An extended trace formula for vertex operators ${ }^{\alpha}$

Mohammad Reza-Rahmati ${ }^{\text {a }}$, Gerardo Flores ${ }^{\text {a,* }}$

${ }^{\text {a }}$ Laboratorio de Percepción y Robótica [LAPyR], Centro de Investigaciones en
Óptica, León, Guanajuato, 37150, Mexico

A R T I C L E I N F O

Article history:
Received 21 January 2022
Accepted 4 December 2022
Available online xxxx
Submitted by P. Semrl
MSC:
17B10
20C32
20G05
22E60
22E65
22E70
Keywords:
Fock space
Infinite wedge representation
Infinite dimensional Lie algebras
Vertex operator
Character formula
We present an extension of the trace of a vertex operator and explain a representation-theoretic interpretation of the trace. Specifically, we consider a twist of the vertex operator with infinitely many Casimir operators and compute its trace as a character formula. To do this, we define the Fock space of infinite level \mathfrak{F}^{∞}. Then, we prove a duality between $\mathfrak{g l}_{\infty}$ and $\mathfrak{a}_{\infty}=\widehat{\mathfrak{g}}_{\infty}$ of Howe type, which provides a decomposition of \mathfrak{F}^{∞} into irreducible representations with joint highest weight vector for $\mathfrak{g l}{ }_{\infty}$ and \mathfrak{a}_{∞}. The decomposition of the Fock space \mathfrak{F}^{∞} into highest weight representations provides a method to calculate and interpret the extended trace.
© 2022 Elsevier Inc. All rights reserved.

[^0]* Corresponding author.

E-mail addresses: rahmati@cio.mx (M. Reza-Rahmati), gflores@cio.mx (G. Flores).
https://doi.org/10.1016/j.laa.2022.12.001
0024-3795/® 2022 Elsevier Inc. All rights reserved.
fundamental discrete structure on which many problems in theoretical quantum physics can be modeled. Moreover, it provides a general theoretic representation framework that supports different sampling problems in quantum theory. The infinite wedge representation is sometimes referred to as the fermionic Fock space. Infinite wedge representation provides examples of the representation of infinite-dimensional Lie algebras that produces interesting character formulas. In this sense, characters of representations of infinitedimensional Lie algebras have been one of the most profound research subjects in the last few decades. Some exciting character formulas can be extracted from specific operators acting on the Fock space trace, providing a powerful study tool. For instance, generating series, Feynman integrals, and probability amplitudes in mathematical physics, [1-13].

A vertex operator is an operator of an infinite-dimensional Lie algebra. Vertex operators present a formalism for the linear action on specific infinite-dimensional vector spaces, such as the fermionic Fock space. The trace of the vertex operators is related to Schur functions and symmetric polynomials. In this context, the symmetric functions play a prominent role in connecting combinatorics to the infinite-dimensional Lie algebras representation theory. The theory of vertex operators involves the representation theory of infinite symmetric group S_{∞} and the theory of symmetric polynomials; there are well-known formulas for the trace of vertex operators in terms of symmetric polynomials, [2], [14], [15], [1], [16], [6], [7].

The computation of the trace of the vertex operators $\operatorname{Tr}\left(q^{L_{0}} \exp \left(\sum_{n} A_{n} \alpha_{-n}\right) \times\right.$ $\left.\exp \left(\sum_{n} B_{n} \alpha_{n}\right)\right)$, is crucial in representation theory. The transformation beneath the trace is acting on common Fock space $\mathfrak{F}=\mathfrak{F}^{1}$, also called the infinite wedge representation. One can consider higher Casimir operators $L_{j}, j>0$ acting on the Fock space \mathfrak{F}. We follow a computation of Bloch-Okounkov [14] for the character of the infinite wedge representation, where a product formula is established for the character. Vertex operators appear in the context of string theory partition functions of CY 3-folds. In this case, the vertex operator is twisted by one or more Casimir operators, where the interest is to calculate its trace. We give a natural extension of the trace to the case where infinitely many Casimir operators appear in the trace function. Our idea is to use a decomposition of the Fock space of level infinity into irreducible highest weight representations of Lie superalgebra $\mathfrak{a}_{\infty}=\hat{\mathfrak{g l}}_{\infty}$. The decomposition breaks the trace into a sum of the traces on the irreducible components, $[3,17]$.

1.1. Contributions

Based on the computation of the trace formulas for $\operatorname{Tr}\left(q^{L_{0}} \exp \left(\sum_{n} A_{n} \alpha_{-n}\right) \times\right.$ $\left.\exp \left(\sum_{n} B_{n} \alpha_{n}\right)\right)$ and the Bloch-Okounkov result on the character formula for $\operatorname{Tr}\left(\exp \left(\sum_{j \geq 0} 2 \pi i L_{j}\right)\right)$, we propose to compute the following trace:

$$
\begin{equation*}
\text { Trace }=\operatorname{Tr}\left(\exp \left(\sum_{j \geq 0} 2 \pi i L_{j}\right) \exp \left(\sum_{n>0} A_{n} \alpha_{-n}\right) \exp \left(\sum_{n>0} B_{n} \alpha_{n}\right)\right) . \tag{1.1}
\end{equation*}
$$

Our approach is to define the Fock space of level ∞ denoted by \mathfrak{F}^{∞}, as the natural generalization of the Fock space of finite level l. Then, we show the existence of a decomposition,

$$
\begin{equation*}
\mathfrak{F}^{\infty}=\bigoplus_{\lambda} L\left(\mathfrak{g l}_{\infty}, \lambda\right) \otimes L\left(\mathfrak{a}_{\infty}, \Lambda(\lambda)\right) \tag{1.2}
\end{equation*}
$$

where λ runs overall generalized partitions, from which a character formula can be calculated. The λ summand is a joint-highest weight representation of $\mathfrak{g l}_{\infty}$ and \mathfrak{a}_{∞}. We shall interpret the trace in (1.1) as the trace of an operator acting on the Fock space \mathfrak{F}^{∞}. The decomposition above in (1.2) gives a way to express the trace formula as a sum of traces over highest weight representations of $\mathfrak{g l}_{\infty} \times \mathfrak{a}_{\infty}$, where we can conduct the computation directly.

1.2. Organization of the text

The remainder of this paper is as follows. Section 2 provides basic definitions on Fock spaces and infinite wedge representation. We also introduce the vertex operators and character formulas for the vertex operators. Section 3 explains the problem that we are going to solve in the paper together with its motivation from physics. Section 4 contains the main contributions of the paper. Further, we add an application given in Section 5. Some conclusions are given in Section 6. Finally, the appendix contains the definition of several infinite-dimensional Lie algebras that are important in this context.

2. Preliminaries

2.1. Infinite wedge representation

The Fock space is an infinite-dimensional vector space representing certain infinitedimensional Lie algebras. It provides a systematic framework of importance in Physics by the trace of vertex operators [acting on the Fock space]. It also plays a crucial role in string theory to explain the probabilistic amplitudes.

Definition 2.1. The half infinite wedge or fermionic Fock space \mathfrak{F} defined by:

$$
\begin{equation*}
\mathfrak{F}=\bigwedge^{\frac{\infty}{2}} V=\bigoplus_{i_{r} \in 1 / 2+\mathbb{Z}} \mathbb{C} \cdot v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots, \quad i_{j}=i_{j-1}-1 / 2, j \gg 0 \tag{2.1}
\end{equation*}
$$

is the vector space spanned by the semi-infinite wedge product of a fixed basis of the infinite-dimensional vector space,

$$
\begin{equation*}
V=\sum_{i \in 1 / 2+\mathbb{Z}} \mathbb{C} \cdot v_{i} \tag{2.2}
\end{equation*}
$$

i.e., the monomials $v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots$ such that:

- $i_{1}>i_{2}>\ldots$
- $i_{j}=i_{j-1}-1 / 2$ for $j \gg 0$.

