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ABSTRACT

This paper presents the design of a high-gain nonlinear observer for bilinear systems in the block form. We prove the uniform
exponential stability of the observer error by finding a concrete exponential bound. Our method proves the uniform boundedness
of the observer error that is stronger than state-of-the-art methods. In particular, we extend the result of O. I. Goncharov on the
exponential stability of high-gain bilinear observers into observers of block forms. We also study and simulate two examples of
observers for bioreactor systems in two and three dimensions. Results show the effectiveness of the proposed approach.

1 Introduction
Among the different nonlinear observers’ approaches, perhaps the high gain observers (HGO) are among the most important in
the control community. High gain observers have been extensively used in the design of output feedback control. The structure
of an HGO involves a positive parameter design, namely, observer gain θ that has to be taken high enough to guarantee stability.
This paper follows certain hierarchies of high gain observer systems to study the uniform observation problem for an HGO in
block matrix form when the blocks are all the exact sizes.

A high gain observer is a dynamical system with a corrective term involving the observer gain factor, θ > 0, which must be
taken big enough to guarantee the convergence of observation error. Usually, this parameter appears by positive exponents on
different lines or subspaces of the state space, where its highest power is the dimension of the system. In this case, the gain
factor θ enters in numerical estimates problem for the system when a relatively high value is under demand.

There can be a classification of high gain systems into two branches. The first is the class of uniformly observable systems,
i.e., high gain systems observable from any point. The second class is non-uniform observer systems, in which the input is
required to satisfy excitation conditions to ensure observability. An example of the latter kind is considered in27 in which a
class of Multi-Input/Multi-Output observers where the gain factor varies with time.

A photobioreactor is a biological system where a biochemical process is carried out using a living organism. The system
is sensitive to change under ambient conditions, and the optimal conditions of the microalgae culture have to be satisfied.
The system is designed to control the pH, temperature, and oxygen. We will present examples in dimensions 2 and 3 with
experimental simulations. The asymptotic stability of the systems is studied in the final part of the article.

1.1 Related work
Recently some solutions has been made toward the stability of nonlinear systems,2,3,4,5,6,7,8,9,10,11,12,13,14,15. Bilinear systems
are a particular case of nonlinear systems, prevalent for modeling biological systems. In some of these bilinear systems, various
kinds of observation problems are comparatively complicated. Among these is the uniform observation problem for extended
bilinear systems in block form. The problem here is to find a uniform estimate for the state vector.

The uniform observability question for bilinear systems is of intense interest from a practical point of view. When the
problem is solvable, we say the system is uniformly observable. One way to attain this is to add sufficient constraints to the
system. Different criteria for the uniform observability has been studied in16,17,18,19,20,21,22,23,24,25,26,53. One can put the
constraints on the input u = u(t) like to be sufficiently smooth or even linear, bounded or having known estimates, to obtain the
uniform observation.

This paper is motivated by the two works1,27 on solving the observer problem for specific bilinear systems in dimension
n. The reference27 studies the error dynamics of the extended high gain bilinear system in block form in the presence of
perturbation noise. The authors prove the existence of a bound on the high gain observer’s error dynamics. However, the bound
is complicated, and their proof is very long. In1, the author proves the uniform and exponential stability of the bilinear system



in the scalar variables. In general, uniform stability is a stronger condition for the observer. The proof in1 is solid and organized
to present the theoretical insight into the high gain observer designs.

1.1.1 Contribution
We generalize the method of1 to prove the uniform observation problem for the bilinear system in a block form when the blocks
have the same size.

On the other hand, in27, a form of boundedness stability for observers of systems in the form ẋ = F(u,x)x+φ(u,x) has been
proved. We prove a stronger statement with more abstract methods. We demonstrate a nonlinear observer’s uniform exponential
stability by finding a more concrete exponential bound (by a different approach). Moreover, our method proves the uniform
boundedness of the error, a stronger result than the one in27. We use the feedback linearization of observer systems,14,28,29,12

to prove a similar uniform exponential stability theorem in nonlinear observer systems. Besides, to investigate our method’s
behavior, we apply the observer to two versions of the bioreactor model; the bioreactor explains a bacteria growth model and
population distribution,30. Simulations are presented for SI-SO and MI-SO bioreactor systems.

1.2 Content
The remainder of this paper is organized as follows. Section 2 presents observer design for systems in bilinear form. Section 3
demonstrates the exponential stability of the proposed observer for bilinear systems of the form,

ẋ = Ax+(Bu)x, y =Cx.

