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Abstract

This Special Topic focuses on magnetohydrodynamic (MHD) processes
in the deep interiors of planets, in which their fluid dynamos are
in operation. The dynamo-generated, global, magnetic fields provide
a background for our solar-terrestrial environment. Probing the pro-
cesses within the dynamos is a significant theoretical and computational
challenge and any window into interior dynamics greatly increases our
understanding. Such a window is provided by exploring rapid dynam-
ics, particularly MHD waves about the dynamo-defined basic state.
This field is the subject of current attention as geophysical obser-
vations and numerical modellings advance. We here pay particular
attention to torsional Alfvén waves/oscillations and magnetic Rossby
waves, which may be regarded as typical axisymmetric and nonaxisym-
metric modes, respectively, amongst a wide variety of wave classes of
rapidly-rotating MHD fluids. The excitation of those waves has been
evidenced for the Earth — whilst their presence has also been sug-
gested for Jupiter. We shall overview their dynamics, summarise our
current understanding, and give open questions for future perspectives.
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1 Introduction

1.1 Some background on magnetic field

Our planet has a global magnetic field that is predominantly an axial dipole
nearly aligned with the geographical poles. As this field shapes part of the
solar-terrestrial environment it is of great interest in the Special Topics. The
large-scale structure of the magnetic field, including the dipole, has its origin
in the interior below the surface (figure 1a). The field has persisted for at least
3.4 billion years [106]; however it is not the result of a permanent magnet
— it exhibits variations on many different timescales. For example the dipole
component has occasionally weakened and reversed its polarity on intervals of
the order 105-107 years [e.g. 9, 21], whilst other components drift westwardly on
periods of the order 102-103 years [e.g. 16, 88]. Moreover timeseries of the field
observations repeatedly experience abrupt changes, called jerks, on intervals
of the order 100-101 years [e.g. 29, 81]. All of these variations with an internal
origin are referred to as geomagnetic secular variation.

Dynamo action is believed to operate in the interior region termed the fluid
outer core, which is located below ∼ 54.6% of the planet’s radius RE (hereafter
we denote rcore ∼ 0.546RE). The fluid outer core is made of liquid iron and
some lighter chemical components. The origin of the dynamo process lies in
the motion of the electrically conducting fluid, this induces an electric current
within the region, and that maintains a magnetic field. The detailed processes
have not entirely been solved, owing to their theoretical and computational
complexity; the fluid dynamics therein is likely dominated by the planet’s
rotation and magnetic field, rather than inertia and viscosity (as we see below).
Geodynamo theory therefore necessitates the understanding of the MHD of
rapidly rotating fluids. In that respect the research area shares a lot with
the atmospheric and oceanic dynamics, and so may be regarded as part of
“geophysical fluid dynamics”.

Some other planets are found to possess global magnetic fields that are also
thought to be generated through dynamo mechanisms (see reviews, e.g., by
Jones [65], Schubert & Soderlund [101], Stevenson [104] and references therein).
It is however still unclear where in those planets dynamos operate; the internal
structures of planets other than Earth are not well determined. Jupiter, for
example, is a gaseous planet mostly made of hydrogen and helium and has
the strongest planetary magnetic field (figure 1b). The gas giant’s dynamo is
likely active in the metallic hydrogen envelope; though the exact location is
uncertain. Indeed the NASA Juno spacecraft [e.g. 10, 105] has been orbiting
the planet to determine the internal structure, and is producing evidences
that the conductive region likely spans up to ∼80-90% of the planet’s nominal
radius RJ. Recall that Earth’s dynamo sits deep inside and is masked by the
rocky mantle, which acts as an insulator, screening the small-scale structure of
the magnetic field. Exploring the fields of other planets, particularly Jupiter
where the conducting region is not screened as effectively, could provide us
with deeper knowledge about the operation of natural dynamos [68].
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Fig. 1 (a) Earth’s magnetic field in 2020 at r = 0.546RE = rcore, the top of the fluid core
(reproduced from [39] with spherical harmonics of degree up to 13). (b) Jupiter’s magnetic
field in 2016-2021 at r = 0.85RJ, supposed to be a top of the metallic hydrogen region
(reproduced from åepCetal21 with spherical harmonics of degree up to 18).

1.2 A brief introduction to dynamo theory

The early foundations of dynamo theory were made over a century ago and
progress involved advances in applied mathematics and fluid dynamics. Early
outcomes involved the demonstration of multiple anti-dynamo theorems that
limit the structure of dynamo-generated magnetic fields and the flows that gen-
erate them; for example Cowling’s Theorem states that a purely axisymmetric
magnetic field cannot be generated by dynamo action, whilst Zel’dovich’s
theorem maintains that a purely two dimensional fluid motion cannot drive a
dynamo; we refer to Dormy & Soward [35], Moffatt [83], Roberts [95], Tobias
[111] for reviews. Those early works unraveled key elements for dynamo action,
one of which is the necessity of interactions between toroidal and poloidal com-
ponents of the magnetic field, which are defined from a decomposition of the
field based on the solenoidal condition. Mean-field theory, where the interact-
ing terms, e.g. the electromotive force arising from turbulent interactions are
modelled or parameterised, yields steady or oscillatory solutions, dependent on
the relative strength of interactions; there is yet a wealth of theory describing
limitations on the form and applicability of the interaction terms [56, 83, 111].
This theory yields the basics of how a global magnetic field can be maintained
and also mechanisms for periodic cycles. å

In the age of computational physics and geophysics, numerical investiga-
tions have been pursued to solve the self-consistent dynamo problem, where
the magnetic field is destabilised and sustained by fluid motions that are
driven, for example, by buoyancy, and acts back on the flows that are driving
it. Buoyancy-driven convection is thought to be a primary source of planetary
dynamos, including Earth and Jupiter, where the planet’s thermal evolution is
active. Convective instability has been greatly studied, alongside the dynamo
instability and we refer to Jones [67] for reviews. Numerical dynamos driven
by convection in spherical shells first succeeded in the 1990s in reproducing the
generation of global magnetic field and its polarity reversals [49, 71]. This was
followed by many numerical simulations (see reviews by Christensen & Wicht
[26], Jones [65]) to reveal their scaling properties [e.g. 24, 30], and to replicate
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individual planets and moons including gaseous planets [43, 66]. Owing to the
large separation of timescales that are relevant to the dynamics of Earth’s mag-
netic field, early geodynamo simulations suffered from an issue such that their
self-generated magnetic fields did not represent the physical regime expected
to pertain to Earth’s interior, called the magnetostrophic regime (see below).
However recently a consensus is building that simulations are beginning to
enter the relevant regime [e.g. 7, 34, 99, 117]; there are still ongoing debates,
for example, on the existence of strong-/weak- field branches [34] and on the
lengthscale-/spatial- dependence of the force balance [102], i.e. on what scales
the viscous balances pertain.

1.3 Detailed observations

Concurrently, geophysical observations together with data modelling tech-
niques have been advancing enormously. Ground-based measurements and
archaeological/sedimentary records have been analysed to enable the recovery
of the field evolution for past few thousand years down to a spatial wave-
length of 72◦ [e.g. 51, 74, 87]. This has enabled the description, for example,
of millennial-scale high-latitude westward drifts [88] and spikes [32]. More-
over, today’s satellite missions, including the Swarm mission, have mapped
in detail the variations of the present-day geomagnetic field. Global models
based on such measurements have established detailed descriptions of the sec-
ular “variation”, defined by the temporal derivative of the interior-origin field,
and also the “acceleration” (the second derivative) arising from the fluid core
[e.g. 39]. This analysis has led to the discovery of rapid dynamics, such as the
several-year westward drift near the equator [27] and the polar jet [77].

