∂zvslow · ∇hθslow︸ ︷︷ ︸
=:N1,slow

+
curlh vfast,± · divh vfast,∓ + ∂zvfast,± · ∇⊥hwfast,∓

+ ∂zvfast,± · ∇hθfast,∓ + ∂zwfast,±∂zθfast,∓︸ ︷︷ ︸
=:N1,res

+
curlh vslow·divh vfast,±+curlh vfast,±·divh vslow

+∂zvslow·∇⊥h wfast,±+∂zvslow·∇hθfast,±
+∂zvfast,±·∇hθslow+∂zwfast,±∂zθslow︸ ︷︷ ︸

=:N1,fast,1

+
curlh vfast,± · divh vfast,± + ∂zvfast,± · ∇⊥hwfast,±

+ ∂zvfast,± · ∇hθfast,± + ∂zwfast,±∂zθfast,±︸ ︷︷ ︸
=:N1,fast,2
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+ the rest terms︸ ︷︷ ︸
=:N1,err

.

Then thanks to (3.23), (4.28), (4.32), and (4.34), we have, as ε→ 0+,

N1,slow → curlh vp · divh vp + ∂zvp · ∇hθp = 0 in C([0, T ];H1(Ω)),
(4.35)

N1,fast,1, N1,fast,2 ⇀ 0 weakly in Lp(0, T ;H1(Ω)) ∀p ∈ (1,∞),
(4.36)

N1,err → 0 in L∞(0, T ;H1(Ω)), (4.37)

and

N1,res → curlh V± · divh V∓ + ∂zV± · ∇⊥hW∓ + ∂zV± · ∇hΘ∓ + ∂zW±∂zΘ∓

in L∞(0, T ;H2(Ω)).
(4.38)

Consequently, as ε→ 0+, in the sense of distribution, the limit of equa-
tion (3.11a) is

∂tΦp + vp · ∇hΦp + wp∂zΦp + curlh V± · divh V∓

+∂zV± · ∇⊥hW∓ + ∂zV± · ∇hΘ∓ + ∂zW±∂zΘ∓ = 0.
(4.39)

Here we have omitted the convergence of the advection terms, which is left
to the reader.

The limit equations of (3.11c) and (3.11d) follow similarly. The proof is
left to the reader and we only state the result as follows:

∂tHp,0 + vp|z=0 · ∇hHp,0 = 0, (4.40)

∂tHp,h + vp|z=h · ∇hHp,h = 0. (4.41)

We remind the reader that vp, wp, θp (V±,W±,Θ±, respectively) are de-
termined by Φp, Hp,0, Hp,h (ψp,±, zp,±), respectively), as in (4.13’) ((4.27),
respectively). Therefore, the equations for Φp, Hp,0, and Hp,h, i.e., (4.39),
(4.40), and (4.41), can be considered as the equations of vp, wp, θp, with
source terms given by the resonances involving V±, W±, and Θ± (equiv-
alently ψp,± and zp,±). To close the system, we will investigate the limit
equations of (4.14) and (4.15) in the following.
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Convergence of the fast waves (4.14) and (4.15)

Using the notation of (4.24), (4.14) and (4.15) can be written as

∂tΨ± + v · ∇hΨ± + w∂zΨ± + e∓i
t
ε (N2 ± iN⊥2 ) = 0, (4.14’)

∂tZ± + e∓i
t
ε (N3 ± iN⊥3 ) = 0. (4.15’)

Thanks to (4.8) and (4.18)–(4.23), we only need to investigate the limit of

e∓i
t
εN2 and e∓i

t
εN3.

Repeating the same arguments as for N1, above, one can show that

e∓i
t
εN2 =e∓i

t
ε
(
(∇hvfast,±)>∇hθslow + (∇hvslow)>∇hθfast,±

)⊥
+ e∓i

t
ε∂zθslow · ∇⊥hwfast,± + e∓i

t
ε (∇hvslow)>∇hwfast,±

− e∓i
t
ε (∂zvfast,± · ∇hvslow + ∂zvslow · ∇hvfast,±)

− e∓i
t
ε∂zwfast,±∂zvslow + the rest︸ ︷︷ ︸

⇀0 in the sense of distribution

.

After substituting (4.29)–(4.31) and sending ε→ 0+, it follows that

e∓i
t
εN2 ⇀

(
(∇hV±)>∇hθp + (∇hvp)>∇hΘ±

)⊥
+ ∂zθp · ∇⊥hW± + (∇hvp)>∇hW±
− ∂zV± · ∇hvp − ∂zvp · ∇hV± − ∂zW±∂zvp =: Nψ

in Lp(0, T ;H1(Ω)) ∀p ∈ (1,∞).

(4.42)

Therefore, the limit of (4.14) as ε→ 0+ is

∂tψp,± + vp · ∇hψp,± + wp∂zψp,± + (Nψ ± iN⊥ψ ) = 0. (4.43)

Last but not least, one has that

e∓i
t
εN3 =e∓i

t
ε

∫
T2

∂z(wfast,±vslow) dxdy + the rest︸ ︷︷ ︸
⇀0 in the sense of distribution

,

and thus

e∓i
t
εN3 ⇀

∫
T2

∂z(W±vp) dxdy =: Nz

in Lp(0, T ;H1(Ω)) ∀p ∈ (1,∞).

(4.44)

Consequently, as ε→ 0+, the limit of (4.15) is

∂tzp,± + (Nz ± iN⊥z ) = 0. (4.45)
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Conclusion

The limit system for the slow limit variables Φp, Hp and the fast limit vari-
ables ψp,±, zp,± is then, from (4.39), (4.40), (4.41), (4.43), and (4.45),

∂tΦp + vp · ∇hΦp +NΦ = 0, (4.46a)

∂tHp,0 + vp|z=0 · ∇hHp,0 = 0, (4.46b)

∂tHp,h + vp|z=h · ∇hHp,h = 0, (4.46c)

∂tψp,± + vp · ∇hψp,± + (Nψ ± iN⊥ψ ) = 0, (4.46d)

∂tzp,± + (Nz ± iN⊥z ) = 0, (4.46e)

where

NΦ := curlh V± · divh V∓ + ∂zV± · ∇⊥hW∓ + ∂zV± · ∇hΘ∓ + ∂zW±∂zΘ∓,
(4.46f)

and Nψ and Nz are defined in (4.42) and (4.44), above, respectively. This
finishes the proof of Theorem 1.2.
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