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Abstract

We obtain Fredholm type formulas for partial degenerations of Theta functions on (irreducible) nodal
curves of arbitrary genus, with emphasis on nodal curves of genus one. An application is the study of
“many-soliton” solutions on an elliptic (cnoidal) background standing wave for the Korteweg-de Vries
(KdV) equation starting from a formula that is reminiscent of the classical Kay-Moses formula for N -
solitons. In particular, we represent such a solution as a sum of the following two terms: a “shifted”
elliptic (cnoidal) background wave and a Kay-Moses type determinant containing Jacobi theta functions
for the solitonic content, which can be viewed as a collection of solitary disturbances on the cnoidal
background. The expressions for the travelling (group) speed of these solitary disturbances, as well as
for the interaction kernel describing the scattering of pairs of such solitary disturbances, are obtained
explicitly in terms of Jacobi theta functions. We also show that genus N + 1 finite gap solutions with
random initial phases converge in probability to the deterministic cnoidal wave solution as N bands
degenerate to a nodal curve of genus one. Finally, we derive the nonlinear dispersion relations and the
equation of states for the KdV soliton gas on the residual elliptic background.
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1 Introduction and results

The Korteweg-de Vries (KdV) equation

ut + uxxx + 6uux = 0, u = u(x, t) (1.1)

is historically the first equation shown [27] to admit solitary waves. The simplest such solution is the single

“soliton” (solitary wave) solution

u(x, t) =
|b|/2

cosh2
(√

|b|x−|b|
3
2 t+ϕ

2

) (1.2)

which is a simple traveling wave moving to the right with speed v = |b|. The value b < 0 corresponds to the

eigenvalue of the Sturm–Liouville operator (stationary Schrödinger equation with potential −u)

−f ′′(x)− u(x, 0)f(x) = bf(x), f ∈ L2(R). (1.3)

This particular solution can be written suggestively as

u(x, t) = 2∂2x ln

1 +
e−

√
|b|x+|b|

3
2 t

2
√
|b|

 . (1.4)

Despite the equation being nonlinear, KdV admits N -soliton solutions that describe a superposition of

the simple solitons introduced above. The N -soliton solution can be concisely described by the Kay-Moses

[18] formula of Fredholm type:

u(x, t) =2∂2x ln det [1N +G(x, t)] , where

Gℓm(x, t) =

√
CℓCme

ϑℓ+ϑm
2√

|bℓ|+
√
|bm|

, ϑℓ :=
√

|bℓ|x− |bℓ|
3
2 t, ℓ = 1, . . . , N. (1.5)

Here: 1N denotes the identity matrix of size N ; G is the N ×N matrix indicated above; the parameters bj
are arbitrary negative numbers, and; Cℓ, ℓ = 1, . . . , N are arbitrary positive numbers. It is well known that

for an N -soliton solution (1.5) the spectrum of (1.3) is {b1, . . . , bN}; the constant Cℓ is called a norming

constant associated with bℓ, ℓ = 1, . . . , N .

A different family is the so-called finite-gap family of solutions [16, 6], which can be written as

u(x, t) = 2∂2x ln τ (x, t), (1.6)

where the tau–function τ (x, t) for the finite-gap solutions is expressed in terms of the Riemann theta function

associated to underlying hyperelliptic Riemann surface. (For the N–soliton solutions, the tau–function is

given by the Kay-Moses determinant (1.5).)

The starting point of this work is the obsrevation that N -soliton solutions can be obtained from the

finite-gap solutions by degenerating the hyperelliptic surface to a nodal curve of genus zero; the computation

is contained essentially in the last chapter of Mumford’s book [21], where a determinantal formula of different

type was derived (see also [16], [17], [20]). In the recent [13] the Kay-Moses formula is recovered from the

degeneration via the equivalence with the Wronskian formula of Matveev [20].

In this paper we present a generalization of the Kay-Moses formula to the case where the hyperelliptic

curve is partially degenerated to a nodal curve of genus 1. The core of the computation is, in fact, more

general; it is based on a formula (presented in Appendix A) for the limit of the Riemann Theta function

(with appropriate characteristics) when the curve degenerates to a nodal curve whose resolution has an

arbitrary genus g.
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A formula for the partial degeneration can also be found in the monograph [1] (Chapter 4, p. 138) in

the context of the Nonlinear Schrödinger equation), which, however, provides a different, not determinantal

description of the degeneration (see Theorem 2.2 below). We now describe the setting of the problem.

Consider the real elliptic curve

w2 = 4z3 − g2z − g3 = 4(z − e1)(z − e2)(z − e3), e3 < e2 < e1, (1.7)

with half-periods

ϖ1 :=

∫ e2

e3

dz

2
√

(z − e3)(z − e2)(z − e1)+
∈ R+ (1.8)

ϖ3 :=

∫ e2

e1

dz

2
√

(z − e3)(z − e2)(z − e1)
∈ iR−, (1.9)

where the radical is chosen with branchcuts [e3, e2] ∪ [e1,∞) and with the determination such that it is

in iR− in the gap [e2, e1]. Then the stationary cnoidal wave solution (genus one finite-gap or one-phase

nonlinear wave solution) is given by

u(x, t) = 2∂2x ln τ (x, t) = 2∂2x ln θ3

(
x

4iϖ3
, τ

)
, (1.10)

where τ := ϖ1/ϖ3 ∈ iR+, and θ1,2,3,4(β, τ) denote the standard Jacobi elliptic theta functions. Cnoidal

travelling wave solutions can be obtained by solving the ODE obtained by substituting u(x, t) = u(x− vt)

into (1.1).

Choose L points bj ∈ (−∞, e3), j = 1, . . . L and N − L points bj ∈ (e2, e1), j = L + 1, . . . N . These

points represent the centers of O(ε), ε→ 0+, fast shrinking bands of some genus N+1 hyperelliptic Riemann

surface RN (ε). If N is fixed, the rate of decay of the shrinking bands is not essential. (But in the case of

soliton gases, where N → ∞ (see below), ε is linked with N and the rate of decay of the bands is important.)

Let Θ be the Riemann Theta function [11] on RN (ε):

Θ (X;Ω) :=
∑

ν∈ZN+1

eiπν
⊺Ων+2iπν⊺X , X ∈ CN+1, (1.11)

where Ω = Ω(ε) is the Riemann period matrix (our choice of Aj and Bj cycles is shown on Figure 5). Let

us set X = [ψ1, . . . , ψN , β]
⊺ ∈ CN+1. Our main observation, see Theorem 2.2, states that in the limit ε→ 0

the Riemann Theta function

lim
ε→0

Θ

(
X − 1

2
Ω(ε)u;Ω(ε)

)
= det [1N +G] θ3 (β −A) , (1.12)

where the shift A depends only on b1, . . . , bN , and the N ×N matrix G depends on b1, . . . , bN and also on

X. The limiting elliptic curve (1.7) with N pairs of identified points b1, . . . , bN (on both sheets) will be

denoted by RN (0).

The factorization (1.12) represents the limiting Riemann Theta function as a product of Kay-Moses

type determinant and the (shifted) Riemann Theta function θ3 on the residual elliptic background RN (0).

It is a direct generalization of Mumford’s approach to the case when all but one bands of the Riemann

surface are shrinking as ε → 0 and, thus, in the limit, one obtains an N -soliton solution to the KdV on

the residual (elliptic) background. In Appendix A this result is generalized to an arbitrary hyperelliptic

residual background.

Our next main result, Theorem 2.5, states that

u(x, t) = 2∂2x ln τ (x, t) with τ (x, t) := e−
ζ(ϖ3)
8ϖ3

x2

det [1N +G(x, t)] θ3

(
x

4iϖ3
−A

)
(1.13)
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e1e2e3b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Figure 1: The position of hot (red) and cool (blue) points bj of discrete spectra, relative to the spectral
bands [e3, e2]∪ [e1,∞) of the elliptic background. These can be viewed as the degeneration of small bands—
centered at each discrete spectral point—on a higher genus surface.

is a solution to the KdV (1.1), where ζ denotes the Weierstrass zeta function on the elliptic curve (1.7) and

the x, t dependence of the vector X, which is part of G, is defined in terms of the limiting quasi-momentum

and quasi-energy meromorphic differentials on RN (ε) as ε→ 0, see Theorem 2.5 for details. Thus,

u(x, t) = 2∂2x ln det [1N +G] + 2∂2x ln θ3

(
x

4iϖ3
−A

)
− ζ(ϖ3)

2ϖ3
, (1.14)

i.e., up to a constant, solutions of KdV describing the N solitons on the elliptic background can be repre-

sented as a sum of the Kay-Moses type determinant “tweaked by the elliptic background” and the elliptic

background solution 2∂2x ln θ3(y) “shifted by the N solitons”.