It has also enabled inversions to describe the fluid motion over the dynamo
region: such an outcome is called the “core flow model”. We refer to Holme
[54] for a review. A prominent feature found by those inversions is a sin-
gle anticyclonic vortex, sometimes referred to as the eccentric gyre (figure 2)
[e.g. 89], which has likely persisted for more than 100 years, although some
fluctuations are observed. Currently data assimilation, where observations are
combined with theoretical dynamo models, is becoming a common technique
to provide core flow information [e.g. 41, 45]. It could therefore also be quite
natural to construct core flow models for other planets. This has, in part, been
attempted for Jupiter, in which the magnetic secular variation was realised in
early missions [e.g. 94]; now the Juno mission is going to provide more details
[8, 84].

1.4 Waves: the focus of the Special Topics

With motivation from the advances described above, we here focus on MHD
waves in planetary dynamos. They seemingly give a framework for thinking
about the secular variation/acceleration and rapid dynamics (with a timescale
of hundreds of years), in contrast to convection or dynamo action, in which
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Figure 1. The mean QG flow on the equatorial plane over the time period 1840–1990, as seen from the North pole. For ‘gufm1’ (left-hand side) and ‘COV-OBS’
(right-hand side). At the top, the pseudo-streamfunction ξ/Rc in units of km yr−1; at the bottom, arrows visualize the flow.

velocity for the surface mean flow, urms, is stronger for flowgufm1

(12 km yr−1) than for flowCOV-OBS (10 km yr−1), basically due to a
stronger anticyclone under the PH and a stronger radial jet under
the Eastern Asian continent, from high to low latitudes. The two
different kind of charts in Fig. 1 illustrate the fact that the flow very
closely follows contours of the ξ streamfunction at medium-high
latitudes. The rule to keep in mind when interpreting ξ -contour
charts, from eq. (1), is that the fluid circulates anticlockwise around
centres of positive ξ and clockwise around centres of negative ξ .

The EOF/PCA tools can sort out the time variability associated
to the main structures in the mean flow, and other structures which
average out during the inspected period. In the following, we will
be showing results for the analysis carried out over the computed
flows, using tools described in Section 3 and Appendix B.

4.1 PCA applied to gufm1 and COV-OBS, separately

The first five PCA modes account for about 80 per cent of the flow
total variability (see Table 1). The EOF patterns of the first three
modes are shown in Fig. 2. Results for COV-OBS considering the
two time periods are similar. Note however that the first three modes
represent a larger fraction of the signal for the shorter period. Be-
sides, the fourth mode may not be completely separated from the
third when considering the longer time period. Comparing COV-
OBS and gufm1, the first mode explains very similar variances.

Using North’s criterion (eq. B2) to detect mode degeneracy, modes
4 and 5 in COV-OBS (1840–1990) and modes 3 and 4 in COV-OBS
(1840–2010) are not completely separated (see Fig. 3), meaning
that they may describe two aspects of a common structure. A sim-
ple illustration of this effect is found in the example of a propagating
wave that can be decomposed into two spatial patterns space-shifted
by fourth of a wavelength, multiplied by two sinusoidal functions
time-shifted by fourth of a period. One unique structure (a propa-
gating wave) would then appear in the PC analysis decomposed into
two modes with exactly the same f value. In the case of the above-
mentioned degenerate modes, they should be considered together.

As a test for subdomain stability, the whole CMB domain was
subdivided into two longitudinal hemispheres, and EOF/PC modes
were recalculated for each of them. The chosen meridian for the
separation goes through 70◦E and the two resulting hemispheres
have longitudes 70◦E to 250◦E (PH) and −110◦E to 70◦E (AH).
Results are shown in Tables 2 and 3. The first five modes are still non-
degenerate when computed independently for each hemisphere and
according to North’s criterion (eq. B2 and see Table 2). While the
spatial and temporal descriptions of modes 4 and 5 can be different
depending on if a global or a hemispherical grid of data values is
used, the first three modes are recovered under AH with very close
characteristics as in the global grid. The first three variability modes
are not so well recovered using only data under the PH, especially
for mode 2 (see Table 3).
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Fig. 2 Core flows inverted from geomagnetic secular variation. Arrows represent velocity,
of the order 10−3 m/s, in the equatorial plane. Averages (a) over 1840-1990, adapted from
[90], and (b) over 1890-2010, reproduced from [45].

diffusion matters and for which a typical timescale is of the order of 105 years
and more in Earth, for example. Indeed, exploring waves is highly beneficial as
their properties could yield information about the interior that is inaccessible
through direct observations. The related science of seismology has successfully
scanned the elastic structure of our terrestrial planet, however is hindered
from probing the fluid dynamo region in detail. An alternative investigation,
utlising MHD waves could potentially visualise this, sensing the hydromagnetic
properties such as the poloidal and toroidal component of the magnetic field;
in some sense there is an analogy with the study of the properties of the solar
atmosphere using “coronal seismology”.

We give a mathematical formulation to describe our problem below. We
begin with the fluid (MHD) description. We here consider anelastic fluids where
the Lantz-Braginsky-Roberts-Jones formalism [e.g. 13, 69, 70] is adopted,
which enables the inclusion of stratification for subsonic flows. We assume that
the equilibrium state is close to adiabatic, well-mixed, and hydrostatic with
density ρ. The velocity of interest u is subsonic (cf. the sound/seismic waves
of the order 104 m/s in Earth) so that the continuity equation becomes

∇ · ρu = 0 . (1)

For simplicity, we assume that the basic state ρ depends solely on spherical
radius, r. Focusing on the dynamics whose characteristic timescales are shorter
than the diffusion times (see above), we then consider the momentum equation

ρ

[
∂u

∂t
+ (u · ∇)u+ 2Ω× u

]
= −∇p′ + j ×B , (2)

where Ω is the rotational angular velocity, j is the current density, B is the
magnetic field, and p′ is a reduced pressure incorporating the gravitational
potential. The induction equation for magnetic field B is given by

∂B

∂t
+ u · ∇B = B · ∇u− (∇ · u)B (3)
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where the MHD approximation has been made in the non-relativistic Maxwell
equations and combined with Ohm’s law for a moving condutor. Of course
the magnetic field is solenoidal. The density variation in Earth’s fluid core is
likely less than 20%, so for models of the Earth ρ in those equations may be
assumed to be constant and the theory reduces to the incompressible, Boussi-
nesq equations of MHD. In Jupiter, by contrast, the density varies by orders of
magnitude. Wave solutions are obtained as fluctuations about a basic (or back-
ground) state of density, flow, and magnetic field. Conversely, measurement
of wave properties such as frequencies could allow the inference of physical
quantities of the background media.

Here we note the above equations give an ideal framework to examine
the wave dynamics particularly and ought to be distinguished from those for
dynamo action and convection (see above). Current planetary dynamo simu-
lations, as discussed in sec. 1.2), mostly solve equations including buoyancy,
viscosity and diffusion. Below we shall adopt those simulations to examine to
what extent our diffusion-free, buoyancy-free framework could be beneficial.

We first consider some dimensionless parameters to define the dynamical
regime of interest. A key parameter is the Rossby number Ro = U/LΩ, where
U and L are a typical velocity and lengthscale respectively; this quantifies the
relative strength of the inertia to the Coriolis force in the momentum equation.
In Earth’s fluid core Ro ∼ 1 × 10−5, provided the speed U is represented by
the slow inverted core flows of ∼ 10−3 m/s and L ∼ 106 m (a global scale),
and Ω ∼ 7.3× 10−5 s−1. Jupiter’s metallic region likely has Ro ∼ 6× 10−6 for
U ∼ 10−2 m/s, L ∼ 107 m, and Ω ∼ 1.8 × 10−4 s−1. Those suggest a minor
role of the inertia, compared with rotation — at least on large lengthscales
(and even for quite small scales!). For hydrodynamic flows, the fluid motion
in those situations may be expected to be two dimensional (invariant in the
direction of rotation), via the Proudman-Taylor theorem; such a mode is often
called geostrophic, where the Coriolis force is largely balanced by a pressure
gradient. In the presence of magnetic field, it is possible to have a force balance
where the Coriolis, Lorentz, and pressure gradient forces are important; this
is called a magnetostrophic balance and we stress that different balances may
be found at different scales. These balances will have a significant impact on
the dynamics, not only wave dynamics but also that relating to convection
and dynamo action. Overviewing all aspects is beyond the scope of the present
paper. Here we just comment that waves will be capable of diagnosing such a
dynamo state and focus on that aspect.

