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Abstract

We consider large-scale dynamics of non-equilibrium dense soliton gas for the
Korteweg-de Vries (KdV) equation in the special “condensate” limit. We prove
that in this limit the integro-differential kinetic equation for the spectral density
of states reduces to the N -phase KdV-Whitham modulation equations derived by
Flaschka, Forest and McLaughlin (1980) and Lax and Levermore (1983). We con-
sider Riemann problems for soliton condensates and construct explicit solutions of
the kinetic equation describing generalized rarefaction and dispersive shock waves.
We then present numerical results for “diluted” soliton condensates exhibiting rich
incoherent behaviours associated with integrable turbulence.

1 Introduction

Solitons represent the fundamental localised solutions of integrable nonlinear dispersive
equations such as the Korteweg-de Vries (KdV), nonlinear Schrödinger (NLS), sine-
Gordon, Benjamin-Ono and other equations. Along with the remarkable localisation
properties solitons exhibit particle-like elastic pairwise collisions accompanied by definite
phase/position shifts. A comprehensive description of solitons and their interactions is
achieved within the inverse scattering transform (IST) method framework, where each
soliton is characterised by a certain spectral parameter related to the soliton’s amplitude,
and the phase related to its position (for the sake of definiteness we refer here to the
properties of KdV solitons). Generally, integrable equations support N -soliton solutions
which can be viewed as nonlinear superpositions of N solitons. Within the IST frame-
work N -soliton solution is characterised by a finite set of spectral and phase parameters
completely determined by the initial conditions for the integrable PDE.

The particle-like properties of solitons suggest some natural questions pertaining to
the realm of statistical mechanics, e.g. one can consider a soliton gas as an infinite
ensemble of interacting solitons characterised by random spectral (amplitude) and phase
distributions. The key question is to understand the emergent macroscopic dynamics
(i.e. hydrodynamics or kinetics) of soliton gas given the properties of the elementary,
“microscopic” two-soliton interactions. It is clear that, due to the presence of an infinite
number of conserved quantities and the lack of thermalisation in integrable systems the
properties of soliton gases will be very different compared to the properties of classical
gases whose particle interactions are non-elastic. Invoking the wave aspect of the soliton’s
dual identity, soliton gas can be viewed as a prominent example of integrable turbulence
[1]. The pertinent questions arising in this connection are related to the determination of
the parameters of the random nonlinear wave field in the soliton gas such as probability
density function, autocorrelation function, power spectrum etc.

The IST-based phenomenological construction of a rarefied, or diluted, gas of KdV
solitons was proposed in 1971 by V. Zakharov [2] who has formulated an approximate
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spectral kinetic equation for such a gas based on the properties of soliton collisions: the
conservation of the soliton spectrum (isospectrality) and the accumulation of phase shifts
in pairwise collisions that results in the modification of an effective average soliton’s
velocity in the gas. Zakharov’s spectral kinetic equation was generalised in [3] to the case
of a dense gas using the finite gap theory and the thermodynamic, infinite-genus, limit of
the KdV-Whitham modulation equations [4]. The results of [3] were used in [5] for the
formulation of a phenomenological construction of kinetic equations for dense soliton gases
for integrable systems describing both unidirectional and bidirectional soliton propagation
and including the focusing, defocusing and resonant NLS equations, as well as the Kaup-
Boussinesq system for shallow-water waves [6]. The detailed spectral theory of soliton
and breather gases for the focusing NLS equation has been developed in [7].

The spectral kinetic equation for a dense soliton gas represents a nonlinear integro-
differential equation describing the evolution of the density of states (DOS)—the density
function u(η;x, t) in the phase space (η, x) ∈ Γ+ × R, where η ∈ Γ+ ⊂ R+ is the spectral
parameter in the Lax pair associated with the nonlinear integrable PDE,

ut + (us)x = 0, s(η, x, t) = s0(η) +

∫
Γ+

G(η, µ)u(µ, x, t)[s(η, x, t)− s(µ, x, t)]dµ . (1.1)

Here s0(η) is the velocity of a “free” soliton, and the integral term in the second equation
represents the effective modification of the soliton velocity in the gas due to pairwise
soliton collisions that are accompanied by the phase-shifts described by the kernel G(η, µ).
Both s0(η) and G(η, µ) are system specific. In particular, for KdV s0 = 4η2 and G(η, µ) =
1
η

ln
∣∣∣µ+η
µ−η

∣∣∣. The spectral support Γ+ of the DOS is determined by initial conditions. We

note that, while Γ+ ⊂ R+ for the KdV equation, one can have Γ+ ⊂ C+ for other equatons,
e.g. the focusing NLS equation, see [7] . Equation (1.1) describes the DOS evolution in a
dense soliton gas and represents a broad generalisation of Zakharov’s kinetic equation for
rarefied gas [2]. The existence, uniqueness and properties of solutions to the “equation
of state” (the integral equation in (1.1) for fixed x, t) for the focusing NLS and KdV
equations were studied in [8].

The original spectral theory of the KdV soliton gas [3] has been developed under the
assumption that the spectral support Γ+ of the DOS is a fixed, simply-connected interval
of R+; without loss of generality one can assume Γ+ = [0, 1]. In [7], [8] this restriction has
been removed by allowing the spectral support Γ+ to be a union of N+1 disjoint intervals
γj = [λ2j−1, λ2j], termed here s-bands: Γ+ = ∪Nj=0γj, (γi ∩ γj = ∅, i 6= j). In this paper
we introduce a further generalization of the existing theory by allowing the endpoints
λi of the s-bands be functions of x, t. We show that this generalization has profound
implications for soliton gas dynamics, in particular, the kinetic equation implies certain
nonlinear evolution of the endpoints λj(x, t) of the s-bands. We determine this evolution
for a special type of soliton gases, termed in [7] soliton condensates. Soliton condensate
represents the “densest possible” gas whose DOS is uniquely defined by a given spectral
support Γ+. The number N of disjoint s-bands in Γ+ determines the genus g = N − 1
of the soliton condensate. We show that the evolution of λj’s in a soliton condensate is
governed by the g-phase averaged KdV-Whitham modulation equations [4], also derived
in the context of the semi-classical, zero-dispersion limit of the KdV equation [9].

We then consider the soliton condensate dynamics arising in the Riemann problem
initiated by a rapid jump in the DOS. Our results suggest that in the condensate limit
the KdV dynamics of soliton gas is almost everywhere equivalent to the (deterministic)
generalised rarefaction waves (RWs) and generalized dispersive shock waves (DSWs) of
the KdV equation. We prove this statement for the genus zero case and present a strong
numerical evidence for genus one. Our results also suggest direct connection of the “deter-
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ministic KdV soliton gases” constructed in the recent paper [10] with modulated soliton
condensates.

Our work puts classical results of integrable dispersive hydrodynamics (Flaschka-
Forest-McLaughlin [4], Lax-Levermore [9], Gurevich-Pitaevskii [11]) in a broader context
of the soliton gas theory. Namely, we show that the KdV-Whitham modulation equations
describe the emergent hydrodynamic motion of a special soliton gas—a condensate—
resulting from the accumulated effect of “microscopic” two-soliton interactions. This new
interpretation of the Whitham equations is particularly pertinent in the context of gener-
alized hydrodynamics, the emergent hydrodynamics of quantum and classical many-body
systems [52]. The direct connection between the kinetic theory of KdV soliton gas and gen-
eralized hydrodynamics was established recently in [53] (see also [54] where the Whitham
equations for the defocusing NLS equation were shown to arise in the semi-classical limit
of the generalised hydrodynamics of the quantum Lieb-Liniger model).

Our work also paves the way to a major extension of the existing dispersive hydrody-
namic theory by including the random aspect of soliton gases. To this end we consider
“diluted” soliton condensates whose DOS has the same spectral distribution as in genuine
condensates but allows for a wider spacing between solitons giving rise to rich incoherent
dynamics associated with “integrable turbulence” [1]. In particular, we show numeri-
cally that evolution of initial discontinuities in diluted soliton condensates results in the
development of incoherent oscillating rarefaction and dispersive shock waves.

An important aspect of our work is the numerical modelling of soliton condensates
using n-soliton KdV solutions with large n configured according to the condensate density
of states. The challenges of the numerical implementation of standard n-soliton formu-
lae for sufficiently large n due to rapid accumulation of roundoff errors are known very
well. Here we use the efficient algorithm developed in [45], which relies on the Darboux
transformation. We improve this algorithm following the recent methodology developed
in [46] for the focusing NLS equation with the implementation of high precision arithmetic
routine. Our numerical simulations show excellent agreement with analytical predictions
for the solutions of soliton condensate Riemann problems and provide a strong support
to the basic conjecture about the connection of KdV soliton condensates with finite-gap
potentials.

It should be noted that soliton condensates have been recently studied for the focusing
NLS equation, where they represent incoherent wave fields exhibiting distinct statistical
properties. In particular, it was shown in [55] that the so-called bound state soliton
condensate dynamics underies the long-term behavior of spontaneous modulational insta-
bility, the fundamental physical phenomenon that gives rise to the statistically stationary
integrable turbulence [56, 57].

The paper is organised as follows. In Section 2 we present a brief outline of the
spectral theory of soliton gas for the KdV equation and introduce the notion of soliton
condensate for the simplest genus zero case. In Section 3, following [8], we generalize
the spectral definition of soliton condensate to an arbitrary genus case and prove the
main Theorem 3.2 connecting spectral dynamics of non-uniform soliton condensates with
multiphase Whitham modulation theory [4] describing slow deformations of the spectrum
of periodic and quasiperiodic KdV solutions. Section 3 is concerned with properties of
KdV solutions corresponding to the condensate spectral DOS, i.e. the soliton condensate
realizations. We formulate Conjecture 4.1 that any realization of an equilibrium soliton
condensate almost surely coincides with a finite-gap potential defined on the condensate’s
hyperelliptic spectral curve. This proposition is proved for genus zero condensates and a
strong numerical evidence is provided for genus one and two. In Section 5 we construct
solutions to Riemann problems for the soliton gas kinetic equation subject to discontinu-
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ous condensate initial data. These solutions describe evolution of generalized rarefaction
and dispersive shock waves. In Section 6 we present numerical simulations of the Riemann
problem for the KdV soliton condensates and compare them with analytical solutions from
Section 5. Finally, in Section 7 we consider basic properties of “diluted” condensates hav-
ing a scaled condensate DOS and exhibiting rich incoherent behaviors. In particular, we
present numerical solutions to Riemann problems for such diluted condensates. Appendix
A contains details of the numerical implementation of dense soliton gases. In Appendix
B we present results of the numerical realization of the genus 2 soliton condensate and its
comparison with two-phase solution of the KdV equation.

2 Spectral theory of KdV soliton gas: summary of

results

Here we present an outline of the spectral theory of KdV soliton gas developed in [3, 12].
We consider the KdV equation in the form

ϕt + 6ϕϕx + ϕxxx = 0. (2.1)

The inverse scattering theory associates soliton of the KdV equation (2.1) with a point
z = z1 = −η2

1, η1 > 0 of the discrete spectrum of the Lax operator

L = −∂2
xx − ϕ(x, t), (2.2)

with sufficiently rapidly decaying potential ϕ(x, t): ϕ(x, t) → 0 as |x| → ∞. The corre-
sponding KdV soliton solution is given by

ϕs(x, t; η1) = 2η2
1sech2[η1(x− 4η2

1t− x0
1)], (2.3)

where the soliton amplitude a1 = 2η2
1, the speed s1 = 4η2

1, and x0
1 is the initial position or

‘phase’. Along with the simplest single-soliton solution (2.3) the KdV equation supports
N -soliton solutions ϕn(x, t) characterized by n discrete spectral parameters 0 < η1 < η2 <
· · · < ηn and the set of initial positions {x0

i |i = 1, . . . , n} associated with the phases of the
so-called norming constants [13]. It is also known that n-soliton solutions can be realized
as special limits of more general n-gap solutions, whose Lax spectrum Sn consists of N
finite and one semi-infinite bands separated by n gaps [13],

z ∈ Sn = [ζ1, ζ2] ∪ [ζ3, ζ4] ∪ · · · ∪ [ζ2n+1,∞). (2.4)

The n-gap solution of the KdV equation (2.1) represents a multiphase quasiperiodic func-
tion

ϕ(x, t) = Fn(θ1, θ2, . . . , θn), θj = kjx− ωjt+ θ0
j ,

Fn(. . . , θj + 2π, . . . ) = Fn(. . . , θj, . . . ),
(2.5)

where kj and ωj are the wavenumber and frequency associated with the j-th phase θj,
and θ0

j are the initial phases. Details on the explicit representation of the solution (2.5)
in terms of Riemann theta-functions can be found in classical papers and monographs on
finite-gap theory, see [59] and references therein.

