An extended trace formula for vertex operators

Mohammad Reza-Rahmati, Gerardo Flores

Abstract

We present an extension of the trace of a vertex operator and explain a representation-theoretic interpretation of the trace. Specifically, we consider a twist of the vertex operator with infinitely many Casimir operators and compute its trace as a character formula. To do this, we define the Fock space of infinite level \mathfrak{F}_∞. Then, we prove a duality between \mathfrak{gl}_∞ and $\mathfrak{a}_\infty = \hat{\mathfrak{gl}}_\infty$ of Howe type, which provides a decomposition of \mathfrak{F}_∞ into irreducible representations with joint highest weight vector for \mathfrak{gl}_∞ and \mathfrak{a}_∞. The decomposition of the Fock space \mathfrak{F}_∞ into highest weight representations provides a method to calculate and interpret the extended trace.

Keywords:
Fock space
Infinite wedge representation
Infinite dimensional Lie algebras
Vertex operator
Character formula

1. Introduction

The infinite-dimensional Lie algebras representation theory can express many questions in mathematics and physics. In particular, the infinite wedge representation is a
fundamental discrete structure on which many problems in theoretical quantum physics can be modeled. Moreover, it provides a general theoretic representation framework that supports different sampling problems in quantum theory. The infinite wedge representation is sometimes referred to as the fermionic Fock space. Infinite wedge representation provides examples of the representation of infinite-dimensional Lie algebras that produces interesting character formulas. In this sense, characters of representations of infinite-dimensional Lie algebras have been one of the most profound research subjects in the last few decades. Some exciting character formulas can be extracted from specific operators acting on the Fock space trace, providing a powerful study tool. For instance, generating series, Feynman integrals, and probability amplitudes in mathematical physics, [1–13].

A vertex operator is an operator of an infinite-dimensional Lie algebra. Vertex operators present a formalism for the linear action on specific infinite-dimensional vector spaces, such as the fermionic Fock space. The trace of the vertex operators is related to Schur functions and symmetric polynomials. In this context, the symmetric functions play a prominent role in connecting combinatorics to the infinite-dimensional Lie algebras representation theory. The theory of vertex operators involves the representation theory of infinite symmetric group S_∞ and the theory of symmetric polynomials; there are well-known formulas for the trace of vertex operators in terms of symmetric polynomials, [2], [14], [15], [1], [16], [6], [7].

The computation of the trace of the vertex operators $\text{Tr}(q^{L_0}\exp(\sum_n A_n \alpha_{-n}) \times \exp(\sum_n B_n \alpha_n))$, is crucial in representation theory. The transformation beneath the trace is acting on common Fock space $\mathfrak{F} = \mathfrak{F}_1$, also called the infinite wedge representation. One can consider higher Casimir operators L_j, $j > 0$ acting on the Fock space \mathfrak{F}. We follow a computation of Bloch-Okounkov [14] for the character of the infinite wedge representation, where a product formula is established for the character. Vertex operators appear in the context of string theory partition functions of CY 3-folds. In this case, the vertex operator is twisted by one or more Casimir operators, where the interest is to calculate its trace. We give a natural extension of the trace to the case where infinitely many Casimir operators appear in the trace function. Our idea is to use a decomposition of the Fock space of level infinity into irreducible highest weight representations of Lie superalgebra $\mathfrak{g}_\infty = \mathfrak{gl}_\infty$. The decomposition breaks the trace into a sum of the traces on the irreducible components, [3,17].

1.1. Contributions

Based on the computation of the trace formulas for $\text{Tr}(q^{L_0}\exp(\sum_n A_n \alpha_{-n}) \times \exp(\sum_n B_n \alpha_n))$ and the Bloch-Okounkov result on the character formula for $\text{Tr}(\exp(\sum_{j \geq 0} 2\pi i L_j))$, we propose to compute the following trace:

$$\text{Trace} = \text{Tr} \left(\exp(\sum_{j \geq 0} 2\pi i L_j) \exp(\sum_{n > 0} A_n \alpha_{-n}) \exp(\sum_{n > 0} B_n \alpha_n) \right). \quad (1.1)$$
Our approach is to define the Fock space of level ∞ denoted by \mathcal{F}^{∞}, as the natural generalization of the Fock space of finite level l. Then, we show the existence of a decomposition,

$$\mathcal{F}^{\infty} = \bigoplus_{\lambda} L(\mathfrak{g}l_{\infty}, \lambda) \otimes L(a_{\infty}, \Lambda(\lambda))$$ \hspace{1cm} (1.2)

where λ runs overall generalized partitions, from which a character formula can be calculated. The λ summand is a joint-highest weight representation of $\mathfrak{g}l_{\infty}$ and a_{∞}. We shall interpret the trace in (1.1) as the trace of an operator acting on the Fock space \mathcal{F}^{∞}. The decomposition above in (1.2) gives a way to express the trace formula as a sum of traces over highest weight representations of $\mathfrak{g}l_{\infty} \times a_{\infty}$, where we can conduct the computation directly.

1.2. Organization of the text

The remainder of this paper is as follows. Section 2 provides basic definitions on Fock spaces and infinite wedge representation. We also introduce the vertex operators and character formulas for the vertex operators. Section 3 explains the problem that we are going to solve in the paper together with its motivation from physics. Section 4 contains the main contributions of the paper. Further, we add an application given in Section 5. Some conclusions are given in Section 6. Finally, the appendix contains the definition of several infinite-dimensional Lie algebras that are important in this context.

2. Preliminaries

2.1. Infinite wedge representation

The Fock space is an infinite-dimensional vector space representing certain infinite-dimensional Lie algebras. It provides a systematic framework of importance in Physics by the trace of vertex operators [acting on the Fock space]. It also plays a crucial role in string theory to explain the probabilistic amplitudes.

Definition 2.1. The half infinite wedge or fermionic Fock space \mathcal{F} defined by:

$$\mathcal{F} = \bigwedge V = \bigoplus_{i_{\infty} \in 1/2+\mathbb{Z}} \mathbb{C}.v_{i_{\infty}} \wedge v_{i_{\infty}+1} \wedge ...\wedge v_{i_{\infty}+j}, \hspace{1cm} i_{\infty} = i_{j-1} - 1/2, \hspace{0.2cm} j \gg 0,$$ \hspace{1cm} (2.1)

is the vector space spanned by the semi-infinite wedge product of a fixed basis of the infinite-dimensional vector space,

$$V = \sum_{i \in 1/2+\mathbb{Z}} \mathbb{C}.v_{i},$$ \hspace{1cm} (2.2)
i.e., the monomials $v_{i_1} \wedge v_{i_2} \wedge ...$ such that:

- $i_1 > i_2 > ...
- i_j = i_{j-1} - 1/2$ for $j \gg 0$.

