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1 Introduction

Let Ny be the set of nonnegative integers
No=Nu{0} ={0,1,2,...}.
We will denote by 0y, the Kronecker delta, defined by

G = 1, k=n
B0, k#n )

and let ' be the ring of formal power series in the variable z

F=CJ}]] = {chz” Dop € (C} :

n=0

k:,n c No,

We consider the differential operator ¢ : F — [F defined by [37, 16.8.2]

¥ = 20,, (1)
where 0, is the derivative operator
0
0, = —.
0z

The action of ¥ on the monomials is given by
2" = F 2", (2)

where we always assume that x and z are independent variables.

Suppose that L : Flz] — F is a linear functional (acting on the vari-
able z), and {A, (z)},-, C Clz] is a sequence of monic polynomials with
deg (A,) = n. If the system of linear equations

n—1

LIAWA) + D LIAA] & =0, 0<k<n-—1, (3)

1=0

has a unique solution {,; (2)},...,, ; C F, we can define monic polyno-

mials P, (z;2) by Py (z;2) =1 and

Py (z52) = An (2) + ) &ui(2)Ai(z), n>1. (4)



We say that {P, (7;2)},-, is a sequence of (monic) orthogonal polynomials
with respect to the functional L, [2], [4], [21], [22], [27], [28], [46].
In this paper, we focus on linear functionals of the form

L[] :Zu(x)ﬂi—j, weF[d, (5)

where
a=(ay,...,a,) €C?, b=(by,...,b) € C!, p,qe Ny, (6)

and the Pochhammer polynomial (x),, is defined by (x), =1 and [37, 18:12]

n—1

(x)n:' (x+j), nelN (7)

<
Il
o

If pn, (2) € F denote the standard moments of L on the monomial basis
pin (2) = L]z}, n €N, (8)
it follows from (2) and (5) that
fint1 = Opin = V"o, 1 € No. (9)
Moreover, using (5) we can see that [15]
Lio(z)u(x)] =Lzt (z)u(x+1)], uweClz], (10)

where
oc(@)=a(@+b), 7(2)=(c+a),.

Because of (9), we say that the functional L is of Toda-type [3], [14], [38],
[47], and because of (10) we also call L discrete semiclassical [1], [16], [18],
133], [36], [49]. The class of the functional L is defined by

s =max{deg (o) — 1,deg (1) — 1} = max{p — 1, ¢},
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and semiclassical functional of class s = 0 are called classical.

Our objective is to obtain comparative asymptotics (also called relative
asymptotics) [5], 23], [24], [25], [29], [30], [31], [32], [34], [39], [40], [41], [42],
[43], [44], for the polynomials P, (x;z) with respect to the basis of falling
factorial polynomials defined by ¢q () = 1 and

n—1
¢n(x)=][(z—k), neN. (11)
k=0
In other words, we want to study the limit
. Pu(7;2)
1 — =0(1
o @ T oW, wENe

where z is a fixed number, and x belongs to a compact subset of the com-
plex plane containing the origin. We already considered this type of limits
in [10], [12] (Charlier and Meixner polynomials), and in [13] (Krawtchouk
polynomials).

Since the functional L is supported on the lattice Ny, the zeros of the
polynomial P, (z;z) will converge to non-negative integer values as n — oo.
Thus, it is natural to approximate P, (z;z) with a monic polynomial having
zeros at t =0,1,...,n— 1.

The organization of the paper is as follows: in Section 2, we review some
of our results from [14]. The polynomials P, (x; z) have different asymptotic
approximations depending on the relation between the parameters p and ¢
defined in (6). Thus, we consider the cases p = ¢ (Section 3.1), p = ¢—1 (Sec-
tion 3.2), p < ¢—1 (Section 3.3), and p = ¢+1 (Section 3.4). In Section 4, we
describe the functions that we use in our plots, and make some observations
on the difficulties in computing polynomials P, (z; z) numerically.

Finally, in the conclusions’ section we summarize the results and discuss
future directions.

2 Preliminary material

In [14], we studied families of polynomials (that we said to be of Toda type),
orthogonal with respect to a linear functional L : F[z] — F satisfying

D,Lu]=Lzu], ueF][z],
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where D, : F — F is a fixed derivation (on the variable z) associated to L.
In this section, we review some of the results that we obtained, and apply
them to the particular cases:
(i) D, = 9, where the operator ¥ was defined in (1).
(ii) The variable transformation

Dw: 1— 811)’ = .
w (1l —w) w=——

2.1 Toda-type orthogonal polynomials
The linear system (3) can be written as

L[AWP] = hpbn, 0< k<,

and we see that the sequence { P, (7; 2)}, 5, satisfies the orthogonality condi-

tions

where h, (z) € F\ {0} is the norm of P, (z;2).
From (12), we see that

L[xP.P,) =0, k#nmn+l,

and therefore the polynomials P, (x; z) satisfy the three term recurrence re-
lation

TPy (25 2) = Poyr (252) 4 Bn (2) Po (25 2) + 70 (2) Paca (52) - (13)

with P_y =0, Py = 1. The coefficients (3, (2) ,v, (2) € F are given by [§]

_ Liz] _
ﬂO - L_[]_]’ Yo = 07 (14>
and )
5n:L[xPn]’ %:M7 R (15)

h,
If we define o, (z) € F by

hnfl

P, (x;2) = 2" — 0, (2) 2" ' 4w, (2;2),  deg(u,) <n—2, (16)



we have 0y = 0, and using (13) we get

n+1

1 -1
x - O-nxn +xuU, = xn+ - 0n+1wn "’un—‘rl +/8n (:L,n - O-ngjn + un) +’ynPn—1~

Comparing coefficients of ", we obtain —o,, = —0,41 + 5,, or

571 = On+1 — Op.

Our next result relates o, h,, 5, and ~,.

