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On Brunosky numbers and observability indices in nonlinear MIMO systems

Mohammad Reza Rahmatia, Gerardo Floresb,∗

aUniversidad De La Salle Baj́ıo, Campestre, León, Guanajuato, Mexico.
bCentro de Investigaciones en Óptica Loma del Bosque 115, León, Guanajuato, Mexico.

Abstract

When the exact linearization problem is solvable for a nonlinear multi-input multi-output systems, it is
possible to conduct the linearization in two standard ways. The first way employs a sequence of integrable
distributions defined by the vector fields involved in the system. The second way uses the output functions
and the codistributions defined as the kernels of codistributions. In both cases, one ends up with a change of
coordinates which transforms the system to canonical block forms, where the sizes of the blocks are invariants
of the system. One can associate two sets of indices which are canonical invariants of the system, called
Brunovsky indices. In this work, we compare these two sets of invariants that are obtained in a system
of dimension n. The indices are classically called the Brunovsky controllability indices and Brunovsky
observability indices. We prove that the two sets of invariants give transpose partitions of n. That is, if
(h1 ≥ ... ≥ hN ) are the controllability indices and (h′1 ≥ ... ≥ h′M ) are observability indices of the same
nonlinear system, then the two partitions

n = h1 + h2 + ...+ hN = h′1 + · · ·+ h′M−1 + h′M (0.1)

are transpose to each other. In other words, the sizes of blocks that appear in the above two canonical forms
are not only in general identical, but also they may have the different number of blocks. Therefore, they
generally determine two different partitions of the dimension of the system. Besides, we present several sets
of conditions that characterize the Brunovsky canonical forms, both in the controllable and in the observable
cases, and prove their mutual equivalence.

Keywords: Brunovsky canonical form, Brunovsky numbers, Observability indices, Controllability indices,
Feedback linearization.

1. Introduction

This text is devoted to comparing the two different ways of linearizations which apply to a MIMO system.
Assuming the exact linearization problem is solvable for a MIMO system, there are two canonical ways to
linearize it. One uses only the integrability condition on a sequence of distributions defined by the vector
fields involved in the differential equation, while the second employs differential forms defined by the outputs5

of the system, [15], see also [2, 3, 8, 13, 12, 17, 19, 20, 21, 22, 23, 25]. One can arrange the coordinates in
each method to obtain a unique canonical form. However, the two canonical block forms obtained at the
end are not identical. Although both are linearizations of the same systems, the block forms that appear
in the linearizations may have different sizes. The two linear forms of the MIMO system are canonical, and
the blocks’ sizes [see equations (2.11) and (2.37) below] appearing in the case, are called Brunovsky indices,10

[6, 7, 11].
The two Brunovsky canonical forms of a linearizable MIMO system are classically known in the theoretical

literature. Each Brunovsky form determines a set of natural numbers which give a partition of the dimension
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of the system. However, as to our knowledge, nobody has compared the two sets of invariants. The
significance of this relationship between two sets of indices appearing in the above two feedback linearization15

problems encouraged us to write this work. Certain geometric conditions characterize the exact linearization
property for a control system. In [16], two sets of conditions, namely Conditions A and B, [see Section 2.1
below] have been presented, which characterize when a control system is equivalent to a Brunovsky canonical
form. In this text, we present the third set of conditions, namely Conditions C that characterizes the
Brunovsky observability form. We prove that the above sets of conditions are mutually equivalent. We also20

slightly generalize some existing results in nonlinear systems, which appear in our contributions.
We shall consider a nonlinear system as follows

ẋ = f(x) +

r∑
j=1

ujgj(x), x ∈ Rn (1.1)

where f, g1, ..., gr are smooth vector fields on an open subset of Rn and uj : Rn ! R are input control
functions. In this text, we assume uj are smooth on an open subset of Rn. However, in general, these
functions can be considered more general [see [15] for instance]. The classical control provides a systematic
approach to determine when the system (1.1) is equivalent to a linear form, [15, 16], see Section 2.1]. In
this case, one says that the exact linearization problem is solvable (or the system is controllable). Then the
exact linearization problem provides the following form,

ż
(j)
1 = z

(j)
2 , ż

(j)
2 = z

(j)
3 , . . . , ż

(j)
bj

= v(j), j = 1, . . . , N. N ≥ 1 (1.2)

of the system (1.1), where z
(j)
i are the new coordinate of the system. The latter form plays a crucial role in

controls. For example, when the system (1.1) can be written in the form (1.2) we say it is controllable, i.e.,
there exists a change of coordinates and also a choice of the input functions that transforms it to a particular
block diagonal linear form. The system’s total dimension is divided into several smaller loops by possibly
permuting the new coordinates. After obtaining the form (1.2) one defines a new vector coordinates

y1 : = (z
(1)
1 , . . . , z

(h)
j ),

ẏj = yj+1, j = 1, 2, . . .
(1.3)

by grouping the variables. Differentiating with respect to t provides a sequence of blocks with the same
entries as in (1.2) but possibly permuting the coordinates. As a result, the system can be written in a simple
block form. The latter form (1.3) of the system (1.1) is canonical, i.e. it is unique. In particular, the block
matrices that appear in the canonical form (1.3) are invariants of (1.1) called the Brunovsky controllability25

indices. We denote them by (h1, . . . , hN ). Obviously we have n = h1 + · · ·+ hN .
The system (1.1) can also be studied as a MIMO system with outputs as follows,

ẋ = f(x) +

r∑
j=1

ujgj(x), x ∈ Rn

y = λ(x) y ∈ Rr,

(1.4)

and considering the same assumption as in (1.1) for the functions f and uj , where the functions λj : Rn ! R
are the systems’ outputs. The exact linearization problem for (1.4) is also referred to as the observability
problem, [see [15] chap. 5]. In general, one can define certain set of indices called relative degrees associated
to (1.4), [[15] chapter 5, see also Section 2.2]. In the case that the observability problem is solvable for (1.4)30

the relative degrees determine a form of (1.4) in the shape of (1.2). Again by grouping the variables as (1.3)
we reach a canonical form, called Brunovsky canonical form of (1.4), and the sizes of the blocks determine
a second set of indices (h′1, . . . , , h

′
M ) which are also invariants of the MIMO system (1.4). However, this

canonical form and the associated indices are in general different from the former canonical form for the
control system (1.1) and the controllability indices.35
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This article aims to compare the observability indices with the controllable ones. Both of the sets of
Brunovsky indices are partitions of the dimension n. Moreover, we show that these two partitions of n are
transposed to each other. The result can be regarded as an effort to understand the invariants mentioned
above.