Besides, we have the creation and annihilation operators defined by:

$$\psi_k : v_{i_1} \wedge v_{i_2} \wedge ... \mapsto v_k \wedge v_{i_1} \wedge v_{i_2} \wedge ... \quad (2.3)$$

$$\psi_k^* : v_{i_1} \wedge v_{i_2} \wedge ... \mapsto (-1)^j v_{i_1} \wedge v_{i_2} \wedge ... \wedge \hat{v}_{i_l} = k \wedge ...$$

The monomials can be parametrized in terms of partition

$$|\lambda\rangle = v_\lambda = \lambda_1 - 1/2 \wedge \lambda_2 - 3/2 \wedge ... \quad (2.4)$$

The Fock space F is almost a Hilbert space, with respect to the inner product $\langle v_\lambda, v_\mu \rangle = \delta_{\lambda\mu}$. Its completion with respect to the norm of the inner product is a Hilbert space. We can also write this using the Frobenius coordinates of partitions:

$$|\lambda\rangle = \prod_{i=1}^{l} \psi_{a_i}^* \psi_{b_i} |0\rangle, \quad a_i = \lambda_i - i + \frac{1}{2}, \quad b_i = \lambda_i^* - i + \frac{1}{2} \quad (2.5)$$

where $(a_1, ..., a_l | b_1, ..., b_l)$ are called the Frobenius coordinates of λ. The operator

$$C = \sum_{k \in 1/2 + Z} : \psi_k \psi_k^* : \quad (2.6)$$

is called the charge operator, whose action on F is:

$$C (v_{i_1} \wedge v_{i_2} \wedge ...) = [(\sharp \text{ present positive } v_i) - (\sharp \text{ missing negative } v_i)] v_{i_1} \wedge v_{i_2} \wedge ... \quad (2.7)$$

The vectors of 0-charge are characterized by being annihilated by C. Besides, the energy operator H (Hamiltonian) is defined by

$$H = \sum_{k \in 1/2 + Z} k : \psi_k \psi_k^* : \quad (2.8)$$

and satisfies $H v_\lambda = |\lambda\rangle v_\lambda$. Let us define the Bosonic operators as follows:

$$\alpha_n = \sum_{k \in 1/2 + Z} \psi_{k+n} \psi_k^* \quad (2.9)$$

They satisfy the commutation relations $[\alpha_n, \psi_k] = \psi_{k+n}$, $[\alpha_n, \psi_k^*] = -\psi_{k-n}$.

The fermionic Fock space F is the Hilbert space generated by a pair of fermions $\psi^\pm(z)$ with components ψ_r^\pm, $r \in 1/2 + Z$ satisfying the Clifford commutation relations,
\[[\psi_i^+, \psi_j^-] = \delta_{i,-j}, \quad [\psi_i^+, \psi_j^+] = 0, \quad [\psi_i^-, \psi_j^-] = 0. \] (2.10)

2.2. Bosonic Fock space

The Hilbert space \(\mathcal{F} \) can be constructed in two primary isomorphic forms (Boson-Fermion correspondence). They are called Fermionic and Bosonic Fock spaces. In this regard, Definition 2.1 is usually referred to as the fermionic Fock space. The Bosonic Fock space is a representation defined on the polynomial ring \(\mathbb{C}[x_1, x_2, \ldots; q, q^{-1}] \), see [13]. It is not hard to write a specific isomorphism between \(\mathcal{F} \) and the mentioned polynomial ring. In this context, the vertex operators act as certain differential operators, and the trace of vertex operator appears as generating a series of the ring of symmetric functions on infinitely many variables. We review some features of this below.

Consider the coordinate ring of the affine variety \(\text{Sym}^k(\mathbb{C}) \), namely \(B_k = \mathbb{C}[x_1, \ldots, x_n]/S_n \). Write the Hilbert series of \(B_k \) as \(H_{B_k}(q) = \sum_n q^n h_n(B_k) \), where \(h_n(B_k) = \mathcal{F}\{\text{monomials in } B_k \text{ of charge } k\} \). Let also \(q \) act as \(\mathbb{C} \times \) on the other variables. We understand that \(B_k \) is the ring of symmetric functions in variables \(x_1, \ldots, x_k \). It is also generated by Schur functions, i.e., \(B_k = \langle S_\mu(x_1, \ldots, x_k), |\mu| \leq k \rangle \). In string theory \(B_k \) arises as the Hilbert space \(\mathcal{H}_k \) generated by the Boson oscillators up to charge \(k \), with commutation relations, \([\alpha_n, \alpha_m] = n\delta_{n+m,0} \).

Let us associate monomials to partitions as follows:

\[\lambda = 1^{\lambda_1} 2^{\lambda_2} \ldots \longrightarrow \alpha_{-1}^{\lambda_1} \alpha_{-2}^{\lambda_2} \ldots |0\rangle, \] (2.11)

thus,

\[B_k \cong \mathcal{H}_k = \langle \alpha_{-1}^{m_1} \alpha_{-2}^{m_2} \ldots |0\rangle \mid m_1, \ldots, m_k \geq 0 \rangle, \] (2.12)

and we have the inclusions \(\mathcal{H}_0 \subset \mathcal{H}_1 \subset \ldots \) corresponding to the nested sequence of Young diagrams of increasing number or rows. The \(\mathbb{C} \times \) induces an action of \(\text{Sym}^*(\mathbb{C}) \) such that the functions \(S_\mu(x_1, \ldots, x_k) \) are eigen-functions with eigenvalues \(q^{[\mu]} \) of the action of \(q^{L_0} \) on \(\mathcal{H} \), where

\[L_0 = \sum_{n>0} \alpha_{-n} \alpha_n. \] (2.13)

Then, we can write:

\[H_{B_k}(q) = Tr_{\mathcal{H}_k} q^{L_0} = \sum_{|\mu| \leq k} q^{[\mu]} = \prod_{n=1}^{k} (1 - q^n)^{-1}. \] (2.14)

