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Abstract

We study recurrence relations satisfied by the moments v, (z) of a
linear functional L whose first moment satisfies a differential equation
(in z) with polynomial coefficients.
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1 Introduction

Let K be a field (we mostly think of K as the set of complex numbers C) and
Ny be the set of nonnegative integers

No=NU{0} ={0,1,2,...}.
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We will denote by 0y, the Kronecker delta, defined by
1, k=n
(Sk,n—{()? /{#n ) kaneN()a

and say that {A, (2)},>, C Kz] is a monic basis if A, (x) is monic and
deg (A,,) = n for all n € Nj.

Suppose that {A, (2)},-, is @ monic basis and L : Klz] — K is a linear
functional (acting on the variable x) satisfying

h, = L[A2] #0, n€N,.
If the system of linear equations
ZL [AkAz] Cn,i = hnék,nv 0 S k S n, Cn,n = 17 (1>
=0

has a unique solution {c,;},.,., , we can define a monic polynomial P, ()
by o

P, (x) = ZcmAi (2),

and say that {P, ()}, is an orthogonal polynomial sequence with respect
to the functional L.
The system (1) can be written as

and using linearity we see that the sequence { P, ()}, -, satisfies the orthog-

onality conditions
L[PP,] = hpbrn, 0<k<n. (2)

If we define the (symmetric) matrix of moments G by
Gi,k =1L [AZAk] ) i? k € N07 <3>
one can show [14] that the condition

det (Gix) #0, n>0,

0<i,k<n



is equivalent to the existence of a unique family of orthogonal polynomial
satisfying (2) and deg (P,) = n.

The theory of orthogonal polynomials is vast and rich, extending all the
way back to the groundbreaking work of Legendre [42], where he introduced
the family of polynomials that now bears his name. We direct the interested
reader to (some of!) the fundamental treatises on the field [8], [10], [29], [31],
[33], [40], [70].

A particular fruitful approach that has received a lot of attention in recent
years, is to work with the (infinite) matrix (3) acting on the (infinite) vector

= (Py, P1,...). One can then view orthogonal polynomial sequences as
elements of an infinite dimensional vector space [17], [22], [30], [45], [74],
[75], [76], [77].

Of course, in its full generality, it’s difficult to get results that apply to
any family of orthogonal polynomials. Thus, one chooses, for example:

i.) an operator (difference, differential, functional, integral) that annihi-
lates P, (z) .

ii.) a degree-reducing operator relating P, (x) and P, (z) (Sheffer clas-
sification, umbral calculus, generating functions).

iii.) a particular form of the linear functional L (continuous, discrete,
matrix valued, g-series).

iv.) a particular domain of L (C, Ny, R, quadratic lattices, unit circle).

Another possibility, is to ask L to satisfy a relation of the form

Llop] = L[tU[p]], p €Kz,

where o (x),7 (z) are fized polynomials, and U : K[z] — K][z] is a degree
reducing linear operator satisfying U [1] = 0 and

degU[z"|=n—-1, neN.

In this case, we say that L is a semiclassical functional with respect to U.
The class of the functional L is defined by

s = max {deg (o) — 2,deg (1) — 1},

and semiclassical functional of class s = 0 are called classical.
This type of functionals was introduced by Shohat [67], and studied
in detail by P. Maroni and collaborators [53], [55], [56], particularly when



U [p] = O,p is the derivative operator [47], [51], [52], and also for the opera-

N o - Pt s) =ple)

w

which contains the finite difference operators A, V as special cases (w = £1),
and the derivative operator as a limiting case [1]. Other examples include
the g—semiclassical polynomials [38], [57], associated with the operator

=P

In this paper, we will focus on the so-called discrete semiclassical or-
thogonal polynomials [7], [27], [50], [58], [79], where U is the shift operator
U [p] = p(x + 1). In this case, the linear functional L is of the form

Lip)=> p()plx), peKal,

where p (x) is a given weight function. The traditional starting point is the
Pearson equation satisfied by p (z)

Ulop] =7 (2)p(2), (4)

but after trying this approach in [24], we found it very dissatisfying, especially
when one considers spectral transformations of L.
For example, applying an Uvarov transformation to L at a point w (see
Section 3.3) will lead to the Pearson equation
p(z+1) (z—w)(z+1—-w)T(x)

ple)  (-w)(@+l-w)o(@+1)

and this begs the question of when one is allowed (or not) to simplify the
above expression. A possibility to avoid this problem is to study the difference
equation satisfied by the Stieltjes transform of L

S(t):L{ ! }, t ¢ No,

t—x

and we did this in [25], where we classified the discrete semiclassical orthog-
onal polynomials of class s < 2.



Now suppose that the weight function p (x) also contains an independent
variable z, p = p (x; z) . Although this may seem like an extra assumption, we
note that one could always introduce such a variable as a Toda deformation
[9], [62], [72],

plw;2) =pla)e?@, f(z)=0,

and recover the original functional L by setting z = z5. We studied this type
of weight functions in [23], and observed that the operator ¥ defined by

du

Vu] =2z2—

[u] = 2

is naturally associated to the shift operator.
As we will see in Section 2, this allows us to replace the Pearson equation

(4) with the ODE satisfied by the first moment X\ (z) = L[1],
o (0) [Ao] = 27 (9) [Ao] - ()

We note in passing that the ODE (5) is the true starting point of the theory,
and by considering alternative equations satisfied by \g (z), one could study
semiclassical orthogonal polynomials associated with different operators U.

The structure of the paper is as follows: in Section 2, we introduce the
operator ¥ and the ODE satisfied by the moments of a discrete linear func-
tional

7 (9) A (9) Mo = 27 (9) A (9 + 1) [No], € No. (6)

This will naturally lead to the class of functionals whose first moment \q (2)
can be represented as a (generalized) hypergeometric function.

Since the ODE (6) contains a shift, we need to choose a convenient basis
{A, (2)},5, - In Section 2.1, we study the monomial basis and derive a linear
recurrence of order n + s + 1 for the (standard) moments s, (2). We also
find a representation for u, (z) as a linear combination involving a family of
polynomials that satisfies a differential-difference equation.