The n-phase (n-gap) KdV solution (2.5) is parametrized by 2n+1 spectral parameters—
the endpoints {ζj}2n+1

j=1 of the spectral bands. The nonlinear dispersion relations (NDRs)
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for finite gap potentials can be represented in the general form, see [4] for the concrete
expressions,

kj = Kj(ζ1, . . . , ζ2n+1), ωj = Ωj(ζ1, . . . , ζ2n+1), j = 1, . . . , n, (2.6)

—and connect the wavenumber-frequency set {kj, ωj}nj=1 of (2.5) with the spectral set
Sn (2.4). These are complemented by the relation 〈ϕ〉 = Φ(ζ1, . . . , ζ2n+1), where 〈ϕ〉 =∫
Fndθ1 . . . dθn is the mean obtained by averaging of Fn over the phase n-torus Tn =

[0, 2π) × · · · × [0, 2π), assuming respective non-commensurability of kj’s and ωj’s and,
consequently, ergodicity of the KdV flow on the torus.

The n-soliton limit of an n-gap solution is achieved by collapsing all the finite bands
[ζ2j−1, ζ2j] into double points corresponding to the soliton discrete spectral values,

ζ2j − ζ2j−1 → 0, ζ2j, ζ2j−1 → −η2
j , j = 1, . . . , n. (2.7)

It was proposed in [3] that the special infinite-soliton limit of the spectral n-gap KdV
solutions, termed the thermodynamic limit, provides spectral description the KdV soliton
gas. The thermodynamic limit is achieved by assuming a special band-gap distribution
(scaling) of the spectral set Sn for n → ∞ on a fixed interval [ζ1, ζ2n+1] (e.g. [−1, 0]).
Specifically, we set the spectral bands to be exponentially narrow compared to the gaps
so that Sn is asymptotically characterized by two continuous nonnegative functions on
some fixed interval Γ+ ⊂ R+: the density φ(η) of the lattice points ηj ∈ Γ+ defining the
band centers via −η2

j = (ζ2j + ζ2j−1)/2, and the logarithmic bandwidth distribution τ(η)
defined for n→∞ by

ηj − ηj+1 ∼
1

nφ(ηj)
, τ(ηj) ∼ −

1

n
ln(ζ2j − ζ2j−1). (2.8)

The scaling (2.8) was originally introduced by Venakides [14] in the context of the con-
tinuum limit of theta functions.

Complementing the spectral distributions (2.8) with the uniform distribution of the
initial phase vector θ0 on the torus Tn we say that the resulting random finite gap solution
ϕ(x, t) approximates soliton gas as n→∞. An important consequence of this definition
of soliton gas is ergodicity, implying that spatial averages of the KdV field in a soliton gas
are equivalent to the ensemble averages, i.e. the averages over Tn in the thermodynamic
limit n→∞. We shall use the notation 〈F [ϕ]〉 for ensemble averages and F [ϕ] for spatial
averages.

From now on we shall refer to η as the spectral parameter and Γ+–the spectral support.
The density of states (DOS) u(η) of a spatially homogeneous (equilibrium) soliton gas is
phenomenologically introduced in such a way that u(η0)dηdx gives the number of solitons
with the spectral parameter η ∈ [η0; η0 +dη] contained in the portion of soliton gas over a
macroscopic (i.e. containing sufficiently many solitons) spatial interval x ∈ [x0, x0 +dx] ⊂
R for any x0 (the individual solitons can be counted by cutting out the relevant portion
of the gas and letting them separate with time). The corresponding spectral flux density
v(η) represents the temporal counterpart of the DOS i.e. v(η0)dη is the number of solitons
with the spectral parameter η ∈ [η0; η0 + dη] crossing any given point x = x0 per unit
interval of time. These definitions are physically suggestive in the context of rarefied
soliton gas where solitons are identifiable as individual localized wave structures. The
general mathematical definitions of u(η) and v(η) applicable to dense soliton gases are
introduced by applying the thermodynamic limit to the finite-gap NDRs (2.6), leading to
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the integral equations [3, 12]:∫
Γ+

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣u(µ)dµ+ u(η)σ(η) = η, (2.9)∫
Γ+

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣ v(µ)dµ+ v(η)σ(η) = 4η3, (2.10)

for all η ∈ Γ+. Here the spectral scaling function σ : Γ+ → [0,∞) is a continuous non-
negative function that encodes the Lax spectrum of soliton gas via σ(η) = φ(η)/τ(η).
Equations (2.9), (2.10) represent the soliton gas NDRs.

Eliminating σ(η) from the NDRs (2.9), (2.10) yields the equation of state for KdV
soliton gas:

s(η) = 4η2 +
1

η

∫
Γ+

log

∣∣∣∣η + µ

η − µ

∣∣∣∣u(µ)[s(η)− s(µ)]dµ, (2.11)

where s(η) = v(η)/u(η) can be interpreted as the velocity of a tracer soliton in the gas. It
was shown in [3] that for a weakly non-uniform (non-equilibrium) soliton gas, for which
u(η) ≡ u(η;x, t), s(η) ≡ s(η;x, t), the DOS satisfies the continuity equation

ut + (us)x = 0, (2.12)

so that s(η;x, t) acquires the natural meaning of the transport velocity in the soliton gas.
Equations (2.12), (2.11) form the spectral kinetic equation for soliton gas. One should
note that the typical scales of spatio-temporal variations in the kinetic equation (2.12)
are much larger than in the KdV equation (2.1), i.e. the kinetic equation describes
macroscopic evolution, or hydrodynamics, of soliton gases.

Let the spectral support Γ+ be fixed. Then, differentiating equation (2.9) with respect
to t, equation (2.10) with respect to x, and using the continuity equation (2.12) we obtain
the evolution equation for the spectral scaling function

σt + sσx = 0, (2.13)

which shows that σ(η;x, t) plays the role of the Riemann invariant for the spectral kinetic
equation.

Finally, the ensemble averages of the conserved densities of the KdV wave field in
the soliton gas (the Kruskal integrals) are evaluated in terms of the DOS as 〈Pn[ϕ]〉 =
Cn
∫

Γ+ η
2n−1u(η)dη, where Pn[ϕ] are conserved quantities of the KdV equation and Cn

constants [3, 12] (see also [15] for rigorous derivation in the NLS context). In particular,
for the two first moments we have, on dropping the x, t-dependence [3, 12],

〈ϕ〉 = 4

∫
Γ+

η u(η)dη, 〈ϕ2〉 =
16

3

∫
Γ+

η3 u(η)dη. (2.14)

We note that in the original works on KdV soliton gas it was assumed (explicitly or
implicitly) that the spectral support Γ+ of the KdV soliton gas is a fixed, simply connected
interval (without loss of generality one can assume that in this case Γ+ = [0, 1]). In what
follows we will be considering a more general configuration where Γ+ represents a union
of N + 1 disjoint intervals.

A special kind of soliton gas, termed soliton condensate, is realized spectrally by letting
σ → 0 in the NDRs (2.9), (2.10). This limit was first considered in [7] for the soliton gas in
the focusing NLS equation and then in [8] for KdV. Loosely speaking, soliton condensate
can be viewed as the “densest possible” gas (for a given spectral support Γ+) whose
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properties are fully determined by the interaction (integral) terms in the NDRs (2.9),
(2.10).

For the KdV equation, setting σ = 0 and, considering the simplest case Γ+ = [0, 1]
in (2.9), (2.10), we obtain the soliton condensate NDRs [12]:∫ 1

0

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣u(µ)dµ = η,

∫ 1

0

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣ v(µ)dµ = 4η3. (2.15)

These are solved by

u(η) =
η

π
√

1− η2
, v(η) =

6η(2η2 − 1)

π
√

1− η2
, (2.16)

as verified by direct substitution (it is advantageous to first differentiate equations (2.15)
with respect to η). The formula (2.16) for u(η) is sometimes called the Weyl distribution,
following the terminology from the semiclassical theory of linear differential operators [9].

Remark 2.1. The meaning of the zero η0 = 1/
√

2 of v(η) is that all the tracer solitons
with the spectral parameter η > η0 move to the right, whereas all the tracer solitons with
η < η0 move in the opposite direction while the tracer soliton with η = η0 is stationary.
The somewhat counter-intuitive “backflow” phenomenon (we remind that KdV solitons
considered in isolation move to the right) has been observed in the numerical simulations of
the KdV soliton gas [16] and can be readily understood from the phase shift formula of two
interacting solitons, where the the larger soliton gets a kick forward upon the interaction
while the smaller soliton is pushed back. As a matter of fact, the KdV soliton backflow is
general and can be observed for a broad range of sufficiently dense gases (see Fig. 16 in
Section 7.1 for the numerical illustration).

3 Soliton condensates and their modulations

We now consider the general case of the soliton gas NDRs (2.9), (2.10) by letting the
support Γ+ ⊂ R+ of u(η), v(η) to be a union of disjoint intervals γk ⊂ R+ with endpoints
λj > 0, j = 1, 2, . . . , 2N + 1, where γ0 = [0, λ1] and γk = [λ2k, λ2k+1], k = 1, . . . , N , i.e.

Γ+ = [0, λ1] ∪ [λ2, λ3] ∪ · · · ∪ [λ2N , λ2N+1]. (3.1)

We shall call the intervals γk the s-bands, and the soliton gas spectrally supported on
Γ+ (3.1)— the genus N soliton gas. Correspondingly, we refer to the intervals cj =
(λ2j−1, λ2j) separating the s-bands as to s-gaps. Note that the s-bands and s-gaps are
different from the original bands and gaps in the spectrum Sn of finite-gap potential
(cf. (2.4)) as they emerge after the passage to the thermodynamic limit: loosely speaking,
one can view the s-bands as a continuum limit of the “thermodynamic band clusters”, each
representing an isolated dense subset of S∞ consisting of the collapsing original bands.
The existence and uniqueness of solutions u(η), v(η) for (2.9), (2.10) respectively, as well
as the fact that u(η) ≥ 0 on Γ+ with some mild constraints, was established in [8]. Our
goal here is to find explicit expressions for u, v for the genus N soliton condensate, that
is, solutions of (2.9), (2.10) for the particular case σ ≡ 0 on Γ+.

