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defines a closed one-form on the space of monodromies and times, and identify it with the
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1 Introduction

Isomonodromic tau functions are defined as the generating functions of Poisson commuting

Hamiltonians Hi that generate flows in times ti ∈ T,

dt log T :=
∑

times ti

dti∂ti log T = ωJMU :=
∑

times ti

Hidti. (1.1)

Here dt is the exterior differential on the space of times T, ωJMU ∈ T ∗T is the so called Jimbo-

Miwa-Ueno (JMU) one-form [15], and its closedness

dt ωJMU = 0 (1.2)

is equivalent to the consistency of the Hamiltonians flows, describing deformations of a linear

system of ODEs

∂zΦ(z) = Φ(z)A(z) (1.3)

that preserve its monodromies. The Hamiltonians themselves are obtained from contour in-

tegrals of 1
2 trA

2(z). Through the Riemann-Hilbert correspondence that maps the space A of

coefficients of the linear system to the space of monodromies M, the Hamiltonians can be writ-

ten in terms of the times and the monodromy data. The tau function T in (1.1) is defined only

up to an overall monodromy-dependent constant C(M), and extending it to a closed one-form

on T ∗(M×T) allows to determine the asymptotic behaviour of the tau function near its critical

points, while revealing the symplectic properties of the tau function.
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In [12, 14, 20], building upon an earlier work [2, 3], a procedure to construct such an

extended closed one-form was presented based on the Riemann-Hilbert approach to Painlevé

equations. The one-form was explicitly written for the cases of Painlevé VI, II, III1, and I, where

it was used to obtain the ratios of the corresponding tau functions at the critical points, known

as the connection constants, a longstanding problem in the theory of Painlevé equations. A

Hamiltonian approach to this construction was put forward in [13] for all Painlevé equations and

the Schlesinger system. The closed one-form for the Schlesinger system was written explicitly

in [4], with an elegant interpretation of the tau function as the generating function of the

monodromy symplectomorphism, i.e. a homomorphism from a symplectic leaf in the space of

coefficients A of the system to a symplectic leaf in the monodromy manifold M.

In this paper, we determine the closed one-form d log T for tau functions on a torus with

regular singularities by using their Fredholm determinant representation [8], and show that they

generate the monodromy symplectomorphism.

A key technique in our construction involves the Fredholm determinant representation,

which is obtained using a pants decomposition of the torus (see theorem 1, [8]). Specifically, the

pants decomposition of the torus with n punctures consists of n spheres with 3 simple poles,

which translates to describing the local behaviour of the solution to the linear system we call

L in terms of the solution to an appropriate linear problem defined on a sphere with three

simple poles denoted by L3pt. It then turns out that the kernel of the Fredholm determinant

is completely described by n such three-point solutions with suitable shifts that capture the

topology of the torus. The tau function of the torus is then related to the Fredholm determinant

by a proportionality factor. The pith of the monodromy dependence of the tau function therefore

lies in understanding the derivative of the Fredholm determinant w.r.t the monodromy data.

The resulting one-form has the structure

d log T = ω − ω3pt, d = dt + dM, (1.4)

where ω depends on the data coming from the global properties of L, whereas ω3pt depends on

the local behaviour described by L3pt. Moreover, ω depends on the monodromy data and the

times, while ω3pt depends only on the monodromy data. Such a structure of the one-form is

instrumental in obtaining the connection constant, which will be the subject of an upcoming

paper. We also observe that our approach does not rely on the information of the asymptotics

or additional assumptions to obtain the closedness.

This paper is structured as follows: we setup the linear system on an n-punctured torus,

describe the pants decomposition, and briefly recap the construction of the Fredholm deter-

minant in section 2, we compute the monodromy dependence of the Fredholm determinant in

proposition 1 and obtain the closed one-form in theorem 1, highlighting the splitting described

in (1.4). In section 3.1, we use the example of the torus with one puncture to illustrate the

role of the one-form d log T as the generating function of the monodromy symplectomorphism

in theorem 2.

Throughout this paper we use the following notation
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Notation 1. Given an N-tuple of parameters (ξ1, . . . ξN ), and a function g(ξi), i = 1, . . . , N of

these parameters, we define

g(ξ) := diag (g(ξ1), . . . , g(ξN )) . (1.5)

In particular, when g(ξi) = ξi, this is

ξ = diag (ξ1, . . . , ξN ) . (1.6)
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2 Isomonodromic deformations on the torus and tau function

In this section, we setup the SL(N) linear system on the n-point torus, introduce the pants

decomposition with corresponding 3-point local solutions, and briefly describe the construction

of the Fredholm determinant representation of the isomonodromic tau-function.

2.1 Setup

Isomonodromic deformations on a torus with n simple poles can be characterised by the following

system of linear differential equations [18, 22]

∂
∂zΦ (z) = Φ (z)Lz (z) ,

(2πi) ∂
∂τΦ (z) = Φ (z)Lτ (z) ,

∂
∂zk

Φ (z) = Φ (z)Lk (z) ,

(2.1)

with Φ(z) ∈ SL(N,C). Here z is the coordinate on the n-point torus C1,n viewed as the

identification space z ∼ z + r + ℓτ , r, ℓ ∈ N, with singularities at the points zk for k = 1 . . . n,

τ ∈ H is the modular parameter of the torus. The Lax matrices Lz, Lτ , Lk ∈ slN have elements

(Lz)ij(z) = δij

{
Pi +

n∑

k=1

θ′1(z − zk)

θ1(z − zk)
(Ak)ii

}
− (1− δij)

n∑

k=1

x(Qj −Qi, z − zk)(Ak)ij , (2.2)
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(Lk)ij(z) = −δij
θ′1(z − zk)

θ1(z − zk)
(Ak)ii + (1− δij)x(Qj −Qi, z − zk)(Ak)ij , (2.3)

(Lτ )ij(z) = −
1

2
δij

n∑

k=1

θ′′1(z − zk)

θ1(z − zk)
(Ak)ii −

n∑

k=1

y(Qj −Qi, z − zk)(Ak)ij, (2.4)

where x, y are the Lamé functions defined as

x(ξ, z) =
θ1(z − ξ)θ′1(0)

θ1(z)θ1(ξ)
, y(ξ, z) = ∂ξx(ξ, z), (2.5)

where θ1 is the Jacobi theta function

θ1(z) :=
∑

n∈Z

(−1)n−
1
2 eiπτ(n+

1
2)

2

e2πi(n+
1
2)z. (2.6)

The above linear system has two main properties.