Then, in Section 4 results are extended for bilinear systems in the form,

ẋ = F(u,x)x+φ(u,x), y =Cx.

We present two cases of study in Section 5: SI-SO and MI-SO versions of the bioreactor system, where the proposed observer
is applied and simulated. Finally, some conclusions and future work are given in Section 6.

2 Problem setting

In1, O. I. Goncharov poses the problem of uniform observation for a scalar bilinear system:

ẋ = Ax+u(Bx+D), y =Cx (1)

where x∈Rn, u∈R1, A,B∈Rn×n, C ∈R1×n, and D∈Rn×1 are constant matrices. One may assume without loss of generality
that A,B and C are in canonical controllability forms3, that is,

A =


0 1 0 ... 0
0 0 1 ... 0
0 0 0 1

. ..

. .. 1
a1 a2 ... aq

 , B =


b11 0 0 ... 0
b21 b22 0 ... 0
b31 b32 b33 ...

. ...

. ...
bq1 bq2 ... bqq

 , C = [1 0 0 ... 0]. (2)

An observer for system (1) is

˙̂x = Ax̂+uBx̂+K(y−Cx̂), x̂,y ∈ Rn. (3)

where K = [k1, ... ,kq]
T is a column block matrix of feedback coefficients, and u(t) is bounded1. Error e = x− x̂ satisfies

ė = A0e+uBe (4)

where

A0 = A−KC =


−k1 1 0 ... 0
−k2 0 1 ... 0
−k3 0 0 1

. ..

. .. 1
−kq +a1 a2 ... aq

 (5)
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One uses the standard hierarchy of high-gain observers such that the eigenvalues of the matrix A0 can be chosen to be
proportional to a high gain factor [see1 lemma 1]. The hierarchy states that if the feedback coefficients ki is big enough,
then eigenvalues of the matrix A0 are all real and negative (A is Hurwitz), and the contribution of the coefficients ai in the
characteristic polynomial of A can be neglected, see31,32. Goncharov proves that the error e(t) is exponentially bounded, that is,
there exist constants M,a0 > 0 and a polynomial P(θ) such that

‖ e ‖6 P(θ)exp(−(θ −a0)t), (θ > M). (6)

where θ is called the high gain factor. We generalize this result for similar systems where the matrices A,B, and C are in block
forms with blocks of the same size. We state that in the following problem statement.

2.1 Problem statement
This section presents the problem statement related to the design of observers, divided into two cases: the linear version and a
nonlinear version of a dynamic system. Let us consider first the case of the linear one.

Problem 1 (Linear case). Design an observer for a bilinear system of the form,

ẋ = Ax+(Bu)x, y =Cx, (7)

where x = [x1, x2, ..., xq], with xi ∈ Rr,u ∈ Rr, and A, B ∈ Rqr×qr and qr = n. Notice that the system above has the same
shape as (2) but with entries given by block matrices of size r× r. Besides, u = diag[u1Ir, ..., uqIr], C = [Ir, 0, ..., 0] hold.

In addition, we consider the nonlinear multi-input single-output (MI-SO) system, for which one has to design an observer.
The problem is as follows.

Problem 2 (Nonlinear case). Consider the nonlinear multi-input single-output (MI-SO) system,

ẋ = F(u,x)x+φ(u,x), y =Cx, (8)

where x ∈ Rqr, and

F(u,x) =


0 F1 0 ... 0
0 0 F2 ... 0
0 0 0 F3

. ..

. .. Fq−1
0 0 ... 0

 , φ(u,x) =


φ1
φ2
φ3
...
φq

 ,

where Fk = Fk(u,x1, ...,xq), φk = φk(u,x1, ...,xk), u ∈ Rr, xi ∈ Rr and C = [Ir 0 . . . 0]. The problem is to find an observer for
the aforementioned bilinear MI-SO system.

3 Solution to Problem 1: A high gain observer for bilinear systems of the form ẋ = Ax+
(Bu)x

In this section, we present a solution to the observation problem 1 for a bilinear system of the form,

ẋ = Ax+(Bu)x, y =Cx (9)
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where

x =


x1
x2
...
xq

 , xi ∈ Rr, qr = n

A =


0 Ir 0 ... 0
0 0 Ir ... 0
0 0 0 Ir

. ..

. .. Ir
A1 A2 ... Aq

 , Ak ∈ Rr×r

B =


B11 0 0 ... 0
B21 B22 0 ... 0
B31 B32 B33 ...

. ...

