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Abstract

We study recurrence relations satisfied by the moments νn (z) of a
linear functional L whose first moment satisfies a differential equation
(in z) with polynomial coefficients.
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1 Introduction

Let K be a field (we mostly think of K as the set of complex numbers C) and
N0 be the set of nonnegative integers

N0 = N ∪ {0} = {0, 1, 2, . . .} .
*e-mail: diego.dominici@dk-compmath.jku.at
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We will denote by δk,n the Kronecker delta, defined by

δk,n =

{
1, k = n
0, k 6= n

, k, n ∈ N0,

and say that {Λn (x)}n≥0 ⊂ K[x] is a monic basis if Λn (x) is monic and
deg (Λn) = n for all n ∈ N0.

Suppose that {Λn (x)}n≥0 is a monic basis and L : K[x] → K is a linear
functional (acting on the variable x) satisfying

hn = L
[
Λ2
n

]
6= 0, n ∈ N0.

If the system of linear equations

n∑
i=0

L [ΛkΛi] cn,i = hnδk,n, 0 ≤ k ≤ n, cn,n = 1, (1)

has a unique solution {cn,i}0≤i≤n , we can define a monic polynomial Pn (x)
by

Pn (x) =
n∑
i=0

cn,iΛi (x) ,

and say that {Pn (x)}n≥0 is an orthogonal polynomial sequence with respect
to the functional L.

The system (1) can be written as

L [ΛkPn] = hnδk,n, 0 ≤ k ≤ n,

and using linearity we see that the sequence {Pn (x)}n≥0 satisfies the orthog-
onality conditions

L [PkPn] = hnδk,n, 0 ≤ k ≤ n. (2)

If we define the (symmetric) matrix of moments G by

Gi,k = L [ΛiΛk] , i, k ∈ N0, (3)

one can show [14] that the condition

det
0≤i,k≤n

(Gi,k) 6= 0, n ≥ 0,
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is equivalent to the existence of a unique family of orthogonal polynomial
satisfying (2) and deg (Pn) = n.

The theory of orthogonal polynomials is vast and rich, extending all the
way back to the groundbreaking work of Legendre [42], where he introduced
the family of polynomials that now bears his name. We direct the interested
reader to (some of!) the fundamental treatises on the field [8], [10], [29], [31],
[33], [40], [70].

A particular fruitful approach that has received a lot of attention in recent
years, is to work with the (infinite) matrix (3) acting on the (infinite) vector
−→
P = (P0, P1, . . .) . One can then view orthogonal polynomial sequences as
elements of an infinite dimensional vector space [17], [22], [30], [45], [74],
[75], [76], [77].

Of course, in its full generality, it’s difficult to get results that apply to
any family of orthogonal polynomials. Thus, one chooses, for example:

i.) an operator (difference, differential, functional, integral) that annihi-
lates Pn (x) .

ii.) a degree-reducing operator relating Pn (x) and Pn−1 (x) (Sheffer clas-
sification, umbral calculus, generating functions).

iii.) a particular form of the linear functional L (continuous, discrete,
matrix valued, q-series).

iv.) a particular domain of L (C, N0, R, quadratic lattices, unit circle).
Another possibility, is to ask L to satisfy a relation of the form

L [σp] = L [τU [p]] , p ∈ K[x],

where σ (x) , τ (x) are fixed polynomials, and U : K[x] → K[x] is a degree
reducing linear operator satisfying U [1] = 0 and

degU [xn] = n− 1, n ∈ N.

In this case, we say that L is a semiclassical functional with respect to U .
The class of the functional L is defined by

s = max {deg (σ)− 2, deg (τ)− 1} ,

and semiclassical functional of class s = 0 are called classical.
This type of functionals was introduced by Shohat [67], and studied

in detail by P. Maroni and collaborators [53], [55], [56], particularly when
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U [p] = ∂xp is the derivative operator [47], [51], [52], and also for the opera-
tor

Uω [p] =
p(x+ ω)− p(x)

ω
,

which contains the finite difference operators ∆,∇ as special cases (ω = ±1) ,
and the derivative operator as a limiting case [1]. Other examples include
the q−semiclassical polynomials [38], [57], associated with the operator

Uq [p] =
p (qx)− p(x)

(q − 1)x
, q 6= 1.

In this paper, we will focus on the so-called discrete semiclassical or-
thogonal polynomials [7], [27], [50], [58], [79], where U is the shift operator
U [p] = p(x+ 1). In this case, the linear functional L is of the form

L [p] =
∞∑
x=0

p (x) ρ (x) , p ∈ K[x],

where ρ (x) is a given weight function. The traditional starting point is the
Pearson equation satisfied by ρ (x)

U [σρ] = τ (x) ρ (x) , (4)

but after trying this approach in [24], we found it very dissatisfying, especially
when one considers spectral transformations of L.

For example, applying an Uvarov transformation to L at a point ω (see
Section 3.3) will lead to the Pearson equation

ρ̃ (x+ 1)

ρ̃ (x)
=

(x− ω) (x+ 1− ω) τ (x)

(x− ω) (x+ 1− ω)σ (x+ 1)
,

and this begs the question of when one is allowed (or not) to simplify the
above expression. A possibility to avoid this problem is to study the difference
equation satisfied by the Stieltjes transform of L

S (t) = L

[
1

t− x

]
, t /∈ N0,

and we did this in [25], where we classified the discrete semiclassical orthog-
onal polynomials of class s ≤ 2.
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Now suppose that the weight function ρ (x) also contains an independent
variable z, ρ = ρ̃ (x; z) . Although this may seem like an extra assumption, we
note that one could always introduce such a variable as a Toda deformation
[9], [62], [72],

ρ̃ (x; z) = ρ (x) exf(z), f (z0) = 0,

and recover the original functional L by setting z = z0. We studied this type
of weight functions in [23], and observed that the operator ϑ defined by

ϑ [u] = z
du

dz

is naturally associated to the shift operator.
As we will see in Section 2, this allows us to replace the Pearson equation

(4) with the ODE satisfied by the first moment λ0 (z) = L [1] ,

σ (ϑ) [λ0] = zτ (ϑ) [λ0] . (5)

We note in passing that the ODE (5) is the true starting point of the theory,
and by considering alternative equations satisfied by λ0 (z) , one could study
semiclassical orthogonal polynomials associated with different operators U.

The structure of the paper is as follows: in Section 2, we introduce the
operator ϑ and the ODE satisfied by the moments of a discrete linear func-
tional

σ (ϑ) Λn (ϑ) [λ0] = zτ (ϑ) Λn (ϑ+ 1) [λ0] , n ∈ N0. (6)

This will naturally lead to the class of functionals whose first moment λ0 (z)
can be represented as a (generalized) hypergeometric function.

Since the ODE (6) contains a shift, we need to choose a convenient basis
{Λn (x)}n≥0 . In Section 2.1, we study the monomial basis and derive a linear
recurrence of order n+ s+ 1 for the (standard) moments µn (z). We also
find a representation for µn (z) as a linear combination involving a family of
polynomials that satisfies a differential-difference equation.

In Section 2.2, we consider the basis of falling factorial polynomials de-
fined by φ0 (x) = 1,

φn+1 (x) = xφn (x− 1) , n ∈ N,

which allows us to easily work on the lattice N0. We use Newton’s interpola-
tion formula and obtain a linear recurrence of order s+ 1 for the (modified)
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moments νn (z). The linear functionals of class s = 1 are particularly in-
teresting, since in this case the moments νn (z) are themselves a family of
orthogonal polynomials. This is an area that has been studied in detail by
M. Ismail and D. Stanton, see [34], [35], and [36].

