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Abstract

This paper considers the asymptotic limit of small aspect ratio between
vertical and horizontal spatial scales for viscous isothermal compressible
flows. In particular, it is observed that fast vertical acoustic waves arise
and induce an averaging mechanism of the density in the vertical variable,
which at the limit leads to the hydrostatic approximation of compressible
flows, i.e., the compressible primitive equations of atmospheric dynamics.
We justify the hydrostatic approximation for general as well as “well-
prepared” initial data. The initial data is called well-prepared when it
is close to the hydrostatic balance in a strong topology. Moreover, the
convergence rate is calculated in the well-prepared initial data case in
terms of the aspect ratio, as the latter goes to zero.
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1 Introduction

1.1 Hydrostatic approximation of compressible flows

The compressible primitive equations of atmospheric dynamics are the hydro-
static approximation of the compressible hydrodynamic equations, which are
obtained by replacing the evolutionary vertical momentum equation with the
hydrostatic balance equation (see 3, below). A formal derivation can be
found, e.g., in . The small aspect ratio in the atmosphere between the
vertical scale and the horizontal planetary scale plays an essential role in this
derivation and is the main factor behind the hydrostatic approximation. The
hydrostatic approximation is commonly used in the atmospheric science mod-
els, and has successfully simplified the complex hydrodynamic equations and
their computational aspects. In this work, our goal is to rigorously justify
the hydrostatic approximation for viscous compressible flows and to provide a
mathematical foundation for its application. For more backgrounds about the
hydrostatic approximation, see, e.g.,

Recall that the dynamics of compressible isothermal flow in a thin periodic
channel domain is governed, after omitting the viscosities, by the isothermal
compressible Euler equations in the domain Q. = 2T?x (0, ¢), for smalle € (0, 1):

Op + divy (pv) 4+ 0, (pw) = 0, in Q,
patv + pv - Viv + pwazv + vhp =0, in Q&v (EQ)
porw + pv - Vyw 4+ pwo,w + 0,p =0, in O,

subject to the impenetrable boundary condition at the wall boundaries

w’ =0,

z=0,¢e

where p, v, w represent the unknown density, the horizontal velocity, and the
vertical velocity, respectively. Here divy, V}, represent the horizontal divergence



and the horizontal gradient, respectively (see section below). 2T? C R? is
the periodic horizontal domain (flat torus) with period 2 in each direction.

Alternatively, set o := log p, which, for simplicity, we will still refer to as the
density. Then, in the region where p > 0, is equivalent to

0io +v - Vypo +wd,o +divypy + 0,w =0, in .,
v +v-Vyv+wd,v+ Vyo =0, in Q., (EQ)
ow+v-Vyw +wo,w+ 0,0 =0, in Q,

with w’zzo . =0.Ase— 0%, it is expected that

(é /05 o(,2")d7, % /06 v(-,2")dz")

will converge to solutions to the two-dimensional compressible Euler equations.
This has been verified in the viscous case (i.e., the compressible Navier-Stokes
equations) in [2] (see also [45]). In view of multi-scale analysis, this is to say
that, if one considers the multi-scale expansion of the solutions to by
writing

J(xayvzat) :UO(x,y,z/E,t) +€Ul(xvy7z/€vt) +
”(%%Z,t) :U0(1'7y,2’/€7t) —|—€vl(1:,y7z/€,t) +ey
w(xayvz7t> :wo(x,y,z/g,t) + EUIl(l‘,y’Z/E,t) +- 5

it should be expected that ( fol o0, 2") d2’, j;)l v9(+, 2) d2’) solves the two-dimensional
compressible Euler equations and w® = 0. Therefore, the non-trivial leading or-

der of the vertical velocity w is w', and one can easily check that the equations
satisfied by (o9, v, w') are exactly given by the inviscid compressible primitive
equations, i.e., equations , below, without the viscosities. To capture the
above scale analysis rigorously, we consider the ansatz

o(x,y, z) :=0:(x,y, z/€),
v(x,y,z) 3:U5($,y,2/€), (1)

w(z,y, z) =ewe(z,y, 2/¢),

and denote by 2’ := z/e € (0,1) and Q := 2T? x (0,1). Then we write down the
equations satisfied by (o, ve, w.) in £, taking into account the eddy viscosities:

010 + e - Vyoe + we0,0. + divpve + 0, w. = 0, in €,
atve + ve - tha + wsazvs + Vhae = Ahva + azzvsa in Q, (2)
e? (8tw5 4+ ve - Vhwe + waazws) + 0,0, = €2 (Ahw5 + 8zzw€), in Q,

subject to the impenetrable and stress-free boundary conditions at the wall
boundaries

w€|z=0,1 =0, 8Zva|z=0,1 =0, 3)



where we have dropped the prime sign for the vertical variable.

We remark that (2]) can also be obtained by considering ansatz in the
viscous version of with viscosities Apve +e720,,v. and Apw, +e20,,w,
on the right-hand side of the horizontal momentum equation 2 and the
vertical momentum equation (EQJ),, respectively.

Let us observe that the solutions to is invariant with respect to the
following symmetry:

0c, Ve, We are even, even, and odd in the z-variable, respectively. (SYM)

For this reason, in this work, we equivalently consider the following viscous
compressible hydrodynamic system with turbulence eddy viscosities: for small
e€(0,1),

0o + v, - Vpoo + w.0,0. + divpv, + 0w, = 0, in 2T3,
Opve + Vs - Ve + we0,0. + Voo = Apve + 0,,0., in 2T3, (4)
e? (atws + ve - Vawe + weazws) +0.0. = €2 (Ahwe + azzws)v in 2T3a

satisfying the symmetry in and the periodic boundary condition in all
directions. Notice that the boundary conditions in (3) are automatically satisfied
by regular solutions to owing to symmetry , and one can obtain a
solution to with by restricting any regular solution of to the domain
Q

The formal limit system of (4)), as ¢ — 07T, is

Oop + vp - Viop +wp0,0p + divyv, + 0w, = 0, in 2T3,
Orvp + vy - Vv + wp0,vp + Viop = Apvy + 05,0,  in 2T3, (5)
0,0p =0, in 2T3,

satisfying the same symmetry as in (SYM)), with o, ve, w. replaced by op, vp, wp,
respectively.

Before we move on to the discussion of our strategy to rigorously establish
the aforementioned limiting problem, we would like to mention some relevant
previous results.

As for the compressible hydrodynamic equations for viscous flows, i.e., the
compressible Navier-Stokes equations, the derivation of the system can be found
in [1839]. In [18/40], global weak solutions to the compressible Navier-Stokes
equations are constructed. Recently, the authors in [33] and [55] independently
construct global weak solutions to the compressible Navier-Strokes equations
with degenerate viscosities. See also [3] and [5] for relevant developments. As
for the strong solutions of the compressible Navier-Stokes equations, [13H15/31]
establish the local well-posedness of strong and classical solutions with vac-
uum. Without vacuum, the local well-posedness theory can be dated back
to [29,/51,53]. The first global well-posedness result is established in [46,[47],
where the asymptotic stability of constant states is studied with respect to



small perturbations. A global existence theorem with vacuum and small energy
is given in [28] (see also [27]). We refer readers, for other developments of the
compressible Navier-Stokes equations to, e.g., [4,23}24}/26}/56}/59].

As for the compressible primitive equations (PE) (5]), one can find the me-
teorological discussion and applications of the system in, e.g., [50] and [58]. In
two dimensions, the global weak solutions are constructed in [16,20]. The sta-
bility of weak solutions is established in [17]. Uniqueness of the weak solutions
in two dimensions is studied in [30]. As for the three-dimensional dynamics,
the existence of global weak solutions for the compressible primitive equations
with degenerate viscosities is established in |42] and [57], independently. The
local well-posedness of strong solutions for the compressible primitive equations
with constant viscosities is established in [41]. We introduce the PE diagram
and study the small Mach number limit of the compressible primitive equations
in [43] and [44]. For readers’ convenience, results concerning the incompressible
primitive equations can be found in [1,6H12}21,/22,|25[|32}34,35.|48},49].

We would like to remark that, the well-posedness of local strong or classical
solutions to for any fixed € € (0,1), and , follows easily, using the similar
arguments as in [29] and [41], respectively. We only mention that w, in (5)) can
be calculated by

wp(n,z) = —e~ () / e7r ) (ﬂ(-h,z') Vhop(n) + divh’ﬁp<-h,z’>> d', (6)
0

using the continuity equation 1, while the vertical average part of the conti-
nuity equation yields an evolutionary equation for o, i.e.,

Orop + Up - Vo, + divyt, = 0.