(17)

Proposition 1 Let 9 be defined by (1), h, be defined by (12), Bn,7n be

defined by (15), and o, be defined by (16). Then, we have
ﬁan = Tn

and
dInh, = G,.

Proof. From (16) we have
VP, (v;2) = =V, (2) 2" + u, (73 2),
and using (12) we get
L[P,_19P,] = — (¥0,) L [z" ' P,1] = — (J0,) by
On the other hand, since L [P,P,—1] = 0 and deg (VP,_1) =n — 2,

0= 0L [PPyy] = L[Po10P,] + L[Py9Py 1] + L [2PyPy_i]
= - (190”) hnfl + ’Ynhnfb

and we obtain (18). Since deg (9P,) =n — 1 we have
Oh, = 0L [P2] = L[2P,0P,) + L [P = L [xP?] = Buhn,

and (19) follows. =

(18)

(19)

(20)

As a direct consequence, we see that (3,,7,) are solutions of the Toda

equations [47].



Corollary 2 The coefficients of the 3-term recurrence relation (13) are so-
lutions of the differential-difference equations

V6, = Ay, Vnry, =V, (21)
with initial conditions (14), where
Af(n)=fn+1)=f(n), Vfn)=fn)-fn-1). (22
Essential for our work in this paper is the following theorem.

Theorem 3 The polynomials P, (z;z) defined by (12) satisfy the recurrence

9P, = — Py 1, (23)
and the ODE
[92 + (2 — B) O + ] P = 0. (24)
Proof. If we write .
IP, = v Py,
k=1

then (20) and (18) give

L[P,_19P,] = =00, = —.

Un—1 =
n—1

Moreover, for all k =0,1,...,n—2

and therefore we obtain (23).
From (13) and (23), we have

ﬁpn:_f}/npn—l :Pn+1+(6n_x)Pn
Using (17), we get

WP, = VP, 1+ P95, + (6, — z) VP,
= —Yn41P0 + (7n+1 - P)/n) P+ (571 - :U) P,

and (24) follows. =



Since ¥ = z0,, we have
zazpn = _’ynPn—h

and
z (z@iPn + aan) + (z — Bn) 20, P, + v P, = 0.

As we will see in (34), v, (0) = 0. If we define g, (z) € F by
Tn (Z) = Z0n (2) )

then
Py/L - _gnPn—la

and (25) becomes
2P+ (x+1-0,) P, +9,P, =0,
where we will always use the notation

P, =0,P,.

2.2 The function o, (2)

A fundamental quantity in our studies is o, (z) defined in (16).

Theorem 4 The coefficients in the power series expansion

= Zsk (n) 2*

k=0

are given by

_n(n—1) . (n _n(n—l—i—a)l
o) = ") =
and -
3k< S/f —Jj )Av [Sj (n)] , k=2

:1

<.

A,V are the finite difference operators (acting on n) defined in (22).

8
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(26)

(27)
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Proof. From (17), (18), and (21) we get
Y1n (79Un) =JIn (’Yn) = ﬁn - /anl = 0On+1 — 20n +on_1.
Using the difference operators (22), we can write

On4+1 — 20, +0p_1 = VAO'H,

and hence A .
() =l (5) oD L (32)
Since )
VAs, = VA% =1,
we see that from (29) that
A " (o] (o)
VAo = ZVAsnykzk 11— ZVAsn ki1
o k=1 k=0
Also,
o (z) = stn P A— Z (k+1)spps12
k=1 k=0
and .
Zk’ —1)sp, w22 = Z (k+2)(k+1) sn,;ﬁgzk.
k=0

Comparing CoefﬁClents of z in (32) gives

k
(k+2) (k+ 1) Snppz = (k= J+ 1) Snr_je1 VAS, i1,

Jj=0

and (31) follows after shifting k -k —2and j - j—1. =
Using (17) and (18), we obtain the following result.

Corollary 5 The coefficients of the 3-term recurrence relation (13) admit
the formal power series

2) = Asp(n)z", 7. (2) =) ksp(n) 2, (33)
k=0 k=1
where the coefficients si (n) are defined by (29). In particular,
Bu(0) =n, 7, (0)=0. (34)



Remark 6 From (26) and (33), we have

= (k+1)se4 (n) 2~ (35)
k=0
From (30), we see that
o (L—n"t+n7ta),
s1(n)=n 1+ n_lb)l )
where
f=p+1—q. (36)
If we write -
n) = nQZrkn_k, (37)
k=0
we get

k
> erj(b)ry=er(a—1),

Jj=0

where the elementary symmetric polynomials e, (c) are defined by the gen-
erating function [37, 19.19.4]

OOen( 1 1+te), ceC™ (38)
2mar=

Since ey = 1, we obtain the recurrence

r, =ep(a—1) Zek j(b)r;, ro=1. (39)

The first two coefficients 7}, are

[ :el(a—l)—el(b),
ro=-¢ey(a—1)—ey(b) —e;(a—1)e;(b)+ei(b).
To study the asymptotic behavior of the coefficients s (n) as n — oo, we

need to consider 2 cases: 6§ < 2 and 6 = 2. We will analyze the case § < 2 in
the next Theorem, and the case 8 = 2 in Section 2.4.
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Theorem 7 Let

with
0, 0=
n@)=9 1, 0=
2, 0401
We have:
(i) If 0 < 0, then
sk (n) ~ A (0) n®% .  n— oo, (40)
where A1 =1 and for k > 2
1 k—1
Ay = K1) (k—7)0;(0; — 1) AjAx;. (41)

=1

<
Il

(i) If = 0, then as n — oo,

si(n)~1, sp(n)~rC(k—1) n 2 k>2

Y

where C (k) is the k'™ Catalan number [37, 26.5(i)]
1 2k
cw=r1 (%)
(iii) If 0 = 1, then as n — oo,

si(n)~n, sp(n)~ryn™" k>2.

Proof. See [14]. =

Remark 8 Using induction, we can see that the solution of (41) is given by

ok
A (0) = —e% (L4 k—0k), ..