. ...
Bq1 Bq2 ... Bqq

 , Bi j ∈ Rr×r

(10)

with that aim, we consider the following assumptions.

Assumption 1. The matrices Ai pairwise commute, i.e., AiA j = A jAi, i, j = 1, ...,q, and C = [Ir, 0, ... , 0].

Assumption 2. The control input is structured as u = diag[u0Ir,u1Ir, ...,uq−1Ir], where ui ∈ R are assumed to be bounded.

Considering assumptions 1 and 2 the proposed observer for (9) is given by

˙̂x = Ax̂+(Bu)x̂+K(y−Cx̂), x̂,y ∈ Rn (11)

where K = [K1Ir, ... ,KqIr]
T is a column block matrix of feedback coefficients. The error e = x− x̂ has dynamics, given by

ė = A0e+(Bu)e (12)

where

A0 = A−KC =


−K1Ir Ir 0 ... 0
−K2Ir 0 Ir ... 0
−K3Ir 0 0 Ir

. ..

. .. Ir
−KqIr +A1 A2 ... Aq

 . (13)

The matrix A0 can be decomposed as,

A0 = Ā+ Â, with Ā =


−K1Ir Ir 0 ... 0
−K2Ir 0 Ir ... 0
−K3Ir 0 0 Ir

. ..

. .. Ir
−KqIr 0 ... 0

 , Â =


0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

. ..

. .. ...
A1 A2 ... Aq

 . (14)

In the following, we present and prove the theorem that is the spirit of the main result. It generalizes Lemma 1 in the work
of O. I. Goncharov1. The theorem states that the feedback coefficients Ki above can be chosen high enough such that the
eigenvalues of A0, (denoted by Sp(A0)) are all negative, distinct, and proportional to the high-gain factor θ ,16,53. Besides, the
effect of the matrix Â on the sign of the eigenvalues of A0 can be neglected.

Theorem 3.1. Assume we start from a set of n real numbers,

Sp(Ā) = {ᾱ1, ..., ᾱn}, ᾱi 6= ᾱ j, i 6= j (15)
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and consider the feedback coefficients as

Ki(θ) = Kiθ
i +o(i) (16)

where θ is the gain factor and the coefficients Ki are defined via

ρ̄(s) :=
n

∏
i=1

(s− ᾱi) = |sqIr +K1sq−1Ir + ...+KqIr|; (17)

and o(i) are the terms of degree strictly less than i in θ . Then, the characteristic polynomial of A0 = A−KC in (13)
corresponding to the error observer (12) is of the form

ρ(s) = |sqIr +K1(θ)sq−1Ir + ...+Kq(θ)Ir| (18)

where Ki(θ) was defined above.

Before presenting the proof of Theorem 3.1, we present the following proposition required for the proof.

Proposition 3.1 (33,34,35). If

A =


A11 . ... A1q
A21 . ...

. ..

. .....
Aq1 Aq2 ... Aqq

 (19)

is a q×q block matrix of Ai j ∈ Rr×r such that Ai jAkl = AklAi j for all entries, then 1

|A|=

∣∣∣∣∣ ∑
π∈Sk

A1π(1)...Akπ(k)

∣∣∣∣∣ . (20)

Remark 1. The above formula has been proved by induction and the axiomatic definition of determinant functions in the
different references. It can also be proved using the method of Schur complements in matrix analysis, see for instance references
36,37,38,39,40,41,42.

We are ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Let us consider the matrix,

sI−A0 =


(K1 + sIr) −Ir 0 ... 0

K2Ir sIr −Ir ... 0
K3Ir 0 sIr −Ir

. ..

. .. −Ir
KqIr−A1 −A2 ... sIr−Aq

 . (21)

Expanding and grouping the block entries as the Proposition 3.1, similar to the argument in1, we obtain

|sI−A0|=
∣∣∣sD(N1(1))+

q−1

∑
k=1

(−1)k−1D(Nk(s))+(−1)qA1(−1)q−1D(Nq)(s)
∣∣∣ (22)

where

Np =


sIr −Ir 0 ... 0
0 sIr −Ir ... 0
0 0 sIr −Ir

. ..

. .. −Ir
−Ap+1 −Ap+2 ... sIr−Aq

 (23)

1We denote the sum inside the above determinant as D(A) = ∑π∈Sk
A1,π(1)...Ak,π(k), associated to the block matrix A in (19), where Sk is the symmetric

group on k elements.
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is the (n− k) minor in the lowest left corner. We note that the number of the blocks producing the exponent of s in D(Nk(s))
reduces as k grows. Therefore, we have

D(Nk(s)) = sq−kIr +o(sq−k). (24)

Replacing (24) in (22) we obtain, |sI−A0|=
∣∣sqIr +Σk(−1)q−k(sn−kIr +o(sn−k)

∣∣. The proof of the Theorem is complete.