1. The matrices Ak are diagonalizable

Ak = G−1
k mkGk (2.7)

and satisfy the constraint

n∑

k=1

(Ak)ii =

n∑

k=1

(G−1
k mkGk)ii = 0. (2.8)

Moreover,

mi −mj /∈ Z,
N∑

j=1

Pj =
N∑

j=1

Qj = 0. (2.9)

2. The matrices Lz, Lk, Lτ have the following transformation (using notation 1) under the

shift z 7→ z + τ

Lz(z + τ) = e−2πiQL(z)e2πiQ,

Lk(z + τ) = e−2πiQLk(z)e
2πiQ + 2πidiag ((Ak)11, . . . , (Ak)NN ) , (2.10)

Lτ (z + τ) = e−2πiQ (Lτ (z) + L(z)) e2πQ − 2πiP .

The solution of the linear system (2.1), under the z 7→ z + τ shift therefore transforms as

Φ(z + τ) = MBΦ(z)e
2πiQ, (2.11)

where MB ∈ SL(N) is the B-cycle monodromy, and the monodromies around the punctures zk
and the A-cycle monodromy are respectively

Mk = Cke
2πimkC−1

k , MA = S1e
2πia1S−1

1 , (2.12)

with the constraint

M−1
B M−1

A MBMA

n∏

k=1

Mk = 1. (2.13)
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Definition 1. 1. The Lax matrices Lz(z) in equation (2.2) are described by the following
space:

A1,n :=

{
τ, (Gk,mk, zk)

n
k=1

, (Pj , Qj)
N
j=1

: τ ∈ H, zk ∈ T 2

τ , Gk ∈ SL(N), Pj , Qj ∈ C, (2.8), (2.9)

}
/ ∼,

(2.14)

where ∼ is the equivalence relation Gk → GkD, where D ∈ SL(N) is diagonal1. The

dimension of this space is

dimA1,n = n(N2 − 1) + n(N − 1) + n+ 1. (2.15)

A1,n can be viewed as the symplectic reduction of the moduli space of flat SL(N,C) con-

nections on the n-punctured torus [1, 11, 16–19]).

2. The extended character variety of SL(N) flat connections on T 2
τ \ {z1, . . . , zn}(see [5] for

genus zero case) is

M1,n = {MA,MB , (Ck,mk)
n
k=1 : MA,MB , Ck ∈ SL(N), (2.12), (2.13)} / ∼, (2.16)

where / ∼ means that we identify monodromy representations related by an overall conju-

gation. The dimension of the extended character variety is

dimM1,n = n(N2 − 1) + n(N − 1). (2.17)

For arbitrary genus, dimMg,n = (N2 − 1)(2g − 2 + n) + n(N − 1).

The usual (non-extended) character variety would be

M
(0)
1,n = {MA,MB ,M1, . . . ,Mn ∈ SL(N)|(2.13)} / ∼, dimM

(0)
1,n = n(N2 − 1), (2.18)

and the standard space of coefficients

A
(0)
1,n :=

{
τ, (Ak, zk)

n
k=1, (Pj , Qj)

N
j=1 : τ ∈ H, zk ∈ T 2

τ , Ak ∈ SL(N), Pj , Qj ∈ C, (2.8), (2.9)

}
/ ∼,

(2.19)

where now Ak ∼ D−1AkD, and the dimension

dimA
(0)
1,n = n(N2 − 1) + n+ 1. (2.20)

By using gauge freedom, it is always possible to choose S1 = 1 in the A-cycle monodromy

(2.12), i.e.

MA ≡ e2πia1 . (2.21)

The local behaviour of the solution to the linear system in a tubular neighbourhood of the

puncture zk is

Φ (z → zk) = Ck (z − zk)
mk

(
1 +

∞∑

l=1

gk,l(z − zk)
l

)
Gk, (2.22)

1The full gauge group acts as Gk → GkH , where H ∈ SL(N) is an arbitrary matrix. However, the choice of

diagonal e2πiQ uniquely fixes H to be diagonal
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where the matrices Ck, Gk diagonalize the monodromies (2.12) and the residue matrices (2.7)

respectively. There is an ambiguity of the form

Ck 7→ CkD
−1
k , gk,l 7→ Dkgk,lD

−1
k , Gk 7→ DkGk, (2.23)

with Dk diagonal, that does not change the asymptotics (2.22), and it amounts to a change of

normalization for the eigenvectors of Mk, Ak. The extended spaces (2.16), (2.19) differ from the

non-extended ones by the inclusion of the parameters that are changed by the transformation

(2.23). These parameters turn out to be canonically conjugated to mk [4].

The matrices gk,l are computed recursively with the i, j component given by

[
G−1

k (gk,1 + [mk, gk,1])Gk

]
ij
= δij



Pi +

n∑

k′ 6=k

θ′1(zk − zk′)

θ1(zk − zk′)
(Ak′)ii





− (1− δij)

n∑

k=1

x(Qi −Qj, zk − zk′)(Ak′)ij .

(2.24)

The isomonodromic time evolution2 arising from the compatibility of (2.1) is generated by

the n+ 1 Poisson commuting Hamiltonians

Hzk := Resz=zk

1

2
trL(z)2, Hτ :=

∮

A
dz

1

2
trL(z)2. (2.25)

Definition 2. The isomonodromic tau function TH is then defined as

∂zk log TH = Hk, 2πi∂τ log TH = Hτ . (2.26)

2.2 Pants decomposition of the n-point torus and Hilbert spaces

The n-punctured torus can be decomposed into n trinions, that we choose to be glued along

copies of the A-cycle as in Figure 1. There is a three-point problem associated to each trinion

T [k]

∂zΦ
[k]
3pt(z) = Φ

[k]
3pt(z)L

[k]
3pt(z),

L
[k]
3pt(z) = −2πiA

[k]
− − 2πi

A
[k]
0

1 − e2πiz
, (2.27)

with diagonalizable residue matrices

A
[k]
− = (G

[k]
− )−1akG

[k]
− , A

[k]
0 = (G

[k]
0 )−1mkG

[k]
0 , (2.28)

A
[k]
+ = −A

[k]
− −A

[k]
0 = (G

[k]
+ )−1ak+1G

[k]
+ , (2.29)

for k = 1, . . . n. The local solution on each trinion Φ
[k]
3pt(z) is such that the ratio

Φ
[k]
3pt(z − zk)

−1Φ(z)

2Here by isomonodromy we mean that the Ck’s are constant, as opposed to just the monodromies. This is the

correct notion for the extended spaces A1,n and M1,n.
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is regular and single-valued around z = zk, with Φ
[k]
3pt(z−zk) approximating the analytic behavior

of Φ(z) in the trinion T [k].

. . .T [1] T [2] T [n]

C
[1]
in

γ1

C
[1]
out

C
[1]
out C

[2]
in

C
[2]
in

γ2

C
[2]
out

C
[2]
out C

[3]
in C

[n−1]
out C

[n]
in

C
[n]
in

γn

C
[n]
out

C
[n]
outC

[n+1]
in = C

[1]
in

A [1] A [2] A [n−1]

A [n]

Figure 1: Pants decomposition for the n-punctured torus

In terms of the contours defined above, the fundamental domain for the torus is the paral-

lelogram in the figure 2.