Analysis of MHD waves in rotating fluids dates back to the 1950-60s [e.g.
2, 11, 52, 76, 80]. Those ideas were examined further, as geomagnetic modelling
and core flow inversions were upgraded [e.g. 37, 118]. We are in an exciting
era, where new data and tools are increasingly arriving (sec. 1.3) and this has
led to a re-invigoration of theoretical investigations, as well as observational
explorations [e.g. 14, 38, 47]. This is intrinsically linked to — and sheds light
on — geophysical issues such as the existence of a thin stably-stratified layer
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atop Earth’s fluid core, overlying the main dynamo region. Waves in such
a stratified environment were termed Magnetic-Archimedes-Coriolis (MAC)
waves [11]. This contrasts with those in unstratified situations, where such
waves are referred to Magnetic-Coriolis (MC) waves.

What makes the subject attractive is the wide variety of different wave
classes. This arises from the combination of MHD, rotation, and stratification
in some cases; all of which singly are classic research areas in fluid dynamics —
however their combination yields a unique physics. (This could be analogous
to the situation for plasma physicists, who seem to enjoy another blend with
particles, compressibility, and so on.) The complex situation is manifested
even for linear waves where classification itself is an ongoing topic of current
research; spherical geometry and the morphology of the basic magnetic field
makes the problems distinctive. For example, a comprehensive investigation in
a spherical, magnetised, shallow-water system was recently made by Márquez-
Artavia et al. [82], where a simple background field was assumed; here recall
an equivalent analysis in the hydrodynamic case was made by Longuet-Higgins
[79]. Further works are finding peculiar eigenmodes such as equatorially or
polarly trapped ones [e.g. 15, 23, 85].

Below we overview our recent work, linking to the broader subject. The
focus here is two wave classes, torsional Alfvén waves (section 2) and magnetic
Rossby waves (section 3). They are characteristic axisymmetric and nonax-
isymmetric MC modes respectively that can be excited within dynamo regions.
Their dynamics are dictated by the magnetostrophic balance in rapidly-
rotating systems. We examine the fundamentals of such waves and exemplify
their role in Earth and Jupiter. This will give us the physical basis to consider
further complications, such as the introduction of stratification to the waves.

2 Torsional Alfvén waves

We initially examine an axisymmetric mode, termed a torsional oscillation
or torsional Alfvén waves. We begin with some fundamentals of the theory
(sec. 2.1), and then examine their importance for Earth (sec. 2.2); we than pro-
vide a re-examination in updated geomagnetic datasets (sec. 2.3) and potential
implications in Jupiter (sec. 2.4).

2.1 Fundamentals

We here outline the basic theory, following the literature [e.g. 12, 60, 64, 96].
Our basic equation is the azimuthal component of (2) in cylindrical polar
coordinates (s, ϕ, z) where the z coordinate is supposed parallel to the rotation
axis Ω. To seek the axisymmetric two-dimensional component, we take the
integral over cylindrical surfaces along the rotational axis to yield

∂

∂t
⟨ρ uϕ⟩ = −

〈
êϕ · (∇ · ρuu)

〉
− 2Ω⟨ρ us⟩+

〈
êϕ · 1

µ0
(∇×B)×B

〉



Springer Nature 2021 LATEX template

8 Waves in planetary dynamos

≡ FR + FC + FL , (4)

where j = (∇ ×B)/µ0 is the current, the magnetic permeability µ0 = 4π ×
10−7 in SI units, and êz is the unit vector in the azimuthal direction. Here f
and ⟨f⟩ denote the ϕ-average (i.e. the axisymmetric part) and the z-average
from z+ to z−, respectively, for an arbitrary function f . Outside the tangent
cylinder, which is an imaginary cylinder circumscribing the inner shell, z± =
±
√
r2o − s2 ≡ ±H where ro is the radius of the conducting region: hereafter

we only consider the region outside the tangent cylinder. From the divergence
theorem, and the continuity equation (1), the Coriolis force FC vanishes, i.e.
there is no net mass flux across a given cylindrical surface. When the inertia
including the Reynolds term FR (and viscosity) is negligible compared with
the Coriolis and Lorentz forces FL (i.e. magnetostrophic balance), the equation
yields a steady state,

∫
êϕ · (∇×B)×B/µ0 dS = 0, termed the Taylor state

[107] by which the magnetic field configuration is constrained.
Allowing small perturbations about this state yields waves/oscillations (see

the detailed derivation in Hori et al. [60], Teed et al. [108]). We split magnetic
field and velocity into their temporal mean and fluctuating parts, which are
hereafter denoted by tildes and primes, repectively, i.e. f̃ = (1/τ)

∫
fdt and

f ′ = f − f̃ where τ is a time window of integration and f̃ ′ = 0. Substituting
the induction equation (3) into the Lorentz term FL of (4) and assuming that
an ageostrophic term is sufficiently small, we get a single equation:

∂2

∂t2
⟨u′ϕ⟩
s

− 1

s3h⟨ρ⟩
∂

∂s

(
s3h⟨ρ⟩U2

A

∂

∂s

⟨u′ϕ⟩
s

)
=

∂

∂t

FR + FLD

s⟨ρ⟩ , (5)

where h = z+ − z− is the height of the cylinder of radius s along the z
axis, i.e. h = 2H outside the tangent cylinder. The left hand side of (5)
presents the homogeneous part of the PDE and the equation of torsional
Alfvén waves. Terms on the right hand side can be interpreted as forcing to
the wave equation, where FLD denotes the Lorentz force FL excluding the

restoring part for the wave. In the restoring force U2
A = ⟨B̃2

s ⟩/µ0⟨ρ⟩, represent-
ing the squared Alfvén speed given by cylindrical averages of radial field Bs.
The homogeneous equation describes waves propagating in cylindrical radius
s with the speed UA. They may travel either inwardly (−s) or outwardly (+s),
and may also superpose to give a standing wave referred to as “oscillations”.
Their schematic illustration is shown in figure 3. Typical timescales can be
interannual to decadal in Earth and Jupiter (secs. 2.2 and 2.4). Classically,
these waves are ideally supposed to be non-dispersive; in reality they could be
dispersive owing to the geometry and dissipation. The Reynolds forcing FR

likely plays a minor role in Earth’s fluid core, as there is no exchanges with the
rocky mantle and the reduced importance of inertia signified by the small Ro.
This implies that the Lorentz force FLD is a major driver [12, 109]. In Jupiter
the lack of rigid boundaries and the presence of significant zonal flows in the
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molecular envelope is likely to make the Reynolds forcing FR more significant
than FLD [60].

u

u

u

u

u
u

B B
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Fig. 3 Schematic illustration of torsional Alfvén waves/oscillations (adapted from [63]).

2.2 Torsional waves in Earth’s core

Torsional waves are best illustrated in the geodynamo through both observa-
tions and simulations. Early studies [e.g. 12] sought possible wave motion on
a ∼60 year timescale, which is a relevant peak in the geomagnetic variation as
we shall see below. Zatman & Bloxham [118] extended those investigations to
find fluctuations in the azimuthal component of core flows that were inverted
from the magnetic secular variation. With the torsional oscillation theory they
attempted to infer the 1d structure of the Alfvén speed UA and to estimate a

⟨B̃2
s ⟩1/2 of the order 0.1 mT within the dynamo.
Meanwhile, scaling properties of convection-driven dynamos (sec. 1.2) sug-

gested an internal field strength of the order 1 mT, implying a shorter
timescales for torsional oscillations. Gillet et al. [47] explored signals of several
years in core flow models and attributed them, not the decadal signal, to the
torsional oscillations. They also evaluated the angular momentum exchange
with the rocky mantle to show the fluctuations were compatible with a varia-
tion in length-of-day, i.e. the rotation rate of the planet, in which a period ∼6
years was seen.