Here we have used the fact that o, is independent of the z-variable due to the
hydrostatic equation (5)4, -5 denotes the horizontal variables, i.e., z,y, and ~
and - are the vertical average and fluctuation, respectively, defined explicitly in

in section below.

To establish the asymptotic limit as € — 07, we will need to establish some
uniform-in-¢ estimates for (o¢,v.,w:). While in the case of the incompressible
flows, e.g., [1,/35,/36], the vertical velocity can be represented by the horizontal
velocity, using the incompressibility condition, this benefit no longer exists in
the compressible case. Instead, for the compressible primitive equations, as in
@7 the vertical velocity is represented by the density o, combined with the
horizontal velocity v,, which does not involve any time derivative. This allows
us to consider 1 and 2 as closed evolutionary equations of (¢, v,) only, and
thus allows us to construct the local strong solutions in [41]. However, all these
structures do not work for equations . Indeed, the vertical momentum equa-
tion (4)); can only provide estimates for ew., while using the continuity equation
1, the representation of w, in terms of 0. and v. involves the time derivative
Ooe (see , below). This may involve high oscillations, as e — 07, and is the
main obstacle to overcome in this work. It is worth noticing that, in [19,/52], by



assuming the uniform-in-¢ existence of, and bounds on, global weak solutions
to fluid system with and without viscosity, and with the additional assump-
tion that the density is independent of the z-variable, the authors justify the
hydrostatic approximation in compressible fluid. However, these assumptions
in |19//52] can not be justified physically for atmospheric dynamics. They are
mathematically assumed in order to essentially avoid dealing with the obstacle
mentioned above. In this paper, our goal is to overcome these difficulties by
showing the uniform-in-¢ existence, bounds, and convergence.

To motivate our strategy and to shed light on the treatment of this obstacle,
let us consider the following linear model system:

O + divp" + 897 = 0,
&ewh +Vipn = Awh, (7)
200" + 0.m = 2 A,

with unknown scalar functions n,", and ¥* in 2T, subject to the symmetry
that 7, 1", % are even, even, and odd in the z-variable, respectively, similar to
(SYM). In particular, ¢*|.—o = 0. Then the standard H* estimate of (7), for
every s € ZT, yields

T
sup_|[|n(t), " (1), e (1)1 %+ +/ 1" (£), e9® (8) [ Fess dt < oo,
0<t<T 0

for any T € (0,00), which allows us to pass the limit ¢ — 0% in (7)), and 3,
but not 1, due to the lack of compactness of the ¥? sequence.

To overcome this obstacle, we focus instead on the hyperbolic structure of
the system

On + 00" + -+ =0,

1 8

Then from , one can obtain a wave equation for 7, i.e.,

1
Oyn — ;2322«772 Tty

which can provide uniform-in-¢ estimates for dyn. In the end, using 1 again,
one can write ¥*(z) = — [ (8n(z') + ---) dz’, from which one can obtain the
required uniform-in-¢ estimates of ¢*, and thus the missing (weak) compactness
of ¥? is obtained. In other words, one has to take advantage of the oscillatory
nature of the underlying system in order to obtain the required uniform-in-&
estimates.

Back to (7)), the contribution of the viscosities (i.e., AyY" and Aw*) should
also be taken into consideration. One can calculate, similarly,

1
Oy = —divp 0" — 90,07 = Apn + 20:2m A(divig" + 9.47),



where, using 1, we have A(div,y" + 0,9%) = —9;An. Therefore, we arrive
at

1
at(f)m - A77) — Apn — gazzn =0,

which is a strongly damped wave equation. Using such a structure in the non-
linear problem (see , below), one can obtain the required uniform-in-¢
estimates for ;0. and hence those for w;.

In order to deal with the nonlinearities, we complement with H?3 initial
data. However, we remark that this may not be the optimal regularity for the
initial data.

After obtaining the aforementioned uniform-in-¢ estimates, we will be able
to establish the limit of as € — 0T. This is done in section However,
this is not enough to establish the convergence rates as ¢ — 07. To explain
why, consider the difference (do, év,dw) = (0. — op, Ve — Vp, we — wp). Then
(0, 6v, dw) satisfies

0100 + v - Vpdo + we0,00 + §v - Vo, + divpdv + 00w = 0,
010V + Vg - VR0v + w:0,6v + 0v - Vv, + 6wd v,
+ Vido = Apdv + 0,00,
Opdw + ve - Vyow + w.0,0w + dv - Vywy, + dwd.w,y, )
1
+ 5—26260 = Apdw + 9, 0w + (Ahwp + 0. wp — Oywy

—vp - Vpwp — wpazwp).
While the uniform-in-¢ estimates work well for (do, dv, Jw), because of the terms
Apwp + 05wy — Orwp — vy - Vawy — wpd,wy

on the right-hand side of @3, the uniform-in-¢ estimates are not comparable
to €, with the exception, however, only of the estimate

0,00 ~ O(e) in some norm. (10)

See , below. For comparison with the case of incompressible flows, we refer
the reader to [35[36], where such an issue does not exist.

Writing 60 = o + b0, see , below, we notice that implies that
the fluctuation of do is of order ¢, i.e., 5o ~ O(e) in some norm. Inspired by
the study of in [41], one can separate @1 into the (vertical) average part
and the fluctuation part. Then the average part is nothing but an evolutionary
equation of o and does not involve dw. Therefore, using the average part
and (9),, one can show that o ~ O(e) and dv ~ O(g) in some norm. On
the other hand, the fluctuation part yields that the estimates for dw, in fact,
only involve 0;00. Therefore, one will only need to obtain an estimate of the
order 0,0;00 ~ O(g) in some norm in order to close the estimates of converging
rates. This is established by the use of some additional uniform-in-¢ estimates



in section[£.1] That is, by assuming a well-prepared initial data, i.e., initial data
that is close to the hydrostatic approximation (see assumption , below).

The rest of this paper is organized as follows. In section [[.2] we introduce
the notations that have been and will be used in this paper, as well as the energy
and dissipation functionals. In section we summarize the main theorems.
In section [2] we establish the uniform-in-¢ estimates, which imply the necessary
weak and strong compactness in order to pass the limit ¢ — 0% in section |3} In
section [d] we focus on the study of convergence rates, which is established for a
restricted class of well-prepared initial data, see , below. Readers who are
more interested in the converging rates can skip directly to section |4.2

1.2 Preliminaries

In this paper, we consistently use ¢ € [0, 00) to represent the temporal variable,
x,y € 2T to represent the horizontal spatial variables, and z € 2T to represent
the vertical spatial variable. We have and will use V},, divy,, and Ay, to represent
the horizontal gradient, the horizontal divergence, and the horizontal Laplace
operator, respectively; that is,

V), = ( gx ), divy, := V-, Ap :=div, V.
Y

Using such notations, we have
A=Ay +0,..

Also, for any function f, we denote the vertical average and fluctuation of f as

1 ~ —
?(Ivy) ::/0 f(xvyvz)dz7 f::fifv (11)

also known as the barotropic and baroclinic modes, respectively. |f(z,t)|x, ||f ()]l x
are used to denote the X-norm in the horizontal domain 2T? for any fixed z, ¢,
and in the three-dimensional domain 2T? for any fixed ¢, respectively.

The following functionals will be used in this paper:

B = B(t) = e, cwell s + 10402, Vaoe, 2 o + o s )
+ llwe, Ozwe |2,
D = D(t) := ||0we, Ot(ewe)|| g2 + ||ve, ewe|| ga + ||Oroe, Vyoe, %HH3 (13)
+ ||we, Orwe || g3 -
Correspondingly, we denote the functionals of temporal derivatives as,
By = Ei(t) := ||0wve, O(cw.) || g1 + |02, 0:Vhoo, %H[; (14)

+ Hata'sHH2 + ||atwsyazatws||L2a



Dy = Dy(t) := ||02ve, 07 (cw.)| 12 + ||Osve, O (sw.) || g2

9.0,0-. (15)
e+ (|8swe, 8.0ywe | a1

+ Hat20-57atvh0-87 €

We will use 9N(-) to denote a locally Lipschitz nonlinear function of its ar-
gument(s), which can be different from line to line. For any two quantities @
and Q2, @1 < Q2 is used to represent @1 < C'Q2 for some constant C' € (0, 00),
whose value will be different from line to line.

