
Asymptotic analysis of a family of Sobolev
orthogonal polynomials related to the
generalized Charlier polynomials

Diego Dominici 1

Johannes Kepler University
Research Institute for Symbolic Computation (RISC)

Altenberger Straße 69, 4040 Linz, Austria.

Juan José Moreno Balcázar 2

Departamento de Matemáticas e
Instituto Carlos I de Física Teórica y Computacional

Universidad de Almería
La Cañada de San Urbano s/n

04120 Almería
Spain

September 29, 2022

Abstract

In this paper we tackle the asymptotic behaviour of a family of
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the falling factorial polynomials play an important role.
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1 Introduction

Let N0 be the set of nonnegative integers

N0 = N ∪ {0} = {0, 1, 2, . . .} .

If L : C [x] → C is a linear functional, we say that a sequence {pn}n≥0 ,
deg (pn) = n, is an orthogonal polynomial sequence with respect to L if

L [pkpn] = hnδk,n, k, n ∈ N0, hn 6= 0, (1)

where δk,n denotes the Kronecker delta. If hn = 1, then {pn}n≥0 is said to be
an orthonormal polynomial sequence. We denote by {µn}n ≥ 0 the moment
sequence of the functional L on the monomial basis,

µn = L[xn], n ∈ N0.

Let {pn}n≥0 be the sequence of monic polynomials, orthogonal with re-
spect to L. From (1), we see that

L [xpnpk] = 0, k 6= n, n± 1,

and therefore the polynomials pn (x) satisfy the three-term recurrence relation

xpn = pn+1 + βnpn + γnpn−1, n ∈ N0, (2)

with initial values p0(x) = 1, p1(x) = x − β0. Using (1), the coeffi cients
βn, γn are given by

βn =
L [xp2n]

hn
, γn =

L [xpnpn−1]

hn−1
, n ∈ N, (3)

with initial values
β0 =

µ1
µ0
, γ0 = 0. (4)

Note that (again using again (1)), we have

hn = L [xnpn] = L [xpnpn−1] = γnhn−1, n ∈ N,

and therefore

γn =
hn
hn−1

, n ∈ N. (5)
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The monic Generalized Charlier polynomials, Pn (x; z) are orthogonal
with respect to the linear functional

L [p] =

∞∑
x=0

p (x)

(b+ 1)x

zx

x!
, p ∈ C [x] , z > 0, (6)

where the Pochhammer symbol is defined by [17, 5.2.4]

(c)n =

n−1∏
j=0

(c+ j) , n ∈ N, (c)0 = 1. (7)

In [13] Hounkonnou, Hounga, and Ronveaux studied the orthogonal poly-
nomials associated with the linear functional

Lr [p] =
∞∑
x=0

p (x)
zx

(x!)r
, p ∈ C [x] , r ∈ N. (8)

When r = 2, they derived nonlinear recurrences (known as the Laguerre-
Freud equations) for the recurrence coeffi cients, and a second-order difference
equation for the orthogonal polynomials associated with Lr. Note that the
case r = 2 is a particular example of (6) with b = 0.
In [19] Van Assche and Foupouagnigni also considered (8) with r = 2.

They simplified the Laguerre-Freud equations obtained in [13], and obtained

un+1 + un−1 =
1√
z

nun
1− u2n

, vn =
√
zun+1un,

with γn = z (1− u2n) and βn = vn + n. They showed that these equations
are related to the discrete Painlevé II equation dPII. In [18], Smet and
Van Assche studied the orthogonal polynomials associated with (6). They
obtained the Laguerre-Freud equations

(γn+1 − z) (γn − z) = z (βn − n) (βn − n+ b) , (9)

βn + βn−1 = n− 1− b+
nz

γn
,

and showed that these equations are a limiting case of the discrete Painlevé
IV equation dPIV.
We are interested in an inner product in the framework of Sobolev-type

orthogonality. Concretely, a ∆—Sobolev inner product involving the linear
operator L given in (6), i.e.
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〈p, q〉 = L [pq] + λL [∆p∆q] , p, q ∈ C [x] , (10)

where λ ∈ C and the finite difference operators (in x) ∆,∇ are defined by

∆ [p] = p (x+ 1)− p (x) , ∇ [p] = p(x)− p (x− 1) .