Proofs of Theorems 2.2 and 2.5, including the appropriate notations from algebraic geometry, are the

subject of Section 2. Important steps in these proofs are the calculation of the Riemann period matrix Ω,

the normalized holomorphic differentials and the quasi-momentum and quasi-period differentials in the limit

ε→ 0. Using results of Section 2, we then calculate the velocity of a single soliton on the elliptic background

(Section 3) and the phase shift of two interacting solitons on the elliptic background (Section 4). Here we

want to mention that the solitons corresponding to bj < e3, see Figure 1, appear to have larger than the

cnoidal wave amplitude and positive speed (bright-and-forward or simply hot), see Figure 3. On the other

hand, the solitons corresponding to bj ∈ (e2, e3) appear to have smaller than the cnoidal wave amplitude

and negative speed (dim-and-retrograde or simply cool). The smaller than the cnoidal wave amplitude of

the soliton can be identified with the dip in the cnoidal wave oscillations clearly visible on Figure 2; for

some early works about solitons on the elliptic background see, for example, [26], [19].

Dim (and retrograde) solitons, also mentioned as solitary disturbances, have negative group velocity, i.e.,

they are moving from the right to the left, which runs contrary to the common understanding that the

solitons for the KdV equation (1.1) are moving left to right. However, the motion in the opposite direction

is the result of the interaction between the soliton and the background. A similar phenomenon happens in

KdV soliton gases on zero background, where the faster (and taller) solitons are constantly pushing back

the slower (and smaller ) solitons due to the phase shift of their pair-wise interaction, so that the effective

velocity of sufficiently small solitons is negative, see [4]. Numerical observation of KdV solitons moving in

the negative direction was first reported in [22].

In Section 5 we use the results described above to derive the main equations for a KdV soliton gas on

the elliptic background, such as the nonlinear dispersion relations (NDR) and the equation of state. The

concept of a soliton gas, which can be traced back to some ideas of V. Zakharov [28] and S. Venakides [25],

was formulated by G. El in [7]. A soliton gas can be considered as a large N → ∞ limit of an ensemble

of N solitons, viewed as particles with 2-particle interactions. Alternatively, it can be viewed as a specific

(thermodynamic) limit of genus N finite-gap solutions when N → ∞ and simultaneously the size of all (or all

but finitely many) bands go to zero exponentially fast in N . Thus, we are interested in the large N limit of

various quantities associated with a hyperelliptic Riemann surface RN (e−νN ), where ν > 0. In this setting

the NDR become simply the thermodynamic limit of the Riemann bilinear identities on RN (e−νN ), which

involve the quasi-momentum and quasi-energy meromorphic differentials on one side and the normalized

holomorphic differentials on the other. Many details about soliton gases for the Nonlinear Schrödinger

equation (NLS) and KdV can be found in [9, 7], see also [8], [24]. In particular, the thermodynamic limits of
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the NDR were derived in [9] for the focusing NLS soliton (all bands are shrinking) and breather (all but one
band are shrinking) gases. In both cases, the genus of the residual (degenerate) surface was zero. In Section
5 we make the next step in this direction by deriving the NDR and the equation of state for a KdV gas on
the genus one background. In light of Appendix A, it is quite clear that one can use the same technique
to derive the NDR for a KdV gas on backgrounds of any finite genus. We want to mention that the error
estimate of the limiting NDR is outside the scope of this paper, although some partial results related to
this issue can be found in [24].

In the Appendices A and B we respectively state and sketch the proof of Theorem 2.2 for any genus
g ≥ 1 background (residual) Riemann surface, as well as prove that any solution described by Theorem 2.5
converges to the backgound elliptic solution with respect to some natural probability measure uniformly on
compact subsets of (x, t).

The following theorem summarizes the main results of Sections 2 - 4. Its proof follows from Theorems
2.2, 2.5, 4.2. Proof of (1.16) requires repeated use of Theorem 4.2.

Fix b1 < b2 < · · · < L ∈ (−∞, e3) and bL+1 < · · · < bN ∈ (e2, e3). Let ℘(s) denote the Weierstass
function on the elliptic curve (1.7). Define implicitly βk satisfying bk = ℘(2ϖ3βk), k = 1, . . . , N, and
Re(βk) ∈ [0, 1), Im(βk) ∈ {0, Im τ/2}. Denote by β⋆k := 1− βk + χτ the second pre-image of each bk in the
fundamental rectangle, where χ = 1 if Imβ = Im τ/2 and χ = 0 if Imβ = 0.

Theorem 1.1. [1] The solution of the KdV equation (1.1) with N solitons on a cnoidal background is given

by

u(x, t) = 2∂2x ln det [1N +G] + 2∂2x ln θ3

(
x

4iϖ3
−A

)
− ζ(ϖ3)

2ϖ3
, where

A :=
1

2

N∑
j=1

(βj − β⋆j ),

Gℓ,m :=

θ3

(
βℓ − β⋆m +

x

4iϖ3
−A

)
θ1 (βℓ − β⋆m) θ3

(
x

4iϖ3
−A

)√CℓCmeiπ(ψℓ+ψm), ℓ, j = 1, . . . , N,

ψj(x, t) := x
Pj
2π

+ t
Ej
2π
, Ej := −1

2
℘′(2ϖ3βj), Pj :=

1

2ϖ3

θ′1 (β; τ)

θ1 (β; τ)

∣∣∣∣∣
β=βj

β=β⋆
j

(1.15)

and the norming constants Cj are arbitrary positive numbers.

[2] The points βj ∈ (0, 12 ), j = 1, . . . , L correspond to right-propagating solitons (solitary disturbances)

whereas the points βj ∈ (0, 12 )+
τ
2 , j ≥ L+1 correspond to left propagating solitons (solitary disturbances).

[3] The profile of such solutions for t→ ±∞ consists of a cnoidal stationary background (with period X =

4iϖ3 ∈ R+) modulated by solitons (solitary disturbances) that are localized around the lines xj = Vjt+Φ
(±)
j .

Each Vj = −Ej

Pj
gives the modified velocity of the solitons on the elliptic background; the order of velocities

is preserved, i.e., V1 > V2 > . . . . The phase shifts Φ
(±)
j depend on the norming constants, but their averaged

difference does not:〈
Φ

(+)
j

〉
−
〈
Φ

(−)
j

〉
=

1

|Pj |
∑
k>j

ln
θ1(βj − β⋆2)θ1(βk − β⋆1)

θ1(β1 − βk)θ1(β⋆k − β⋆1)
− 1

|Pj |
∑
k<j

ln
θ1(βj − β⋆2)θ1(βk − β⋆1)

θ1(β1 − βk)θ1(β⋆k − β⋆1),
(1.16)

where the average is over the period of the cnoidal wave (see description in Section 4 and Figures 2, 3, 4).

5



Figure 2: Plot of a dim retrograde soliton at three different times; the parameters of the elliptic curve are as
in (10) and β = 0.24 + τ

2 (c ≃ 1.50356). The group velocity calculated with formula (3.4) is V ≃ −8.99139.
In the left/right pane the time is set to ∓10/|V | to see that the disturbance has travelled exactly 10 units
(and towards the left).

Figure 3: Plot of a bright forward soliton at three different times; the parameters of the elliptic curve are
as in (10) and β = 0.30 (b ≃ −5.3595). The group velocity calculated with formula (3.4) is V ≃ 6.8273. In
the left/right pane the time is set to ±10/|V | to see that the disturbance has travelled exactly ten units.

Figure 4: Plot of the two–soliton solution with both a bright and a dim soliton at times −30/vhot, 0, 30/vhot.
The parameters of the two solitons are the same as in Fig. 2 and Fig. 3. As expected, the dim soliton
travels to the left and the bright one to the right with their own group velocities.
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2 Generalities about nodal hyperelliptic and elliptic curves

We consider the degenerating Riemann surface described by the affine equation

Y 2 = 4(z − e3)(z − e2)(z − e1)

N∏
j=1

(z − bj + ϵ)(z − bj + ϵ) (2.1)

where (see Fig. 5)

b1 < b2 < · · · < bL < e3 < e2 < bL+1 < · · · < bN < e1; (2.2)

Let us introduce the elliptic curve (in Weierstrass form)

w2 = 4(z − e3)(z − e2)(z − e1) (2.3)

The determination of W (z) := 2
√
(z − e3)(z − e2)(z − e1) is chosen with the branch-cuts along [e3, e2] ∪

[e1,∞) so that

W (z+) ∈ R−, z ∈ [e1,∞], W (z+) ∈ R+, z ∈ [e3, e2], (2.4)

W (z) ∈ iR−, z ∈ [e2, e1], W (z) ∈ iR+, z ∈ (−∞, e3]. (2.5)