1.3 Main theorems

We consider with initial data

(02, v, we)|,_y = (00,6, V0,2, Wo,c)- (16)
Then the initial data for the time derivatives 0., dv., Oyw., O?0. are given
through compatibility by employing the equations in , inductively, i.e.,

2
(atgsa atvsa atw€7 8t Us) |t:0 = (Ul,sa V1,e, W1,e, 02,5)a
where 01 ¢, V1, W1 ¢, 02, V2., Wa e are given by
O1,e + Vo,e * vhUO,E + wO,EazUO,E + dthvO,a + asz,e = 07
V1,e + Vo,e vhUO,E + wO,sazUO,s + vhUO,s = AhUO.,s + azz/UO,sa
1
Wie + Voe * Vhwo,a + wO,Easz,E + ?620076 = Ath,e + 8zzw0,£a
02, + V0, - V}LUI,E + wO,aazal,e + V1 VhO'O,a
+wi 0,00 + divpvy e + 0, w1 . = 0.

The first theorem in this paper is concerning the uniform-in-¢ estimates and
the justification of hydrostatic approximation limit:

Theorem 1 (Hydrostatic approximation). Suppose that the initial data in
satisfies E(0) < co. Then there is a T* € (0,00), independent of e, such that
the solution to with initial data satisfies

sup E2(t) +/ D2(t)dt < Cy < o0, (17)
0<t<T™ 0

where Cy is some positive constant depending only on E(0) and is independent
of €. Moreover, there exist (op, Up, wp) with

op € L®(0,T*; HY), 00, € L>=(0,T* H*) N L*(0,T*; H?),
v, € L>®(0,T*; H*) N L*(0,T*; H*), 0y, € L*(0,T*; H?),
wy, O,w, € L(0,T*; H?) N L*(0,T*; H?),
such that for a subsequence of {(0c,ve,we)}, as e — 0T,

*

e — 0p weak-x in L>(0,T*; H*),



oo — 0 in L>(0,T*; H3) N C([0,T*]; H?),
040, We, Dywe — O1op, wp, Dyw,  weak-+ in L0, T*; H?),

010, We, O;We — O0y0p, Wp, O, w,  weakly in L2(0,T*; H?),

Ve v, weak-* in L>°(0,T*; H?),
Ve = Vp in L°°(0,T*; H*) N C([0,T*]; H?),
Ve = Uy weakly in L?(0,T*; H*),

Opve — Oy weakly in L?(0,T*; H?),

and (op, vy, wp) s a solution to (5).
In addition, suppose that the initial data in satisfies E1(0) < co. Then
there is a T** € (0,T*], independent of €, such that

.
Csup (EX(0)+ ER() +/O (D2(t) + Dr(t))dt < Cy < 00, (18)

where C1 is some positive constant depending only on E(0) and E1(0) and is
independent of €.

We summarize the convergence rates in the following theorem:
Theorem 2 (Rates of convergence). Suppose that the solution (o,,vp,w,) to
given by the limit in Theorem satisfies
||Up||L°O(O,T**;H4) + Hat0'p||Loo(07T**;H2) + HUPHLOC(O,T**;HS)
Hlvpllz2 0,75+ 51) + lwpllLos 0,7+;12) < Cp < 00,
for some constant C), € (0,00), and the initial data in satisfy
lloo,e — JP’t:(yvaf - vP|t:0”L2 <e. (19)

Then under the conditions in Theorem/[d} i.e., E(0), F1(0) < oo, we have

||0’E — Op, Ve — /Up||Loo(07T**;L2) + ||’U5 — ’UpHLZ(O,T**;Hl) < CQE, (20)
we — wpl| oo (0,7++;02) < C26*/3, |we — wpllpe(o,rer;z2) < Cac®?,
where Ca € (0,00) is a constant depending only on E(0), E1(0) and Cp, and is
independent of €.

Proof of Theorem[1l The uniform estimates in and are shown in sec-
tion and section given by and , respectively. The convergence

is given in section [3] below. U
Proof of Theorem[3 is the consequence of and , in section
below. 0O

Remark 1. Assumption on the initial data above is the definition of well-
prepared initial data, i.e., it essentially assumes that the initial data is close to
the hydrostatic approximation.
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Remark 2. Theorem [I]guarantees the convergence of a subsequence to a solution
of the limit equations. However, since the strong solution to the limit equations
is well-posed, and in particular, is unique (see, e.g., [41]), the convergence is
actually of the full sequence. Theorem [2] states the convergence rate of the full
sequence for well-prepared initial data.

2 Uniform-in-c estimates

In this section, we shorten the notations by dropping the subscript ¢ in (o, ve, we ),
ie., (o,v,w) = (0s,ve,we). Recall that we already have short time existence
and uniqueness of solutions to on a time interval that might depend on e
(see, e.g., |13]). The main goal of this section is to obtain the existence time
and corresponding estimates that are independent of e.

2.1 L?—estimates

Take the L2-inner product of 2 with d;v — Av, and 3 with dyw — Aw,
respectively. One obtains,

0w — Avl]3: = — /(@v — Av) . (Vha +v-Vyv+ w@zv) dz
(21)

< 510w — Av|[Z: + C(IVrolliz + v - VavlZ: + [wdvll72),

DN | =

1
20w — Awl|2, = —¢? /(f%w — Aw) (0.0 +v - Vyw + wd,w) dZ
P o c (22)
< S 100w = Awlfe + Z (10007 + Ce*(lv - VawllZz + wd-wllze),

where we have applied the Holder and Young inequalities. Notice that, for
n = v, w, applying integration by parts yields

d
18 — Anll7e = @Hvﬂlliz +0nllZ + 1IVlZ-- (23)
Thus and can be written as,
d 0
%HVv,anH%z + [|0¢v, V20, e0pw, e Vw32 < C|| Vo, §||%2
2 (24)
+C Y T3,
i=1
where
Ty = (v-Vpv,v- Viy(ew)), I = (wd,v, wd. (ew)). (25)

We postpone the estimates for ||Z;|| 2 to section[2.4 However, even without
detailed calculations, one can see that, a uniform-in-¢ estimate for w is necessary,
for instance, to get an estimate for Z,. This indeed is the main challenge to be
addressed in this work. In the next section, we discuss our strategy to overcome
this obstacle.

11



2.2 Estimates for the vertical velocity and the density

We use 1 to represent w in terms of o and v. Indeed, after multiplying 1
with e?, it follows that

e + divy(e“v) + 0, (e“w) = 0.
Thus, recalling that -;, represents the horizontal variables x,y, one has that,
w(h, Z) — _e_o'('hvz) / ea'('hvz/) <8t0-<.h’ ZI) + /U<.h7 z/) . vho'(.h’ Z/)

’ (26)

+divpv(-p, z')) dz'.

Similarly, we remark that we can represent dw in terms of do, dv, op, vp, and
wp, by using (9),, even thought we don’t need it now. One can obtain, after
multiplying (9), with e°?, that

0,9 + Up - Vel + wp@ze‘scr + €96y - Viop + divh(e‘g"év) + 82(65"510) =0,

and

Sw(-p,z) = —e 0702 / efrln) (5‘téa<-h,z’> +0(n, 2') - Vido(n, 2)
0 (27)

+0v(-p,2") - Viop(n, 2') + wp(n, 2)0:00(-h, 2") + dividv(-p, z')) dz'.
Eventually, we will return to . Then directly using the representation of w
in , we have the following;:

Proposition 1. Assuming w is given by , one can show that

lw, dzwll = < Ce217l2 (|l |3 + 1) (100l 2 + vl s + ol mslloll =), (28)
lw, O:w] s < Ce2171u2 ([lol| 370 + 1) (100 |z + Nloll s + lollzellv]l =), (29)

for some generic positive constant C' € (0,00), independent of .
Proof. To simplify the notations, denote by
2:=0i0 +v- Vo +divyo. (30)
Next, we calculate the derivatives of w:
z
O, w = e*(’azo/ (e72) d’ —Z,
0
z z
opw = ef"aha/ (e”E) d2’ — e*”/ (e70R0E + €7 O,E) d7/,
0 0
z

Dexw = e (9.0 — (9.0)%) / (e7E) dz’' + 0.0Z — 0.5,

0
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Do = 7 (Ons0 — 9y00:0) / (¢°Z) 2’
0

z
+ 670(920'/ (e"ahcrE + 6"3hE) dz — 0,2,
0

z

Onnw = €7 (Opno — (3h0)2)/ (e7E) d2’

0

207040 [ (70,05 + e0,2) d
0
4
—e 7 / [€7 (Ohno + (0r0)?)E + 270, 00K E + €7 i E] d2’,
0

Oezzw=1e""7 (azzza —30.00,,0 + (820)3) / (GUE) dz’
0

+ (20,0 — (0.0)?)E+ 0.00.E — 0.5,
Ohzsw =€ 7 (8hzza — 204,000 — 04,000 + 8ha(8z0)2)

X / (e°Z) dz’' + €77 (0220 — (9.0)?) / (e7Oh0E + €7 OKE) d2’
0 0
+ 0,08 + 0,00,2 — 3th,