Besides, we have the creation and annihilation operators defined by:

$$
\begin{align*}
& \psi_{k}: v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \mapsto v_{k} \wedge v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \\
& \psi_{k}^{*}: v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \mapsto(-1)^{l} v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \wedge \widehat{v_{i_{l}=k}} \wedge \ldots \tag{2.3}
\end{align*}
$$

The monomials can be parametrized in terms of partition

$$
\begin{equation*}
|\lambda\rangle=v_{\lambda}=\lambda_{1}-1 / 2 \wedge \lambda_{2}-3 / 2 \wedge \ldots \tag{2.4}
\end{equation*}
$$

The Fock space \mathfrak{F} is almost a Hilbert space, with respect to the inner product $\left\langle v_{\lambda}, v_{\mu}\right\rangle=\delta_{\lambda \mu}$. Its completion with respect to the norm of the inner product is a Hilbert space. We can also write this using the Frobenius coordinates of partitions:

$$
\begin{equation*}
|\lambda\rangle=\prod_{i=1}^{l} \psi_{a_{i}}^{*} \psi_{b_{i}}|0\rangle, \quad a_{i}=\lambda_{i}-i+\frac{1}{2}, b_{i}=\lambda_{i}^{t}-i+\frac{1}{2}, \tag{2.5}
\end{equation*}
$$

where $\left(a_{1}, \ldots, a_{l} \mid b_{1}, \ldots, b_{l}\right)$ are called the Frobenius coordinates of λ. The operator

$$
\begin{equation*}
C=\sum_{k \in 1 / 2+\mathbb{Z}}: \psi_{k} \psi_{k}^{*}: \tag{2.6}
\end{equation*}
$$

is called the charge operator, whose action on \mathfrak{F} is:
$C\left(v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots\right)=\left[\left(\sharp\right.\right.$ present positive $\left.v_{i}\right)-\left(\sharp\right.$ missing negative $\left.\left.v_{i}\right)\right] v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots$
The vectors of 0 -charge are characterized by being annihilated by C. Besides, the energy operator H (Hamiltonian) is defined by

$$
\begin{equation*}
H=\sum_{k \in \frac{1}{2}+\mathbb{Z}} k: \psi_{k} \psi_{k}^{*}: \tag{2.8}
\end{equation*}
$$

and satisfies $H v_{\lambda}=|\lambda| v_{\lambda}$. Let us define the Bosonic operators as follows:

$$
\begin{equation*}
\alpha_{n}=\sum_{k \in \frac{1}{2}+\mathbb{Z}} \psi_{k+n} \psi_{k}^{*} \tag{2.9}
\end{equation*}
$$

They satisfy the commutation relations $\left[\alpha_{n}, \psi_{k}\right]=\psi_{k+n},\left[\alpha_{n}, \psi_{k}^{*}\right]=-\psi_{k-n}$.
The fermionic Fock space \mathfrak{F} is the Hilbert space generated by a pair of fermions $\psi^{ \pm}(z)$ with components $\psi_{r}^{ \pm}, r \in \frac{1}{2}+\mathbb{Z}$ satisfying the Clifford commutation relations,

$$
\begin{equation*}
\left[\psi_{i}^{+}, \psi_{j}^{-}\right]=\delta_{i,-j}, \quad\left[\psi_{i}^{+}, \psi_{j}^{+}\right]=0, \quad\left[\psi_{i}^{-}, \psi_{j}^{-}\right]=0 \tag{2.10}
\end{equation*}
$$

2.2. Bosonic Fock space

The Hilbert space \mathfrak{F} can be constructed in two primary isomorphic forms (BosonFermion correspondence). They are called Fermionic and Bosonic Fock spaces. In this regard, Definition 2.1 is usually referred to as the fermionic Fock space. The Bosonic Fock space is a representation defined on the polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, \ldots ; q, q^{-1}\right]$, see [13]. It is not hard to write a specific isomorphism between \mathfrak{F} and the mentioned polynomial ring. In this context, the vertex operators act as certain differential operators, and the trace of vertex operator appears as generating a series of the ring of symmetric functions on infinitely many variables. We review some features of this below.

Consider the coordinate ring of the affine variety $\operatorname{Sym}^{k}(\mathbb{C})$, namely $B_{k}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /$ S_{n}. Write the Hilbert series of B_{k} as $H_{B_{k}}(q)=\sum_{n} q^{n} h_{n}\left(B_{k}\right)$, where $h_{n}\left(B_{k}\right)=$
 derstand that B_{k} is the ring of symmetric functions in variables x_{1}, \ldots, x_{k}. It is also generated by Schur functions, i.e., $B_{k}=\left\langle S_{\mu}\left(x_{1}, \ldots, x_{k}\right),\right| \mu|\leq k\rangle$. In string theory B_{k} arises as the Hilbert space \mathcal{H}_{k} generated by the Boson oscillators up to charge k, with commutation relations, $\left[\alpha_{n}, \alpha_{m}\right]=n \delta_{n+m, 0}$.

Let us associate monomials to partitions as follows:

$$
\begin{equation*}
\lambda=1^{\lambda_{1}} 2^{\lambda_{2}} \ldots . \longmapsto \alpha_{-1}^{-\lambda_{1}} \alpha_{-2}^{-\lambda_{2}} \ldots .|0\rangle \tag{2.11}
\end{equation*}
$$

thus,

$$
\begin{equation*}
B_{k} \cong \mathcal{H}_{k}=\left\langle\alpha_{-1}^{m_{1}} \ldots \alpha_{-k}^{m_{k}} \mid 0\right\rangle\left|m_{1}, \ldots m_{k} \geq 0\right\rangle \tag{2.12}
\end{equation*}
$$

and we have the inclusions $\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset \ldots$ corresponding to the nested sequence of Young diagrams of increasing number or rows. The \mathbb{C}^{\times}induces an action of $S_{y m}^{*}(\mathbb{C})$ such that the functions $S_{\mu}\left(x_{1}, \ldots, x_{k}\right)$ are eigen-functions with eigenvalues $q^{|\mu|}$ of the action of $q^{L_{0}}$ on \mathcal{H}, where

$$
\begin{equation*}
L_{0}=\sum_{n>0} \alpha_{-n} \alpha_{n} \tag{2.13}
\end{equation*}
$$

Then, we can write:

$$
\begin{equation*}
H_{B_{k}}(q)=\operatorname{Tr}_{\mathcal{H}_{k}} q^{L_{0}}=\sum_{|\mu| \leq k} q^{|\mu|}=\prod_{n=1}^{k}\left(1-q^{n}\right)^{-1} \tag{2.14}
\end{equation*}
$$

The generating function of these series becomes:

$$
\begin{equation*}
G(t, q)=\sum_{n=0}^{\infty} t^{k} H\left(B_{k}\right)(q)=\sum_{k} t^{k} \operatorname{Tr}_{\mathcal{H}_{k}} q^{L_{0}}=\sum_{\mu} s_{\mu}(t) s_{\mu}(1, q, \ldots) \tag{2.15}
\end{equation*}
$$

We can generalize this argument by considering the coordinate ring of the affine variety $B_{k_{1}, \ldots, k_{n}}=\operatorname{Sym}^{k_{1}}(\mathbb{C}) \times \ldots \times \operatorname{Sym}^{k_{n}}(\mathbb{C})$, and define the generating series $G\left(t_{1}, \ldots, t_{n} ; q\right)=$
 Schur polynomials,

$$
\begin{equation*}
B_{k_{1}, \ldots, k_{n}}=\left\langle S_{\mu_{1}}\left(x_{1,1}, \ldots, x_{1, k_{1}}\right) \ldots . S_{\mu_{n}}\left(x_{n, 1}, \ldots, x_{n, k_{n}}\right) ; l\left(\mu_{j}\right) \leq k_{j}\right\rangle \tag{2.16}
\end{equation*}
$$

The above ring is isomorphic to the Hilbert space spanned by the Bosonic operators,

$$
\begin{equation*}
\left.\mathcal{H}_{k_{1}, \ldots, k_{n}}=\left\langle\prod_{j=1}^{n}\left(\alpha_{-1}^{j}\right)^{n_{j, 1}} \ldots\left(\alpha_{-k_{n}}^{j}\right)^{n_{j, k_{n}}} \mid 0\right\rangle\right\rangle \tag{2.17}
\end{equation*}
$$

In the new terminology, the Hilbert series can be written as:

$$
\begin{equation*}
H_{B_{k_{1}, \ldots, k_{n}}}(q)=\operatorname{Tr}_{\mathcal{H}_{k_{1}, \ldots, k_{n}}} q^{L_{0}} \tag{2.18}
\end{equation*}
$$

where $L_{0}=\sum_{j=1}^{n} \sum_{r>0} \alpha_{-r}^{j} \alpha_{r}^{j}$ is the charge operator. We obtain $G\left(t_{1}, \ldots, t_{n}, q\right)=$ $\prod_{j=1}^{n} G\left(t_{j}, q\right)=\prod_{j=1}^{n} \prod_{i}\left(1-q^{-i} t_{j}\right)$. The classical Boson-Fermion correspondence is an isomorphism between two representations of the Heisenberg algebra, namely the Bosonic Fock space and the fermionic Fock space. The Boson-Fermion correspondence is a basic result in mathematical physics. There are various applications of this correspondence. It provides an explicit way of comparing expressions for q-dimensions of representations, through which new combinatorial identities are derived by computing characters of representations in two different ways.