We will denote by Sn (x;λ, z) themonic polynomials orthogonal with respect
to the inner product (10).
The study of Sobolev orthogonality, and corresponding orthogonal poly-

nomials, is a relatively recent topic in the theory of orthogonal polynomials.
The first seminal paper was written by Lewis in 1947 (see [15]) and other
foundational articles were written in the sixties and seventies of the last cen-
tury. However, the eclosion of investigations about this topic took place in
the nineties. Sobolev orthogonal polynomials are attractive because they
are not orthogonal in a standard way. For this reason nice properties of
standard orthogonal polynomials such as the three-term recurrence relation,
Christoffel—Darboux formula, etc. are lost. Therefore, it was necessary to
construct a new (unfinished) theory. Originally, the Sobolev inner products
involved the derivative operator. But, there is no reason to consider other
operators. In this paper, as we have mentioned previously, we consider a
Sobolev inner product involving the forward difference operator ∆, the so
called ∆—Sobolev orthogonality in some papers (see, for example, [1], [2], [3],
[16]).
The paper is organized as follows: in Section 2 we introduce some basic

facts which are useful to establish the main result in this paper. The ∆—
Charlier—Sobolev inner product is introduced in Section 3, where we obtain
some properties of the corresponding orthogonal polynomials which allow us
to obtain an asymptotic expansion for Sn (x;λ, z) .

2 Preliminary material

In this section, we review some of material that we will need in the rest of
the paper.

Lemma 1 If
φ (x) = x (x+ b) , ψ (x) = z, (11)
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then the functional (6) satisfies the Pearson equation

L [ψSp] = L [φp] , p ∈ C [x] , (12)

where S denotes the shift operator (in x)

S [p] = p (x+ 1) .

Proof. We see from (6) that

∞∑
x=0

zp (x+ 1)

(b+ 1)x

zx

x!
=

∞∑
x=1

p (x)

(b+ 1)x−1

zx

(x− 1)!

=
∞∑
x=1

x (x+ b) p (x)

(b+ 1)x

zx

x!
=
∞∑
x=0

x (x+ b) p (x)

(b+ 1)x

zx

x!
,

and (12) follows.
In general, we say that a functional L satisfying the Pearson equation

(12) where φ (x) , ψ (x) are fixed polynomials is discrete semiclassical. Note
that we can also write (12) as

L [ψ∆p] = L [(φ− ψ) p] , p ∈ C [x] .

The class of the functional is defined by

s = max {deg (φ− ψ)− 1, deg (φ)− 2} , (13)

and semiclassical functional of class s = 0 are called classical [12]. Note
that from (11) and (13) it follows that the generalized Charlier polynomials
are discrete semiclassical of class s = 1. In [10], we classified the discrete
semiclassical orthogonal polynomials of class s ≤ 1 and in [11] we extended
our results to s ≤ 2.

Proposition 2 Let pn (x) be the sequence of monic polynomials orthogonal
with respect to a linear functional L satisfying the Pearson equation (12) with
deg (φ) = r, deg (ψ) = t.
(i) The polynomials pn (x) satisfy the structure equation

ψ (x) pn (x+ 1) =
t∑

k=−r

Ak (n) pn+k (x) , (14)
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where the coeffi cients Ak (n) are solutions of the recurrence equation

γn+k+1Ak+1 (n)− γnAk+1 (n− 1) + Ak−1 (n)− Ak−1 (n+ 1) (15)