Denote by Γ− the symmetric image of Γ+ with respect to the origin, i.e., Γ− = −Γ+.
If we take the odd continuation of u, v to Γ− (preserving the same notations), we observe
that equations (2.9), (2.10) become

−
∫

Γ

ln |µ− η|u(µ)dµ+ u(η)σ(η) = η, (3.2)

−
∫

Γ

ln |µ− η|v(µ)dµ+ v(η)σ(η) = 4η3, (3.3)
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where Γ := Γ+ ∪ Γ−, for all η ∈ Γ+. In fact, if we symmetrically extend σ(η) from Γ+ to
Γ, equations (3.2), (3.3) should be valid on Γ since every term in these equations is odd.
The expressions (2.14) for the first two moments (ensemble averages) of the KdV wave
field in the soliton gas become

〈ϕ〉 = 2

∫
Γ

η u(η)dη, 〈ϕ2〉 =
8

3

∫
Γ

η3 u(η)dη. (3.4)

We now consider soliton condensate of genus N by setting σ ≡ 0 in (3.2), (3.3). Then,
differentiating in η we obtain

H[u] =
1

π
, H[v] =

12η2

π
on Γ, (3.5)

where H denotes the Finite Hilbert Transform (FHT) on Γ, see for example [17], [18],

H[f ](ξ) =
1

π

∫
Γ

f(y)dy

y − ξ
. (3.6)

Equations (3.5) are the (transformed) NDRs for the KdV soliton condensate.
To find u, v for the soliton condensate, it is sufficient to invert the FHT H on Γ. Denote

by R2N the hyperelliptic Riemann surface of the genus 2N , defined by the branchcuts
(s-bands) γk, k = 0,±1, . . . ,±N , where γ−k = −γk. Define two meromorphic differentials
of second kind, dp and dq on R2N by

dp =
iP (η)

2πR(η)
dη, dq =

2iQ(η)

πR(η)
dη, (3.7)

where

R(η) =
√

(η2 − λ2
1)(η2 − λ2

2) . . . (η2 − λ2
2N+1), (3.8)

and P,Q are odd monic polynomials of degree 2N + 1 and 2N + 3 respectively that are
chosen so that all their s-gap integrals are zero, i.e.

λ2j∫
λ2j−1

dp =

λ2j∫
λ2j−1

dq = 0, j = 1, . . . , N. (3.9)

Equivalently, one can say that dp, dq are real normalized differentials. Note that
Equations (3.7), (3.9) uniquely define dp, dq.

Theorem 3.1. Functions u(η) = dp/dη and v(η) = dq/dη defined by (3.7) and (3.9)
satisfy the respective equations (3.5) and are odd and real valued on Γ. Thus u, v are the
solutions of NDRs (2.9), (2.10) for σ = 0. Moreover, u(η) ≥ 0 on Γ+. Here the value of
R(η) for η ∈ Γ is taken on the positive (upper) shore of the branchcut.

Theorem 3.1 for u was proven in [8], Section 6, for the so-called bound state soliton
condensate. The proof for KdV is analogous. The proof for v goes along the same lines,
except v(η) attains different signs.

Remark 3.1. The normalization (3.9) requires that both polynomials P,Q have zeros in
every of the 2N gaps on [−λ2N+1, λ2N+1]. Note also that P (0) = Q(0) = 0. That takes
care of all the zeros of P . The polynomial Q has two additional symmetric real zeros
±η0 that must be located on some band γk and its symmetrical image γ−k, see below. In
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the case N = 0 such zeros are η0 = ± 1√
2
, see (2.16). Let us prove that η0 belongs to a

band. It is easy to see that the zero level curves =
∫ η

0
dp = 0 consist of all bands and the

imaginary axis, whereas the zero level curves =
∫ η

0
dq = 0 consist of that of =

∫ η
0
dp = 0

with an extra two curves crossing R at ±η0 and approaching z = ∞ with angles ±π
6

and
±5π

6
respectively. Note that there must be four zero level curves passing through ±η0 and,

therefore, they must be on the bands.

Thus, for the soliton condensate of genus N , we obtain, on using Theorem 3.1 and
Equation (3.7),

u(η) ≡ u(N)(η;λ1, . . . λ2N+1) =
iP (η)

2πR(η)
, v(η) ≡ v(N)(η;λ1, . . . , λ2N+1) =

2iQ(η)

πR(η)
.

(3.10)
The velocity of a tracer soliton with the spectral parameter η ∈ Γ+ propagating in the

0 61 62 63 64 65

2

0

0.5

1

1.5
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u
(2

) (
2
)

(a) 0 61 62 63 64 65

2

-5

0
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s(
2)
(2

)

(b)

Figure 1: Spectral distributions (3.10) for genus 2 soliton condensate. a) Density of states
u(2)(η;λ). b) Tracer velocity s(2)(η;λ). Here λ = (λ1, λ2, λ3, λ4, λ5) = (0.3, 0.5, 0.7, 0.9, 1).

soliton condensate with DOS u(η) is then found as

s(η) ≡ s(N)(η;λ1, . . . , λ2N+1) =
v(η)

u(η)
=

4Q(η)

P (η)
. (3.11)

As an illustrative example we present in Fig. 1 the plots of the DOS and tracer velocity
for the genus 2 soliton condensate.

We now consider slow modulations of non-equilibrium (non-uniform) soliton conden-
sates by assuming u ≡ u(η;x, t), v ≡ v(η;x, t), Γ ≡ Γ(x, t). Equations (2.12), (3.10) then
yield the kinetic equation for genus N soliton condensate:(

P

R

)
t

+

(
4Q

R

)
x

= 0, (3.12)

that is valid for η ∈ Γ = ∪Nk=−N(γk). The velocity (3.11) then assumes the meaning of
the tracer, or transport, velocity in a non-uniform genus N soliton condensate.

Theorem 3.2. The kinetic equation (3.12) for soliton condensate implies the evolution
of the endpoints λj, j = 1, . . . , 2N + 1 according to the Whitham modulation equations

∂tλj + Vj(λ)∂xλj = 0, j = 1, . . . , 2N + 1, (3.13)

where λ = (λ1, . . . , λ2N+1) and

Vj(λ) = s(N)(λj;λ1, . . . , λ2N+1) =
4Q(λj)

P (λj)
. (3.14)
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Proof. (See [19]) Multiplying (3.12) by (η2 − λ2
j)

3/2 and passing to the limit η → λj
we obtain equations (3.13), (3.14) for the evolution of the spectral s-bands (i.e. the
evolution of Γ(x, t)). These are the KdV-Whitham modulation equations [4], [9] (see also
Remark 3.2 below).

Corollary 3.1. The endpoints of the “special” band γk = [λ2k, λ2k+1], k 6= 0, containing
the point η0 of zero tracer speed, s(η0) = 0, are moving in opposite directions, whereas
all the endpoints on the same side from η0 are moving in the same direction. See Fig. 1
(right) for N = 2

Remark 3.2. Modulation equations (3.12), (3.13) were originally derived by Flaschka,
Forest and McLaughlin [4] by averaging the KdV equation over the multiphase (finite-
gap) family of solutions. These equations along with the condensate NDRs (3.5), also
appear in the seminal work of Lax and Levermore [9] in the context of the semiclassical
(zero-dispersion) limit of multi-soliton KdV ensembles (see Section 5 and, in particular,
Equation (5.23) in [9]). A succinct exposition of the spectral Whitham theory for the KdV
equation can be found in Dubrovin and Novikov [19]).

Remark 3.3. The Whitham modulation equations (3.13), (3.14) are locally integrable for
any N via Tsarev’s generalized hodograph transform [20, 19]. Moreover, by allowing the
genus N to take different values in different regions of x, t-plane, N = N(x, t), global
solutions of the KdV-Whitham system can be constructed for a broad class of initial data
(see Section 4.2 for further details). Invoking the definitive property σ ≡ 0 of a soliton
condensate, the existence of the solution to an initial value problem for the Whitham
system for all t > 0 implies that this property will remain invariant under the t-evolution,
i.e. soliton condensate will remain a condensate during the evolution, however its genus
can change.

The finite-genus Whitham modulation system (3.13), (3.14) can be viewed as an exact
hydrodynamic reduction of the full kinetic equation (2.12), (2.11) under the ansatz (3.10),
(3.11). Recalling the origin of the soliton gas kinetic equation as a singular, thermo-
dynamic limit of the Whitham equations [3] the recovery of the finite-genus Whitham
dynamics in the condensate limit might not look surprising. On the other hand, viewed
from the general soliton gas perspective the condensate reduction notably shows that the
highly nontrivial nonlinear modulation (hydro)dynamics emerges as a collective effect of
the elementary two-soliton scattering events. This understanding is in line with ideas
of generalised hydrodynamics, a powerful theoretical framework for the description of
non-equilibrium macroscopic dynamics in many-body quantum and classical integrable
systems [21]. The connection of the KdV soliton gas theory with generalised hydrody-
namics has been recently established in [22]. Relevant to the above, it was shown in [23]
that the semiclassical limit of the generalised hydrodynamics for the Lieb-Liniger model
of Bose gases yields the Whitham modulation system for the defocusing NLS equation.

A different type of hydrodynamic reductions of the soliton gas kinetic equation defined
by the multi-component delta-function ansatz u(η, x, t) =

∑m
i=1wi(x, t)δ(η − ηj) for the

DOS has been studied in [24] for ηj = const and in [25, 26] for ηj = ηj(x, t). One of
the definitive properties of the multicomponent hydrodynamic reductions of this type is
their linear degeneracy which, in particular, implies the absence of the wavebreaking and
the occurrence of contact discontinuities in the solutions of Riemann problems [27]. In
contrast, the condensate (Whitham) system (3.13), (3.14) obtained under the condition
σ ≡ 0 is known to be genuinely nonlinear, ∂Vj/∂λj 6= 0, j = 1, . . . 2N + 1 [28] implying
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the inevitability of wavebreaking for general initial data, which is in stark contrast with
linear degeneracy of the multicomponent “cold-gas” hydrodynamic reductions. Recon-
ciling the genuine nonlinearity property of soliton condensates with linearly degenerate
non-condensate multicomponent cold-gas dynamics is an interesting problem which will
be considered in future publications.

Thus, we have shown that the spectral dynamics of soliton condensates are equivalent
to those of finite gap potentials, which naturally suggests a close connection (or even
equivalence) of these two objects at the level of realizations, i.e. the corresponding solu-
tions ϕ(x, t) of the KdV equation. This connection will be explored in the next section
using a combination of analytical results and numerical simulations for genus 0 and genus
1 soliton condensates.

4 Genus 0 and genus 1 soliton condensates

Having developed the spectral description of KdV soliton condensates, we now look closer
at the two simplest representatives: genus 0 and genus 1 condensates. In particular, we
shall be interested in the characterization of the realizations of soliton condensates, i.e.
the KdV solutions, denoted ϕ

(N)
c (x, t), corresponding to the condensate spectral DOS

u(N)(η) for N = 0, 1. We do not attempt here to construct the soliton gas realizations
explicitly via the thermodynamic limit of finite gap potentials (see Section 2), instead, we
infer some of their key properties from the expressions (3.4) for the ensemble averages as
integrals over the spectral DOS. We then conjecture the exact form of soliton condensate
realizations and support our conjecture by detailed numerical simulations.

4.1 Equilibrium properties

4.1.1 Genus 0

For N = 0 equations (3.10) for the DOS and the spectral flux density yield (cf. (2.16))

u(η) = u(0)(η;λ1) ≡ η

π
√
λ2

1 − η2
, v(η) = v(0)(η;λ1) ≡ 6η(2η2 − λ2

1)

π
√
λ2

1 − η2
, (4.1)

so that the tracer velocity (cf. (3.11))

s(η) = s(0)(η;λ1) = 6(2η2 − λ2
1). (4.2)

Next, substituting (4.1) in (3.4) (where Γ = [−λ1, λ1] or equivalently, Γ+ = [0, λ1]),
we obtain for the ensemble averages:

〈ϕ〉 = λ2
1, 〈ϕ2〉 = λ4

1, (4.3)

where ϕ ≡ ϕ
(0)
c (x, t). Thus the variance ∆ =

√
〈ϕ2〉 − 〈ϕ〉2 =

√
〈(ϕ− 〈ϕ〉)2〉 = 0, which

implies (see, e.g. [29]) that genus 0 soliton condensate is almost surely described by a
constant solution of the KdV equation , i.e.