1.1. Contribution40

Consider the system (1.1) with the setup explained above. The vector fields f and gj and their brackets
determine a sequence of integrable distributions g0 = 〈g1, ..., gr〉R, gk = 〈[f + g0, gk−1]〉R, k ≥ 1, in an
inductive way whose dimensions are constant on an open subset of the ambient space [see Section 2.1 for
precise definition]. Moreover, dim gN = n for some N . The integrability conditions on the distributions gk
provides a standard method to determine certain conditions under which the system (1.1) is transformable45

into a Brunovsky canonical form.

Conditions A:

(A1) The submodules gk are closed under bracket operation of vector fields.

(A2) The numbers bj(x) are constant.

(A3) bN (x) = n for some N , where N is the smallest such number.50

According to [16] the set of these conditions can be equivalently replaced by the following conditions B.

Conditions B:

(B1) There are smooth functions aij such that for each i ≤ j

[adi(f)gr, ad
j(f)gs] =

∑
1≤i≤r

∑
l≤j

ailad
l(f)gi. (1.5)

(B2) The numbers dim span{adj(f)gi(x) |j ≤ k} = b′k(x) are constant.

(B3) dim span{adj(f)gi(x) |j ≤ n− 1} = n

The linearization problem of (1.4) can also be approached by defining the sequence of codistributions Ω0 =55

〈dλ1, ..., dλr〉R, Ωk = 〈Ωk−1 +
∑
j LgjΩk−1 + LfΩk−1〉R,. We present a new and a third set of conditions,

namely

Conditions C:

(C1) The codistributions Ωj have constant dimensions, j = 1, 2, ...,M .

(C2) ΩM has dimension n, where the number M is the smallest number with this property.60

(C3) For each j the codistribution Ωj is invariant under f, gl, for all l ≤ r.

that determines whether the system (1.4) can be transformed to a Brunovsky canonical form. The set
of Conditions C employs the sequence of codistributions defined by the output function λ. In other
words, Conditions C describe the observability indices analogous to Conditions A, B, which describe
the controllability indices. We show that the three sets of conditions A, B and C are mutually equivalent.65

The theorem and its proof appear as our first contribution [Theorem 4.1 below]. It also provides a method
of how the controllability and observability indices are related. It follows that the MIMO system (1.4) can
be linearized in two canonical ways.

Based on the above observation, assume the set of A, B, C are satisfied. In particular, the two systems
(1.1) and (1.4) are completely linearizable. There are two standard approaches to linearize the two systems

3



above. In the first case, there exists a change of coordinates and a choice of the input control functions uj
such that the differential equation (1.1) gets transformed to the Brunovsky canonical controllable form,

ẋ = Ax+Bu, A =


0 E1 ... 0 0
0 0 E2... 0 0
0 0 ... 0 0
... ... ...
0 0 ... 0 EN−1
0 0 .... 0 0


n×n

, B =


0
0
0
0
...
EN


n×m

, u =
[
u1 u2 ... ur

]T
(1.6)

where Ej = [Ihj
0]T ,

j = 1, 2, ..., N . In the second case, the system (1.4) is equivalent to the canonical form

ẋ = A′x+B′u, A′ =


0 0 ... 0 0
E′2 0 ... 0 0
0 E′3 ... 0 0
... ... ...
0 0 ... E′M 0

 , B′ =


E′1
0
0
...
0

 , u =
[
u1 u2 ... ur

]T
y = C.x, C = [E′1 0 0 ... 0]

(1.7)

where E′j = [Ih′i 0], j = 1, 2, ...,M . As explained, we obtain two Brunovsky canonical forms of the same
system. The two set of indices (h1, . . . , hN ) and (h′1, . . . , h

′
M ) are invariants of the systems (1.1) and (1.4).

The observability indices of the system (1.4), due to the choice of outputs, λ1, ..., λr give a transpose partition
of n with respect to the Brunovsky controllability indices. In other words, the two partitions

n = h1 + h2 + ...+ hN = h′1 + · · ·+ h′M−1 + h′M (1.8)

are transpose to each other, see Definition 4.3.
The paper has two main contributions; the first involves the proof of the equivalence of the set of70

Conditions C with the sets of Conditions A, B, mentioned above. It appears in Theorem 4.1 in Section
4. The second result is the proof of (1.8), which appears in Theorem 4.4. We also check this result in an
example.

1.2. Content

The remainder of this paper is given as follows. In section 2.1, we define controllability indices for a75

system that is feedback linearizable. Section 2.2 defines the dual concept of observability indices for the
same system with specific outputs. We had stated the proofs when the exact result did not exist in the
literature. The problem statement is presented in section 3. The contributions are given in Section 4.
Specifically, Theorem 4.1 is the new contribution, and Proposition 4.2 has a partial contribution. In section
4, we express and prove the above claim as the main contribution [Theorem 4.4]. We also give a complete80

example. Finally, in section 5 we give some final remarks and conclusions.

2. Preliminaries

Through the text, the vector fields f, gj , and the input functions are assumed to be defined over Rn. So
let us assume that our system is defined on an open subset of Rn, which is the intersection of the domains
where all these functions are well-defined.85
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2.1. Controllability indices

We shall use the language of distributions on a differentiable manifold to analyze the system in question.
A distribution is identified by a set of vector fields on a smooth manifold, denoted by g = 〈X1, ..., Xr〉R,
where the angles mean the local span of the vector fields in Rn. We say the distribution is smooth if the
vector fields Xj defining it are smooth vector fields. The dimension of a distribution at a point x is the90

dimension of the span of the vectors, X1(x), ...., Xr(x) regarded as vectors in Rn. The point x is called a
non-singular point for the distribution g if in a neighborhood of x the dimension is constant and equal to r,
the number of vector fields. The operations on the vector fields on a differentiable manifold naturally extend
over the distributions, [15]. An important notion is that of involutiveness of a distribution, meaning that the
bracket of any two vector fields in the distribution is still a member of the distribution. We sometimes refer95

to this notion by saying the distribution is closed under a bracket. By Frobenius theorem, this is equivalent
to that the distribution is integrable, meaning that the system of differential equations defined by the vector
fields in the distribution is locally solvable by integral foliations, see [15].

Consider the nonlinear control system of the form (1.1). One applies three kinds of coordinate changes
to the above system:100

(1) The first is the usual change of coordinates, i.e., the diffeomorphisms

φ : (Rn, 0)! (Rn, 0), (2.1)

which transforms the differential equation (1.1) by f 7−! Dφ(f), gj 7−! Dφ(gj), (j ≥ 1).

(2) The second is coordinate changes in the input space, Rr which are non-linear in x. That is, transfor-
mations of the form

gj 7−!
∑
l

ajlgl, j = 1, 2, ..., r, (2.2)

where the matrix A(x) = (aij(x)) is smooth.