We denote the two half periods ϖ3, ϖ1 and the modular parameter τ as follows∫ e2

e3

dz

2
√
(z − e3)(z − e2)(z − e1)+

= ϖ1 ∈ R+ (2.6)∫ e2

e1

dz

2
√
(z − e3)(z − e2)(z − e1)

= ϖ3 ∈ iR− (2.7)

τ =
ϖ1

ϖ3
∈ iR+. (2.8)

With these understandings we define the Abel map by

β =

∫ z

−∞

dz

2ϖ3W (z)
. (2.9)

In particular the images of e3, e2, e1 are τ
2 ,

τ+1
2 , 12 , respectively. We recall the definitions and the main

properties of the fundamental Weierstrass ζ and ℘ functions:

ζ(s) :=
1

s
+

′∑
n,m

(
1

s− 2mϖ3 − 2nϖ1
+

1

2mϖ3 + 2nϖ1
+

s

(2mϖ3 + 2nϖ1)2

)
(2.10)

ζ(s+ 2ϖ3) = ζ(s) + 2ζ (ϖ3) , ζ(s+ 2ϖ1) = ζ(s) + 2ζ (ϖ1) (2.11)

℘(s) := −ζ ′(s) = 1

s2
+

′∑
n,m

(
1

(s− 2mϖ3 − 2nϖ1)2
− 1

(2mϖ3 + 2nϖ1)2

)
, (2.12)

℘(ϖ1) = e1; ℘(ϖ3 +ϖ1) = e2; ℘(ϖ3) = e3 (2.13)

(℘′)2 = 4 (℘− e1) (℘− e2) (℘− e3) . (2.14)
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e1e2e3

b1 bL+j

BN+1

AN+1

B1 Bj

BL

Figure 5: The choice of cycles around the main bands and around the shrinking bands near the hot (far
left) and cool (middle gap) solitons.

We will also need the Jacobi theta functions with the specific normalization below, which differs from the

one in DLMF, by a factor of π; for example, for us here θ3 is 1–periodic instead of π periodic.

θ(β) = θ3(β; τ) :=
∑
n∈Z

eiπn
2τ+2iπnβ (2.15)

θ1(β) = θ1(β; τ) :=
∑
n∈Z

eiπ(n−
1
2 )

2
τ+2iπ(n− 1

2 )(β−
1
2 ). (2.16)

We emphasize that Jacobi elliptic functions are naturally functions of the variable β on the normalized Jaco-

bian J with quasi-periods 1, τ = ϖ1

ϖ3
, while Weierstrass’ ℘, ζ are doubly (quasi) periodic in the unnormalized

variable s and have periods 2ϖ3, 2ϖ1: for this reason when mixing them in the same formula one should

bear in mind that s = 2ϖ3β to translate from one to the other.

Terminology. The Jacobian of the elliptic curve (2.3) is the torus J := C/Z + τZ and it provides the

uniformization (i.e. the parametrization) of the algebraic curve (2.3) via the Weierstrass’ substitutions

w = ℘′(2ϖ3β), z = ℘(2ϖ3beta) as per (2.14). Points in the Jacobian J will be represented by points in

the fundamental domain

L :=

{
Reβ ∈ [0, 1), Imβ ∈

[
0, Im(τ)

)}
, (2.17)

with β = 0 corresponding to the point at infinity. We refer to (w, z) in (2.3) as the Weierstrass’ represen-

tation. The three points e1, e2, e3 correspond to the half periods τ
2 ,

τ+1
2 , 12 (respectively, modulo the lattice

Λτ := Z+ τZ). This is a slightly non-standard correspondence due to the choice of A ,B cycles.

The points bj correspond to pairs of pre-images in the fundamental domain L of the Jacobian J:

bj = ℘(2ϖ3βj) = ℘(2ϖ3β
⋆), βj ∈

{(
0, 12

)
1 ≤ j ≤ L (hot)

τ
2 +

(
0, 12

)
L+ 1 ≤ j ≤ N (cool),

(2.18)

where

β⋆j = 1− βj + χτ, χ =

{
0 1 ≤ j ≤ L

1 L ≤ j ≤ N.
(2.19)

The Aj ,Bj cycles on the curve (2.1) are defined in the following way (see Fig. 5):
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τ 1 + τ

A2

B2

1

Figure 6: The curve (2.20) before degeneration; the two small cuts are around the images of the point
(Z = 0, Y = ∓4e1e2e3), and their two sides are identified as suggested by the color-coding.

τ 1 + τ

1βj β⋆j

βj β⋆j

(e3)

(e2)(e1)

Figure 7: The points βj in the Jacobian corresponding to the hot (red) solitons and cool (blue) solitons,
and their corresponding involutions. Indicated in bracket the corresponding points on the elliptic curve.

9



- for the bands around the hot solitons bj the Aj cycle is a small circle around the band and the Bj

cycle is a contour from the right end of the small band to e3 of the main band (on both sheets);

- similarly, for the bands around the cool solitons bL+j the Aj cycle is a small circle around the band

and the Bj cycle is a contour from the left end of the small band to e2 of the main band;

- the cycles of the elliptic curve will be numbered N + 1 and the AN+1 cycle and BN+1 as shown in

Fig. 5.

2.1 General properties of nodal curves and their period matrix

We refer to Chapter III of Fay for a general approach but here we give a perfunctory account of the ideas,

tailored to the problem at hand, namely, that the limiting nodal curve is an elliptic curve.

Consider, for guidance, the following example

y2 = (z2 − ϵ2)4(z − e1)(z − e2)(z − e3), e1 + e2 + e3 = 0. (2.20)

As ϵ → 0 the curve becomes a nodal elliptic curve; its resolution consists of an elliptic curve (represented

in the canonical Weierstrass form) (y
z

)2
= 4(z − e1)(z − e2)(z − e3). (2.21)

The functions y, z on this elliptic curve can be parametrized as follows in terms of the Weierstrass’ functions

℘, ℘′:

z = ℘(s), y = ℘(s)℘′(s) =
1

2

(
℘(s)2

)′
. (2.22)

This means that the algebra of these functions separate all points of the elliptic curve except the two zeros

of ℘; in other words the nodal curve is the result of identifying one pair of points in the limiting elliptic

curve.

The limiting elliptic curve without the identification of the two points is an example of resolution of a

nodal curve; if we have several nodes the procedure is precisely the same:

y2 =

N∏
j=1

(z − ψj)
24(z − e1)(z − e2)(z − e3) ⇒ y =

N∏
j=1

(℘(s)− ψj)
2
℘′(s), z = ℘(s). (2.23)

In the resolved elliptic curve we now have N pairs of pairwise identified points; in particular the two points

in each pair are interchanged by the elliptic involution (if they were in general positions, then this would not

be the resolution of a hyperelliptic nodal degeneration). Let us denote by βj , β
⋆
j these pairs in the Jacobian,

within the same fundamental domain (2.17).

What remains of the corresponding Aj ,Bj cycles?

Even before degeneration we can represent the hyperelliptic curve as the elliptic curve with small branch

cuts around βj , β
⋆
j , pairwise identified, see for example Fig. 6. The Aj cycle is represented by a small

counterclockwise circle around one of the two pre-images of the node (say, βj), while what survives of the

Bj cycle is a path joining the two pre-images of the given node in the resolved curve.

If we have several nodes, of course the Bj cycles should be chosen as mutually non-intersecting paths

joining the two pre-images of each node and staying within the same fundamental domain (2.17).

What happens then to the corresponding normalized holomorphic differentials, ωk, k = 1, . . . , N + 1, in

the degeneration process? As explained better in [11], they become the (unique) third kind differentials on

the resolved curve with two simple poles at the pre-images βj , β
⋆
j of the nodes bj , residues

1
2iπ at βj and

− 1
2iπ at β⋆j , and vanishing A -period on the resolved curve. They have the following form

ρβj ,β⋆
j
:=

1

2iπ

d

dβ
ln
θ1(β − βj)

θ1(β − β⋆j )
dβ. (2.24)
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The evident advantage of formulas such as (2.24) is that the differentials appear as total derivatives of

(multivalued) functions on the curve and hence the integration is a pleasant experience. We mention here

that such formulas can be written for any genus Riemann surface (hyperelliptic or not) in terms of Riemann

theta functions and in fact all the considerations here translate with no substantial difference to higher

genus.

The matrix of B periods will have, in the off–diagonal entries, the following limit

Ωℓ,k =

∮
Bℓ

ωk →
∫ βℓ

β⋆
ℓ

ρβk,β⋆
k
=

1

2iπ
ln
θ1(β

⋆
ℓ − β⋆k)

θ1(β⋆ℓ − βk)

θ1(βℓ − βk)

θ1(βℓ − β⋆k)
. (2.25)

The above formula determines Ωℓ,k only up to integers; this phenomenon, rather than a nuisance, is a

feature. It simply reflects the fact that we can add to a period matrix Ω an arbitrary integer matrix by

adding to the B–cycles an integer combination of the A –cycles.