ϕ = 〈ϕ〉 = λ2
1 (4.4)

(note that constant solution is classified as a genus 0 KdV potential).
This result can be intuitively understood by identifying soliton condensate with the

“densest possible” soliton gas for a given spectral support Γ. The densest “packing”
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for genus 0 is achieved by distributing soliton parameters according to the spectral DOS
u(η) (4.1) which results in the individual solitons “merging” into a uniform KdV field of
amplitude λ2

1. The numerical implementation of soliton condensate realizations, using n-
soliton KdV solution with n large, shows that the condensate DOS (4.1) is only achievable
within this framework if all n solitons in the solution have the same phase of the respective
norming constants. Invoking the interpretation of the phase of the norming constant as the
soliton position in space [13, 30] one can say that in the condensate all solitons are placed
at the same point, say x = 0 (cf. Appendix A for a mathematical justification). Details of
the numerical implementation of KdV soliton gas using n-soliton solutions can be found
in Appendix A. Fig. 2 displays the realization ϕ

(0)
c (x) of genus 0 soliton condensate with

λ1 = 1 modeled by n-soliton solutions ϕn(x) with n = 100 and n = 200, along with
the absolute errors ϕn(x) − 1; in the following we refer to these n-soliton solutions as
“numerical realizations” of the soliton gas. One can see that the error at the center of
the numerical domain, where the gas is nearly uniform, is very small: Fig. 3 displays the
variation of this error with n and shows that it decreases with 1/n2. The numerical
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Figure 2: a) Comparison between numerical realizations of genus 0 condensate generated
with 100 solitons (dashed line), 200 solitons (black solid line), and the constant KdV
solution ϕ = 1 (red solid line). b) Corresponding absolute errors |ϕn(x) − 1| obtained
with 50 solitons (dashed line), 100 solitons (solid line) and 200 (dash-dotted line); the
absolute error is evaluated at the extrema of the oscillations.
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Figure 3: Variation of the absolute error |ϕn(x)−1| at the center of the numerical domain
x = 0 (cf. Fig. 2). The markers correspond to the error obtained numerically and the
solid line the corresponding fit α/n2 where α ≈ 0.25.

approximation used here is similar to the approximation of the soliton condensate of the
focusing NLS equation via a n-soliton solution presented in [50]. In the latter case the
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uniform wavefield limit as a central part of the so-called “box potential”, is also reached
when the complex phases of the norming constants are chosen deterministically. The
absolute error—the difference between the n-soliton solution and the expected constant
value of the wavefield—measured at the center of the numerical realization—follows a
different scaling law and is proportional to n−1/2.

4.1.2 Genus 1

We now consider the case of genus 1 soliton condensate. For N = 1

R(η) =
√

(η2 − λ2
1)(η2 − λ2

2)(η2 − λ2
3) (4.5)

is purely imaginary on Γ = [−λ3,−λ2] ∪ [−λ1, λ1] ∪ [λ2, λ3]. According to Theorem 3.1

u(η) = u(1)(η;λ1, λ2, λ3) ≡ iη(η2 − w2)

πR(η)
, (4.6)

v(η) = v(1)(η;λ1, λ2, λ3) ≡ 12iη(η4 − h2η2 − r2)

πR(η)
, (4.7)

where h2 =
λ21+λ22+λ23

2
follows from the fact that −iRes Q(ζ)

(ζ−η)R(ζ)

∣∣∣
ζ=∞

= −6η2. The normal-

ization conditions (3.9) imply that

w2 =

∫ λ2
λ1

y3dy
R(y)∫ λ2

λ1

ydy
R(y)

, r2 =

∫ λ2
λ1

y5−λ
2
1+λ

2
2+λ

2
3

2
y3

R(y)
dy∫ λ2

λ1

ydy
R(y)

. (4.8)

Using 3.131.3 and 3.132.2 from [31], we calculate

w2 = λ2
3 − (λ2

3 − λ2
1)µ(m), where µ(m) =

E (m)

K (m)
and m =

λ2
2 − λ2

1

λ2
3 − λ2

1

. (4.9)

Calculation of r2 is a bit more involved as it is based on the observation∫ λ2

λ1

y5

R(y)
dy =

1

2

∫ λ22

λ21

z2dz

R(z
1
2 )
,

=
λ2

1 + λ2
2 + λ2

3

3

∫ λ22

λ21

zdz

R(z
1
2 )
− λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3

6

∫ λ22

λ21

dz

R(z
1
2 )
.

(4.10)

Using (4.8), (4.10), we obtain after some algebra

r2 =
1

6

[
λ2

3(λ2
3 − λ2

2 − λ2
1)− 2λ2

2λ
2
1 − (λ2

3 + λ2
1 + λ2

2)(λ2
3 − λ2

1)µ(m)
]
. (4.11)

Thus, the velocity of a tracer soliton with spectral parameter η ∈ Γ+ in the genus 1 soliton
condensate, characterized by DOS (4.6), is given by

s(η) ≡ s(1)(η;λ1, λ2, λ3) = 12
η4 − λ22+λ23+λ21

2
η2 − r2

η2 − w2

= 12
η4 − λ22+λ23+λ21

2
η2 − λ23(λ23−λ22−λ21)−2λ22λ

2
1−(λ23+λ21+λ22)(λ23−λ21)µ(m)

6

η2 − λ2
3 + (λ2

3 − λ2
1)µ(m)

.

(4.12)
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We note that a similar expression for the tracer velocity in a dense soliton gas was obtained
in [32] in the context of the modified KdV (mKdV) equation.

For N = 1 the integrals (3.4) for the mean and mean square of the soliton condensate

wave field ϕ ≡ ϕ
(1)
c (x, t) can be explicitly evaluated using (253.11) and (256.11) from [33]

and 19.7.10 from [49]:

〈ϕ〉 = λ2
1 + λ2

2 − λ2
3 + 2(λ2

3 − λ2
1)µ(m), (4.13)

〈ϕ2〉 =
2(λ2

1 + λ2
2 + λ2

3)

3
〈ϕ〉+

λ4
1 + λ4

2 + λ4
3 − 2λ2

1λ
2
2 − 2λ2

2λ
2
3 − 2λ2

1λ
2
3

3
, (4.14)

with µ(m) and m given by (4.9). It is not difficult to verify that, unlike in the case of
genus 0 condensates, the variance ∆ =

√
〈ϕ2〉 − 〈ϕ〉2 does not vanish identically implying

that all realizations of the genus 1 soliton condensate are almost surely non-constant.
A key observation is, that formulae (4.13), (4.14) coincide with the period averages

ϕ and ϕ2 of the genus 1 KdV solution associated with the spectral Riemann surface R2

of (4.5) (see e.g. [34, 35]):

ϕ(x, t) ≡ F1(θ;λ1, λ2, λ3) = λ2
1 + λ2

2 − λ2
3 + 2(λ2

3 − λ2
1)dn2

(√
λ2

3 − λ2
1

k
θ;m

)
,

θ = k(x− Ut) + θ0, U = 2(λ2
1 + λ2

2 + λ2
3), k =

π
√
λ2

3 − λ2
1

K(m)
,

(4.15)

where θ0 ∈ [0, 2π) is an arbitrary initial phase. The equivalence between the ensemble
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Figure 4: Comparison between the numerical realization of genus 1 condensate generated
with 200 solitons (black solid line), 200 solitons (black solid line), and the exact cnoidal
wave solution F1(kx) (4.15) (red dashed line) for λ1 = 0.5, λ2 = 0.85, λ3 = 1 (m = 0.63);
the two plots are visually indistinguishable from one another. b) Corresponding absolute
errors ϕn(x)−F1(kx) obtained with 50 solitons (dashed line), 100 solitons (solid line) and
200 (dash-dotted line); the absolute error is evaluated at the extrema of the oscillations.

averages in genus 1 KdV soliton condensates and the period averages in single-phase
KdV solutions, along with the established in Section 3 equivalence between the respective
modulation dynamics, strongly suggest that realizations of the genus 1 soliton condensates
are described by the periodic solutions F1(θ) (4.15) of the KdV equation. This motivates
the following

Conjecture 4.1. For any realization ϕ = ϕ
(1)
c (x, t) of the genus 1 KdV soliton conden-

sate associated with the spectral curve R2 of (4.5) one can find the initial phase θ0 ∈
[0, 2π) in the periodic solution F1(θ;λ1, λ2, λ3) (4.15) such that almost surely ϕ

(1)
c (x, t) =

F1(θ;λ1, λ2, λ3).
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We support Conjecture 4.1 by a detailed comparison of a numerical realization of KdV
soliton condensate (as n-soliton solution with n large) spectrally configured according to
the DOS (4.6), and the periodic KdV solution (4.15), defined on the same spectral curve
R2, with the appropriately chosen initial phase θ0 (see Appendix A for the details of the
numerical implementation of soliton condensate). The comparison is presented in Fig. 4
and reveals a remarkable agreement, which further improves as n increases.

Conjecture 4.1 can be naturally generalized to an arbitrary genus N : for any real-
ization of the KdV soliton condensate of genus N corresponding to the density of states
u(N)(η;λ) (3.10) and associated with the spectral Riemann surface R2N of (3.8), one can

find N -component initial phase vector θ0 ∈ TN so that ϕ
(N)
c (x, t) almost surely coincides

with N -phase KdV solution ϕ = FN(θ;λ) (2.5). To support this generalization we per-
formed a comparison of a numerical realization of the genus 2 soliton condensate with the
respective two-phase (two-gap) KdV solution, see Appendix B.

A rigorous mathematical proof of Conjecture 4.1 and its generalization for an arbitrary
genus will be the subject of future work.

In conclusion we note that Conjecture 4.1 correlates with the results of [10] where a
particular “deterministic soliton gas” solution of the KdV equation has been constructed
by considering the n-soliton solution with the discrete spectrum confined within two sym-
metric intervals—the analogs of s-bands of our work—and letting n→∞. This solution
was shown in [10] to represent a primitive potential [36] whose long-time asymptotics is
described at leading order by a modulated genus 1 KdV solution. A similar construction
was realized for the mKdV equation in [32].

4.2 Modulation dynamics

The dynamics of DOS in non-equilibrium (weakly non-homogeneous) soliton condensates
is determined by the evolution of the endpoints λj of the spectral bands of Γ (the s-
bands). As proven in Section 3, this evolution is governed by the Whitham modulation
equations (3.13). Properties of the KdV-Whitam modulation systems are well studied: in
particular, system (3.13) is strictly hyperbolic and genuinely nonlinear for any genus N ≥
1 [28]. This implies inevitability of wavebreaking for a broad class of initial conditions.
What is the meaning of the wavebreaking in the context of soliton condensates, and how
is the solution of the kinetic equation continued beyond the wavebreaking time?

We first invoke the definitive property of a soliton condensate—the vanishing of the
spectral scaling function, σ(η) ≡ 0 in the soliton gas NDRs (2.9). According to Re-
mark 3.3, if σ(η;x, 0) ≡ 0 for all x ∈ R, then σ(η;x, t) ≡ 0 for all x ∈ R, ∀t > 0 implying
that soliton condensate necessarily remains a condensate during the evolution (at least
of some class of initial data). The only qualitative modification that is permissible dur-
ing the evolution is the change of the genus N . The description of the evolution of a
soliton condensate is then reduced to the determination of the spectral support Γ(x, t),
parametrizing the DOS via the band edges λj(x, t): u = u(N)(η;λ1, . . . λ2N+1) (3.10).

In view of the above, the evolution of soliton condensates can be naturally put in the
framework of the problem of hydrodynamic evolution of multivalued functions originally
formulated by Dubrovin and Novikov [19]. Let ΛN(x, t) = {λ1(x, t), . . . , λ2N+1(x, t)} be
a smooth multivalued curve whose branches λj(x, t) satisfy the Whitham modulation
equations (3.13). Then, if wavebreaking occurs within one of the branches it results in
a change of the genus N so that ΛN → ΛN+1 in some space-time region [x−(t), x+(t)]
that includes the wavebreaking point. The curves ΛN and ΛN+1 are glued together at
free boundaries x±(t). Details of the implementation of this procedure can be found in
[19, 37, 38, 39]. The simplest case of the multivalued curve evolution arises when the
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initial data for ΛN is a piecewise-constant distribution (both for λj’s and for N), with
a discontinuity at x = 0 — a Riemann problem. In this special case the wavebreaking
occurs at t = 0 (subject to appropriate sign of the initial jump) and smoothness of ΛN is
not a prerequisite.