(3) In control systems, one studies the system’s linearization of (1.1) under a specific choice of the functions
uj , called feedback control. Thus, there is a third kind of transformations applicable,

f 7−! f +
∑
j

βjgj , βj : Rn ! R, βj(0) = 0. (2.3)

We denote the group generated by the above three kinds of transformations by G. We say the system (1.1)
is G-linearizable or G-equivalent to a controllable system if a sequence of transformations in G transforms
it to a bilinear system.105

On the other hand, let us denote the Lie algebra of smooth vector fields on Rn by X∞(Rn). Define the
following submodules of X∞(Rn),

g0 = 〈g1, ..., gr〉R, gk = 〈[f + g0, gk−1]〉R (2.4)

generated over C∞(Rn) associated to the system (1.1), and let

bj(x) = dim gj(x), (2.5)

where we use the language of distributions on manifolds. In particular, we denote gk(x) =
〈
X(x), X ∈

gk
〉
R ⊂ TxRn. The submodules gk, k ≥ 0 are invariant under the action of the group of transformation G,

or sometimes called G-invariant.

Conditions A:

(A1) The submodules gk are closed under bracket operation of vector fields.110

(A2) The numbers bj(x) are constant.

5



(A3) bN (x) = n for some N , where N is the smallest such number.

Because the Lie bracketing is invariant under the G-action, the above conditions are independent of the
aforementioned coordinate changes. The conditions A are invariant under the group of transformations
generated by the elements in (1)-(2)-(3) mentioned above. According to [16] the set of these conditions can115

be equivalently replaced by the following conditions B.

Conditions B:

(B1) There are smooth functions aij such that for each i ≤ j

[adi(f)gr, ad
j(f)gs] =

∑
1≤i≤r

∑
l≤j

ailad
l(f)gi. (2.6)

(B2) The numbers dim span{adj(f)gi(x) |j ≤ k} = b′k(x) are constant.

(B3) dim span{adj(f)gi(x) |j ≤ n− 1} = n

The number N is the smallest natural number such that bN (x) = n. Its existence is guaranteed by the
condition (A3). One easily sees that bN (x) ≥ bN−1(x) ≥ ... ≥ b0, and similarly b′N (x) ≥ b′N−1(x) ≥ ... ≥ b′0.
By (B1) we have bj(x) = b′j(x). We may also define the invariants,

h0(x) = b0(x), hj(x) = bj(x)− bj−1(x) = b′j(x)− b′j−1(x). (2.7)

It is easy to see that h1(x) ≥ h2(x) ≥ ... [cf. [16]]. The set of conditions A or its equivalent set B are closely120

related to the linearization problem for the equation (1.1) in control systems. In this regard, we have the
following important definition.

Definition 2.1. [16] (Brunovsky canonical form) Assume that the numbers bj(x) are independent of x (as
it is the same for b′j(x) or h′j(x)). Write the coordinate x = (x0, ..., xN ) such that dimxj = hj . A system of
the form (1.1) such that,

f =



0
....
0
x̃1
x̃2
....
x̃N−1


, g1 =


1
0
...
0

 , g2 =


0
1
...
0

 , .... , gb0 =


0
0
..
1
..
0

 , gj =


0
0
...
0

 , j > b0, (2.8)

where the 1 in gb0 is in the b0 place, is called a system in Brunovsky canonical form.

The following theorem relates the set of conditions A and B to the exact linearization problem of the
system (1.1) and the Brunovsky canonical form.125

Theorem 2.2. [16] The following conditions are equivalent locally near 0 ∈ Rn.

• The system (1.1) is G-equivalent to a Brunovsky canonical form system.

• The set of conditions A are satisfied.

• The set of conditions B are satisfied.

• The system (1.1) is G-linearizable to a controllable system.130
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Proof. The proof of the above Theorem is based on the following. If a sequence of distributions (defined
over R),

g0 ⊂ g1 ⊂ ... ⊂ gN (2.9)

on a manifold M of dimension n have constant dimensions b0 ≤ b1 ≤ ... ≤ bN . Then, there exists a coordinate
system (x0, ..., xn) on M such that the integral manifolds of gj are of the form

xj = Cj , j = hj + 1, ..., n, Cj constant (2.10)

�

Definition 2.3. (Brunovsky controllability indices) [16, 7, 11] The numbers hj defined in (2.7) (or the same
in Definition 2.1) are called Brunovsky controllability indices of the system (1.1).

The controllability indices characterize a unique canonical block form, which is equivalent to (1.1). It
follows that these indices are invariants of the equation (1.1). We express this in the following proposition.135

Proposition 2.4 (see [16, 15, 7, 11, 4, 9, 18, 5]). Assume any one of the sets of conditions A or B is
satisfied for the control system (1.1). Then, there exists a change of coordinates and a choice of the input
control functions uj such that the differential equation (1.1) gets transformed to the Brunovsky canonical
controllable form,

ẋ = Ax+Bu, A =


0 E1 ... 0 0
0 0 E2... 0 0
0 0 ... 0 0
... ... ...
0 0 ... 0 EN−1
0 0 .... 0 0


n×n

, B =


0
0
0
0
...
EN


n×m

, u =
[
u1 u2 ... ur

]T

(2.11)
where Ej = [Ihj

0]T , j = 1, 2, ..., N . The size of the block matrices Ej are the Brunovsky controllability
indices.

Proof. See the references above. �

Remark 2.5. To obtain the Brunovsky indices, it is not sufficient that the system just is linearized. It is
also necessary that the system is in the Brunovsky canonical form. For example, the simple system,140

ẋ1 = a1x1 + b1u1 , . . . , ẋn = anxn + bnun

is not in controller canonical form. The above sort of feedback linearization is different from the one in
ordinary differentiable dynamics [see Theorem 2.2 and the explanation before that in the next section].
After the linearization, the system can be solved by algebraic equations for the functions uj in a way that it
finds the form (1.2). The Brunovsky form will then obtain by exchanging the order of variables so that the145

block forms will appear correctly.

Example 2.6. (Linear system) [15] When the functions f(x) and gj(x) in (1.1) are already given by linear
matrices, the aforementioned distributions can be easily determined. Consider the system,

ẋ = Ax+Bu, x ∈ Rn, A ∈Mn×n, B ∈Mn×m, u ∈ Rm. (2.12)

The distributions gk get the form

gk = Image[B AB A2B ... AkB] (2.13)

meaning the span of the columns of all the matrices in the bracket. The matrix

gn(A,B) = [B AB A2B ... An−1B] ∈ Cn×nm (2.14)

7



is called the controllability matrix of the pair (A,B). Thus, we have

b1 = rank(B), bj = rank(gj−1)− rank(gj−2) (2.15)

where gj is given by (2.13). The aforementioned canonical form of Brunovsky is used in order to classify the
linear system (2.12), [see [7] as well as the explanation below].