Their picture raised further interesting questions. First, the identified wave
exhibited outward propagation toward the equator from deep and appeared
to be excited quasi-periodically; when it approached the equator, no clear
reflections at the equator were observed. Indeed numerical dynamo simula-
tions embraced travelling waves, rather than standing ones [e.g. 99, 108, 115].
Schaeffer & Jault [98] pointed out that the dissipation across the core-mantle-
boundary would inhibit wave reflections there, to leave travelling modes only:
the processes were nicely demonstrated by the solution of an initial value
problem [46]. In contrast, spherical magnetic convection simulations with no
couplings with the mantle being assumed reproduced the one-way propaga-
tion excited near the tangent cylinder repeatedly [110]: figure 4 depicts such
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a case. This dynamics is likely a natural consequence of the convection in the
fluid core, which is most vigorous near the tangent cylinder in which buoyancy
sources arise from the inner core solidification. The simulation by Teed et al.
[110] reveals that it is possible to launch an axisymmetric disturbance of the
Alfvén frequency there, which is absorbed as it approaches the rigid boundary
of the rocky mantle.

However observationally, whilst core flow inversions illustrate the wave-like
patterns, these signals do not appear in the magnetic data clearly. Silva et al.
[103] examined over decadal timeseries of the geomagnetic secular acceleration,
∂2Br/∂t

2, at chosen locations in terms of the Fourier transform and empirical
mode decomposition and reported identification of ∼6 year periodicities. We
shall address this in the following subsection.
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Figure 2 | Torsional wave signal. Colour density plot of the azimuthal fluctuating velocity, u0
�,

averaged over depth, z, and azimuth, �. The repeating blue and red pattern shows a train of waves

propagating in time in the radial direction. Waves clearly originate at the TC (indicated in s-space

by the horizontal black dashed line) and travel in the region of the core outside the TC (s >

1,200km) towards the mantle at s = 3,400km. The point of excitation is just inside the TC where

1,000km < s < 1,200km.

10

Fig. 4 Torsional Alfvén waves seen in a spherical convection simulation for Earth’s core
(adapted from [110]). The zonal velocity fluctuation ⟨u′ϕ⟩ is shown in time-cylindrical radius

domain.

2.3 Geomagnetic data revisited

We here revisit the geomagnetic data for torsional waves, given the recent
improvement in observational datasets. Moreover, data-driven techniques are
drastically advancing and are now capable of extracting signals more efficiently.
Here we adopt a technique called dynamic mode decomposition, DMD [e.g, 75,
100]. This may be regarded as an update of the Fourier transform and proper
orthogonal decomposition (POD) — equivalent to the principal component
analysis (PCA) — and may approximate spatio-temporal data in the form
of the sum of normal modes. For instance, a given dataset X = X(θ, t) may
be approximately represented as

∑r
j=1 bjΦj(θ) exp (λjt) where bj is real and

λj and Φj are complex. Here Imλj , Reλj , bj , and Φj(θ) denote, respectively,
the frequency, growth rate, magnitude, and spatial structure of the j-th DMD
mode (out of the total r modes). The outcomes can therefore be compared
with normal mode solutions of the wave equation (5) [see Appendix A and
figure A1 for normal mode calculations]. The methodology was utilised in
spherical MHD simulations [62].
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The data to be analysed is the axisymmetric fluctuating part of both the
cylindrically-radial secular variation ∂Bs/∂t and the azimuthal core flow u′ϕ
on the core surface rcore between 1940-2005: the datasets depends on latitude
θ and time t. These are computed from ensemble averages of 50 realisations
given by the up-to-date assimilation model [45] that we refer to as cov-obs2019
hereafter. The model gives the coefficients of spherical harmonics of the mag-
netic potential, termed the Gauss coefficients, and the equivalent values for
the core flow. So we first calculate the component ∂Bs/∂t and uϕ at rcore,
with the Schmidt normalised associated Legendre function. We then com-
pute their axisymmetric parts, average over the realisations, and remove the
temporal means at each θ. In order to seek wave signals that have the form
[B′

s, u
′
ϕ] ∝ exp iωt, we put the two sets of the latitude-time data together into

the decomposition analysis and perform the DMD over the dataset. Here we
examine the data at 140 gridpoints between ±69.5◦ and for 65 snapshots sam-
pled every year. We then introduce a delay coordinate to stack the data and
to capture either travelling or standing waveforms [e.g. 75]: the methodology
is also described in [63]. As the rms error between the input and reconstructed
datasets are found to be minimised for a delay coordinate of 2, we set this
parameter below.

Figures 5a and b show the spectrum and the dispersion of the DMD signals,
respectively. They show spectral peaks at low frequencies (corresponding to
periods of 64.9, 32.3, and 20.9 years) and also local peaks around a period of
∼6 years (the shaded region). The latter comprises of four individual modes
(highlighted by coloured symbols), out of which two are found to be low quality
(Imλ/2Reλ < 4) — in this case meaning highly dissipative — and two to be
high quality (Imλ/2Reλ ∼ 13). The two wave-like modes have periods of 6.6
and 6.3 years: we refer to them as Mode 1 and 2 and highlight them in red and
blue. Their latitudinal structures with respect to s are given in figure c: Mode
1 in red has one zero crossing at s/rcore ∼ 0.65. This could be a signature of

the first eigenmode of torsional wave (5) [see figure A1a for a background B̃s

of maximum 3.9 mT]. If this field structure is assumed, the second eigenmode
could be predicted: whose frequency is indicated by a vertical line labelled as
T2 in the figures a and b: we refer to the chosen mode as Mode 3 (in cyan).
The three Modes are reconstructed for the spatio-temporal structure of u′ϕ
in figures d-e. The pattern shows the travelling nature in either hemisphere
nicely, suggesting the DMD analysis reproduces the early reports [e.g. 47] and
extracts the relevant modes.

The corresponding pattern in the magnetic field ∂Bs/∂t is now visualised in
figures f-g. We can detect some travelling features; however the detected signal
only exhibits a magnitude of 1% or smaller of the overall variation. This in
part explains why the torsional waves are not easily detected in magnetic data.
Meanwhile the analysis here demonstrates how the data analysis is capable of
pulling out such a tiny, but physically important, signal.
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Fig. 5 DMD analysis of axisymmetric geomagnetic secular variation and core flow in 1940-
2005 (produced from [45]). (a) Spectral and (b) dispersion diagrams of the dataset comprising

of u′ϕ(θ, t) and ∂Bs/∂t(θ, t). Periods are represented in years on the top of each panel.

Symbols highlighted in color indicate Modes in a window of period 5.5-7.5 years (shaded
region). Individual Modes in the window are highlighted by different colors and symbols:
we refer to the red and blue asterisks as Modes 1 and 2, respectively, whilst the magenta
and green crosses represent dissipative modes. The vertical dashed-dotted line labelled by

Ti indicates the frequency of the i-th TW normal mode for a background field ⟨B̃2
s ⟩1/2 ≲

3.9 mT (see fig. A1a). One Mode found in the vicinity of the T2 line is also indicated in

cyan and is referred to as Mode 3. (c) Latitudinal structures of u′ϕ for Modes 1 (red), 2

(blue), and 3 (cyan) are represented with respect to s/rcore. Solid (dashed) curves show its
profile in the northern (southern) hemisphere. (d-e) Reconstructed spatiotemporal structure

of u′ϕ for the superposition of Modes 1-3. (f-g) Similar to figures d-e but of ∂Bs/∂t. In (d,f)

northern and (e,g) southern hemispheres.
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(a)

(b)

(c)

Figure 2: The fluctuating, z-averaged azimuthal velocity, ⟨u′
φ⟩, for run A (a), run E (b), and

run I (c). White curves indicate phase paths of the Alfvén speed, UA. A dimensional time

scale, tJ, is represented in years on the top of each panel. The horizontal dashed lines indicate

a range of the MTC radius, s/rcut ∼ 0.89 and 0.94.