We also mention that the symmetry in the exchange ℓ, k is a manifestation of Weil reciprocity or as a

consequence of Riemann bilinear relations.

If now dβ denotes the normalized differential on the resolved elliptic curve, then in the limit we have

ωN+1 → dβ. It follows that the limit of Ωℓ,N+1 tends to the difference of the Abel maps of the pairs βℓ, β
⋆
ℓ :

Ωℓ,N+1 =

∮
Bℓ

ωN+1 →
∫ βℓ

β⋆
ℓ

dβ = βℓ − β⋆ℓ =

∮
BN+1

ρβℓ,β⋆
ℓ
. (2.26)

In this case, the symmetry Ωℓ,N+1 = ΩN+1,ℓ in the ε → 0 limit is simply a consequence of the Riemann

bilinear identity on the elliptic curve.

We mention here that if the resolved curve were of higher genus, at this point we would simply obtain

the full Abel map of the divisor of degree zero Dℓ = βℓ − β⋆ℓ , ℓ = 1, . . . , N .

Properties of the period matrix. With the choice of A /B cycles made above, the matrix, Ω, of

normalized B–periods satisfies

Ωℓ,m =

∮
Bℓ

ωm = Ωmℓ, ℓ,m = 1 . . . N + 1, (2.27)

ΩN+1,ℓ = Ωℓ,N+1 ∈ R, ΩN+1,N+1 ∈ iR+, Ωℓ,m ∈ iR, ℓ,m ≤ N. (2.28)

We can summarize the discussion of the previous paragraph in the following Lemma.

Lemma 2.1. As ϵ→ 0 we have that

ωj →
1

2iπ

d

dβ
ln

θ1(β − βj)

θ1(β + βj − 1)
dβ, j = 1, . . . , L (hot solitons);

ωj →
1

2iπ

d

dβ
ln

θ1(β − βj)

θ1(β + βj − τ − 1)
dβ, j = L+ 1, . . . , N (cool solitons); (2.29)

ωN+1 → dβ. (2.30)

The matrix of normalized B–periods has the following limits:

1. The “hot-hot” part (j, ℓ = 1, . . . , g) is given by

Ωj,ℓ =

∮
Bj

ωℓ →
1

iπ
ln

∣∣∣∣θ1(βj − βℓ)

θ1(βj + βℓ)

∣∣∣∣ j ̸= ℓ (2.31)

2. The “cool-cool” part (j, ℓ = g + 1, . . . , N) is given by

Ωj,ℓ =

∮
Bj

ωℓ → =
1

iπ
ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj + βℓ − τ)

∣∣∣∣ j ̸= ℓ (2.32)
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3. The “hot-cool” (j = 1, . . . , g, ℓ = g + 1, . . . , N) (or ”cool-hot”) part is given by

Ωj,ℓ =

∮
Bj

ωℓ → =
1

iπ
ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj + βℓ − τ)

∣∣∣∣ , j ∈ {1, . . . , g}, ℓ ∈ {g + 1, . . . , N} (2.33)

4. The hot and cool solitons interact with the finite genus background by

Ωℓ,N+1 → 2βℓ − 1 ∈ R, ℓ = 1, . . . , g (2.34)

Ωℓ,N+1 → 2βℓ − τ − 1 ∈ R, ℓ = g + 1, . . . , N. (2.35)

5. Finally,

Ωjj = i ln
1

ϵ
+O(1) → +i∞, j = 1, . . . , N ; ΩN+1,N+1 → τ. (2.36)

The Riemann Theta function and its degeneration. Let Θ be the Riemann Theta function [11];

Θ (X;Ω) :=
∑

ν∈ZN+1

eiπν
⊺Ων+2iπν⊺X , X ∈ CN+1 (2.37)

According to Lemma 2.1 we partition the matrix Ω into blocks:

Ω =

[
B µ
µ⊺ ΩN+1,N+1

]
(2.38)

where the diagonal of B diverges to +i∞ (at the rate of ln ϵ, but this is not important here). Recalling

(2.19) the limit of the matrix Bℓ,j can be uniformly written as

Bℓ,j →
1

iπ
ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj − β⋆ℓ )

∣∣∣∣ , µℓ → βℓ − β⋆ℓ =

{
2βℓ − 1 ℓ ≤ L (hot solitons)

2βℓ − τ − 1 ℓ ≥ L+ 1 (cool solitons).
(2.39)

ΩN+1,N+1 → τ

Here the different form of the involution for βℓ’s is due to the choice of fundamental domain (2.17). With

these preparations we can state and prove the main theorem:

Theorem 2.2. Let us denote u = (1, 1, . . . , 1, 0) ∈ CN+1, X = [ψ, β] ∈ CN+1. Then

lim
ε→0+

Θ

(
X − 1

2
Ω(ε)u;Ω(ε)

)
= det [1N +G] θ3 (β −A) , (2.40)

G :=

[
θ3 (βℓ − β⋆m + y −A)

θ1 (βℓ − β⋆m) θ3 (β −A)

√
CℓCmeiπ(ψℓ+ψm)

]N
ℓ,m=1

(2.41)

where βj , β
⋆
j , defined in (2.18)-(2.19), are the two pre-images of bj in the Jacobian of the resolved elliptic

curve, and

A =
1

2

∑
j

(
βj − β⋆j

)
, Cℓ := θ1(βℓ − β⋆ℓ )

∏
k∈{1,...,N}

k ̸=ℓ

∣∣∣∣θ1(βk − β⋆ℓ )θ1(β
⋆
k − βℓ)

θ1(βk − βℓ)θ1(β⋆k − β⋆ℓ )

∣∣∣∣ 12 . (2.42)
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Figure 8: A plot overlaying the 2-soliton solution (red: in this case two retrograde solitons) with the
background cnoidal wave. The observable phase shift of the background that occurs from the right to the
left of each solitary disturbance, is described in Theorem 4.2.

Figure 9: The same setup as in Fig. 8. The top pane shows two retrograde solitons for a large negative time
(remote past); the dots indicate, for reference, the “position” of the two disturbances. Both disturbances
have negative velocity (move to the left); the narrow-waist, disturbance travels with greater speed than
the wider-waist disturbance. In the remote future (below) the narrower disturbance has overtaken the
wider one. The circles indicate where the two disturbances would be if propagating on the pure cnoidal
background; the position of the diamonds is computed by the shift given by the formula in Theorem 4.2.
The numerical values for this example are as follows: e1 = 2, e2 = 1, e3 = −3, β1 = 1/4+ τ

2 , β2 = 0.36+ τ
2 ,

V1 ≃ −8.94427, V2 ≃ −8.4810443, ∆(β1, β2) ≃ −17.32, ∆(β2, β1) ≃ 22.878, and the times shown above are
t± ≃ ±182.5586.
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Proof of Theorem 2.2. The proof follows similar steps to the proof for ordinary solitons by Mumford in

[21], where, however, the author ends up with a different determinantal formula (not a Fredholm determi-

nant). Here we also have the added twist that at some point we need a special identity of determinants due

to Fay [11]. With the established notations and splitting the summation integer vector ν = [n,m] ∈ ZN+1,

1 = (1, 1, 1, . . . , 1) ∈ RN we have

Θ

(
X − 1

2
Ωu

)
=
∑
m∈Z

∑
n∈ZN

exp iπ

[
m2ΩN+1,N+1 + iπn⊺Bn+ 2mµ⊺n+ 2

(
mβ + n⊺ψ − 1

2
n⊺B1− m

2
µ⊺1

)]
=

=
∑

n∈ZN

∑
m∈Z

exp iπ

m2ΩN+1,N+1 +
∑
ℓ

(n2ℓ − nℓ)Bℓℓ +
∑′

ℓ,k

nℓ(nk − 1)Bℓk + 2m

(
µ⊺n+ β − 1

2
µ⊺1

)
+ 2n⊺ψ

 .
Since Bℓ,ℓ → +i∞, in the limit only the vectors n with entries nℓ ∈ {0, 1} will contribute to the sum, while

all the other being suppressed (we leave the details of the use of dominated convergence to the reader).