Definition 2.7. [7] Two pairs of matrices (A,B) and (C,D) in the form of equation (2.12) are block
equivalent if there exist matrices Rn×n, Sm×m, Tm×n such that

[C D] = R[A B]

(
R−1 0
T S

)
(2.16)

where R,S are invertible.

Remark 2.8. [7] Assume that A,B are constant matrices and that the system (2.12) is completely control-
lable, i.e.,

rank(B,AB, ..., AnB) = n. (2.17)

To formulate the preceding definition more precisely, we translate it into some feedback control statements.
By adding linear feedback to (A,B), we mean that in (2.12), we substitute

u = Tx+ v (2.18)

where T is a m× n constant matrix. As a result of this transformation, we obtain a system (C”, D”), with

C” = A+BT, D” = B. (2.19)

We say (C”, D”) behaves like (C ′, D′) if there are non-singular matrices R and S of type n × n,m × m
respectively, such that,

C ′ = R−1A”R, D′ = R−1BS (2.20)

Summarizing, the definition asks whether for given systems (A,B), (C ′, D′) there are matrices Rm×n,
Tm×n, Sm×m with, R,S being non-singular, such that

C ′ = R−1(A+BT )R, D′ = R−1BS. (2.21)

If the answer is positive, we shall say that (A,B) and (C ′, D′) are feedback (or briefly, F -) equivalent. By150

a straightforward computation, it can be checked that F -equivalence is an equivalence relation, i.e., it is
symmetric, reflexive, and transitive.

The following proposition relates the above definition to the Brunovsky numbers.

Proposition 2.9 (see [14, 24, 8, 11, 12, 1, 10]). Two matrices are block equivalent if and only if they have
the same (controllability) Brunovsky numbers.155

Proof. See the references above. �

By considering Definition 2.7 and Proposition 2.9, we understand that the Brunovsky numbers are in-
variants of the bilinear control systems. In the following, we present another way to interpret the Brunovsky
numbers for analytic matrices in one variable. The analysis of this section can also be expressed in terms
of global analytic block similarity of a pair of matrices (A(z), B(z)) for bilinear systems. In case that the160

equation 1.1 could be defined by the matrices A(z) and B(z), then we have the following format of Theorem
2.2.
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Theorem 2.10. [11] Let A : X ! Cn, B : X ! Cn×n be analytic matrices, where X is connected and open
in C. Then the pair (A(z), B(z) is (globally) block equivalent to a pair in Brunovsky canonical form

[G(z) J(z)] := R(z)[A(z) B(z)]

(
R(z)−1 0
T (z) S(z)

)
, (2.22)

where P,Q are invertible, if and only if the following holds

• The Brunovsky numbers of (A(z), B(z)) namely h1(z) ≥ h2(z) ≥ ... ≥ hN (z) are independent of z ∈ X.

• The size and the numbers of the Jordan blocks in the Jordan part of the Brunovsky form of (A(z), B(z))165

are independent of z.

• There are s different analytic eigenfunctions αi : X ! C, where s is the number of eigenvalues of A
having eigenvector in ker(B), denoted by

σ(A(z), B(z)) = {α1, ..., αs} (2.23)

such that if
Z = {z ∈ X|αi(x) = αj(x)}, (2.24)

then, the sum of generalized eigenspace

N(z) = lim
x!z

(Rλ1
+ ...+Rλs

) (2.25)

is direct and dimN(z) = n−
∑
hi.

Remark 2.11. Theorem 2.10 is stated for a pair of matrices whose entries are analytic functions defined on
a complex plane domain. However, it is possible to modify the arguments in the proofs in [11] such that it
also works for functions of several complex variables. We have mentioned the theorem as an alternative way170

or approach to the Brunovsky canonical form and controllability indices. One may consider the Brunovsky
canonical form as just associated to the pairs of matrices (A(z), B(z)) where the group of symmetries is
defined as the beginning of this section, [the same in the remark 2.8]. We will not enter the details of this
theorem in this text and refer the interested reader to [11] and the references therein.

2.2. Observability indices175

The language of codistributions may also describe the integrability conditions for a collection of vector
fields on a manifold. This notion is dual to that of distributions. This problem originally goes back to
different formulations of the Frobenius theorem on a smooth manifold’s integrability of differential systems.
By definition, a codistribution is identified by the linear span of 1-forms on (open subset of) a manifold,
denoted g′ = 〈w1, ..., wn−r〉R, (〈., .〉 means span of co-vectors). The codistribution is called smooth if the 1-180

forms in a generator are smooth differential forms. The annihilator g′⊥ of a codistribution g′ at a point x are
the vectors in the tangent space to x that are killed by all the elements of g′. The dual notion of coditribution
can state the Frobenius theorem’s integrability criteria. We say a system of differential equations given by
a distribution g of dimension r is integrable if there can be found (n− r) smooth functions λ1, ..., λn−r such
that g′ := 〈dλ1, ..., dλn−r〉R = g⊥, [see [15] chapter 1 for the details on the terminology].185

On the other hand, the Brunovsky observability indices are closely related to the notion of relative
degrees for the multi-input multi-output observer systems. Thus we first recall the definition of relative
degrees in this case. In general, relative degrees can be defined for any observer system with an arbitrary
algebraic observer. The Brunovsky indices refer to the choice of specific observer equations so that the exact
linearization problem is solvable for (1.4). We define the observability indices through a maximal set of190

codistributions defined by the system 1.4 itself. The two notions of relative degrees and observability indices
are closely related. Now, let us consider the Multi-Input Multi-Output System (1.4). To this system, one
classically assigns relative degrees as follows.
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Definition 2.12. (Relative degrees) [[15] Chapter 5] We say the system (1.4) has relative degrees (a1, ..., aM )
at a point x if the two following conditions hold:195

• LgiL
j
fλl = 0 for j < al − 1 in a neighborhood of x.

• The matrix

D(x) =


Lg1L

a1−1
f λ1(x) ... LgrL

a1−1
f λ1(x)

Lg1L
a2−1
f λ2(x) ... LgrL

a2−1
f λ2(x)

....

Lg1L
ar−1
f λr(x) ... LgrL

ar−1
f λr(x)

 (2.26)

is non-singular at x.

Relative degrees play a crucial role in the analysis of the systems (1.4). The following theorem provides
a canonical way to compute relative degrees.