28

Fig. 6 Similar to Fig. 4 but in a dynamo simulation for Jupiter’s metallic hydrogen region
(adapted from [60]). Here the cylindrical radius s is normalised by the cutoff radius, rcut ∼
0.96RJ, of the simulation. White curves indicate phase paths of the Alfvén speed UA. A
dimensional time is represented in years on the top of the panel. Horizontal dashed lines
indicate radii across which density and electrical conductivity drop by orders.

2.4 Torsional oscillations in Jupiter

Given the presence of torsional waves in Earth’s fluid core, one might expect
to find them in other planets. Indeed the potential for their discovery has
been growing as planetary exploration and numerical modelling advance. Mod-
ern numerical dynamos, that implement the transition from the metallic to
molecular hydrogen envelopes of Jupiter, have succeeded in reproducing the
dipole-dominated, global magnetic field [43, 66]. Using those numerical mod-
els Hori et al. [60] proposed that torsional Alfvén waves on timescale of the
order 1-10 years could be excited in the gas giant too; zonal fluctuations seen
for a fiducial case are exhibited in figure 6. Moreover the simulations demon-
strated that Jovian torsional waves could be standing waves; here waves would
partially reflect from the interface that is created by the abrupt change in
the electrical conductivity as the metallic hydrogen transits to the molecular
hydrogen. The ratio of reflection and transmission is essentially determined by
the wavenumber of the oscillation and the skin depth for the mode.

Such fluctuations in zonal velocity could impact on the dynamics beyond
the metallic region. One consequence could be fluctuations in length of day
— as happens in Earth. The simulations above suggested a magnitude of the
order 10−2 s or smaller, so likely very tiny. Nonetheless it is worth noticing
that the planet’s rotation rate, or the System III coordinate system determined
from its periodic radio emission, is measured to such precision and its variation
was the subject of some debate [e.g. 53]. Another consequence is remarkable
in a gaseous planet: zonal flow fluctuations arising from MHD waves may
partly transmit into the overlying poorly-conducting envelope, whilst dissipat-
ing. This implies the deep oscillation might be probed through near-surface
observations, such as visible, infrared, and microwave measurements. Now the
Juno’s multiple measurements were reported to be consistent with the sur-
face zonal wind extending down to thousands of kilometres, 0.93-0.96RJ [e.g.
72, 84].
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Interestingly, ground-based telescope observations have witnessed
intradecadal to decadal variations of the surface [e.g. 40]. To seek the tropo-
spheric dynamics, Antuñano et al. [3] investigated infrared images taken at
∼5 µm wavelength for more than 30 years and found cycles of 4-9 years in
latitudinal bands between ∼40◦N and ∼40◦S. Those observations might be
accounted for by the torsional oscillations arising from the interior [63]. The
scenario necessitates the processes coupling amongst the modulations in zonal
flows, the tropospheric convection, and its infrared observation. This exem-
plifies the notable dynamics of a gaseous planet in contrast with a terrestrial
planet.

3 Magnetic Rossby waves

Now we move onto nonaxisymmetric modes. They can be classified into three
categories: Rossby waves, Alfvén waves, and waves that have certain char-
acteristics of both, termed magnetic Rossby waves. First we discuss their
fundamental properties via linear theory (sec. 3.1) and explore their relevance
in the geodynamo and the geomagnetic westward drift (sec. 3.2); then we move
on to discuss weakly nonlinear effects (sec. 3.3).

3.1 Fundamentals

Guided by the literature [e.g. 52, 59], we describe these non-axisymmetric
waves for anelastic fluids. We here adopt an illustrative quasi-geostrophic
model for rotating spherical shells [e.g. 17, 18, 22]: the 2d model is schemati-
cally illustrated in figure 7a. This approach ought to be distinguished from the
full problem (1)-(3), as pioneered by Malkus [80]. One of his solutions is exhib-
ited in figure 7b, representing a symmetric mode with respect to the equator,
i.e. a magnetic Rossby mode.

(a) (b)

Bf Uf
-

2H s

z W

-
ri ro f

Fig. 7 (a) The 2d quasi-geostrophic model adopted. (b) An eigenfunction for background

B̃ϕ ∝ s and constant ρ [80]. Normalised radial velocity ur is presented in the meridional
plane with respect to the rotation axis Ω.



Springer Nature 2021 LATEX template

Waves in planetary dynamos 15

Our basic equation here is the vorticity equation. We take the curl of the
momentum equation (2) in cylindrical coordinates to yield the equation for
the axial (z) component of vorticity, ξ = ∇× v. This ensures conservation of
the potential vorticity (2Ω + ξz)/ρH in the absence of terms other than the
inertial and Coriolis forces. The classic Rossby waves arise from vortex tube
stretching and shrinking to conserve the potential vorticity.

To seek the MHD equivalent we consider the z-component of the vorticity
equation averaged over z,

∂

∂t
⟨ρξz⟩+ ⟨∇H · ρ(uξz − ξuz)⟩ − 2Ω

〈
∂

∂z
ρuz + us

∂ρ

∂s

〉
= ⟨∇H · (BJz − JBz)⟩ (6)

where∇H ·A = (1/s)∂(sAs)/∂s+(1/s)∂Aϕ/∂ϕ for a vectorA. We separate the
variables, u andB, into the temporal mean (denoted by tildes) and fluctuation
(by primes) in time. Linearising (6), together with (3), yields

D2⟨ξ′z⟩
Dt2

+ β
D⟨u′s⟩
Dt

=
1

µ0⟨ρ⟩
〈
(B̃ · ∇H)(B̃ · ∇H)ξ

′
z

〉
, (7)

provided ∂⟨ρξz⟩/∂t ∼ ⟨ρ⟩∂⟨ξ′z⟩/∂t. Now the Coriolis term is represented via
the beta parameter. For the incompressible/Boussinesq fluids this is given by
the topographic effect,

β = −2Ω

H

dH

ds
, (8)

as non-penetrative conditions at the boundaries imply uz = ±us dH/ds =
∓us s/H at z = ±H outside the tangent cylinder [e.g. 17]. When the density
varies significantly, the beta effect instead arises from compressible effects,

β = − 2Ω

⟨ρ⟩
d⟨ρ⟩
ds

, (9)

where the z-integral of the third term of (6) is performed [e.g. 42, 97]. Here
note the validity of this expression depends on the dynamics of the anelastic
fluid, particularly on the z-integral of the Coriolis term, i.e. to what extent the
vorticity is stretched along z between the boundaries ±H. For more discussions
on compressible beta effects we refer to Busse & Simitev [20], Glatzmaier
et al. [50], Jones et al. [69], Verhoeven & Stellmach [114]. In Earth’s fluid
core in which the density change is minor and there are solid boundaries, the
topographic effect is clearly a reasonable driver. However, the compressible
effect will be relevant in Jupiter’s interior.