Ohnw =€ 7 (3hhza — 204,00h,0 — Oppo0,0 + (8h0)2320) / (egE) d?’
0
+2e"7(Oh20 — 0,00.0) / (e70h0E + €7 OKE) d’
0
+ e“’aza/ (€7 (Onno + (3h0)2)5 + 2e° 0,00 E + €7 OpnE| d2’
0

— OhnE,

Onnnw = €~ (Opano — 30,00Kno + (Op0)%) / (e7E) d=’
0
3¢ (o — (040)?) / (¢?0ho= + ¢?O4E) d2’
0
+ Be_aahﬂ/ (€7 (Ohno + (0n0)%)E + 2¢° OpoOLE + €7 OpnE] d2’
0

—e ¢ / [60 (8hhh0' + 30n,00hno + (8ha)3)E + 3e? (ath' + (8h0)2)8h5
0

+ 3e?0500h12 + e”&hth} dz',
Orzx0 =€ 7 [0s22.0 — 3(0..0)* — 40.00,..0 + 6(0,0)%0,.0 — (8z0')4]

x / (€72) d2' + (302220 — 50.00...0 + (0:0)*) 2
0

+ (38ZZU — (8z0)2)825 +0,00,,2 — 0,,,Z,

ahzzzu} =e 7 [8hzzza - 3ahzzo'azo- - 3ahzaazza - aho-azzzo-

13



z

+ 38hz0(8z0)2 +30,00,00,,0 — 8h0(820)3] X / (eUE) dz’'
0

+e 7 [5ZZZU —30,00,,0 + (320)3} / (e"ahcrE + 6"3hE) dz’
0

+ (28hzza — 28hz0820)5 + (28zza — (320)2)(%5 + 0),00,2
+ azoahza - ahZZE7
ahhzzw =e ‘7 [ahhzzo - 2(ahzg)2 - 28h06hz20 - Zahhzﬂasz

— Opp00,.0 + 403,00,004.0 + (040)%0..0 + Opno(0.0)*
— (8h0)2(320)2] X / (e"E) dz +2e7° [a,ma — 204,000
0

— O0p00,,0 + 5‘h0(8za)2] X / (e”@hJE + e”c’?hE) dz'
0

z

+e 7 [8zza — (8ZU)2] / [e” (8hha + (8h0)2)5 + 2e° 0y, 00L=
0

+ e"@th} dz’ + Onn02 + 204,00, 2 + 0,000hE — Opn=Z,

Onnnzw = €7 [Opnnz0 — 30p:000,0 — 30p00pn20 + 3(00)*Opz0
— Opnn00.0 + 30,00.00n0 — (0,0)0.0] X /Z (e°E) d2'
+ 3¢ [Ohn20 — 20,0040 — Opnod.o + (aha)Qa:f]
X /0 ’ (e7Oh0E + €7 OKE) d2' 4 37 [Oh.0 — 0,00 0]

X / [e" (8hh0' + (8h0)2)5 + 2e°0,00,L,= + e"@th] dz'
0

+ e_”&zU/ (€7 (Onnno + 30h0Ohno + (Oho)?)E
0

+ 3e? (8hh0 + (8h0)2)8h5 + 3e? 0y00L12 + e"@hth} dz' — OhhnE.

Next, after applying the Holder, Minkowski, the Sobolev embedding inequal-

ities, and that H™ is an algebra for m > 2, we obtain

||wHL2 S H€70-||Loo ||€U (8t0 +v-Vyo+ divhv) ||L2

S lle Mz lle Nz (10l 22 + [vllze I Vhollzs + I Vhavliz2)

S el (00| g2 + ol o a2 + 0]l ar)-
Similarly, with details omitted, one can also show,

[0.w, Vpw, 8w, V3wl e S ez (|lo]s +1)

< (0l s + llo sl + [[vllz2),

IVhwlizz < el (Jlolis + 1) (10eollzz + llollzs vl + [lollas),

V20w 2 S 1712 (o fa + 1) (180l a2 + ol mslloll = + o]l o),

14



IV3wle < 10 (lof3s + 1) (1800 lss + lollas ol + lollzrs),  (35)
V30,0 z < &I ln (||a||3*q4 + 1) (I9k0 15 + lollszs ol + lollzs)-  (36)

We summarize inequalities (28)) and ( . ) from inequalities . . O

In view of and 7 the estimates for w can be bounded by the estimates
for Oyo, which may not be bounded and induce fast oscillation as e — 07.
Therefore, we will need to obtain the uniform estimates for d,o. To achieve this
goal, we formulate a strongly damped wave equation for o in the following (see
, below). In fact, after applying 9; to 1, divy, to (4),, and 0 to (4),, and
combining the resultant equations, we obtain, with direct calculations,

Owo +v - V0o + w0,0:0 + Opv - Vha + wo,o
= —div 00 — 0,0,w = Apo + 8ZZU A(divpy + d,w) (37)
+ divy, (v -V + w&‘zv) + 0, (v -Viyw + wazw).
On the other hand, from 1, we have
— A(divpw + 0,w) = A(Qio + v - Vo + wd,0)

= 0iAc+ (v-Vy +wd,)Ac + Av - Vo 4+ 2V : Vi, Vo
+ Awd,o +2Vw - 9,Vo.

Hence, after substituting the above identity to , we arrive at the following
equation:

8t(3tU—Acr)+ (U-Vh—kwaz)(atU—Acr) Apo — —=0,,0 = 2‘73’ (38)

where
J1:=0w-Vyo—Av-Vyo—2Vv: V, Vo,

Jo := Oywd,o — Awd,o — 2Vw - 0, Vo,
J3 = divy, (v Vv + wazv),
Ja =0, (v - Viaw + w@zw).

Next, we take the L2—inner product of with 8;0 — Ac. Noticing that,

(39)

/( Apo — 61 azza) (8t0 — AJ) dx

Vo0 4
1900, 2 + 19900, YT 2,

15



we arrive at:
1d
2 dt

4
= %/(divhv + 8Zw)|8ta — Ao|?di + /(8750 - Aa) (Z \73) dz

j=1

Vo,o

172

0.
|0s0 — Aa, Vo, Tgﬂiz + |[|VVyo,

4
S 100 = Adl|2: [ Vhv, 0w gz + 18i0 — Aollre Y (1T 22

j=1

On the other hand, we take the L2-inner product of with dio, and arrive

at:
1d

2dt
= %/(divhv + 8Zw) (\8t0|2 — 2A06t0) dr

0,0
|0s0, Vo, 7”%2 + [|VOol|7

4
_ /(v -V +w0,)0;0Ac dT + /8750(2 JJ) dz (41)

j=1
< (I10wllZs + AclIZ2) [ Vav, 8:w]| e

4
+ v, w2 | VOro || 2| Aol 2 + 100l 2 Y 11Tl 22,

J=1

where we have substituted, after applying integration by parts,

/((v -V + waz)Aa> Oy d¥ = — /(divhv + 0, w)AcOo dF

/<(v -V + w32)3t0> Ao dZ.

Thus, and yield

620' VaZU

d
{00,007 = Aol2 +2Vio, =732} + 219V, ~=2, Vo3
< C(J0w |3 + 0 = Aol2) | Vav, Dol
+ Cl|v, w|| g2 ||VOio|| L2 ||Ac]| L2 (42)

4
+C(|0w0]l 2 + 00 = Aallr2) Y 1Tl ze-

j=1

We postpone the estimates for || 7|2, j = 1,2, 3,4, to section

2.3 Higher order uniform-in-¢ estimates

In this section, we will derive higher order estimates, i.e., estimates for higher
order spatial derivatives, corresponding to and . These are the essential
parts for closing the estimates for the nonlinearities.
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Take the L-inner product of [4)), with A?(9,v—Av), and (), with A?(9,w—
Aw), respectively. This yields, after applying integration by parts,

|A(Orv — Av) |32 = /A (O — Av) - A(Vpo +v- Vi

1 wdv) dF < §||A(8tv — A% (43)
+C([AVhal7 + [|A(v - Vao) (172 + | A(wd.0)172),
1
2| A(Byw — Aw)|2, = —52/A(6tw — Aw) x A(50:0
2
0 Vi + wdow) dE < %HA(@tw — Aw)|2, (44)

C
+ g\\AazU||2L2 + Ce*(|A(w - Viw) |72 + | A(wd.w)|72).