Theorem 2.13. [15] Assume that the system (1.4) has relative degrees (a1, ..., aM ), then a = a1 + a2 + ...+
aM ≤ n. Define the functions

φij(x) = Lj−1f hi(x). (2.27)

Then, it is always possible to find n− a functions (φa+1, ..., φn) such that the change of coordinates

φ : Rn −! Rn

φ = (φ11(x), ..., φ1a1 , ....., φa+1, ..., φn)
(2.28)

transforms (1.4) to the system of the form

φ̇alj = φij+1, j < ai − 1, l = 1, 2, ..., r

φ̇alal−1 = Lalf λl +

r∑
s=1

LgsL
al−1
f λlus

φ̇j = Z(x) = Lfφj , j > n− a.

(2.29)

If the distribution g0 = 〈g1, ..., gr〉 is closed under bracket operation then it is possible to choose φj , j > n−a
such that

Lgiφj = 0, j > n− a, i = 1, ..., r (2.30)

Proof. See [15] Chapter 5. �200

We consider the case when the inequality in Theorem 2.13 is an equality, i.e. when a1+a2+ · · ·+aM = n.
In this case, one says that the exact linearization problem is solvable for the system (1.4). We have the
following theorem.

Theorem 2.14 ([15] Theorem 5.2.3). There exists outputs λ1, ..., λr such that

a1 + a2 + ...+ ar = n (2.31)

if and only if the following conditions are satisfied,

• The distributions gj have constant dimensions, j = 1, 2, N − 1.205

• gN has dimension n.

• gk are closed under bracket.

Proof. See [15] Theorem 5.2.3. �
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The set of conditions in Theorem 2.14 is the same as the set of conditions A (thus, also conditions B).
We have to say that the indices a1, . . . , ar are invariants of the system (1.4) when the linearization problem
is solvable. However, these invariants may not be canonical in this form. In order to make the index set
{ai | 1 ≤ i ≤ r} canonical, one needs to group the variables to obtain the Brunovsky form. We explain this
as follows [see also the proof of Theorem 4.1]. Assume we are in the situation of the Theorem 2.14, i.e., the
exact linearization problem is solvable for (1.4). Define the codistributions,

Ω0 = 〈dλ1, ..., dλr〉R, Ωk = 〈Ωk−1 +
∑
j

LgjΩk−1 + LfΩk−1〉R, (2.32)

and denote
h′0 = rank(Ω0), h′k = rank(Ωk)− a′k−1 (2.33)

where we have h′1 + h′2 + ...+ h′M = dim ΩM = n. Also, we have

Ω⊥0 ⊃ Ω⊥1 ⊃ .... ⊃ Ω⊥M . (2.34)

In the notation at the beginning of this section, we have set g′M−k = Ω⊥k [we use both of the notations g′M−k
and Ω⊥k in the following]. We have the simple relation rank(Ωk) + rank(Ωk)⊥ = n. Theorem 2.14 is the base210

of the following definition.

Definition 2.15. (Brunovsky observability indices) Assume that the exact observation problem is solvable
for the system (1.4). The indices defined by

h′1, h
′
2, . . . , h

′
M , h′i = rank(Ωi)− rank(Ωi−1) (2.35)

are called observability indices of the system (1.4) [Ω−1 = 0]. We have

h′1 + h′2 + ...+ h′M = n. (2.36)

The observability indices characterize a unique block canonical form of (1.4) which plays a crucial role in
control systems, see Remark 2.8. It also follows that these indices are invariants of (1.4). We mention this
in the following proposition.

Proposition 2.16 (see [16, 15, 7, 11, 4, 9, 18, 5]). Assume the set of conditions in Theorem 2.14 is satisfied
(Conditions A or B), then, the system (1.4) is equivalent to the Brunovsky canonical observable form

ẋ = A′x+B′u, A′ =


0 0 ... 0 0
E′2 0 ... 0 0
0 E′3 ... 0 0
... ... ...
0 0 ... E′M 0

 , B′ =


E′1
0
0
...
0

 , u =
[
u1 u2 ... ur

]T
y = C.x, C = [E′1 0 0 ... 0]

(2.37)

where E′j = [Ih′i 0], j = 1, 2, ...,M . The size of the block matrices E′j are the Brunovsky observability indices.215

Proof. See [16, 15, 7, 11, 4, 9, 18, 5, 6, 7]. �

By Theorem 2.13 and Theorem 2.14, there exists a change of coordinates that will transform the system
(1.4) to the form explained by (2.29) while (2.31) holds. In this case, the observability problem for (1.4) is
solvable. Say also (1.4) is observable. We obtain a set of indices that fulfill the total dimension n. We also
call this case a maximal case. According to Theorem 2.13, the desired change of variable, in this case, is
given by

ψ =
⊕
i


λi
Lfλi
...

Lai−1f λi

 : Rn ! Rn. (2.38)
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Example 2.17. (Linear case) [15] Example 2.6 has an analogous version for MIMO systems. In this case,
we work with codistributions and their kernels. Consider the linear system,

ẋ = Ax+Bu, x ∈ Rn, A ∈Mn×n, B ∈Mn×m, u ∈ Rm

y = Cx, C =
(
c1 c2 ... cm

)
, ci ∈ R1.

(2.39)

In this case, the codistributions defined by (2.32) find the following form,

Ωk =
〈
C, CA, ... , CAk−1

〉
R (2.40)

where the angles mean the subspace of span of the rows of all matrices. Consequently

Ω⊥0 = ker(C), Ω⊥k = ker


C
CA
....

CAk−1

 (2.41)

therefore we have

h′k = rank


C
CA
....

CAk−1

 . (2.42)

If one defines Z =
⋂
i ker(CAi) the maximal integral submanifolds of Z are of the form z0 + Z. Again,

similar to the controllability canonical form, the canonical observability form can be used to classify MIMO
linear systems.

3. Problem Statement220

To the nonlinear control system (generally multi-input system) (1.1), one can associate a set of indices
that divide n as a partition and provide a canonical form of the exact linearization of (1.1). There is a change
of coordinates and a choice of control functions uj such that the above differential equation gets transformed
to a special block form called Brunovsky canonical controllable form. The block matrices’ size provides
invariants of the controllable system (1.1) called the Brunovsky controllability indices. We denote them by
(h1, ..., hM ) [see Section 2.1]. These indices are defined by certain invariants of distributions constructed
from the vector fields f and gj and the bracket operations. In [16] two equivalent set of conditions, namely
Conditions A and Conditions B have been settled that characterize the Brunovsky controllability indices
[see Section 2.1]. The controllability indices (h1, h2, ..., hN ) give a partition of n, i.e.

n = h1 + ...+ hN . (3.1)

Consider the system (1.4) with the same conditions above. In an alternative method, by using the
outputs, λj , one can define another set of indices that are defined somehow in a dual manner to the previous
procedure. Again the block’s size of matrices appearing, provide invariants of the system (1.4); they are
called the Brunovsky observability indices, denoted by (h′1, ..., h

′
M ) [see Section 2.2]. The observability indices

(h′1, ..., h
′
M ) also give a partition of n, that is,

n = h′1 + ...+ h′M . (3.2)

Observability indices give a canonical form of the relative degrees when the variables are appropriately
grouped. The main problem is as follows.