The generating function of these series becomes:

\[G(t, q) = \sum_{n=0}^{\infty} t^k H(B_k)(q) = \sum_{k} t^k Tr_{\mathcal{H}_k} q^{L_0} = \sum_{\mu} s_\mu(t) s_\mu(1, q, \ldots). \] (2.15)
We can generalize this argument by considering the coordinate ring of the affine variety
\[B_{k_1, \ldots, k_n} = \text{Sym}^{k_1}(C) \times \ldots \times \text{Sym}^{k_n}(C), \]
and define the generating series \(G(t_1, \ldots, t_n; q) = \sum_{k_1, \ldots, k_n} t_1^{k_1} \ldots t_n^{k_n} H_{B_{k_1, \ldots, k_n}}(q). \) The ring \(B_{k_1, \ldots, k_n} \) is generated by the product of the Schur polynomials,
\[B_{k_1, \ldots, k_n} = \langle S_{\mu_1}(x_1, 1, \ldots, x_1, k_1), \ldots, S_{\mu_n}(x_{n+1}, \ldots, x_{n+k_n}); l(\mu_j) \leq k_j \rangle. \quad (2.16) \]
The above ring is isomorphic to the Hilbert space spanned by the Bosonic operators,
\[\mathcal{H}_{k_1, \ldots, k_n} = \left\langle \prod_{j=1}^{n}\left(\alpha_{-1}^j\right)^{n_j} \ldots \left(\alpha_{-k_n}^j\right)^{n_j, k_n} |0\rangle \right. \quad (2.17) \]
In the new terminology, the Hilbert series can be written as:
\[H_{B_{k_1, \ldots, k_n}}(q) = Tr\mathcal{H}_{k_1, \ldots, k_n} q^{L_0}, \quad (2.18) \]
where \(L_0 = \sum_{j=1}^{n} \sum_{r>0} \alpha_{-r}^j \alpha_r^j \) is the charge operator. We obtain \(G(t_1, \ldots, t_n; q) = \prod_{j=1}^{n} G(t_j, q) = \prod_{j=1}^{n} \prod_{r}(1 - q^{-r}t_j). \) The classical Boson-Fermion correspondence is an isomorphism between two representations of the Heisenberg algebra, namely the Bosonic Fock space and the fermionic Fock space. The Boson-Fermion correspondence is a basic result in mathematical physics. There are various applications of this correspondence. It provides an explicit way of comparing expressions for \(q \)-dimensions of representations, through which new combinatorial identities are derived by computing characters of representations in two different ways.

2.3. The Fock space of level \(l \)

The Fock space of level \(l \) denoted by \(\mathfrak{F}^l \) is the fermionic Fock space on \(l \) pairs of fermions \(\psi_r^{\pm,j}, r \in \frac{1}{2} + \mathbb{Z}, j = 1, \ldots, l. \) Let us denote by \(\hat{C}^l \) the Clifford algebra on \(\psi_r^{\pm,j}, r \in \frac{1}{2} + \mathbb{Z} \) for \(j = 1, \ldots, l. \) \(\mathfrak{F}^l \) is a simple \(\hat{C}^l \)-module generated by \(|0\rangle \), such that \(\psi_r^{\pm,j} |0\rangle = 0, r > 0. \) The \(\frac{1}{2} \mathbb{Z}_+ \)-gradation of \(\mathfrak{F}^l \) is given by the eigenvalues of the degree operator \(d \) such that \(d|0\rangle = 0, [d, \psi_r^{\pm,j}] = r \psi_r^{\pm,j}, \) where any graded subspace is finite-dimensional. We shall use normal ordering notations defined as follows:
\[
\begin{align*}
: \psi_r^+ \psi_s^- & : = \begin{cases} \psi_s^- \psi_r^+, & s = -r < 0 \\
-\psi_s^- \psi_r^+, & s = -r < 0
\end{cases} \\
: \psi_r^- \psi_s^+ & : = \begin{cases} \psi_s^+ \psi_r^-, & s = -r < 0 \\
-\psi_s^+ \psi_r^-, & s = -r < 0
\end{cases} \\
: \psi_r^+ \psi_s^- & = \psi_r^+ \psi_s^+, \\
: \psi_r^- \psi_s^+ & = \psi_r^- \psi_s^-, \\
: \psi_r^\pm, j \psi_s^\pm, k & = \psi_r^\pm, j \psi_s^\pm, k.
\end{align*}
\]
Define the operators e_{ij}^s and e_{ij}^r by:

$$e_{ij}^s = \sum_{u \in \frac{1}{2} + \mathbb{Z}} : \psi_{u}^{-} - \lambda_{i} - j :,$$

$$e_{ij}^r = \sum_{k=1}^{l} : \psi_{j}^{+} + k \psi_{j}^{-} - k :.$$ \hspace{1cm} (2.20)

With the above set-up, we have the following:

- The map $\mathfrak{gl}_{l} \rightarrow \text{End}(\mathfrak{g}^l)$, $E_{ij} \mapsto e_{ij}^s$ is a representation of \mathfrak{gl}_{l}.
- The map $\mathfrak{a}_\infty \rightarrow \text{End}(\mathfrak{g}^l)$, $E_{ij} \mapsto e_{ij}^r$ defines a representation of \mathfrak{a}_∞.
- The above actions of \mathfrak{gl}_{l} and \mathfrak{a}_∞ on \mathfrak{g}^l commute, [see [17] sec. 5.4]. Thus, we have the relation:

$$[e_{ij}^s, e_{rs}^r] = \left[\sum_{u \in \frac{1}{2} + \mathbb{Z}} : \psi_{u}^{-} - \lambda_{i} - j : , \sum_{l=1}^{\infty} : \psi_{j}^{+} + l \psi_{j}^{-} - l : \right] = 0.$$ \hspace{1cm} (2.21)

We use the generalized partitions as the weights of representations of \mathfrak{gl}_{l}, i.e., the partitions λ of the form $\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{i-1} \geq \lambda_i = \ldots = \lambda_{j-1} = 0 \geq \lambda_j \geq \ldots \geq \lambda_r)$. Also, for the weight of representations of \mathfrak{a}_∞ we denote $\Lambda(\lambda) = \Lambda_{\lambda_1} + \ldots + \Lambda_{\lambda_i} = l \Lambda_0 + \sum_{i} \lambda'_i \epsilon_i$, where,

$$\lambda'_i = \begin{cases} \{ j \mid |\lambda_j| \geq i, \; i \geq 1 \} \mid \\ \{ j \mid |\lambda_j| < i, \; i \leq 0 \} \mid \\ \end{cases}.$$ \hspace{1cm} (2.22)