= (βn − βn+k − 1)Ak (n) ,

with
At (n) = z, A−r (n) = γnγn−1 · · · γn−r+1. (16)

and Ak (n) = 0, k /∈ [−r, t].
(ii) The generalized Charlier polynomials Pn (x; z) satisfy

∆Pn = nPn−1 + ξnPn−2, n ∈ N0, (17)

where
ξn =

γnγn−1
z

, n ∈ N0. (18)

Proof. (i) See [5].
(ii) If φ (x) , ψ (x) are given by (11), then t = 0, r = 2 and therefore

A0 (n) = z, A−2 (n) = γnγn−1. (19)

Setting k = 0 in (15), we get

A−1 (n+ 1)− A−1 (n) = z,

and we conclude that
A−1 (n) = nz. (20)

Using (19) and (20) in (14) we obtain

zPn (x+ 1) = zPn (x) + nzPn−1 (x) + γnγn−1Pn−2 (x) ,

and (17) follows.

Remark 3 If k = −1,−2 then (15) gives

γn (γn−1 − γn+1) = nz (βn − βn−1 − 1) ,

nzγn−1 − (n− 1) zγn = γnγn−1 (βn − βn−2 − 1) ,

from which the Laguerre-Freud equations (9) can be derived (see [18], equa-
tion 2.14 and beyond).
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Equation (17) was derived in [18] using the method presented in [14]. For
a different approach using infinite matrices, see [6].
Let ϕn (x) denote the falling factorial polynomials defined by ϕ0 (x) = 1

and

ϕn (x) =
n−1∏
k=0

(x− k) , n ∈ N. (21)

Note that we can write

ϕn (x) =
Γ (x+ 1)

Γ (x− n+ 1)
= n!

(
x

n

)
, n ∈ N0, (22)

where Γ denotes the gamma function [17, 5.2.1].

Proposition 4 The moments of the functional L on the basis ϕn (x) are
given by

νn (z) = L [ϕn] =
zn

(b+ 1)n
0F1

(
−

b+ n+ 1
; z

)
, (23)

where pFq is the generalized hypergeometric function [17, 16.2.1].

Proof. Using (6) and (22), we have

L [ϕn] =
∞∑
x=n

1

(b+ 1)x

zx

(x− n)!
=
∞∑
x=0

1

(b+ 1)x+n

zx+n

x!
,

and since
(c)n+m = (c)n (c+ n)m ,

we obtain

L [ϕn] =
∞∑
x=0

1

(b+ 1)n (b+ n+ 1)x

zx+n

x!
,

and (23) follows.

Lemma 5 The polynomials ϕn (x) satisfy the connection (or linearization)
formula

ϕn (x)ϕm (x) =

min{n,m}∑
k=0

(
n

k

)(
m

k

)
k!ϕn+m−k (x) . (24)
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Proof. From the definition of ϕn (x), we see that

ϕn+m (x) = ϕn (x)ϕm (x− n) . (25)

Suppose that m ≤ n. Using (25), we have
m∑
k=0

(
n

k

)(
m

k

)
k!ϕn+m−k (x) =

m∑
k=0

(
n

k

)(
m

k

)
k!ϕn (x)ϕm−k (x− n) ,

and using (22), we can write
m∑
k=0

(
n

k

)(
m

k

)
k!ϕm−k (x− n) = m!

m∑
k=0

(
n

k

)(
x− n
m− k

)
.

Using the Chu—Vandermonde identity, we have
m∑
k=0

(
n

k

)(
x− n
m− k

)
=

(
x

m

)
,

and therefore
m∑
k=0

(
n

k

)(
m

k

)
k!ϕm−k (x− n) = ϕm (x) .

Corollary 6 For all m,n ∈ N0, m ≤ n, we have

L [ϕnϕm] =

(
n

m

)
m!

(b+ 1)n
zn
[
1 +

n+ 1

(n−m+ 1) (n+ b+ 1)
z +O

(
z2
)]
,

(26)
as z → 0.