Both the monomials and the falling factorial polynomials are examples of
Newton basis polynomials defined by n0 (x) = 1 and

nk (x) =
k−1∏
j=0

(x− κj) ,

where {κj}j≥0 is a fixed sequence. This type of polynomials satisfy 2−term
recurrence relations, which we study in Section 2.3. Among other results,
we look at the connection between the monomial and falling factorial bases
(through Stirling numbers), and find the (formal) representation for the
Stieltjes transform

S (ω; z) =
∞∑
k=0

λk (z)

Λk+1 (ω)
. (7)

In [26], we used (7) to derive recurrence relations for the modified moments
νn (z).

In Section 3, we consider transformations Ωα
β between different families

of discrete semiclassical orthogonal polynomials. We introduce a uniform
notation to label objects belonging to different families, and show how the
recurrence relations for the moments change as we apply a transformation.

In Sections 3.1, 3.2, 3.3, and (3.4) we consider the special cases α = β+ 1
(Christoffel transformation) [12], [28], [66], α = β − 1 (Geronimus transfor-
mation) [19], [20], [41], [54], their composition (Uvarov transformation) [5],
[6], [15], [39], [49], and α = β = −N, N ∈ N (truncation transformation).
These rational spectral transformations have been studied by many authors,
[4], [43], [61], [81]. The relation between these transformations and the so-
called Darboux transformation, has also been considered [13], [48], [80].
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2 Differential operators and moment function-

als

Let F denote the ring of formal power series in the variable z

F = K [[z]] =

{
∞∑
n=0

cnz
n : cn ∈ K

}
,

and ϑ : F→ F be the differential operator defined by [59, 16.8.2]

ϑ = z∂z, (8)

where ∂z is the derivative operator ∂z = ∂
∂z
. The operator ϑ has the following

properties.

Proposition 1 Let the differential operator ϑ be defined by (8). Then, for
all u, v ∈ K [x] we have:

(i) The action of ϑ on the monomials is given by

u (ϑ) [zx] = u (x) zx, (9)

where we always assume that x and z are independent variables.

(ii) ϑ is multiplicative
(uv) (ϑ) = u (ϑ) v (ϑ) . (10)

(iii) For all k ∈ N0,
u (ϑ)

[
zkv (ϑ)

]
= zkSkϑ [u] v (ϑ) , (11)

where Sr denotes the shift operator defined by

Sr [f ] = f (r + 1) . (12)

Proof. (i) Iterating (8), we get

ϑk [zx] = xkzx, k ∈ N0.

Using linearity, the result follows.
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(ii) Using (9), we have

ϑn+m [zx] = xn+mzx = xnxmzx = xnϑm [zx] = ϑm [xnzx] = ϑmϑn [zx] ,

for all m,n ∈ N0. The result follows from linearity.
(iii) Using (9) and (10), we see that

u (ϑ)
[
zkv (ϑ) [zx]

]
= u (ϑ)

[
zkv (x) zx

]
= u (ϑ)

[
v (x) zx+k

]
= v (x)u (ϑ)

[
zx+k

]
= v (x)u (x+ k) zx+k

= zkv (x)u (x+ k) zx = zkv (ϑ)u (ϑ+ k) [zx] ,

and the result follows.
Let L : K[x] → F be the linear functional (acting on the variable x)

defined by

L [u] =
∞∑
x=0

u (x) ρ (x) zx, u ∈ K[x], (13)

where ρ : N0 → K is a given function.

Remark 2 If f ∈ K [[x]] , we can extend (9) to

f (ϑ) [zx] =
∞∑
n=0

cnϑ
n [zx] = zx

∞∑
n=0

cnx
n = f (x) zx,

and therefore we can consider L as a functional on K [[x]] , satisfying

L [uf ] =
∞∑
x=0

u(x)f (x) ρ (x) zx = f (ϑ)

[
∞∑
x=0

u(x)ρ (x) zx

]
= f (ϑ) [L [u]] ,

(14)
for all u ∈ K[x], f ∈ K [[x]] .

Let {Λn}n≥0 be a monic polynomial basis. If we define a sequence of
moments [2], [3], [68] by

λn (z) = L [Λn] ∈ F,

then from (14) we obtain

f (ϑ) [λ0] = f (ϑ) [L [1]] = L [f ] , f ∈ K [[x]] , (15)

and in particular
λn (z) = L [Λn] = Λn (ϑ) [λ0] . (16)

Using (15), we can obtain a generating function for the moments of L.
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Proposition 3 Let EΛ (t, x) denote the exponential generating function [78]
of the polynomials Λn (x)

EΛ (t;x) =
∞∑
n=0

Λn (x)
tn

n!
. (17)

Then, the exponential generating function of the moments λn (z) is given by

ελ (t; z) =
∞∑
n=0

λn (z)
tn

n!
= L [EΛ (t;x)] ,

where it’s always understood that L is only acting on the variable x.
In particular, if EΛ (t;x) = [f (t)]x is an exponential function, we have

ελ (t; z) = λ0 [zf (t)] . (18)

Proof. Using (16) and (17), we get

∞∑
n=0

λn (z)
tn

n!
=
∞∑
n=0

Λn (ϑ) [λ0]
tn

n!
= EΛ (t;ϑ) [λ0] ,

and from (15) we see that EΛ (t;ϑ) [λ0] = L [EΛ (t;x)] .
If EΛ (t;x) = [f (t)]x, then

L [EΛ (t;x)] = L [fx] =
∞∑
x=0

ρ (x)
[zf (t)]x

x!
= λ0 [zf (t)] .

Up to this point, ρ (x) is an arbitrary weight function. We will now
characterize it by imposing a condition on the first moment λ0 (z) .

Theorem 4 If the first moment λ0 (z) satisfies the differential equation with
polynomial coefficients

[σ (ϑ)− zτ (ϑ)] [λ0] = 0, σ, τ ∈ K [x] , (19)

then
(i) L is a semiclassical functional

L [σu] = L [zτSx [u]] , u ∈ K [x] (20)
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with respect to the shift operator Sx defined in (12).
(ii) If σ (0) = 0, then ρ (x) satisfies the Pearson equation [60]

ρ (x+ 1)

ρ (x)
=

τ (x)

σ (x+ 1)
, x ∈ N0. (21)

(iii) If we set ρ (0) = 1, then

ρ (x) =
x−1∏
k=0

τ (k)

σ (k + 1)
, x ∈ N. (22)

Proof. (i) Let u ∈ K [x] . Using (11) in (19), we see that

u (ϑ)σ (ϑ) [λ0] = u (ϑ) [zτ (ϑ) [λ0]] = zτ (ϑ)u (ϑ+ 1) [λ0] , (23)

and using (15), we conclude that

L [σ (x)u (x)] = L [zτ (x)u (x+ 1)] .

(ii) If σ (0) = 0, we can use (20) and obtain

∞∑
x=1

σ (x)u (x) ρ (x) zx = L [σu] = L [zτu (x+ 1)]

=
∞∑
x=0

τ (x)u (x+ 1) ρ (x) zx+1 =
∞∑
x=1

τ (x− 1)u (x) ρ (x− 1) zx.

Comparing powers of z, (21) follows.
(iii) Using (21), we get

x−1∏
k=0

τ (k)

σ (k + 1)
=

x−1∏
k=0

ρ (k + 1)

ρ (k)
=
ρ (x)

ρ (0)
,

and (22) follows if we define ρ (0) = 1.
The Pochhammer symbol (c)x is defined by [63]

(c)x = lim
k→∞

kx
k∏
j=0

c+ j

c+ x+ j
, − (c+ x) /∈ N0,
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and when n ∈ N0, (c)n becomes a polynomial in c of degree n

(c)n =
n−1∏
j=0

(c+ j) , n ∈ N, (c)0 = 1. (24)

We will use the notation [59, 16.1]

(c)n = (c1)n · · · (cm)n , c ∈ Km,

and also
(x+ c) = (x+ c1) · · · (x+ cm) , c ∈ Km.

In the special case m = 0, we understand that

K0 = ∅, (∅)n = 1, n ∈ N0,

while for m =∞ we have

K∞ =
{
{ck}k≥0 : ck ∈ K

}
.

