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The Hosking integral, which characterizes magnetic helicity fluctuations in subvolumes,
is known to govern the decay of magnetically dominated turbulence. Here we show
that, when the evolution of the magnetic field is controlled by the motion of electrons
only, as in neutron star crusts, the decay of the magnetic field is still controlled by
the Hosking integral, but it has now effectively different dimensions than in ordinary
magnetohydrodynamic (MHD) turbulence. This causes the correlation length to increase
with time t like t4/13 instead of t4/9 in MHD. The magnetic energy decreases like t−10/13,
which is slower than in MHD, where it decays like t−10/9. This agrees with earlier
numerical results for the nonhelical Hall cascade.

1. Introduction

The x-ray emission from neutron stars during the first hundreds of years is believed to
be powered by magnetic dissipation within their outer crusts. Since the ions are immobile
in neutron star crusts, electric currents are transported by electrons alone. Their velocity
is u = −J/ene, where J = ∇ × B/µ0 is the current density, B the magnetic field, e
is the elementary charge, ne is the electron density, and µ0 is the permeability. The
evolution of B is then governed by the induction equation where the electromotive
force u ×B is given by −J ×B/ene. The induction equation therefore takes the form
(Goldreich & Reisenegger 1992)

∂B

∂t
= ∇×

(

−
1

ene
J ×B − ηµ0J

)

, (1.1)

where η is the magnetic diffusivity. The nonlinearity in this equation leads to a cascade
toward smaller scales—similar to the turbulent cascade in hydrodynamics turbulence
(Goldreich & Reisenegger 1992). This model is therefore referred to what is called the
Hall cascade. There has been extensive work trying to quantify the amount of dissi-
pation that occurs (Gourgouliatos et al. 2016, 2020; Gourgouliatos & Hollerbach 2018;
Igoshev et al. 2021; Anzuini et al. 2022). Idealized simulations in Cartesian geometry
resulted in power law scaling for the resistive Joule dissipation (Brandenburg 2020,
hereafter B20). It depends on the typical length scale of the turbulence, the electron
density, the magnetic field strength, and possibly the magnetic helicity. Denoting volume
averages by angle brackets, the decay of the magnetic energy E = 〈B2〉/2µ0 with time
t tends to follow power law behavior, E ∝ t−p, where the exponent p is smaller than
in magnetohydrodynamic (MHD) turbulence. In the helical case, it was found that
p = 2/5, while for the nonhelical case, B20 reported p ≈ 0.9. The correlation length
of the turbulence, ξ, increases with time like ξ ∝ tq, where q = 2/5 in the helical case,
i.e., q = p, and q ≈ 0.3 in the nonhelical case. In the helical case, the exponent 2/5 was
possible to explain on dimensional grounds by noting that the magnetic field does not
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correspond to a speed (the Alfvén speed, as in MHD) with dimensions ms−1 in SI units,
but to a diffusivity with dimensions m2 s−1.

The decay properties of the nonhelical Hall cascade were not yet theoretically un-
derstood at the time. In the last one to two years, however, significant progress has
been made in describing the decay of magnetically dominated turbulence, where a new
conserved quantity has been identified, which is now called the Hosking integral. The
purpose of the present paper is to propose the scaling of the Hall cascade under the
assumption that it is governed by the constancy of the Hosking integral, which now has
different dimensions than in MHD.

2. Hosking integral and scaling for the Hall cascade

The Hosking integral IH is defined as the asymptotic limit of the magnetic helicity
density correlation integral IH(R) for scales R large compared to the correlation length
of the turbulence, ξ, but small compared to the system size L. The original work on
this integral is that by Hosking & Schekochihin (2021), who subsequently applied it to
the magnetic field decay in the early universe (Hosking & Schekochihin 2022), see also
Brandenburg et al. (2015) and Brandenburg & Kahniashvili (2017) for earlier work were
inverse cascading of magnetically dominated nonhelical turbulence was first reported.
The function IH(R) is given by

IH(R) =

∫

VR

d3r〈h(x)h(x + r)〉, (2.1)

where VR is the volume of a ball of radius R, h = A ·B is the magnetic helicity density,
and A is the magnetic vector potential, so B = ∇×A.