Corollary 3.1.1. Assume the setting of Theorem 3.1 holds. Then in the decomposition of A0 as (14) (on the matter relevant to
stability), the effect of the second factor, i.e matrices A j, j = 1, ...,q in (??) what is this equation? on Sp(A0), can be neglected
subject to the condition that the high gain factor θ is big enough. In this case

Sp(A0) = {θα1(θ), θα2(θ), ... , θαn(θ)} (25)

such that limθ→∞ αi(θ) = ᾱi.

Proof. The proof is mainly that of Goncharov in the scalar case (Lemma 1 in reference1), plus the extended determinant
formula used in Theorem 3.1. The elements θα1(θ), θα2(θ), ... , θαn(θ) are the roots of the characteristic polynomial of A0.
Therefore, the characteristic polynomial of A0 is as follows,

ρ(s) =
n

∏
i=1

(s−θαi) = θ
n

n

∏
i=1

( s
θ
−αi

)
= θ

n
∣∣∣∣s̄qIr +

K1(θ)

θ
s̄q−1Ir + ....

∣∣∣∣ , (26)

where we have used the simple relation s̄ = s/θ . Then, we have limθ→∞
Ki(θ)

θ i = Ki for all i. In other words ρ(s)
θ n → ρ̄(s). It

follows that the eigenvalues satisfy limαi(θ)→ α i as θ →+∞.

Remark 2. From the previous discussion, one can conclude that with the above choice of gain factors Ki of the feedback
system, the spectrum of A0 tends to −∞ and is proportional by a gain factor θ . Thus, in the remainder, we always assume that
the condition above on feedback coefficients is satisfied.

Now, we are ready to study the stability of the dynamics of the observer’s error (12). For that, first, notice that a general
solution for a bilinear system,

ẋ = Ax+(Bu)x (27)

is given by

x(t) = exp(At)x0 +
∫ t

0
u(s)exp(A(t− s))Bx(s)ds. (28)

A similar formula holds for the error dynamics. If θ is high enough, the eigenvalues of A0 satisfy λi ≤−θ , 1≤ i≤ n. Therefore,

‖exp(At)‖ ≤ P(θ)exp(−θ t) (29)

where P is a polynomial that tends to ∞ with θ ,1. By Lagrange interpolation for matrix functions (43 Chapter 5) one can find an
expression

exp(At) =
n−1

∑
l=0

AlPl(t) (30)

for specific polynomials Pl . Therefore, we must analyze the matrix exp(At)B. We do that in the following.

Theorem 3.2. Assume the hierarchy of Theorem 3.1 with ᾱi <−1. Then the error dynamics in (12) is,

ė = A0e+(Bu)e (31)

associated to the observer (11) is exponentially stable, i.e. there exists constants M,a0 > 0 and a polynomial P(θ) such that,

‖ e ‖6 P(θ)e−(θ−a0)t , (θ > M). (32)
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Our strategy to prove Theorem 3.2 is to extend Lemmas 1-4 in reference1 to block matrices of the form in (10). For that,
first let A(θ) = [ai j(θ)] and B(θ) = [bi j(θ)] be two n×m matrices with polynomial entries in θ , and define the relation,

A(θ). B(θ) (33)

if there exists non-negative constants K and M such that the entries of these matrices satisfy

ai j(θ)≤ Kbi j(θ), i = 1, . . . ,n, j = 1, . . . ,m. ∀θ ≥M. (34)

Such a condition essentially means that degai j(θ)≤ degbi j(θ) pairwise for all i and j. Thus, the following properties hold
[see Definition 1 in reference 1 page 1602]:

1) the relation . is transitive and reflexive,

2) if A(θ) and B(θ) are in block form then A(θ). B(θ) iff the blocks of the matrices satisfy the same relation,

3) if A(θ). B(θ) and C(θ). D(θ), then A(θ)+C(θ). B(θ)+D(θ),

4) if A(θ). B(θ) and c ∈ R, then cA(θ). B(θ),

5) if A(θ). B(θ) and C(θ). D(θ), then AC(θ). BD(θ).

The proofs of the properties 1-5 are given in reference 1. We employ the relation . and the properties 1-5 in the following two
lemmas.