Let p, q ∈ N0 be some fixed numbers. In the remainder of the paper, we
will always have a ∈ Kp,b ∈ Kq and

σ (x) = x (x+ b) , τ (x) = (x+ a) . (25)

Using (24), we can rewrite (22) as

ρ (x) =
(a)x

(b + 1)x

1

x!
,

and using (25) in (19), we have

[ϑ (ϑ+ b)− z (ϑ+ a)] [λ0] = 0. (26)

The ODE (26) is the (generalized) hypergeometric differential equation [59,
16.8.3] of order

o = max {p, q + 1} ,

and the first moment λ0 (z) can be represented as

λ0 (z) = pFq

(
a

b + 1
; z

)
,
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where the (generalized) hypergeometric function pFq is defined by [59, 16.2.1],
[69],

pFq

(
a
b

; z

)
=
∞∑
x=0

(a)x
(b)x

zx

x!
.

We define the class s of the semiclassical functional L by

s = o− 1 = max {p− 1, q} ,

and functionals of class s = 0 are called classical.
Multiplying (26) by Λn (ϑ) and using (23), we conclude that

[ϑ (ϑ+ b) Λn (ϑ)− z (ϑ+ a) Λn (ϑ+ 1)] [λ0] = 0, n ∈ N0, (27)

and expanding the polynomials coefficients on the basis {Λn}n≥0 ,

x (x+ b) Λn (x) =

n+q+1∑
k=0

cn,kΛk (x) ,

(x+ a) Λn (x+ 1) =

n+p∑
k=0

c̃n,kΛk (x) ,

we get a recurrence relation of order n+ s+ 1 for the moments λn (z)

q+1∑
k=−n

cn,n+kλn+k − z
p∑

k=−n

c̃n,n+kλn+k = 0. (28)

The question is: can we do better than this? In other words, can one
choose a convenient basis Λn so that the recurrence (28) will have minimal
order s+1? The answer is yes, as we will see in Section 2.2. In the meantime,
we study the simplest basis: the monomials.

2.1 Standard moments

To simplify the formulas, in the remainder of the paper we will use the umbral
notation [65]

ψk ↔ ψk, ψ ∈ K∞.
So, for example, the equation

(ψ + b)ψn+1 − z (ψ + a) (ψ + 1)n = 0
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can be written in extended form as

ψn+2 + bψn+1 − z
n∑
k=0

(
n

k

)
(ψk+1 + aψk) = 0.

Let µn (z) ∈ F denote the standard moments of L on the monomial basis
Λn (x) = xn

µn (z) = L [xn] , n ∈ N0.

Using Λn (x) = xn in (27), we get[
(ϑ+ b)ϑn+1 − z (ϑ+ a) (ϑ+ 1)n

]
[µ0] = 0. (29)

The polynomials (x+ c) can be written in the monomial basis as

(x+ c) =
m∑
k=0

em−k (c)xk, c ∈ Km, (30)

where the elementary symmetric polynomials en (c) are defined by the gen-
erating function [46]

∞∑
n=0

en (c) tn =
m∏
i=1

(1 + tci) , c ∈ Km. (31)

Using these formulas, we can write a recurrence for µn (z) .

Theorem 5 (i) The standard moments of L satisfy the recurrence

(µ+ b)µn+1 − z (µ+ a) (µ+ 1)n = 0. (32)

(ii) We have the explicit recurrence

q∑
k=0

eq−k (b)µn+k+1 − z
n∑
k=0

(
n

k

) p∑
j=0

ep−j (a)µk+j = 0. (33)

In particular, for n = 0

q∑
k=0

eq−k (b)µk+1 − z
p∑
j=0

ep−j (a)µj = 0. (34)
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Proof. (i) Using (15) in (29), we have[
(ϑ+ b)ϑn+1

]
[µ0] = (µ+ b)µn+1,

(ϑ+ a) (ϑ+ 1)n [µ0] = (µ+ a) (µ+ 1)n ,

and the result follows.
(ii) Using (30) in (32), we get

(µ+ b)µn+1 =

q∑
k=0

eq−k (b)µn+k+1,

(µ+ a) (µ+ 1)n =
n∑
k=0

(
n

k

)
(µ+ a)µk =

n∑
k=0

(
n

k

) p∑
j=0

ep−j (a)µk+j,

and the result follows.
It is clear from (33) that elements of the set

{µk : k > s} , s = max {p− 1, q} ,

are linear combinations of the first s + 1 standard moments. Thus, we have
a representation of the form

µn (z) =
s∑

k=0

gn,k (z)µk (z) , n ∈ N0, (35)

where the coefficients must satisfy

gn,k (z) = δn,k, 0 ≤ n, k ≤ s. (36)

If we introduce the vectors −→µ ,−→g n ∈ Fs+1 defined by

(−→µ )k = µk, (−→g n)k = gn,k, 0 ≤ k ≤ s,

we can write (35) as an inner product

µn = −→g n · −→µ . (37)

To satisfy the initial conditions (36), we need

−→g n = −→ε n, 0 ≤ n ≤ s,

where the standard unit vectors −→ε n ∈ Ks+1 are defined by

(−→ε n)k = δn,k, 0 ≤ k ≤ s, n ∈ N0.

14



Theorem 6 With the previous definitions, let the matrix M be given by

M = (−→ε 1,
−→ε 2, · · · ,−→ε s,−→g s+1) ∈ F(s+1)×(s+1),

where the vectors form the columns of M . Then, −→g n (z) satisfies the differential-
difference equation

−→g n+1 = (ϑ+M)−→g n, n ≥ 0, −→g 0 = −→ε 0. (38)

Proof. From (37). we get

µn+1 = ϑ [µn] = ϑ [−→g n · −→µ ] = ϑ [−→g n] · −→µ +−→g n · ϑ [−→µ ]

and since

ϑ [−→µ ] =


µ1

µ2
...

µs+1

 =


−→g 1−→g 2

...
−→g s+1




µ0

µ1
...
µs

 ,

we have ϑ [−→µ ] = MT−→µ , with

MT =


−→g 1−→g 2

...
−→g s+1

 ∈ F(s+1)×(s+1),

where vectors form the rows of the matrix MT . Thus,

−→g n+1 · −→µ = µn+1 = ϑ [−→g n] · −→µ +−→g n ·
(
MT−→µ

)
= (ϑ [−→g n] +M−→g n) · −→µ

from which the result follows.

Remark 7 In [21], we derived (38) using a different method.

From (33), we see that we have three cases to consider.

Corollary 8 (i) If p > q + 1, then the vector polynomials

−→
Qn (z) = zn −→g n (z) ∈ (K [z])s+1 , n ≥ 0,
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satisfy the differential-difference equation

−→
Qn+1 = z (ϑ+M − nI)

−→
Qn, n ≥ 0,

−→
Q 0 = −→ε 0, (39)

where I is the (s+ 1× s+ 1) identity matrix.
(ii) If p = q + 1, then the vector polynomials

−→
Qn (z) = (1− z)n −→g n (z) ∈ (K [z])s+1 , n ≥ 0,

satisfy the differential-difference equation

−→
Qn+1 = [(1− z) (ϑ+M) + nzI]

−→
Qn, n ≥ 0,

−→
Q 0 = −→ε 0. (40)

(iii) If p < q + 1, then −→g n (z) is a vector polynomial.

Proof. (i) If p > q + 1, then the standard moments will satisfy a recurrence
of the form

zµn+p =

n+p−1∑
k=0

cn,k (z)µk,

and setting −→g n (z) = z−n
−→
Qn (z) in (38), we get (39).

(ii) If p = q + 1, then the standard moments will satisfy a recurrence of
the form

(1− z)µn+p =

n+p−1∑
k=0

cn,k (z)µk,

and if we set −→g n (z) = (1− z)−n
−→
Qn (z) in (38), we get (40).

(iii) If p < q + 1, then the standard moments will satisfy a recurrence of
the form

µn+q+1 = z

n+q∑
k=0

cn,kµk,

and it follows that the functions −→g n (z) are polynomials in z.
Finally, we will study the exponential generating function of the standard

moments.