What matters here is the fact that the dimensions of h are [h] = [B]2[x], and therefore
the dimensions of IH and IH are

[IH] = [B]4[x]5. (2.2)

However, as already noted in B20, using e = 1.6 × 10−19 As, µ0 = 4π × 10−7TmA−1,
and ne ≈ 2.5× 1040m−3 for neutron star crusts, we have eneµ0 ≈ 5× 1015 T sm−2, and
therefore

B

eneµ0
=

B

5× 1015T

m2

s
, (2.3)

which is why we say B has dimensions of m2 s−1.† Therefore, the dimensions of IH are

[IH] = [x]13[ s]−4. (2.4)

Thus, given that IH = const in the limit of small magnetic diffusivity, a self-similar
evolution must imply that all relevant length scales, and in particular the magnetic
correlation length ξ(t), must increase with time like ξ ∼ t4/13. Since 4/13 ≈ 0.31, this is
indeed close to the behavior ξ ∼ tq with q ≈ 0.3 found in Sec. 3.2 of B20 (their Run B),
as already highlighted in the introduction of the present paper.

To demonstrate that the spectra at different times are indeed self-similar, we collapse
them on top of each other by plotting them versus kξ(t). This ensures that their maxima
are always approximately near unity. In addition, we must also compensate for the decay

† In MHD, by comparison, the ion density ρ is a relevant quantity. Using ρ = 103 kgm−3 for
solar surface plasma, and the identity 1T = 1kg s−2 A−1, we have µ0 = 4π× 10−7 T2 s2 mkg−1,
and therefore ρµ0 ≈ 3.5 × 10−2 Tsm−1, or B/

√
ρ0µ0 = (B/3.5 × 10−2 T) m s−1, which is why

we say that in MHD, B has the dimensions of ms−1.
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Figure 1. Compensated spectra for Run B of B20, which corresponds to Run B1 in the
present paper. Here, β = 1.7 has been used as the best empirical fit parameter.

in amplitude by multiplying the spectra by a time-dependent function, e.g., ξ(t)β , where
β is a suitable exponent, so that the compensated spectra all have the same height. In
this way, we find a universal spectral function by plotting

[ξ(t)]
β
E
(

kξ(t), t
)

≡ φ
(

kξ(t)
)

. (2.5)

As an example, we show in Figure 1 the compensated spectra for Run B of B20, which
we discuss in more detail below. At small k, the spectrum steepens from k4 to k5. Beyond
the peak, it falls off with a k−7/3 inertial range, as was already found by Biskamp et al.

(1996).

To determine the theoretically expected value of β, we invoke the condition that the
compensated spectra be invariant under rescaling, t → τt′, x → τqx′, where τ is an
arbitrary scaling factor. We recall that the dimensions of E(k, t) are [x]5[t]−2, so rescaling
yields a factor τ5q−2. In addition, expressing E′ in terms of its universal spectral function
φ(kξ), the factor ξβ on the left-hand side of the Eq. (2.5) produces a factor ξ−β on the
right-hand side of Eq. (2.5), and therefore, after rescaling, a τ−βq factor, i.e.,

E(k) → τ5q−2 E′(k) ∝ ξ(t)−βτ−βqφ(kξ). (2.6)

Therefore, 5q− 2 = −βq must be satisfied in order that the compensated spectra remain
invariant under rescaling. Thus, β = 2/q − 5, as already found in B20. Inserting now
q = 4/13 yields β = 3/2. The total magnetic energy is therefore

E =

∫

ξ−βφ(kξ) dk = ξ−(β+1)