Lemma 3.1. Let the matrix A0 has the form given in (14), and let the feedback coefficients Ki(θ) be chosen from Theorem 3.1,
then

Ap
0 .


θ pIr θ p−1Ir ... θ p−n+1Ir

θ p+1Ir θ pIr ... θ p−n+2Ir
... .. ...
... ..

θ p+n−1Ir θ p+n−2Ir ... θ pIr

=: Dp. (35)

Moreover we have

Ap
0B .


θ pIr θ p−1Ir ... θ p−n+1Ir

θ p+1Ir θ pIr ... θ p−n+2Ir
... .. ...
... ..

θ p+n−1Ir θ p+n−2Ir ... θ pIr




Ir 0 ... 0
Ir Ir ... 0
... .. ...
... ..
Ir Ir ... Ir

. Dp. (36)

Proof of Lemma 3.1. To prove this lemma, we use the properties given above. The proof of the first inequality is by induction
on p. The case p = 1 is trivial from the general form of the matrix A0 in (13). For the inductive step, one uses the property 5) to
pass from Ap−1

0 . Dp−1 to Ap
0 . Dp. According to property 2) above, one compares the matrices in block form in the same way

as the scalar case. To prove the second inequality, we use the first inequality and again with property 5), and we have

Ap
0B . Dp


Ir 0 ... 0
Ir Ir ... 0
... .. ...
... ..
Ir Ir ... Ir

=


θ pIr θ p−1Ir ... θ p−n+1Ir

θ p+1Ir θ pIr ... θ p−n+2Ir
... .. ...
... ..

θ p+n−1Ir θ p+n−2Ir ... θ pIr




Ir 0 ... 0
Ir Ir ... 0
... .. ...
... ..
Ir Ir ... Ir

. Dp. (37)

The proof is complete.

The inequalities in Lemma 3.1 can be used to construct estimates for the exponential eA0t .

Lemma 3.2. Assume the matrices A0 and B are given as in (13) and (10) respectively, and let the feedback coefficients Ki(θ)
be chosen in accordance with Theorem 3.1, then

Ap
0B .


Ir θ−1Ir ... θ p−n+1Ir

θ+1Ir Ir ... θ−n+2Ir
... .. ...
... ..

θ+n−1Ir θ+n−2Ir ... θ pIr

e−θ t . (38)
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Proof. (sketch) The proof is based on lemma 4 of reference 1. We apply the Lagrange interpolation formula in matrix form to
the matrix A0 (one notes that the eigenvalues are distinct) [please see reference 43 page 108, and the proof of lemma 4 in 1]. By
the Lagrange interpolation formula [see 1 page 1604], it follows that, 2

eA0t = ∑
l

(A0−θλ1(θ)I) . . . [l] . . .(A0−θλn(θ)I)
(θλk(θ)−θλ1(θ)) . . . [l] . . .(θλk(θ)−θλn(θ))

eθλl(θ)t = ∑
l

eθλl(θ)t ∑
p

Gl p
A0

pB
θ p (θ) (39)

where the functions Gl p(θ) are the same as in the proof of lemma 4 in 1, page 1604. They satisfy Gl p(θ)→ Gl p(λ 1, ...,λ n) as
θ →+∞. Using this formula with the inequalities in Lemma 3.1, it follows that

eA0B = ∑
l

eθλl(θ)t ∑
p

Gl p
A0

pB
θ p (θ). ∑

l
eθλl(θ)t ∑

p
G

Dp

θ p (θ)

.


Ir θ−1Ir ... θ p−n+1Ir

θ+1Ir Ir ... θ−n+2Ir
... .. ...
... ..

θ+n−1Ir θ+n−2Ir ... θ pIr

eθ t .

(40)

The factor G is a constant such that |Gl p(θ)|< G for large θ .

We are ready to present the proof of Theorem 3.2.

Proof of Theorem 3.2. We sketch the method of theorem 1 in 1 for block matrices. We use the following change of coordinates:

e = (e1, ...,eq) = (ε1,θε2, ...,θ
q−1

εq). (41)

Set ∆θ = diag[Ir,θ Ir, ...,θ
q−1Ir]. By Lemma 3.2 one has the inequality

∆1/θ eA0(t−τ)B∆θ . ∆1/θ


Ir θ−1Ir ... θ p−n+1Ir

θ+1Ir Ir ... θ−n+2Ir
... .. ...
... ..