C
[1]
in

C
[n]
out

− τ+1
2 − τ−1

2

τ−1
2

τ+1
2

Figure 2: The fundamental domain of the torus

The parameters mk, ak are local monodromy exponents, i.e the monodromies around the

contours γk, C
[k]
in , C

[k−1]
out , are respectively

Mk = Cke
2πimkC−1

k , M
C
[k]
in

= Ske
2πiakS−1

k , M
C
[k]
out

= Sk+1e
−2πiak+1S−1

k+1, (2.30)

for k = 1, . . . n, where the Ck, Sk are constant matrices with Sk’s assuming the form

S1 = 1, Sn+1 = M−1
B , an+1 = a1. (2.31)

Note that a1 corresponds to the usual A-cycle as described in (2.21). The pants decomposition

induces a homomorphism of monodromy groups π1 (C0,n+2) → π1 (C1,n) as can be seen from

the the constraint (2.13)

MA

n∏

k=1

MkM
−1
B M−1

A MB = 1 = M
C
[1]
in

(
n∏

k=1

Mk

)
M

C
[n]
out

. (2.32)
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The local behaviour of the three-point solution Φ[k] around the point zk is then

Φ
[k]
3pt (z → 0) = Ckz

mk

(
1 +

∞∑

l=1

g
[k]
1,lz

l

)
G

[k]
0 , (2.33)

while its local behavior on the circles C
[k]
in and C

[k]
out is

Φ
[k]
3pt

∣∣
z∈C

[k]
in

= Ske
2πizak

(
1 +

∞∑

l=1

g
[k]
−,le

−2πilz

)
G

[k]
− , (2.34)

Φ
[k]
3pt

∣∣
z∈C

[k]
out

= Sk+1e
2πizak+1

(
1 +

∞∑

l=1

g
[k]
+,le

2πilz

)
G

[k]
+ . (2.35)

Once again note that Ck, Sk, G
[k]
0 , G

[k]
− , G

[k]
+ are the diagonlization matrices in (2.28), (2.30). As

before, the matrices g1,l can be computed recursively with the 1, 1 matrix entry given by

g
[k]
1,1 +

[
mk, g

[k]
1,1

]
= −2πiG

[k]
0 A

[k]
0

(
G

[k]
0

)−1
. (2.36)

We now associate Hilbert spaces to each of the boundary contours C
[k]
in , C

[k]
out specified in

Figure 1. The projection operators on these spaces provide the building blocks to write the

tau-function as a Fredholm determinant. The total Hilbert space H is decomposed into a direct

sum of spaces H[k] corresponding to each pair of pants:

H :=

n⊕

k=1

H[k] = H+ ⊕H−, (2.37)

where

H± :=

n⊕

k=1

(
H

[k]
in,∓ ⊕H

[k]
out,±

)
. (2.38)

Definition 3. We associate the single-valued matrix-valued functions Ψ(z), Ψ
[k]
3pt(z) defined on

the boundary circles of the pants decomposition, to the functions Φ(z), Φ
[k]
3pt(z) in (2.1), (2.27)

respectively3

Ψ(z)|
C
[k]
out

:= e−2πi(z−δk,nτ)ak+1S−1
k+1Φ(z)|C[k]

out

, Ψ(z)|
C
[k]
in

:= e−2πizakS−1
k Φ(z)|

C
[k]
in

, k = 1, . . . , n

(2.39)

Ψ
[k]
3pt(z)|C[k]

out

:= e−2πi(z−δk,nτ)ak+1S−1
k+1Φ

[k]
3pt(z − zk)|C[k]

out

, Ψ
[k]
3pt(z)|C[k]

in

:= e−2πizakS−1
k Φ

[k]
3pt(z − zk)|C[k]

in

,

(2.40)

where δk,n is the Krönecker delta and the identities (2.31) hold.

3The z − τ in Ψ is so that Ψout,n is ”identified” with Ψin,1, in the sense that the only difference is the twist
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2.3 Fredholm determinant representation of the tau-function

We define the projection operators PΣ, P⊕ on the Hilbert space defined in (2.37) in terms of the

solutions to the n-point linear sytem (2.39), and the solutions (2.40) to the three-point problems

respectively4:

• The operator PΣ is defined as

(PΣf) (z) :=

∮

CΣ

dw

2πi
Ψ(z)ΞN (z, w)Ψ(w)−1f(w), (2.41)

where

CΣ :=

n⋃

k=1

C
[k]
out ∪ C

[k+1]
in , C

[n+1]
in := C

[1]
in , (2.42)

and the (twisted) Cauchy kernel on the n-point torus

ΞN (z, w) = diag

(
θ1(z − w +Q1 − ρ)θ′1(0)

θ1(z − w)θ1(Q1 − ρ)
, . . . ,

θ1(z −w +QN − ρ)θ′1(0)

θ1(z − w)θ1(QN − ρ)

)

=
θ1(z − w +Q− ρ)θ′1(0)

θ1(z −w)θ1(Q− ρ)
,

(2.43)

has the following transformation

ΞN (z + τ, w) = e2πi(Q−ρ) ΞN (z, w), ΞN (x,w + τ) = ΞN (z, w)e−2πi(Q−ρ). (2.44)

• The operator P [k] is defined as

(
P

[k]
⊕ f [k]

)
(z) :=

∫

C
[k]
in ∪C

[k]
out

dw
Ψ

[k]
3pt(z)Ψ

[k]
3pt(w)

−1

1− e−2πi(z−w)
f [k](w), (2.45)

and

P⊕ :=

n∑

k=1

P
[k]
⊕ . (2.46)

In the paper [8] we proved that the tau function (2.26) has the following Fredholm determinant

representation:

TH(τ) = det
H+

[
P−1
Σ,+P⊕,+

]
eiπτ tr(a2

1+
1

6)e−iπNρ
N∏

i=0

η(τ)

θ1 (Qi − ρ)

n∏

k=1

e−iπzk(tra2
k+1−tra2

k), (2.47)

where PΣ,+ := PΣ

∣∣
H+

,P⊕,+

∣∣
H+

, Qi ≡ Qi(τ, z1, ..., zn) are the dynamical variables of the SL(N)

linear system (2.2), ak are the monodromy exponents defined in (2.30), and ρ is an arbitrary

parameter. Furthermore, the time derivative of the Fredholm determinant recovers the JMU

one form:

ωJMU :=

(
dτ +

n∑

k=1

dzk

)
log TH =

1

2πi
Hτdτ +

n∑

k=1

Hkdzk. (2.48)

We will do this by explicitly computing the derivative of the tau function (2.47) with respect to

the monodromy data.