Proof. Using (24), we get

L [ϕnϕm] =

m∑
k=0

(
n

k

)(
m

k

)
k!νn+m−k (z) ,

and (23) gives

L [ϕnϕm] =

m∑
k=0

(
n

k

)(
m

k

)
k!

zn+m−k

(b+ 1)n+m−k

(
1 +

z

n+m− k + b+ 1
+ · · ·

)
=

(
n

m

)
m!

(b+ 1)n
zn +

(
n+ 1

m

)
m!

(b+ 1)n+1
zn+1 +O

(
zn+2

)
, z → 0.
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3 Sobolev polynomials

Let Sn (x;λ, z) be the monic polynomials orthogonal with respect to the
inner product (10). Introducing the sequences

µi,j (λ, z) = 〈ϕi, ϕj〉 , νi,j (z) = L [ϕiϕj] ,

and using the identity

∆ϕn = nϕn−1, n ∈ N0,

we have

µi,j = 〈ϕi, ϕj〉 = L [ϕiϕj] + λL [iϕi−1jϕj−1] = νi,j + λijνi−1,j−1, (27)

for all i, j ∈ N0. Using (26) in (27), we have

µi,j (z) =
λj

(i− j)!i!
zi−1

(b+ 1)i−1
+

(λi− 1) j + i+ 1

(i+ 1− j)! i!
zi

(b+ 1)i
+O

(
zi+1

)
(28)

as z → 0, with j ≤ i.
In [7], we obtained power series solutions for the determinant of a square

matrix whose entries are power series in z. Using (26) and (28), we see that

Hn (z) ∼ z(n2)
n−1∏
k=1

k!

(b+ 1)k
,

and

H̃n (λ, z) ∼ λn−1z(n−12 )
n−2∏
k=1

(k + 1) (k + 1)!

(b+ 1)k
,

as z → 0, where H0 = H̃0 = 1 and

Hn (z) = det
0≤i,j≤n−1

(νi,j) , H̃n (λ, z) = det
0≤i,j≤n−1

(µi,j) , n ∈ N.

Since the determinants Hn (z) and the norms of the polynomials are re-
lated by (see [4], Theorem 3.2)

hn (z) =
Hn+1 (z)

Hn (z)
,
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we get

hn (z) =
n!

(b+ 1)n
zn +O

(
zn+1

)
, n ∈ N0, (29)

as z → 0. Similarly, for all n ∈ N

h̃n (λ, z) = λ
nn!zn−1

(b+ 1)n−1
+
n! (n+ b− 1 + bλn)

(n+ b− 1) (b+ 1)n
zn +O (zn) , (30)

as z → 0, where

〈Sn, Sn〉 = h̃n (λ, z) =
H̃n+1 (λ, z)

H̃n (λ, z)
. (31)

The polynomials Sn (x;λ, z) and Pn (x; z) are related by the following
expression.

Theorem 7 We have

Pn (x; z) = Sn (x;λ, z) + an (λ, z)Sn−1 (x;λ, z) , n ∈ N, (32)

where

an (λ, z) =
(n− 1)λ

z

hn (z)

h̃n−1 (z, λ)
, n ∈ N. (33)

Proof. Since the polynomials Sn (x;λ, z) are a basis ofC [x] and Pn (x; z) , Sn (x;λ, z)
are monic, it follows that

Pn = Sn +
n−1∑
k=0

cn,kSk.

Using orthogonality, we have

cn,k =
〈Pn, Sk〉
h̃k

,

and using (10) we get

h̃kcn,k = L [PnSk] + λL [∆Pn∆Sk] . (34)

Using (17) in (34), we obtain

h̃kcn,k = L [PnSk] + λnL [Pn−1∆Sk] + λξnL [Pn−2∆Sk] = 0, 0 ≤ k ≤ n− 2,
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and therefore the only nonzero coeffi cient is

cn,n−1 = λ
ξn

h̃n−1
L [Pn−2∆Sn−1] .