Problem 3.1. How the two set of indices (h1, ..., hN ) and (h′1, ..., h
′
M ) are related? In other words, how the

controllability indices of the system (1.1) are related to the observability indices of the system (1.4)? Do we
have the equality M = N?225

The above two canonical ways of linearizing (1.4) are not identical. So we have to say the two sets of
indices are not generally the same, nor do we have M = N , i.e., the number of the blocks in the above two
linearization processes are not equal [see the example at the end of text].
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4. Main Results

According to the explanation given in Sections 2 and 3, there are two different ways of linearizing a system230

given by (1.1) or a system in the form of (1.4), when they are exactly linearizable. The nontrivial expectation
is that these two linearizations may not be the same, and the two-block forms we mentioned in the previous
sections can be different. Naturally, one finds that the two canonical sets of indices we encountered are not
equal. In general, the two sets of indices are far from being identical, although they both give a partition of
n; they even may not have an equal number of elements. This section investigates the relationship between235

two sets of indices defined in Sections 2.1 and 2.2. Because the controllability and observability indices given
in Definitions 2.3 and 2.15, respectively, characterize a particular form of exact linearity of the same systems
of differential equations, it is natural to expect a simple relation between them. We note that the ways these
two series of numbers are defined use dual concepts of distributions vs. codistributions on Rn. Thus, the
connections between the invariants above should also be related to duality. Below we state another set of240

conditions which can be compared with the set of conditions A and B given above and also in [16]. This
also appears to be one of our contributions to the text.

Conditions C:

(C1) The codistributions Ωj have constant dimensions, j = 1, 2, ...,M .

(C2) ΩM has dimension n, where the number M is the smallest number with this property.245

(C3) For each j the codistribution Ωj is invariant under f, gl, for all l ≤ r.

Recall that a codistribution Ω is invariant under a vector field f if Lfw ∈ Ω for all forms w ∈ Ω. The notion
is dual to the one of distributions, so that we call a distribution g invariant under a vector field f if [f,X] ∈ g
for all X ∈ g. One can think of the set of Condition C to be dual to the sets A, B. The following Theorem
explains this relation and gives part of our main result.250

Theorem 4.1. The conditions in Theorem 2.14 can be equivalently replaced by the set of Conditions C.
The three sets of conditions A, B, C each one is equivalent to the other.

Proof. By Theorem 4.1.2 of [15] the action of the codistributions Ωj on the distributions gi can be presented
in a a× a block matrix with blocks given by

rows⊕
i


dλi
dLfλi
...

dLai−1f λi


columns⊕

j

(
gj ad(f)gj ... ad(f)ai−1gj

) =

rows⊕
i

columns⊕
j


0 ... Lad(f)ai−1gjλi
0 ... ∗

... ∗
LgjL

ai−1
f λi ∗ ∗




(4.1)
where the last matrix is non-singular. The same as the argument in [15], Lemma 4.1.2, the two following
sets of conditions (identities) are equivalent (by the same proof as in [15]),

(a) Lgψ(x) = LgLfψ(x) = · · · = LgL
k
fψ(x) = 0.255

(b) Lgψ(x) = Lad(f)gψ(x) = · · · = Lad(f)kgψ(x) = 0.

with

ψ =
⊕
i


λi
Lfλi
...

Lai−1f λi

 , g = [g1, . . . , gr]. (4.2)

Notice that

Lad(f)jgψ(x) = Dψ(ad(f)jg) =
⊕
i


dλi
dLfλi
...

dLai−1f λi

 (ad(f)jg). (4.3)
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The primary application of the lemma 4.2.1 of [15] (and the vector form we stated above) is that in order to
find the component coordinates of ψ one can use the second list of equations instead of the ordinary one that
is given in the first line of identities. By Definition 2.12, we know that the codistributions Ωj are defined
via the first list of equations. By the equivalence of Conditions A and B, we claim the following. gk are260

closed under the bracket for all k, if and only if Ωj are invariant under f, gl, for all j. This is because if
gk are closed under bracket, that is also the Condition B holds, then we have the second line of equations
defining their annihilators. However, the annihilator of the involutive distribution is invariant under f and
g (by Frobenius theorem, cf. [15] theorem 1.4.1). On the other hand, the first line’s identities are the same
as the codistributions Ωj . This argument is reversible also. If the codistributions Ωj are invariant under f265

and gj , we can make the argument in the other direction and conclude that gj are involutive [again by the
Frobenius theorem].

The equivalence of having constant dimensions in Condition sets A (or B) and C can be checked similarly.
Notice that the distribution has a constant dimension if its annihilating co-distribution (denoted by upper
perp. symbol above) has a constant dimension. Therefore, the other two conditions are trivial to be
compared. One notes that the items in Conditions C are G-invariant. Therefore, one may check the
criteria by its G-equivalent linearized form. The block multiplication in the identity (4.1) gets the following
form in the linear case,

ci
ciA
...

ciA
ai−1

(Bj ABj ... Aai−1Bj
)

=


0 ... ciA

ai−1Bj
0 ... ∗

... ∗
ciA

ai−1Bj ∗ ∗

 , (4.4)

where the claim in the proof of Theorem can be checked by linear spaces [see also the example below], the
conditions for having a constant dimension of distributions and codistributions can be seen in the linear case
concretely. �270

The equivalence of the set of Condition C and those in Conditions A, B does not imply that the
two series of indices, i.e., the Brunovsky controllability and observability indices coincide. Nevertheless,
the relation between the set of indices appears to be our paper’s main result. Therefore, we first state the
following proposition.

Proposition 4.2. In the set-up of Theorems 2.13 and 2.14 assume λ1, ..., λr is a set of outputs such that
(2.31) holds. Then, for any other choice of these functions, λ̃1, ..., λ̃r the associated relative degrees ã1, ..., ãM
satisfy:

ãi ≤ ai, i = 1, 2, ...,M. (4.5)

Proof. The claim of the proposition is a MIMO analog of Theorem 4.8.2 in [15], where a similar statement is275

proved for a SISO system. Because multi-input multi-output systems can be considered as several blocks of
single-input single-output systems, proposition 4.2 results as an application of theorem 4.8.2 in [15] to several
blocks of coordinates. By the way, the claim can also be understood from the block matrices illustration in
(4.1). The relation (4.1) implies that the length of the first column matrix can not exceed the length of the
second-row matrix, which is independent of λi and depends on gj , [see also [15] theorem 4.8.2]. �280

The proposition 4.2 is a generalization of theorem 4.8.2 in [15] to a MIMO system. For our next result,
we recall the following definition.