Introducing the streamfunction ψ for the velocity perturbation, e.g. ⟨u′⟩ ∼
∇H×ψ(s, ϕ, t)êz with êz being the unit vector in the direction of the rotation
axis, we find (7) to give a wave equation. We now suppose that the background
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magnetic field and flow are both steady and axisymmetric to seek solutions of
the form of ψ = ψ̂ exp i(mϕ− ωt). Here the background flow is supposed to be
dominated by the zonal component. The wave equation then becomes

1

µ0⟨ρ⟩

〈
B̃s

d

ds
B̃s

d

ds

(
1

s

d

ds
s
d

ds
− m2

s2

)
ψ̂

〉
+(ω̂2−ω2

M)

(
1

s

d

ds
s
d

ds
− m2

s2

)
ψ̂+

βω̂m

s
ψ̂ = 0,

(10)

where ω̂ = ω − ⟨Ũϕ⟩m/s, and the squared Alfvén frequency is given by ω2
M =

⟨B̃2
ϕ⟩m2/µ0⟨ρ⟩s2. This equation goes singular when B̃2

s/µ0⟨ρ⟩, the local speed
of torsional Alfvén waves, crosses zero. If the torsional wave is slow compared
with the Alfvén and Rossby waves travelling in azimuth, equation (10) may
be further reduced to a second-order ODE:

(ω̂2 − ω2
M)

(
1

s

d

ds
s
d

ds
− m2

s2

)
ψ̂ +

βω̂m

s
ψ̂ = 0 . (11)

Here a critical layer will appear if ω̂2 → ω2
M. If this does not occur in the

domain, (11) yields a set of two solutions. This eigenvalue problem for different
profiles of ω2

M in Boussinesq fluids was explored by Canet et al. [22].
To examine the basic properties of the equation, we here suppose a WKBJ-

type solution, ψ̂ = A0s
−1/2 exp i

∫
n(s)ds [see Appendix B for details], where

the local dispersion relation is given by

ω̂2 − ω̂ ωR − ω2
M = 0 , (12)

and the Rossby wave frequency ωR = βms/(m2 + n2s2 + 1/2). The quadratic
equation (12) has roots

ω± = ωR

[
1

2
± 1

2

√
1 + 4

ω2
M

ω2
R

]
. (13)

In the limit ω2
M/ω

2
R ≫ 1, e.g. high wavenumbers for a given basic state, these

simply yield the Alfvén waves along the toroidal field. Their unique properties
become evident in another limit ω2

M/ω
2
R ≪ 1 to yield

ω+ ∼ ωR

(
1 +

ω2
M

ω2
R

)
and ω− ∼ −ω

2
M

ωR
. (14)

The fast modes, with frequency ω+, are essentially equivalent to the hydrody-
namic waves. Their timescales are basically ruled by β, or the planet’s rotation
rate, but are shorter in the presence of the background magnetic field. Their
phase velocity is prograde in a thick shell problem (such as that applicable for
the Earth’s fluid core) [17, 19], while the group velocity is retrograde. Note that
these directions appear to be opposite from the conventional Rossby waves
in the atmosphere. Figure 8 demonstrates a fast wave seen in Jovian dynamo
simulations, in which the compressible beta effect plays a role.
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The slow modes, with frequency ω−, are unique to the rotating MHD sys-
tem, travelling retrogradely; the frequency is given by the ratio of the squared

Alfvén frequency to the Rossby frequency. Hence they are sensitive to ⟨B̃2
ϕ⟩,

or the toroidal field strength. Their timescales may vary from 101 to 104 years
in Earth’s fluid core, indicating a link to the centennial geomagnetic westward
drift [52] (sec. 3.2). The dispersive nature of this mode is also noticeable. For
the simpler case of constant density, the slow mode dispersion relation (14)
may be rewritten as

ω− ∼ −
⟨B̃2

ϕ⟩(r2o − s2)

2µ0⟨ρ⟩Ωs4
m(m2 + s2n2) , (15)

where the geometrical effect in the Rossby frequency is omitted. This is reduced
to a relationship proportional to m3 when the azimuthal wavenumber dom-
inates over the radial one. The wave motion is highly dispersive in the ϕ
direction; this dispersive nature gives a strong steer to possible nonlinear
behaviour (i.e. the presence of solitons as discussed in sec. 3.3). This is not
the case when the radial structure is more complicated, i.e. m2 ≪ s2n2; in
that case the ϕ-propagation is largely non-dispersive while the s-propagation is
weakly dispersive. We here recall that both magnetic Rossby modes are capa-
ble of travelling in s: this is analogous to the atmospheric version which may
travel in latitude too [e.g. 113].

All theory needs to be re-addressed when
∥∥∥B̃s∂/∂s

∥∥∥≫
∥∥∥(B̃ϕ/s)∂/∂ϕ

∥∥∥. As

indicated from (7) or (10) the slow mode for the case would imply highly dis-
persive motion in s. This seems to be the regime recently explored by Gerick et
al. [44], who computed eigenmodes in an extended 2d model for a nonaxisym-

metric background B̃s to obtain high wavenumber modes for the interannual
westward drift (sec. 3.2).

3.2 Magnetic Rossby waves in the Earth

Slow magnetic Rossby waves were proposed by Hide [52] to explain the ∼300
year geomagnetic westward drift (sec. 1). This migration has been seen in
centennial models [e.g. 37] and in millennial models [e.g. 51, 88]. A complemen-
tary scenario to this is that the westward drift arises because of the advection
by large-scale flows in the geodynamo [e.g. 6, 16]. It is more likely that the
observed feature consists of a combination of advection and wave propagation;
some early works on numerical dynamos pointed out that migration speeds
seen in simulations did not match the flow advection speed [25, 73].

Using updated geodynamo simulations, Hori et al. [57] re-addressed non-
axisymmetric motions in terms of the 2d theory above, and demonstrated that
the retrograde drifts in the simulations were well explained by slow waves (15)
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(a) (b)

(c) (d)

Fig. 8 Fast magnetic Rossby waves seen in a jovian dynamo simulation (run E in [60, 66]).
(a) Azimuth time section and (b) wavenumber-frequency power spectrum of ⟨u′s⟩ at s =
0.25rcut ∼ 0.24RJ. In figure a, solid black lines represent phase paths of fast compress-

ible Rossby waves plus the zonal flow advection, ω+/m + ⟨Ũϕ⟩/s, for m = 8 and n = 0:

dashed-dotted lines indicate their group velocity, ∂ω+/∂m+⟨Ũϕ⟩/s. In figure b, black curves
show the expected dispersion relations of advection plus wave ω± for the compressible beta
parameter and n = 0 (solid), 3 (dashed), and 5 (dashed-dotted). White dashed lines for the
advection only; white solid curves for the advection plus the Alfvén wave (±ωM). (c) Phase
speeds of compressible (red) and topographic (blue) Rossby waves, ωR/m, as a function of
normalised s. (d) Radial profiles of ⟨u′s⟩ at ϕ ∼ 2π/3. Curves exhibit snapshots at different
times, which are indicated in the legend. Dotted ones indicate the expected variability s−3/2

[see Appendix B for details].

riding on the mean flow advection ⟨Ũϕ⟩m/s (figure 9). The nonaxisymmet-
ric waves may be excited through any driving mechanism; here convection in
the spherical shell plays a major role. The preferred wavenumber, or the fre-
quency, is thus determined by convective activities. The nature of the observed
waves clearly depends on the regime of the driving mechanism: in the case of
convection a slow wave will be favourable when the magnetic diffusion time is
longer than the thermal one, while the opposite regime will yield other modes
including diffusive modes travelling progradely [18, 36, 58]. Analyses of the
simulations confirmed that the slow waves emerged when the magnetostrophic
terms were dominant in the vorticity equation (6) [59]. The identification of
those waves, as well as torsional Alfvén waves, may signify a dynamo in the
magnetostrophic regime.

It is useful to examine the geomagnetic data for nonaxisymmetric compo-
nents. Figure 10a displays the longitude-time section, from 1880 to 2015, of the
secular variation, ∂Bs/∂t, at latitude ∼40◦N corresponding to s/rcore ∼ 0.77,
in cov-obs2019. The westward drift, clearly visible on this timescale, appears
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(a) (b)

Fig. 9 Slow magnetic Rossby waves in a geodynamo simulation (adapted from [59]). (a)
Azimuth time section and (b) wavenumber-frequency power spectrum of ⟨u′s⟩ at the mid
radius s = 0.5rcore. In figure a solid black lines represent phase paths of slow magnetic

Rossby waves plus the zonal flow advection, i.e. ω−/m + ⟨Ũϕ⟩/s for m = 5 and n = 0;
white dashed lines indicate the advection speed only. In figure b, solid black (white) curves
represent the expected dispersion relations of advection plus the wave ω± (ωM) for the
topographic beta parameter n = 0. White dashed lines for the advection only.

to consist of multiple drift speeds. This is evident by the 2d FFT spectrum
in figure b. Here a linear relation, ω ∝ m, indicated by the dashed line, rep-
resents an advection effect by mean flow. Clearly this simple advection model
can not explain the multiple signals observed. We add the dispersion rela-
tions of the slow wave too: the black solid curve for the local theory (15) for

⟨B̃ϕ⟩1/2 ∼ 15 mT and blue asterisks for normal mode solutions provided a

background B̃ϕ ∝ s of maximum 13 mT (Appendix A and fig. A1b). Those
speeds for chosenm are indicated by different lines in the figure a. This attempt
is inconclusive but indicative that today’s geomagnetic datasets are capable
of capturing the signatures of waves. It would be crucial to analyse them on
multiple timescales; the slow wave timescale may vary by a few orders of mag-
nitude (see above). Probing the slow wave will enable the estimation of the
toroidal magnetic field [57], which is confined within the dynamo region, i.e.
inaccessible through direct measurements.