Proposition 9 (i) The exponential generating function of the standard mo-
ments

εµ (t; z) =
∞∑
n=0

µn (z)
tn

n!
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is given by
εµ (t; z) = µ0

(
zet
)
. (41)

(ii) The function εµ (t; z) is a solution of the linear ODE (in the t variable)[
σ (∂t)− zetτ (∂t)

]
[y] = 0. (42)

Proof. (i) The exponential generating function of the monic basis is the
exponential function

∞∑
n=0

xn
tn

n!
= ext,

and using (18) we obtain (41).
(ii) Since

∂t
[
y
(
zet
)]

= zety′
(
zet
)

= z∂z
[
y
(
zet
)]

= ϑ
[
y
(
zet
)]
,

it follows from (19) that µ0 (zet) satisfies (42).

Remark 10 If we define

Gk (t, z) =
∞∑
n=0

gn,k (z)
tn

n!
, 0 ≤ k ≤ s,

it follows from (35) that

µ0

(
zet
)

=
s∑

k=0

Gk (t, z)µk (z) ,

and therefore the functions Gk (t, z) , 0 ≤ k ≤ s form a basis of solutions of
the ODE (42) with initial conditions

[∂nt Gk]t=0 = δn,k, 0 ≤ n, k ≤ s,

since from (41) we see that[
∂nt µ0

(
zet
)]
t=0

= µn (z) .
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2.2 Modified moments

Let φn (x) denote the falling factorial polynomials defined by φ0 (x) = 1 and

φn (x) =
n−1∏
k=0

(x− k) , n ∈ N. (43)

Sometimes, the polynomials φn (x) are called “binomial polynomials”, since

φn (x)

n!
=

(
x

n

)
, n ∈ N0. (44)

From the definition (43), we see that

φn+1 (x) = (x− n)φn (x) = xφn (x− 1) , n ≥ 0, (45)

and from (24) it follows that the falling factorial polynomials and the Pochham-
mer polynomials are related by

φn (x) = (−1)n (−x)n = (x+ 1− n)n .

The falling factorial polynomials are eigenfuncions of the differential op-
erator zn∂nz since

zn∂nz [zx] = znφn (x) zx−n = φn (x) zx. (46)

Remark 11 Caution must be exercised when using the operators zn∂nz and
ϑn since

ϑn = (z∂z)
n 6= zn (∂z)

n , n > 1.

Proposition 12 Let the modified moments be defined by

νn (z) = L [φn] , n ∈ N0. (47)

Then, for all n ∈ N0,

νn (z) = zn
(a)n

(b + 1)n
pFq

(
a + n

b + n+ 1
; z

)
.
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Proof. The results follows from (46) and the formula [59, 16.3.1]

∂nz

[
pFq

(
a

b + 1
; z

)]
=

(a)n
(b + 1)n

pFq

(
a + n

b + n+ 1
; z

)
.

Using (27) with Λn (ϑ) = φn (ϑ− 1) , we get

ϑ (ϑ+ b)φn (ϑ− 1)σ (ϑ) [ν0] = z (ϑ+ a)φn (ϑ) τ (ϑ) [ν0] ,

and from (45) we conclude that

[(ϑ+ b)φn+1 (ϑ)− z (ϑ+ a)φn (ϑ)] [ν0] = 0. (48)

Unlike the monomial case, there is no immediate formula that would express
products of the form (ϑ+ c)φn (ϑ) in terms of the polynomials φn (ϑ) . Thus,
we will find one next.

Any polynomial u (x) can be represented in the basis of falling factorials
using Newton’s interpolation formula [18]

u (x) =

deg(u)∑
k=0

∆k [u] (c)

k!
φk (x− c) , (49)

where the forward difference operator ∆n (acting on x) is defined by

∆n [f ] (x) =
n∑
k=0

(
n

k

)
(−1)n−k f (x+ k) . (50)

We start with a result that may be already known, but we have not been
able to find in the literature.

Lemma 13 For any function f (x) , we have

∆j [fφn] (0) = 0, 0 ≤ j < n, (51)

and
∆n+j [fφn] (0)

(n+ j)!
=

∆j [f ] (n)

j!
, n, j ≥ 0. (52)

19



Proof. Using the definition (50),

∆j [fφn] (0) =

j∑
i=0

(
j

i

)
(−1)j−i f (i)φn (i) ,

and since φn (i) = 0, for i < n, we see that

∆j [fφn] (0) = 0, 0 ≤ j < n,

If j ≥ 0, then

∆n+j [fφn] (0) =

n+j∑
i=n

(
n+ j

i

)
(−1)n+j−i f (i)φn (i)

=

j∑
i=0

(
n+ j

n+ i

)
(−1)j−i f (n+ i)φn (n+ i) .

Using (44), we have (
n+ j

n+ i

)
φn (n+ i) =

(n+ j)!

j!

(
j

i

)
,

and therefore

∆n+j [fφn] (0) =
(n+ j)!

j!

j∑
i=0

(
j

i

)
(−1)j−i f (n+ i)

=
(n+ j)!

j!
∆j [f ] (n) .

Using (52), we obtain the following Corollary.

Corollary 14 If u (x) is a polynomial of degree k, then

u (x)φn (x) =
k∑
j=0

∆j [u] (n)

j!
φn+j (x) . (53)
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Proof. Using (49) and (51), we have

u (x)φn (x) =
n+k∑
j=0

∆j [uφn] (0)

j!
φj (x) =

n+k∑
j=n

∆j [uφn] (0)

j!
φj (x)

=
k∑
j=0

∆n+j [uφn] (0)

(n+ j)!
φn+j (x) ,

and the results follows from (52).
From the previous Corollary, we obtain an explicit recurrence of order

s+ 1 = max {p, q + 1} for the modified moments νn (z) .

Proposition 15 Let νn (z) be defined by (47). Then,

q∑
j=0

∆j [(x+ b)] (n+ 1)

j!
νn+1+j − z

p∑
j=0

∆j [(x+ a)] (n)

j!
νn+j = 0. (54)

Proof. Using (53), we have

(x+ c)φn (x) =
m∑
j=0

∆j [(x+ c)] (n)

j!
φn+j (x) , c ∈ Km,

and therefore we can write (48) as[
q∑
j=0

∆j [(x+ b)] (n+ 1)

j!
φn+1+j (x)

]
x=ϑ

[ν0]

= z

[
p∑
j=0

∆j [(x+ a)] (n)

j!
φn+j (x)

]
x=ϑ

[ν0] .

Using (15), the result follows.
Finally, we will study the exponential generating function of the standard

moments.

Proposition 16 (i) The exponential generating function of the modified mo-
ments

εν (t; z) =
∞∑
n=0

νn (z)
tn

n!
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is given by
εν (t; z) = ν0 (z + zt) . (55)

(ii) The function εν (t; z) is a solution of the linear ODE (in the t variable)

[σ ((t+ 1) ∂t)− zτ ((t+ 1) ∂t)] [y] = 0. (56)

Proof. (i) Using (44) and the binomial theorem, we obtain the exponential
generating function of the falling factorial polynomials

∞∑
n=0

φn (x)
tn

n!
=
∞∑
n=0

(
x

n

)
tn = (1 + t)x ,

and using (18), we get (55).
(ii) Since

(1 + t) ∂t [y ((1 + t) z)] = z (1 + t) y′ ((1 + t) z)

= z∂z [y ((1 + t) z)] = ϑ [y ((1 + t) z)] ,

it follows from (19) that ν0 (z + zt) is a solution of (56).

Remark 17 The differential equation (56) needs to be understood in an op-
erational sense, since the coefficients are not constant. For instance, we have

(1 + t) ∂t [(1 + t) ∂t] = (1 + t)
(
∂t + (1 + t) ∂2

t

)
= (1 + t)2 ∂2

t + (1 + t) ∂t,

and therefore

[(1 + t) ∂t + a1] [(1 + t) ∂t + a2] = (1 + t)2 ∂2
t + (1 + a1 + a2) (1 + t) ∂t + a1a2.