In Section 2.2, we consider the basis of falling factorial polynomials de-
fined by ¢g (z) =1,

Gna1 () =xdp (x —1), neN,

which allows us to easily work on the lattice Ny. We use Newton’s interpola-
tion formula and obtain a linear recurrence of order s 4 1 for the (modified)



moments v, (z). The linear functionals of class s = 1 are particularly in-
teresting, since in this case the moments v, (z) are themselves a family of
orthogonal polynomials. This is an area that has been studied in detail by
M. Ismail and D. Stanton, see [34], [35], and [36].

Both the monomials and the falling factorial polynomials are examples of
Newton basis polynomials defined by ng (x) = 1 and

k—1
“k(fﬁ):H(x—'fj%

where {k; }j>0 is a fixed sequence. This type of polynomials satisfy 2—term
recurrence relations, which we study in Section 2.3. Among other results,
we look at the connection between the monomial and falling factorial bases
(through Stirling numbers), and find the (formal) representation for the
Stieltjes transform

S(w;z) = ;% (7)

In [26], we used (7) to derive recurrence relations for the modified moments
Un (2).

In Section 3, we consider transformations 3 between different families
of discrete semiclassical orthogonal polynomials. We introduce a uniform
notation to label objects belonging to different families, and show how the
recurrence relations for the moments change as we apply a transformation.

In Sections 3.1, 3.2, 3.3, and (3.4) we consider the special cases « = 41
(Christoffel transformation) [12], [28], [66], a = 8 — 1 (Geronimus transfor-
mation) [19], [20], [41], [54], their composition ( Uvarov transformation) [5],
6], [15], [39], [49], and @ = B = —N, N € N (truncation transformation).
These rational spectral transformations have been studied by many authors,
4], [43], [61], [81]. The relation between these transformations and the so-
called Darboux transformation, has also been considered [13], [48], [80].



2 Differential operators and moment function-
als

Let I denote the ring of formal power series in the variable z

F=K[z] = {chz” Lo € K} :

n=0

and ¥ : F — F be the differential operator defined by [59, 16.8.2]
¥ = 20,, (8)

where 0, is the derivative operator 0, = %. The operator ¥ has the following
properties.

Proposition 1 Let the differential operator 9 be defined by (8). Then, for
all u,v € Kz] we have:

(1) The action of ¥ on the monomials is given by
u (V) [2%] = u (x) 2%, (9)
where we always assume that x and z are independent variables.

(ii) @ is multiplicative
(1) (9) = w (9) 0 (9). (10)

(iii) For all k € Ny,
u (1) [zkv (19)} = ZkSg [u] v (), (11)

where S, denotes the shift operator defined by
S lfl=fr+1). (12)
Proof. (i) Iterating (8), we get
O [2°] = 2%, ke N,.

Using linearity, the result follows.



(ii) Using (9), we have
IV [T = 2T = gt = a9 2] = 97 2" 2] = 9T 27,
for all m,n € Ny. The result follows from linearity.
(iii) Using (9) and (10), we see that
u(9) [z (0) [2°]] = u (V) [2"v (2) 2] = w (V) [v(z) 2" ]
=v(z)u() "] =v(x)u(z+k) T
= Fv(z)u(z+ k) 2% = 2P0 (0)u (9 + k) [27],

and the result follows. m
Let L : K[z] — F be the linear functional (acting on the variable z)
defined by

Liu)=> u(x)p(z)z", ueKlal (13)

where p : Ny — K is a given function.

Remark 2 If f € K[[z]], we can extend (9) to

PO = 3 et 7] = 23 e = f (1) 2

and therefore we can consider L as a functional on K|[x]], satisfying

Lluf] =) u(x)f (@) p(x) =" = f(9) [Zu(aj)p () ZI] = (@) [L[u]],

(14)
for allu € Klz], f € K[[z]].

Let {A,}, 5o be a monic polynomial basis. If we define a sequence of
moments [2], [3], [68] by

then from (14) we obtain

F@) ol = FO) LA = LIf],  feK]z], (15)

and in particular

M (2) = LA = Ay (9) [Ao] (16)

Using (15), we can obtain a generating function for the moments of L.
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Proposition 3 Let FEy (t,x) denote the exponential generating function [78/
of the polynomials A, (x)

tn
Ex () =) Ay (2) = (17)
Then, the exponential generating function of the moments A, (2) is given by

Z)\ L[E\ (t; )],

where it’s always understood that L is only acting on the variable x.
In particular, if Ey (t;x) = [f (t)]" is an ezponential function, we have

ex(t:2) = No[2f (£)]. (18)

Proof. Using (16) and (17), we get

n

S (2) e = S () Pl &y = B (1:9) Dl

and from (15) we see that Fj (¢;9) [Ao] = L [Ea (t; 2)].
If Ep (t;2) = [f (¢)]", then

L[Ex (t; )] Zp =N [2f ()]

]
Up to this point, p(z) is an arbitrary weight function. We will now
characterize it by imposing a condition on the first moment Aq (2) .

Theorem 4 [f the first moment X\ (z) satisfies the differential equation with
polynomial coefficients

[0 (0) — 27 (9)] [Mo] =0, o,7€K][z], (19)

then
(i) L is a semiclassical functional

Liou] = L[278; [u]], ue€K]z] (20)

9



with respect to the shift operator S, defined in (12).
(i) If o (0) = 0, then p (z) satisfies the Pearson equation [60]

ple+l) _ 7@ N,

pl@) o1y

(111) If we set p(0) =1, then

= 7k
p(x)znﬁ, z € N.

k=0
Proof. (i) Let u € K[z]. Using (11) in (19), we see that
u () o (9) [Ao] = u (9) [27 () [Ao]] = 27 (F) w (¥ + 1) [Ao],
and using (15), we conclude that
Lio (@) u(z)] = L[zr (z)u(z +1)].
(i) If o (0) = 0, we can use (20) and obtain

ZO‘ (x)u(x)p(x)z® = Llou| = L[z1tu(x+1)]

=1

=S r@ule+1)p@) e =Y (@ - Dula)ple—1) 2"