Definition 4.3. (Transpose partition) The pairs of partitions for a single number, whose Ferrers diagrams
(Young tableau) transform into each other when reflected about the line y = −x, with the coordinates of the
upper left dot taken as (0, 0), are called conjugate (or transpose) partitions. In this case, the corresponding
Young tableau is transposed to each other in its rows and columns. An example is illustrated in the following
picture.

a d f

b e g

c

3 + 3 + 1 = 3 + 2 + 2 a b c

d e

f g

(4.6)
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The operation is called transposition.
Another example is

a d f h i

b e g

c

5 + 3 + 1 = 3 + 2 + 2 + 1 + 1 a b c

d e

f g

h

i

(4.7)

The following theorem explains the relation between Brunovsky controllability indices and the Brunovsky
observability indices introduced in Sections 2.1 and 2.2.285

Theorem 4.4. Assume the exact linearization problem is solvable for the system (1.1) and the system
(1.4) due to a choice of outputs λ1, ..., λr. The observability indices of (1.4) give a transpose partition of n
concerning the Brunovsky controllability indices for (1.1). In other words, the two partitions

n = h1 + h2 + ...+ hN = h′1 + · · ·+ h′M−1 + h′M (4.8)

are transpose to each other.

In terms of the corresponding Young tableau, we get a picture like below,

N rows


. . M rows (4.9)

where the j-th row of the left-hand tableau has hj boxes, and the j-th row of the right-hand tableau has h′j
boxes. The number of columns in each tableau equals the number of rows in the other one by transposition.
The above phenomenon for the SISO systems is not an exciting example; however, it gives exciting examples
in MIMO systems.290

Proof. (proof of Theorem 4.4) We first consider the Brunovsky observability indices. According to Theorem
2.13 the change of coordinates

φ =
⊕
i


λi
Lfλi
...

Lai−1f λi

 : Rn ! Rn (4.10)

transforms system (1.4) into

ẋ = A”x+B”u, A” =


A1 0 ... 0 0
0 A2 ... 0 0
0 0 ... 0 0
... ... ...
0 0 ... 0 AM

 , u =
[
u1 u2 ... ur

]T
y = C”x,

(4.11)

where the matrices Aj (of size aj × aj) are in Brunovsky canonical form in a SISO system. We may put
x = (x1, ..., xM ) where xj has dimension aj . We can group the coordinate’s content so that in the first
group, set all the first coordinate of x1, ..., xM and in the second group all the second coordinates. If the
sizes of Aj were different, we would fill the coordinate gaps with zeros. Because of their canonical forms of
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Aj , differentiating the first block gives the second block, and so on. This permutation of coordinates gives
the Brunovsky canonical form (2.37),

ẋ = A′x+B′u, A′ =


0 0 ... 0 0
E′2 0 ... 0 0
0 E′3 ... 0 0
... ... ...
0 0 ... E′M 0

 , B′ =


E′1
0
0
...
0

 , u =
[
u1 u2 ... ur

]T
y = Cx, C = [E′1 0 0 ... 0].

(4.12)

Therefore the observability indices can be obtained as

h′k = ]{aj ≥ k, j ≥ 0}, (4.13)

where ] means number of elements, considering our new arrangement. The equation (4.1) and the set of
equations after that shows that there exists another way to arrange the coordinates; that is we use the set
of equations (b). The equation Lad(f)jgψ(x) = Dψ(ad(f)jg) tells that in these coordinates we differentiate
first in the direction of flows of gj for different j. On the other hand, if we consider the set of Conditions
B we find that aj also defines the controllability indices. Now the theorem’s claim follows from the fact that295

(4.13) defines the transpose or conjugate partition to the one given by aj . This, for instance, can be seen
by noting that the transpose partition is the reflection of the Young diagram under the line y = −x. The
identity (4.1) implies that n = h1 + h2 + ...+ hN = h′1 + · · ·+ h′M−1 + h′M . �

Remark 4.5. The point to compare the Brunovsky indices both in the controllable and observable cases
occurs to be essential to make the relation (4.8) clear. The identity (4.8) shows a transposition duality300

between these two sets of indices. We claim that it is not clearly attended in the literature despite its
simplicity.

Remark 4.6. Because the vectors

di =


dλi
dLfλi
...

dLai−1f λi

 , i = 1, ..., r (4.14)

are independent [cf. [15] lemma 5.1.1] one has

dim ker di = n− h1 − ...− ĥi − ...− hr (4.15)

where the hat ( .̂ ) means deletion.

Next, we give a simple example of checking the relation (4.8) and also the computation of Brunovsky
indices.305

Example 4.7 ([15] Example 5.2.6). We consider the following differential equation near 0 ∈ R5,

ẋ =


x2 + x22

x3 − x1x4 + x4x5
x2x4 + x1x5 − x25

x5
x22

+ u1


0
0

cos(x1 − x2)
0
0

+ u2


1
0
1
0
1

 . (4.16)

Then, we define the following distributions on R5

g0 = 〈g1, g2〉
g1 = 〈g1, g2, adfg1, adfg2〉
g2 =

〈
g1, g2.adfg1, ad

2
fg1, adfg2, ad

2
fg2
〉
.

(4.17)
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We calculate the following:

adfg1 =


0

− cos(x1 − x5)
−x2 sin(x1 − x5)

0
0

 , adfg2 =


0
−1

−(x1 − x5)
−1
0.

 (4.18)

One can quickly check the following relations:

[g1, adfg1] = [g2, adfg1] = [g2, adfg1] = [g1, adfg2] = 0

[adfg1, adfg2] = tan(x1 − x5)g1(x).
(4.19)

Using the above relations, each distributor’s gj are closed under bracket and have constant ranks 2, 4, and 5
near 0 ∈ R5. Therefore the Brunovsky controllability indices for this system are h1 = 2, h2 = 4−2 = 2, h3 =
5− 4 = 1.