Notice, similarly to , for n = v, w, after applying integration by parts, we
have the identity

d
1A@im — An)[122 = —[IV2nl[Z2 + [V20l[Z2 + [V 0]2-. (45)
dt
Therefore, (43]) and (44]) imply, after applying the Holder inequality, that

d .
ﬁnv%,ev%n%z + V20,0, Vi, eV2 0w, e V4w |2 2

46)
V20,0 (
< C|IV*Vho, —— |72+ C § IZ:l| %

i=1
Notice, again, that after applying integration by parts, we have the following
identities:

/at(ato — AJ)AQ(atO' — AJ) d¥ = ||V2(8ta - AU)||L27

2dt

V20,0 9
22

1 . 1d
/( Apo = —50:20)A 200 — Ao) dit = 2dt||v2vh :

V39,0
FI9Vh0, T2,

/(v Vi +w0.) (00 — Aa) A* (0o — Ao) dZ = /A(ata — Ao)
X A[(U -V + w@z)(ata — AU)] dr
= /(v -V + wd,)A(Oro — Ac)A(dyo — Ac) dT

1
:—5 J(divpv+0.w)|A(0so—Ac)|? dE

+2 > (O - Vi, + 0wd, ) (8,00 — Ado) A (8o — Ac) dif
0e{0,,0.}
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+ /(Av Vi + Awd,) (00 — Ac)A(8io — Ac) dZ

Thus, taking the L2-inner product of with A%(dy0 — Ao) yields, after
substituting the identities above, that

V39

V20,0 ZO'HQ
e P

5 SV 00 = 20), V1V0, T2 3 4 [ V4o,

4
= Z/Aj] X A(Opo — Aco) dZ + % /(divhv + 0.w)|A(dro — Ao)|? dit
j=1

-2 (O - Vi, + 0w, ) (8,00 — Ado) A (8o — Ac) dif
8€{d1,0:}

- /(Av Vi + Awd,) (00 — Ao) A(Oyo — Ao) dit
S Vo, V|| L= ||V (80 — Ao)|[72 + V20, V2wl 12|V (e — Ao e

4
x [[V2(80 = o)1= + ) IV T;ll2 V(90 — Ad)| e

j=1

4
S v, wllgsl|er — Aol + Y (1Tl a2 1010 — Aol e,
j=1
(47)
where J;, 7 =1,2,3,4, are as in .
On the other hand, we apply integration by parts to obtain the following
integral identities:

/8,5 8t0 — AU A 8to dZ = 5%”v28t0'”[‘2 + ||V38tO'HL2,
1
/( Apo — 8ZZ0)A Oro d = f—||V2VhU v f J||L2,

/(v -V +wd.) (8,5(7 — AJ)A28tJ dz

=— > (Ov - Vi, + 0w, ) (1o — Ao)dAD,o dif
0€{0h,0:}

-y (v- Vi, + wd,) (0,00 — Ado)dAd,o dZ.
0€{8h,0:}

Therefore, taking the L2-inner product of with A20,0 yields, after substi-
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tuting the identities above, that

1d V20,0
§§HV2@0, V3Vho, . 72 + V28107
4
=> / ATy x Ao di+ > / (v- Vi + wd,)d(dro — Ac)dAd,o di
J=1 0€{0n,0:}

+ Y (Bv - Vi + 0wd. ) (0,0 — Ac)OAD,o dT
0€{0y,0.}
SV, Vwll1s]|V(0to — Ao)|| s [ VAo || 2

4
+ o, wl| < [V (0h0 = Ao) |2 [VAG |2 + D IV Ti | L2 IV 00| 2
j=1
4

S v, wll g2l — Aol gz 00| ms + Y 1151 a2 00| a2,
j=1
(48)
where J;, 7 =1,2,3,4, are as in .

2.4 Uniform-in-¢ estimates for the nonlinearities
In this section, we will estimate ||Z;|| g2, || Tjllg2, ¢ = 1,2, =1,2,3,4.

Proposition 2. I;,J;, ¢ = 1,2, j = 1,2,3,4, given by and , satisfy
the following estimates:

|Zillg> < CE?,  i=1,2, (49)
|Tjllaz < CE(E+ D), j=1,2,34, (50)

where B and D are as in and , respectively, and C' € (0,00) is some
generic constant, independent of €.

Proof. We will only sketch the estimates for
V2T, V2TillL2, i=1,2, j=1,2,3,4.

The rests of and can be derived via similar arguments. We organize
the proof in the following order:

V2T, V2T, VAT, V2 T2, VAT, VAT,
Estimate for ||V27,||z2: From the definition, one can write
Jy = 0,(v - Vyw) + 0, (wo,w) .
—_——— ——
Ja1 Ja2

Then applying the Holder and Sobolev embedding inequalities yields

IV Tulle S Y. (10%0.0 - Vawllze + (|00, - Viow] 2
0e{0n,0.}
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+ 0.0 - Vh82w||L2 + v - Vh8282w||L2 +||0v - V5,0, 0w|| 12

+||52v-Vh(9zw||L2>§ > (|323ZUI|L2||Vhw|LN
0€{0h,0:}
+ 11000 L [ViOwl| s + 0:0] L [ Vr0*w]| 2

[0l [IVA0-0%0]| 2 + |90l [ VD00 1
+ ||a%||mvhazw||m) S llollms lwll s + ol 2 110: ] s
< ED,

IV a2l S Y. (10°0:w0.w| 2 + [|00:w0.0w] 2
0e{on,0.}
+ |0.wd.0%w| 12 + |0*wd..w|| 12 + ||Owd..Ow]| L2
+ IIwazz82w||L2> S Y (1100wl 210w e
0€{0h,0:}
+ [100wl| 13 |02 0w|| Lo + [|02w]| Lo [|0-0%w]| 2
+ [|0%w]| 2|02 w] Lo + [|Ow]| 13|82 0w]| Lo

+ ||w||L°°||8zz<92w|L2> S 10wl a2 10w a2 + [Jwl| 2|1 0-w]| 7
S E*+ ED.
Estimate for ||V273]/12: We write
J3 = divy (v - Vi) + divy (wd,v) .

Ts1 T32
Then applying the Holder and Sobolev embedding inequalities yields

IV Tallzz S Y. (10%0- Viollze + 00 - Vidvl| 2
oc{on.0.)

+ [|0v - V00| 2 + ||v - Vhangz>
S Y0 (10%l2IVavline + 10%0]] L6 V0]l s
ae{ahyaz}
100l 9302 + ol 910
S llollaslvllas + ol a2 vl S E* + ED,
IV2Ts2ll 2 S lwllas ol gs + w2 lvllms S ED.
Estimate for ||V271|12:

Ji =0 -Vyo—Av-Vyo—-2Vv:VVo.
—_———  —— —_———
J11 J12 J13
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We list the estimates in the following;:

IV?Fiulle S Y. (1070w Viollpe + 00w - Vido| 12
0e{0y,0.}

+aw.vha2a||L2>g > <|a2aw|L2|vhaLm
0€{0y,0:}

+ 100wl L3 IVaOo| Lo + [|0¢v] L~ v11520|L2>
S 0wl llollas < ED,
IV2Ti2)l 22 < | Av|mzllollas S ED,

V2 Tsllre < Z (|82Vv : VipVo| 2 + |0V : Vi VOo| 12
0e{0y,,0.}

+Vv:VhV82a||L2>§ > (119°Vollz2 VAVl L
0€{0y,0.}

+ 10Vl Ls[[VRVIa| Ls + IIVUIILOOIIVhV32U|L2>
Slvllmlolas < B2
Estimate for ||V27,|[12: We write J5 as

To = at(aw)aj’ ~ Aew) 3;"

oV (ew) - Y27

J21 J22 J23

Then applying the Holder and Sobolev embedding inequalities implies,

0,0 0,00
IV orllz S D (10%0u(ew) = llz2 + (100 (ew) 22
0e{0y,,0.}
9,0%c 0,0
+ (|0 (cw) ||L2>§ > (10%0(ew)] e | o P2
9€{0n,0.}
8280' 8Z820'
100 (ew)po == llzs + 10 (ew) [z~ | = |L2>
0,0
S 0wl l=—llm= < ED,
o 0.0
IV-Toallzz S AW a2l =Ml S ED,
Vo,o V0,00
IV27le 5 32 (10°9ew) Y2 e+ 09 (ew) -~
0e{0,,0.}
Vo,0% Vo,o
HIVen) P g) s S (19wl Y -
0€{0,,0.}
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Vo,00 V0,0%
+ 10V (ew) 2o =125 + [V (ew) = |- ||L2)
0,0
S lewlmsll=llu= S ED.