4The Cauchy kernel are written in the cylindrical coordinates below, as they are more natural for our

parametrization of the torus.
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3 Monodromy dependence of the torus tau function

We begin with the following identity for the derivative of the Fredholm determinant [10]

d log det
H+

[
P−1
Σ,+P⊕,+

]
= − trH P⊕dPΣ, d = dM + dτ +

n∑

k=1

dzk , d• = d • ∂•, (3.1)

where dM is the total exterior derivative on the extended character variety M1,n.

Proposition 1. The derivative of the Fredholm determinant w.r.t the monodromy data is

dM log det
H+

[
P−1
Σ,+P⊕,+

]
= tr (PdMQ) + dM log

(
N∏

i=1

θ1(Qi − ρ)

)
+

n∑

k=1

trmkdMGkG
−1
k

+

n∑

k=1

(
trakdMG

[k]
−

(
G

[k]
−

)−1
− trmkdMG

[k]
0

(
G

[k]
0

)−1
− trak+1dMG

[k]
+

(
G

[k]
+

)−1
)

− iπ tr τdMa2
1 +

n∑

k=1

iπ tr zkdM
(
a2
k+1 − a2

k

)
,

(3.2)

where (with the notation 1) mk, ak are the local monodromy exponents (2.30), P ,Q are the

dynamical variables in the Lax matrix (2.2), ρ is an arbitrary parameter, Gk, G
[k]
± are the eigen-

vector matrices (2.7), (2.28).

Proof. We start from the following equality (see eq. 3.61 in [8])

− trH [P⊕dMPΣ] = −

n∑

k=1

∮

C
[k]
in

∪C
[k]
out

dw

∮

C
[k]
in

∪C
[k]
out

dz

2πi

1

1− e−2πi(z−w)
tr

{
Ψ

[k]
3pt(z)Ψ

[k]
3pt(w)

−1

× dM
(
Ψ(w)ΞN (w, z)Ψ(z)−1

)}

= −
n∑

k=1

∮

C
[k]
in ∪C

[k]
out

dz

2πi
tr

{
dMΨ(z)Ψ(z)−1

(
∂zΨ

[k]
3pt(z)

(
Ψ

[k]
3pt(z)

)−1
)}

+
n∑

k=1

∮

C
[k]
in ∪C

[k]
out

dz

2πi
tr
{
dMΨ(z)Ψ(z)−1

(
∂zΨ(z)Ψ(z)−1

)}

+
n∑

k=1

∮

C
[k]
in ∪C

[k]
out

dz

2πi
tr

{[
θ′1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
Ψ(z)−1dMΨ(z)

}

=: I1 + I2 + I3. (3.3)

We now compute each of the above integrals separately.

• Computing the integral I2:

We begin by noting that the boundary circles in the pants decomposition (see figure 1)

can be identified in the following way

C
[k]
out = −C

[k+1]
in for l = 1, . . . , n− 1. (3.4)
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With the above identification of contours, the integral I2 in the expression (3.3) simplifies

as

I2 =

n∑

k=1

∮

C
[k]
in ∪C

[k]
out

dz

2πi
tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}

=
n∑

k=1

∮

C
[k]
in

dz

2πi
tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}

+
n∑

k=1

∮

C
[k]
out

dz

2πi
tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}

=

∮

C
[1]
in∪C

[n]
out

dz

2πi
tr
{
dMΨ(z)Ψ(z)−1∂zΨ(z)Ψ(z)−1

}
.

(3.5)

In order to express the above expression in terms of the solution to the linear problem on

the torus Φ, we use the identities coming from (2.39), (2.40) and fix z1 = 0 without loss

of generality:

Ψ(z)|
C
[1]
in

= e−2πiza1Φ(z)|
C
[1]
in

, Ψ(z)|
C
[n]
out

= e−2πi(z−τ)a1MBΦ(z)|C[n]
out

, (3.6)

where the contours (see Figure 2):

C
[1]
in =

[
1− τ

2
,−

(1 + τ)

2

]
, C

[n]
out =

[
1 + τ

2
,−

(1− τ)

2

]
. (3.7)

Therefore the solution Φ restricted to the outermost circles C
[1]
in , C

[n]
out satisfies the relation:

Φ(z)|
C
[n]
out

= Φ(z + τ)|
C
[1]
in

(2.11)
= M−1

B Φ(z)|
C
[1]
in

e2πiQ. (3.8)

Substituting (3.6) and using the identity (3.8), the expression (3.5) for the integral I2
simplifies as follows:

I2
(3.6)
=

∮

C
[1]
in

dz

2πi
tr
{(

−2πizdMa1 + dMΦ(z)Φ(z)−1
) (

∂zΦ(z)Φ(z)
−1 − 2πia1

)}

+

∮

C
[n]
out

dz

2πi
tr

{(
−2πi(z − τ)M−1

B dMa1MB +M−1
B dMMB + dMΦ(z)Φ(z)−1

)

×
(
∂zΦ(z)Φ(z)

−1 − 2πiM−1
B a1MB

)}

(3.8)
=

∮

C
[1]
in

dz

2πi
tr
{(

−2πizdMa1 + dMΦ(z)Φ(z)−1
) (

∂zΦ(z)Φ(z)
−1 − 2πia1

)}

−

∫

C
[1]
in

dz

2πi
tr

{(
−2πizdMa1 + dMΦ(z)Φ(z)−1 + 2πiΦ(z)dMQΦ(z)−1

)

×
(
∂zΦ(z)Φ(z)

−1 − 2πia1

)}

= −

∮

C
[1]
in

dz tr
{
dMQ

(
Φ(z)−1∂zΦ(z)− 2πiΦ(z)−1a1Φ(z)

)}

(2.2)
= tr (PdMQ)− 2πi

∮

C
[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
. (3.9)
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To obtain the last line, we used the constraint (2.8), together with the following property

of θ1(z)

θ1(z + 1) = −θ1(z) ⇒

∮

C
[1]
in

dz ∂z log θ1(z) = iπ (3.10)

to simplify the contribution from the Lax matrix L(z). In summary,

I2 = tr (PdMQ) + 2πi

∮

C
[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
. (3.11)

• Computing the integral I3:

Using the identification of neighbouring contours (3.4), the integral I3 in (3.3) simplifies

as

I3 =

n∑

k=1

∮

C
[k]
in

∪C
[k]
out

dz

2πi
tr

{[
θ′1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
Ψ(z)−1dMΨ(z)

}

(3.4)
=

∮

C
[1]
in∪C

[n]
out

dz

2πi
tr

{[
θ′1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
Ψ(z)−1dMΨ(z)

}

(3.6),(3.8)
= −

∮

C
[1]
in

dz tr

{[
θ′1(Q− ρ)

θ1(Q− ρ)
− iπ1N

]
dMQ

}
= tr

(
θ′1(Q− ρ)

θ1(Q− ρ)
dMQ

)

= dM log

(
N∏

i=1

θ1(Qi − ρ)

)
. (3.12)

The last line is obtained by remembering that Q ∈ SL(N) and is therefore traceless.