As a direct application of (31), we can illustrate the results of Theorem
7 for some particular cases.
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Example 9 Let 0 = 1. As n — oo, we have

sy =1on 2+ (1179 + 3r3)n " + O (n’4) ,
53 =19n > + 3(ryrg +2r3)n"* + O (n"r’) ,

and we see that s, (n) ~ ry n™%, n > 2, as expected. Also,

2 1
on(2) = % + <z — 5) n+riz+reent + (ry +re2) zn?
+ [ra+ (rira 4+ 3r3)z + 122% 2n 2 + O (n74),
Bu(z)=n+z—rozn >+ [(1—22)rs —2r3)2n >+ 0 (n™), (42)
and
gn () =n+r+ran 4+ (22 +1r3)n 2+ 0 (n7°). (43)

Example 10 Let § = 0. As n — oo, we have
sy =rn 2+ (r +3r)n t + 0 (n_5) ,
s3=2rn""+2(3r] +5r)n  + 0 (n77)

and we see that s, (n) ~ C(k—1) rin=2**1 n > 2 as expected. Also,

on(2) = %2 — %n +z4rizn Hren T + (rz4rs)en 0 + 0 (n7Y)
Bn(z) =n—rizn=2+ (ry — 2ry) zn=3
—[r1(Bz+1)=3(rg —r3)]zn~*+ 0O (n7%), (44)
and
gn () =14+rn " +ron ™+ (221 +13)n >+ 0 (n7?). (45)
Example 11 Let § = —1. As n — oo, we have
S =n"t4+4rn 0+ (1 + 37"% + 77’2) n %40 (n_7) ,
s3=4n"" 4+ 28rn"" + (20 + 5117 4 61ry) n=" + O (n71)
and we see that s (n) ~ A (k) rin=2k*2 n > 2, as expected. Also,
on(2) = %2 — 5" +on T +rizn P 4 rezn T+ (24 r3)ent + 0 (n70)

Bo(z)=n—zn2+(1—=2r)zn > —[1+3(ry —r)]2n*+0 (n_5) , (46)
and
g () =n""H+rn T +ron T+ 22+ )0t + 0 (n70). (47)
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2.3 The function 9, (z; )

Sometimes, the falling factorial polynomials ¢,, (z) defined in (11), are called
binomial polynomials, since we have

n (2) _ (x> n € Ny, (48)

n! n
From the definition (11), we see that

¢n+1 (ZE) = (l‘ - n) an (ZL‘) = xgbn (x - 1) , n=>0, (49>

and from (7) it follows that the falling factorial polynomials and the Pochham-
mer polynomials are related by

¢n (1) = (=1)" (=), = (z+1—n),.
Using (34) in (13), we obtain
Pn+1(x;0):($_n)Pn(a7§O): P()(x;O):l:

and comparing with the recurrence satisfied by the falling factorial polyno-
mials (49), we conclude that

P (#;0) = ¢ (2) - (50)
Note that from (27) and (50), we sce that
Py (2;0) = =, (0) ¢ (2) . (51)
If we define ®,, (z; ) by
Py (252) = én () P (232), (52)

then (49) and (51) give the recurrence

¥, (50) =2 (). (53)

It also follows from (28) and (50) that ®,, (z;x) is the solution of the ODE

20" + (x+1—4,) P, + g, P, =0, (54)
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with initial condition
o, (0;x) = 1.

Note that setting z = 0 in (54) and using (34) gives
9n (0)
o, (0;0) = —— 2
n (05) r+1—n
in agreement with (53).
Proposition 12 Suppose that

o0 Lk
Zm—i—l—n kD @ (n) =1

k:O

Then, the coefficients ay, (n) satisfy the recurrence

g1 ( ZS]+1 n)oag—j(n—1)(x+2—-n+k—j);.

In particular,
a;(n)=—s1(n).

Proof. Taking a derivative in (56), we have

(I);L(Z;I):Z( kog (n) =70 1 Z( 1 (1) z

r+1—-n), kK r+1—-—n~(x+2—-n), k!

k=0 k=0

since from (7) we see that
(T)pyr =z (T + 1),
From (53), we conclude that

() s (=) 2
kz:;(x+2—n)kk! B gn(z)kz:%(x+2—n)kk!’

and using (35), we get

apr1(n) aj—j (n—1)
Gr2—n), =Y 541 (n) ( :

(55)

(59)



The result follows after using the identity

%:(:c—l—m)

(x) nem s M <N
m

Remark 13 Suppose that 6 < 2. It follows from (59) that to find the leading
term in the asymptotic expansion of ay (n) as n — 0o, one needs to consider
only the term with 7 = 0. Thus,

agr1 (n) ~=s1(n)ag(n—1), n— o0

and we conclude that
k

—1
ap(n) ~ (=1 [[s1(n—4), n— oo
=0
Using (37), we get
o (n) = (=1)" n* [1 +k <7’1 — %9) n'+0 (HQ)] , N — 0.

Example 14 Let 0 = 1. As n — oo, we have

) LA o),
(x+1-—n), n
and therefore
1
D, (z;2) =€ {1 + 2 i n+ ) (n2)] , M — 00 (60)

2.4 The variable w

If we use (31) with 6 = 2, we get
si=nl+rn+ro+rsnt+0 (n_Q) ,
So=n?+rmn+ry+2rsn 4+ 0 (n_2) ,
s3=n?+rn+ry+3rsn 4+ 0 (n_2) ,

and this is clearly not an asymptotic sequence. As we showed in [14], what

we need is to change variables from z to
z

(61)

w = .
z—1
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Theorem 15 Let 0, (z) defined by (16). If we write

o (w) = 36 (m)
k=0

we have ( 0 ( |+ a)
n(n — n— a
§o(n) = 9 §1(n) = _n(n—k—bhl’
and
1 k-1
& = &1 + ijI (k—j)&—;VAE, k>2.