2.3. The Fock space of level l

The Fock space of level l denoted by \mathfrak{F}^{l} is the fermionic Fock space on l pairs of fermions $\psi_{r}^{ \pm, j}, r \in \frac{1}{2}+\mathbb{Z}, j=1, \ldots, l$. Let us denote by \widehat{C}^{l} the Clifford algebra on $\psi_{r}^{ \pm, j}, r \in \frac{1}{2}+\mathbb{Z}$ for $j=1, \ldots, l . \mathfrak{F}^{l}$ is a simple \widehat{C}^{l}-module generated by $|0\rangle$, such that $\psi_{r}^{ \pm, j}|0\rangle=0, r>0$. The $\frac{1}{2} \mathbb{Z}_{+}$-gradation of \mathfrak{F}^{l} is given by the eigenvalues of the degree operator d such that $d|0\rangle=0,\left[d, \psi_{-r}^{ \pm, j}\right]=r \psi_{-r}^{ \pm, j}$, where any graded subspace is finitedimensional. We shall use normal ordering notations defined as follows:

$$
\begin{aligned}
& : \psi_{r}^{+, j} \psi_{s}^{-, k}:=\left\{\begin{array}{l}
-\psi_{s}^{-, k} \psi_{r}^{+, j}, \\
\psi_{r}^{+, j} \psi_{s}^{-, k}
\end{array}\right. \\
& : \psi_{r}^{-, j} \psi_{s}^{+, k}:=\left\{\begin{array}{l}
-\psi_{s}^{+, k} \psi_{r}^{-, j}, \quad s=-r<0 \\
\psi_{r}^{-, j} \psi_{s}^{+, k}
\end{array}\right. \\
& : \psi_{r}^{+, j} \psi_{s}^{+, k}:=\psi_{r}^{+, j} \psi_{s}^{+, k} \\
& : \psi_{r}^{-, j} \psi_{s}^{-, k}:=\psi_{r}^{-, j} \psi_{s}^{-, k} \\
& : \psi_{r}^{ \pm, j} \phi_{s}^{+, k}:=\psi_{r}^{ \pm, j} \phi_{s}^{+, k} .
\end{aligned}
$$

Define the operators $e_{*}^{i j}$ and $e_{i j}^{*}$ by:

$$
\begin{equation*}
e_{*}^{i j}=\sum_{u \in \frac{1}{2}+\mathbb{Z}}: \psi_{-u}^{+, i} \psi_{u}^{-, j}:, \quad e_{i j}^{*}=\sum_{k=1}^{l}: \psi_{\frac{1}{2}-i}^{+, k} \psi_{j-\frac{1}{2}}^{-, k}: \tag{2.20}
\end{equation*}
$$

With the above set-up, we have the following:

- The map $\mathfrak{g l}_{l} \longrightarrow \operatorname{End}\left(\mathfrak{F}^{l}\right), E^{i j} \longmapsto e_{*}^{i j}$ is a representation of $\mathfrak{g l}_{l}$.
- The map $\mathfrak{a}_{\infty} \longrightarrow \operatorname{End}\left(\mathfrak{F}^{l}\right), E_{i j} \longmapsto e_{i j}^{*}$ defines a representation of \mathfrak{a}_{∞}.
- The above actions of $\mathfrak{g l}_{l}$ and \mathfrak{a}_{∞} on \mathfrak{F}^{l} commute, [see [17] sec. 5.4]. Thus, we have the relation:

$$
\begin{equation*}
\left[e_{*}^{i j}, e_{r s}^{*}\right]=\left[\sum_{u \in \frac{1}{2}+\mathbb{Z}}: \psi_{-u}^{+, i} \psi_{u}^{-, j}:, \sum_{l=1}^{\infty}: \psi_{\frac{1}{2}-r}^{+, l} \psi_{s-\frac{1}{2}}^{-, l}:\right]=0 . \tag{2.21}
\end{equation*}
$$

We use the generalized partitions as the weights of representations of $\mathfrak{g l}_{l}$, i.e., the partitions λ of the form $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{i-1} \geq \lambda_{i}=\ldots=\lambda_{j-1}=0 \geq \lambda_{j} \geq \ldots \geq\right.$ $\left.\lambda_{r}\right)$. Also, for the weight of representations of \mathfrak{a}_{∞} we denote $\Lambda(\lambda)=\Lambda_{\lambda_{1}}+\ldots+\Lambda_{\lambda_{l}}=$ $l \Lambda_{0}+\sum_{i} \lambda_{i}^{\prime} \epsilon_{i}$, where,

$$
\lambda_{i}^{\prime}=\left\{\begin{array}{c}
\left|\left\{j \mid \lambda_{j} \geq i, i \geq 1\right\}\right| \tag{2.22}\\
-\left|\left\{j \mid \lambda_{j}<i, i \leq 0\right\}\right|
\end{array}\right.
$$

Notice that we use the notation in the Appendix, in particular, (A.4). Let's define,

$$
\begin{align*}
& \varpi_{m}^{+, j}=\psi_{-m+\frac{1}{2}}^{+, j} \ldots \psi_{-\frac{3}{2}}^{+, j} \psi_{-\frac{1}{2}}^{+, j}, \quad \varpi_{0}^{+, s}=1 . \\
& \varpi_{m}^{-, s}=\psi_{-m+\frac{1}{2}}^{-, \ldots} \psi_{-\frac{3}{2}}^{-, s} \psi_{-\frac{1}{2}}^{-, s} \tag{2.23}
\end{align*}
$$

$$
\begin{equation*}
v_{\lambda}=\varpi_{\lambda_{1}}^{+, s} \varpi_{\lambda_{2}}^{+, s} \ldots \varpi_{\lambda_{i}}^{+, s} \varpi_{-\lambda_{j}}^{-, s} \varpi_{-\lambda_{j+1}}^{+, s} \ldots \varpi_{-\lambda_{l}}^{+, s}, \tag{2.24}
\end{equation*}
$$

whose weight with respect to $\mathfrak{g l}(l)$ is λ, and with respect to \mathfrak{a}_{∞} is $\Lambda(\lambda)$, [see [17] sec. 5.4].
Theorem 2.2 (See [17] sec. 5.4). We have the decomposition

$$
\begin{equation*}
\mathfrak{F}^{l}=\bigoplus_{\lambda} L(\mathfrak{g l}(l), \lambda) \otimes L\left(\mathfrak{a}_{\infty}, \Lambda(\lambda)\right) . \tag{2.25}
\end{equation*}
$$

One may state other kind of dualities by considering different vertex operators associated to the pairs $\left(\mathfrak{s p}(\infty), \mathfrak{c}_{\infty}\right)$ and $\left(O(\infty), \mathfrak{d}_{\infty}\right)$.

Remark 2.3. In order to illustrate the fermionic operators, let $V=\left(\mathbb{C}^{l} \otimes \mathbb{C}^{\infty}\right) \bigoplus\left(\mathbb{C}^{l *} \otimes \quad 1\right.$ $\mathbb{C}^{\infty *}$), where \mathbb{C}^{∞} is a vector space with basis $w_{r}, r \in-\frac{1}{2}-\mathbb{Z}_{+}$, the dual indexed is given by w_{-r}, and \mathbb{C}^{l} has basis $v^{+, i}$ with dual $v^{-, i}$. Then, we may illustrate $\psi_{r}^{ \pm, i}=v^{ \pm, i} \otimes w_{r}$.
2.4. The character of vertex operators

The operators of the form:

$$
\begin{equation*}
\Gamma_{+}(x)=\exp \left(\sum_{n \geq 1} \frac{x^{n}}{n} \alpha_{n}\right), \quad \Gamma_{-}(x)=\exp \left(\sum_{n>0} \frac{x^{n}}{n} \alpha_{-n}\right) \tag{2.26}
\end{equation*}
$$

are called vertex operators. They are adjoint with respect to the natural inner product. We have a commutation relation:

$$
\begin{equation*}
\Gamma_{+}(x) \Gamma_{-}(y)=(1-x y) \Gamma_{-}(y) \Gamma_{+}(x) . \tag{2.27}
\end{equation*}
$$

Also, we have,

$$
\begin{equation*}
\Gamma_{+}(x) v_{\mu}=\sum_{\lambda \supset \mu} S_{\lambda / \mu}(x) v_{\lambda} \tag{2.28}
\end{equation*}
$$

Vertex operators provide powerful tools to express partitions. We give some examples below.