Estimate for ||V2Zy|zz2, ||V?Z2|r2: The estimates are similar. They are,

VTl S D <|62U'Vh(vv€w)|m+||3U'Vh3(vv€W)|L2
0e{0n,0:}

+|v~vh02<v,sw>||p)s S (1620l 1 9a (o, cw) |

0€{0n,0:}
+[10v]l s [ ViO(v, ew) | e + [[o] o Vhag(v,sw)Hm)
< lvllaz v, ewl| s < B2,

IVl S Y, (10%wd.(v,ew)| L2 + [|0wd.0(v, cw)|| .2
0e{0y,0.}

+|waz62<v,ew>|m>5 3 (52w||L2||3z(U,€w)||L°°
86{6;“62}

T 10wl 22 18:0(v, ew)] s + |w||L°°||3z52(U»Ew)|L2>

< llwllzllv, ewl s < B2,

2.5 Summary of uniform-in-¢ estimates
To summarize the estimates in the previous sections, let

6Z0||2
g L

V20,0

£ = ||v, Vv, ew, V(ew), 0,0;0 — Ac, dio |32 + 2| Vo,

+ | V30, V3 (cw), V20,0, VZ(0s0 — Ad)||22 + 2| V>V o,

0,
D = |00, V20, 8y(cw), V2(ew) |2 + 2| Vio, VVio, %H;

V30,0

HQLQﬂ

+ IV20sv, Vi, V20, (ew), VA (ew)||2 2 + 2||V30s0, V3V ),0,

172

(51)

(52)

Then, from the estimates in , , the definitions in , , , and

, one concludes, after applying the triangle inequality and the interpolation

inequality for Sobolev spaces, that
E < E*<N(E),
D <NE, VD +N(E).
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Let us recall once again that 91(-) is a locally Lipschitz in its argument.
Applying the Cauchy—Schwarz inequality implies that

—Hv,sw,a”%z <2||lv, ew, o|| 2|0, Or(ew), Oro || 2. (54)
o, @3, - @, @, @04 € v
d
ZE+D<N(E )+ C(E + E?) D+C’ZHI 1137 +0EZ|\jJ||H2 55)
=1 Jj=1

<N(E) +N(E)D < N(E) +N(E,1)VD,

where the second and the last inequalities are consequences of , , and
(53). Therefore, implies, after applying the Cauchy—Schwarz inequality,
that

d 1
— -D< 1).
ZE+ 5D <MED) (56)

Then for some T* € (0,00), independent of e, provided that £(0) is finite, we
have

sup E(t / D(t)dt < oo. (57)
0<t<T*

Together with , we have
sup E%(t) / D?(t)dt < C < o0, (58)
0<t<T*

where C' € (0, 00) depends only on the initial data and is independent of e.

3 Convergence to the compressible primitive equa-
tions

The definitions of E, D in , , respectively, and estimate imply that
there are a time T™ € (0, 00) and a constant C € (0, 00), which are independent
of &, such that

l|ve, ewel| oo 0,7+ 13y + || Osve, Os(ewe )| L2(0, 7+, 12) + ||V, €We || L2(0,7+ 114

0,0
+||at(7'5, Vho.aa -

9.0

+||at0'a7 Vioe, TE||L2(0,T*;H3) + ||wa, 8zwaHL°°(O,T*;H2)

||L°°(O rem2) + ol oo 0,7+ H)

Hwe, Ozwel| L2017+ 13y < C.
Then from , one can conclude that there exist
o* € L®(0,T*; HY), 0,0* € L®(0,T*; H*) N L*(0,T*; H®),
v* € L0, T*; H®) N L*(0,T*; HY), On* € L*(0,T*; H?), (60)
w*, D, w* € L®(0,T*; H*) N L?(0,T*; H?),
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such that for a subsequence of {(o., ve,we)}, as € — 0T, one has,
0,7% H*),

0. —o* in L>(0,T*; H*) N C([0,T*]; H?),
O10e, we, O we — Opo*, w*, O w*  weak-x in L(0,T*; H?),

0y0e, We, Dywe — O™, w*, 0,w*  weakly in L*(0,T*; H?),

* .
0. —o" weak-* in L

Py

ve = v* weak-* in L>(0,T*; H?),
ve — v in L>=(0,T*; H?) N C([0,T*]; H?),
ve = vF weakly in L2(0,7%; H*),

Ov. — Opv* weakly in L?(0,T*; H?),

where we have applied the Aubin compactness Lemma (see, e.g., [54]). Then it
is easy to verify that (o*,v*, w*) satisfies the compressible primitive equations
, after applying the above weak and strong convergences in each terms in
system (). We omit the details.

4 The rates of convergence in terms of ¢

In this section, we aim at investigating the rates of convergence of do, dv, dv to
0, as € — 0F. In section we derive some additional uniform-in-¢ estimates,
which will be used in section[f.2] to derive estimates for the rates of convergence.
In section[4.3], we provide the proofs of some Propositions, which have been used
in section 1]

We shorten the notations by dropping the subscript € in (og, v, w,), i.e.,
(o,v,w) = (0¢, Ve, We).

4.1 Additional uniform-in-¢ bounds

The additional uniform-in-¢ estimates, in order to obtain the convergence rates,
are basically the temporal derivative version of the estimates in section [2| De-
note by

&1 = 0w, VO, d(cw), Vi (ew), 020 — Adyo, 0f o || 32

0,0,0 4 (61)
||L27

+2|‘Vhat0',

D, = ||8t2v,V28tv,8f(sw),v28t(€w)||2p +2||VV 00, M

+2||Voiol3,.

B (o)

After applying one temporal derivative to 2, 3, and , we obtain the
following set of equations:

Oy — Apvy — 0,0 = =0, Vo — 31:(“ : Vh”) - 8t(wazv)7 (63)
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5‘twt — Ahwt — 8zzwt = —8%5'23,50 — 8t(v . Vhw) — 3t(w52w), (64)

1
3t (atO't — Aat) + (’U . Vh + waz)(atat — AO't) AhO’t 5 ('Lzat

4
—(vr - Vi + w0:) (00 — Ac) + > (T
j=1

where J;, j = 1,2,3,4, are as in . Take the L2-inner product of ,
with dyv; — Awy, €2(0ywy — Awy), respectively. Then after applying integration
by parts and the Holder inequality in the resultant equations, similar arguments

as in from to lead to

%ﬂV&ueV@wﬁ;+H$vﬁﬁ@uefw¢V%Mﬂ%
(66)

8 3ta

< ClIViOwo, =—— 7= + CZ 10:Z: 7,

=1
for some constant C' € (0,00), independent of e. In addition, applying the
Cauchy-Schwarz inequality yields,
d 0w, O 2, < 2|0, 0 02, 02
1000, Oe(ew) |2 < 2(|0¢v, O (ew) || 2|65, G (ew)| 2 (67)
On the other hand, taking the L2-inner product of with Oioy — Aoy
yields, after applying integration by parts, the Holder and Sobolev inequalities,

— Ay, Vdy0, 9 at”

||L2 + HVVhatO'

Iz

VO0,0:0
2, 20t0 2
thHa €

= Z/atjj x (020 — Adyo) di + 3 /(divhv + 0,w)|020 — Adyo|? dE

— /(Ut -V + wtaz)(ata — AU) (830 - Aata) dz

. (68)
S D0z 1870 — Adol 2 + || Vio, dzwll = |0F 0 — Adoll7
j=1
+ [Jvg, wel| 13 | VO, VA 16 || 070 — Adyo]| L2
4
< D M0eTillzz11870 — Adol 2 + ([vllas + 10w 12) 870 — Adeol|Z
j=1

+ l|vg, wel 1 V0o, VAG| 1 020 — Adyo| 2.

In the meantime, after taking the L2-inner product of with 0?0 and ap-
plying integration by parts, the Hélder and Sobolev inequalities in the resultant
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equation, one can show that

1d 8 6t0'
2 dt

4
= Z/atjj x 0o dT + 3 /(divhv+82w)|3t20|2df
=1

— 020, V00, 122 + V0|32

- / [(divhv + 3Zw)A8tJ} 020 di — / |:(’U Vi +w0,)0} o | Adyo di
_ / |:(Ut -V + wtﬁz)(ato — AO’):| 3,520 dz

4
S S 10Tillze 1820 22 + Ildivi, Dol [ Ada, o2
j=1
+ o, wll [V 22 Ado | 2
1040, 00l 1 |V Dser, V A 11020 | 12

4
S N10:T5 11211080l z + ([vllms + |02w] m2) | Adeo, o |17
7j=1
+ v, wl g2 VO ol 2| Adso|| 2
+ Haﬂ},aﬂUHHl||V8tO',VAO'||H1||at20'”L2.

Next, we state the estimates for ||0,Z;|| L2, ||0:T; |12, ,i = 1,2,5 = 1,2,3,4
in the following:

Proposition 3. 7;,J;, ¢« = 1,2, j = 1,2,3,4, given by and , satisfy
the following estimates:

|18 Zil| > < C(E+ Er)?, i=1,2, (70)

||at‘7j||L2 SC(E+E1)(E+E1+D+D1)3 j:1>273743 (71)

where C' € (0,00) is some generzc constant, independent of e. Here, E, D, Fy, Dy

are defined in , , , and (| ., respectively.