Notice that we use the notation in the Appendix, in particular, (A.4). Let’s define,

$$\omega_{m,j}^{+} = \psi_{j}^{+} \psi_{j-1}^{-} \ldots \psi_{j-m+1}^{-} \omega_{0,j}^{-},$$

$$\omega_{m,s}^{-} = \psi_{s}^{-} \psi_{s-1}^{-} \ldots \psi_{s-m+1}^{-} \omega_{0,s}^{-}.$$ \hspace{1cm} (2.23)

A joint highest weight vector in \mathfrak{g}^l associated to λ with respect to the standard Borel $\mathfrak{gl}(l) \times \mathfrak{a}_\infty$ is

$$v_{\lambda} = \omega_{\lambda_1}^{+} \omega_{\lambda_2}^{+} \ldots \omega_{\lambda_i}^{+} \omega_{-\lambda_j}^{-} \omega_{-\lambda_{j+1}}^{-} \ldots \omega_{-\lambda_r}^{-},$$ \hspace{1cm} (2.24)

whose weight with respect to $\mathfrak{gl}(l)$ is λ, and with respect to \mathfrak{a}_∞ is $\Lambda(\lambda)$, [see [17] sec. 5.4].

Theorem 2.2 (See [17] sec. 5.4). We have the decomposition

$$\mathfrak{g}^l = \bigoplus_{\lambda} L(\mathfrak{gl}(l), \lambda) \otimes L(\mathfrak{gl}(\infty), \Lambda(\lambda)).$$ \hspace{1cm} (2.25)

One may state other kind of dualities by considering different vertex operators associated to the pairs $(\mathfrak{sp}(\infty), \mathfrak{c}_\infty)$ and $(O(\infty), \mathfrak{d}_\infty)$.
Remark 2.3. In order to illustrate the fermionic operators, let \(V = (\mathbb{C}^l \otimes \mathbb{C}^\infty) \oplus (\mathbb{C}^{l*} \otimes \mathbb{C}^{\infty*}) \), where \(\mathbb{C}^\infty \) is a vector space with basis \(w_r, r \in -\frac{1}{2} - \mathbb{Z}_+ \), the dual indexed is given by \(w_{-r} \), and \(\mathbb{C}^l \) has basis \(v_{+,i} \) with dual \(v_{-,i} \). Then, we may illustrate \(\psi_{r,\pm} = v_{\pm,i} \otimes w_r \).

2.4. The character of vertex operators

The operators of the form:

\[
\Gamma_+(x) = \exp\left(\sum_{n \geq 1} \frac{x^n}{n} \alpha_n\right), \quad \Gamma_-(x) = \exp\left(\sum_{n > 0} \frac{x^n}{n} \alpha_{-n}\right)
\]

are called vertex operators. They are adjoint with respect to the natural inner product. We have a commutation relation:

\[
\Gamma_+(x)\Gamma_-(y) = (1 - xy)\Gamma_-(y)\Gamma_+(x).
\]

Also, we have,

\[
\Gamma_+(x)v_\mu = \sum_{\lambda \supset \mu} S_{\lambda/\mu}(x)v_\lambda.
\]

Vertex operators provide powerful tools to express partitions. We give some examples below.

- Vertex operators simplify expressions on generating series over partitions. For example, we can write,

\[
\Gamma_+(1)|\mu\rangle = \sum_{\lambda \supset \mu} |\lambda\rangle, \quad \Gamma_-(1)|\mu\rangle = \sum_{\lambda \subset \mu} |\lambda\rangle.
\]

- As another example, we may write the well-known McMahon function as follows:

\[
Z = \sum_{3\text{-dim partitions}} q^{\frac{1}{2}} \text{boxes} = \langle (\prod_{t=0}^{\infty} q^{L_0} \Gamma_+(1))q^{L_0} (\prod_{t=-\infty}^{-1} \Gamma_-(1)q^{L_0}) \rangle
\]

\[
= \langle \prod_{n>0} \Gamma_+(q^{n-\frac{1}{2}}) \prod_{n>0} \Gamma_-(q^{-n-\frac{1}{2}}) \rangle.
\]

By employing innovative combinatorial tools over Young diagrams, one can obtain more complicated formulas involving generating series. Let us give an example. One may divide a 3-dimensional partition into slices of two-dimensional partitions along the diagonals. In this way, the vertex operator divides into the multiplication of many vertex operators of the slices,
For example, we may choose

\[\{x^+_m\} = \{t^i q^{v_i} | i = 1, 2, \ldots \} \]

\[\{x^-_m\} = \{t^j q^{-v_j} | j = 1, 2, \ldots \}, \]

and we get,

\[Z_{\lambda \mu \nu}(t, q) = \langle \prod_{u_0 < m < u_n} \Gamma_{-\epsilon(m)}(x^{(m)}_m) \rangle. \]

The partition function can also be read by putting a wall on the distance \(M \) along with one of the axis. Then, using commutation (2.27) we have expressions of the form,

\[Z = \langle \prod_{0 < m < \infty} \Gamma_{-\epsilon(m)}(x^+_m) \prod_{-M < m < 0} \Gamma_{+}(x^+_m) \prod_{l_1 = 1}^{M} (1 - x^+_m x^-_{m+1})^{-1} (\prod_{-M < m < 0} \Gamma_{+}(x^-_m) \prod_{0 < m < \infty} \Gamma_{-\epsilon(m)}(x^+_m)), \]

where the last factor in parentheses is equal to 1, and we obtain a product formula.

The following theorem is another form of generating series arising from the vertex operator’s trace.

Theorem 2.4. \([13]\) We have the following formula for the trace of a vertex operator acting on \(\mathfrak{F} = \wedge^\infty V \):

\[\text{Tr} \left(q^{L_0} \exp\left(\sum_n A_n \alpha_{-n} \right) \exp\left(\sum_n B_n \alpha_n \right) \right) = \prod_n \sum_k \sum_{l=0}^{k} \frac{n! A_n^l B_n^l}{l!} q^{nk} \binom{k}{l}, \]

where \(L_0 \) is the charge operator, and \(q^{L_0} | \lambda \rangle = |\lambda| |\lambda\rangle \).