But since

∆Sn−1 = (n− 1)xn−2 +O
(
xn−3

)
= (n− 1)Pn−2 +O

(
xn−3

)
,

we see that
L [Pn−2∆Sn−1] = (n− 1)hn−2.

Finally, we can use (5) and (18) to obtain

ξnhn−2 =
γnγn−1
z

hn−2 =
hn
z
. (35)

Thus, we conclude that

cn,n−1 = (n− 1)λ
ξn

h̃n−1
hn−2 =

(n− 1)λ

z

hn

h̃n−1
.

Remark 8 If we use (30)-(29) in (33), we get

an (λ, z) =
nz

(n+ b) (n+ b− 1)
+O

(
z2
)
, z → 0, n ≥ 2. (36)

Next, we shall find a recurrence for the Sobolev norms h̃n (λ, z) .

Theorem 9 For all n ∈ N, the functions h̃n (λ, z) defined by (31) satisfy the
nonlinear recurrence

h̃n = λn2hn−1 +
(

1 + λ
γnγn−1
z2

)
hn − (n− 1)2

λ2

z2
h2n

h̃n−1
. (37)

Proof. Using (10) and (31) we get

h̃n = 〈Sn, Pn〉 = L [SnPn] + λL [∆Sn∆Pn] = hn + λL [∆Sn∆Pn] .

But from (32) we have

L [∆Sn∆Pn] = L
[
(∆Pn)2

]
− anL [∆Sn−1∆Pn] ,
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while (17) gives
L
[
(∆Pn)2

]
= n2hn−1 + ξ2nhn−2,

and

L [∆Sn−1∆Pn] = nL [∆Sn−1Pn−1] + ξnL [∆Sn−1Pn−2]

= 0 + (n− 1) ξnhn−2.

Hence,

h̃n = hn + λn2hn−1 + λ
[
ξ2n − an (n− 1) ξn

]
hn−2,

or using (33) and (35), we conclude that

h̃n = hn + λn2hn−1 + λ
γnγn−1
z2

hn − (n− 1)2
λ2

z2
h2n

h̃n−1
.

Since h̃0 = h0 we know from (4) that γ0 = 0, we can use (37) and obtain

h̃1 = h1 + λh0,

h̃2 = h2 +

(
4h1 +

γ1γ2h2
z2

− λ

z2
h22

h1 + λh0

)
λ.

Using (33), it follows that

a1 = 0, a2 =
λh2

z (h1 + λh0)
.

Remark 10 Note that using (33), we can rewrite (37) as

nλ

z

hn+1
an+1

= λn2hn−1 +

(
1 + λ

γnγn−1
z2

− (n− 1)
λ

z
an

)
hn,

or, using (5)

nγn+1
zan+1

=
n2

γn
+

1

λ
+
γnγn−1
z2

− (n− 1) an
z

, n ∈ N. (38)
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4 Asymptotic analysis

In [8] we shown that the 3-term recurrence coeffi cients of the generalized
Charlier polynomials have the asymptotic expansions

βn (z) = n+
bz

n2
− b (2b+ 1) z

n3
+O

(
n−4
)
,

and
γn (z) = z − zbn−1 + zb2n−2 − bz

(
2z + b2

)
n−3 +O

(
n−4
)
, (39)

as n → ∞. We continued our work in [9], where we obtained asymptotic
expansions for all discrete semiclassical orthogonal polynomials.

Theorem 11 Let the functions an (λ, z) satisfy the nonlinear recurrence (41),
with an (λ, 0) = 0. If we write

an (λ, z) ∼ z
∑
k≥1

αk (λ, z)n−k, n→∞, (40)

then
α1 = 1, α2 = 1− 2b, α3 = 1 + 3b (b− 1)− z

λ
.