Thus the limit of the above sum as ϵ → 0 yields (the prime on the summation indicating that the sum is

for ℓ ̸= k)

lim
ϵ→0

Θ

(
X − 1

2
Ωu

)
=

lim
ϵ→0

∑
n∈{0,1}N

∑
m∈Z

exp iπ

m2ΩN+1,N+1 +
∑′

ℓ,k

nℓ(nk − 1)Bℓk + 2m

(
µ⊺n+ β − 1

2
µ⊺1

)
+ 2n⊺ψ

 =

= lim
ϵ→0

∑
n∈{0,1}N

exp iπ

∑′

ℓ,k

nℓ(nk − 1)Bℓk + 2n⊺ψ

 θ3(µ⊺n+ β − 1

2
µ⊺1

)
(2.43)

We now use the results (2.25)

lim
ϵ→0

Θ

(
X − 1

2
Ωu

)
=

=
∑

n∈{0,1}N

∏′

ℓ,k

(
θ1(βk − βℓ)θ1(β

⋆
k − β⋆ℓ )

θ1(βk − β⋆ℓ )θ1(β
⋆
k − βℓ)

)nℓ(nk−1)

2

e2iπ
∑

ℓ nℓψℓθ3

(
β +

∑
ℓ

(βℓ − β⋆ℓ ) (nℓ − 1/2)

)
. (2.44)

Note that the expression
θ1(βk−βℓ)θ1(β

⋆
k−β

⋆
ℓ )

θ1(βk−β⋆
ℓ )θ1(β

⋆
k−βℓ)

= limϵ→0 e
iπΩℓk is a positive real number. Now we equivalently

sum over all possible subsets S ⊂ {1, 2, . . . , g} consisting of increasing indices.

lim
ϵ→0

Θ

(
X − 1

2
Ωu

)
=

∑
S⊂{1,...,g}
S ordered

∏′

ℓ<k∈S

θ1(βk − βℓ)θ1(β
⋆
k − β⋆ℓ )

θ1(βk − β⋆ℓ )θ1(β
⋆
k − βℓ)

×

×
∏
ℓ∈S

e2iπψℓ

∏
k∈{1,...,g}

k ̸=ℓ

∣∣∣∣θ1(βk − β⋆ℓ )θ1(β
⋆
k − βℓ)

θ1(βk − βℓ)θ1(β⋆k − β⋆ℓ )

∣∣∣∣ 12
 θ3

β +
∑
ℓ∈S

(βℓ − β⋆ℓ )−
1

2

∑
j

(
βj − β⋆j

)
(2.45)

We therefore conclude that

lim
ϵ→0

Θ

(
X − 1

2
Ωu

)
=

∑
S⊂{1,...,g}
S ordered

∏′

ℓ<k∈S

θ1(βk − βℓ)θ1(β
⋆
k − β⋆ℓ )

θ1(βk − β⋆ℓ )θ1(β
⋆
k − βℓ)

∏
ℓ∈S

Cℓ e
2iπψℓ

θ1(βℓ − β⋆ℓ )
θ3

(
β +

∑
ℓ∈S

(βℓ − β⋆ℓ )−A

)
,

(2.46)
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where we have set for brevity (the norming constants):

Cℓ := θ1(βℓ − β⋆ℓ )
∏

k∈{1,...,g}
k ̸=ℓ

∣∣∣∣θ1(βk − β⋆ℓ )θ1(β
⋆
k − βℓ)

θ1(βk − βℓ)θ1(β⋆k − β⋆ℓ )

∣∣∣∣ 12 , A =
1

2

∑
(βj − β⋆j ). (2.47)

We now need the Fay identity [11, p. 33]. In genus one it can be formulated as the identity (2.48) below,
where n ∈ N is arbitrary; x1, . . . , xn, x̂1, . . . , x̂n are arbitrary points on the elliptic curve, and E ∈ C is any
value for which θ3(E) ̸= 0:

det

[
θ3 (xℓ − x̂m + E)
θ1 (xℓ − x̂m) θ3 (E)

]n
ℓ,m=1

=
θ3

(∑
j(xj − x̂j) + E

)
θ3 (E)

∏
j<k

θ1(xj − xk)θ1(x̂k − x̂j)

n∏
k,j=1

θ1(xj − x̂k)

. (2.48)

If we specialize to xj = βj , x̂j = β⋆j , j = 1, . . . , N and E = β −A and let ♯(S) denote the cardinality of the
set S, then we obtain

θ3

(∑
ℓ∈S

(βℓ − β⋆ℓ ) + β −A

)
θ3 (β −A)

∏
ℓ<k∈S

θ1(βℓ − βk)θ1(β
⋆
k − β⋆ℓ )

♯(S)∏
ℓ,k∈S

θ1(βℓ − β⋆k)

=det

[
θ3 (βℓ − β⋆m + β −A)

θ1 (βℓ − β⋆m) θ3 (β −A)

]
ℓ,m∈S

. (2.49)

The rhs of (2.49) reads

(rhs 2.49) =

θ3

(
β +

∑
ℓ∈S

(βℓ − β⋆ℓ )−A

)
θ3 (β −A)

∏
ℓ∈S

1

θ1(βℓ − β⋆ℓ )

∏
ℓ<k∈S

θ1(βℓ − βk)θ1(β
⋆
k − β⋆ℓ )

θ1(βℓ − β⋆k)θ1(βk − β⋆ℓ )
. (2.50)

Thus we find that (2.46) becomes

lim
ϵ→0

Θ

(
X − 1

2
Ωu

)
= θ3 (β −A)

∑
S⊂{1,...,g}
S ordered

det

[
θ3 (βℓ − β⋆m + β −A)

θ1 (βℓ − β⋆m) θ3 (v −A)

√
CℓCmeiπ(ψℓ+ψm)

]
ℓ,m∈S

=

(2.51)

= θ3 (β −A)
∑

S⊂{1,...,g}
S unordered

1

♯(S)!
det

[
θ3 (βℓ − β⋆m + β −A)

θ1 (βℓ − β⋆m) θ3 (β −A)

√
CℓCmeiπ(ψℓ+ψm)

]
ℓ,m∈S

.

(2.52)

This last summation is precisely the Fredholm expansion of the determinant [23] in the statement. ■

2.2 KdV tau function

In the finite-gap integration method the vector X (the argument of Riemann’s theta function) evolves
linearly with respect to x, t:

X = x
P

2π
+ t

E

2π
+X0. (2.53)

With our choices of the A ,B cycles the first N components are purely imaginary and the last component
is real. The vector X0 encodes the initial conditions and it is arbitrary (with the same reality properties).
The vectors P ,E are the vectors of B–periods of second–kind differentials on the Riemann surface (2.1):

Pℓ =

∮
Bℓ

dP ; Eℓ =

∮
Bℓ

dE (2.54)
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where the quasi-momentum and quasi-energy differentials are the unique differentials of the second kind

(i.e. without residues) with a single pole at ∞ of order 2 and 3, respectively, normalized to have vanishing

A –periods on the hyperelliptic curve, with the following prescribed singular behaviour:

dP (z) =

(
1

4
√
z
+O

(
z−

3
2

))
dz;

∮
Aj

dP = 0, j = 1 . . . N + 1 (2.55)

dE(z) =

(
3

4

√
z +O

(
z−

3
2

))
dz

∮
Aj

dE = 0, j = 1, . . . , N + 1. (2.56)

Here
√
z means the root with the branchcut along R+ and

√
z+ ∈ R−. In particular, we have that the

Abelian integrals behave as

x

∫
dP + t

∫
dE ≃ x

√
z

2
+ t

z
3
2

2
. (2.57)

The complete formula for the tau function of the KdV solution contains also [5] an exponential as follows

τ (x, t) = e−x
2CΘ

(
xP+ tE

2π
+X0

)
, (2.58)

and the finite-gap solution of the KdV equation is given by

u(x, t) = 2
∂2

∂x2
ln τ (x, t), (2.59)

which satisfies the KdV equation with the following coefficients:

ut + uxxx + 6uux = 0. (2.60)

In fact, the exponential in (2.58) contains a quadratic form in all times of the hierarchy, but this has no

effect on the solution u(x, t) of KdV, due to the logarithmic differentiation in x. However, the constant C

is essential. Expressions for it can be found in [12] but we need a different description here [5, 2] which

involves the canonical bi-differential of the Riemann surface.

On any Riemann surface of genus g the canonical bi-differential B(p, q) is a differential in both arguments

that satisfies

1. B(p, q) = B(q, p);

2. as a differential in p has a unique double pole for p = q (and viceversa), with bi-residue 1 in the sense

that for any local coordinate ξ we have

B(p, q) =
dwds

(w − s)2
(1 +O(w − s)2), w = ξ(p), s = ξ(q). (2.61)

3. integration with respect to p along the A –cycles yields zero, identically in q (and viceversa).

Formulas for this object in terms of Theta functions can be found in [11], Ch. II, but here we do not need

any further detailed information.

The constant C appearing in (2.58) is then given by [5]2

C =
1

2
res
p=∞

res
q=∞

√
z(q)

2

√
z(p)

2
B(p, q) =

1

2
res
q=∞

√
z(q)

2
dP (q) (2.62)

where the Riemann surface is the hyperelliptic surface of the form (2.1).

2The theorem in loc. cit. is Theorem 3.6.15 on page 138, stated without proof (and for the KP tau function), which is
given as a collection of exercises. The solution to these exercises is contained then in [2].
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The only information that we need here is that under the degeneration of the curve the bi-differential
reduces to the corresponding bi-differential on the elliptic resolution of the limiting curve [11], Ch. IV.