• Computing the integral I1:

Let us start by expressing the integral I1 (3.3) in terms of the solutions to the linear
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problems using (2.39), (2.40):

I1 = −

n∑

k=1

∮

C
[k]
in ∪C

[k]
out

dz

2πi
tr
{
dMΨ(z)Ψ(z)−1∂zΨ

[k]
3pt(z)Ψ

[k]
3pt(z)

−1
}

(2.39),(2.40)
= −

∮

C
[k]
in

dz

2πi
tr

{(
−2πizSkdMakS

−1
k − dMSkS

−1
k + dMΦ(z)Φ(z)−1

)

×
(
∂zΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1 − 2πiSkakS
−1
k

)}

−

∮

C
[k]
out

dz

2πi
tr

{(
−2πi (z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1 + dMΦ(z)Φ(z)−1

)

×
(
∂zΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1 − 2πiSk+1ak+1S
−1
k+1

)}

=:

n∑

k=1

(
I
[k]
in + I

[k]
out

) (2.31),(3.4)
+

∮

C
[1]
in

dz tr
{(

−2πizdMa1 + dMΦ(z)Φ(z)−1
)
a1

}
(3.13)

+

∮

C
[n]
out

dz tr
{(

−2πi(z − τ)dMak + dMMBM
−1
B +MBdMΦ(z)Φ(z)−1M−1

B

)
a1

}
(3.14)

=

n∑

k=1

(
I
[k]
in + I

[k]
out

)
− 2πi

∮

C
[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
, (3.15)

where we defined

I
[k]
in := −

∮

C
[k]
in

dz

2πi
tr

{(
−2πizSkdMakS

−1
k − dMSkS

−1
k + dMΦ(z)Φ(z)−1

)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
(3.16)

I
[k]
out := −

∮

C
[k]
out

dz

2πi
tr

{(
−2πi(z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1 + dMΦ(z)Φ(z)−1

)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
. (3.17)

Note that the functions

(
−2πizSkdMakS

−1
k − dMSkS

−1
k + dMΦ(z)Φ(z)−1

)
,

(
−2πi (z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1 + dMΦ(z)Φ(z)−1

)
, (3.18)

in the integrands above are single-valued on C
[k]
in and C

[k]
out respectively, but they have

logarithmic branch cuts as can be seen from the local solutions (2.22), (2.33)-(2.35), that

make it impossible to close the integration contour.

So, we introduce the following trick: we add and subtract the integrals Ĩ
[k]
in , Ĩ

[k]
out, defined

to be analogous to I
[k]
in , I

[k]
out with the solution of the torus linear system Φ(z) in (3.16),
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(3.17) replaced by the solution of the 3-pt linear system Φ
[k]
3pt, namely

Ĩ
[k]
in := −

∮

C
[k]
in

dz

2πi
tr

{(
−2πizSkdMakS

−1
k − dMSkS

−1
k + dMΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1
)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
,

(3.19)

Ĩ
[k]
out := −

∮

C
[k]
out

dz

2πi
tr

{(
− 2πi (z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

)
× ∂zΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
.

(3.20)

We now compute the differences

I
[k]
in − Ĩ

[k]
in = −

∮

C
[k]
in

dz

2πi
tr

{(
dMΦ(z)Φ(z)−1 − dMΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1
)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
, (3.21)

I
[k]
out − Ĩ

[k]
out = −

∮

C
[k]
out

dz

2πi
tr

{(
dMΦ(z)Φ(z)−1 − dMΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1
)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
, (3.22)

and sum the above expressions to obtain the following expression

I
[k]
in − Ĩ

[k]
in + I

[k]
out − Ĩ

[k]
out = −

∮

C
[k]
in ∪C

[k]
out

dz

2πi
tr

{(
dMΦ(z)Φ(z)−1 − dMΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1
)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}

= Resz=zk tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z)Φ

[k]
3pt(z − zk)

−1
)
∂zΦ

[k]
3pt(z)Φ

[k]
3pt(z − zk)

−1
}
.

(3.23)

Note the orientation of the contours of integration (see figure 2) when taking the residue.

Substituting the local behaviour near z = zk of the functions Φ, Φ
[k]
3pt described in (2.22),

(2.33) respectively, we compute the individual terms in the residue:

dMΦΦ−1 = dMCkC
−1
k + log(z − zk)CkdMmkC

−1
k

+ Ck(z − zk)
mkdMGkG

−1
k (z − zk)

−mkC−1
k +O((z − zk)), (3.24)

dMΦ
[k]
3pt(Φ

[k]
3pt)

−1 = dMCkC
−1
k + log(z − zk)CkdMmkC

−1
k

+ Ck(z − zk)
mkdMG

[k]
0

(
G

[k]
0

)−1
(z − zk)

mkC−1
k +O((z − zk)), (3.25)

∂zΦ
[k]
3pt

(
Φ
[k]
3pt

)−1
=

CkmkC
−1
k

z − zk
+O(1). (3.26)
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Substituting (3.24)-(3.26) in (3.23)

I
[k]
in − Ĩ

[k]
in + I

[k]
out − Ĩ

[k]
out

= Resz=zk tr
{(

dMΦ(z)Φ(z)−1 − dMΦ
[k]
3pt(z)Φ

[k]
3pt(z)

−1
)
∂zΦ

[k]
3pt(z)Φ

[k]
3pt(z)

−1
}

= trmkdMGkG
−1
k − trmkdMG

[k]
0

(
G

[k]
0

)−1
.

(3.27)

The last step to compute the integral I1 comes from noting that the integrals Ĩ
[l]
in,out

themselves can be evaluated explicitly using the local behavior (2.34), (2.35) of the 3-

point solution at their ’local’ ±i∞

Ĩ
[k]
in = −

∮

C
[k]
in

dz

2πi
tr

{(
−2πizSkdMakS

−1
k − dMSkS

−1
k + dMΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1
)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
.

(3.28)

We begin by computing the following expressions

dMΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1|z→−i∞

(2.34)
= dMSkS

−1
k + 2πi(z − zk)SkdMakS

−1
k + Ske

2πi(z−zk)akdMG
[k]
−

(
G

[k]
−

)−1
e−2πi(z−zk)akS−1

k ,

(3.29)

and similarly, the z-derivative term

dzΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1|z→−i∞ = 2πiSkakS
−1
k . (3.30)

Substituting (3.29) and (3.30) in the integrand of (3.28),

lim
z→−i∞

tr

{(
−2πizSkdMakS

−1
k − dMSkS

−1
k + dMΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1
)

× ∂zΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}

= tr

{(
−zk2πiSkdMakS

−1
k + Ske

2πi(z−zk)akdMG
[k]
−

(
G

[k]
−

)−1
e−2πi(z−zk)akS−1

k

)

× 2πiSkakS
−1
k

}

= (2πi) tr

(
−2πizkakdMak + akdMG

[k]
−

(
G

[k]
−

)−1
)
. (3.31)

Substituting (3.29), (3.30), (3.31) in (3.28) we get

Ĩ
[k]
in = −

∮

C
[k]
in

dz

2πi
(2πi) tr

(
−2πizkakdMak + akdMG

[k]
−

(
G

[k]
−

)−1
)

= tr

(
−2πizkakdMak + akdMG

[k]
−

(
G

[k]
−

)−1
)
. (3.32)
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The term Ĩ
[k]
out is computed in a similar fashion

Ĩ
[k]
out := −

∮

C
[k]
out

dz

2πi
tr

{(
− 2πi (z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

)
× ∂zΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}
.