Comparing powers of z, (21) follows.
(iii) Using (21), we get

T otk e+l p(2)
,anwﬂ)‘,g p(k) — p(0)

and (22) follows if we define p(0) =1. m
The Pochhammer symbol (c), is defined by [63]

k :
, c+)
= lim ][, - N
(€). e jzoc+:c+j’ (et ) & No,

10

(21)



and when n € Ny, (c),, becomes a polynomial in ¢ of degree n

n—1

(@, =][(c+5), neN (¢gy=1 (24)

=0
We will use the notation [59, 16.1]
(C)n = (Cl)n e (Cm)n I C E Km?

and also
(x+c)=(x+c) - (x+cp), ceK™

In the special case m = 0, we understand that
K'=0, (0),=1, neN,,
while for m = oo we have
K> = {{ck}k20 cc, € K}

Let p,q € Ny be some fixed numbers. In the remainder of the paper, we
will always have a € KP, b € K? and

o(z)=z(x+b), 7(r)=(r+a). (25)

Using (24), we can rewrite (22) as

_ (@, 1

and using (25) in (19), we have
[0 (9 +Db)—z(0+a)][\] =0. (26)

The ODE (26) is the (generalized) hypergeometric differential equation [59,
16.8.3] of order

o=max{p,q+1},

and the first moment A\ (z) can be represented as

a
)\O(Z): pFQ<b+1 72)7

11



where the (generalized) hypergeometric function ,F, is defined by [59, 16.2.1],

[69],
a = (a), 2"
F ( ) _y @
Pt q )
b — (b), «!
We define the class s of the semiclassical functional L by

s=o—1=max{p—1,q},

and functionals of class s = 0 are called classical.
Multiplying (26) by A, (¢) and using (23), we conclude that

W0 +b)A, (0) =2z +a)A, (J+1)][A] =0, neNy,  (27)
and expanding the polynomials coefficients on the basis {An}nzo ,

n+q+1

x(xr+Db)A, ()= Z Cnp\i (),
k=0
n+p

(x+a)A, (z+1) = ZEn,kAk (x),

we get a recurrence relation of order n + s + 1 for the moments \,, (2)

q+1 p
E Cn,n+k)\n+k -z g Cn,n+k>\n+k = 0. (28>
k=—n k=—n

The question is: can we do better than this? In other words, can one
choose a convenient basis A,, so that the recurrence (28) will have minimal
order s+ 17 The answer is yes, as we will see in Section 2.2. In the meantime,
we study the simplest basis: the monomials.

2.1 Standard moments

To simplify the formulas, in the remainder of the paper we will use the umbral
notation [65]

OF o, e K™

So, for example, the equation
W +0) " =z (¥ +a) (¥ +1)" =0

12



can be written in extended form as
“/n
Ypyo + 0pgq — Z; (k) (Y1 + ay) =

Let p, (2) € F denote the standard moments of L on the monomial basis
A, () = 2"
tn (2) = L[z"], n € Ny.

Using A, () = 2™ in (27), we get
[(9+ D)™ — 2 (9 +a) (I +1)"] [1o] =0. (29)

The polynomials (z + ¢) can be written in the monomial basis as
=> emr(c)z", ceK™, (30)
k=0

where the elementary symmetric polynomials e, (c) are defined by the gen-
erating function [46]

ien( ﬁ 1+te), ceK™ (31)
i=1

Using these formulas, we can write a recurrence for p,, (2).

Theorem 5 (i) The standard moments of L satisfy the recurrence
(n+b) " =z (p+a) (p+1)" =0 (32)

(i) We have the explicit recurrence

kzq;eqk( fin ki1 — zz< )Zep (@) ey = 0. (33)

In particular, for n =0

q p
> gk (b) i1 — 2 _epj(a) s = 0. (34)
k=0 =0

13



Proof. (i) Using (15) in (29), we have

(0 +b) 9" [uo] = (4 b) ",
(W +a) (9 +1)" [u] = (n+a)(p+1)",
and the result follows.

(ii) Using (30) in (32), we get

(,u+b n+l __ Zeq . n+l~c+17

i+ <u+1>“=i(§) et =3 )Zep (@),

k=0

and the result follows. m
It is clear from (33) that elements of the set

{pe: k>s}, s=max{p—1,q},

are linear combinations of the first s + 1 standard moments. Thus, we have
a representation of the form

Z) = Zgn,k (Z) M (Z) NS N0> (35>

where the coefficients must satisfy
Gngo (2) = Ong, 0<m,k <s. (36)
If we introduce the vectors ﬁ, ?n € ¥t defined by
()=t (T = Gnts 0< k<5,
we can write (35) as an inner product
fn="Gn 1. (37)
To satisfy the initial conditions (36), we need
Tn="7Fn 0<n<s,
where the standard unit vectors &, € K*t! are defined by

(?n)k =0hk, 0<k<s, mneN,.

14



Theorem 6 With the previous definitions, let the matriz M be given by
M = (?1, ?2, R ,?s’ 734—1) c IE?(S-I—l)X(s-i-l)7

where the vectors form the columns of M. Then, ¢ » (z) satisfies the differential-
difference equation

Tos1i=0+M) o, n>0, Go= 2o (38)
Proof. From (37). we get
Hn+1 :79[Nn] :0[7n7] :19[7n] ﬁ‘i‘?nﬁ[ﬁ]

and since
M1 71 Ho
2

o= 7| = ? oy

Hs+1 7s+1 Hs
we have ¢ [[f] = MT L, with

7
ML — '2 € FlstDx(s+1)
Foon
where vectors form the rows of the matrix M*. Thus,
7n+1 ) ﬁ = Mnt+1 = 19[7”] ﬁ + 7n ) (MTﬁ) = (19 [771] +M7n) ) 7

from which the result follows. m

I

Remark 7 In [21], we derived (38) using a different method.
From (33), we see that we have three cases to consider.