Proof. See [14]. =

Remark 16 If we use (37) in (62), we get
& (n) = —n*Y rn",
k=0

where the coefficients vy, can be computed using (39).

(62)

(63)

The asymptotic behavior of the coefficients & (n) is given in the following

result.
Theorem 17 For all k > 2, we have
&(n)=0 (n’k“) , M — 00.

Proof. See [14]. =

(65)

Remark 18 For the first few & (n), we can use (63) and (64), and obtain

rs T3+ 314

52(71) :E‘FT‘FO(”_S))
& (n) = —mgn—tQM +0 (n7?),
£4 (n) _ (]_ + T% + 7"2) T;3+ 5(7“17“4 + 7”5) i O (n74) ’

as n — oo, in agreement with (65).

16

(66)



Note that we have
Yo =20, (2) = w (1 —w) 6y (w),
where we will always use the notation
d, = 0, ®,,.

Therefore, in this case we define

Y () = w (1 = w) gn (w), (67)
with N
gn (w) = Z (k+1) fn,k+1wk-

Example 19 Using (64) and (66), we can compute the first terms in the
asymptotic expansions of oy, (w), B, (w), and g, (w) :

on (W) = (% —w) n? — (% —i—r1w> n—row+ry(w—1)wn " +0(n?),
B (w)=(1=2w)n—1+r)w—ry(w—1wn>+0 (n?)), (68)
and
go (W) =—n*—rn—ro+r32w—1)n""'+0 (n7?%), (69)
as n — 0o.

3 Asymptotic analysis

In this section, we will obtain asymptotic approximations for P, (z;z) as
n — oo, with x = O (1) and all other parameters fixed. Because of the
moments’ recurrence (9), the analyticity of all the moments pu, (2) (and in
consequence the polynomials P, themselves) as functions of z will agree with
that of the first moment g (2) .

But since p (2) is a hypergeometric function,

a - a 2"
fio (2) = qu(b §Z) :Zﬁaa ac(ClbeC,

=0

17



its domain of analyticity depends on the parameters p, g. We have three cases
to consider:

(i) If p < ¢+ 1, then pg (2) is an entire function of z. From (36), we see
that this corresponds to the case 6 < 2.

(ii) If p =g+ 1 (60 =2), then o (z) is analytic inside the unit circle,
|z| < 1, and can be extended by analytic continuation to the cut plane
C\ [1,00).

(iii) f p > g+ 1 (0 > 2), then pg (2) diverges for all z # 0, except when
one of the numerator parameters is a negative integer, and g (z) becomes a
polynomial (in z) of degree N. We will not study this situation in this paper,
since in this case we need to scale n in terms of N and consider the limit as
N — oo (see [13] for the Krawtchouk polynomials).

We will divide the first case (i) in 3 subcases:

(a) When p = ¢ (0 = 1), uo (2) is entire (but barely!) and the asymptotic
expansion of P, (z;z) will contain an exponential multiple e?.

(b) When p = ¢ —1 (#=0), P, (z;2) will have a regular asymptotic
expansion.

(¢) When p < ¢ —1 (6 <0), some of the first terms in the asymptotic
expansion of P, (x; z) will be missing.

If p=g+1(0=2), then po(z) will have a logarithmic singularity at
z = 1. Thus, we expect that the asymptotic expansion of P, (z;z) will have
a factor of the form (1 — 2)°, where the power could depend on n (and z).

In this case, it is better to perform a change of variables and work with w
defined in (61).

Notation 20 We say that a family of polynomials is of type (p,q), if it’s
orthogonal with respect to the functional (5) with a € C? and b € CZ.

3.1 Casep=gq (0=1)

From (60), we see that in this case we should "peel off” an exponential term
from ®,, (z;x). Thus, if

D, (257) = "Ny (237) (70)

we have
O =e* (N, +A), P =ec(A,+2A,+A)),

18



and (54) becomes
2N+ 2242+ 1-6)AN, +(z+2x+1—6,+9gn) Ay =0. (71)
From (42) and (43), we see that
Bo=n+Bn gn=n+Gn, Bn=0(), Gu=0(1), n— oo,
and hence
2N+ <2z+x+1—n—ﬁn)A;+ (z+a;+1+’g“n—5n>/\n:0. (72)

Thus, we shall have A,, = O (1), n — oco. Replacing

Bn (2) = ka (2)n7* G, (2) = Zuk (2)n*,

and

[e.e]
An(z2) =) N (z2)n ",
k=0
in (72) and comparing coefficients of n=%, we obtain the recurrence

N1 = 2N+ 224+ 2+ DN+ +2+1) Ak+zk: [(tr—j — ve—j) Aj — vk—j NS -
jzo (73)
From (55) and (70) we have A, (0;z) = &, (0;2) = 1, and therefore
M (052) = 6o, Kk >0. (74)
Note that from (42) and (43) we see that

Ug =71, UL =T9, Uy = 22T+ T3,

=2 v =0 wvy=—-"yz.
When k = —1, (73) and (74) give

)\6 = 0, )\0 (O,.Z‘) = 1,
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and thus
Ao (z;2) = 1. (75)

Using (75) in (73), we get
M=z+az+1+u—vog=a+1+m,
and since \; (0;x) = 0, we obtain
M(zx)=(x+1+m)z (76)
Similarly, using (75) and (76) in (73), we get after some simplification
Ay =N (2414 2)+ M + 7o,

and since Ay (0;2) = 0, we conclude that

1
Ay = A} <$+§+1>Z+§(/\1>2+7’227

or

22

)\Q(z;x):[(x—i—1)($+1—|—r1)+r2]z+(:U+1+7“1)(x+2+7’1)5. (77)

3.1.1 Polynomials of type (0,0) (Charlier polynomials).

The Charlier polynomials were introduced by Carl Vilhelm Ludwig Charlier
(1862-1934) in his paper [7] and have the hypergeometric representation