∫

φ(kξ) d(kξ) ∝ t−(β+1) q, (2.7)

and since E ∝ t−p, we have p = (β + 1) q. Using β = 2/q− 5, we have p = 2 (1− 2q); see
Eq. (28) of B20. For q = 4/13 ≈ 0.31, we have p = 2 (1− 8/13) = 10/13 ≈ 0.78, which is
not quite as close to the value reported in B20 as that of q, but this could be ascribed
to the lack of scale separation and also the magnetic field no longer being strong enough



4 A. Brandenburg

Run Lu t1/[t] t2/[t] η̃ B̃rms ǫ̃ p q β pH
B1 650 0.2 500 0.024 600 3× 106 0.8± 0.1 0.3± 0.1 1.7± 0.1 0.16
B2 1300 3 200 0.011 700 6× 106 0.78± 0.05 0.31± 0.05 1.6± 0.05 0.11

Table 1. Summary of runs discussed in this paper.

so that the Lundquist number,†

Lu = Brms/eneµ0η, (2.8)

is no longer in the asymptotic regime. This also resulted in the empirical value of β being
slightly larger than the theoretical one, as we will see next.

3. Comparison with simulations for different diffusivities

In B20, various simulations of the Hall cascade have been presented, including forced
and decaying simulations, helical and nonhelical ones, with constant and time-varying
magnetic diffusivities, with and without stratification, etc. The main purpose of that
work was to understand the dissipative losses that would lead to resistive heating in the
crust of a neutron star. One of those simulations is particularly relevant for the present
paper: his Run B, which had a relatively strong initial magnetic field, no helicity, large
scale-separation, and a magnetic diffusivity that decreased with time in a power law
fashion, allowing the simulation to retain a higher Lundquist number as the magnetic
field decreases.

In the present paper, we analyze his Run B, which is here called Run B1. It is actually
a new run, because we now have calculated the Hosking integral during run time. We
also compare with another run (Run B2), where we decreased the magnetic diffusivity
by a factor of two. As in B20, η is assumed to decrease with time proportional to t−3/7.
We kept, however, the same resolution of 10243 mesh points for both runs, but we must
keep in mind that this can lead to artifacts resulting from a poorly resolved diffusive
subrange for Run B2.

In Table 1, we compare several characteristic parameters: the start and end times,
t1 and t2, respectively, of the interval for which averaged data have been accumulated,
nondimensional measures of the magnetic diffusivity, the magnetic field strength, and
the dissipation, η̃, B̃rms, and ǫ̃, respectively, and the instantaneous scaling exponents p,
q, and β. For η̃, B̃rms, and ǫ̃, we compute the following averaged ratios:

η̃ ≡ 〈tη/ξ2〉, B̃rms ≡ 〈Brms/(eneµ0η)〉, and ǫ̃ ≡ 〈ǫ/(e2n2
eµ0η

3/ξ2)〉, (3.1)

where ξ(t) = E−1
∫

k−1E(k, t) dk is the correlation length and ǫ = ηµ0〈J
2〉 is the

magnetic dissipation with η = η(t), as noted above. These were also computed in B20.
Time is given in diffusive units, [t] = (ηk20)

−1. In the runs of series B of B20, the value
of k0 is 180 times larger than the lowest wavenumber k1 ≡ 2π/L of our cubic domain of
size L3.

It turns out that a lower resistivity is important for obtaining the expected scaling.
We therefore now consider Run B2, where Lu ≈ 1300. The result is shown in Figure 2,
where we used β = 1.6 as the best fit, which is still slightly larger than the expected value
of 3/2, but it goes in the right direction. Therefore, we show in Figure 2 the resulting

† Note that, unlike the case of MHD, in the present case of Hall cascade, no wavenumber
factor enters in the definition of the Lundquist number.
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Figure 2. Compensated spectra for Run B2.

Figure 3. pq diagrams for Runs B1 (open red symbols) and B2 (closed blue symbols). Larger
symbols denote later times.

compensated spectra for Run B2, where the magnetic diffusivity is half that of Run B1
and Lu is now twice as large a before; see Table 1.