Proof. Denote the operator in the trace by \(T \). We have the isomorphism:

\[\mathfrak{F} \wedge V = \bigotimes_{n=1}^{\infty} \bigoplus_{k=0}^{\infty} \alpha^k_{-n} |0\rangle. \]
which implies:

\[
Tr(T) = \prod_{n=1}^{\infty} Tr\left(T|\oplus_{k=0}^{\infty} \alpha^{-k}|0\right) = \prod_{n} \sum_{k} \langle 0|\alpha^{-k}|q^{L_{0}}e^{A_{n}}e^{-B_{n}}\alpha^{k}|0\rangle
\]

\[
= \prod_{n} \sum_{k} \frac{A_{n}B_{n}^{m}}{l!m!} q^{n(l-m-k)} \langle 0|\alpha^{-k}|\alpha^{k}\alpha^{l}\alpha_{n}|0\rangle
\]

\[
= \prod_{n} \sum_{k,l} \frac{A_{n}B_{l}^{k}}{l!!} q^{nk} \langle 0|\alpha^{-k}|\alpha^{k}\alpha^{l}\alpha_{n}|0\rangle
\]

\[
= \prod_{n} \sum_{k} \sum_{l=0}^{k} \frac{n^{l}A_{n}B_{l}^{k}}{l!!} q^{nk} \binom{k}{l}.
\]

(2.38)

In the following, we present another calculation due to Bloch and Okounkov [14] of the trace of a representation on the infinite wedge space defined in 2.1. This is the foundation of our main result presented in Theorem 4.3 given in Section 4.

Theorem 2.5. [14] Let \(\mathfrak{F} = \bigwedge_{\mathbb{C}}^{\infty} V \) be the Fock space on a fixed basis of \(V = \bigoplus_{j \in \mathbb{Z}} \mathbb{C}v_{j} \). Then, the character of \(\mathfrak{F} \) is given by

\[
ch(\mathfrak{F}) = \prod_{n \geq 0} (1 + y_{0}y_{1}^{n}y_{2}^{n+1} \ldots)(1 + y_{0}^{-1}y_{1}^{-n+1}y_{2}^{-(n+1)} \ldots).
\]

(2.39)

where \(y_{j} = e^{2\pi i \tau_{j}} \).

Proof. The associated character is the trace of the operator,

\[
y_{0}^{L_{0}}y_{1}^{L_{1}} \ldots y_{n}^{L_{n}} \ldots = \exp(\sum_{j} 2\pi i \tau_{j}L_{j}),
\]

(2.40)

where \(L_{i} \) are commuting operators which act on \(\mathfrak{F} \) by

\[
L_{j} \mapsto \sum_{n \in \frac{1}{2} + \mathbb{Z}} \left(n - \frac{1}{2} \right)^{j} E_{n,n}.
\]

(2.41)

The operators \(L_{j} \) mutually define a representation of

\[
H = \mathbb{C}L_{0} \oplus \mathbb{C}L_{1} \oplus \ldots \rightarrow End(\mathfrak{F}).
\]

(2.42)

We compute the action of the operators \(\exp(2\pi i \tau_{j}L_{j}) \) on the basis elements. Thus, we have,
\[L_j \left(\psi_{-i_1} \psi_{-i_2} \cdots \psi_{-i_j} \psi_{-j_1} \cdots \psi_{-j_k} |0\right) = \left(\sum_{a=1}^{l} (i_a - 1/2)^j - \sum_{b=1}^{k} (-j_b - 1/2)^j \right) \times \left(\psi_{-i_1} \psi_{-i_2} \cdots \psi_{-i_j} \psi_{-j_1} \cdots \psi_{-j_k} |0\right). \] (2.43)

We also have,

\[
\exp(2\pi i \tau_j L_j) \psi_{-n} |0\rangle = \left(y_0 y_1^{n-\frac{1}{2}} y_2^{(n-\frac{1}{2})^2} \cdots \right) \psi_{-n} |0\rangle
\]
(2.44)

\[
\exp(2\pi i \tau_j L_j) \psi^*_{-n} |0\rangle = \left(y_0^{-1} y_1^{n-\frac{1}{2}} y_2^{-(n-\frac{1}{2})^2} \cdots \right) \psi^*_{-n} |0\rangle.
\]

The claim of the theorem follows from the isomorphism:

\[
\mathfrak{g} = \bigwedge V = \bigotimes_n (1 + \psi_{-n})(1 + \psi^*_{-n}) |0\rangle. \quad \square \] (2.45)

3. Problem statement

Motivated by the two calculations of the trace of vertex operator presented in the previous section, i.e.,

\[
\text{Tr} \left(q^{L_0} \exp(\sum_n A_n \alpha_{-n}) \exp(\sum_n B_n \alpha_n) \right), \quad \text{Tr} \left(\exp(\sum_{j \geq 0} 2\pi i L_j) \right), \tag{3.1}
\]

where \(\alpha_n, n \in \mathbb{Z} \) are Boson operators; \(L_0 \) is the energy operator; and \(L_j, j > 0 \) are certain Casimir operators, [13,14], we propose to compute the following trace:

\[
\text{Trace} = \text{Tr} \left(\exp(\sum_{j \geq 0} 2\pi i L_j) \exp(\sum_{n>0} A_n \alpha_{-n}) \exp(\sum_{n>0} B_n \alpha_n) \right). \tag{3.2}
\]

Therefore, we pose the following questions:

- How can one compute the trace in terms of the former traces?
- What is the representation theory interpretation of that?
- If the coefficients \(A_n, B_n \) are suitably chosen, what is the trace’s physical interpretation in terms of string theory partition functions?

The character can be studied from different points of view. A direct way to calculate it could be to expand the exponentials inside the trace, apply basic commutation rules between the operators, and then compute the matrix elements. Some formulas in Lie theory, such as the Backer-Campbell-Hausdorff formula or the Wick formula, can also be helpful for calculation. Although this method can bring computational insights toward
the above question, it hits with the ad hoc complexities and difficulties. One may expand
the operators in the trace both in terms of Bosonic operators $\alpha_{\pm n}$, and also fermionic
operators ψ_j, $j \in \frac{1}{2} + \mathbb{Z}$.

4. Main results

In order to interpret and compute a trace formula for (3.2) we make the following
definition that is a natural generalization of the Fock space of level l, defined in 2.3.