It is clear from (54) that the elements of the set {νk : k ≥ s+ 1}, are
linear combinations of the first s + 1 modified moments. Thus, we have a
representation of the form

νn (z) =
s∑

k=0

fn,k (z) νk (z) , (57)

where the coefficients must satisfy the initial conditions

fj,k (z) = δj,k, 0 ≤ j, k ≤ s.
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If we define

Fk (t, z) =
∞∑
n=0

fn,k (z)
tn

n!
, 0 ≤ k ≤ s,

where fn,k (z) are the coefficients in (57), we see that

ν0 (z + zt) =
s∑

k=0

Fk (t, z) νk (z) ,

and therefore the functions Fk (t, z) , 0 ≤ k ≤ s form a basis of solutions of
the ODE (56) with initial conditions

[∂nt Fk]t=0 = δn,k, 0 ≤ n, k ≤ s,

since from (55) we see that

[∂nt ν0 (z + zt)]t=0 = νn (z) .

In the next section, we will look at more general polynomial bases that
contain the monomials and falling factorial as particular cases.

2.3 Two-term recurrence relations

Both the monomial polynomials and the falling factorial polynomials satisfy
a 2-term recurrence relation of the form

xΛn (x) = Λn+1 (x) + κnΛn (x) , (58)

where for the monomials κn = 0 and for the falling factorial polynomials
κn = n.

Theorem 18 Let the Stieltjes transform of the functional L [71] be defined
by

S (ω; z) = L

[
1

ω − x

]
, (59)

where (as always) L is acting on the variable x. Suppose that {Λn (x)}n≥0 is
a monic basis satisfying (58), and λn (z) = L [Λn] .Then, for all n ∈ N

S (ω; z) =
1

Λn (ω)
L

[
Λn

ω − x

]
+

n−1∑
k=0

λk (z)

Λk+1 (ω)
.
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Proof. From (58), we have

xΛn (x) Λn (ω) = Λn+1 (x) Λn (ω) + κnΛn (x) Λn (ω)

ωΛn (x) Λn (ω) = Λn (x) Λn+1 (ω) + κnΛn (x) Λn (ω) ,

and therefore

(x− ω) Λn (x) Λn (ω) = Λn+1 (x) Λn (ω)− Λn (x) Λn+1 (ω) .

Dividing by Λn (ω) Λn+1 (ω) ,

(x− ω)
Λn (x)

Λn+1 (ω)
=

Λn+1 (x)

Λn+1 (ω)
− Λn (x)

Λn (ω)
,

and summing from 0 to n− 1, we obtain

(x− ω)
n−1∑
k=0

Λk (x)

Λk+1 (ω)
=

n−1∑
k=0

[
Λk+1 (x)

Λk+1 (ω)
− Λk (x)

Λk (ω)

]
=

Λn (x)

Λn (ω)
− Λ0 (x)

Λ0 (ω)
.

Hence,

1

Λn (ω)

Λn (x)

x− ω
=

1

x− ω
+

n−1∑
k=0

Λk (x)

Λk+1 (ω)
, (60)

since Λ0 (x) = 1.
Applying L to (60), we see that

1

Λn (ω)
L

[
Λn

x− ω

]
= L

[
1

x− ω

]
+

n−1∑
k=0

λk (z)

Λk+1 (ω)
,

and the result follows.

Remark 19 Since

lim
n→∞

Λn (x)

Λn (ω)
= 1,

we have (at least formally)

S (ω; z) =
∞∑
k=0

λk (z)

Λk+1 (ω)
.

The falling factorial case was already considered in [11].
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Next, we relate an arbitrary monomial basis to the basis of monomials.

Proposition 20 Suppose that {Λn}n≥0 is a monic basis satisfying (58).
(i) If

xn =
n∑
i=0

ξn,iΛi (x) , (61)

then, the coefficients ξn,i satisfy the recurrence

ξn+1,i = ξn,i−1 + κiξn,i, ξn,n = 1,

with boundary conditions

ξn,i = 0, i /∈ [0, n] .

(ii) If

Λn (x) =
n∑
i=0

ξn,ix
i, (62)

then, the coefficients ξn,i satisfy the recurrence

ξn+1,i = ξn,i−1 − κnξn,i,

with boundary conditions

ξn,n = 1, ξn,i = 0, i /∈ [0, n] .

Proof. (i) Since Λn (x) is monic, we need ξn,n = 1. Using (58), we get

n+1∑
i=0

ξn+1,iΛi (x) = xn+1 =
n∑
i=0

ξn,ixΛi (x)

=
n∑
i=0

ξn,i [Λi+1 (x) + κiΛi (x)] =
n+1∑
i=1

ξn,i−1Λi (x) +
n∑
i=0

ξn,iκiΛi (x) .

Comparing coefficients, we obtain the result.
(ii) In a similar way, we have

n+1∑
i=0

ξn+1,ix
i +

n∑
i=0

κnξn,ix
i = Λn+1 (x) + κnΛn (x)

= xΛn (x) =
n∑
i=0

ξn,ix
i+1 =

n+1∑
i=1

ξn,i−1x
i,

and the result follows.
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Example 21 If Λn (x) = φn (x) , we get

ξn+1,i = ξn,i−1 + iξn,i, ξn,n = 1,

ξn+1,i = ξn,i−1 − nξn,i, ξn,n = 1.

In this case, the coefficients ξn,i are known as Stirling numbers of the second
kind, and the coefficients ξn,i are known as Stirling numbers of the first kind
[64].

Using Newton’s interpolation formula (49), we have

xn =
n∑
k=0

∆k [xn] (0)

k!
φk (x) ,

and therefore the Stirling numbers of the second kind have the representation
[59, 26.8.6] {

n

k

}
=

∆k [xn] (0)

k!
=

1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in.

Applying L to (61) and (62), we see that

µn =
n∑
i=0

ξn,iλi, λn =
n∑
i=0

ξn,iµi,

and in particular

µn =
n∑
k=0

{
n

k

}
νk. (63)

3 Transformations of functionals

Let m ∈ N0, c ∈ Km, and ε ∈ K. If we define the the recurrence operator
Θn (c;ε) by

Θn (c;ε) [ψ] = (ψ + c) (ψ + ε)n , ψ ∈ K∞, (64)

we can write (32) as

[Θn+1 (b;0)− zΘn (a;1)] [µ] = 0. (65)
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Similarly, let the recurrence operator Υn (c) be defined by

Υn (c) [ψ] =
m∑
j=0

∆j [(x+ c)] (n)

j!
ψn+j, ψ ∈ K∞. (66)

Then, using (54) and (66), we see that the modified moments νn (z) satisfy
the recurrence

[Υn+1 (b)− zΥn (a)] [ν] = 0. (67)

We have Υn (∅) [ψ] = ψn, and from (66), we get

Υn (c) [ψ] = ψn+1 + (n+ c)ψn.

In general, we have the following result.

Proposition 22 The recurrence operators Υn satisfy the basic recurrence

Υn (c, γ) = Υn+1 (c) + (n+ γ) Υn (c) . (68)

Proof. From the definition of Υn, we have

Υn (c, γ) [ψ] =
m+1∑
j=0

∆j [(x+ c) (x+ γ)] (n)

j!
ψn+j.

If we use Leibniz rule [37]

∆j [uv] (n) =

j∑
i=0

(
j

i

)
∆j−i [u] (n+ i) ∆i [v] (n) ,

we get

∆j [(x+ c) (x+ γ)] (n) = (n+ γ) ∆j [(x+ c)] (n) + j∆j−1 [(x+ c)] (n+ 1) .