Corollary 8 (i) If p > q+ 1, then the vector polynomials

() =" Fulz) € K[, n>0,

15



satisfy the differential-difference equation

Gt =20+ M—nD) G, n>0, Oy= 7o, (39)

where I is the (s + 1 x s+ 1) identity matriz.
(ii) If p = q + 1, then the vector polynomials

an( 1_Z 7% )S+17 n207

satisfy the differential-difference equation

oo =[1=2) @+ M) +n20]Gu, 020, Go=To  (0)
(iii) If p < q+ 1, then T n (z) is a vector polynomial.

Proof. (i) If p > ¢+ 1, then the standard moments will satisfy a recurrence

of the form
n+p—1

Zlptp = E Cn, k: Nka

and setting ¢, (2) = z‘"an (2) in (38), we get (39).
(ii) If p = ¢+ 1, then the standard moments will satisfy a recurrence of

the form
n+p—1

(1= 2) ftnp = Y o (2) i,
k=0
and if we set 7, (2) = (1 —2)7" an (2) in (38), we get (40).
(iii) If p < ¢+ 1, then the standard moments will satisfy a recurrence of

the form
n—+q

Hntg+1 = 2 E Cn, kM1,
k=0

and it follows that the functions ¢, (z) are polynomials in z. m
Finally, we will study the exponential generating function of the standard
moiments.

Proposition 9 (i) The exponential generating function of the standard mo-

ments
> t
2) = pn(2)
n=0

16



s given by
eu (t;2) = po (2€') . (41)
(11) The function €, (t; z) is a solution of the linear ODE (in the t variable)

[0 (0,) — ze'T (9)] [y] = 0. (42)

Proof. (i) The exponential generating function of the monic basis is the
exponential function
0 n
n _xt
n=0

and using (18) we obtain (41).
(ii) Since

O, [y (zet)} = zely/' (zet) = 20, [y (zet)} =1 [y (zet)} ,
it follows from (19) that pg (ze') satisfies (42). =

Remark 10 If we define
[ee] tn
Gy (t,2) = Zgn,k (2) 7 0<k<s,
n=0
it follows from (35) that
po (ze) = "G (t,2) e (2) |
k=0

and therefore the functions Gy (t,z), 0 < k < s form a basis of solutions of
the ODE (42) with initial conditions

[a?Gk}tzo =Onk, 0<nk<s,
since from (41) we see that

910 (=), = o (2).

17



2.2 Modified moments
Let ¢, (x) denote the falling factorial polynomials defined by ¢g (z) = 1 and

¢n(x)=][(z—k), neN (43)

Sometimes, the polynomials ¢, (z) are called “binomial polynomials”, since

Dn () _ (i) n € No. (44)

n!
From the definition (43), we see that

Ont1 (33) = (.I - n) On (23) =z, (33 - 1) , n=>0, (45)

and from (24) it follows that the falling factorial polynomials and the Pochham-
mer polynomials are related by

On (1) = (=1)" (=2), = (x+1—n),.

The falling factorial polynomials are eigenfuncions of the differential op-
erator z"07 since

20N 2] = 2"y (1) 277" = ¢ () 27 (46)
Remark 11 Caution must be exercised when using the operators z"07 and
I" since
9" = (20,)" #2"(0,)", n>L
Proposition 12 Let the modified moments be defined by
Un (’Z) =L [(bn] ) n e NO' (47>
Then, for all n € Ny,

vp (2) = 2" ——2— ,F, atmn iz
(b+1), b+n+1

18



Proof. The results follows from (46) and the formula [59, 16.3.1]
n a  (a), atn
)]s (i)
|

Using (27) with A, () = ¢, (9 — 1), we get
9 (0 +b) ¢ (9 — 1) 0 (V) [vo] = 2 (9 +a) dy () 7 (9) [10]
and from (45) we conclude that
[(0 +b) dps1 (V) — 2 (9 + ) ¢ ()] 0] = 0. (48)

Unlike the monomial case, there is no immediate formula that would express
products of the form (9 + ¢) ¢,, () in terms of the polynomials ¢, (¢) . Thus,
we will find one next.
Any polynomial u (z) can be represented in the basis of falling factorials
using Newton’s interpolation formula [18]
deg(u) 4
u@) =3 20y (o). (49)

k!
k=0

where the forward difference operator A™ (acting on x) is defined by

A1) =32 (1) ot ), (50)

k=0

We start with a result that may be already known, but we have not been
able to find in the literature.

Lemma 13 For any function f (x), we have
A [f¢a] (0)=0, 0<j<n, (51)

and

A" [f¢a] (0) _ A [f](n)

= . n,j>0. 52
(n+j) ! J (52)

19



Proof. Using the definition (50),
, T /i -
A 176,100 = 3 (1) (177 £ )6 0,
=0
and since ¢, (i) = 0, for i < n, we see that

A [f¢n] (0) =0, 0<j<mn,

If j > 0, then
1o 0 =3 (" T7) 0 p

<

n+1

1=

(n + j) (=17 f (n+14) bn (n +1).

o

Using (44), we have

(- 52

and therefore

a9 1o 0 = “EES () a7 e

']' 1=0
I

|
Using (52), we obtain the following Corollary.

Corollary 14 If u(z) is a polynomial of degree k, then

ww)onte) = Yo, ), (53



Proof. Using (49) and (51), we have

ntk oA U ntk A j u
wle)onle) = Y AW, ) - SO )
k n+j [y
= —A 16:](0) Dn+j (2)

(n+j)!

and the results follows from (52). =
From the previous Corollary, we obtain an explicit recurrence of order
s+ 1 =max{p,q+ 1} for the modified moments v, (z) .

Proposition 15 Let v, (2) be defined by (47). Then,

ZAJ [(z +;)')] (n+1) Vs — ZZ A [(x ;—l a)] (n) Vns; = 0. (54)

Proof. Using (53), we have

(x+c)¢n<x>zz

and therefore we can write (48) as

Zq:Aj [(z + b)] (n+1)

7!

Pt (fﬁ)] [vo]

3=0 =1

=z

A [(x +a)] (n)
jl

Oty (l’)] (o] -

P
J=0 =1

Using (15), the result follows. =
Finally, we will study the exponential generating function of the standard
moments.