Proof. Let’s start by rewriting (38) as[
n2

z

γn
+
z

λ
+
γnγn−1
z

− (n− 1) an

]
an+1 − nγn+1 = 0, n ∈ N, (41)

and suppose that

an (λ, z) =
N∑

k=−N

uk (λ, z)n−k. (42)

Using (39) and (42) in (41), we see that as n→∞

uk = 0, k ≤ −2, u−1 (u−1 − 1) = 0.

Thus, there are two solutions of (41), one with asymptotic behavior

an = n+ b+ 1 +
(
b+ 1 +

z

λ

)
n−1 +O

(
n−2
)
, n→∞

and the other

an = zn−1 + (1− 2b) zn−2+
(

1 + 3b (b− 1)− z

λ

)
zn−3 +O

(
n−4
)
, n→∞.

Since from (36) we know that an (λ, 0) = 0, we must choose the second
solution and (40) follows.
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Remark 12 Using (33) and (40) we deduce

hn+1 (z)

h̃n (z, λ)
∼ z2

(n+ 1)nλ
+O(n−3).

In particular,

lim
n→∞

n2
hn+1 (z)

h̃n (z, λ)
=
z2

λ
.

From (5) and (39), we obtain

lim
n→∞

h̃n (z, λ)

n2hn (z)
=
λ

z
.

The above asymptotic behaviour of the norms can also be obtained from The-
orem 9 via Poincaré’s Theorem. That technique has given fruitful results to
obtain asymptotic properties in the context of Sobolev orthogonality.

In [9] we studied the asymptotic behavior of the generalized Charlier
polynomials, and proved the following result.

Theorem 13 The generalized Charlier polynomials satisfy

Pn (x; z)

ϕn (x)
∼
∑
k≥0

ωk (x; z)n−k, n→∞, (43)

with

ω0 = 1, ω1 = z, ω2 = (x+ 1− b) z +
z2

2
,

ω3 =
[
(x+ 1) (x+ 1− b) + b2

]
z + [2 (x+ 1− b) + 1]

z2

2
+
z3

6
.

We have now all the elements to state our main result.

Theorem 14 Suppose that

Sn (x;λ, z)

ϕn (x)
∼
∑
k≥0

σk (x; z)n−k, n→∞. (44)

Then,

σ0 = 1, σ1 = z, σ2 = ω2 + z,

σ3 = ω3 + [x+ z + α2] z,

σ4 = ω4 +
[
x2 + (z + α2)x+ z (2 + α2) + ω2 + α3

]
z.

14



Proof. Using the binomial theorem in (44), we can see that

Sn−1
ϕn−1 (x)

∼
∑
k≥0

[
k−1∑
j=0

(
k − 1

j

)
σj+1

]
n−k, n→∞. (45)

Using the recurrence
ϕn (x) = (x− n)ϕn−1 (x)

in (32), we get
(x− n) (Pn − Sn)

ϕn (x)
= an

Sn−1
ϕn−1 (x)

. (46)

Considering (43), (44) we have

(x− n) (Pn − Sn)

ϕn (x)
∼ (σ0 − ω0)n+

∑
k≥0

[x(ωk − σk)− (ωk+1 − σk+1)]n−k,

and from (40) and (45)

an
Sn−1

ϕn−1 (x)
∼ z

∑
k≥1

[
αkσ0 +

k−1∑
j=1

αk−j

j−1∑
i=0

(
j − 1

i

)
σi+1

]
n−k,

thus, from (46) we deduce
σ0 = ω0 = 1,

x(ω0 − σ0)− (ω1 − σ1) = 0⇒ σ1 = ω1 = z,

x(ωk − σk)− (ωk+1 − σk+1) = z

[
αk +

k−1∑
j=1

αk−j

j−1∑
i=0

(
j − 1

i

)
σi+1

]
, k ≥ 1.

To obtain σk with k = 2, 3, 4, it is enough to particularize the above
expression.
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