In addition, we state the estimates for ||Oyw,d,0:w| 2, ||Ow, 0,0:w]| g1 in
the following:

Proposition 4. Let w be given as in . Then it holds
101w, 000w 2 < O (o4 + 010 3 +1) (03] .2
+ 10wl + 10wl ol 2 + vl 2 |0co] r + [|0¢0 || 12
+llvllas + vllazllollas),
10w, 00w s < ClN2 (|l fa + 1050 | B2 + 1) (10F ]| a1
+ 10wl a2 + 10wl 2 lloll g2 + [[v]| g2 100 || m2 + (|00 || 12

+llvlas + vl msllollzs),
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for some generic positive constant C' € (0,00), independent of . In particular,

&1 < E? <N(E &),

D1 < N(E, €, 1)/ D1+ N(E.E). (73)

The proofs of Proposition [3]and Proposition [4] are similar to those of Propo-
sition [2] and Proposition [T which are postponed to section

Now we apply the estimates in Proposition 3| Indeed, , , , ,
, and yield

d
%51 + D1 <N(E,E1)(1+ D+ Dy).

After substituting and on the right-hand side of the above inequality
and applying the Young inequality in the resultant, one gets

d 1
76+ DS NEE1, 1) + 5Dy +D. (74)

Thus, there is some constant T** € (0,7*], independent of ¢, provided that
£(0),&1(0) are finite, such that

sup  &i1(t) —|—/0 Dy (t) < C < o0, (75)

0<t<T**

where C € (0,00) depends on the initial data but is independent of . Here we

have also used . It follows from , , and , that

sup  E2(t) + / D2(#)dt < o,  for some T™ € (0,T%].  (76)
0<t<T** 0

4.2 Convergence rates in terms of ¢

Our goal in this section is to estimate the convergence rates of do, dv, dw to zero,
ase — 0T,
In addition to and (76), let (0, v,, w,) be a solution to the hydrostatic
system , satisfying
HUP||L°°(O,T**;H4) + ||8t0-p||L°°(O,T**;H2) + ||Up||L°°((),T**;H3)

(77)
FllvpllLzo,m+;m9) + [wpll oo (0,7++;12) < C < 00,

for some constant C' € (0,00). Such a solution can be obtained as the limit
in Theorem (1} restricted to the sub-interval of time [0,7**] C [0,7*], which
was established in section [3} Alternatively, one can refer to [41] for the proof
of existence of such a solution to the compressible primitive equations. Let
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C € (0,0), independent of ¢, be the bound given by 7 , and 7 ie.,

v, ewl| oo 0,7, 1r3) + [|040, Ot (ew) || oo (0,7 1) + [[vs €Wl L2075+, H1)

+ ||(9{U, at(éw)HLz((J,T**;Hz) + ||(9t2’l]7 a?(&w)‘le(o,T**;Lz)

0,0
+ (|00, Vo, Z oo 0,7+ %;112) + |0 || Loc (0,7 114)
8 8t0'
+ ||315207Vh8t07 ZT”LOO(O,T**;L?) + HatUHL‘X’(QT**;H?)

0.00 (78)
| 20,70+ 11y

0,0
+ ||, Vo, %”Lz(O’T**;H:S) + ||6t20, Voo,

+ |w, Qzwllpoe 0,74+, m2) + [|0vw, 0. 0w || oo 0,74+, 1.2

+ ||w, 8zw||L2(O7T**;H3) + ||8tw, 8z8tw||Lz(07T**;H1)

+ ||0‘p||Loo(07T**;H4) + Hat(fp||Loo(07T**;H2) + ‘ /UPHLOC(O,T**;H3)

+ ||vp||L2(O,T**;H4) —+ ||prL°°(O,T**;H2) < C
Using and the triangle inequality, we have

100 Loe (0,7 114y + [|0460 || Loe (0,745, 112) + (|60 Loc (0,744, 119)

(79)
+||(51} ‘LZ(O,T**;H‘*) + ||6w||Loo(0’T**;H2) < 2C.
Noticing that 0,0, = 0 and therefore 0,0 = 0.0, implies that
||3z50||L°°(0,T**;H2) =+ ||8z60'||L2(07T**;H3) (80)

+ ||8z8t(50'

Lo (0,T**,L?) + ||828t60||L2(07T**,H1) < 2eC = O(E)

This gives us partial information of the convergence rates.
Furthermore, we separate do by its vertical average and fluctuation, defined

as in (1)), i.e.,

50 =60 + bo. (81)
Then the following inequalities are ture:
16012 < 119-00]] 2, (82)
IVhéo| Lz S 10:Vido| Lz, (83)
|0nda]l> < 1|0-0i00]| 2. (84)

The proof of 7 follows directly from applying the one-dimensional Poincaré
inequality in the vertical direction, i.e.,

16C) 1 z2m) = 16() = Bllz2(r) S 119:6() L2y

We establish the rest of the required estimates in the following steps: the
estimate of do; the estimate of dv; summary of the estimates; convergence rates
via interpolation.

Step 1: estimates of 6o. Taking the vertical-average of @1 leads to

060 +v - Voo + 0v - Vo, + divydv + wd,é0 = 0. (85)
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Then we take the L?-inner product of with 200, it follows,

4 5o, = —2 / Vo0 x 30 difn
dt -
o - (86)
— 2/ (0v - Vyop + divpdv + wd,00) x do dZp, =: N1 + Na.
Qp

Ny can be estimated, after applying the Holder, Minkowski, and Sobolev em-
bedding inequalities, as

No < (I60]122[Vhoyl i + (V0] 22 + [wll = [19.60]|2) 5] 2
180ll2 IV a0yl 2 + V80|22 + el a2 1.5 £2) 53] .2

S
< Cloorz[|6v] Lz + IVov]|2[d0 |12 +eCloo] L2,

where we have substituted the bounds in and . On the other hand, Ny
can be written as, after substituting and integration by parts,

le_z/ @-vh%x%d;ﬁh_z/ v Vido x 80 dTy
Qh Qh

:/ div, T x |%|2dfh—2/ U'Vh(;:(; X%dfh.
Qh, Qh,

Thus applying the Holder, Minkowski, and Sobolev embedding inequalities and
to the above identity yields

N1 S V0]l 5013 + 0]l 1= 1 Vab0| 2 3] 2
< lollas (30132 + ol 2110001 30|22 < Cl3ol3s + £Cl3a 2,

where in the last inequality we have substituted the bounds in and .
Hence, implies that

d — _ _ _
@&;\‘3 < C(|00(72 + [|6v]|72) + eCléa| 2 + | Vo] 2|00 2. (87)

Step 2: estimates of Jv.
Taking the L2-inner product of (9)), with 26v leads to

G0l + 21V80l = [ (divio + 0.6 di

-2 /(51} -Vpvp) - dvdZ + 2 / do(divydv) dZ — /5w(821}p - 0v) di (88)
=: N3+ N4y + N5 + Np.
Again, applying the Holder and Sobolev embedding inequalities leads to

N3+ Ny + N5 S (|divaolpee + [|0:w] e + [ Vavp|lzee) 60|72
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+ 100 22 | divadvl| e S ([ollas + 10:w] a2 + [vpl| ) [[60]17 2

+ (60| 22(IVov[| 2 S Cllov[ 72 + (1602 +£C) [ Vov] 12,
where we have substituted , and the bounds in and . To
estimate Ng, we first need to substitute for dw, which leads to

Ng = /[65” (/ [65”(3t50 +v-Vpdo + 6v- Vo, +wpd.00 + divhév)} dz’>
0

X (0,vp - 51})} dz = /[e‘s" </ €% 0,00 dz’) X (v - 511)] dz
0

+ / |:e_50 ( /0 "5 (0 Vudo) dz’) X (szp-év)} di

+ / [6_5” </ 27 (6v - Vo, + wyd,00 + divy,dv) dz’) X (0xvp - 511)} dz
0
=: Ni+ N§ + N{'.

N{' can be estimated, after applying the Holder, Minkowski, and Sobolev
embedding inequalities, as

Ng" < 21070 (|50 12|V hop | e + [lwp | L= |10:60]| 2 + [ Vabv]|12)
% [|0:vpll |60 2 S €2107Na (||6v]l 2|0y | s + 1wyl 2110:00]| 12
+[Voullr2) x [[vpllzall6v] e S €*°Cllovl[72 + ee*C?||dv]| 2
+e%C||Vévl 2|6V 2,

where we have substituted the bounds in , , and . On the other
hand, applying integration by parts in V¢ leads to

N§ =~ / [( /0 Z(e&f&m) dz'> - Vi(e™%70,v, - M)] dz
- / K /O ’ dodivy, (e>7v) dz’> X (eéﬂazvp-av)} dz.