—n,—T 1
— z

P, (x;2) = (—2)" oFy [ ——1.
For this family, we have r, = 0, k > 1, and therefore
Bn=n4+2 g,=n.
Replacing in (71), we get
2N+ (z+x+1—n)A, + (x+1)A, =0. (78)
Therefore, the recurrence (73) becomes
w1 =2+ e+ D) A + (2 +1) N,

20



or
z

0
Starting with Ag (z) = 1, we obtain

M(z) = (z+1)7, A2<z>:<x+1>222+<x+1>2§
A () = (x+ 172+ (@ + 1), 20 +3) 5 + (@ + 1), 5

However, in this case the ODE satisfied by A, (z;2) (78) has the exact

solution [12]
An (z2) = 1B} ( T '—2’) ,

(79)

r+1—n’

where we have used the initial value A, (0;z) = 1. Therefore,

b =Sl e w

and using the first few terms we obtain

i (z+1), (—2) (x+1)z
> AL
Ox—l—l—n k! n

+ [(x+ 1?24 (z+ 1)2%2} n~>

+ [(m—l—l)gz—i-(x+1)2(2x+3)%2+($+1)3%3] n?+0(n™?

as n — 00, in agreement with (79).

3.1.2 Polynomials of type (1,1) (generalized Meixner)

For this family, we have

Sl(n):n+a—1:1+a——b—1_ > B
n n+0b n+b p
and therefore
= (a—b—1)(=b)"", k>1. (81)
Using (81) in (75)—(77), we get Ao (2;2) = 1,
M (z52)=(x+a—Db)z, (82)
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and

Ay (z5) = [(x—i—a)(a:—l—l—b)—}—bg}z+(a:+a—b+1)(a:+a—b)%2. (83)

For additional information on these polynomials, see [6], [9], [15], [16],
[17], [19].
3.1.3 Polynomials of type (2,2)

For this family, we have

si(n)  (n+a—1)(n+ay—1)

1+(a1—b2—1)(a2—b2—1) (a1 =b1—1)(az —b1 —1)
(bl —bg) (n+b2) (bl —bg) (n+b1)

and therefore . )
7 (b) — 7 (b))
by — by ’

with
IV (b) = (b—ar+ 1) (b—ay+1) (—b)* "

In particular,

Ty =ay+az; — by — by — 2,
ro=1—a; —ag — (ay + ay — 2) (by + ba) + b3 + b3 + byby + ayas.

Using (84) in (75)—(77), we get Ao (2;2) = 1,
M (z;z)=(x4+a+ay—b —by—1) 2, (85)
and

M(zz)=[(z+1)(z+a1+as—b —by— 1)+ 2

2 86
—i—(x—i—al—i—ag—bl—bQ—l)(ac—I—al—i—cm—bl—bg)%. ( )

For additional information on these polynomials, see [15] and [17].

22



3.2 Casep=qg—1(0=0)
From (44) and (45), we see that
By =n+n"2B,, gn:O(l), gn=0(1), n— o0,
and replacing in (54), we get
20"+ <x f1-n— n—2§n> O 4 g.d, = 0. (87)
Thus, we shall have ®,, = O (1), n — oo with &, (0;z) = 1. Replacing

B2 =Y u(@n ™, gu(x) = Y ue(2)nt,

k=0
and

o, (7)) = Y or (@), @ (0;2) =dos, k>0,
k=0

in (87) and comparing coefficients of n=*, we obtain the recurrence

k k—2

SO;c+1 =z2pp +(z+1) g} + Z%‘Uk—j - Z@;Uk—2—j- (88)
§=0 5=0

Replacing ¢ = 1 in (88) with k£ = 0, we have
@) =u =1,
and therefore
o1 (z2) = 2. (89)
Using ¢ = 1,01 = z in (88) with k = 1, we get
oy =x+1+u +zug=x+1+r + z,

and hence 9

z
QOQ(Z;I):(ZL’—Fl—l-Tl)Z—l—?. (90)
Similarly, we have
o =z + (@ + 1) @b + @ous + Y1u1 + Pauy — Pyvo
=z4+ (x+ 1)y +ro + 112 + @2,

and we conclude that

(,Dg(Z;ZE):[(IE+1)(1]+1—|—T‘1)+T2]Z+[2([E+1+T1)+1]% % (91)
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3.2.1 Polynomials of type (0,1) (generalized Charlier)

For this family, we have

and therefore
re=(=b)", k>0. (92)

Using (92) in (89)-(91), we get

+1-0b)z+%
@n(z;x)wl—i-i—i-(x )2
n

n2
+[(x+1)(x+1—b)+b2]z+[2(x+1—b)+1]§+%
n3

as n — 0o.
For additional information on these polynomials, see [9], [15], [16], [17],
[26], [45], [48].

3.2.2 Polynomials of type (1,2)

For this family, we have

. n(n+a—1) . (a—l—bl)bl _ ((I—l—bg)bg
A P S Y P Rl (N Y o B A S Y

and therefore

(bi+1—a)(=b)" +(a—1—by) (—by)"
by — by ’

k> 0.

Ty =

In particular,
7"0:1, lea—bl—bg—l,
ry = (1 —a) (by + by) + b? + b3 + b1 by.

Using (93) in (89)-(91), we get

(93)

2
®, (z;x)=1+z2n"" + |:(£L‘+a—b1—b2)2+%:| n=?
Hl@+1)(@+a—br—b)+r]z

+[($+a—b1—b2+ ) >+ % TL—3—|—O
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as n — 0.
For additional information on these polynomials, see [15] and [17].