Proposition 16 (i) The exponential generating function of the modified mo-
ments

oo tn
e (t;2) = Zl/n (2) ]
n=0 )
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s given by
€ (t;2) =1y (2 + 2t). (55)

(i) The function €, (t; z) is a solution of the linear ODE (in the t variable)
[o((t+1)0) —27((t+1)0)] [y] = 0. (56)

Proof. (i) Using (44) and the binomial theorem, we obtain the exponential
generating function of the falling factorial polynomials

fj¢ W 5= () =arr,

n=0

and using (18), we get (55).
(ii) Since
A+0)0y(1+1)2)]=z(1+1)y (1+1)2)
20: [y (L +1) 2)] =9y (1 +1) 2)],

it follows from (19) that vy (2 + zt) is a solution of (56). =

Remark 17 The differential equation (56) needs to be understood in an op-
erational sense, since the coefficients are not constant. For instance, we have

1+ 1+ =0+t) (0 +Q+1)0}) = (1+)>P+(1+1) 0,
and therefore
[(141)0 +ai] [(1+1) 8, +as) = (1 + )02+ (1 + a1 + ag) (1 +1) &, + ayas.

It is clear from (54) that the elements of the set {vy: k> s+ 1}, are
linear combinations of the first s + 1 modified moments. Thus, we have a
representation of the form

vn (2) =D fak () vk (), (57)

where the coefficients must satisfy the initial conditions
fin(2) =04k, 0<jk<s.
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If we define
o tn
Fk(taz)zzgfn,k(z)ﬁa OSICSS,

where f, ; (2) are the coefficients in (57), we see that

Vo (z+ 2t) = ZFk (t,2) v (2),
k=0

and therefore the functions Fj (¢,2), 0 < k < s form a basis of solutions of
the ODE (56) with initial conditions

[8ZLFk]t:0 = On,k, 0 S n, k S S,
since from (55) we see that

[0/ 1o (2 + 2t)],_g = va (2)-
In the next section, we will look at more general polynomial bases that

contain the monomials and falling factorial as particular cases.

2.3 Two-term recurrence relations

Both the monomial polynomials and the falling factorial polynomials satisfy
a 2-term recurrence relation of the form

zA, () = Ay () + koA, (2) (58)

where for the monomials x, = 0 and for the falling factorial polynomials
Kn = N.

Theorem 18 Let the Stieltjes transform of the functional L [71] be defined
by

wWw—

S =1|=]. (59)

where (as always) L is acting on the variable x. Suppose that {A, ()}, is
a monic basis satisfying (58), and A, (z) = L[A,].Then, for alln € N
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Proof. From (58), we have

A, () Ap (W) = Ay (2) Ay (W) + By (2) Ay (W)
Wy, (2) A (W) = Ay (2) A1 (W) + Rn\y, () A (W),

and therefore
(z —w) Ay () An (W) = Ang (2) A (W) = A (2) A (@)
Dividing by A, (w) Aps1 (W),
An(z) A (z)  An(z)
A

=) R ) ™ R (@)

and summing from 0 to n — 1, we obtain

AL ( rA 1 (z
(o) ZAkif(zJ) g3 {A:; Ew -
k=0

)
) A @)
M) M)
Ap (W) Ag(w)

Hence,

since Ag (z) = 1.
Applying L to (60), we see that

el P B P ,;AZI(ZV
and the result follows. m
Remark 19 Since i A, (2)
A, (@)
we have (at least formally)
e (2
§wiz) = ZAM((L)'

k=0

The falling factorial case was already considered in [11].
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Next, we relate an arbitrary monomial basis to the basis of monomials.

Proposition 20 Suppose that {A,.}, - is a monic basis satisfying (58).

(i) If
= Gl (2), (61)
i=0
then, the coefficients &, ; satisfy the recurrence

£n+1,i = fn,ifl + K'ifn,ia fn,n = 17

with boundary conditions
£ni=0, 1¢[0,n].
(ii) If

= ngi.il}i, (62>
i=0

then, the coefficients Em satisfy the recurrence

§n+1,z' = 5n,i71 - "‘fnfn,ia

with boundary conditions

Enm €,i=0, 1¢1[0,n].
Proof. (i) Since A, (z) is monic, we need &, ,, = 1. Using (58), we get

n+1 n
Z§n+1,z'/\i (z) = 2™ = Zﬁn,ﬂ‘/\z‘ (z)
=0 =0

n+1

= Zgn i z—l—l + /iz % an i— lA ) + Zén,i’iiAz (I‘)
1=0

Comparing coefficients, we obtain the result.
(ii) In a similar way, we have

n+1

Z£n+1 Z‘T + Z’l{nfn zw - 7H-1 ( ) + K’nAn ( )

n+1

— " — )
= Zgn,i’rH— = an,i—lxlv
=0 =1

and the result follows. =
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Example 21 If A, (z) = ¢, (x), we get

gn—i-l,i = gn,i—l + Z‘Sn,zﬁ gn,n = 1a
£n+1,i = gn,ifl - nén,i? gn,n = 1.

In this case, the coefficients &,; are known as Stirling numbers of the second
kind, and the coefficients §,, ; are known as Stirling numbers of the first kind
[64].

Using Newton’s interpolation formula (49), we have

=y B0 ),

k!
k=0

and therefore the Stirling numbers of the second kind have the representation

[59, 26.8.6] "
(=5 e ()

Applying L to (61) and (62), we see that

Hn = an,i)\ia )\n = ngiﬂi)
i=0 i=0
and in particular

i = i{:}yk (63)

k=0

3 Transformations of functionals

Let m € Ny, ¢ € K™, and ¢ € K. If we define the the recurrence operator
©n (cie) by

On(ce) Y] =W +c)(¥+e)", ¢eK™, (64)
we can write (32) as

[On11 (b;0) — 20, (2;1)] [u] = 0. (65)
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Similarly, let the recurrence operator 1, (c) be defined by

@ =y 2letel®, ek (66)

J=0

Then, using (54) and (66), we see that the modified moments v, (z) satisfy
the recurrence

Tos1 (b) — 2T, (a)] [v] = 0. (67)
We have T, (0) [¢)] = ¢, and from (66), we get
T () [¢] = Yns1 + (04 ¢) Yn.
In general, we have the following result.
Proposition 22 The recurrence operators Y1, satisfy the basic recurrence
Tn(c,7) = Tnsr(c) + (n+7) Tn(c). (68)
Proof. From the definition of T,,, we have

il J A C)l\T n
To(e) g = 3 2T @,

=0 !