Definition 4.1 (Fock space \mathcal{F}^∞.) Consider the fermionic fields $\psi^\pm_{r, j}$, $r \in \frac{1}{2} + \mathbb{Z}$, $j \in \mathbb{Z}$ satisfying the natural Clifford commutation relations,

$$
[\psi^+, i, r, \psi^-, j, s] = \delta_{i, j} \delta_{r, -s} I,
$$

$$
[\psi^+, i, r, \psi^+, j, r] = [\psi^-, i, r, \psi^-, j, s] = 0.
$$

(4.1)

Set \hat{C}^∞ the Clifford algebra on these fields. By definition \mathcal{F}^∞ is a simple \hat{C}^∞-module generated by $|0\rangle$, such that $\psi^\pm_{r, j}|0\rangle = 0$, $r > 0$.

Next, we express a duality of Howe-type for the pair $(\mathfrak{gl}_\infty, \mathfrak{a}_\infty)$. In other words, the Fock space \mathcal{F}^∞ is a representation of both the Lie algebras \mathfrak{gl}_∞ and \mathfrak{a}_∞. Moreover, \mathcal{F}^∞ decomposes to the sum of their irreducible representation. Next, we are ready to present our first main result.

Theorem 4.2 (Main Result. ($\mathfrak{gl}_\infty, \mathfrak{a}_\infty$)-Howe duality). There exists a decomposition,

$$
\mathcal{F}^\infty = \bigoplus_{\lambda} L(\mathfrak{gl}_\infty, \lambda) \otimes L(\mathfrak{a}_\infty, \Lambda(\lambda)),
$$

(4.2)

where λ runs over all generalized partitions. Besides, there is a character formula,

$$
ch(\mathcal{F}^\infty) = \prod_{i} \prod_{j} (1 + y_j x_i) (1 + y_j^{-1} x_i^{-1}),
$$

(4.3)

where x_i, y_j, $i, j \in \mathbb{N}$ are variables.

Proof. In (2.20), we replace the operators e^*_ij by,

$$
e^*_ij = \sum_{k = -\infty}^{\infty} \psi^+_{\frac{1}{2} - i, \frac{k}{2}} \psi^-_{-\frac{1}{2} - j, \frac{k}{2}}, \quad i, j \in \mathbb{Z}.
$$

(4.4)

The map $\mathfrak{a}_\infty \rightarrow \text{End}(\mathcal{F}^\infty)$, $E_{ij} \mapsto e^*_ij$ defines a representation of \mathfrak{a}_∞. Also, let us define the operators $e^*_v(n)$ by:
enables us to compute the trace formula \((4.2)\). Calculating the trace of the operator \(F_{gl}\) on \(\mathfrak{gl}_\infty\) with weight \(\lambda\) w.r.t. \(\mathfrak{gl}_\infty\) and \(\mathfrak{a}_\infty\) by dependence to the coefficients \(\lambda_{ij}\), we have the following.

\[[e^i_s, e^r_s] = \left(\sum_{u \in \frac{1}{2} + \mathbb{Z}} : e^{+i}_u e^{-j}_u : \right) = 0. \tag{4.6} \]

The map \(\mathfrak{gl}_\infty \to \text{End}(\mathfrak{gl}_\infty)\), \(E^{ij} \mapsto e^{ij}_s\) is a representation of \(\mathfrak{gl}_\infty\). We need to check that the action of \(\mathfrak{gl}_\infty\) and \(\mathfrak{a}_\infty\) commute. That is,

\[A \times B = B \times A \text{ for } A \in \mathfrak{gl}_\infty \text{ and } B \in \mathfrak{a}_\infty. \]

A joint highest weight vector in \(\mathfrak{gl}_\infty\), associated to a generalized partition \(\lambda = (\lambda_1, \ldots, \lambda_j)\) w.r.t. the standard Borel of \(\mathfrak{gl}_\infty \times \mathfrak{a}_\infty\), is \(v_\lambda = \mathfrak{w}^{\lambda_1} \mathfrak{w}^{\lambda_2} \cdots \mathfrak{w}^{\lambda_j}\), with weight \(\lambda\) w.r.t. \(\mathfrak{gl}_\infty\) and weight \(A(\lambda)\) w.r.t. \(\mathfrak{a}_\infty\). By applying any root vector of \(\mathfrak{gl}_\infty\) and \(\mathfrak{a}_\infty\) to \(v_\lambda\), it produces two identical \(\psi^{x, y}_{ij}\) in the resulting monomial.

The duality in Theorem 4.2 enables us to compute the trace formula \((3.2)\) by computing it on each summand. Specifically, we have the following.

Theorem 4.3 (Main result). We have the following formula for the trace in \((3.2)\)

\[\text{Trace} = \sum_{\lambda} \prod_{n \geq 0} \frac{1}{(1 + y_0 y_1^{n+1/2} y_2^{(n+3/2)^2} \cdots)(1 + y_0^{-1} y_1^{-n+1/2} y_2^{-(n-1/2)^2} \cdots)} \prod_{r \geq 1} y_r^{p_r(\lambda)} \Delta_{\lambda/\mu}(x_1, x_2, \ldots) \Delta_{\lambda'/\mu}(x_1, x_2, \ldots), \tag{4.8} \]

where \(x_i\) and \(y_i\) are independent variables, and

\[p_r(\lambda) = \sum_l (\lambda_l - l + \frac{1}{2})^r + (-1)^{r+1}(l - \frac{1}{2})^r = \sum_l (m_l + \frac{1}{2})^r + (-1)^{r+1}(n_l + \frac{1}{2})^r \tag{4.9} \]

holds, where \((m_1, \ldots, m_s, n_1, \ldots, n_s)\) are Frobenius coordinates of \(\lambda\). The effect of the coefficients \(A_n, B_n\) is absorbed in the variables \(x_1, x_2, \ldots\). [see the proof for the explanation on dependence to the coefficients \(A_n, B_n\).]
Remark 4.4. The dependence of the above trace to the coefficients A_n and B_n is somehow formal. The contribution to the trace coming from $\text{Tr}(\exp(\sum_{n>0} A_n \alpha_{-n}) \times \exp(\sum_{n>0} B_n \alpha_{n}))$ is given in the last sum appearing in (4.8), where the effect of A_n, B_n is absorbed in the variables x_1, x_2, \ldots, [see [13] page 11 and 24, or [6] pages 25 and 70 for the notation].