In this paper, we restrict ourselves to Riemann problems involving only genus 0 and
genus 1 modulation solutions and show how the resulting spectral dynamics are interpreted
in terms of soliton condensates. For that we will need explicit expressions for the Whitham
characteristic velocities for N = 0 and N = 1. These expressions are known very well
(see e.g. [11, 34, 35]) but here we obtain them as transport velocities for the respective
soliton condensates, using the expressions (4.2), and (4.12) respectively.

(i) N = 0. Consider a non-equilibrium (non-uniform) soliton condensate of genus 0,
characterized by a space-time dependent DOS u(η;x, t). To this end we set η = λ1(x, t)
in (4.2), then the Whitham system (3.13), (3.14) assumes the form of the Hopf (inviscid
Burgers) equation

(λ1)t + 6λ2
1(λ1)x = 0. (4.16)

Note that this is exactly the result obtained by Lax and Levermore [9] for the pre-breaking
evolution of semi-classical soliton ensembles.

(ii) N = 1. We obtain on using (4.12),

(λj)t + Vj(λ1, λ2, λ3)(λj)x = 0, j = 1, 2, 3, (4.17)

where

V1(λ1, λ2, λ3) ≡ s(1)(λ1;λ1, λ2, λ3) = 2(λ2
1 + λ2

2 + λ2
3) +

4(λ2
2 − λ2

1)

µ(m)− 1
,

V2(λ1, λ2, λ3) ≡ s(1)(λ2;λ1, λ2, λ3) = 2(λ2
1 + λ2

2 + λ2
3) +

4(λ2
3 − λ2

2)(λ2
2 − λ2

1)

λ2
3 − λ2

2 − (λ2
3 − λ2

1)µ(m)
,

V3(λ1, λ2, λ3) ≡ s(1)(λ3;λ1, λ2, λ3) = 2(λ2
1 + λ2

2 + λ2
3) +

4(λ2
3 − λ2

2)

µ(m)
,

(4.18)

and µ(m) is defined in (4.9). System (4.17), (4.18) coincides with the original Whitham
modulation equations derived for rj = 6λ2

j in [40] by averaging KdV conservation laws
over the single-phase, cnoidal wave family of solutions (see also [11, 19, 34, 35]).

5 Riemann problem for soliton condensates

The classical Riemann problem consists of finding solution to a system of hyperbolic con-
servation laws subject to piecewise-constant initial conditions exhibiting discontinuity at
x = 0. The distribution solution of such Riemann problem generally represents a com-
bination of constant states, simple (rarefaction) waves and strong discontinuities (shocks
or contact discontinuities) [41]. In dispersive hydrodynamics, classical shock waves are
replaced by dispersive shock waves (DSWs) — nonlinear expanding wavetrains with a
certain, well-defined structure [35]. Here we generalize the Riemann problem formulation
to the soliton gas kinetic equation by considering (1.1) subject to discontinuous initial
DOS:

u(η, x, t = 0) =

{
u(N−)(η;λ−1 , . . . , λ

−
2N−+1), x < 0,

u(N+)(η;λ+
1 , . . . , λ

+
2N++1), x > 0,

(5.1)

where u(N)(η;λ1, . . . , λ2N+1) is the DOS (3.10) of genus N condensate and λ±j > 0.
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As discussed in Section 4.2, soliton condensate necessarily retains its definitive prop-
erty σ = 0 during the evolution, with the only qualitative modification permissible being
the change of the genus N . The evolution of the soliton condensate is then determined by
the motion of the s-band edges λj according to the Whitham modulation equations (3.13)
subject to discontinuous initial conditions following from (5.1):

{N ;λ}(x, t = 0) =

{
{N−; (λ−1 , . . . , λ

−
2N−+1)}, x < 0,

{N+; (λ+
1 , . . . , λ

+
2N++1)}, x > 0.

(5.2)

Thus the Riemann problem for soliton gas kinetic equation is effectively reduced in
the condensate limit to the Riemann problem (5.2) for the Whitham modulation equa-
tions (3.13). Depending on the sign of the jump λ−j − λ+

j the regularization of the dis-
continuity in λj can occur in two ways: (i) if (λ−j − λ+

j ) > 0 then the regularization
occurs via the generation of a rarefaction wave for λj without changing the genus N of
the condensate; (ii) if (λ−j − λ+

j ) < 0 (which implies immediate wavebreaking for λj) the
regularization occurs via the generation of a higher genus condensate whose evolution is
governed by the modulation equations.

Below we consider several particular cases of Riemann problems describing some pro-
totypical features of the soliton condensate dynamics.

5.1 N− = N+ = 0

Consider the initial condition for the kinetic equation in the form of a discontinuous genus
0 condensate DOS,

u(η, x, t = 0) =

{
u(0)(η; q−), x < 0,

u(0)(η; q+), x > 0,
(5.3)

where q± = λ±1 , and u(0) > 0 is defined in (4.1). The DOS distribution (5.3) implies the
step initial conditions for the Whitham modulation system (3.13):

N(x, t = 0) = 0, λ1(x, t = 0) =

{
q−, x < 0,

q+, x > 0,
(5.4)

with q− 6= q+. Additionally, since the wave field in a genus 0 soliton condensate is almost
surely a constant, ϕ(x, t) = (λ1)2, we conclude that the DOS distribution (5.3) gives rise
to the Riemann step data

ϕ(x, t = 0) =

{
q2
−, x < 0,

q2
+, x > 0,

(5.5)

for the KdV equation (2.1) itself.
The Riemann problem for the KdV equation was originally studied by Gurevich and

Pitaevskii (GP) [11] in the context of the description of dispersive shock waves. The
key idea of GP construction was to replace the dispersive Riemann problem (5.5) for
the KdV equation by an appropriate boundary value problem for the hyperbolic KdV-
Whitham system (4.17) which is then solved in the class of x/t-self-similar solutions. Here
we take advantage of the GP modulation solutions and their higher genus analogues to
describe dynamics of soliton condensates. The choice of the genus of the Whitham system
and, correspondingly, the genus of the associated soliton condensate, depends on whether
q− > q+ or q+ < q−.
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5.1.1 Rarefaction wave (q− < q+)

The solution of the Riemann problem (1.1), (5.3) is given globally (for t > 0) by the
genus 0 DOS u(0)(η;λ1) (4.1) modulated by the centered rarefaction wave solution of the
Hopf equation (4.16) subject to the step initial condition (5.4):

λ1(x, t) =


q−, x < s−t,√

x
6t
, s−t < x < s+t,

q+, s+t < x,

(5.6)

where
s− = 6q2

−t, s+ = 6q2
+t. (5.7)

Note that the solution (5.6) is admissible since s− < s+. Behavior of λ1 in the solu-
tion (5.6) is shown in Fig. 5a. The evolution of the soliton condensate’s DOS associated
with the spectral rarefaction wave solution (5.6) is given by

u(η;x, t) =
η

π
√
λ2

1(x, t)− η2
. (5.8)

A contour plot of the DOS (5.8) is presented in Fig. 5(a).

Figure 5: Solutions to the soliton condensate Riemann problem (5.3). a) Rarefaction
wave (genus 0) solution (5.6), (5.8) for q− < q+. Dashed line: λ1(x, t), colors: DOS
u(0)(η;λ1(x, t)). b) DSW (genus 1) solution (5.9), (5.10) for q− > q+. Dashed line:
λ1(x, t) ≤ λ2(x, t) ≤ λ3(x, t), colors: DOS u(1)(η; q+, λ2(x, t), q−).

5.1.2 Dispersive shock wave (q− > q+)

The solution (5.6), (5.8) derived previously is not admissible for q− < q+ since s− > s+ in
that case. In other words, the compressive discontinuous initial data (5.4) imply imme-
diate wavebreaking and necessitate the introduction of the higher genus DOS connecting
u(0)(η; q−) and u(0)(η; q+). The requisite DOS is given by equation (4.6), which we repro-
duce here for convenience,

u(η;x, t) = u(1)(η;λ1, λ2, λ3) =
iη(η2 − w2)

πR(η)
, (5.9)

Here w(λ1, λ2, λ3) is given by (4.9) and λj = λj(x, t), j = 1, 2, 3, are slowly modulated
according to the Whitham equations (4.17), (4.18).

The solution of (4.18) is self-similar, λj(x/t), such that u(1)(η;λ1, λ2, λ3) matches with
u(0)(η; q−) at the left boundary x = s−t, and with u(0)(η; q+) at the right boundary
x = s+t, with s− < s+.
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The requisite solution is the 2-wave of the Whitham system (4.17) (only λ2 is non-
constant)

λ1 = q+, V2(λ1, λ2, λ3) = x/t, λ3 = q−, for s−t < x < s+t, (5.10)

where

s− = V2(q+, q+, q−) = 12q2
+ − 6q2

−, s+ = V2(q+, q−, q−) = 2q2
+ + 4q2

−. (5.11)

This is the famous GP solution describing the DSW modulations in the KdV step reso-
lution problem [11]. Indeed, we have s− < s+ and, interpreting the GP solution (5.10) in
terms of soliton condensates the limiting behaviors at the DSW edges is given by

x→ s−t, λ2 → λ1 = q+, u(1)(η; q+, λ2, q−)→ u(0)(η; q−),

x→ s+t, λ2 → λ3 = q−, u(1)(η; q−, λ2, q+)→ u(0)(η; q+).
(5.12)

5.2 N− +N+ = 1

Before considering the soliton condensate Riemann problem (1.1), (5.1) for the case N−+
N+ = 1 we list the admissible solutions to the kinetic equation connecting a genus 0
distribution u(0)(η; q) to a genus 1 distribution u(1)(η;λ1, λ2, λ3). One can easily verify for
the next four solutions that

x→ s−t, u(1)(η;λ1, λ2, λ3)→ u(N−)(η;λ−),

x→ s+t, u(1)(η;λ1, λ2, λ3)→ u(N+)(η;λ+),
(5.13)

with s− < s+.
We use the following convention to label the fundamental Riemann problem solutions:

we call j±-wave, where j is the index of the only varying Riemann invariant λj in the
solution, while the remaining invariants are constant; + indicates that N+ = 1 i.e. the
genus 1 soliton condensate is initially at x > 0, and − indicates that N− = 1 i.e. the
genus 1 soliton condensate is initially at x < 0.

(i) 3+-wave

Consider the initial condition for the soliton condensate DOS:

u(η, x, t = 0) =

{
u(0)(η; q−), x < 0,

u(1)(η;λ+
1 , λ

+
2 , λ

+
3 ), x > 0,

with λ+
1 = q−. (5.14)

The resolution of the step (5.14) is described by

u(η, x, t) =


u(0)(η; q−), x < s−t,

u(1)(η; q−, λ
+
2 , λ3(x/t)), s−t < x < s+t,

u(1)(η; q−, λ
+
2 , λ

+
3 ), x > s+t,

(5.15)

where λ3(x/t) is given by the 3+-wave solution of the modulation equations (4.17):

λ1 = q−, λ2 = λ+
2 , V3(λ1, λ2, λ3) = x/t, for s−t < x < s+t,

s− = V3(q−, λ
+
2 , λ

+
2 ) = 2(q−)2 + 4(λ+

2 )2, s+ = V3(q−, λ
+
2 , λ

+
3 ).