θ+n−1Ir θ+n−2Ir ... θ pIr

∆θ e−θ(t−τ) =


Ir Ir ... Ir
Ir Ir ... Ir
... .. ...
... ..
Ir Ir ... Ir

e−θ(t−τ). (42)

Thus, from definition of . we have ∆1/θ eA0(t−τ)B∆θ ≤ Ke−θ(t−τ) in the extended form. Following the ideas from the theorem
above, the proof follows as the scalar case presented in1. We obtain the inequality eθ t ‖ ε(t) ‖≤ P(θ) ‖ e0 ‖ +u0K

∫ t
0 eθτ ‖

ε(t) ‖ dτ . Thus by Gronwall-Bellman lemma, we get,

‖ ε(t) ‖6 P(θ)e−θ t ‖ e0 ‖+u0Ke−(θ−u0K)t
∫ t

0
P(θ) ‖ e0 ‖ e−u0Kτ dτ, (43)

in the block form, where u0 and K are constants independent of θ , and P is a polynomial.

4 Solution to Problem 2: A high gain observer for bilinear systems in the form ẋ =
F(u,x)x+φ(u,x)

In this section, we consider the following nonlinear multi-input multi-output (MI-MO) system

ẋ = F(u,x)x+φ(u,x), y =Cx (44)

where

x =


x1
x2
...
xq

 , with xi ∈ Rr, u ∈ R, F =


0 F1 0 ... 0
0 0 F2 ... 0
0 0 0 F3

. ..

. .. Fq−1
0 0 ... 0

 , φ(u,x) =


φ1
φ2
φ3
...
φq

 , where qr = n, (45)

2Here, the symbol [l] indicates that the l-th element in a product or a sum is omitted.
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and Fk = Fk(u,x1, ...,xq), φk = φk(u,x1, ...,xk) and C = [Ir 0 . . . 0] . More generally, we discuss the case y = h(u,x). The
system has been studied in 27,9,8 in slightly different setups. Denote

f (u,x) = F(u,x)x+φ(u,x), (46)

and introduce new input variables

u0 = u, u̇i = ui+1. (47)

Let consider the change of variables,

z1 = ψ1(u,x) = h(u0,x)

zi = ψi(u,x) = L f ψi−1.
(48)

We shall assume that the following regularity condition is satisfied for system (44).

Assumption 3 (8 page 7). The canonical flag of system (44) is uniform, i.e. the family of n distributions

Di(u) : x 7−→ ker
[

∂ψi

∂x
(x,u)

]
(49)

have dimension n− i regardless of u.

According to Theorem 1.3 in 8, the above change of variables will transform the equation (44) into

ż =


z2
z3
...
zq

L f ψq−1

+


b1(u0,z1)
b2(u0,u1,z1,z2)

...

...
bq(u0, ...,uq−1,z1, ...,zq)

 . (50)

Besides, Assumption 3, implies that the exact linearization problem is solvable for system (44) or the same for (50) [see8,
theorem 1.3]. However, there is a little difference. In our setup, the variables are vector variables of size r; this does not affect
the formulas in the coordinate changes and is still valid in the vector variable form. Therefore, the proof of Theorem 1.3 in 8

also carries over to this case without any changes.
Now, we are ready to present our second main result. We propose an observer of system (44) of the form:

˙̂x = F(u, x̂)x̂+φ(u, x̂)−θ∆θ P(t)C(x̂− y)

ε̇ = θ(−ε +θET
ε +CT (Cx̂− y)), ε(0) = 0

(51)

where ∆θ = diag[Ir, θ−1Ir, ... , θ−q+1Ir], and P(t) is a solution to the Ricatti equation

Ṗ(t) = θ [F(u, x̂)P(t)+P(t)F(u, x̂)T −P(t)CTCP(t)], (52)

where P(0) = P(0)T > 0, and

ε =


ε1
ε2
...
εq

 with εi ∈ Rr, E =


0 Ir 0 ... 0
0 0 Ir ... 0
0 0 0 Ir

. ..

. .. Ir
0 0 ... 0

 . (53)

The scalar θ is the gain factor. The above observer stability is proved in the following theorem.