3.3 Casep<qg—1(0<0)
Looking at (46) and (47), suggests that as n — oo,

Bo=n+n'G, fu=0(1), gu=n"Gs §u=0(1),
and replacing in (54), we get
20! + <x +1—n— n9_1§n> ' 4+ n’g,®, = 0. (94)
Thus, we expect that
®, (z;2) =1+ 0""'®, (z;2), B, =0(1), n—
with ®,, (0; 2) = 0, and therefore the ODE (94) becomes
n? 1P + <a: +1—n— n0_1§n> n? e 4+ n’g, +n*"1G,®, =0,

or

z&);; + (m +1—n-— n9_1§n> Cf;l + ng, + negnélv)n =0. (95)
Replacing
B =S u@n ™ gn(s) =S (20,
k=0 k=0
and

O, (1) =Y gr(zmx)n ™, @ (0;2) =0, k>0
k=0

in (95) and comparing coefficients of n=*, we obtain the recurrence

k—1+6 k+6—2
P =+ 20+ (@ D) G+ D pukrie— Y, Pikroa - (96)
=0 =0
Setting £ = 0 in (96), we get
(106 = Ug = 17
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and therefore

wo (z;2) = 2. (97)
For k = 1, we have
0 0—1
p1=ui +z2¢g + (z+1) gy + Z@jl@fj - Z@;Uequa
=0 =0

but since 6 < 0 and ¢y = z,
Oy =u +x+1

and hence
o1(zz)=(x+14m)z2. (98)

Continuing this way, we see that
Pp=urtzop g+ @+ 1) ¢y, 1<k<1-0,
and for k=1—-460
Prop = t1—g + 29”9 + (x + 1) ¢y + Pouo.

Thus,
o (z;7) = /uk (t)dt + 2951 (z;2) + xop_1 (z32), 1<k<1-—6, (99)
0

and

r 2
oo (2:7) = / wio ()t + 20 (5:2) + a9 g (52) + 5. (100)
0

3.3.1 Polynomials of type (0,2)

For this family, we have

s1(n) n? 14 b2 B b?
nTt (b)) (b)) (b —ba) (ntb) (b —ba) (n+Dr)
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and therefore
(_b2)k+1 . (_b1>k+1

by — by ’

In particular,
7’0:1, le—(b1+bg), T2:b1b2+b%+bg. (101)
Using (101) in (98) and (100), we get

p1(z2) = (x+1—0b —by) 2,

z

2 2
QOQI/’U/Q(t)dt"f‘Z(p/l"f‘Q?gOl—F% z/rgdt+(cc—|—1) (x+1—b1—b2)z+%,
0 0

and hence

2
gog(z;a:):(blbg+bf+bg)z+(9§+1)(.:15—1—1—61—bg)z—l—%.

Combining the results above and recalling that ¢y = 2, we obtain
O, (zx)=1+z2n>+(x+1—b —by)zn?

2
+ (blbg—i—bf—i-bg)z—i—(x—l—l)(x—i-l—bl—bg)z—i-% nt+0(n7?).

For additional information on these polynomials, see [15] and [17].

3.4 Casep=q+1(0=2)
Let w be defined by (61). Using
9, =—(w—=1)%9,, 9=w-1"+2w-1)>0a,,
in (25), we get
w? (1 —w) 2 ®, + (x+1— By — 2w)w (1 — w) Dy®p, + 7P, = 0,

and from (67) we have

w(l—w)d, + (x+1— 5, —2w)d, + g, P, = 0. (102)
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Based on the case § = 1 (Section 3.1), we expect that @, (w;z) will

contain an exponential term. Replacing
P, (w;z) = exp [Ty (wiz)], T, (0;2) =0,

in (102), we obtain
. .\ 2 .
w (1 —w) {Tn—i— (Tn> } +(x+1-p,—2w)Y, +g,=0.

From (68)—(69), we have

Bo=(0=2w)n—(1+r)w+pn Fo=0(®"72), n— oo
On=-—Nn>—7rn+g, g.=0(1), n— oo,

and replacing in (103) gives, to leading order,
. 2 .
w(l—w)(Tn) ~ (1 —=2w)nY, +n* n— oo

and therefore
n

. . n
Y,~—, or T, ~—— n—o00.
w w—1

(103)

(104)

Since we want Y, (w; x) to be analytic in a neighborhood of w = 0, we choose

T, (w;z) ~In(l —w)n, n— oo,

and set

Yo (w;z) =In(l —w)n+ Zek (w;2)n™", € (0;2) =0, k>0, (105)

k=0

En (’LU) = ka (w; 1’) nika an (U)) = Zuk (w; .’L’) n7k7
k=2 k=0
where from (68)—(69) we see that
vo=r3(1—w)w, wug=—-re, u =1r3(2w—1).
Using (105)—(106) in (103) and comparing powers of n, we get

) r+1+4+nrm
=
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Thus, since €y (0;z) =0,
c(w;z)=(+1+r)In(l—w).

We could proceed in this manner, but instead we consider ¥, (w;x) de-
fined by

D, (wyz) = (1 —w)" ™" @, (w;2), (108)
so that
U, (w;x) = exp [Zek (w;z)n ™" =0(1), n— oo.
k=1

Using (104) and (108) in (102), we get

w(l—w)?U, + (1 —w) [w+1—w(r1+2x+3)—§n—n v,
Fln+r+1+r)B+ 10 —w)Go— (x+ Dz +1+7m))| ¥, =0.

(109)
Replacing (106) and

2) =Y tp(wiz)n ™ gy (0;2) = o, k>0

n (109), we obtain the recurrence

(1—w)¢k+1:w(1—w)2¢k+(1— )[x+1—(7"1+2x+3) ]wk

+x+)(z+1+rm)(w—1Ds+(1—w ijukj (110)
k—2 ‘

+Z%’0k+1 Y [(flf +1+m); - %’] vUp—j = 0.
7=0

Setting k = 0 and 9y = 1 in (110), we obtain
Yy = —(z+ 1) (z+1+7)+ up,
and since ug = —ry and ¥y (0;x) = 0, we conclude that
Py (wyz) = —[(z+ 1) (x+1+71)+ ] w. (111)
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Replacing £k = 1 and 1y = 1 in (110), we have

(1—w)y = (1 —w) [z 41— (r1 + 2z + 3wt
+ @+ (x+1+m)(w—1)¢1 + (1 —w) (u1 + ¢Yrug) + va,

and using (107) and 1y = wi)y, we get

(1 —w)hy = (1= w) (z +1 = (r + 2z + 3)w) ¢y
+ (41D (x+1+m)(w—1)wi
+ (1 —w) (Tg (2w —1) —rgwl/}l) + 73 (1 —w)w,

¢2:[:17+1—((:17+2)(x+2—|—7“1)+7"2)w]¢1+r3(3w—1).