- Vertex operators simplify expressions on generating series over partitions. For example, we can write,

$$
\begin{equation*}
\Gamma_{+}(1)|\mu\rangle=\sum_{\lambda \supset \mu}|\lambda\rangle, \quad \Gamma_{-}(1)|\mu\rangle=\sum_{\lambda \subset \mu}|\lambda\rangle . \tag{2.29}
\end{equation*}
$$

- As another example, we may write the well-known McMahon function as follows:

$$
\begin{align*}
Z & =\sum_{3-\operatorname{dim} \text { partitions }} q^{\natural \text { boxes }}=\left\langle\left(\prod_{t=0}^{\infty} q^{L_{0}} \Gamma_{+}(1)\right) q^{L_{0}}\left(\prod_{t=-\infty}^{-1} \Gamma_{-}(1) q^{L_{0}}\right)\right\rangle \tag{2.30}\\
& =\left\langle\prod_{n>0} \Gamma_{+}\left(q^{n-\frac{1}{2}}\right) \prod_{n>0} \Gamma_{-}\left(q^{-n-\frac{1}{2}}\right)\right\rangle .
\end{align*}
$$

By employing innovative combinatorial tools over Young diagrams, one can obtain more complicated formulas involving generating series. Let us give an example. One may divide a 3-dimensional partition into slices of two-dimensional partitions along the diagonals. In this way, the vertex operator divides into the multiplication of many vertex operators of the slices,

$$
\begin{equation*}
Z\left(\left\{x_{m}^{ \pm}\right\}\right)=\left\langle\ldots \prod_{u_{i}<m<v_{i+1}} \Gamma_{+}\left(x_{m}^{-}\right) \prod_{v_{i}<m<u_{i}} \Gamma_{-}\left(x_{m}^{+}\right) \ldots\right\rangle=\left\langle\prod_{u_{0}<m<u_{n}} \Gamma_{-\epsilon(m)}\left(x_{m}^{\epsilon(m)}\right)\right\rangle . \tag{2.31}
\end{equation*}
$$

In this way, one can obtain product formulas such as:

$$
\begin{equation*}
Z\left(\left\{x_{m}^{ \pm}\right\}\right)=\prod_{m_{1}<m_{2}}\left(1-x_{m_{1}}^{-} x_{m_{2}}^{+}\right) . \tag{2.32}
\end{equation*}
$$

For example, we may choose

$$
\begin{align*}
& \left\{x_{m}^{+}\right\}=\left\{t^{i} q^{v_{i}} \mid i=1,2, \ldots\right\} \tag{2.33}\\
& \left\{x_{m}^{-}\right\}=\left\{t^{j-1} q^{-v_{i}^{t}} \mid j=1,2, \ldots\right\}
\end{align*}
$$

and we get,

$$
\begin{equation*}
Z_{\lambda \mu \nu}(t, q)=\left\langle\prod_{u_{0}<m<u_{n}} \Gamma_{-\epsilon(m)}\left(x_{m}^{\epsilon(m)}\right)\right\rangle . \tag{2.34}
\end{equation*}
$$

The partition function can also be read by putting a wall on the distance M along with one of the axis. Then, using commutation (2.27) we have expressions of the form,

$$
\begin{align*}
Z & =\left\langle\prod_{0<m<\infty} \Gamma_{-}\left(x_{m}^{+}\right) \prod_{-M<m<0} \Gamma_{+}\left(x_{m}^{-}\right)\right\rangle \\
& =\prod_{l_{1}=1}^{\infty} \prod_{l_{2}=1}^{M}\left(1-x_{l_{1}-\frac{1}{2}}^{+} x_{-l_{2}+\frac{1}{2}}^{-}\right)^{-1}\left(\left\langle\prod_{-M<m<0} \Gamma_{+}\left(x_{m}^{-}\right) \prod_{0<m<\infty} \Gamma_{-}\left(x_{m}^{+}\right)\right\rangle,\right. \tag{2.35}
\end{align*}
$$

where the last factor in parentheses is equal to 1 , and we obtain a product formula.
The following theorem is another form of generating series arising from the vertex operator's trace.

Theorem 2.4. [13] We have the following formula for the trace of a vertex operator acting on $\mathfrak{F}=\Lambda^{\frac{\infty}{2}} V$:

$$
\begin{equation*}
\operatorname{Tr}\left(q^{L_{0}} \exp \left(\sum_{n} A_{n} \alpha_{-n}\right) \exp \left(\sum_{n} B_{n} \alpha_{n}\right)\right)=\prod_{n} \sum_{k} \sum_{l=0}^{k} \frac{n^{l} A_{n}^{l} B_{n}^{l}}{l!} q^{n k}\binom{k}{l}, \tag{2.36}
\end{equation*}
$$

where L_{0} is the charge operator, and $q^{L_{0}}|\lambda\rangle=|\lambda||\lambda\rangle$.
Proof. Denote the operator in the trace by T. We have the isomorphism:

$$
\begin{equation*}
\bigwedge^{\frac{\infty}{2}} V=\bigotimes_{n=1}^{\infty} \bigoplus_{k=0}^{\infty} \alpha_{-n}^{k}|0\rangle \tag{2.37}
\end{equation*}
$$

10 M. Reza-Rahmati, G. Flores / Linear Algebra and its Applications ••• (••••) •••••
which implies:

$$
\begin{aligned}
\operatorname{Tr}(T) & =\prod_{n=1}^{\infty} \operatorname{Tr}\left(\left.T\right|_{\oplus_{k=0}^{\infty} \alpha_{-n}^{k}|0\rangle}\right) \\
& \left.\left.=\prod_{n} \sum_{k}\langle 0| \alpha_{n}^{k}\left|q^{L_{0}} e^{A_{n} \alpha_{-n}} e^{B_{n} \alpha_{n}}\right|\left|\alpha_{n}^{k}\right| 0\right\rangle\right\rangle \\
& \left.\left.=\prod_{n} \sum_{k, l, m} \frac{A_{n}^{l} B_{n}^{m}}{l!m!} q^{n(l-m+k)}\langle 0| \alpha_{n}^{k}\left|\alpha_{-n}^{l} \alpha_{n}^{m}\right|\left|\alpha_{n}^{k}\right| 0\right\rangle\right\rangle \\
& \left.\left.=\prod_{n} \sum_{k, l} \frac{A_{n}^{l} B_{n}^{l}}{l!l!} q^{n k}\langle 0| \alpha_{n}^{k}\left|\alpha_{-n}^{l} \alpha_{n}^{l}\right|\left|\alpha_{n}^{k}\right| 0\right\rangle\right\rangle \\
& =\prod_{n} \sum_{k} \sum_{l=0}^{k} \frac{n^{l} A_{n}^{l} B_{n}^{l}}{l!} q^{n k}\binom{k}{l} .
\end{aligned}
$$

In the following, we present another calculation due to Bloch and Okounkov [14] of the trace of a representation on the infinite wedge space defined in 2.1. This is the foundation of our main result presented in Theorem 4.3 given in Section 4.