Since

m+1∑
j=0

j∆j−1 [(x+ c)] (n+ 1)

j!
ψn+j

=
m+1∑
j=1

∆j−1 [(x+ c)] (n+ 1)

(j − 1)!
ψn+j =

m∑
j=0

∆j [(x+ c)] (n+ 1)

j!
ψn+j+1,
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we conclude that

m+1∑
j=0

∆j [(x+ c) (x+ γ)] (n)

j!
ψn+j

= (n+ γ)
m∑
j=0

∆j [(x+ c)] (n)

j!
ψn+j +

m∑
j=0

∆j [(x+ c)] (n+ 1)

j!
ψn+1+j

and the result follows.
If m = 2, (68) gives

Υn (c1, c2) [ψ] = Υn+1 (c1) [ψ] + (n+ c2) Υn (c1) [ψ]

= ψn+2 + (n+ 1 + c1)ψn+1 + (n+ c2) [ψn+1 + (n+ c1)ψn] ,

and hence

Υn (c1, c2) = S2
n + (2n+ c1 + c2 + 1)Sn + (n+ c1) (n+ c2) .

Note that

Υn (c1, c2) = (Sn + n+ c1) (Sn + n+ c2) = Υn (c1) ◦Υn (c2) ,

where clearly
Υn (c1) ◦Υn (c2) = Υn (c2) ◦Υn (c1) .

Using induction, it follows that

Υn (c) = (Sn + n+ c) , c ∈ Km,

and
Υn (c) = Υn (c1) ◦Υn (c2) ◦ · · · ◦Υn (cm) , c ∈ Km. (69)

Remark 23 We have

(a1Sn + b1n+ c1) (a2Sn + b2n+ c2)− (a2Sn + b2n+ c2) (a1Sn + b1n+ c1)

= (a1b2 − a2b1)Sn,

so in general caution must be exercised when composing linear terms involving
Sn.
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In the remaining of the paper, we will use the notation

Φn = Θn+1 (b;0)− zΘn (a;1) , (70)

and
Ψn = Υn+1 (b)− zΥn (a) , (71)

which allow us to write the recurrences for the standard and modified mo-
ments as Φn [µ] = 0 and Ψn [ν] = 0 respectively.

For p̃, q̃ ∈ N0 and α ∈ Kp̃, β ∈ Kq̃,we define the moment transformation
Ωα
β by

Ωα
β [λ0] = C (α, β) p+p̃Fq+q̃

(
a, α

b + 1, β
; z

)
, (72)

where C (α, β) is a constant. Clearly, Ωα
β [λ0] is a solution of the hypergeo-

metric ODE

[ϑ (ϑ+ β − 1) (ϑ+ b)− z (ϑ+ α) (ϑ+ a)] [y] = 0. (73)

From (32) and (73), we see that the transformed standard moments Ωα
β [µ]

satisfy the recurrence

[Θn+1 (b, β − 1;0)− zΘn (a, α;1)] [ψ] = 0 (74)

while (67) and (73) give a recurrence for the transformed modified moments
Ωα
β [ν]

[Υn+1 (b, β − 1)− zΥn (a, α)] [ψ] = 0. (75)

Remark 24 It may seem that the definition of Ωα
β (72) is ambiguous, because

the constant C (α, β) is not fixed. But since the recurrences (74) and (75)
are homogeneous, they are not affected by a multiplicative constant.

Comparing (74) with (70), we can define

Ωα
β [Φn] = Θn+1 (b, β − 1;0)− zΘn (a, α;1) , (76)

in the sense that
Ωα
β [Φn]

[
Ωα
β [µ]

]
= 0.

Similarly, from (75) and (71) we conclude that the operator

Ωα
β [Ψn] = Υn+1 (b, β − 1)− zΥn (a, α) (77)

satisfies
Ωα
β [Ψn]

[
Ωα
β [ν]

]
= 0.
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Proposition 25 Let Sn be the shift operator defined in (12). If c ∈ K, we
have:

(i)
Ωc
c [Φn] = (Sn + c− 1) ◦ Φn. (78)

(ii)
Ωc+1
c [Φn] ◦ (Sn + c) = (Sn + c− 1) (Sn + c) ◦ Φn. (79)

(iii)
Ωc
c+1 [Φn] = Φn ◦ (Sn + c) . (80)

(iv)
Ωc
c [Ψn] = (Sn + n+ c) ◦Ψn. (81)

(v)

Ωc+1
c [Ψn] ◦ (Sn + n+ c) = (Sn + n+ c+ 1) (Sn + n+ c) ◦Ψn. (82)

(vi)
Ωc
c+1 [Ψn] = Ψn ◦ (Sn + n+ c) . (83)

Proof. (i) If we consider the composition (Sn + c) ◦ Φn, we see that

(Sn + c) ◦ Φn [ψ] = (Sn + c)
[
(ψ + b)ψn+1 − z (ψ + a) (ψ + 1)n

]
= (ψ + b)ψn+2 − z (ψ + a) (ψ + 1)n+1 + c (ψ + b)ψn+1 − zc (ψ + a) (ψ + 1)n

= (ψ + c) (ψ + b)ψn+1 − z (ψ + c+ 1) (ψ + a) (ψ + 1)n ,

and comparing with (76) we obtain

(Sn + c) ◦ Φn [ψ] =
(
Ωc+1
c+1 [Φn]

)
[ψ] .

The result follows after shifting c.
(ii) Using (78), we have

(Sn + c− 1) (Sn + c) ◦ Φn [ψ] =
(
Ωc,c+1
c,c+1 [Φn]

)
[ψ]

= (ψ + c− 1) (ψ + c) (ψ + b)ψn+1 − z (ψ + c) (ψ + c+ 1) (ψ + a) (ψ + 1)n

=
[
(ψ + c− 1) (ψ + b)ψn+1 − z (ψ + c+ 1) (ψ + a) (ψ + 1)n

]
(ψ + c) ,

and we obtain (79).
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(iii) Note that

Ωc
c+1 [Φn [ψ]] = (ψ + c) (ψ + b)ψn+1 − z (ψ + c) (ψ + a) (ψ + 1)n

=
[
(ψ + b)ψn+1 − z (ψ + a) (ψ + 1)n

]
(ψ + c) ,

and therefore (80) is true.
(iv) Similarly, we have

(Sn + n+ c) ◦Ψn = Υn+2 (b)− zΥn+1 (a) + (n+ c) Υn+1 (b)− z (n+ c) Υn (a)

= Υn+1 (b, c− 1)− zΥn (a, c) ,

and comparing with (77) we obtain (81).
(v) Using (69), we get

(Sn + n+ c+ 1) (Sn + n+ c) ◦Ψn = Ωc,c+1
c,c+1 [Ψn]

= Υn+1 (b, c− 1, c)− zΥn (a, c, c+ 1) = [Υn+1 (b, c− 1)− zΥn (a, c+ 1)] ◦Υn (a, c) ,

and (82) follows.
(vi) Finally,

Ωc
c+1 [Ψn] = Υn+1 (b, c)− zΥn (a, c) = [Υn+1 (b)− zΥn (a)] ◦Υn (c) ,

and we see that (83) is true.
It follows that the special cases α = β and α = β ± 1 lead to some

interesting transformations. We will study them in detail in the next sections.

3.1 The Christoffel transformation

The Christoffel transformation is defined by

λC0 = Ω−ω+1
−ω [λ0] .

From (73), we see that λC0 (z;ω) is a solution of the ODE

[(ϑ− ω − 1)ϑ (ϑ+ b)− z (ϑ− ω + 1) (ϑ+ a)] [y] = 0, (84)

and admits the hypergeometric representation

λC0 (z;ω) = −ω p+1Fq+1

(
a,−ω + 1
b + 1,−ω ; z

)
. (85)
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The reason for choosing this particular solution is the identity

−ω (−ω + 1)x
(−ω)x

= x− ω, (86)

which shows that the linear functional LC associated to λC0 is given by

LC [u] = L [(x− ω)u] , u ∈ K [x] . (87)

This transformation was introduced by Elwin Bruno Christoffel (1829–1900)
in his pioneering work [16].