Thus we need to figure out what is B(s, w) for an elliptic curve. A simple verification shows

B(s, w) =

(
℘ (s− w) +

ζ(ϖ3)

ϖ3

)
dw ds (2.63)

Since z = ℘(s) = 1
s2 +O(1), we see that the above residue becomes

C =
1

8
res
s=0

res
w=0

1

sw

(
℘ (s− w) +

ζ(ϖ3)

ϖ3

)
dwds =

ζ(ϖ3)

8ϖ3
(2.64)

2.2.1 KdV evolution in the degeneration

We can identify the differentials of the quasi-momentum and quasi-energy in the limit as ϵ → 0; in fact
if they are normalized to have vanishing A –cycles (where the A cycles are the ones around the nodal
degenerations), in the limit they tend to the corresponding differentials on the elliptic curve (the resolution
of the nodal hyperelliptic curve).

Lemma 2.3. The quasi-momentum dP and quasi-energy dE on the elliptic curve are

dP (s) = −1

2

(
℘(s) +

ζ (ϖ3)

ϖ3

)
ds =

1

2

1

(2ϖ3)2
d2

ds2
ln θ1

(
s

2ϖ3
; τ

)
⇒ (2.65)

P (s) =
1

2

(
ζ(s)− s

ζ (ϖ3)

ϖ3

)
=

1

4ϖ3

θ′1

(
s

2ϖ3
; τ
)

θ1

(
s

2ϖ3
; τ
) (2.66)

dE(s) = −1

4
℘′′(s)ds ⇒ E(s) = −1

4
℘′(s). (2.67)

Proof. We can express them in terms of Weierstrass elliptic functions. Since z = ℘(s) = 1
s2 +O(1),

dP =

(
1

4
√
z
+O

(
z−

3
2

))
dz = −

(
1

2s2
+O(1)

)
ds (2.68)

It follows that

dP = −1

2
(℘(s)− C)ds

with the constant chosen so as to have vanishing A -period:

2ϖ3C =

∫ ϖ1+2ϖ3

ϖ1

℘(s)ds = ζ (ϖ1)− ζ (ϖ1 + 2ϖ3) = −2ζ (ϖ3) ∈ R (2.69)

where we have used (2.11). Thus the quasi-momentum is given by (2.65). Similarly

dE =
1

2

(
−3

1

s4
+O(1)

)
ds (2.70)

Formula (2.67) then follows. ■

Lemma 2.4. The quasi-momenta and quasi-energies of the solitons are

Pj =


ζ(2ϖ3βj)− 2ζ (ϖ3)βj ∈ iR+ j ≤ L

ζ(2ϖ3βj)− 2βjζ (ϖ3) +
πi

2ϖ3
∈ iR+ j ≥ L+ 1

(2.71)

Ej =


= −1

2
℘′(2ϖ3βj) = −

√
(bj − e1)(bj − e2)(bj − e3) ∈ iR− j ≤ L

= −1

2
℘′(2ϖ3βj) = −

√
(cj − e1)(cj − e2)(cj − e3) ∈ iR+ j ≥ L+ 1

(2.72)

EN+1 = 0, PN+1 = − iπ

2ϖ3
∈ R+ (2.73)
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Alternatively we can write the quantities Pj in uniform way using (2.65)

Pj = P (2ϖ3βj)− P (2ϖ3β
⋆
j ) =

1

4ϖ3

(
θ′1 (βj)

θ1 (βj)
−
θ′1
(
β⋆j
)

θ1
(
β⋆j
)) =

1

2ϖ3

θ′1 (βj)

θ1 (βj)
+ χ

iπ

2ϖ3
(2.74)

where χ = 1 for the cool solitons and χ = 0 for the hot ones.

Proof. We use (2.65) and start from N + 1:

PN+1 = P (ϖ3 + 2ϖ1)− P (ϖ3) = ζ (ϖ1)−
ϖ1

ϖ3
ζ (ϖ3) =

−iπ
2ϖ3

(2.75)

where we have used one of Legendre’s relations [DLMF 23.2.14]. For j ≤ L (hot solitons) we have

Pj = P (2ϖ3βj)− P (2ϖ3β
⋆
j ) =

1

2
ζ(2ϖ3βj)−

1

2
ζ(2ϖ3(1− βj))− 2βjζ (ϖ3) + ζ (ϖ3) = (2.76)

= ζ(2ϖ3βj)− 2βjζ (ϖ3) (2.77)

where we have used the periodicity of ζ (2.11) together with its oddness. For the cool solitons we have

Pj = P (2ϖ3βj)− P (2ϖ3(τ + 1− βj)) = ζ(2ϖ3βj)− 2βjζ (ϖ3) +
πi

2ϖ3
(2.78)

The formula (2.72) is similarly obtained evaluating E(βj) − E(β⋆j ) = 2E(βj): note that dE is an exact
differential; this reflects the well known fact that the 1–gap solution is stationary (up to Galilean invariance).
■

We summarize the computation in the following theorem.

Theorem 2.5. In the limit ϵ→ 0 the vector of phases has the following limit:

X(x, t) →


ψ1(x, t)

...
ψN (x, t)
β(x, t)


ψj(x, t) := (x− x

(0)
j )

Pj
2π

+ t
Ej
2π
, j = 1, . . . , N

β(x) :=
x− x0
4iϖ3

Pj ∈ iR+, E1,...,L ∈ iR−, EL+1,...,N ∈ iR−.

(2.79)

With these phases the N -soliton solution is then given by the formula

u(x, t) = 2∂2x ln τ (x, t) (2.80)

where

τ (x, t) := e−
ζ(ϖ3)
8ϖ3

x2

det [1N +G] θ3

(
x− x0
4iϖ3

−A
)

(2.81)

where A = 1
2

∑N
j=1(βj − β⋆j ) and G is found in Theorem 2.2.

The formula (2.81) is clearly reminiscent of the Kay-Moses formula for N solitons [18].

Remark 2.6. The arbitrary shifts x
(0)
j and x0 in the Theorem 2.5 are obtained by starting with a vector

uϵ which is fine–tuned so that, for a fixed φ ∈ RN we have

Bϵ(uϵ − 1) = iφ. (2.82)

Now take the limit ϵ→ 0; since the diagonal of Bϵ diverges, the vector uϵ is a suitable perturbation of 1. In
other words, in the limit the solution “explores” a small slice of the Jacobian around the half period. The
chosen φℓ ∈ R have the effect of re-scaling the norming constants by an arbitrary positive constant eφℓ .
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3 Velocity of a single soliton on elliptic background: Bright-and-
forward versus dim-and-retrograde

Consider here just one hot soliton b ∈ (−∞, e3); as Fig. 3 shows, we see a hump of taller oscillation on

the cnoidal background that moves to the right with velocity Vj = −Ej/Pj > 0. However, for a cool

soliton c ∈ (e2, e1) the disturbance over the cnoidal wave is first of all a subtraction (i.e. a “dim soliton”).

Moreover, which is more interesting, this disturbance moves to the left with velocity Vj = −Ej/Pj < 0. The

phenomenon was observed in [4] using a Whitham approach, and experimentally in [22]. Here we observe

the same phenomenon by inspecting the explicit solution formula given in Theorem 1.1.

Remark 3.1. We can justify the shape of a dim soliton as follows. With the normalizations used in this

paper, the potential u(x) can be written as

u(x, t) =
1

4

2

N+1∑
j=1

µj −
2N+1∑
j=1

Ej

 (3.1)

where µj = µj(x, t) are the Dirichlet eigenvalues and are one in each of the gaps and Ej are all the

branchpoints. Under the degeneration, branchpoints come together in pairs. Consider now the case of a

single cool soliton with eigenvalue at c ∈ [e2, e1]. Then the trace formula (3.1) implies that (recall that

e1 + e2 + e3 = 0) the value of u is given by 1
2 (µ1 + µ2 − c) where µ1 ∈ [c, e1] and µ2 ∈ [e2, c]. This gives the

four critical values

u(x, t) µ1 µ2

e1
2 e1 c

e1+e2−c
2 e1 e2
c
2 c c

e2
2 c e2

These four values are the maximum and minimum of the cnoidal wave, and the two critical values of the

“dent” in the envelope. △

To prove the phenomenon of on a mathematical level we need to analyze the formula for the soliton;

specializing Theorem 2.5 to N = 1 we get

u(x, t;β) = 2∂2x ln τ (x, t;β)

τ (x, t;β)e
ζ(ϖ3)x2

8ϖ3 = θ3

(
x

4iϖ3
− β − β⋆

2

)
+ ei(xP (β)+tE(β))Cθ3

(
x

4iϖ3
+
β − β⋆

2

)
C := e−|P |x(0)