Proof of Theorem 4.3. Let us denote,

$$L = \exp(\sum_j 2\pi i L_j), \quad T = \exp(\sum_n A_n \alpha_{-n}) \exp(\sum_n B_n \alpha_{n}). \quad (4.10)$$

According to Theorem 4.2, we need to compute:

$$\sum_{\lambda} \text{Tr} \left(L_{|\mathfrak{gl}_{\infty},\lambda} \right) \text{Tr} \left(T_{|\mathfrak{gl}_{\infty},\lambda} \right). \quad (4.11)$$

We first compute the factor relevant to L. Consider $v_\lambda = |\lambda\rangle$, the vector of weight λ. We have the formula:

$$\mathfrak{g}^\lambda = \bigotimes_n (1 + \psi_{-n})(1 + \psi^*_{-n})|\lambda\rangle. \quad (4.12)$$

By lemma 5.1 in [14], we also have:

$$\exp(2\pi i L_j) \psi_{-n}|\lambda\rangle = \left(y_0 y_1^{n-\frac{1}{2}} y_2^{(n-\frac{1}{2})} \cdots \prod_{r \geq 1} y_r^{p_r(\lambda)} \right) \psi_{-n}|\lambda\rangle \quad (4.13)$$

$$\exp(2\pi i L_j) \psi^*_{-n}|\lambda\rangle = \left(y_0^{-1} y_1^{n-\frac{1}{2}} y_2^{-(n-\frac{1}{2})} \cdots \prod_{r \geq 1} y_r^{p_r(\lambda)} \right) \psi^*_{-n}|\lambda\rangle, \quad (4.14)$$

therefore

$$\text{Tr} \left(L_{|\mathfrak{gl}_{\infty},\lambda} \right) = \prod_{n \geq 0} (1 + y_0 y_1^{n+\frac{1}{2}} y_2^{(n+\frac{1}{2})} \cdots)(1 + y_0^{-1} y_1^{n-\frac{1}{2}} y_2^{-(n-\frac{1}{2})} \cdots) \prod_{r \geq 1} y_r^{p_r(\lambda)}. \quad (4.15)$$

On the other hand, it is well known that,

$$\text{Tr} \left(T_{|\mathfrak{gl}_{\infty},\lambda} \right) = \sum_{\mu < \lambda} S^{(A_n)}_{\lambda/\mu}(x_1, x_2, \ldots) S^{(B_n)}_{\lambda/\mu}(x_1, x_2, \ldots), \quad (4.16)$$

where $S^{(A_n)}_{\lambda/\mu}$ is the skew Schur function $S_{\lambda/\mu}$ specialized to the case in which the symmetric power functions p_n equal nA_n. Similarly, $S^{(B_n)}_{\lambda/\mu}$ is the skew Schur function $S_{\lambda/\mu}$ specialized to the case in which the symmetric power functions p_n equals nB_n, [see [13] page 11 and 24 for the notation]. \hfill \Box
5. Application

The string theory partition function of toric CY 3-folds can be formulated from their tropical diagram by basic combinatorial rules of the topological vertex, [18], [19], [20], [21], [22], [23], [24]. These partition functions can also be described combinatorially by specific vector fields acting on the tropical diagram that fixes the vertices. The symmetry group of the action is a unitary group $U(N)$ and is called the gauge group. One may consider tropical diagrams that are more complicated, especially when there are many cells. Thus, one may ask what happens if we apply infinitely many twists in the vertex operator. Below we explain this motivating question.

The partition function of the $U(1)$ theory can be written in the form:

$$Z(\tau, m, \epsilon) = \text{Tr} \left(Q_{\tau}^{L_0} \exp \left(\sum_{n \geq 1} \frac{Q^n - 1}{n(q^{\frac{n}{2}} - q^{-\frac{n}{2}})} \alpha_n \right) \exp \left(\sum_{n \geq 1} \frac{Q^{-n} - 1}{n(q^{\frac{n}{2}} - q^{-\frac{n}{2}})} \alpha_{-n} \right) \right).$$

(5.1)

Using the commutation relation of α_{\pm} it can be written as follows, cf. [20–22],

$$Z(\tau, m, \epsilon) = \prod_k (1 - Q_k^{\tau})^{-1} \prod_{i,j} \frac{(1 - Q^k_i Q^{-1}_m q^{i+j-1})(1 - Q^k_i Q^{-1}_m q^{i+j-1})}{(1 - Q^k_i q^{i+j-1})}.$$

(5.2)

Besides, the partition function in (5.1) can be generalized to

$$Z(\tau, m, \epsilon, t) = \text{Tr} \left(Q_{\tau}^{L_0} e^{\sum t_n L_n} \exp \left(\sum_{n \geq 1} \frac{Q^n - 1}{n(q^{\frac{n}{2}} - q^{-\frac{n}{2}})} \alpha_n \right) \exp \left(\sum_{n \geq 1} \frac{Q^{-n} - 1}{n(q^{\frac{n}{2}} - q^{-\frac{n}{2}})} \alpha_{-n} \right) \right).$$

(5.3)

Also, in the limit $m \rightarrow 0$ we obtain,

$$Z(\tau, m = 0, \epsilon, t) = \text{Tr} \left(Q_{\tau}^{L_0} e^{\sum t_n L_n} \right).$$

(5.4)

We can write the partition function in terms of the Gromov-Witten potentials:

$$Z(\tau, m, \epsilon) = \exp \left(\sum_{g \geq 0} \epsilon^{2g-2} F_g \right),$$

(5.5)

where

$$e^{F_1} = \prod_k (1 - Q_k^{\tau})^{-1} \left(\frac{(1 - Q_k^{\tau})^2 (Q_m^{-1})(1 - Q_k^{\tau} Q_m)^2}{(1 - Q_k^{\tau})^4} \right)^{\frac{1}{24}}.$$

(5.6)
Remark 5.1. The case in (5.3) with finitely many \(L_j \) appears in the topological string partition functions associated with toric CY 3-folds where the web diagram has a \(M \times N \) cell structure, where \(M, N \in \mathbb{N} \); see [25,5,26–28,9–11] for details. However, the computation of the trace in the presence of infinitely many Casimirs \(L_j \) becomes extremely difficult when one tries to expand all the exponential operators.