Clearly we must have

λC0 = LC [x− ω] = (ϑ− ω) [λ0] 6= 0,

and since the operator ϑ− ω annihilates any multiple of zω, we need

λ0 (z;ω) 6= ηzω, η ∈ K.

From (58) and (87), we get

λCn = LC [Λn] = L [(x− ω) Λn] = λn+1 + (κn − ω)λn,

and in particular
µCn = µCn+1 − ωµCn , (88)

and
νCn = νCn+1 + (n− ω) νCn . (89)

Note that,
λC0 = µC1 − ωµC0 = νC1 − ωνC0 . (90)

From (76), we see that the standard moments µCn satisfy the recurrence
ΦC
n

[
µCn
]

= 0, where

ΦC
n [µ] = (µ− ω − 1) (µ+ b)µn+1 − z (µ− ω + 1) (µ+ a) (µ+ 1)n ,

and from (77), we see that the modified moments νCn satisfy the recurrence
ΨC
n

[
νCn
]

= 0, where

ΨC
n = Υn+2 (b) + (n− ω) Υn+1 (b)− zΥn+1 (a)− z (n− ω + 1) Υn (a) . (91)
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Remark 26 Using (79), we obtain

(Sn − ω − 1) (Sn − ω) ◦ ΦC
n = ΦC

n ◦ (Sn − ω) ,

and therefore

ΦC
n

[
µCn+1 − ωµCn

]
= ΦC

n ◦ (Sn − ω) [µ]

= (Sn − ω − 1) (Sn − ω) ◦ Φn [µ] = 0 = ΦC
n [µ] ,

in agreement with (88).
Similarly, using (82), we see that

(Sn + n− ω + 1) (Sn + n− ω) ◦Ψn = ΨC
n ◦ (Sn + n− ω) ,

and hence

ΨC
n [νn+1 + (n− ω) νn] = ΨC

n ◦ (Sn + n− ω) [ν]

= (Sn + n− ω + 1) (Sn + n− ω) ◦Ψn [ν] = 0 = ΨC
n

[
νC
]
,

in agreement with (91).

Using (41) and (88), we obtain the exponential generating function of the
transformed standard moments

∞∑
n=0

µCn (z;ω)
tn

n!
= µC0

(
zet;ω

)
= (µ1 − ωµ0)

(
zet
)
,

while from (55) and (89) we get the exponential generating function of the
transformed modified moments

∞∑
n=0

νCn (z;ω)
tn

n!
= νC0 (z + zt;ω) = (ν1 − ων0) (z + zt) .

3.2 The Geronimus transformation

The Geronimus transformation is defined by

λG0 = Ω−ω−ω+1 [λ0] , ω /∈ N0.

From (73), we see that λG0 (z;ω) is a solution of the ODE

ϑ (ϑ+ b) (ϑ− ω) [y] = z (ϑ+ a) (ϑ− ω) [y] , (92)

and admits the hypergeometric representation

λG0 (z;ω) = −ω−1
p+1Fq+1

(
a,−ω

b + 1,−ω + 1
; z

)
. (93)
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Remark 27 The function zω is also a solution of (92), and therefore we
could define (as some authors do)

λG0 (z;ω) = −ω−1
p+1Fq+1

(
a,−ω

b + 1,−ω + 1
; z

)
+ ηzω

where η is an arbitrary constant.

The identity (86) shows that the linear functional LG associated to λG0 is
given by

LG [u] = L

[
u (x)

x− ω

]
, u ∈ K [x] , (94)

and

λG0 (z;ω) = L

[
1

x− ω

]
(z) = −S (ω; z) , (95)

where S (ω; z) is the Stieltjes transform of the functional L defined in (59).
Since

(ϑ− ω)
[
λG0
]

= L

[
(x− ω)

1

x− ω

]
= L [1] = λ0,

we need
S (ω; z) 6= ηzω, η ∈ K.

This transformation was introduced by Yakov Lazarevich Geronimus (1898–
1984) in his groundbreaking article [32].

Proposition 28 The moments of the linear transformation LG defined by
(94) have the integral representation

λGn (z;ω) =

1∫
0

t−ω−1λn (zt) dt, n ∈ N0. (96)

Proof. If we use the integral representation [59, 16.5.2]

p+1Fq+1

(
a, α
b, β

; z

)

=
Γ (β)

Γ (α) Γ (β − α)

1∫
0

tα−1 (1− t)β−α−1
pFq

(
a
b

; zt

)
dt,
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in (93), we obtain

λG0 (z;ω) =

1∫
0

t−ω−1λ0 (zt) dt. (97)

Extending (97), we obtain (96).

Remark 29 Note that if we use (13) in (96) and formally integrate term by
term, we get

λGn (z;ω) =
∞∑
x=0

Λn (x)
(a)x

(b + 1)x

zx

x!

1∫
0

tx−ω−1dt

=
∞∑
x=0

Λn (x)

x− ω
(a)x

(b + 1)x

zx

x!
,

in agreement with (94).

From (58) and (94), we see that

λGn+1 + (κn − ω)λGn = LG [(x− ω) Λn (x)] = L [Λn (x)] = λn,

and in particular
µGn+1 − ωµGn = µn, (98)

and
νGn+1 + (n− ω) νGn = νn. (99)

Using (60), we get

λGn (z;ω) = Λn (ω)

[
λG0 (z;ω) +

n−1∑
k=0

λk (z)

Λk+1 (ω)

]
,

where care needs to be exercised if Λk (ω) = 0 for some k.

Remark 30 From (80), we have

ΦG
n [µ] = Φn ◦ (Sn − ω) [µ] , (100)

in agreement with (98), since

Φn

[
µGn+1 − ωµGn

]
= Φn ◦ (Sn − ω)

[
µG
]

= ΦG
n

[
µG
]

= 0 = Φn [µ] .
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From (83), we get ΨG
n

[
νG
]

= 0, where

ΨG
n = Ψn ◦ (Sn + n− ω) , (101)

in agreement with (99), since

Ψn

[
νGn+1 + (n− ω) νGn

]
= Ψn ◦ (Sn + n− ω)

[
νG
]

= ΨG
n

[
νG
]

= 0 = Ψn [ν] .

Using (41) and (95), we obtain the exponential generating function of µGn

∞∑
n=0

µGn (z;ω)
tn

n!
= λG0

(
zet;ω

)
= −S

(
ω; zet

)
,

and for the transformed modified moments νGn we get

∞∑
n=0

νGn (z;ω)
tn

n!
= λG0 (z + zt;ω) = −S (ω; z + zt) .

3.3 The Uvarov transformation

Let’s consider the composite transformations (Christoffel-Geronimus)(
Ω−ω1−ω ◦ Ω1−ω

−ω
)

[λ0] ,

and (Geronimus-Christoffel)(
Ω1−ω
−ω ◦ Ω−ω1−ω

)
[λ0] .

We see that in either case, the transformed first moment is a solution of the
ODE

(ϑ− ω) (ϑ− ω − 1)ϑ (ϑ+ b) [y] = z (ϑ− ω) (ϑ− ω + 1) (ϑ+ a) [y] , (102)

which can be written as

(ϑ− ω) (ϑ− ω − 1) [σ (ϑ)− zτ (ϑ)] [y] = 0. (103)

Lemma 31 The linear combination

λU0 (z;ω) = λ0 (z) + ηzω, η ∈ K, (104)

is a solution of (103).
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Proof. Clearly, λ0 is a solution of (103). If we set y (z) = zω, we have

[σ (ϑ)− zτ (ϑ)] [zω] = σ (ω) zω − τ (ω) zω+1, (105)

and therefore

(ϑ− ω) (ϑ− ω − 1) [σ (ϑ)− zτ (ϑ)] [zω]

= (ϑ− ω) (ϑ− ω − 1)
[
σ (ω) zω − τ (ω) zω+1

]
= 0.