If we use Leibniz rule [37]

- 2
=0

A fur) () = 32 () A0l 040 8 ] )
we get

Al +e)(@+9)](n) = (n+9) A [z +0)] (n) + A [z + )] (n+1).

Since

m+1

ZjA“ (€ + c)l(n+1)

=0 J

wn—l-j

AT (@t o)l (n+ 1)wn+j _ z’”:m [(z +¢)] (n+1)

7j=1 7=0
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we conclude that

”fw [(z +¢) (z +7)] (n)

j=0 J!

(n+7) ZAJ )¢n+g ZAJ ot (-:)] (nt 1)¢n+1+j

Jj=0 ‘7!

1/Jn+j

and the result follows. =
If m =2, (68) gives

Yo (c1,62) [Y] = Togr (a1) [W] + (0 + c2) To (1) [V
=Unia+ (n+1+c1)Ynp + (04 c) [nyr + (n+ 1) ]

and hence

T,(c,c) =8>+ 2n+c1+c+1)Sy+ (n+cy)(n+c).
Note that

To(er,¢2) = (Sntn+ca)(Spt+nte)=T,(c1)oT,(c2),

where clearly

Y1) oY, (c2) =Tp(e2)o Ty (cr).

Using induction, it follows that
T,(c)=(S,+n+c), ceK™,

and
T,(c)=",(c1)o T, (ca)o-- 0T, (cn), c€K™ (69)

Remark 23 We have

(@18, + bin + 1) (aaSy, + ban + ¢2) — (a2S,, + ban + ¢3) (a1 Sy, + bin + ¢1)
= (a1b2 - a2bl) Sna

so in general caution must be exercised when composing linear terms involving

S
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In the remaining of the paper, we will use the notation
®,, = 0,41 (b;0) — 20, (a;1), (70)

and
U, =", (b)— 27, (a), (71)

which allow us to write the recurrences for the standard and modified mo-
ments as ®,, [u] = 0 and ¥, [v] = 0 respectively.
For p,qg € Ny and o € KP, 8 € K% we define the moment transformation
Q% by
B

0 0l = C (@ 0) ufina 1,31 5 52). 72

where C (a, 8) is a constant. Clearly, Q5 [\o] is a solution of the hypergeo-
metric ODE

W+ 6-1)1+b)—2z(0+a)@+a)]y] =0. (73)

From (32) and (73), we see that the transformed standard moments 5 [1]
satisfy the recurrence

[On41 (b, 8 —1;0) = 20, (a, s 1)] [¢] = 0 (74)

while (67) and (73) give a recurrence for the transformed modified moments
Q5 V]
i1 (b8~ 1) — =T, (a,)] [¢] = 0. (75)

Remark 24 It may seem that the definition of (05 (72) is ambiguous, because
the constant C'(«, ) is not fized. But since the recurrences (74) and (75)
are homogeneous, they are not affected by a multiplicative constant.

Comparing (74) with (70), we can define
Q3 [®n] = Ony1 (b, —1;0) — 20, (a,a51) (76)
in the sense that
Q3 [@,] (25 (1] - 0.
Similarly, from (75) and (71) we conclude that the operator
Q3 [V, =Tp (b, —-1) =27, (a,a) (77)
satisfies

05 (v, [25 1] = 0.
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Proposition 25 Let S, be the shift operator defined in (12). If ¢ € K, we

have:
(i)
Q[P,] = (S +c—1)0D,. (78)
(ii)
QEH [@n] 0 (S +¢) = (Sp+c—1)(Sn+¢)o Py (79)
(iii)
O,y [8,] = D0 (S, +0). (30)
(iv)
QW] =(Sp+n+c)oV,. (81)
(v)
QW )o(Snt+n+ce)=(Sp+n+c+1)(S,+n+c)ol¥,. (82)
(vi)

Q. (W] = Wy 0 (S, 41 +). (53)
Proof. (i) If we consider the composition (S, + ¢) o ®,,, we see that

(Sp4c)o®, [ =(Sy+0c) [ +Db)v" ™ —2(W+a)(Y+1)"]
= (W +b) " —z(p+a) W+ 1)+ +b) YT —ze (Y +a) (¥ + 1)
=W +c)@+b) " —z(W+c+1) (¥ +a)(P+1)",

and comparing with (76) we obtain
(Sn + C) o, [QM = (Qgi% [(I)n]) [QM .

The result follows after shifting c.
(ii) Using (78), we have

(Sn+c— 1) (Sn+c)oq)n [w] = (QZEE [(I)n]) [w]
=@W+e—1D)@W+o)(W+b)yp" ' —z(Wp+c) (W +c+1) (¥ +a)(+1)"
=[@W+c—1D)@W+b)" —z(W+c+1) (Y +a)(+1)"] (¥ +c),

and we obtain (79).
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(iii) Note that
Q[P )] =W +c) W +b) " —z(W+c) (v +a) (Y +1)"
=[(W+b)y"™! —z (¥ +a) (@ +1)"] (¥ +c),

and therefore (80) is true.
(iv) Similarly, we have

(Sn+n+c)oWy, =T (b) = 2T0p () + (04 ¢) T (b) — 2 (n+¢) Ty (a)
=Tpi1(b,c—1) =27, (a,c),

and comparing with (77) we obtain (81).
(v) Using (69), we get

(Sptntet1)(Sp+nte)ol, =010,
=T, (bye—1,¢) — 27, (a,c,c+ 1) = [Thi1 (bye—1) — 20, (a,c+ 1)] o Ty (a, ),

and (82) follows.
(vi) Finally,

Qo1 [Wa] = Toga (b, e) = 2Ty (a,¢) = [Thsa (b) — 275 ()] 0 T ()

and we see that (83) is true. =
It follows that the special cases « =  and o = [ £ 1 lead to some
interesting transformations. We will study them in detail in the next sections.