Theorem 4.1. Let e = x− x̂ be the error of the observer (51). Then there exists constants a0,M > 0 and a polynomial C(θ)
such that,

‖ e ‖6C(θ)e−(θ−a0)t , (θ > M). (54)
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Proof. As mentioned above, the Assumption 3 and from the Theorem 1.3 in 8, imply that the exact linearization problem for
system (44) or (50) is solvable. Because of the triangular coordination appearing, the local linearization of system (44) is
conjugate to a bilinear system of the form (9). In fact, according to the standard method of change of variables in feedback
control (see3 pages 142-143, see also 8 chapter 1), the vector functions b j in (50) are linear in u j, j ≥ 1, and also the variables
are sorted in a triangular form. The only variable in the u-part, which possibly appears nonlinear, is u0 [see for example 8 sec.
1]. On the other hand, if we consider the canonical form in [8, theorem 1.3] where the variables z j may have higher dimensions,
then we can solve the last coordinate of the equation for the control function u to make the whole system linear. Thus, the
feedback canonical linear form of (44) is in the form (9). The change of coordinates in the systems above also applies to the
corresponding observer. Using the form (44) we may assume the system is already given as ẋ = Ax+φ(u,x). In this case the
error can be written as ė = A0e+θ(φ̂(u, x̂)−φ(u,x)), where A0 is as in (13), [see for instance 8 page 14]. When the exact
linearization problem is solvable for (44), the error associated to the observer (51) after linearization of the system can be
written as ė = A0e+(Bu)e, i.e. in the form that was used in Theorem 3.2. Thus, one can first change coordinates so that the
equation (50) becomes linear, i.e., in the form (9). Then in the new coordinates, the observer and the error get the desired form.
Thus, the observer for system (44) transforms to the observer (11) under the same change of coordinates. It follows that the
error dynamics of observers (11) and (51) are also conjugate by the change of coordinates. This proves that the estimates in
Theorem 3.2 are satisfied in the nonlinear case. Therefore, our theorem is a consequence of Theorem 3.2 in the linear case.

Remark 3. Various examples of system (44) has been considered in 4,2,5,6,7,8,9,10,11,12,13,14,15 with different set up, where
asymptotic stability of the observer error has been demonstrated. The equation (44) in its general form (where the blocks may
have different sizes) is related to differential systems on Siegel upper half spaces and flag varieties. Their stability analysis
produces one of the significant interactions between dynamical systems and algebraic geometry,44.

5 A study case: the bioreactor bilinear system
In this section, two bioreactors’ models are investigated to estimate their states utilizing the observer presented in previous
sections. The bioreactor system is a model of bacteria growth or measurement population density that can be modeled in
various dimensions and with different inputs and outputs,30. In our case, we study two bioreactor models of dimension two45

and three27, the first with a single input and the latter with multiple inputs. Both are bilinear systems. These systems classify as
non-minimal systems [see2 Ch. 6] since their zero dynamics show no convergence. The bioreactor models of the following two
examples are taken from45 and27, respectively; however, our analysis is different.

5.1 Example 1: Bioreactor as a SI-SO system
We consider the system 45

ẋ1 =
a1x1x2

a2x1 + x2
+ux1

ẋ2 =−
a3a1x1x2

a2x1 + x2
−ux2 +ua4

y = h(x) = x1

(55)

where x = (x1,x2) ∈ R2, u ∈ R, a1,a2,a3 ∈ R+. Set

µ(x) =
a1x1x2

a2x1 + x2
, g(x) =

[
x1

−x2 +a4

]
, f (x) =

[
µ(x)
−a3µ(x)

]
. (56)

We can write system (55) in the form of (44) as

ẋ =
(

0 µ(x)/x2
0 0

)[
x1
x2

]
+

[
ux1

−a3µ(x)+u(−x2 +a4)

]
. (57)

The observer of this system is in the general form of (51)

˙̂x =
(

0 µ(x̂)/x̂2
0 0

)[
x̂1
x̂2

]
+

[
ux̂1

−a3µ(x̂)+u(−x̂2 +a4)

]
+θ∆θ (Cx̂− y) (58)

where C = [1 0] and ∆θ = [1 θ−1],45. It can be written as

˙̂x =
[

µ(x̂)
−a3µ(x̂)

]
+u
[

x̂1
−x̂2 +a4

]
+θ∆θ (Cx̂− y). (59)

10/16



a1 = 1 a2 = 1 a3 = 1 a4 = 0.1 θ = 1

Table 1. The simulation parameters of the Example 1.

For the simulation, the system’s initial conditions are x1(0) = 0.9; x1(0) = 6, while the observer’s initial conditions are
x̂1(0) = 0.1; x̂1(0) = 0.1. The system’s parameters are given in Tab. 1. As we are dealing with the estimation problem and not
the control problem, the control input u is chosen as a function of time. The results of the simulations are depicted in Fig. 1.
Notice how the observer states exponentially converge to the real system states, as shown in Fig. 2, where the error convergence
is shown.