1

(3.2)

where P (β) = i|P |, E(β) = i|E| are as in (2.71), (2.72). Rewriting the above in clear form we find

u(x, t) = −ζ(ϖ3)

4ϖ3
+ 2

d2

dx2
ln

[
θ3

(
x

4iϖ3
− β − β⋆

2

)
+ e−x|P |−t|E|Cθ3

(
x

4iϖ3
+
β − β⋆

2

)]
. (3.3)

Since both θ3’s in the logarithm are periodic (and positive) functions of x, if x|P |+t|E| ≫ 0 then the second

term is suppressed and the solution looks like the usual cnoidal wave with a shift, while, for x|P |+ t|E| ≪ 0

the second term dominates and we can discard the first θ3 function, so that the solution looks like a cnoidal

wave with the opposite shift. Thus the only “disturbance” occurs when the two addenda are of the same

magnitude, namely along the zero curve of the phase x|P |+t|E|, which is a constant negative speed travelling

disturbance for a cool soliton.
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Thus, we have established that the “solitons”, whether hot or cool, travel with asymptotic speeds V (β)

given by

V (β) = −E
P

=
1

2

℘′(2ϖ3β)

ζ(2ϖ3β)− 2βζ(ϖ3) + χ iπ
2ϖ3

, β ∈
(
0,

1

2

)
+ χ

τ

2
, (3.4)

where χ = 0 for hot solitons and χ = 1 for cool ones.

Note also that the background cnoidal wave undergoes a shift from the left to the right of the disturbance,

clearly visible in the different arguments of the two theta functions.

The plot of the speed is in Fig. 10, while in Figures 2, 3, 4 we show, respectively, a single dim soliton

(retrograde), a single bright soliton (moving right) and the two-soliton solution obtained from Theorem 2.5.

4 Scattering of soliton pairs over cnoidal background

First, let us verify that very energetic solitons have the expected velocity as an ordinary soliton, which

follows from the dispersion relation for the phase

ϑfree = x
√
|b| − t|b| 32 (4.1)

to be Vfree(b) = |b|, which can also be seen from the single soliton formul (1.2). The limit b → −∞
corresponds, in the Jacobian, to β → 0+; using the Laurent expansion of ζ(s) = 1

s + O(s) and ℘′(s) =

−2 1
s3 +O(s) we find

V (β) ∼ − 1

4ϖ3
2β2

∼ −℘(2ϖ3β) = −b = Vfree(b). (4.2)

Before proceeding we need to define what we mean by the “position of the soliton” since clearly (see Figures

2, 3, 4) the “solitons” over the background are not coherent structures but rather (more or less) localized

disturbances of the cnoidal background. This difficulty is in contrast with the standard case of solitons on

a zero background.

To come up with a working definition we look again at the expression for the single soliton (3.2): we

define the instantaneous location as the position, relative to the ballistic motion x = V t = −E/Pt, where the
two addenda in the rhs of (3.2) are equal. Specifically, setting V (β) = −E(β)

P (β) ∈ R, and x(t) = V (β)t+Φ(t)

equating the addenda in (3.2) gives:

e−|P (β)|Φ(t)Cθ3

(
V (β)t+Φ(t)

4iϖ3
+
β − β⋆

2

)
= θ3

(
V (β)t+Φ(t)

4iϖ3
− β − β⋆

2

)
⇒

Φ(t) = − 1

|P (β)|
ln
θ3

(
V (β)t+Φ(t)

4iϖ3
− β−β⋆

2

)
θ3

(
V (β)t+Φ(t)

4iϖ3
+ β−β⋆

2

)+ 1

|P (β)|
lnC, (4.3)

where we note that P (β) = i|P (β)|.

Lemma 4.1. For any β ∈ (0, 12 ) + {0, τ2} equation (4.3) has a unique solution Φ(t). Moreover, Φ(t) is

continuous and has period 4iϖ3

V (β) .

Proof. The equation (4.3) defines a unique function Φ(t) via the implicit function theorem. To see it we

observe that the r.h.s. is a periodic, bounded function R(Φ, t) of Φ so that it intersects the line L(Φ) = Φ. To

see uniqueness it is sufficient to show that the function F (ϕ, t) := L(ϕ)−R(ϕ, t) is a monotonic (increasing,

as it turns out) function of ϕ. Now, we have

∂

∂Φ
R(Φ, t) = − 4iϖ3

|P (β)|

θ′3

(
V (β)t+Φ

4iϖ3
− s
)

θ3

(
V (β)t+Φ

4iϖ3
− s
)∣∣∣∣∣
s= β⋆−β

2

s= β−β⋆

2

= − 1

4iϖ3|P (β)|

θ′1

(
V (β)t+Φ

4iϖ3
+ τ+1

2 − s
)

θ1

(
V (β)t+Φ

4iϖ3
+ τ+1

2 − s
)∣∣∣∣∣
s= β⋆−β

2

s= β−β⋆

2

. (4.4)
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We are going to show that

∂

∂Φ
R(Φ, t) ≤ 1 (4.5)

which is sufficient as long as the equality holds only at isolated points. Indeed we have (recalling ϖ3 ∈ iR−)

max
d∈R

∂

∂Φ
R(Φ, t) =

−1

4|ϖ3||P (β)|
min
d∈[0,1]

θ′1
(
s+ τ+1

2 + d
)

θ1
(
s+ τ+1

2 + d
) ∣∣∣∣∣
s= β⋆−β

2

s= β−β⋆

2

. (4.6)

Recall now from (2.74) that P (β) = 1
4ϖ3

θ′1(s)
θ1(s)

∣∣∣∣β
s=β⋆

so that

max
d∈R

∂

∂Φ
R(Φ, t) =

−1

θ′1(s)
θ1(s)

∣∣∣∣β
s=β⋆

min
d∈[0,1]

θ′1 (s+ τ+1
2 + d

)
θ1
(
s+ τ+1

2 + d
) ∣∣∣∣∣
s= β⋆−β

2

s= β−β⋆

2

 . (4.7)

We now show that the minimum is achieved at d = 0; the minimum is −1 for cool solitons, and strictly larger

for hot solitons, (thus proving (4.5)) and it is an (isolated) critical point. Let us denote ρ := β⋆−β
2 ∈ [0, 1/2]

and note that it is always real. Consider the function

F (d) :=
θ′1
(
s+ τ+1

2 + d
)

θ1
(
s+ τ+1

2 + d
) ∣∣∣∣∣
s=ρ

s=−ρ

. (4.8)

This is an elliptic function of d, real valued for d ∈ R,R + τ
2 . Its poles are at d = ±ρ + τ+1

2 and its zeros

(by Abel’s theorem) are of the form ±ϵ+ 1
2 ∈ (0, 1); indeed we find F (0) < 0 and F ( 12 ) > 0. Moreover the

only critical points on the real axis are d = 0, 12 . The fact that d = 0 is a minimum is easily verified by the

second derivative test noting that

F ′(0) = 4ϖ2
3

[
℘

(
2ϖ2

(
τ + 1

2
− ρ

))
− ℘

(
2ϖ3

(
τ + 1

2
+ ρ

))]
= 0 (4.9)

F ′′(0) = 16ϖ3
3℘

′
(
2ϖ3

(
τ + 1

2
− ρ

))
> 0 (4.10)

where the last inequality is due to the fact that the points τ+1
2 − ρ correspond to the points in the gap

[e1, e2] on the first sheet, where ℘′ ∈ iR−, see (2.5). Since F is periodic and has only one other critical point

at d = 1
2 (which must be a maximum) we have shown that

F (d) ≥ F (0), ∀d ∈ R. (4.11)

Consider the case of a cool soliton β = ρ + τ
2 , β

⋆ = τ
2 + 1 − ρ. Observing that τ+1

2 + β⋆−β
2 = β⋆ and

τ+1
2 − β⋆−β

2 = β, we see that at the minimal value d = 0 the right hand side of (4.7) is 1. Then formula

(4.7) gives exactly (4.5), with the equality being achieved for d = 0.