Theorem 2.5. [14] Let $\mathfrak{F}=\bigwedge^{\frac{\infty}{2}} V$ be the Fock space on a fixed basis of $V=\bigoplus_{j \in \mathbb{Z}} \mathbb{C} v_{j}$. Then, the character of \mathfrak{F} is given by

$$
\operatorname{ch}(\mathfrak{F})=\prod_{n \geq 0}\left(1+y_{0} y_{1}^{n+\frac{1}{2}} y_{2}^{\left(n+\frac{3}{2}\right)^{2}} \ldots\right)\left(1+y_{0}^{-1} y_{1}^{n-\frac{1}{2}} y_{2}^{-\left(n-\frac{1}{2}\right)^{2}} \ldots\right),
$$

where $y_{j}=e^{2 \pi i \tau_{j}}$.
Proof. The associated character is the trace of the operator,

$$
y_{0}^{L_{0}} y_{1}^{L_{1}} \ldots y_{n}^{L_{n}} \ldots=\exp \left(\sum_{j} 2 \pi i \tau_{j} L_{j}\right)
$$

where L_{i} are commuting operators which act on \mathfrak{F} by

$$
L_{j} \longmapsto \sum_{n \in \frac{1}{2}+\mathbb{Z}}\left(n-\frac{1}{2}\right)^{j} E_{n, n}
$$

The operators L_{j} mutually define a representation of

$$
H=\mathbb{C} L_{0} \oplus \mathbb{C} L_{1} \oplus \ldots \longrightarrow \operatorname{End}(\mathfrak{F})
$$

We compute the action of the operators $\exp \left(2 \pi i \tau_{j} L_{j}\right)$ on the basis elements. Thus, we have,

$$
\begin{align*}
L_{j} .\left(\psi_{-i_{1}} \psi_{-i_{2}} \ldots \psi_{-i_{l}} \psi_{-j_{1}}^{*} \ldots \psi_{-j_{k}}^{*}|0\rangle\right)=(& \left.\sum_{a=1}^{l}\left(i_{a}-1 / 2\right)^{j}-\sum_{b=1}^{k}\left(-j_{b}-\frac{1}{2}\right)^{j}\right) \tag{2.43}\\
& \times\left(\psi_{-i_{1}} \psi_{-i_{2}} \ldots \psi_{-i_{l}} \psi_{-j_{1}}^{*} \ldots \psi_{-j_{k}}^{*}|0\rangle\right) .
\end{align*}
$$

We also have,

$$
\begin{align*}
& \exp \left(2 \pi i \tau_{j} L_{j}\right) \psi_{-n}|0\rangle=\left(y_{0} y_{1}^{n-\frac{1}{2}} y_{2}^{\left(n-\frac{1}{2}\right)^{2}} \ldots\right) \psi_{-n}|0\rangle \\
& \exp \left(2 \pi i \tau_{j} L_{j}\right) \psi_{-n}^{*}|0\rangle=\left(y_{0}^{-1} y_{1}^{n-\frac{1}{2}} y_{2}^{-\left(n-\frac{1}{2}\right)^{2}} \ldots\right) \psi_{-n}^{*}|0\rangle \tag{2.44}
\end{align*}
$$

The claim of the theorem follows from the isomorphism:

$$
\begin{equation*}
\mathfrak{F}=\bigwedge^{\frac{\infty}{2}} V=\bigotimes_{n}\left(1+\psi_{-n}\right)\left(1+\psi_{-n}^{*}\right)|0\rangle \tag{2.45}
\end{equation*}
$$

3. Problem statement

Motivated by the two calculations of the trace of vertex operator presented in the previous section, i.e.,

$$
\begin{equation*}
\operatorname{Tr}\left(q^{L_{0}} \exp \left(\sum_{n} A_{n} \alpha_{-n}\right) \exp \left(\sum_{n} B_{n} \alpha_{n}\right)\right), \quad \operatorname{Tr}\left(\exp \left(\sum_{j \geq 0} 2 \pi i L_{j}\right)\right) \tag{3.1}
\end{equation*}
$$

where $\alpha_{n}, n \in \mathbb{Z}$ are Boson operators; L_{0} is the energy operator; and $L_{j}, j>0$ are certain Casimir operators, [13,14], we propose to compute the following trace:

$$
\begin{equation*}
\text { Trace }=\operatorname{Tr}\left(\exp \left(\sum_{j \geq 0} 2 \pi i L_{j}\right) \exp \left(\sum_{n>0} A_{n} \alpha_{-n}\right) \exp \left(\sum_{n>0} B_{n} \alpha_{n}\right)\right) . \tag{3.2}
\end{equation*}
$$

Therefore, we pose the following questions:

- How can one compute the trace in terms of the former traces?
- What is the representation theory interpretation of that?
- If the coefficients A_{n}, B_{n} are suitably chosen, what is the trace's physical interpretation in terms of string theory partition functions?

The character can be studied from different points of view. A direct way to calculate it could be to expand the exponentials inside the trace, apply basic commutation rules between the operators, and then compute the matrix elements. Some formulas in Lie theory, such as the Backer-Campbell-Hausdorff formula or the Wick formula, can also be helpful for calculation. Although this method can bring computational insights toward
the above question, it hits with the ad hoc complexities and difficulties. One may expand the operators in the trace both in terms of Bosonic operators $\alpha_{ \pm n}$, and also fermionic operators $\psi_{j}, j \in \frac{1}{2}+\mathbb{Z}$.

4. Main results

In order to interpret and compute a trace formula for (3.2) we make the following definition that is a natural generalization of the Fock space of level l, defined in 2.3.

Definition 4.1 (Fock space \mathfrak{F}^{∞}). Consider the fermionic fields $\psi_{r}^{ \pm, j}, r \in \frac{1}{2}+\mathbb{Z}, j \in \mathbb{Z}$ satisfying the natural Clifford commutation relations,

$$
\begin{align*}
{\left[\psi_{r}^{+, i}, \psi_{s}^{-, j}\right] } & =\delta_{i, j} \delta_{r,-s} I \\
{\left[\psi_{r}^{+, i}, \psi_{r}^{+, j}\right] } & =\left[\psi_{r}^{-, i}, \psi_{s}^{-, i}\right]=0 . \tag{4.1}
\end{align*}
$$

Set \widehat{C}^{∞} the Clifford algebra on these fields. By definition \mathfrak{F}^{∞} is a simple \widehat{C}^{∞}-module generated by $|0\rangle$, such that $\psi_{r}^{ \pm, j}|0\rangle=0, r>0$.

Next, we express a duality of Howe-type for the pair $\left(\mathfrak{g l}_{\infty}, \mathfrak{a}_{\infty}\right)$. In other words, the Fock space \mathfrak{F}^{∞} is a representation of both the Lie algebras $\mathfrak{g l} l_{\infty}$ and \mathfrak{a}_{∞}. Moreover, \mathfrak{F}^{∞} decomposes to the sum of their irreducible representation. Next, we are ready to present our first main result.

Theorem 4.2 (Main Result. $\left(\mathfrak{g l}_{\infty}, \mathfrak{a}_{\infty}\right)$-Howe duality). There exists a decomposition,

$$
\begin{equation*}
\mathfrak{F}^{\infty}=\bigoplus_{\lambda} L\left(\mathfrak{g l}_{\infty}, \lambda\right) \otimes L\left(\mathfrak{a}_{\infty}, \Lambda(\lambda)\right), \tag{4.2}
\end{equation*}
$$

where λ runs over all generalized partitions. Besides, there is a character formula,

$$
\begin{equation*}
\operatorname{ch}\left(\mathfrak{F}^{\infty}\right)=\prod_{i}^{\infty} \prod_{j}^{\infty}\left(1+y_{j} x_{i}\right)\left(1+y_{j}^{-1} x_{i}^{-1}\right) \tag{4.3}
\end{equation*}
$$

where $x_{i}, y_{j}, i, j \in \mathbb{N}$ are variables.
Proof. In (2.20), we replace the operators $e_{i j}^{*}$ by,

$$
\begin{equation*}
e_{i j}^{*}=\sum_{k=-\infty}^{\infty}: \psi_{\frac{1}{2}-i}^{+, k} \psi_{j-\frac{1}{2}}^{--,}:, \quad i, j \in \mathbb{Z} \tag{4.4}
\end{equation*}
$$

The map $\mathfrak{a}_{\infty} \longrightarrow \operatorname{End}\left(\mathfrak{F}^{\infty}\right), E_{i j} \longmapsto e_{i j}^{*}$ defines a representation of \mathfrak{a}_{∞}. Also, let us define the operators $e_{*}^{i j}(n)$ by:

$$
\begin{equation*}
e_{*}^{i j}=\sum_{r \in \frac{1}{2}+\mathbb{Z}}: \psi_{-r}^{+, i} \psi_{r}^{-, j}:, \quad\left(r \in \frac{1}{2}+\mathbb{Z}, i, j \in \mathbb{Z}\right) . \tag{4.5}
\end{equation*}
$$