(5.16)

The behavior of the Riemann invariants λj in the 3+-wave is shown in Fig. 6a. The
associated soliton condensate KdV solution ϕ(x, t) along with the behavior of the mean
〈ϕ〉 are shown in Figs. 10 and 11.
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(ii) 2+-wave

Consider the initial condition:

u(η, x, t = 0) =

{
u(0)(η; q−), x < 0,

u(1)(η;λ+
1 , λ

+
2 , λ

+
3 ), x > 0,

with λ+
3 = q−. (5.17)

The resolution of the step (5.17) is described by

u(η, x, t) =


u(0)(η; q−), x < s−t,

u(1)(η;λ+
1 , λ2(x/t), q−), s−t < x < s+t,

u(1)(η;λ+
1 , λ

+
2 , q−), x > s+t,

(5.18)

where λ2(x/t) is given by the 2+-wave solution of the modulation equations (4.17):

λ1 = λ+
1 , V2(λ1, λ2, λ3) = x/t, λ3 = q−, for s−t < x < s+t,

s− = V2(λ+
1 , λ

+
1 , λ

+
2 ) = 12(λ+

1 )2 − 6(q−)2, s+ = V2(λ+
1 , λ

+
2 , q−).

(5.19)

The behavior of the Riemann invariants λj in the 2+-wave is shown in Fig. 6b.

(iii) 1−-wave

Consider the initial condition:

u(η, x, t = 0) =

{
u(1)(η;λ−1 , λ

−
2 , λ

−
3 ), x > 0,

u(0)(η; q+), x < 0,
with λ−3 = q+. (5.20)

The resolution of the step (5.20) is described by

u(η, x, t) =


u(1)(η;λ−1 , λ

−
2 , q+), x < s−t,

u(1)(η;λ1(x/t), λ−2 , q+), s−t < x < s+t,

u(0)(η; q+), x > s+t,

(5.21)

where λ1(x/t) is given by the 1−-wave solution of the modulation equations (4.17):

V1(λ1, λ2, λ3) = x/t, λ2 = λ−2 , λ3 = q+, for s−t < x < s+t,

s− = V1(λ−1 , λ
−
2 , q+), s+ = V1(λ−2 , λ

−
2 , q+) = 12(λ−2 )2 − 6(q+)2.

(5.22)

The behavior of the Riemann invariants λj in the 1−-wave is shown in Fig. 6c.

(iv) 2−-wave
Consider the initial condition:

u(η, x, t = 0) =

{
u(1)(η;λ−1 , λ

−
2 , λ

−
3 ), x < 0,

u(0)(η; q+), x > 0,
with λ−1 = q+. (5.23)

The resolution of the step (5.23) is described by

u(η, x, t) =


u(1)(η; q+, λ

−
2 , λ

−
3 ), x < s−t,

u(1)(η; q+, λ2(x/t), λ−3 ), s−t < x < s+t,

u(0)(η; q+), x > s+t,

(5.24)

where λ2(x/t) is given by the 2−-wave solution of the modulation equations (4.17):

λ1 = q+, V2(λ1, λ2, λ3) = x/t, λ3 = λ−3 , for s−t < x < s+t,

s− = V2(q+, λ
−
2 , λ

−
3 ), s+ = V2(q+, λ

−
3 , λ

−
3 ) = 2(q+)2 + 4(λ−3 )2.

(5.25)

The behavior of the Riemann invariants λj in the 2−-wave is shown in Fig. 6d. The
associated soliton condensate KdV solution ϕ(x, t) along with the behavior of the mean
〈ϕ〉 are shown in Figs. 12 and 13.
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Figure 6: Basic modulation configurations in the Riemann problem (1.1), (5.1) for soliton
condensates with N−+N+ = 1. a) 3+-wave solution (5.16). b) 2+-wave solution (5.19). c)
1−-wave solution (5.22). d) 2−-wave solution (5.25). In all cases the dashed lines show the
variation of the spectral edges λ1 ≤ λ2 ≤ λ3, and the colors visualize the DOS u(1)(η;λ).

6 Riemann problem: numerical results

We consider Riemann problems with N− + N+ ≤ 1. Because of the inherent limitations
of the numerical implementation of soliton gas detailed in Appendix A, we restrict the
comparison to the cases q− = 0 or q+ = 0.

6.1 Rarefaction wave

In this first example, we choose

{N ;λ}(x, t = 0) =

{
{0; q− = 0}, x < 0,

{0; q+ = 1}, x > 0.
(6.1)

A numerical realization of the soliton condensate evolution corresponding to the steplike
initial condition (6.1) is displayed in Fig. 7. The same figure displays the realization at
t = 40. The realization corresponds to a n-soliton solution with parameters distributed
according to the initial DOS of (5.3), (6.1); details are given in Appendix A. As predicted
in Sec. 4.1, the realization of the condensate corresponds to the vacuum ϕ = 0 at the left
of x = 0, and a constant ϕ = 1 at the right of x = 0. As highlighted in Appendix A.1,
the n-soliton solution displays an overshoot at x = 0, regardless of the number of soli-
tons n, which is reminiscent of Gibbs’ phenomenon in the theory of Fourier series. This
phenomenon has been originally observed in the numerical approximation of the soliton
condensate of the focusing NLS equation by a n-soliton solution in [50]; see for instance
the similarities between Figs. 7a, 8b and Fig. 2a of [50]. Indeed, in both cases, the IST
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spectrum of the step distribution contains a non-solitonic radiative component (cf. [42]),
which is not taken into account by the n-soliton solution; the mismatch between the exact
step and the n-soliton solution manifests by the occurrence of the spurious oscillations
observed near x = 0.
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Figure 7: Riemann problem with initial condition (6.1) for DOS u(η;x, t). The plots depict
the variation of a condensate’s realization ϕ(x, t) at t = 0 (a) and t = 40 (b, solid line).
The red dashed line in depicts the variation of the rarefaction wave ϕ = λ1(x/t)2 (5.6).

The solution of the Riemann problem with the initial condition (6.1) is given by
u(0)(η;λ1(x, t)) where λ1(x, t) is the rarefaction wave (genus 0) solution (5.6). We have
shown in Sec. 4.1 that the genus 0 soliton condensate is almost surely described by the
constant solution ϕ = (λ1)2. In the context of the evolution of the step (6.1) λ1 varies
according to (5.6) so λ(x, t) should be treated as a slowly varying (locally constant)
condensate solution. In Fig. 7 we compare the numerical realization of the evolution of
genus 0 condensate with the analytical solution (5.6).

6.2 Dispersive shock wave

We now consider

{N ;λ}(x, t = 0) =

{
{0; q− = 1}, x < 0,

{0; q+ = 0}, x > 0.
(6.2)

A numerical realization of the genus 0 soliton condensate corresponding to the step-initial
condition (6.2) is presented in Fig. 8 (a): it corresponds to the vacuum ϕ = 0 for x > 0,
and a constant ϕ = 1 for x < 0. The realization at t = 40 is shown in Fig. 8 (b) and it
corresponds to a classical DSW solution for the KdV equation.

The solution of the condensate Riemann problem with the initial condition (5.3), (6.2)
is given by the genus 1 DOS (5.9) modulated by the 2-wave solution (5.10) of the Whitham
equations. In order to make a quantitative comparison of this analytical solution with
the numerical evolution of the soliton gas displayed in Fig. 8, we compute numerically the
mean 〈ϕ〉 and the variance

√
〈ϕ2〉 − 〈ϕ〉2, the latter being an amplitude type characteristic

of the cnoidal wave. We have conjectured in Sec. 4.1 that any realization of the uniform
genus 1 condensate corresponds to a cnoidal wave modulo the initial phase θ0 ∈ [0; 2π). In
that case, the ensemble average of the soliton condensate reduces to an average over the
phase θ0, or equivalently, over the period of the cnoidal wave, which can be performed on a
single realization. We assume here that the result generalizes to non-uniform condensates
so that the realization computed numerically and displayed in Fig. 8(b) can be consistently
compared with a slowly modulated cnoidal wave solution. The averages 〈ϕ(x, t)〉 and

22



-300 -200 -100 0 100 200

x

0

0.5

1

1.5

'
(x

;t
=

0
)

(a) -300 -200 -100 0 100 200

x

0

0.5

1

1.5

2

'
(x

;t
=

4
0
)

(b)

Figure 8: Riemann problem with initial condition (6.2) for DOS u(η;x, t). The plots
depict the variation of a condensate’s realization ϕ(x, t) at t = 0 (a) and t = 40 (b).

〈ϕ(x, t)2〉 can be determined via a local phase average of one realization of the condensate.
The local period averages are obtained via

〈ϕ(x, t)〉 =
1

L(x, t)

∫ x+L(x,t)

x

ϕ(y, t)dy, 〈ϕ(x, t)2〉 =
1

L(x, t)

∫ x+L(x,t)

x

ϕ(y, t)2dy, (6.3)

where L(x, t) is the local wavelength extracted numerically.
The comparison between the analytically determined averages (4.13),(4.14),(5.10) and

the averages (6.3) obtained numerically is presented in Fig. 11 and shows a very good
agreement.
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Figure 9: Mean 〈ϕ〉 (a) and variance
√
〈ϕ2〉 − 〈ϕ〉2 (b) of the solution of the Riemann

problem’s solution with the initial condition (6.2). The markers correspond to averages
extracted from the numerical solution using (6.3), and the solid black lines to the corre-
sponding analytical averages (4.13),(4.14),(5.10).

6.3 Generalized rarefaction wave

N−+N+ = 0 in the two previous examples. In the next examples, we choose N−+N+ = 1.
Let’s start with N+ = 1:

{N ;λ}(x, t = 0) =

{
{0; q− = 0}, x < 0,

{1; (λ+
1 = 0, λ+

2 = 1/2, λ+
2 = 1)}, x > 0.

(6.4)

A numerical realization of the step-initial condition is displayed in Fig. 10. The same figure
displays the realization at t = 40. The realization of the condensate corresponds to the
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“vacuum” ϕ = 0 for x < 0, and a cnoidal wave for x > 0. Note that the KdV equation
does not admit heteroclinic traveling wave solutions, rendering difficult the numerical
implementation of these “generalized” Riemann problems studied for instance in [43, 44].
Remarkably here, the solution depicted in Fig. 10 is an exact, n-soliton solution of the
KdV equation. As highlighted previously (see also Appendix A.1), the n-soliton solution
exhibits an overshoot at x = 0, regardless of the number of solitons n.
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Figure 10: Riemann problem for soliton condensate with initial condition (6.4) for DOS
u(η;x, t). The plots depict the variation of a condensate’s realization ϕ(x, t) at t = 0 (a)
and t = 40 (b).

The solution of the Riemann problem for the kinetic equation with the initial con-
dition (5.14), (6.4) is given by the 3+-wave (5.15),(5.16). The comparison between the
analytical averages (4.13),(4.14),(5.16) and the averages obtained numerically is shown in
Fig. 11 and shows a very good agreement. The modulation depicted in Figs. 10b and 11a
resembles the modulation of a cnoidal wave of an almost constant amplitude but with a
varying mean. The variation of the mean 〈ϕ〉 is similar to the variation of the field in a
classical rarefaction wave, so we call the corresponding structure shown in Fig. 10b a gen-
eralized rarefaction wave. The variance of the wavefield ϕ in the generalized rarefaction
wave is shown in Fig. 11b.
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Figure 11: Mean 〈ϕ〉 (a) and variance
√
〈ϕ2〉 − 〈ϕ〉2 (b) of the solution of the Riemann

problem’s solution with the initial condition (6.4). The markers correspond to the aver-
ages extracted from the numerical solution using (6.3), and the solid black lines to the
corresponding analytical averages (4.13),(4.14),(5.16).
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6.4 Generalized dispersive shock wave

We now consider the “complementary” initial condition

{N ;λ}(x, t = 0) =

{
{1; (λ−1 = 0, λ−2 = 1/2, λ−2 = 1)}, x < 0,

{0; q+ = 0}, x > 0.
(6.5)

An example of the numerical realization of the soliton gas step-initial condition and its
evolution at t = 40 are displayed in Fig. 12.
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Figure 12: Riemann problem with initial condition (6.5) for DOS u(η;x, t). The plots
depict the variation of a condensate’s realization ϕ(x, t) at t = 0 (a) and t = 40 (b).