Then, after expanding every term in the above expression and applying the
Holder, Minkowski, and Sobolev embedding inequalities, one can derive

Ng < 10712 o] Lo |0, 0p | Lo | 60| 2] V0] .2
+ 21071 ([lof| oo [ VaBzvpll L + [[0l] o |0:0p | e | Vi | o0
+ Vol 10:vp Lo ) 80| 2|00 2
< (€ + € + oyl (1002 + £C) (| Vo] 22 + |60 2),

where in the last inequality we have substituted , , , , and .

In order to estimate N§, we first rewrite 0,00 into its average and fluctuation
parts; that is,

0ido = 0ydo + 8/;5/0 = —(v -Vpoo + ov - Viop

o o (89)
+ divpov + wazéa) + ddo,
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where we have substituted . Thus N§ can be written as

N§ = — / |:660 (/ v - Vo dz’) x (0zvp - 5@)} dz
0

— /[6_5” (/ e‘s"(% - Vhop + divydv + wd,é0) dz’) X (0yvp - 51})] dz
0

+ / [e—éff (/ % 0,60 dz’) X (0,vp - 51;)} dZ =: Ng, + Ng o+ Ng 3.
0

Ng 1 and Ng 5 can be estimated in the same way as that of Ng' and Ng”, respec-
tively. Né73 can be estimated, after applying the Holder, Minkowski, Sobolev
embedding inequalities and , as

Ng s S 1071210 0, || Loc (10,0601 | 2 | 60| 2
< 1072 v, || 1510 8:60 | 2 |60 2 S ee*“C? (|60 ] L2,

where we have substituted the bounds in , , and in the last in-
equality. Consequently, after summing up the above estimates, implies
that
d c _
all&}ll%z +2[[Vév[|Fe S e (1+C° + [lopl ) (160]| 22 + |00 L2 + )

x ([[6v][L2 + [[Vovl|2)-

(90)

Step 3: summary of the estimates and convergence rates. and imply,
after applying the Young inequality,

d,— _
< (100]72 +[|6v]|Z2) + [ VovllZe < Ce™(1+C + [lupllFa) (0072 + [160]72 +€).

(91)
Therefore, applying the Grénwall inequality to yields
B e
sup_(55(0)3 + 60(olz) + [ V80| e
0<t<TH* 0 (92)

< NC,T™)(Foole + [5vol22 + ),

where we have used the fact ||vp|[z2(0,7++;54) < C. Together with and (82),
implies

60| oo 0,7+ 12) + 160 Lo 0,7+%;2.2) + 60| 220,754,110

93
< m(C,T**)(H(SUouLz + ||5'U0||L2 + E) = O(E), ( )

provided that ||dogl|z2 + ||dvo|lL2 = O(e), which is assumption for well-
prepared initial data.

Step 4: convergence rates via interpolation. Notice that, the Gagliardo-
Nirenberg interpolation inequality implies

3/4 1/4 2/3 1/3
18] 2 S 1601364160 1M2, N16vllan S [l6v)| 262 |6v] 3.
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Therefore, together with and , it follows,

60| Loo (0,74, 1) S sﬁ((f,flw*)gi‘/‘l = (’)(63/4)7

94
V|| oo (0. 7+ FH1 §‘Jt(f,l** 52/3*062/3. ( )
Lo (0,T**,H?') =

From , one can derive, after applying the Holder, Minkowski, and Sobolev
embedding inequalities,

[10i60][r2 S (vl [IVrdollLz + |60 2| VRop|[Le + [[Vaov]| 2
+ lwllLe<[|0:60] L2 + [10:0:00 (| L2 S vllm2lldo|lar + llopllmslloviL: (95)
+16v]l 4+ wllg20260| L2 + [0-0rd0]| L2
Thus 7 , 7 and yield,

0400 Loe (0.7 12y S MUC, T*)e?/? = O(%/3), (96)
0200 (| L2 0.7+ 12y S MC, T*)e¥* = O(3/4).

Similarly, from , after applying the Holder, Minkowski, and Sobolev embed-

ding inequalities, one can derive,

6wl 2 S 219712 (0160 2 + [[v]| 2 60| r1 + Nl s |60 2

(97)
+ 160l + [lwpll 2 [10:00] 2 ).
Therefore, substituting , , , , , and to yields,
[0l 0722 S NUC T = O, )

||5w||L2(O,T**;L2) S m(C,T**)€3/4 — 0(63/4).

4.3 Proofs of Proposition [3] and Proposition

Proof of Proposition[3. The proof is similar to that of Proposition We list
the estimates for readers’ convenience:

101l 2 S 00l Lol Vo, V(ew) | s + (vl Lo [[VOrv, VO, (ew)| 2
S 10w, O(ew) [ o, ew w2 S ELE,

102l 22 S [|0cwl| L2102 (ew), Bzv]| oo + [lw]| L ]|0:0t(ew), D= 0¢v]| L2
S 10yl 2 llew, vllas + [[wll a2 |0:(ew), Ol an S ELE,

where we have applied the Holder and Sobolev embedding inequalities. Simi-
larly, we have,

10:71 12 < 1070, 00| L2 Vho |l + 100, Avl| 2] Vadrol| o
+10:V0|[ 2| VeVl Lo + [Vl L= ViV Oio]|| 2
S E(E+ Ey+ D+ Dy),
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0,0
10072l > S 1107 (ew), BiA(ew)|| 2 | = Iz + 10 (ew), Alew) || o]

Vo,o VO0,0:c
[zs + [|V(ew)|| 2|l :

8z8t0'

ll s

+ V0wl o2

S E(E+E1+ D+ Dy),
10:T5l 22 S (VO 2| Vivl Lo + VU Lo VRO 12 + [[000][ Lo [V V0| 2
+ [0l L= IVV ROl 2 + [[VOrwl|£2]|0:v[| e + [[Vw| L [|0:0pv] 12
+ [|0sw]| s VO, vl Lo + |[w]| = [ VO50pv]| 2
S(E+ E)(E+ Ey+ D+ Dy),
10: T4l 2 S 110:0¢0] L2 [|Viwl Lo + [|0:v]| Lo [[VROsw]| L2 + [[Ov]| L3 [ VaO:w]| 1o
+ [0l IVRO: 00wl L2 + (000w 2|0 oo + [|0zw]| Lo [| 020w, || 2
+ [[0pw] s [|02w] Lo + [[w]| o~ |02 Dpw]| 2
S(E+ E)(E+Ey+ D+ D).

|22

This completes the proof. O

Proof of Proposition [} We follow similar steps as in the proof of Proposition
Recalling = in , applying a temporal derivative to leads to

Byw = —e*"/ e’ (0= + O,E) d2 + efaata/ e“=d7.
0 0
Similarly,

0,0,w = e*”(f?zo/ e” (0102 + O,=) d2’ + €77 (9,0;0 — .,00;0) / e’=d
0 0
- atE‘7

Ohow = e %0ho /OZ e? (0,02 + OE) dz' + e 7 (000 — Op00s0) /OZ e’=dy
—e “ /OZ e? (0p00,0= + Opo O Z + 0p0;0= + 010 OLE + OK0,=) d2’
+e 700 /OZ e’ (Opo= + Op=) d2’,
O 0w =€ %00 /OZ €7 (Oh00;02 + OhoOE + 010 OWE + 00 0= + 0,0, 2) d2’
+e (0.0 — Op00,0) /OZ e’ (0,02 + 0,2) d2' + €77 (0,010 — D,00:0)
X /OZ e’ (Opo= + Op=) dz’' + €7 (Op, 010 — Op,00i0 — 0,00,0,0

— 0r,00,0;0 + 01,00,00,0) / e’=2d7 — 0,0,=.
0
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Therefore, after applying the Holder, Minkowski, and Sobolev embedding
inequalities, one obtains,

10vw, 0-00w| > S e17Nw2 (o]l s + 1) (1070 L2 + [|0wv] 10
+ 0wl mllollmz + [vl 200 a2 + 0co || 2 ([10e0 | 12 (99)
+ [[vllgs + [[olluzllollas)),

1001w, On-0pw|| 2 S €172 (||o||Fs + 1) (1070l + 1000l a2
+ 0wl g2llo || a2 + (vl a2l|0w0 || 2 + ([0 || 2 + 1) (100)
x ([0l g2 + ol s + vl asllolles))-

This completes the proof of Proposition [ O
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