The map $\mathfrak{g l}_{\infty} \longrightarrow \operatorname{End}\left(\mathfrak{F}^{\infty}\right), E^{i j} \longmapsto e_{*}^{i j}$ is a representation of $\mathfrak{g l} l_{\infty}$. We need to check that the action of $\mathfrak{g l}{ }_{\infty}$ and \mathfrak{a}_{∞} commute. That is,

$$
\begin{equation*}
\left[e_{*}^{i j}, e_{r s}^{*}\right]=\left[\left(\sum_{u \in \frac{1}{2}+\mathbb{Z}}: \psi_{-u}^{+, i} \psi_{u}^{-, j}:\right),\left(\sum_{l=1}^{\infty}: \psi_{\frac{1}{2}-r}^{+, l} \psi_{s-\frac{1}{2}}^{-, l}:\right)\right]=0 \tag{4.6}
\end{equation*}
$$

A joint highest weight vector in \mathfrak{F}^{∞}, associated to a generalized partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{j}\right)$ w.r.t. the standard Borel of $\mathfrak{g l}_{\infty} \times \mathfrak{a}_{\infty}$, is $v_{\lambda}=\varpi_{\lambda_{1}}^{+, s} \varpi_{\lambda_{2}}^{+, s} \ldots \varpi_{\lambda_{i}}^{+, s} \varpi_{-\lambda_{j}}^{-, s} \varpi_{-\lambda_{j+1}}^{+, s} \ldots \varpi_{-\lambda_{l}}^{+, s}$, with weight λ w.r.t. $\mathfrak{g l}_{\infty}$ and weight $\Lambda(\lambda)$ w.r.t. \mathfrak{a}_{∞}. By applying any root vector of $\mathfrak{g l}_{\infty}$ and \mathfrak{a}_{∞} to v_{λ}, it produces two identical $\psi_{\bullet}^{\bullet \bullet}$ in the resulting monomial. As in the finite case any irreducible representation of $\mathfrak{g l}_{\infty}$ appears in \mathfrak{F}^{∞} and the multiplicity free decomposition $\mathfrak{F}^{\infty}=\bigoplus_{\lambda} L\left(\mathfrak{g l}_{\infty}, \lambda\right) \otimes L\left(\mathfrak{a}_{\infty}, \Lambda(\lambda)\right)$ follows.

The character of $\mathfrak{g l}_{\infty}$ on \mathfrak{F}^{∞} is the trace of the operator $\prod_{i} x_{i}^{\epsilon_{*}^{i i}}$. The character of \mathfrak{a}_{∞} on \mathfrak{F}^{∞} is the trace of $\prod_{j} y_{j}^{\epsilon_{j j}^{*}}$. Therefore, $\operatorname{ch}\left(\mathfrak{F}^{\infty}\right)$ is the trace of the product of the two operators. Calculating the trace of the operator $\prod_{i} x_{i}^{\epsilon_{* i i}^{i i}} \prod_{j} y_{j}^{\epsilon_{j j}^{*}}$ on both sides of (4.2) we get:

$$
\begin{equation*}
\operatorname{ch}\left(\mathfrak{F}^{\infty}\right)=\bigoplus_{\lambda} \operatorname{ch}\left(L\left(\mathfrak{g l}_{\infty}, \lambda\right)\right) \otimes \operatorname{ch}\left(L\left(\mathfrak{a}_{\infty}, \Lambda(\lambda)\right)\right)=\prod_{i} \prod_{j}\left(1+y_{j} x_{i}\right)\left(1+y_{j}^{-1} x_{i}^{-1}\right) \tag{4.7}
\end{equation*}
$$

The duality in Theorem 4.2 enables us to compute the trace formula (3.2) by computing it on each summand. Specifically, we have the following.

Theorem 4.3 (Main result). We have the following formula for the trace in (3.2)

$$
\begin{array}{r}
\text { Trace }=\sum_{\lambda} \prod_{n \geq 0}\left(1+y_{0} y_{1}^{n+\frac{1}{2}} y_{2}^{\left(n+\frac{3}{2}\right)^{2}} \ldots\right)\left(1+y_{0}^{-1} y_{1}^{n-\frac{1}{2}} y_{2}^{-\left(n-\frac{1}{2}\right)^{2}} \ldots\right) \\
\prod_{r \geq 1} y_{r}^{p_{r}(\lambda)} \sum_{\mu \prec \lambda} S_{\lambda / \mu}^{\left(A_{n}\right)}\left(x_{1}, x_{2}, \ldots\right) S_{\lambda^{t} / \mu}^{\left(B_{n}\right)}\left(x_{1}, x_{2}, \ldots\right), \tag{4.8}
\end{array}
$$

where x_{i} and y_{i} are independent variables, and

$$
\begin{equation*}
p_{r}(\lambda)=\sum_{l}\left(\lambda_{l}-l+\frac{1}{2}\right)^{r}+(-1)^{r+1}\left(l-\frac{1}{2}\right)^{r}=\sum_{l}\left(m_{l}+\frac{1}{2}\right)^{r}+(-1)^{r+1}\left(n_{l}+\frac{1}{2}\right)^{r} \tag{4.9}
\end{equation*}
$$

holds, where $\left(m_{1}, \ldots, m_{s} \mid n_{1}, \ldots, n_{s}\right)$ are Frobenius coordinates of λ. The effect of the coefficients A_{n}, B_{n} is absorbed in the variables x_{1}, x_{2}, \ldots, [see the proof for the explanation on dependence to the coefficients $\left.A_{n}, B_{n}\right]$.

Remark 4.4. The dependence of the above trace to the coefficients A_{n} and B_{n} is somehow formal. The contribution to the trace coming from $\operatorname{Tr}\left(\exp \left(\sum_{n>0} A_{n} \alpha_{-n}\right) \times\right.$ $\left.\exp \left(\sum_{n>0} B_{n} \alpha_{n}\right)\right)$ is given in the last sum appearing in (4.8), where the effect of A_{n}, B_{n} is absorbed in the variables x_{1}, x_{2}, \ldots, [see [13] page 11 and 24 , or [6] pages 25 and 70 for the notation].

Proof of Theorem 4.3. Let us denote,

$$
\begin{equation*}
\mathcal{L}=\exp \left(\sum_{j} 2 \pi i L_{j}\right), \quad T=\exp \left(\sum_{n} A_{n} \alpha_{-n}\right) \exp \left(\sum_{n} B_{n} \alpha_{n}\right) . \tag{4.10}
\end{equation*}
$$

According to Theorem 4.2 , we need to compute:

$$
\begin{equation*}
\sum_{\lambda} \operatorname{Tr}\left(\left.\mathcal{L}\right|_{L\left(\mathfrak{g}_{\infty}, \lambda\right)}\right) \operatorname{Tr}\left(\left.T\right|_{L\left(\mathbf{a}_{\infty}, \Lambda^{\wedge} \infty(\lambda)\right.}\right) . \tag{4.11}
\end{equation*}
$$

We first compute the factor relevant to \mathcal{L}. Consider $v_{\lambda}=|\lambda\rangle$, the vector of weight λ. We have the formula:

$$
\begin{equation*}
\mathfrak{F}^{\lambda}=\bigotimes_{n}\left(1+\psi_{-n}\right)\left(1+\psi_{-n}^{*}\right)|\lambda\rangle . \tag{4.12}
\end{equation*}
$$

By lemma 5.1 in [14], we also have:

$$
\begin{align*}
& \exp \left(2 \pi i L_{j}\right) \psi_{-n}|\lambda\rangle=\left(y_{0} y_{1}^{n-\frac{1}{2}} y_{2}^{\left(n-\frac{1}{2}\right)^{2}} \cdots \prod_{r \geq 1} y_{r}^{p_{r}(\lambda)}\right) \psi_{-n}|\lambda\rangle \\
& \exp \left(2 \pi i L_{j}\right) \psi_{-n}^{*}|\lambda\rangle=\left(y_{0}^{-1} y_{1}^{n-\frac{1}{2}} y_{2}^{-\left(n-\frac{1}{2}\right)^{2}} \ldots \prod_{r \geq 1} y_{r}^{p_{r}(\lambda)}\right) \psi_{-n}^{*}|\lambda\rangle, \tag{4.13}
\end{align*}
$$

therefore

$$
\begin{equation*}
\operatorname{Tr}\left(\left.\mathcal{L}\right|_{L\left(\mathfrak{g} \mathrm{l}_{\infty}, \lambda\right)}\right)=\prod_{n \geq 0}\left(1+y_{0} y_{1}^{n+\frac{1}{2}} y_{2}^{\left(n+\frac{3}{2}\right)^{2}} \ldots\right)\left(1+y_{0}^{-1} y_{1}^{n-\frac{1}{2}} y_{2}^{-\left(n-\frac{1}{2}\right)^{2}} \ldots\right) \prod_{r \geq 1} y_{r}^{p_{r}(\lambda)} \tag{4.14}
\end{equation*}
$$