Since 15 (0; z) = 0, we conclude that

Wby (w; ) = [<x+1)w—((x+2><x+2+r1)+r2)%2] 1/}1+T—23w<3w—2),

and noting from (111) that
—[(z+2)(z+24+r)+rJw="1 (w;z+1),

we can write

Wy (W) = l:c +1+ %2/11 (w; x + 1)1 Uy (wy ) + %w (Bw—2). (112)

3.4.1 Polynomials of type (1,0) (Meixner polynomials)

The Meixner polynomials were introduced by Josef Meixner (1908 — 1994)
in his paper [35] and have the representation

Py (2:2) = (a), (1_1)_n B [ —", —T ;1—%}, 2 e C\[1,00).

z a

For this family, we have




and therefore
ro=1, rn=a—-1, r=0, k>2, (113)

and
Bo(w) = (1 —2w)n —aw, g, (w)=—-n*—(a—1)n. (114)
Thus, in this case 3, = g, = 0, and using (113) in (109), we obtain

w(l—w)V,+[z+1—2z+24a)w—n] T,

—(z+1)(z+a)¥, =0, (115)

while the recurrence (110) becomes
Y1 =w (1 —w) P+ [z 4+ 1 — 22+ 24 a)w] Y — (z+ 1) (z + a) ¢y
It follows that, as n — oo,

U, (wyz) ~ 1= (z+1) (x+a)wn™

—[z+1-1@+2)(z+1+a)w] (z+1)(z+a)wn 2 (116)

However, the ODE (115) can be solved exactly, and we have [12]

1
U, (w; ) = m(“ Tt a ;w),

r+1—n
and using the first couple of terms, we get

2

W, (w;x) ~ g <x(—; i)li (f :)Z)k % ~—(+1)(z+a) wn™!

—(1:—|—1)(x+a)w{x—l—l—%(m—%Z)(x—l—l%—a)w} n"?  n— oo,

in agreement with (116).

3.4.2 Polynomials of type (2,1) (generalized Hahn polynomials of
type I)

For this family, we have

an) _ (hta—1l)(nta—1)

n? n(n+b)
B (e —1)(aa—1) (b+1—ay)(b+1—ay)
=1 bn - b(n+0) !
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and therefore

ro=1, rn=a +ay—2-0, (117)
re=0+1—a)(b+1—ay) (=02, k>2

Using (117) in (111)—(112), we get

P (wyx)=—=[(z+1)(z+ar+az—1-b)+(b—a;+1)(b—ay+ 1)]w
(118)
and
Py (wy ) = [x—i—l—l—%zﬁl (w;x+1)] iy (w;x)

“L(b—ay +1) (b— az + 1) bw (3w — 2). (119)

For additional information on these polynomials, see [11], [15], [16], [17],
20].
3.4.3 Polynomials of type (3,2)

For this family, we have

_fl(n) _(nta—1)(nt+ay—1)(n+az3—1)

n? n(n+b1) (TL"‘bQ)

and using the elementary symmetric polynomials defined by (38), we can
write

7"0:1, T1:61(A)—61(b)7
9 = €9 (A) — €1 (A) €1 (b) + 6% (b) — €2 (b)
r3 = 2e1 (b) ez (b) +e1 (a) [ (b) — €2 (b)] — e (a) €1 (b) + €5 (a) — i (b)

where

A=a-1.

At this point, we truly reach the limit of being able to type expressions
in a compact way. For the first terms in the asymptotic expansion of these
polynomials, we refer to the general formulas (111)—(112) with ry, 7y given
by (120).

For additional information on these polynomials, see [15] and [17].
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4 Numerical results

Since we can write the falling factorial polynomials in terms of factorials (48),
we can use the reflection formula for the Gamma function [37, 5.5.3 ]

FEI-2)= sin (7z)’
and obtain
o (z) = F(m+x!1 — _ x!sin[ﬁﬂ(n—x)]r(n_x).
But
sin (7 (n — z)) = — cos (7n) sin (1z) = (—1)""" sin (7z)
and therefore .
O (x) = (—1)”Jr1 x!wf’ (n—x).

7

Let @, (z; x) denote an asymptotic approximation for the function ®,, (z; x)
defined by (52). In order to plot the different asymptotic approximations for
P, (x;2), we will consider two cases:

i) On the negative real axis, we shall graph

P, (x;2) and (_1)n+1 x!Sin (7x)

T (n—1) - , (z;2), (121)

since both functions are analytic, nonzero, and bounded in this region.
ii) On the positive real axis (with < n), we shall graph

n+1 sin (7'('1')

P (@z) and (—1)

2T (n — ) b, (n0), (122)

since both functions are analytic and bounded in this region.

To compute the polynomials P, (x; z), we first compute the moments of
L on the monomial basis (8) to a very high order of accuracy (with error
less than ¢ = 1071%), solve the system of equations (3)

n—1
Hntk Zuk+i§n,z’ =0, 0<k<n-1,
i=0
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and construct the polynomials using (4),
n—1
P, (x;2) = 2" + Zﬁn,i (z) 2"
i=0

After that, we double-check that
|L[z"P,]| <e, 0<k<n-—1, |L[z"P)|>ce.