Beyond the framework above, a zoo of nonaxisymmetric waves is being
explored. State-of-the-art numerical geodynamo calculations exhibit different
wave classes [e.g. 4, 5] such as Alfvén modes about inhomogeneous poloidal

part B̃s and also fast Rossby modes likely. These have been linked geomagnetic
jerks (sec. 1) and to nonlinear interactions with the convective dynamics for
the dynamo. More recently, based on the linear calculations by Gerick et al.
[44], Gillet et al. [48] attributed slow modes of high radial wavenumber for

a background B̃s to the equatorial westward drift of ∼6 years (sec. 1.3). An
alternative idea for the rapid drift is that Rossby waves are excited in the
stratified layer at the top of the core, as an MAC wave [15]. These are ongoing
topics; we shall remark further in the final section.
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Fig. 10 Nonaxisymmetric motion of geomagnetic secular variation, ∂Bs/∂t, in 1880-2015
(produced from [45]). (a) Longitude-time section, Hövmoller diagrams, and (b) 2d spectrum,
the sum over 39-41◦N. In figure a the green, cyan, black lines indicate the speeds of signals
at m = 3, 4, and 7, respectively, as identified by circles in the spectrum. In figure b the
dashed line represents fadv = U0m/2πs given U0 = 0.32◦/yr at the radius s = 0.77rcore
[57, 90]; the black solid curve represents f = fadv + ω−/2π, based on the local theory (15)

for ⟨B̃2
ϕ⟩1/2 = 15mT; blue asterisks indicate f = fadv plus the frequency of the first normal

mode solutions (11) for Malkus field ⟨B̃ϕ⟩ ∝ s of magnitude 13mT (fig. A1b).

3.3 Finite amplitude effects

A novel finding by the numerical simulations described above was the sharp
waveform of the slow wave (e.g. figure 9a). These are isolated and steepened,
rather than forming wave trains as expected for a linear dispersive wave. More-
over, their crests appear to be cleaner than the troughs. Those observations
are reminiscent of cnoidal waves and solitons of finite amplitude, which are
both known to be solutions of the Korteweg-de Vries (KdV) equation. Indeed,
the approximated dispersion relation (15) has the dispersive term propor-
tional to m3, as in the KdV equation. Weakly nonlinear analyses were recently
explored [55, 61] in terms of 2d annulus models [18] and spherical models [22].
This contrasts with analyses in equatorial shallow-water MHD [78], in which
fast modes in a stratified environment were a primary focus. (Hydrodynamic
Rossby waves are known to shape coherent structures and to be governed by
soliton equations in certain regimes [e.g. 93, 116]; those solutions were proposed
as an explanation for the Jupiter’s Great Red Spot.)

The model setting adopted by [55, 61] is essentially same as above
(figure 7a). For simplicity the magnetic field is also assumed to be two dimen-
sional so that it can be represented by the magnetic potential g such that
B = ∇× g(s, ϕ, t)êz; this is analogous to the streamfunction ψ for the veloc-
ity, u = ∇×ψ(s, ϕ, t)êz. Also we suppose the density is constant and the beta
parameter is topographic. Following a standard multiple-scale technique called
the reductive perturbation method, we introduce slow variables with small per-
turbation ϵ (≪ 1) such that τ = ϵ3/2t and ζ = ϵ1/2(ϕ−ct) and expand the two
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variables to get asymptotic solutions such that [ψ, g] = [ψ0, g0] + ϵ[ψ1, g1] + ...
Hence a long-wave limit is being studied.

The zeroth order is given by the basic state. At the first order O(ϵ) the
two governing equations yield a linear, 2nd-order homogeneous PDE for g1.
Assuming a separable solution in form g1 = Φ(s)G(ζ, τ) reduces the problem
to an ODE in dimensionless form,

LΦ ≡
{
B̃ϕ

βs

[
B̃ϕ

s

d

ds
s
d

ds
− d

ds

1

s

d

ds
sB̃ϕ

]
+

(
Ũϕ

s
− c

)}
Φ = 0 , (16)

where L denotes the linear differential operator comprising of s, d/ds, B̃ϕ,

β, Ũϕ, and c. This is an eigenvalue problem with eigenvalues c and associ-
ated eigenfunctions Φ, together with appropriate boundary conditions. Here

it is worth noting that the equation becomes singular as B̃ϕ

2

/β → 0 but

this is unlikely as Ũϕ/s → c. This is distinct from the hydrodynamic cases;
there Redekopp [93] addressed solitary Rossby waves in the vicinity of the
critical layer when a wave speed approaches the mean flow speed. What hap-
pens around any magnetic critical layer, including its continuous solutions, is
entirely uncertain.

Focusing on the discontinuous solutions, we proceed to the next order to
determine the structural functionG(ζ, τ). After some algebra, the vorticity and
induction equations at O(ϵ2) are found to yield an inhomogeneous PDE for
g2, whose homogeneous part is given as Lg2 = 0. We thus require a solvability
condition to suppress the secular terms, yielding

∂G

∂τ
+ α G

∂G

∂ζ
+ γ

∂3G

∂ζ3
= 0 . (17)

Here α and γ are determined from the O(ϵ)-eigenfunction Φ, its adjoint solu-

tion Φ†, and the basic state B̃ϕ, Ũϕ, and β: see detailed expressions in Hori
et al. [61]. This evolution of the structural function G(ζ, τ), and hence g1, is
therefore governed by the the Korteweg-de Vries equation if the coefficients
are both nonzero. Equivalent analyses in the cartesian model [55] show that

the coefficient of nonlinear effect would be nonzero unless B̃ϕ, β, and Ũϕ are
all uniform. This could be readily satisfied for a spherical system, for which β
is nonuniform.

In spherical shells Hori et al. [61] solved the eigenvalues problem (16) to
calculate the coefficients of (17) for different sets of the basic state magnetic

fields B̃ϕ and velocity profiles Ũϕ. They found nonzero values for the coeffi-
cients for the all cases they explored, implying that the KdV equation is the
correct canonical description. As its solutions are well known, our asymptotic
solution may be simply illustrated. Cases for the 1- and N-soliton solutions
are demonstrated in figure 11. The solitary wave solution as seen in figure 11a
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implies an anticyclonic isolated vortex that is drifting retrogradely with the
speed of the linear wave, the order of 102 to 104 years in Earth’s core. Here
recall that core flow inversions have revealed an anticyclonic gyre persisting in
the fluid core for more than 100 yrs (fig. 2). An up-to-date geomagnetic model
for the past 9000 years was recently reported to exhibit a westward-drifting
eastern-western hemispherical asymmetry, with quasi-periodic behaviours of
∼1300 years, potentially related to a similar planetary gyre [86]. The origin of
the asymmetry has been discussed in terms of couplings with the rocky mantle
and the solid inner core [e.g. 6]. Meanwhile, geodynamo simulations demon-
strated the emergence of such a coherent structure as a natural consequence
of the fluid dynamics therein [99]. The soliton solutions above show that the
gyre shape can simply be explained using natural nonlinear wave dynamics.

(a) (b)

Fig. 11 (a) 1-soliton and (b) N-soliton solutions of slow magnetic Rossby waves for Malkus

field, B̃ϕ = s (after [61]). Streamfunction ψ in the equatorial plane in snapshots. Dashed
(solid) curves indicate their negative (positive) values, implying anticyclonic (cyclonic)
motion.