On the other hand, it is well known that,

$$
\begin{equation*}
\operatorname{Tr}\left(\left.T\right|_{L\left(\mathfrak{a}_{\infty}, \Lambda^{a} \infty(\lambda)\right.}\right)=\sum_{\mu \prec \lambda} S_{\lambda / \mu}^{\left(A_{n}\right)}\left(x_{1}, x_{2}, \ldots\right) S_{\lambda^{t} / \mu}^{\left(B_{n}\right)}\left(x_{1}, x_{2}, \ldots\right), \tag{4.15}
\end{equation*}
$$

where $S_{\lambda / \mu}^{\left(A_{n}\right)}$ is the skew Schur function $S_{\lambda / \mu}$ specialized to the case in which the symmetric power functions p_{n} equal $n A_{n}$. Similarly, $S_{\lambda / \mu}^{\left(B_{n}\right)}$ is the skew Schur function $S_{\lambda / \mu}$ specialized to the case in which the symmetric power functions p_{n} equals $n B_{n}$, [see [13] page 11 and 24 for the notation].

5. Application

The string theory partition function of toric $C Y$ 3-folds can be formulated from their tropical diagram by basic combinatorial rules of the topological vertex, [18], [19], [20], [21], [22], [23], [24]. These partition functions can also be described combinatorially by specific vector fields acting on the tropical diagram that fixes the vertices. The symmetry group of the action is a unitary group $U(N)$ and is called the gauge group. One may consider tropical diagrams that are more complicated, especially when there are many cells. Thus, one may ask what happens if we apply infinitely many twists in the vertex operator. Below we explain this motivating question.

The partition function of the $U(1)$ theory can be written in the form:

$$
\begin{equation*}
Z(\tau, m, \epsilon)=\operatorname{Tr}\left(Q_{\tau}^{L_{0}} \exp \left(\sum_{n \geq 1} \frac{Q_{m}^{n}-1}{n\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right)} \alpha_{n}\right) \exp \left(\sum_{n \geq 1} \frac{Q_{-m}^{n}-1}{n\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right)} \alpha_{-n}\right)\right) . \tag{5.1}
\end{equation*}
$$

Using the commutation relation of $\alpha_{ \pm}$it can be written as follows, cf. [20-22],

$$
\begin{equation*}
Z(\tau, m, \epsilon)=\prod_{k}\left(1-Q_{\tau}^{k}\right)^{-1} \prod_{i, j} \frac{\left(1-Q_{\tau}^{k} Q_{m}^{-1} q^{i+j-1}\right)\left(1-Q_{\tau}^{k} Q_{m} q^{i+j-1}\right)}{\left(1-Q_{\tau}^{k} q^{i+j-1}\right)} \tag{5.2}
\end{equation*}
$$

Besides, the partition function in (5.1) can be generalized to

$$
\begin{align*}
& Z(\tau, m, \epsilon, t) \\
& \quad=\operatorname{Tr}\left(Q_{\tau}^{L_{0}} e^{\sum_{n} t_{n} L_{n}} \exp \left(\sum_{n \geq 1} \frac{Q_{m}^{n}-1}{n\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right)} \alpha_{n}\right) \exp \left(\sum_{n \geq 1} \frac{Q_{-m}^{n}-1}{n\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right)} \alpha_{-n}\right)\right) . \tag{5.3}
\end{align*}
$$

Also, in the limit $m \mapsto 0$ we obtain,

$$
\begin{equation*}
Z(\tau, m=0, \epsilon, t)=\operatorname{Tr}\left(Q_{\tau}^{L_{0}} e^{\sum_{n} t_{n} L_{n}}\right) \tag{5.4}
\end{equation*}
$$

We can write the partition function in terms of the Gromov-Witten potentials:

$$
\begin{equation*}
Z(\tau, m, \epsilon)=\exp \left(\sum_{g \geq 0} \epsilon^{2 g-2} F_{g}\right) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{F_{1}}=\prod_{k}\left(1-Q_{\tau}^{k}\right)^{-1}\left(\frac{\left(\left(1-Q_{\tau}^{k}\right)^{2} Q_{m}^{-1}\right)\left(1-Q_{\tau}^{k} Q_{m}\right)^{2}}{\left(1-Q_{\tau}^{k}\right)^{4}}\right)^{\frac{1}{24}} \tag{5.6}
\end{equation*}
$$

(1) Lie Algebra \mathfrak{a}_{∞} : Let $\mathfrak{a}_{\infty}=\widehat{\mathfrak{g l}}_{\infty}=\mathfrak{g l}_{\infty} \oplus \mathbb{C} K$ with the bracket,

$$
\begin{equation*}
[X+c K, Y+d K]=[X, Y]^{\prime}+\tau(X, Y) K \tag{A.1}
\end{equation*}
$$

The function $\tau(X, Y)=\operatorname{Tr}([J, X] Y)$ is called a cocycle function, where $J=\sum_{j \leq 0} E_{j j}$ and [., .]' is the bracket of $\mathfrak{g l} l_{\infty}$. We have the degree gradation $\mathfrak{g l}_{\infty}=\bigoplus_{j} \mathfrak{g l}_{\infty}^{j}$, where j runs over integers and it is called \mathbb{Z}-principal gradation. The degree of $E_{i j}$ would be $j-i$. Besides, we have a decomposition:

$$
\begin{equation*}
\mathfrak{a}_{\infty}=\mathfrak{a}_{\infty}^{+} \oplus \mathfrak{a}_{\infty}^{0} \oplus \mathfrak{a}_{\infty}^{-}, \quad \mathfrak{a}_{\infty}^{ \pm}=\bigoplus_{j>0} \mathfrak{g l}_{\infty}^{ \pm j}, \mathfrak{a}_{\infty}^{0}=\mathfrak{g l}_{\infty}^{0} \oplus \mathbb{C} K \tag{A.2}
\end{equation*}
$$

The root system of \mathfrak{a}_{∞} is

$$
\begin{equation*}
R=\left\{\epsilon_{i}-\epsilon_{j} \mid i \neq j\right\}, \quad \epsilon_{i}\left(E_{i i}\right)=\delta_{i j}, \epsilon_{i}(K)=0 \tag{A.3}
\end{equation*}
$$

The set $\Pi=\left\{\epsilon_{i}-\epsilon_{i+1} \mid i \in \mathbb{Z}\right\}$ is a fundamental system for \mathfrak{a}_{∞} with corresponding co-roots $\left\{H_{i}^{\mathfrak{a}}=E_{i i}-E_{i+1, i+1}+\delta_{i, 0} K\right\}$. We denote by $\Lambda_{j}^{\mathfrak{a}}$ the j-th fundamental weight of \mathfrak{a}_{∞}, i.e. $\Lambda_{j}^{\mathfrak{a}}\left(H_{i}^{\mathfrak{a}}\right)=\delta_{i j}, \quad(i \in \mathbb{Z}), \Lambda_{j}^{\mathfrak{a}}(K)=1$. A straightforward computation gives:

$$
\begin{array}{ll}
\Lambda_{j}^{\mathfrak{a}}=\Lambda_{0}^{\mathfrak{a}}-\sum_{i=j+1}^{0} \epsilon_{i} & j<0 \\
\Lambda_{j}^{\mathfrak{a}}=\Lambda_{0}^{\mathfrak{a}}+\sum_{i=1}^{j} \epsilon_{i} & j \geq 1 \tag{A.4}
\end{array}
$$

e irreducible highest weight representation of \mathfrak{a}_{∞} of the highest weight Λ is denoted by $L\left(\mathfrak{a}_{\infty}, \Lambda\right)$.
(2) Lie algebra \mathfrak{c}_{∞} : Let $V=\bigoplus_{j \in \mathbb{Z}} \mathbb{C} v_{j}$ be the vector space generated by the vectors v_{j}, where $E_{i j} v_{j}=v_{i}$. Consider the symmetric bilinear form,

$$
\begin{equation*}
C\left(v_{i}, v_{j}\right)=(-1)^{i} \delta_{i, 1-j}, \forall i, j \in \mathbb{Z} \tag{A.5}
\end{equation*}
$$