(3.33)

Similar to the above computation, start by computing the individual 3-pt derivative terms

dMΦ
[k]
3pt(z)Φ

[k]
3pt(z)

−1|z→+i∞
(2.35)
= dMSk+1S

−1
k+1 + 2πiSk+1 (z − zk) dMak+1S

−1
k+1

+ Sk+1e
2πi(z−zk)ak+1dMG

[k]
+

(
G

[k]
+

)−1
e−2πi(z−zk)ak+1S−1

k+1,

(3.34)

and the z derivative

∂zΦ
[k]
3pt(z)Φ

[k]
3pt(z)

−1|z→+i∞ = 2πiSk+1ak+1S
−1
k+1. (3.35)

substituting (3.34), (3.35) in the integrand of (3.33),

lim
z→i∞

tr

{(
− 2πi (z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

)
× ∂zΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}

= tr

{(
2πiδk,nτSk+1dMak+1S

−1
k+1 − 2πiSk+1zkdMak+1S

−1
k+1

+ Sk+1e
2πi(z−zk)ak+1dMG

[k]
+

(
G

[k]
+

)−1
e−2πi(z−zk)ak+1S−1

k+1

)
2πiSk+1ak+1S

−1
k+1

}

= (2πi) tr

(
2πiτdMa1a1 − zkdMak+1ak+1 + ak+1dMG

[k]
+

(
G

[k]
+

)−1
)
. (3.36)

In the last line we used that an+1 = a1. Now the term

Ĩ
[k]
out := −

∮

C
[k]
out

dz

2πi
tr

{(
− 2πi (z − δk,nτ)Sk+1dMak+1S

−1
k+1 − dMSk+1S

−1
k+1

+ dMΦ
[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

)
× ∂zΦ

[k]
3pt(z − zk)Φ

[k]
3pt(z − zk)

−1

}

= −

∮

C
[k]
out

dz

2πi
(2πi) tr

(
2πiτdMa1a1 − zkdMak+1ak+1 + ak+1dMG

[k]
+

(
G

[k]
+

)−1
)

= tr

(
−2πiτdMa1a1 + zkdMak+1ak+1 − ak+1dMG

[k]
+

(
G

[k]
+

)−1
)

(3.37)
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Gathering the expressions (3.27), (3.32), (3.37), the integral I1 is

I1 =

n∑

k=1

(
trmkdMGkG

−1
k − trmkdMG

[k]
0

(
G

[k]
0

)−1
+ trakdMG

[k]
−

(
G

[k]
−

)−1

− trak+1dMG
[k]
+

(
G

[k]
+

)−1
)

− iπ tr τdMa2
1 +

n∑

k=1

iπ tr zkdM
(
a2
k+1 − a2

k

)
− 2πi

∮

C
[1]
in

dz tr
{
dMQΦ(z)−1a1Φ(z)

}
.

(3.38)

Substituting the expressions (3.11), (3.12), (3.38) in (3.3), we get the expression (3.2) for the

derivative of the Fredholm determinant w.r.t the monodromy data.

Having computed the derivative of the Fredholm determinant, we are ready to turn to the

isomonodromic tau function (2.47).

Theorem 1. The full parametric dependence of the tau function TH is

d log TH = ω − ω3pt, (3.39)

where

ω3pt := −

n∑

k=1

(
trakdMG

[k]
−

(
G

[k]
−

)−1
− trmkdMG

[k]
0

(
G

[k]
0

)−1
− trak+1dMG

[k]
+

(
G

[k]
+

)−1
)
,

(3.40)

ω =
N∑

j=1

PjdMQj +
n∑

k=1

trmkdMGkG
−1
k +

n∑

k=1

Hkdzk +
1

2πi
Hτdτ, (3.41)

Pi, Qi are the dynamical variables in (2.2), mk, ak constitute the monodromy data (see figure 1),

τ is the modular parameter, Hk, Hτ are the Hamiltonians (2.25), the matrices Gk diagonalise

the linear system on the n-point torus (2.7), and the matrices G±, G0 diagonalise the 3-point

linear system (2.28).

Proof. To compute the full parametric dependence of the isomonodromic tau function TH , we

need to differentiate the prefactor in equation (2.47):

dM log

(
e−iπNρ

N∏

i=0

η(τ)

θ1 (Qi − ρ)

n∏

k=1

e−iπzk(tra2
k+1−tra2

k)eiπτ tr(a2
1+

I

6)

)
=

= −

N∑

i=1

dMQi
θ′1(Qi − ρ)

θ1(Qi − ρ)
− iπ

n∑

k=1

zk tr(dMa2
k+1 − dMa2

k) + iπτdM tra2
1.

(3.42)

(3.39) then follows from (2.48) and Proposition 1.

Remark 1. Note that d log TH is automatically a closed 1-form on the space T1,n×M, because

TH defined by equation (2.47) is a (locally) well-defined function of monodromies and times, so

its partial derivatives commute.
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The following nontrivial statement follows from Theorem 1.

Corollary 1. The exterior derivative of the one-form ω in (3.41) is a (time-independent) two-

form on T ∗M1,n, i.e.

dω(∂t, ∂µi
) = dω(∂t, ∂t′) = 0, ∂tdω

∣∣
{µj}fixed

= 0, (3.43)

for every monodromy coordinate µi and time-coordinate t, t′.

Proof. Since ω3pt is a time-independent one-form on T ∗M1,n, dω3pt = dMω3pt is a time-

independent two-form on T ∗M. On the other hand, from d log T = 0 we have

dω = dω3pt. (3.44)

3.1 The closed one-form as the generating function of the Riemann-Hilbert map

The closed one-form d log T has an elegant geometric interpretation as the generating function

of the extended monodromy map

A1,n → M1,n. (3.45)

Let us consider for illustration purposes the case of the one-punctured torus with the singularity

at z = 0, with the Lax pair

L(CM)
z =

(
P (τ) mx(−2Q(τ), z)

mx(2Q(τ), z) −P (τ)

)
, L(CM)

τ = m

(
0 y(−2Q, z),

y(2Q, z) 0

)
, (3.46)

where y(ξ, z) := ∂ξx(ξ, z). The consistency condition of the above Lax matrices gives the non-

autonomous elliptic Calogero-Moser equation

2πi
dP

dτ
= m2℘′(2Q|τ), 2πi

dQ

dτ
= P, (3.47)

and its Hamiltonian takes the form

HCM = P 2 −m2℘(2Q|τ) + 4πim2∂τ log η(τ). (3.48)

The corresponding monodromy representation is

MA = e2πiaσ3 , M0 = C0e
2πimσ3C−1

0 , MB =
1

sin 2πa

(
e−

iν
2 sin(π(2a−m)) e

iν
2 sin(πm)

−e−
iν
2 sin(πm) e

iν
2 sin(π(2a+m))

)
.