Thus, (104) is a solution of (103).
We define the Uvarov transformation by

LU [u] = L [u] + ηu (ω) zω, u ∈ K [x] ,

which is well defined as long as

λ0 (z) 6= −ηzω.

This transformation was introduced by Vasilĭı Borisovich Uvarov (1929–1997)
in his monumental paper [73].

From (78), we see that

ΦU
n = (Sn − ω − 1) (Sn − ω) ◦ Φn, (106)

and from (81), we have

ΨU
n = (Sn + n− ω + 1) (Sn + n− ω) ◦Ψn. (107)

If σ (ω) = 0 or τ (ω) = 0, we obtain some reduced cases.

Proposition 32 Suppose that σ (ω) = 0. Then,
(i) The transformed moment λU0 satisfies the reduced ODE

(ϑ− ω − 1) [σ (ϑ)− zτ (ϑ)]
[
λU0
]

= 0. (108)

(ii) The transformed first moment λU0 is given by

λU0 = Ω−ω−ω [λ0] . (109)

(iii) The transformed standard moments µUn satisfy the reduced recur-
rence ΦU

n [ψ] = 0, where

ΦU
n = (Sn − ω − 1) ◦ Φn. (110)

(iv) The transformed modified moments νUn satisfy the reduced recurrence
ΨU
n [ψ] = 0, where

ΨU
n = (Sn + n− ω) ◦Ψn. (111)
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Proof. (i) If σ (ω) = 0, then we see from (105) that

[σ (ϑ)− zτ (ϑ)] [zω] = −τ (ω) zω+1

and (108) follows.
(ii) Comparing (108) with (73), we can interpret λU0 as (109).
(iii) From (78) and (109), we get (110).
(iv) Using (81) in (109) gives (111).

Proposition 33 Suppose that τ (ω) = 0. Then,
(i) The transformed first moment λU0 satisfies the reduced ODE

(ϑ− ω) [σ (ϑ)− zτ (ϑ)]
[
λU0
]

= 0. (112)

(ii) The transformed first moment λU0 is given by

λU0 = Ω1−ω
1−ω [λ0] . (113)

(iii) The transformed standard moments µUn satisfy the reduced recur-
rence ΦU

n [ψ] = 0, where

ΦU
n = (Sn − ω) ◦ Φn. (114)

(iv) The transformed modified moments νUn satisfy the reduced recurrence
ΨU
n [ψ] = 0, where

ΨU
n = (Sn + n− ω + 1) ◦Ψn. (115)

Proof. (i) If τ (ω) = 0, then we see from (105) that

[σ (ϑ)− zτ (ϑ)] [zω] = σ (ω) zω,

and (112) follows.
(ii) Comparing (112) with (73), we can interpret λU0 as (113).
(iii) From (78) and (113), we get (110).
(iv) Using (81) in (113) gives (111).
Finally, we have

λUn = LU [Λn] = λn + ηΛn (ω) zω, (116)

from which we obtain the exponential generating functions of µUn (z;ω)
∞∑
n=0

µUn (z;ω)
tn

n!
= µ0

(
zet
)

+ η
(
zet
)ω
,

and νUn (z;ω)
∞∑
n=0

νUn (z;ω)
tn

n!
= ν0 (z + zt) + η (z + zt)ω .
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3.4 Truncated linear functionals

Let N ∈ N0 and the truncated functional LT be defined by

LT [u] =
N∑
x=0

u (x)
(a)x

(b + 1)x

zx

x!
, u ∈ K [x] , (117)

as long as

λT0 (z) =
N∑
x=0

(a)x
(b + 1)x

zx

x!
6= 0.

Remark 34 If τ (N) = 0, then the functional (13) is already a truncated
functional, since

(−N)x = 0, x > N.

Therefore, we assume that τ (N) 6= 0.

Lemma 35 The first transformed moment λT0 (z) satisfies the ODE

(ϑ−N − 1) [σ (ϑ)− zτ (ϑ)] [y] = 0. (118)

Proof. Using the Pearson equation (21), we have

[σ (ϑ)− zτ (ϑ)]
[
λT0
]

=
N∑
x=0

[
σ (x) ρ (x) zx − τ (x) ρ (x) zx+1

]
=

N∑
x=0

σ (x) ρ (x) zx −
N+1∑
x=1

τ (x− 1) ρ (x− 1) zx = −τ (N) ρ (N)
zN+1

N !
,

and since the operator ϑ−N − 1 annihilates any multiple of zN+1, the result
follows.

Using (11) in (118), we obtain

(ϑ−N − 1)σ (ϑ)
[
λT0
]

= z (ϑ−N) τ (ϑ)
[
λT0
]
,

and therefore we have

λT0 = Ω−N−N [λ0] , N ∈ N0. (119)
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Proposition 36 The first transformed moment λT0 (z) can be represented as
a Laplace transform

λT0 (z) =
zN+1

N !

(a)N
(b + 1)N

∞∫
0

q+1Fp

(
−N,−b−N

1− a−N ; (−1)q+p+1 t

)
e−ztdt.

(120)

Proof. If we use the formula [59, 16.2.4]

N∑
k=0

(a)k
(b)k

zk

k!
=
zN

N !

(a)N
(b)N

q+2Fp

(
−N, 1− b−N, 1

1− a−N ;
(−1)q+p+1

z

)
, (121)

we obtain the hypergeometric representation

λT0 =
zN

N !

(a)N
(b + 1)N

q+2Fp

(
−N,−b−N, 1

1− a−N ;
(−1)q+p+1

z

)
. (122)

Using the integral representation [59, 16.5.3]

p+1Fq

(
a, α
b

;
x

z

)
=

zα

Γ (α)

∞∫
0

tα−1
pFq

(
a
b

;xt

)
e−ztdt (123)

with α = 1, we obtain (120).
From (78) and (119), we get

ΦT
n = (Sn −N − 1) ◦ Φn, (124)

while (81) gives
ΨT
n = (Sn + n−N) ◦Ψn. (125)

Proposition 37 The transformed modified moments νTn (z) have the integral
representation

νTn (z) =
(a)N

(b + 1)N

zN+1

(N − n)!

∞∫
0

q+1Fp

(
n−N,−b−N

1− a−N ; (−1)q+p+1 t

)
e−ztdt.

(126)

40



Proof. Note that since

N∑
x=0

φn (x)
(a)x

(b + 1)x

zx

x!
=

N∑
x=n

(a)x
(b + 1)x

zx

(x− n)!
=

N−n∑
x=0

(a)x+n

(b + 1)x+n

zx+n

x!
,

we have

νTn (z) = zn
(a)n

(b + 1)n

N−n∑
x=0

(a + n)x
(b + 1 + n)x

zx

x!
. (127)

Thus, we can use (121) and obtain

νTn (z) =
(a)N

(b + 1)N

zN

(N − n)!
q+2Fp

(
n−N,−b−N, 1

1− a−N ;
(−1)q+p+1

z

)
.

(128)
In particular,

νTN (z) =
(a)N

(b + 1)N
zN , νTn (z) = 0, n > N.

Remark 38 Using (123) and (128), we get the integral representation (126).

4 Conclusion

We have studied the linear functionals characterized by the hypergeometric
differential equation satisfied by the first moment λ0 (z)

[ϑq (ϑ)− zp (ϑ)] [λ0] = 0, p, q ∈ K [x] .

We obtained recurrence relations for the moments on the monomial and
falling factorial polynomial bases.

We note that one could use the generating function (41) and the ODE it
satisfies (42), as a different way of analyzing the standard moments µn (z) .
Similarly, one could study the modified moments νn (z) using (55) and (56).

We are currently working on further applications of our results to study
some properties of the orthogonal polynomials themselves (representations,
recurrence-relation coefficients, generating functions, etc).
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[6] R. Álvarez Nodarse and J. Petronilho. On the Krall-type dis-
crete polynomials. J. Math. Anal. Appl. 295(1), 55–69 (2004).

42
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