4 Concluding remarks and perspectives

In this paper we have discussed the topic of rotating MHD waves, or MC waves,
largely motivated by recent advances of geophysical observation and numerical
modelling. The subject embraces rich physics in addition to providing the
potential for probing the interiors of natural dynamos. As illustrated by linear
theory, there are many different wave classes.

To obtain fundamental insights, we have paid particular attention to tor-
sional Alfvén waves/oscillations and magnetic Rossby waves that can be
excited in the geo- and jovian- dynamos. The two wave classes may be consid-
ered as typical modes occurring in magnetostrophic balance of rapidly rotating
MHD fluids (sec. 1.4). They may particularly be relevant for understanding
the planetary magnetic variations, length-of-day variations, and possibly the
surface appearance in gaseous planets. The observations enable the possible
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inference of the strength and its spatial structure of the poloidal field compo-
nent within the dynamo region, and of the “hidden” toroidal component there.
This will provide a crucial constraint on the dynamo theory at all.

Despite the sterling attempts of theoretical and computational scientists,
we believe that there remain some unexplored issues and open questions,
namely:

• The class of rotating MHD waves, whether MC or MAC, is clearly a zoo,
exhibiting different dynamics and behaviours. Even the slow Rossby wave
class appears to be distinct, dependent on the background magnetic field
and the regime. We need a concrete catalogue to distinguish these modes
and to elucidate their individual behaviours. This will enable the prediction
of which waves best suit the inference of the quantity of interest within the
dynamo.

• A mathematical challenge is to address the critical layers arising from the
background magnetic field profile, the relevance of continuous spectra, and
their potential feedbacks on the mean state; they were partly addressed
[1, 85]. Those concepts have been explored in the plasma physics and geo-
physical fluid dynamics, in which mean flows tend to be of primary interest.
Their knowledge and techniques could hint at solutions in the current
context.

• Is it possible to find waves that are topologically protected, such as those
that have been found to exist in hydrodynamic rotating systems and plasmas
[33, 91, 92]? If so, the edge waves could allow us to sense the vicinity of a
boundary including a thin stably stratified layer.

• From an observational point of view, the existence of those waves and their
characterisation are still a subject of debate. In particular, distinguishing
a few candidate modes/branches from data seems to be a tricky issue. A
methodology to separate individual waves has led to significant progress in
Earth’s seismology, and meteorology likely. Today’s data-driven approaches
might help to endorse this: they are now capable of extracting signals to
incorporate the physics.

• Whereas wave motion could provide us the information about deep dynamos,
do they play any roles in the dynamo action and the internal dynamics at
all? There are classic ideas such as inertial wave generating helicity and thus
a dynamo [31, 83] and the supression of zonal mean flows in the presence
of magnetic field [112]. Furthermore, the interaction of waves with critical
layers could lead to the driving of mean flows. It is uncertain how individ-
ual waves classes might feed dynamos. This would be another theoretical
challenge for the future.
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Appendix A Normal mode calculations

Normal mode solutions of torsional waves (5) and of magnetic Rossby waves
(11) are computed individually, whilst considering a basic state in a spherical
shell outside the tangent cylinder.

For normal mode solutions, e.g. ⟨u′ϕ⟩ = ûϕ(s) exp iωt, the homogeneous
part of (5) implies a second-order ODE with variable coefficients. This is
an eigenvalue problem to determine the eigenfunction ûϕ with eigenvalue ω,
given a basic state of UA and ⟨ρ⟩. Here we suppose a basic field, UA ∝
(3/2) cos {π(3/2− 50s/19ro)} + 2, which was adopted by Canet et al. [22] to
represent the 1d structure of the poloidal field part in the geodynamo [47].
The density ρ is assumed to be constant. We use the Matlab routine bvp4c
to solve the eigenvalue problem in 0.35 ≤ s/ro < 1. The boundary condi-
tions are dûϕ/ds = 0 at the inner boundary and ûϕ + (1− s/ro)dûϕ/ds = 0
at s/ro = 0.99999: the latter is introduced to avoid the numerical issue for
singularities [61]. Figure A1a depicts profiles of eigenfunctions ûϕ, for which a
normalising factor is imposed at the inner bound. Their eigenvalues ω are listed
in the legend in terms of dimensional periods T = 2π/ω. For calculating the
dimensional values we use ρ = 1.13 × 104 kg/m3, ro = rcore = 3.485 × 106m,

and a factor of 1.12 × 10−3 T for B̃s, implying the maximal strength of the
assumed backgound field is about 3.9 mT.

Similarly, the eigenvalue problem (11) for magnetic Rossby waves is solved

for the eigenfunction ψ̂ and the eigenvalue ω̂, given a basic state ωM, β, and
azimuthal wavenumber m. We retain the constant density assumption, and

assume a simple profile for the basic field, B̃ϕ ∝ s/ro [80], since the structure
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of the toroidal field in the geodynamo is unknown. The beta parameter is given
topographically (8), i.e. β ∝ s/(1−s2/r2o). The inner boundary condition is now

ψ̂ = 0, while the modified condition is again adopted at the outer boundary.
Figure A1b demonstrates the first normal modes for m = 1, 3, and 4. The
eigenvalues are presented in the legend, where we suppose the dimensional
quantities above and additionally Ω = 7.29×10−5 s−1 and a maximal strength

B̃ϕ of 13 mT.

(a) (b)
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Fig. A1 (a) Normal modes of torsional oscillations (5). The black solid curve shows the
normalised profile of the given background field UA [22, 47]. Other curves show the eigen-
functions ûϕ of the 1st (red), 2nd (green), and 3rd (cyan) normal modes. The eigenvalue of
the i-th normal mode is listed in the legend, in which the period Ti is represented in years for
a maximal background poloidal field 3.9 mT. (b) Normal modes of magnetic Rossby waves
(11). The black solid and blue dashed curves show the normalised profiles of a background

field ⟨B̃ϕ⟩ [80] and beta parameter β, respectively. Other curves show the eigenfunctions ψ̂
of the 1st normal mode for m = 1 (red), 3 (green), and 4 (cyan). For visualisation their

profiles are presented in the negative domain, as −ψ̂. Periods Ti of the i-th eigenvalue are
represented in years, given a background toroidal field of maximal magnitude 13 mT.

Appendix B WKBJ solutions

In order to gain insight of nonaxisymmetric wave motion (11), we suppose the
coefficients slowly vary in s and seek a WKBJ solution. Rewriting the ODE as

d2ψ̂

ds2
+

1

s

dψ̂

ds
+ λ2ψ̂ = 0 where λ2 =

ω̂βm

(ω̂2 − ω2
M)s

− m2

s2
, (B1)
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we seek solutions in form of ψ̂ = A(s) exp iθ(s). The ODE is then split into
real and imaginary parts:

d2A

ds2
−A

(
dθ

ds

)2

+ λ2A = 0 and
d2θ

ds2
+

2

A

dA

ds

dθ

ds
+

1

s

dθ

ds
= 0 , (B2)

respectively. The amplitude is assumed to be slowly varying so that the highest
order term of the real part is small, compared with other terms. Substituting
this into the imaginary part gives

d2θ

ds2
= −

(
2

A

dA

ds
+

1

s

)
dθ

ds
= −2s

[(
dθ

ds

)2

− λ2 +
1

2s2

]
dθ

ds
. (B3)

If d2θ/ds2 is also smaller than the other terms the equation is drastically
simplified. Wave-like solutions then exist when λ2 > 1/2s2, leaving

A =
A0√
s

and

(
dθ

ds

)2

= λ2 − 1

2s2
. (B4)

The local radial wavenumber dθ/ds (we denote as n) is determined by ω̂, β, m,
s, and ω2

M. The solutions become evanescent when λ2 < 1/2s2. Also it implies
that the radial velocity, ⟨u′s⟩, varies with s−3/2.
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