0 5 10 15 20 25 30
 

0

5
 

0 5 10 15 20 25 30
 

0

5

 

0 5 10 15 20 25 30
0.02

0.04

0.06

0.08

Figure 1. The trajectory convergence of Example 1: state (solid); state estimate (dashed blue line). The control input u was
chosen as depicted above.

0 5 10 15 20 25 30
0

2

4

 

Figure 2. Error observer convergence for the Example 1.
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5.1.1 Example 2: Bioreactor as a MI-SO system
Next, consider the multi-input single-output bioreactor model studied in27

ẋ1 = a1x2
1x2−a1x1x2u1

ẋ2 = µ̄(x)ν(x)x2− x2u2

ẋ3 =−a2µ̄(x)ν(x)x2− (x3−a3)u2

y1 = x1

(60)

where

µ̄(x1,x2) = a4
x1x3

(a5 + x1)(a6 + x3)
, ν(x1,x2) = a7

x2

a8 + x1
. (61)

The coefficients ai are kinetic parameters that for the case of the present simulation take the values shown in Tab. 2. We set
κ(x) = µ̄(x)ν(x) and

f (x) =

 a1x2
1x2

x2κ(x)
−a2κ(x)x2

 , g1(x) =

−a1x1x2
0
0

 , g2(x) =

 0
−x2

−(x2−a3)

 , (62)

and then (60) finds the standard form

ẋ = f (x)+g1(x)u1 +g2(x)u2. (63)

One can write this system in the of (44) as

ẋ =

0 a1x2
1 0

0 0 x2
x3

κ(x)
0 0 0

x(t)+

 a1x1x2u1
−x2u2

a2κ(x)x2− (x2−a3)u2

 . (64)

Notice that the system is already in the form (50). An observer for system (60) is

˙̂x =

0 a1x̂2
1 0

0 0 x̂2
x̂3

κ(x̂)
0 0 0

 x̂(t)+

 a1x̂1x̂2u1
−x̂2u2

a2κ(x̂)x̂2− (x̂2−a3)u2


−θ∆

−1
θ

P(t)CT (C

x̂1
x̂2
x̂3

− y(t))

(65)

where C =
[
1 0 0

]
, ∆θ = diag[1 θ−1 θ−2], and P(t) is a symmetric positive matrix given by the Ricatti equation (52)

Ṗ(t) = θ(P(t)+

0 a1x2
1 0

0 0 x2
x3

κ(x)
0 0 0

P(t)+

+P(t)

0 a1x2
1 0

0 0 x2
x3

κ(x)
0 0 0

T

−P(t)CTCP(t)

(66)

P(t)> 0,27. As we mentioned, the error dynamics is conjugated to a system of the form (31) where the inequality (32) can be
proved.

For the simulation, the system’s initial conditions are x1(0) = 0.1, x1(0) = 0.5, x3(0) = 1; while the observer’s initial
conditions are x̂1(0) = 0, x̂2(0) = 0, and x̂1(0) = 0; and P(0) = diag(0.1) for the Riccati differential equation. The parameters
of this MI-SO bioreactor model are depicted in Tab. 2. Once again, the control inputs (u1,u2) are chosen as depicted in Fig. 4.
The observer states and the real system states are shown in Fig. 3. Notice the convergence of all the observer states to the real
states. To visualize more clearly this, in Fig. 5 we have plotted the observer’s errors.

Remark 4. The reader can consult references 46,47,48,49,50,51,52,54 for more example of bioreactor models. The bioreactor
model is one of the examples of non-minimal bilinear systems.
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a1 = 3 a2 = 2 a3 = 3 a4 = 100 a5 = 12
a6 = 9.82 a7 = 0.5 a8 = 0.1 θ = 3.5

Table 2. Parameters of the simulation for the MI-SO system.
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Figure 3. Original states and their estimates for Example 2.

6 Conclusion
The exponential stability of bilinear systems in block form has been proved. Moreover, under a regularity condition on the
canonical flag of the system, a similar statement has been proved for the extended observer in the nonlinear case. This provides
a uniform exponential bound for the error dynamics, stronger than the result of 27. Two bilinear systems are presented as an
application, for which two corresponding observers are proposed and simulated. This shows the effectiveness of the proposed
approach.

In future work, we intend to apply this observer in real systems, such as mechanical underactuated systems. Also, by using
our nonlinear observer, it is possible to propose output feedback controllers.
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