3.1 The Christoffel transformation

The Christoffel transformation is defined by
A§ = Q25 o).
From (73), we see that \§ (z;w) is a solution of the ODE
(V—w—-—1)0(W+Db)—z(W—-w+1)W+a)]y] =0, (84)

and admits the hypergeometric representation

a,—w+1
2§ (23w) = —w py1Fyin ( b1 —w ;z) . (85)
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The reason for choosing this particular solution is the identity

—w% =T — w, (86)

which shows that the linear functional L associated to \§ is given by
L) =Lz —w)u], uecK[x]. (87)

This transformation was introduced by Elwin Bruno Christoffel (1829-1900)
in his pioneering work [16].
Clearly we must have

XS = LOfo —w] = (9 —w) o] £0.
and since the operator 9 — w annihilates any multiple of 2, we need
Ao (zw) #m2¥, neK
From (58) and (87), we get
A= LY = L& —w) An] = Anya + (0 — w) A,

and in particular

= Mgy — Wiy s (88)
and
vy = v+ (n—w) vy (89)
Note that,
Ao =y —wpg = v —wig. (90)

From (76), we see that the standard moments uS satisfy the recurrence
¢ 1] = 0, where

O [l =(p—w—1)(p+b) "™ —z(p—w+1)(p+a)(p+1)",

and from (77), we see that the modified moments v¢ satisfy the recurrence
U [vS] =0, where

UC =T, o(b)+(n—w)Tp(b) =2 (@) —z(n—w+1) T, (a). (91)
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Remark 26 Using (79), we obtain
(Sp—w—1)(S, —w)od¢ = d%0 (S, —w),

and therefore
O [y —wp ] = ©F 0 (Sy —w) [
(S w = 1) (S, — w) 0 By 1] = 0 = 0C [u].

in agreement with (88).
Similarly, using (82), we see that

(Sp4n—w+1D)(Sn+n—w) oV, =0% (S, +n—w),
and hence

W Vs + (= w) ] =TT 0 (S + 1 — w) [V]

=(Sptn—w+1)(S,+n—w)ol,[v]=0=TS V],
in agreement with (91).

Using (41) and (88), we obtain the exponential generating function of the
transformed standard moments

o tn
D (z5w) — = i (2¢;w) = (1 — wpo) (2¢') .
n=0 ’

while from (55) and (89) we get the exponential generating function of the
transformed modified moments

o0 tn
ZVS (z;w) i VS (24 2t;w) = (11 — wig) (2 + 2t).
n=0 )

3.2 The Geronimus transformation
The Geronimus transformation is defined by

AF =070 ] w g N,
From (73), we see that \§ (z;w) is a solution of the ODE

V(0 +Db) (0 —w)ly] =20 +a) (@ —-w)lyl, (92)
and admits the hypergeometric representation
_ a, —w
)‘OG (5w) = —w™! priFyn ( b+1,—w+1 ;2) . (93)
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Remark 27 The function z* is also a solution of (92), and therefore we
could define (as some authors do)

a, —w w
A (zw) = = iy <b+1—w+1’)+"2

where 1 1s an arbitrary constant.

The identity (86) shows that the linear functional LE associated to S is
given by

LS =L ;‘Exl . ueKl], (94)
and S
2 (zw) = L — (2) = =5 (w; 2), (95)

where S (w; 2) is the Stieltjes transform of the functional L defined in (59).

Since
1

r— W

0= P§) =L o -w) 2| =Ll =0

we need
S(w;z) #nz¥, nek

This transformation was introduced by Yakov Lazarevich Geronimus (1898-
1984) in his groundbreaking article [32].

Proposition 28 The moments of the linear transformation LC defined by
(94) have the integral representation

1

/t wIy, () dt, e N, (96)
0

Proof. If we use the integral representation [59, 16.5.2]

p+1 ( )
a—1 _ p\B-a-1 a
/t (1—1) F(b’ )d,

0
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in (93), we obtain
1
2 (zw) = /t_“_l)\o (2t) dt.
0

Extending (97), we obtain (96). m

(97)

Remark 29 Note that if we use (13) in (96) and formally integrate term by

term, we get

1

AG (z3w) = ;An () —(b(i)i 2 5 / £ ldg

T

_ i/\n (z) (1), =
— 2 —w(b+1), al’
in agreement with (94).
From (58) and (94), we see that
At (B = w) A = LY (2 — w) Ay (2)] = LA (2)] = A,

and in particular
fiiy — W = fn,
and
ve o+ (n—w) v =u,.

Using (60), we get

A (zw) = A (W) |A§ (ziw) + >

where care needs to be exercised if Ay (w) = 0 for some k.
Remark 30 From (80), we have
CDS (1] = @0 (S —w) [1]

in agreement with (98), since

P, [,U??-i-l - W/%ﬂ =&, 0 (S, —w) [MG} = (I)S [/LG} =0=2, [y
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From (83), we get W& [v°] =0, where

U =V,0(S,+n—w), (101)
in agreement with (99), since
U, o+ (n—w) ] =V, 0 (S, +n—w) V] =05 [ =0="0,[v].

Using (41) and (95), we obtain the exponential generating function of u&
i G (z;w) " NS (zehw) = =5 (w; ze')
Olu’n ) TL' 0 ) ) )
and for the transformed modified moments v& we get

o0 tn
ZVnG (z;w) 1= A (2 + 2tjw) = =S (w; 2 + 2t).
n=0 '

3.3 The Uvarov transformation

Let’s consider the composite transformations (Christoffel-Geronimus)
(212, 0 Q1) Aol

and (Geronimus-Christoffel)
(270 9%,) [l

We see that in either case, the transformed first moment is a solution of the
ODE

(W—w)(—w—-1Jd@+b)yf=2(0-w) (@ —w+1)(@+a)ly], (102)
which can be written as
(0 —w) (@ —w—=1)[o(¥) — 27 ()] [y] = 0. (103)
Lemma 31 The linear combination
N (z3w) = Mo (2) +12%, neK, (104)

is a solution of (103).
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Proof. Clearly, \g is a solution of (103). If we set y (z) = 2, we have
[0 (0) — 27 (V)] [2¥] = 0 (w) 2¥ — T (w) 2* 11, (105)
and therefore
(0 —w) (0 —w=1)[o () — 27 (9)] [*]
=W -w)(—w—1)[o W) —71Ww)zT] =0.