On the other hand dim g⊥1 = 1. We may easily find a function λ1 such that 〈dλ1〉 = g⊥1 . A trivial check
shows that y1 = λ1(x) = x1 − x5 is such a function. Now, dim g⊥0 = 3. Thus, we have

dλ1 =
[
1 0 0 0 −1

]
, dLfλ1 =

[
0 1 0 0 0

]
. (4.20)

We may also easily guess a function λ2 such that 〈dλ1, dLfλ1, dλ2〉 = g⊥0 . A simple choice is λ2(x) = x2.
ThereforeTherefore, methods in control to find the functions λ1, λ2. Thus, we have

Lg1λ1 = Lg2λ1 = Lg1Lfλ1 = Lg2Lfλ1 = 0

Lg1λ2 = Lg2λ2 = 0,
(4.21)

and the matrix (
Lg1L

2
fλ1 Lg2L

2
fλ1

Lg1Lfλ1 Lg1Lfλ1

)
(4.22)

is non-singular. The Brunovsky observability indices are h′1 = 3, h′2 = 2. Thus, these numbers are maximal,
i.e., they fulfill the total dimension n = 5. Now one sees that the two partitions of the system dimension by
Brunovsky indices obtained by the above two ways are transposed to each other:

h = (h1 = 2, h2 = 2, h3 = 1)

h′ = (h′1 = 3, h′2 = 2)

5 = 2 + 2 + 1 = 3 + 2.

(4.23)

We can also see this in the Young diagrams

a b

d e

f

2 + 2 + 1 = 3 + 2 a d f

b e
(4.24)

5. Conclusion

When the exact linearization problem is solvable for the general system (1.1), it can be linearized in310

two different canonical ways. In this case, one obtains two different sets of Brunovsky indices, which are
invariants of the system. We have compared the two sets of Brunovsky indices in a controllable system of
the canonical form (1.1) and the associated MIMO system (1.4) of dimension n. Several new results have
been obtained in the way of the proof. For instance, we provide a new set of criteria that are equivalent to
the ones in [16]. In this regard, our results are a complement to [16], which this work has been partially315

motivated by their main results: Theorems 4.1 and 4.4. The conclusion is that the two sets of invariants,
namely the Brunovsky controllability indices and the Brunovsky observability indices, give two transpose
partitions of n. The result has been analyzed in an example. In general, these two sets of indices are not
identical on the same system and may not have an equal number of elements.

17



References320

[1] Itziar Baragaña and Ion Zaballa, Column completion of a pair of matrices, Linear and Multilinear
Algebra 27 (1990), no. 4, 243–273.

[2] D. Boutat, G. Zheng, J.P. Barbot, and H. Hammouri, Observer error linearization multi-output depend-
ing, Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 5394–5399.

[3] Driss Boutat, Abderraouf Benali, and Hassan Hammouri, Geometrical conditions for observer error325

linearization with a diffeomorphism on the outputs, IFAC Proceedings Volumes 40 (2007), no. 12, 870–
875, 7th IFAC Symposium on Nonlinear Control Systems.

[4] Driss Boutat, Frederic Kratz, and Jean-Pierre Barbot, Observavility brunovsky normal form: Multi-
output linear dynamical systems, 2009 American Control Conference, 2009, pp. 1166–1170.

[5] R.W. Brockett, Feedback invariants for nonlinear systems*, IFAC Proceedings Volumes 11 (1978), no. 1,330

1115–1120, 7th Triennial World Congress of the IFAC on A Link Between Science and Applications of
Automatic Control, Helsinki, Finland, 12-16 June.

[6] P. Brunovsky, Controllability and linear closed-loop controls in linear periodic systems, Journal of Dif-
ferential Equations 6 (1969), no. 2, 296–313.

[7] , A classification of linear controllable systems, Keybernetika 6 (1970), no. 3, 173–188.335

[8] Christopher I. Byrnes, Algebraic and geometric aspects of the analysis of feedback systems, Geometrical
Methods for the Theory of Linear Systems (Martin C.F. Byrnes C.I., ed.), Springer, Dordrecht, 1980.

[9] Jean-Claude Evard and Juan-Miguel Gracia, On similarities of class cp and applications to matrix
differential equations, Linear Algebra and its Applications 137-138 (1990), 363–386.

[10] Josep Ferrer and Ferran Puerta, Similarity of non-everywhere defined linear maps, Linear Algebra and340

its Applications 168 (1992), 27–55.

[11] Juan M. Gracia and Francisco E. Velasco, Global analytic block similarity to a brunoovsky form, Linear
Algebra and its Applications 282 (1998), no. 1-3, 233–247.

[12] Michiel Hazewinkel, (fine) moduli (spaces) for linear systems: What are they and what are they good
for?, Geometrical Methods for the Theory of Linear Systems (Christopher I. Byrnes and Clyde F.345

Martin, eds.), Springer, Dordrecht, 1980.

[13] M. Hou and A.C. Pugh, Observer with linear error dynamics for nonlinear multi-output systems, Systems
Control Letters 37 (1999), no. 1, 1–9.

[14] IonZaballa, Matrices with prescribed rows and invariant factors, Linear Algebra and its Applications 87
(1987), 113–146.350

[15] Alberto Isidori, Nonlinear control systems, Springer-Verlag London, London, 1995.

[16] B. Jakubczyk and W. Respondek, On linearization of control systems, Bulletin de L’Academik Polonaise
des Sciences, Serie des sciences mathematiques, no. 9.

[17] R. E. Kalman, Algebraic aspects of the theory of dynamical systems, Differential equations and dynamical
systems (J. K. Hale and J. P. LaSalle, eds.), Academic Press.355

[18] Arthur J. Krener, On the equivalence of control systems and the linearization of nonlinear systems,
SIAM Journal on Control and Optimization 11 (1973), no. 4, 670–676.

[19] Arthur J Krener and Alberto Isidori, Linearization by output injection and nonlinear observers, Systems
Control Letters 3 (1983), no. 1, 47–52.

18



[20] Arthur J. Krener and Witold Respondek, Nonlinear observers with linearizable error dynamics, SIAM360

Journal on Control and Optimization 23 (1985), no. 2, 4197–216.

[21] D. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control 16 (1971), no. 6,
596–602.

[22] R. Marino and P. Tomei, Nonlinear control design: Geometric, adaptive and robust, Prentice Hall, USA,
1995.365

[23] Daejong Noh, N.H. Jo, and J.H. Seo, Nonlinear observer design by dynamic observer error linearization,
IEEE Transactions on Automatic Control 49 (2004), no. 10, 1746–1753.

[24] G. Philip and A. Thijsse, Global holomorphic similarity to a jordan form, Results in Mathematics 8
(1985), no. 1, 78–87.

[25] F. Plestan and A. Glumineau, Linearization by generalized input-output injection, Systems Control370

Letters 31 (1997), no. 2, 115–128.

19

View publication stats

https://www.researchgate.net/publication/362329954

	Introduction
	Contribution
	Content

	Preliminaries
	Controllability indices
	Observability indices

	Problem Statement
	Main Results
	Conclusion