(3.49)

The spaces A1,1 and M1,1 are parametrerized by m,P,Q, g, τ and m,a, ν, c respectively, where

g is introduced below, and c parametrizes the freedom of sending C0 7→ C0e
cσ3 in (3.49) without

changing M0. The variables a, ν are Darboux coordinates for the Goldman bracket (see Ap-

pendix A), while the variables P,Q are Darboux coordinates on A
(0)
1,1. The residue of the Lax

matrix

Resz=0 LCM = −mσ1 = G−1mσ3G, (3.50)
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where

G := e
1
2
gσ3G0, G0 :=

(
1 −1

1 1

)
. (3.51)

The equation (3.39) in the one-punctured case takes the simple form

d log TCM = ω − ω3pt, ω = 2PdMQ+
1

2πi
Hτdτ +mdMg, ω3pt = iadν +mdf, (3.52)

where f is a function only of the extended monodromy data that can be obtained by using the

explicit G-matrices for the three-point problem from [12], and whose specific form will not be

needed in the following.

Theorem 2. The derivative of the 1-form ω in (3.52) can be written as a closed two-form on

A1,1, extending the standard symplectic form5 dP ∧ dQ by including variations of the Casimir

m and time τ :

dω = 2dP ∧ dQ− dHCM ∧
dτ

2πi
+ dm ∧ dg. (3.53)

Proof. Let us start by computing the total exterior derivative of ω. Using the notation ḟ := ∂τf ,

dω = d

(
2PdMQ+Hτ

dτ

2πi
+mdMg

)

= 2dMP ∧ dMQ+ 2Ṗdτ ∧ dMQ+ 2Pdτ ∧ dMQ̇

+

(
∂HCM

∂Q
dMQ+

∂HCM

∂P
dMP + 2m℘(2Q|τ)dm

)
∧

dτ

2πi
+ dm ∧ dMg + dτ ∧ dMġ

= 2dMP ∧ dMQ+

(
∂HCM

∂Q
− 2Ṗ

)
dMQ ∧ dτ +

(
∂HCM

∂P
− 4πiQ̇

)
dMP ∧

dτ

2πi

+ dm ∧ dMg + dτ ∧ dMġ − 2m℘(2Q|τ)dm ∧
dτ

2πi

= 2dMP ∧ dMQ+ dm ∧ dMg − 4m2℘′(2Q|τ)dMQ ∧ dτ

+mdτ ∧ dMġ − 2m℘(2Q|τ)dm ∧
dτ

2πi
,

(3.54)

where in the last line we used the Hamiltonian equations 2πiQ̇ = P , 2πiṖ = m2℘′(2Q). To

go further, we need to compute ġ. Consider the local behaviour at zero of the Lax equation

2πi∂τΦ = ΦLτ,CM . The LHS and RHS behave respectively as

2πi∂τΦ ∼ Czmσ3∂τG, ΦLτ ∼ Czmσ3G lim
z→0

Lτ,CM(z, τ), (3.55)

implying that

2πiG−1∂τG = iπG−1
0 ∂τgσ3G0 = lim

z→0
Lτ,CM (z, τ) = −m℘(2Q|τ)σ1, (3.56)

5Note that dω is not quite a symplectic form. To make it symplectic one first needs to take into account

that we work with extended monodromy space, so there is conjugate variable for m, we call it c. It can also be

interpreted as initial condition for the equation (3.57) and contributes as dm∧dc. Then we may either add formal

dual variable for τ , h and consider extended Hamiltonian H = H − 2πih in order to describe non-autonomus

system as autonomous one by adding equation τ̇ = 1, or just restrict to extended monodromy manifold only.
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i.e.

2πiġ = −2m℘(2Q|τ). (3.57)

Plugging this in the expression for dω, we find

dω = 2dMP ∧ dMQ+ dm ∧ dMg − 4m2℘′(2Q|τ)dMQ ∧ dτ

−m
dτ

2πi
∧ dM (2m℘(2Q|τ)) − 2m℘(2Q|τ)dm ∧

dτ

2πi

= 2dMP ∧ dMQ+ dm ∧ dMg.

(3.58)

This makes it clear that dω has no dτ -component, as implied by Corollary 1.6 We now rewrite

dω as a 2-form on on A1,1:

2dMP ∧ dMQ = 2dP ∧ dQ− 2Ṗdτ ∧ dMQ+ 2Q̇dτ ∧ dMP

= 2dP ∧ dQ+
dτ

2πi
∧
(
−2m2℘′(2Q|τ)dMQ+ 2PdMP

)

= 2dP ∧ dQ− dH ∧
dτ

2πi
− dtg ∧ dm,

(3.60)

leading to

dω = 2dP ∧ dQ− dH ∧
dτ

2πi
− dtg ∧ dm+ dm ∧ dMg

= 2dP ∧ dQ+ dm ∧ dg − dH ∧
dτ

2πi
.

(3.61)

Corollary 2. The tau function TCM is the generating function for the extended monodromy

map (3.45) on the one-punctured torus, i.e. it is the difference of symplectic potentials on A1,1

and M1,1 respectively.

Proof. This follows from the equation d log T = ω − ω3pt together with the following two facts:

1. Theorem 2.47, stating that ω is a symplectic potential on A1,1.

2. ω3pt is a symplectic potential for the extended Goldman’s symplectic form [1]: its exterior

derivative is a closed 2-form on the character variety such that its restriction on the

symplectic leaves yields the Goldman symplectic form:

dω3pt

∣∣
dm=0

= ida ∧ dν
(A.8)
=

i

2π
ΩG. (3.62)

6One can also explicitly check its time-independence:

2πi∂τdω = 2dMṖ ∧ dMQ+ 2dMP ∧ dMQ̇+ dm ∧ dMġ

= 2dM

(

m
2
℘
′(2Q|τ )

)

∧ dMQ+ 2dMP ∧ dMP − dm ∧ dM (2m℘(2Q|τ )) = 0.
(3.59)
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This statement is readily generalized to the SL(N) case with arbitrary number of punctures

by using the explicit one-forms and (3.41) and (3.40). Among its consequences is the extension

of the point of view of [4], identifying the isomonodromic tau function with the generating

function of the extended monodromy map, to the case of SL(N) Fuchsian systems on elliptic

curves. Indeed, the existing results for Fuchsian systems on the Riemann sphere can be derived

directly from the Fredholm determinant representation of the tau function, in much the same

way as we did in the genus one case, see Appendix B.