Set $\mathfrak{c}_{\infty}=\overline{\mathfrak{c}}_{\infty} \oplus \mathbb{C} K$, where

$$
\begin{equation*}
\overline{\mathfrak{c}}_{\infty}=\left\{X \in \mathfrak{g l}_{\infty} \mid C(X(u), v)+C(u, X(v))=0\right\} \tag{A.6}
\end{equation*}
$$

A fundamental system for \mathfrak{c}_{∞} is given by $\left\{-2 \epsilon_{1}, \epsilon_{i}-\epsilon_{i+1} ; i \geq 0\right\}$ with simple co-roots:

$$
\begin{align*}
H_{i}^{\mathfrak{c}} & =E_{i i}+E_{-i,-i}=E_{i+1, i+1}-E_{1-i, 1-i} \tag{A.7}\\
H_{0}^{\mathfrak{c}} & =E_{00}-E_{11}+K
\end{align*}
$$

The j-th fundamental weight for \mathfrak{c}_{∞} is defined by the same as the case for \mathfrak{a}_{∞} and explicitly written as follows,

$$
\Lambda_{j}^{\mathrm{c}}=\Lambda_{0}^{\mathrm{c}}+\sum_{i=1}^{j} \epsilon_{i}, \quad j \geq 1 .
$$

(3) Lie Algebra \mathfrak{d}_{∞} : Define the Lie algebra $\mathfrak{d}_{\infty}=\overline{\mathfrak{d}}_{\infty} \oplus \mathbb{C} K$ where,

$$
\begin{equation*}
\overline{\mathfrak{d}}_{\infty}=\left\{X \in \mathfrak{g l}_{\infty} \mid D(X(u), v)=D(u, X(v))\right\} \tag{A.9}
\end{equation*}
$$

and where $D\left(v_{i}, v_{j}\right)=\delta_{i, 1-j}$. It has the fundamental system $\left\{ \pm \epsilon_{1}-\epsilon_{2}, \epsilon_{i}-\epsilon_{i+1}, i \geq 2\right\}$ with simple co-roots:

$$
\begin{align*}
& H_{i}=E_{i i}-E_{-i,-i}-E_{i+1, i+1}-E_{1-i, 1-i} \\
& H_{0}=E_{00}-E_{-1,-1}-E_{22}-E_{11}+2 K \tag{A.10}
\end{align*}
$$

References

[1] J. Bryan, M. Kool, B. Young, Trace identities for the topological vertex, Sel. Math. New Ser. 24 (2018) 1527-1548, https://doi.org/10.1007/s00029-017-0302-1.
[2] A. Borodin, A. Okounkov, G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Am. Math. Soc. 13 (3) (2000) 481-515, https://doi.org/10.1090/S0894-0347-00-00337-4.
[3] S.-J. Cheng, N. Lam, Infinite-dimensional Lie superalgebras and hook Schur functions, Commun. Math. Phys. 238 (2003) 95-118, https://doi.org/10.1007/s00220-003-0819-3.
[4] R. Dijkgraaf, G. Moore, R. Plesser, The partition function of 2D string theory, in: L. Bonora, G. Mussardo, A. Schwimmer, L. Girardello, M. Martellini (Eds.), Integrable Quantum Field Theories, Springer-Verlag US, 1993, pp. 257-281.
[5] A. Dembo, A. Vershik, O. Zeitouni, Large deviations for integer partitions, Markov Process. Relat. Fields 6 (2) (2000) 147-179.
[6] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford, 1995.
[7] S. Matsumoto, Correlation functions of the shifted Schur measure, J. Math. Soc. Jpn. 57 (3) (2005) 619-637, https://doi.org/10.2969/jmsj/1158241925.
[8] H. Nakajima, K. Yoshioka, Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent. Math. 162 (2005) 313-355, https://doi.org/10.1007/s00222-005-0444-1.
[9] M. Szalay, P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group. I, Acta Math. Acad. Sci. Hung. 29 (1977) 361-379, https:// doi.org/10.1007/BF01895857.
[10] A.M. Vershik, Statistical mechanics of combinatorial partitions, and their limit shapes, Funct. Anal. Appl. 30 (1996) 90-105, https://doi.org/10.1007/BF02509449.
[11] A.M. Vershik, S.V. Kerov, Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group, Funct. Anal. Appl. 19 (1985) 21-31, https://doi.org/10. 1007/BF01086021.
[12] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351-399, https://doi.org/10.1007/BF01217730.
[13] R. Ríos-Zertuche, An introduction to the half-infinite wedge, in: N. Bárcenas, F. Galaz-García, M.M. Rocha (Eds.), Mexican Mathematician Aborad: Recent Contributions, First Workshop Matemáticos Mexicanos Jóvenes en el Mundo, in: Contemporary Mathematics, American Mathematical Society, 2016.
[14] S. Bloch, A. Okounkov, The character of the infinite wedge representation, Adv. Math. 149 (1) (2000) 1-60, https://doi.org/10.1006/aima.1999.1845.
[15] A.I. Bufetov, On the Vershik-Kerov conjecture concerning the Shannon-McMillan-Breiman theorem for the Plancherel family of measures on the space of young diagrams, Geom. Funct. Anal. 22 (2012) 938-975, https://doi.org/10.1007/s00039-012-0169-4.
[16] V.G. Kac, Infinite Dimensional Lie Algebras, Springer-Verlag, London, 1983.
[17] S.-J. Cheng, W. Wang, Dualities and Representations of Lie Superalgebras, American Mathematical Society, USA, 2012.
[18] B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart, C. Vafa, M-strings, Commun. Math. Phys. 334 (2015) 779-842, https://doi.org/10.1007/s00220-014-2139-1.
[19] A. Iqbal, A.-K. Kashani-Poor, Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys. 7 (2003) 457-497, https://doi.org/10.4310/ATMP.2003.v7.n3.a4.
[20] A. Iqbal, A.-K. Kashani-Poor, $\mathrm{Su}(\mathrm{n})$ geometries and topological string amplitudes, Adv. Theor. Math. Phys. 10 (2006) 1-32, https://doi.org/10.4310/ATMP.2006.v10.n1.a1.
[21] A. Iqbal, C. Kozçaz, K. Shabbir, Refined topological vertex, cylindric partitions and u(1) adjoint theory, Nucl. Phys. B 838 (3) (2010) 422-457, https://doi.org/10.1016/j.nuclphysb.2010.06.010.
[22] S. Gukov, A. Iqbal, C. Kozçaz, C. Vafa, Link homologies and the refined topological vertex, Commun. Math. Phys. 298 (3) (2010) 757-785, https://doi.org/10.1007/s00220-010-1045-4.
[23] R. Gopakumar, C. Vafa, M-theory and topological strings-I, an online reference from arXiv, arXiv: hep-th/9809187v1, 1998.
[24] R. Gopakumar, C. Vafa, M-theory and topological strings-II, an online reference from arXiv, arXiv: hep-th/9812127v1, 1998.
[25] A. Eskin, A. Okounkov, Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math. 145 (2001) 59-103, https://doi.org/10. 1007/s002220100142.
[26] M. Kaneko, D. Zagier, A generalized Jacobi theta function and quasimodular forms, in: R. Dijkgraaf, C. Faber, G. van der Geer (Eds.), The Moduli Space of Curves, in: Progress in Mathematics, vol. 129, Birkhäuser, Boston, 1995.
[27] B. Logan, L. Shepp, A variational problem for random young tableaux, Adv. Math. 26 (2) (1977) 206-222, https://doi.org/10.1016/0001-8708(77)90030-5.
[28] D. Maulik, A. Okounkov, Quantum Groups and Quantum Cohomology, Société Mathématique de France, France, 2019.

Sponsor names
Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.
Isaac Newton Institute for Mathematical Sciences, country=United Kingdom, grants=4

[^0]: \% This paper has not been received any particular financial support.