Thus, (104) is a solution of (103). m
We define the Uvarov transformation by

LY [u] = Lu] +nu(w)2*, ue€K[z],
which is well defined as long as
Ao (2) # —nz“.

This transformation was introduced by Vasilii Borisovich Uvarov (1929-1997)
in his monumental paper [73].
From (78), we see that

OV = (S, —w—1)(S, —w)od,, (106)
and from (81), we have
V=(S,+n—w+1)(S,+n—-w)oV,. (107)
If 0 (w) =0or 7(w) =0, we obtain some reduced cases.

Proposition 32 Suppose that o (w) = 0. Then,
(i) The transformed moment Ny satisfies the reduced ODE

(W —w—1)[o () —2zr (9)] [A\j] = 0. (108)
(ii) The transformed first moment \J is given by
A = Q79 o). (109)

(iii) The transformed standard moments pY satisfy the reduced recur-
rence ®Y [¢)] = 0, where

PV = (S, —w—1)od,. (110)

(iv) The transformed modified moments v¥ satisfy the reduced recurrence
WY )] = 0, where
V= (S, +n—-w)oV,. (111)
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Proof. (i) If o (w) = 0, then we see from (105) that
o (9) = 27 ()] [2°] = =7 (w) 2*F
and (108) follows.
ii) Comparing (108) with (73), we can interpret \J as (109).
0
(iii) From (78) and (109), we get (110).
(iv) Using (81) in (109) gives (111). m
Proposition 33 Suppose that 7 (w) = 0. Then,
(i) The transformed first moment Ny satisfies the reduced ODE

(0 =)o () — 2 (D] [N] =0. (112)
(ii) The transformed first moment \J is given by
Ao =M= (o] (113)

(iii) The transformed standard moments ul satisfy the reduced recur-
rence ®U [¢)] = 0, where

PV = (S, —w)od,. (114)

(iv) The transformed modified moments v¥ satisfy the reduced recurrence
WY )] = 0, where
VW =(S,+n—w+1)oV,. (115)

Proof. (i) If 7 (w) = 0, then we see from (105) that
[0 (9) = 27 (9] [z*] = o (w) 2*,

and (112) follows.
(ii) Comparing (112) with (73), we can interpret Aj as (113).
(ili) From (78) and (113), we get (110).
(iv) Using (81) in (113) gives (111). m
Finally, we have

A= LY [A] = A\ + 1A, (w) 2%, (116)

from which we obtain the exponential generating functions of u (z;w)
[e's) m "
D (z50) = o (z€') + 1 (2¢)”
n=0 ’

and /Y (z;w)

o0 tn "
Zyg(z;w)ﬁ:VO(Z—I—zt)—i-n(z—i-zt) :
n=0 )
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3.4 Truncated linear functionals

Let N € Ny and the truncated functional LT be defined by

LM =Y u(x) (a), % weKla], (117)

as long as

Remark 34 If 7(N) = 0, then the functional (13) is already a truncated
functional, since
(-N). =0, z>N.

Therefore, we assume that T (N) # 0.
Lemma 35 The first transformed moment \} (2) satisfies the ODE
(V=N —=1)[o (V) — 27 (V)] [y] = 0. (118)

Proof. Using the Pearson equation (21), we have

[0 () =2 (O] [N] =) [0 (@) p(2) 2 =7 (2) p(x) =]

_ZU(Z.)p(x)Zz_ZT(x_l)p(x_l)Zx__T(N)p(N)%7

and since the operator ¥ — N — 1 annihilates any multiple of z¥V*!, the result
follows. m
Using (11) in (118), we obtain

(9 —=N—=1)o (V) [)\OT} =z(0—=N)7 () [/\g] ,
and therefore we have

A =N [N], N eN. (119)
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Proposition 36 The first transformed moment AL (2) can be represented as
a Laplace transform

o

N+t (a)y —N,-b—N dipil o

0

X (2) =
(120)

Proof. If we use the formula [59, 16.2.4]

i a) < ﬁ (a)N F _N7 l1—b-— N? 1 . (_1)q+p+1 (121)
(b), k! _N!(b)N‘H“’ l-a-N ' ’

0
we obtain the hypergeometric representation

N g+p+1
T_Z_ (a)N _Na_b_Nal(_]‘)
M= N, ( 1—a-N 5 ) (2

Using the integral representation [59, 16.5.3]

o1 Fy < N x) =1 F, ( z > e~*tdt  (123)
o
with a = 1, we obtain (120). m
From (78) and (119), we get
=(S,—N—-1)od,, (124)
while (81) gives
Ul = (S, +n—N)o,. (125)

Proposition 37 The transformed modified moments vl (z) have the integral
representation

N+l A h
E 0 = e B (M Dy s e
n).
0
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Proof. Note that since

x+n
ZQ% b+1 Z b+1 (z—n)l & b—i—l)Hn x!
we have
N a+n zm
T
127
O R T D ey (127)

Thus, we can use (121) and obtain

Sy @y 2= Noobo N1 ()T
T (b+ 1), (N—n) 27 l—-a—N ' 2 '

(128)
In particular,

Remark 38 Using (123) and (128), we get the integral representation (126).

4 Conclusion

We have studied the linear functionals characterized by the hypergeometric
differential equation satisfied by the first moment A (2)

[9q (9) —zp (D)) [Mo] =0, p,qe€K][z].

We obtained recurrence relations for the moments on the monomial and
falling factorial polynomial bases.

We note that one could use the generating function (41) and the ODE it
satisfies (42), as a different way of analyzing the standard moments pu, (2) .
Similarly, one could study the modified moments v, (z) using (55) and (56).

We are currently working on further applications of our results to study
some properties of the orthogonal polynomials themselves (representations,
recurrence-relation coefficients, generating functions, etc).
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