4 Concluding remarks

The genus zero analogue of our one-form d log TH computed in Theorem 1 was used in [12] to

compute the connection constant for the Painlevé VI and II equation, which is the proportion-

ality constant between tau functions in different asymptotic regimes. In the case of Painlevé

VI, it corresponds to the transformation t 7→ (1− t), which belongs to the modular group of the

four-punctured sphere. In the case of the torus, there is a new type of connection constant corre-

sponding to an S-duality transformation τ 7→ −1/τ ∈ SL(2,Z), the modular group of the torus.

The problem of computing such constants has been traditionally an outstanding problem in the

theory of Painlevé equations, and we defer the explicit computation of the modular connection

constant to our upcoming paper. Such connection constants can be viewed as originating from a

change in monodromy coordinates induced by a change in the pants decomposition (for example,

viewing the torus as a pair of pants glued along the A- or B-cycle, in the case of τ 7→ −1/τ).

The higher genus generalization of the Lax matrix (2.2) is a twisted meromorphic differential

on a punctured Riemann surface of genus g [7, 18, 19] , with periodicity properties along the A-

and B-cycles given by twist matrices TAj
, TBj

∈ SL(N,C):

Lz(γAj
z) = T−1

Aj
Lz(z)TAj

, Lz(γBj
z) = T−1

Bj
Lz(z)TBj

,

g∏

j=1

TAj
TBj

T−1
Aj

T−1
Bj

= 1N . (4.1)

As usual, Lz(z) will have n simple poles, with residues (2.7). The twist matrices encode the

canonical variables of the isomonodromic system, and different types of twists will correspond

to different flat bundles on Cg,n.

The structure (3.39) of the closed 1-form ω−ω0 has a rather straightforward generalization,

leading to natural expectations on what should happen in the case of a punctured Riemann

surface of genus g ≥ 2. The expectation is that a tau function in that case should satisfy

d log T
(g,n)
H =

(N2−1)(g−1)∑

a=1

PadMQa +

3g−3+n∑

j=1

Hjdtj +

n∑

k=1

trmkdMGkG
−1
k − ω3pt. (4.2)

Here we denoted by Pa, Qa an appropriate set of Darboux coordinates encoded in the twists, and

the tj’s are local coordinates on the Teichmüller space Tg,n. ω0 is as before a time-independent

one-form depending on the pants decomposition.

While the extension (4.2) seems very natural, its derivation would require first the gen-

eralization to higher genus Riemann surfaces of the Fredholm determinant construction of [8],

which we leave to future work.
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A Character variety for the one-punctured torus

The character variety of the SL(2) one-punctured torus is the cubic surface

M
(0)
1,1 :=

{
MA,MB ∈ SL(2) : tr

(
M−1

A M−1
B MAMB

)
= M0

}
/ ∼ . (A.1)

The trace coordinates

pA := trMA, pB := trMB , pAB := trMAMB , p0 := trM0 (A.2)

satisfy the relation

p0 = tr(M−1
A M−1

B MAMB) = tr(MAMBM
−1
A ) tr(MB)− tr(MAMBM

−1
A MB)

= (trMB)
2 − tr(MAMB) tr(MAM

−1
B ) + tr(M2

A)

= (trMB)
2 − tr(MAMB) [tr(MA) tr(MB)− tr(MAMB)] + tr(MA)

2 − 2

= p2A + p2B + p2AB − pApBpAB − 2,

(A.3)

so that the space of monodromy data is described by the cubic surface

W1,1 = p2A + p2B + p2AB − pApBpAB − p0 − 2 = 0 (A.4)

known as Fricke cubic [9]. We used the following identities to obtain (A.3):

tr(xy) + tr(xy−1) = trx tr y, tr(x2) = (tr x)2 − 2, tr(x−1) = tr(x). (A.5)

A.1 Darboux Coordinates

The functions pA, pB, pAB satisfy the Goldman bracket:

{pA, pB} = pAB −
1

2
pApB . (A.6)

We now introduce Darboux coordinates for the space M
(0)
1,1. One possible choice is the one

presented in [21], that involves hyperbolic functions and square-roots. A more convenient choice,

involving only trigonometric functions, is explicit in the parametrization (3.49). In terms of

a, ν,m, we have

pA = 2cos 2πa,

pB =
sin(π(2a −m))

sin 2πa
e−iν/2 +

sin(π(2a+m))

sin 2πa
eiν/2, ,

pAB =
sin(π(2a −m))

sin 2πa
ei(2πa−ν/2) +

sin(π(2a +m))

sin 2πa
e−i(2πa−ν/2),

p0 = 2cos 2πm. (A.7)

From the relations (A.7), we see that a, ν are Darboux coordinates for the Goldman bracket

(A.6), and the Goldman’s symplectic form is

ΩG = 2πda ∧ dν. (A.8)
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B Tau function for the n-punctured sphere

The construction of Section 3 applies (in a much simpler context) also to the case of an isomon-

odromic problem on the Riemann sphere with n Fuchsian singularities. The tau function in this

case was written as a Fredholm determinant in [6, 10]:

T
(g=0)
H = det

H+

[
P−1
Σ,+P⊕,+

] n−2∏

k=1

z
1
2
tr(a2

k
−a2

k−1−m2
k)

k , (B.1)

where PΣ,+ and P⊕,+ are here defined from the SL(N) Fuchsian linear system on a sphere and

the corresponding pants decomposition as in Figure 3 (see [10] for details).

. . .T [1] T [2] T [n−2]

Figure 3: Pants decomposition for the n-punctured sphere

The computation of the monodromy derivative of (B.1) is a simplified version of the proof

of Theorem 1: the result is

d log T
(g=0)
H =

n∑

k=1

trmkdMGkG
−1
k +

n∑

k=1

Hkdzk −
n∑

k=1

Θ
(3pt)
k (B.2)

=

n∑

k=1

trmkdGkG
−1
k −

n∑

k=1

Hkdzk −

n∑

k=1

Θ
(3pt)
k , (B.3)

where Hk are the Schlesinger Hamiltonians, and

Θ3pt
k := −

(
trakdMG

[k]
−

(
G

[k]
−

)−1
− trmkdMG

[k]
0

(
G

[k]
0

)−1
− trak+1dMG

[k]
+

(
G

[k]
+

)−1
)

(B.4)

are the one-forms coming from the pants decomposition, like in the case of the torus. In

particular, this shows that the Fredholm determinant tau function of [6, 10] is indeed the

fully normalized tau function of [12], and thus coincides with the generating function of the

monodromy map for the n-punctured sphere with Fuchsian singularities, as in [4].
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