The solution of the Riemann problem with the initial condition (6.5) is given by
the 2−-wave (5.24), (5.25). The comparison between the analytically derived aver-
ages (4.13),(4.14),(5.25) and the averages obtained numerically is displayed in Fig. 13,
and shows a very good agreement. The modulation observed in Figs. 12, 13 resembles
the modulation of partial dispersive shock wave: the modulated cnoidal wave reaches the
soliton limit m = 1 for x→ s+t but terminates at m 6= 0 for x→ s−t. The solution then
continues as a non-modulated cnoidal wave for x < s−t. This structure differs from the
celebrated dispersive shock wave solution of the KdV equation involving the entire range
0 ≤ m ≤ 1 [35]. We call the described structure connecting a constant state (a genus 0
condensate) at x → +∞ with a periodic solution (a genus 1 condensate) at x → −∞ a
generalized DSW. We note that the soliton condensate structure shown in Fig. 12b exhibits
strong similarity to the “deterministic KdV soliton gas” solution constructed in [10].

7 Diluted soliton condensates

7.1 Equilibrium properties

We now introduce the notion of a “diluted” soliton condensate by considering DOS u(η) =
Cu(N)(η), where u(N)(η) is the condensate DOS of genus N , and 0 < C < 1 is the “dilution
constant”.

E.g. the diluted soliton condensate of genus 0 is characterized by DOS

u(η) = C
η

π
√
λ2

1 − η2
, 0 < C < 1. (7.1)
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Figure 13: Mean 〈ϕ〉 (a) and variance
√
〈ϕ2〉 − 〈ϕ〉2 (b) of the solution of the Riemann

problem’s solution with the initial condition (6.5). The markers correspond to averages
extracted from the numerical solution using (6.3), and the solid black lines to the corre-
sponding analytical averages (4.13),(4.14),(5.16).

We recover the genus 0 condensate DOS (4.1) by setting C = 1. As C decreases, the
“averaged spacing” between the solitons

κ−1 =

(∫
u(η)dη

)−1

∝ C−1 (7.2)

increases and the condensate gets “diluted”. Comparison between the most probable real-
ization of the condensate (C = 1) and a typical realization of a slightly dilute condensate
(C = 0.97) is given in Fig. 14. Remarkably, one can see that a slight increase of the
average spacing between the solitons within the condensate results in the emergence of
significant random oscillations of the KdV wave field.

As follows from (2.14) we have 〈ϕ〉 = 〈ϕ2〉 = C for the diluted genus 0 condensate so
that the variance is given by:

∆ =
√
〈ϕ2〉 − 〈ϕ〉2 =

√
C(1− C). (7.3)

The comparison between (7.3) and the variance obtained numerically by averaging over
different diluted condensates is presented in Figure 14. Assuming ergodicity of a generic
uniform soliton gas, the ensemble average 〈. . . 〉 in Fig. 14a (and Fig. 15) is computed here
numerically with a spatial average of one, spatially broad, gas realization.

More generally, the diluted soliton condensate of genus N is characterized by DOS

u(η) = Cu(N)(η;λ1, . . . , λ2N+1), 0 < C < 1. (7.4)

We have in the general case

〈ϕ〉 = C〈ϕ(N)
c 〉, 〈ϕ2〉 = C〈

(
ϕ(N)

c

)2〉, (7.5)

where 〈ϕ(N)
c 〉, 〈

(
ϕ

(N)
c

)2〉 are the ensemble averages obtained for the genuine conden-

sate (C = 1), functions of λ1, . . . , λ2N+1 only; for instance 〈ϕ(1)
c 〉, 〈

(
ϕ

(1)
c

)2〉 are given

by (4.13),(4.14). Since 〈
(
ϕ

(N)
c

)2〉 6= 〈ϕ(N)
c 〉2 for N ≥ 1 and distinct λi’s, the variance of

diluted genus condensates

∆ =

√
C〈
(
ϕ

(N)
c

)2〉 − C2〈ϕ(N)
c 〉2 (7.6)

never vanishes if N ≥ 1, as can be seen in the example N = 1 shown in Fig. 15. Thus,
in contrast with the genus 0 case, the transition from the genus 1 condensate (C = 1)
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Figure 14: a) Realizations soliton gas with the DOS (7.1) and λ1 = 1: C = 1 in dashed
line (genus 0 condensate) vs C = 0.97 in solid line (diluted genus zero condensate); in
both cases the gas is realized numerically with N = 100 solitons. b) Variance for diluted
condensates C < 1. Solid line: formula (7.3); markers: numerically extracted values of the
variance; insets: typical realizations of the KdV wave field ϕ(x, t) in diluted condensates.

to diluted genus 1 condensate (C < 1) does not see a drastic change in the oscillations’
amplitude. In particular, the oscillations seem to remain “almost” coherent – i.e. an
average period can be identified – for the dilution factors C close to 1 as depicted in the
inset of Fig. 15.

0 0.5 1

C

0

0.2

0.4

0.6

p h'
2
i!

h'
i2

-50 0 50
0

1

2

-50 0 50
0

1

2

Figure 15: Variance for diluted genus 1 condensates with DOS (7.4) and (λ1, λ2, λ3) =
(0.5, 0.85, 1); insets: typical realizations of the KdV wave field ϕ(x, t) in diluted conden-
sates.

Diluted condensates present a convenient framework to verify the prediction formu-
lated in Remark 2.1 regarding the “backflow” effect (i.e. the existence of tracer KdV
solitons moving in negative direction) in sufficiently dense soliton gases. A numerical
simulation of the diluted genus 0 condensate with C = 0.9 where one can clearly see the
soliton trajectory with a negative slope is presented in Fig. 16.

7.2 Riemann problem

We can now consider the soliton condensate Riemann problem for diluted condensates for
which the initial DOS (5.1) is replaced by

u(η, x, t = 0) =

{
C− u

(N−)(η;λ−1 , . . . , λ
−
2N−+1), x < 0,

C+ u
(N+)(η;λ+

1 , . . . , λ
+
2N++1), x > 0,

(7.7)
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Figure 16: Soliton trajectories in a diluted genus 0 soliton condensate with C = 0.9.
Highlighted is a small-amplitude tracer soliton moving backwards.

where 0 < C± < 1.
To be specific, we investigate numerically the evolution of the diluted condensate

initial conditions (7.7) with N− + N+ ≤ 1 and λi chosen from the examples presented
in Sec. 6. Numerical realizations of the step-initial condition and their evolution in time
are presented in Fig. 17. One can see that generally, realizations of the diluted soliton
condensate do not exhibit a macroscopically coherent structure as observed in Sec. 6.
However, in the case N− + N+ = 1, the evolution of the diluted condensate realizations,
despite the visible incoherence, still qualitatively resembles the evolution of the “genuine”
condensates depicted in Figs. 10, 12. One can see that the recognizable patterns of the
generalized rarefaction wave (see Fig. 17f) and the generalized DSW (see Fig. 17h) persist
even if C < 1. Indeed, as shown in Sec. 7.1, the oscillations in a realization of the diluted
genus 1 condensate appear almost coherent for a small dilution factor. The persistence of
coherence can also be observed in the case N−+N+ = 0 when λ−1 > λ+

1 (Fig. 17d): a DSW
develops if C = 1, and coherent, finite amplitude oscillations still develop for C 6= 1 at the
right edge of the structure where the amplitudes of oscillations are large. In connection
with the above, it is important to note that, although the initial condition (7.7) is given
by the discontinuous diluted condensate DOS, u(η;x, 0) = Cu(N)(η), the kinetic equation
evolution does not imply that the DOS will remain to be of the same form for t > 0.
In other words, unlike genuine condensates, the diluted condensates do not retain the
spectral “diluted condensate” property during the evolution.
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Figure 17: Riemann problem for diluted soliton condensates with initial condition (7.7)
with C± = 0.95. (a)-(d) N−+N+ = 0 and λ1 = 1; (e)-(h) N−+N+ = 1 and (λ1, λ2, λ3) =
(0, 1/2, 1). The diluted condensates are realized with exact n-soliton solutions (n = 200)
configured spectrally according to the respective scaled condensate DOS’s. The evolution
results in the generation of incoherent rarefaction and dispersive shock waves.
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8 Conclusions and Outlook

We have considered a special kind of soliton gases for the KdV equation, termed soliton
condensates, which are defined by the property of vanishing the spectral scaling function
σ(η) in the soliton gas nonlinear dispersion relations (2.9), (2.10). As a result, the density
of states u(η) in a soliton condensate is uniquely determined by its spectral support
Γ+ ∈ R+. By considering Γ+ to be a union of N + 1 disjoint intervals, [0, λ1] ∪ [λ2, λ3] ∪
· · ·∪ [λ2N , λ2N+1], and allowing the endpoints {λj}2N+1

j=1 vary slowly in space-time we prove
that the kinetic equation for soliton gas reduces in the condensate limit to the genus N
KdV-Whitham modulation for λj(x, t). The KdV-Whitham equations were originally
derived via the wave averaging procedure in [40], [4] and via the semicalssical limit of the
KdV equation in [9]. These equations have been extensively used for the description of
dispersive shock waves [35], particularly in the context of dispersive Riemann problem
originally introduced by Gurevich and Pitaevskii [11].

Along with the characterization of the large scale, modulation dynamics of soliton
condensates, our work suggests that they represent “coherent” or “deterministic” soliton
gases whose typical realizations are given by finite-gap potentials. We prove this conjec-
ture for genus zero condensates and present a strong numerical evidence for N = 1, 2.

By invoking the results from the modulation theory of dispersive shock waves we have
constructed analytical solutions to several Riemann problems for the soliton gas kinetic
equation subject to discontinuous condensate initial data. These solutions describe the
evolution of generalized rarefaction and dispersive shock waves in soliton condensates. We
performed numerical simulations of the Riemann problem for the KdV soliton condensates
by constructing an exact n-soliton solutions with n large and the spectral parameters
distributed according to the condensate densty of states. A comparison of the numerical
simulations with analytical predictions from the solutions of the kinetic equation showed
excellent agreement.

Finally, we considered the basic properties of “diluted” soliton condensates having a
scaled condensate density of states and exhibiting rich incoherent behaviors.

There are several avenues for future work suggested by our results. One pertinent
problem would be to consider near-condensate soliton gas dynamics by assuming the
spectral scaling function σ to be “small” (σ(η) = εσ̃(η), ε � 1, σ̃ = O(1)). Another
area of major interest is the extension of the developed KdV soliton condensate theory
to other integrable equations, particularly the focusing NLS equation, where a number
of important theoretical and experimental results on the soliton gas dynamics have been
obtained recently, see [55, 7, 60, 50]. And last but not least, one of the most intriguing
open questions is the possibility of phase transitions in soliton gases, i.e. the formation
of a soliton condensate from non-condensate initial data. The generalized hydrodynamics
approach to the thermodynamics of soliton gases [22] provides a promising framework to
explore this possibility. At the same time, this direction of research could require some
departure from integrability and the development of the soliton gas theory for perturbed
integrable equations.
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A Numerical implementation of soliton gas

A.1 Riemann problem

The realizations of the soliton gas are approximated numerically by the n-soliton solution

ϕ ≡ ϕn(x, t; η1, . . . , ηn, x
0
1, . . . , x

0
n), n ∈ N, (A.1)

where the ηi’s and x0
i ’s correspond respectively to the spectral parameters and the “spatial

phases” of the solitons; ηi < ηi+1 by convention. The numerical implementation of (A.1)
is described in Sec. A.3 below. The numerical solutions presented in this work are all
generated with n = 200 solitons, unless otherwise stated.

Since n is finite, the n-soliton solution reduces to a sum of separated solitons in the
limit |t| → ∞. By construction, we have in the limit t→ ±∞

ϕn(x, t) ∼
n∑
i=1

2η2
i sech2

[
ηi(x− 4η2

i t− x±i )
]
, (A.2)

where x±i are the spatial phases of the i-th soliton at t→ ±∞. We then take the spatial
phase in (A.1) to be x0

i = (x−i + x+
i )/2.