6. Conclusions

An extension of the calculation of the trace of the vertex operator with infinitely many Casimirs is presented based on a duality of Howe type for the pair \((\mathfrak{a}_\infty, \mathfrak{gl}_\infty) \). The trace formula applies to an extension of the topological string theory partition function of CY 3-folds.

Declaration of competing interest

There is no competing interest.

Data availability

No data was used for the research described in the article.

Acknowledgements

A previous version of this work was presented in the "Focus Program on Analytic Function Spaces and their Applications July 1 - December 31, 2021", which took place at the Fields Institute for Research in Mathematical Sciences during the pandemic. The authors would like to thank the organizers for their support during this program.

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the program [Dispersive hydrodynamics: mathematics, simulation, and experiments, with applications in nonlinear waves HYD2, July 2022 to December 2022] where the final part of the work on this paper was carried out. This work was supported by EPSRC grant number EP/K032208/1.

The authors thank Amer Iqbal, Antonio Moro, Yuji Kodama, and Muteeb Nouman for valuable discussions.

Appendix A. The Lie algebras \(\mathfrak{a}_\infty, \mathfrak{c}_\infty \) and \(\mathfrak{d}_\infty \)

We introduce the three infinite-dimensional Lie algebras whose representations are crucial in string theory. The reference for this appendix is [17] Section 5.4, where all the materials discussed can be found in more detail.
(1) Lie Algebra \mathfrak{a}_∞: Let $\mathfrak{a}_\infty = \widehat{\mathfrak{gl}}_\infty = \mathfrak{gl}_\infty \oplus \mathbb{C} K$ with the bracket,

$$[X + cK, Y + dK] = [X, Y] + \tau(X, Y)K. \tag{A.1}$$

The function $\tau(X, Y) = Tr([J, X]Y)$ is called a cocycle function, where $J = \sum_{j \leq 0} E_{jj}$ and $[., .]'$ is the bracket of \mathfrak{gl}_∞. We have the degree gradation $\mathfrak{gl}_\infty = \bigoplus_j \mathfrak{gl}_{\infty}^j$, where j runs over integers and it is called \mathbb{Z}-principal gradation. The degree of E_{ij} would be $j - i$. Besides, we have a decomposition:

$$\mathfrak{a}_\infty = \mathfrak{a}_\infty^+ \oplus \mathfrak{a}_\infty^0 \oplus \mathfrak{a}_\infty^-, \quad \mathfrak{a}_\infty^\pm = \bigoplus_{j > 0} \mathfrak{gl}_{\infty}^{\pm j}, \quad \mathfrak{a}_\infty^0 = \mathfrak{gl}_\infty^0 \oplus \mathbb{C} K. \tag{A.2}$$

The root system of \mathfrak{a}_∞ is

$$R = \{ \epsilon_i - \epsilon_j \mid i \neq j \}, \quad \epsilon_i(E_{ii}) = \delta_{ij}, \quad \epsilon_i(K) = 0. \tag{A.3}$$

The set $\Pi = \{ \epsilon_i - \epsilon_{i+1} \mid i \in \mathbb{Z} \}$ is a fundamental system for \mathfrak{a}_∞ with corresponding co-roots $\{ H_i^a = E_{ii} - E_{i+1,i+1} + \delta_{i,0}K \}$. We denote by Λ_j^a the j-th fundamental weight of \mathfrak{a}_∞, i.e. $\Lambda_j^a(H_i^a) = \delta_{ij}, \ (i \in \mathbb{Z}), \ \Lambda_j^a(K) = 1$. A straightforward computation gives:

$$\Lambda_j^a = \Lambda_0^a - \sum_{j=i+1}^0 \epsilon_i, \quad j < 0 \tag{A.4}$$

$$\Lambda_j^a = \Lambda_0^a + \sum_{i=1}^j \epsilon_i, \quad j \geq 1.$$

The irreducible highest weight representation of \mathfrak{a}_∞ of the highest weight Λ is denoted by $L(\mathfrak{a}_\infty, \Lambda)$.

(2) Lie algebra \mathfrak{c}_∞: Let $V = \bigoplus_{j \in \mathbb{Z}} \mathbb{C} v_j$ be the vector space generated by the vectors v_j, where $E_{ij}v_j = v_i$. Consider the symmetric bilinear form,

$$C(v_i, v_j) = (-1)^i \delta_{i,1-j}, \forall i, j \in \mathbb{Z}. \tag{A.5}$$

Set $\mathfrak{c}_\infty = \mathfrak{c}_\infty^0 \oplus \mathbb{C} K$, where

$$\mathfrak{c}_\infty = \{ X \in \mathfrak{gl}_\infty \mid C(X(u), v) + C(u, X(v)) = 0 \}. \tag{A.6}$$

A fundamental system for \mathfrak{c}_∞ is given by $\{ -2 \epsilon_i, \epsilon_i - \epsilon_{i+1}; \ i \geq 0 \}$ with simple co-roots:

$$H_i^c = E_{ii} + E_{-i, -i} = E_{i+1,i+1} - E_{1-i,1-i}, \tag{A.7}$$

$$H_0^c = E_{00} - E_{11} + K.$$
The j-th fundamental weight for \mathfrak{c}_∞ is defined by the same as the case for \mathfrak{a}_∞ and explicitly written as follows,

$$\Lambda_j^\xi = \Lambda_0^\xi + \sum_{i=1}^j \epsilon_i, \quad j \geq 1.$$ \hspace{1cm} (A.8)

(3) Lie Algebra \mathfrak{d}_∞: Define the Lie algebra $\mathfrak{d}_\infty = \mathfrak{d}_\infty \oplus \mathbb{C} K$ where,

$$\mathfrak{d}_\infty = \{ X \in \mathfrak{gl}_\infty | D(X(u), v) = D(u, X(v)) \},$$ \hspace{1cm} (A.9)

and where $D(v_i, v_j) = \delta_{i,1-j}$. It has the fundamental system $\{ \pm \epsilon_1 - \epsilon_2, \epsilon_i - \epsilon_{i+1}, \ i \geq 2 \}$ with simple co-roots:

$$H_i = E_{ii} - E_{-i,-i} - E_{i+1,i+1} - E_{1-i,1-i},$$

$$H_0 = E_{00} - E_{-1,-1} - E_{22} - E_{11} + 2K.$$ \hspace{1cm} (A.10)

References

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

Isaac Newton Institute for Mathematical Sciences, country=United Kingdom, grants=