We have tried other methods (using Hankel determinants, recurrences,
or the Toda equations and the 3-term recurrence relation), but found them
unsatisfactory from a numerical point of view.

We will now present some graphs of the examples studied in the previ-
ous sections, showing the accuracy of our asymptotic approximations in a
neighborhood of z = 0.

In Figure 1, we plot the functions (121)—(122) for the generalized Meixner
polynomials, with

O, (22) = [1+ X (z2)n™ "+ Ao (z2)n7 7],

where A\ (z;2) was defined in (82), Ay (z;2) was defined in (83), n = 10,
a = 0.2479357, b = 0.7146983, and z = 0.3974126.

-6 =5e -4 -3 -2 -1 / [
\\\ / 3
N /
AN / 05 ™\
[ N\ / \
\\\ / [ / \ / \
\ E / / \
\ :‘0-5 t/ \ / \ /
\ / Y \ /
\ / ' \
\ / y /
\ /
\
\

1 ]

\ /
\ ) !
[ 3 h 5 6
/ | \ / \ \
,: [ \ / \
/ -10 [ \ / \
/ -05+ S
-15 [
“10!

(a) <0 (b) >0

Figure 1: A plot of the scaled generalized Meixner polynomial Pl(é’l) (z; 2)
and its approximation.

In Figure 2, we plot the functions (121)—(122) for the polynomials of type
(2,2), with

O, (z1) = [L+ N (z2)n '+ Ao (252) n7?]
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where A1 (z;2) was defined in (85), Ay (z;x) was defined in (86), n = 10,
a; = 0.2479357, a; = 0.1963478, by = 0.7146983, by = 0.5712349, and z =

0.3974126.
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Figure 2: A plot of the scaled polynomial P1(o2 2 (x; z) and its approximation.

In Figure 3, we plot the functions (121)—(122) for the generalized Charlier

polynomials, with

-~

2
®, (z;x) =1+ 201 + (m+1—b)z+%] n?

where n = 10, b = 0.7146983, and z = 0.3974126.
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Figure 3: A plot of the scaled generalized Charlier polynomial Pl(g’l) (x; 2)

and its approximation.

In Figure 4, we plot the functions (121)—(122) for the polynomials of type

(1,2), with

~

D, (z;2) =1+ 20" + ($+Cl—b1—bz)2+z— n-°,

2
2

2
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where n = 10, a = 0.2479357, b,

0.7146983, by = 0.5712349, and z =

12
1ol o3l ™\ M\ /\
: 3F /\ /\
[ / \ / \
| [\ [\ [\
02} / \ / \ / \
08 I / \ / \ / \
[ \
\ 01} | \
\ 06 f [ \
/ \ ] n 2 B8 4 5 6
/ \ I
0.4 i |
/ b ! /
S/ \ P\ / \ / \ f
/ 02 -0.2} / \ / \ /
X FA / \ / \ f
\ t “ / \ Il \ /
_____ — \o-03p \ / \ / \\/
o\ \/
-6 -5 4 -3 -2 -1 I
(a) <0 (b) x >0

Figure 4: A plot of the scaled polynomial Pl(é’Q) (x; z) and its approximation.

In Figure 5, we plot the functions (121)—(122) for the polynomials of type

(0,2), with

-~

P, (ziz)=1+n[z4+(@+1-b —b)zn'],

where n = 10, by = 0.7146983, by = 0.5712349, and z = 0.3974126.
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Figure 5: A plot of the scaled polynomial Pl(g 2 (x; z) and its approximation.

In Figure 6, we plot the functions (121)-(122) for the generalized Hahn

polynomials of type I, with

o, (w;z) = (1

— )" [T+ (wyz)n™" + g (wyz)n 2],
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Figure 6: A plot of the scaled generalized Hahn polynomial Pl(0

its approximation.
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21) (x;z) and

where 11 (w;z) was defined in (118), ¥ (w;x) was defined in (119), r =
a; +az —2—>b,n =10, a; = 0.2479357, as = 0.1963478, b = 0.7146983,
z = —0.01574126, and w = 0.0154973.

Finally, in Figure 7, we plot the functions (121)—(122) for the polynomials
of type (3,2), with

v (wia) | s (wi)

1
+ n n?

d, (w;z) = (1 —w) T ,
where 1 (w; x) was defined in (111), 15 (w; x) was defined in (112), rq1, 79, r3
are given by (120), n = 10, a; = 0.2479357, as = 0.1963478, a3 = 0.3614782,
by = 0.7146983, by = 0.5712349, z = —0.01574126, and w = 0.0154973.
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Figure 7: A plot of the scaled polynomial PI(S”Q) (x; z) and its approximation.
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5 Conclusions

We have given asymptotic expansions for the ratio

P (w3 2)

———, z=0(1), z¢ Ny,
as n — oo, where z (and any other parameters) is fixed. The polynomials
P, (z; z) are orthogonal with respect to the linear functional

L [u] :ZU(I)%%, acCl beC,
=0 z

and depending on the value of the parameter § = p + 1 — ¢, we have the
following cases:
(i) If & < 1, then

P, (z; _ 1 _
%zlj&zne ! {1+u+0(n 2)}, n — 00,
n \ L n
where
(1—n71+an*1)1 o N —k
(1+bn 1), _;”" '

(i) If = 1, then as n — oo

P (x;2) r+1+mr _
o (1) =e {1—%—” z+0(n 2)}

This result extends our previous work on the Charlier polynomials, [10], [12].
(iii) If & = 2, then as n — oo

By (z;w) (1 — ) rotien [1 @+ D(@+l4m)+ "2 040 (n—z)] ’
where w = —%;. This result extends our previous work on the Meixner poly-
nomials, [10], [12].

(iv) If # > 2, then the polynomials P, (z;w) depend on a parameter N,
with —N € N. We have not analyzed this case, since it will require scaling
N in terms of n. For some related work on the Krawtchouk polynomials, see
[13]. We plan to study this case in a forthcoming paper.
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