Consider a uniform soliton gas with the density of states u(η). Let the spectral pa-
rameters ηi be distributed on Γ+ with density

φ(η) =
u(η)

κ
, κ =

∫
Γ+

u(η)dη, (A.3)

where the normalization by the spatial density of solitons κ ensures that φ(η) is normalized
to 1. It was shown in [47] that the spatial density κ is obtained if the phases x0

i are
uniformly distributed on the interval (denoted “S-set” in [47]):

Is =

[
− n

2κs
,+

n

2κs

]
, κs =

∫
Γ+

η

σ(η)
dη, (A.4)

where σ(η) is the spectral scaling function in the NDRs (2.9), (2.10); y(η) in [47] is given
here by y(η) = u(η)σ(η)/η. The derivation of (A.4) has been revisited recently in the
context of generalized hydrodynamics [22]: it was shown that κs corresponds to the density
of spatial phases x0

i , or equivalently x±i which are well defined asymptotically (t→ ±∞)
where the solitons are “non-interacting” and their position are given by xi(t) ∼ 4η2

i t+x±i .
In the rarefied gas limit the interaction term in the NDR (2.9) is small and therefore
σ(η)u(η) ≈ η so that we obtain κs = κ as expected. In the general case though the density
κs of non-interacting phases is different from the “physical” density κ, as demonstrated
with the soliton condensate examples below. In the thermodynamic limit n → ∞, the
soliton solution (A.1) represents a realization of the uniform soliton gas.

Since the number n of solitons is finite, the n-soliton solution has a finite spatial
extent. By distributing the phases x0

i uniformly on the interval Is, the n-soliton solution
ϕn(x, t = 0) approximates a realization of the uniform soliton gas for x ∈ [−`/2, `/2]
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where ` = n/κ; ϕn(x, t = 0) ∼ 0 outside of this interval. This naturally generates the
box-like initial condition for the kinetic equation

u(η;x, t = 0) ∼


0, x < −`/2,
u(η), −`/2 < x < `/2,

0, `/2 < x.

(A.5)

Note that u(η;x, t = 0) = 0 can be seen as the genus 0 condensate where the end point
of the central s-band λ1 → 0. This limits the type of initial condition that can be
implemented for the Riemann problem and we choose in practice (N− = 0, q− = 0) or
(N+ = 0, q+ = 0). For convenience, we shift the x-axis by ±`/2 to obtain one of the
discontinuities at the position x = 0.

The evolution in time of the soliton gas realization is obtained by varying the parame-
ter t. Contrarily to a direct resolution of the KdV equation, via finite difference or spectral
method, the time-evolution presented here is instantaneous and does not accumulate any
numerical errors since the n-soliton solution is an exact solution. For the Riemann prob-
lem, the maximal time is bounded by the finite extent of the n-soliton solution: after a
sufficently long time, the two hydrodynamic states originating from the discontinuities
at x = −`/2 and x = `/2 start interacting. Longer times can be reached by choosing a
larger number of solitons n.

We consider now the density of states of interest for this work:

u(η) = Cu(N)(η;λ1, . . . λ2N+1), C ≤ 1, (A.6)

where u(N) is density of states of the condensate defined in Sec. 3. (A.4) rewrites

κs =
κ(C)

1− C
, κ(C) = C

∫
Γ+

u(N)(η;λ1, . . . , λ2N+1)dη. (A.7)

Fig. 18 shows the comparison between the spatial density of solitons κ and the density
of phases κs for the genus 0 case where κ(C) = C/π. The phases density κs diverges in
the condensate limit C → 1, and x0

i ’s are all equal to the same phase x0 (Is → {x0}).
This limit is in agreement with the results obtained in Sec. 4.1 for genus 0 and genus 1
condensates: each realisation of the condensate (C = 1) is approximated with a coherent
n-soliton solution where x0

i = x0 = cst, ∀i.
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5
s

Figure 18: The solid line represents the variation of κs with respect to κ for a diluted
genus 0 condensate, cf. (A.7). The markers are obtained using the 100-soliton solution:
κ = `/n where ` corresponds to the spatial extension of the n-soliton solution.
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Examples of numerical realizations of soliton condensates and diluted soliton con-
densates are given in Sections 4.1, 6, 7 and B. Figs. 2, 4 and 20 shows that numerical
approximations of condensate via the n-soliton solution are not exactly uniform; realiza-
tions become more uniform near the center of the interval [−`, `] as the number of soliton
n increases.

The realization at t = 0 in Figs. 7, 8, 10 and 12 also displays the “border effects”
observed at the discontinuities of the Riemann problem initial condition (located at x = 0).
These border effects, manifesting as overshoots of the realization, persist regardless of the
number of solitons n as shown by the comparison between the 100-soliton and 200-soliton
solutions in Fig. 19. However, because of their finite size, the observed border effects seem
to have no effect on the asymptotic dynamics of the condensate as demonstrated by the
very good agreement between the theory and the numerical solution in Sec. 6.
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Figure 19: n-soliton solution approximating a realization of the condensate
(N ;λ1, λ2, λ3) = (1; 0, 0.5, 0.85). The solid black line represent the solution n = 100
and the red dashed line the solution n = 200. Both solutions have been shifted such that
the maximum of the solution is located at x = 0.

A.2 Generation of spectral parameters ηi

The spectral parameters of the n-soliton solution are distributed with probability density
φ(η), cf. (A.3). This can be achieved by choosing the solutions of the nonlinear equation∫ ηi

0

φ(µ)dµ =
i

n
, i = 1 . . . n. (A.8)

For genus 0 condensate whose DOS is given by (4.1), this equation reduces to

1−

√
1− η2

i

λ2
1

=
i

n
. (A.9)

For genus 1 condensate with DOS (4.6), this equation reads

U(ηi)

U(λ3)
=
i

n
, where: U(η) =

∫ η

0

u(1)(µ;λ1, λ2, λ3)dµ. (A.10)

We have

U(η) =

∫ η

0

i(µ2 − p2)

2π
√
R(µ)

d(µ2) =

∫ η2

0

i(x− p2)

2π
√

(x− λ2
1)(x− λ2

2)(x− λ2
3)
dx, (A.11)

33



which yields

U(η) = U0+


− 1

π

[√
(λ2

3 − η2)(λ2
1 − η2)

λ2
2 − η2

− λ2
1 − p2√
λ2

3 − λ2
1

F (β, q)−
√
λ2

3 − λ2
1E(β, q)

]
, 0 < η < λ1,

0, λ1 < η < λ2,

1

π

[
λ2

1 − p2√
λ2

3 − λ2
1

F (κ, q) +
λ2

2 − λ2
1√

λ2
3 − λ2

1

Π(q, κ, q)

]
, λ2 < η < λ3.

(A.12)
where:

β = sin−1

(√
λ2

1 − η2

λ2
2 − η2

)
, κ = sin−1

(√
(λ2

3 − λ2
1)(η2 − λ2

2)

(λ2
3 − λ2

2)(η2 − λ2
1)

)
, (A.13)

q =
λ2

3 − λ2
2

λ2
3 − λ2

1

, (A.14)

U0 =
1

π

[√
λ2

3λ
2
1

λ2
2

− λ2
1 − p2√
λ2

3 − λ2
1

F (β0, q)−
√
λ2

3 − λ2
1E(β0, q)

]
, β0 = sin−1

(
λ1

λ2

)
.

(A.15)

A.3 Algorithm for the n-soliton solution

The algorithm generating the exact n-soliton (A.1), originally developed in [45], relies on
the Darboux transformation. This scheme is subject to roundoff errors during summation
of exponentially small and large values for a large number of solitons n. We improve it
following [46], with the implementation of high precision arithmetic routine to overcome
the numerical accuracy problems and generate solutions with a number of solitons n & 10.

In order to simplify the algorithm, it is suggested to consider simultaneously the KdV
equation (2.1) and its equivalent form

ϕ− 6ϕϕx + ϕxxx = 0 (A.16)

obtained from (2.1) by the reflection ϕ → −ϕ. The Darboux transformation presented
here relates the Jost solution associated with the (n− 1)-soliton solution of one equation,
to the n-soliton solution of the other equation.

Considering the direct scattering problem for the Lax pair in the matrix form

Φx =

(
η ∓1
ϕ −η

)
Φ, (A.17)

with −1 corresponding to (2.1) and +1 to (A.16), the Jost solutions J, J̃ ∈ R2×2 are
defined recursively by the Darboux transformations D(η) and D̃(η) such that:

Jn(η) = Dn(η)Jn−1(η), with: Dn(η) = I +
2ηn
η − ηn

Pn, (A.18)

J̃n(η) = D̃n(η)J̃n−1(η), with: D̃n(η) = I − 2ηn
η + ηn

P̃n. (A.19)

Pn(x, t) and P̃n(x, t) are independent of η and have the form:

Pn = σ2P̃
T
n σ2 =

Jn−1 (−ηn)

(
−bn

1

)(
bn 1

)
J̃−1
n−1 (ηn)

(
bn 1

)
J̃−1
n−1 (ηn) Jn−1 (−ηn)

(
−bn

1

) (A.20)
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with the real constants bn depending on the spatial phases

bn = (−1)n exp
(
2ηnx

0
n

)
. (A.21)

The Jost solutions for the initial seed solution ϕ0 = 0 are given by

J0(η) = J̃0(η) =

(
exp [ηx− 4η3t] − exp [−ηx+ 4η3t]

0 −2η exp [−ηx+ 4η3t]

)
, (A.22)

and one can show that at each recursion step

ϕn = ϕn−1 + 4ηn (Pn)21 , (A.23)

where ϕn is the n-soliton solution of (2.1) for n even and solution of (A.16) for n odd.
Recently, a more efficient and accurate algorithm has been proposed in [51] to generate
the n-soliton KdV solution employing a 2-fold Crum transform.

B Genus 2 condensate

In Fig. 20 a realization of the genus 2 soliton condensate is compared with the two-
phase KdV solution associated with the same spectral surface and equipped with an
appropriately chosen initial phase vector. The two-phase solution has been computed
numerically using the so-called trace formula [13]:

ϕ(x, t) = λ2
1 − 2

2∑
j=1

(
µ2
j(x, t)−

λ2
2j + λ2

2j+1

2

)
, (B.1)

where the auxiliary spectra µj(x, t) satisfy Dubrovin’s ordinary differential equations:

∂µ2
j

∂x
=

2σjR (µj)∏2
j 6=k
(
µ2
j − µ2

k

) , j = 1, 2 (B.2)

with σ = ±1 and

R(µ) =
√

(µ2 − λ2
1) (µ2 − λ2

2) (µ2 − λ2
3) (µ2 − λ2

4) (µ2 − λ2
5). (B.3)

Each µj oscillates in the corresponding s-gap [λ2j−1, λ2j] so that the sign of σj changes
every time µj changes direction of motion at the gap end point. We observe that, to com-
pute the KdV finite-gap solution corresponding to a given realization soliton condensate,
all the initial phases µj(x0, t) must be placed at the edges of the corresponding s-gaps
while the choice of the gap’s edge (right/left) is determined by the number of discrete
eigenvalues (odd/even) that are located within the s-band [λ2j, λ2j+1] in the numerical
construction of the condensate.
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Figure 20: a) Comparison between KdV genus 2 soliton condensate realized via n = 204-
soliton solution (solid line) and the exact 2-phase KdV solution (dashed line) for λ1 =
0.3, λ2 = 0.5, λ3 = 0.7, λ4 = 0.9, λ5 = 1.; the two plots are visually indistinguishable from
one another; b) Absolute error for the condensate generated with 50 solitons (dashed line),
100 solitons (solid line) and 204 solitons (dash-dotted line); for readability the absolute
error is evaluated at the extrema of the solutions.
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