Another comparison between Runs B1 and B2 is shown in Figure 3, where we compare
their evolution in the pq–diagram. While Run B1 clearly evolves along the β ≈ 1.7 line,
Run B2 tends to be closer to the β ≈ 3/2 line. Note also that both runs settle near the
p = 2(1− 2q) self-similarity line (B20), although we begin to see departures near the end
of the run, which is due to the finite size of the domain.

Finally, we show in Figure 4 the scaling of IH(t), where we see that the decay exponent
pH ≡ −d ln IH/d ln t is about pH ≈ 0.16 for Run B1 and about 0.11 for Run B2. Earlier
work by Zhou et al. (2022) showed that pH decreases as the Lundquist number increases,
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Figure 4. Evolution of IH(t), showing first a slight increase and then a decline proportional
to t−0.16 for Run B1 and proportional to t−0.11 for Run B2. The inset shows the evolution of
IH(R; t) for selected values of R for Run B2.

MHD [B] = [x]/[t] [〈h〉] = [x]3/[t]2 q = 2/3 (helical)

[IH] = [x]9/[t]4 q = 4/9 (nonhel)

[E(k, t)] = [x3][t]−2 β = 2/q − 3 β = 2 · 9/4− 3 = 3/2
p = 2 (1− q) p = 2 (1− 4/9) = 10/9

Hall [B] = [x]2/[t] [〈h〉] = [x]5/[t]2 q = 2/5 (helical)

[IH] = [x]13/[t]4 q = 4/13 (nonhel)

[E(k, t)] = [x5][t]−2 β = 2/q − 5 β = 2 · 13/4− 5 = 3/2
p = 2 (1− 2q) p = 2 (1− 2 · 4/13) = 10/13

Table 2. Comparison of the scalings for MHD and the Hall cascade.

and is, in MHD, around 0.2 for Lu ≈ 103, and decreases to pH ≈ 0.01 for Lu ≈ 4 ×
107. Such large values can currently only be obtained with magnetic hyper-diffusivity
(Hosking & Schekochihin 2021; Zhou et al. 2022), but this has not been attempted in
the present work.

As already noted by Zhou et al. (2022), there is an initial increase in IH(t). This is
explained by the fact that the magnetic field obeys Gaussian statistics initially, but not
during the later evolution. The inset shows the R dependence of IH(R; t) for different t.
The relevant value of R is deemed to be at the location where the local slope of IH(R)
is minimum at late times.

4. Conclusion

The present work has highlighted the power of dimensional arguments, which were
here applied to the case of the Hall cascade without helicity, where the magnetic field
is naturally represented as a quantity with units of a magnetic diffusivity. The magnetic
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helicity density has units of m5 s−2 and the Hosking integral has units of m13 s−4, which
yields q = 4/13, β = 3/2, and p = 10/13. Comparing with standard MHD, where the
magnetic field has units of ms−1, our exponents p and q are now smaller, but β is still
the same in both cases; see Table 2 for a comparison between Hall cascade and MHD.
The empirically determined value of β is somewhat larger, but this can be explained by
finite scale separation and small Lundquist numbers.

The decay properties of the Hall cascade are important in understanding resistive
heating in neutron stars while producing at the same time larger scale magnetic fields at
a certain speed (B20). Such simulations have already been done in spherical geometry
(Gourgouliatos et al. 2020), but the magnetic field in those simulations did not yet exhibit
clear forward or inverse cascading. This is presumably due to their initial magnetic field
being strongly localized at intermediate length scales. Using an initial broken power law,
as done here, would help producing the expected forward or inverse cascadings, but this
may also require much larger resolution than what is currently possible. Similarly, of
course, the values of ne and η are depth dependent in real neutron stars, but the work of
B20 showed that this did not affect the scaling behavior of the magnetic decay. Therefore,
importance of the Hosking integrals may well carry over to real neutron stars.
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