Consider now the case of a hot soliton β ∈ [0, 12 ]. In view of (4.7), to prove (4.5) we now have to show that∣∣∣∣∂ρ ln θ1(ρ− 1

2

)∣∣∣∣ ≥ ∣∣∣∣Re ∂ρ ln θ1(ρ− τ + 1

2

)∣∣∣∣ , (4.12)

where ρ = β⋆−β
2 ∈ [0, 12 ). Using (2.66) reduces (4.12) to

| Im ζ(ϖ1 +ϖ3 − ρ̃)| ≤ | Im ζ(ϖ3 − ρ̃)| (4.13)
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where ρ̃ = 2ϖ3ρ. The value ρ̃ = 0 turns (4.13) into an equation. Thus, to prove (4.12) it is sufficient to

show that

|℘(ϖ1 +ϖ3 − ρ̃)| ≤ |℘(ϖ3 − ρ̃)| (4.14)

for every ρ̃ ∈ [0, ϖ3]. That follows from the identities ([15])

℘(ϖ1 +ϖ3 − ρ̃) = e2 +
(e2 − e1)(e2 − e3)

℘(ρ̃)− e2
, (4.15)

℘(ϖ3 − ρ̃) = e3 +
(e3 − e1)(e3 − e2)

℘(ρ̃)− e3
. (4.16)

Since both terms in (4.16) are negative and |e3| > |e2|, the desired result follows from∣∣∣∣ (e2 − e1)(e2 − e3)

℘(ρ̃)− e2

∣∣∣∣ ≤ ∣∣∣∣ (e3 − e1)(e3 − e2)

℘(ρ̃)− e3

∣∣∣∣ , (4.17)

which is clearly true for any ρ̃ ∈ [0, ϖ3].

Once existence and uniqueness of solution Φ(t) of (4.3) is established, the contimuity of Φ(t) (in fact,

smoothness) follows from the Implicit Function Theorem. Since θ in (4.3) is a period 1 function, it is obvious

that if Φ(t0) solves (4.3) with t = t0, it also solves (4.3) with t = t0 +
4iϖ3

V (β) . Now the uniqueness of solution

of (4.3) implies that Φ(t) = Φ(t+ 4iϖ3

V (β) ). ■

It follows from (4.3) and Lemma 4.1 that the average of Φ(t) over a period is 1
|P (β)| lnC, because (Φ(t)

is the difference of two shifted logarithms of θ with the same period plus a constant):

Φ(t) = − 1

|P (β)|
ln
θ
(
V (β)t+Φ(t)

4iϖ3
− β−β⋆

2

)
θ
(
V (β)t+Φ(t)

4iϖ3
+ β−β⋆

2

) +
lnC

|P (β)|
⇒ ⟨Φ⟩ = 1

T

∫ T

0

Φ(t)dt =
lnC

|P (β)|
, (4.18)

where T = 4iϖ3

V (β) is the period. Now, suppose that two solitons corresponding to the points β1, β2 ∈(
0, 12

)
+ {0, 1} τ2 are localized at t→ ±∞ around the positions

x1(t;β1, β2) = tV (β1) + Φ
(±)
1 (t, β1, β2), t→ ±∞ (4.19)

x2(t;β1, β2) = tV (β2) + Φ
(±)
2 (t, β1, β2), t→ ±∞. (4.20)

We are not interested in the value of Φ
(±)
j directly (since the initial position can be changed arbitrarily by

a re-definition of the norming constants) but in their average difference:

∆j(β1, β2) :=
〈
Φ

(+)
j (t;β1, β2)

〉
−
〈
Φ

(−)
j (t;β1, β2)

〉
, j = 1, 2. (4.21)

Theorem 4.2. [1] The deviation from the ballistic trajectory for a two–soliton interaction is

∆1(β1, β2) =
2

|P1|
ln

∣∣∣∣θ1(β1 − β⋆2)

θ1(β1 − β2)

∣∣∣∣ , ∆2(β1, β2) = − 2

|P2|
ln

∣∣∣∣θ1(β1 − β⋆2)

θ1(β1 − β2)

∣∣∣∣ , (4.22)

where Pj, j = 1, 2, are given in Lemma 2.4 and the solitons are ordered so that V2 < V1 (i.e. the soliton

number has the larger velocity (note that the Vj’s may be positive or negative, so that larger velocity does

not mean larger speed!).
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[2] ( “Conveyer-belt effect”). The background cnoidal wave undergoes an addition of a shift by βj − β⋆j in

its phase passing from the right to the left of the j-th solitary disturbance:

u(x, t) ≃



2∂2x ln θ3

(
x

4iϖ3
−A

)
V1t << x,

2∂2x ln θ3

(
x

4iϖ3
−A+ β1 − β⋆1

)
V2t << x << V1t, t→ +∞

2∂2x ln θ3

(
x

4iϖ3
+A

)
x << V2t,

2∂2x ln θ3

(
x

4iϖ3
−A

)
V2t << x,

2∂2x ln θ3

(
x

4iϖ3
−A+ β1 − β⋆1

)
V1t << x << V2t, t→ −∞

2∂2x ln θ3

(
x

4iϖ3
+A

)
x << V1t,

(4.23)

A :=
1

2

2∑
j=1

(βj − β⋆j ). (4.24)

We call the second effect “conveyer-belt” effect because the solitary disturbance is sort of “kicking” the

background like a runner on a conveyer belt. A similar shifting effect on the background cnodial wave was

previously observed ([14, Prop. 6.1].) in the context of the modified KdV equation for a single “trial”

soliton of higher velocity passing through an elliptic (genus 1) soliton condensate (also known as condensate

limit of a soliton gas, see [9], [8]).

Proof. [1] Consider the two solitons, each of which could be hot or cool. We denote for brevity Pj =

P (βj), Ej = E(βj), Vj = V (βj), with the velocity V given in (3.4).

The core of the computation is to analyze the dominant term in the tau-function (2.81), recalling that

we need to take the second logarithmic derivative in x.

For this reason it should be evident that the position of the disturbances (solitons) is determined by the

asymptotic behaviour of the 2× 2 determinant det[12 +G]. Let us denote, for brevity

λj := e2iπψj = eixPj+itEj = e−|Pj |(x−Vjt) ∈ R, (4.25)

where we have used that Pj is always in iR+ (see (2.71)), while Ej ∈ iR− for hot solitons and Ej ∈ iR+ for

cool ones (2.72).

Let us consider for definiteness the hot-on-hot interaction and order the solitons so that V1 > V2. As

t→ −∞ we consider the location around x1 = −V1|t|

λ1 ≃ 1, λ2 = e|P2|(V1−V2)|t| ≫ 1. (4.26)

Viceversa, around x2 = −V2|t| we have that λ1 is exponentially small

λ1 ≃ e|P1|(V2−V1)|t| ≪ 1, λ2 ≃ 1. (4.27)

The general structure of the determinant in (2.41) when considered in our situation, is

det [12 +G] = det

[
1 +Aλ1 B

√
λ1λ2

B
√
λ1λ2 1 + Cλ2

]
(4.28)

where A,B,C are some periodic, bounded functions of x only.
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Let us follow the slower of the two solitons, V2 < V1; around x2 = −V2|t| (as t→ −∞) λ1 is exponentially

small and thus clearly

det [12 +G] ≃ 1 + Cλ2, (4.29)

and then we have, in this regime (with β = x
4iϖ3

)

θ3 (β −A) det[12 +G] ≃ θ3 (β −A) (1 +G22) = (4.30)

=

(
θ3 (β −A) + e−|P2|(x−V2t)θ3 (β −A+ β2 − β⋆2)

∣∣∣∣θ1(β1 − β⋆2)

θ1(β1 − β2)

∣∣∣∣) (4.31)

and the soliton is located where the two addenda are approximately equal. Letting x = V2t+Φ
(−)
2 we have

that the effect is maximal at

−|P2|Φ(−)
2 = ln

θ3

(
V2t+Φ

(−)
2

2iϖ3
−A

)
θ3

(
V2t+Φ

(−)
2

2iϖ3
+

β2−β1+β⋆
1−β⋆

2

2

) ∣∣∣ θ1(β1−β⋆
2 )

θ1(β1−β2)

∣∣∣ . (4.32)

Note that here there is no such thing as an “exact position” (even asymptotically) of the soliton disturbance

on the background. However the above equation (4.32) for Φ
(−)
2 defines clearly a periodic function of t and

the average on a period yields the equation〈
Φ

(−)
2

〉
=

1

|P2|
ln

∣∣∣∣θ1(β1 − β⋆2)

θ1(β1 − β2)

∣∣∣∣ . (4.33)

Now consider t→ +∞; in this case, following x+2 = tV2 again we have

λ1 ≃ e|P1|(V1−V2)t ≫ 1, λ2 ≃ 1. (4.34)

Thus the computation of the determinant needs to be done differently; using row operations we obtain

det [12 +G] =(1 +Aλ1)

(
1 + Cλ2 −

B2λ1λ2
1 +Aλ1

)
, (4.35)

which is nothing but Schur complement formula. Recalling now that λ1 is exponentially large, we have

ln det[12 +G] ∼ lnλ1 + ln

(
1 + Cλ2 −

B2λ2
A

)
+O(λ−1

1 ) = lnλ1 + ln

(
1 +

AC −B2

A
λ2

)
+O(λ−1

1 )

(4.36)

Since lnλ1 is linear in x, the solution (which requires two derivatives in x) is not affected and we need only

consider the middle logarithm. So effectively we need to analyze

θ3 (β −A)
det[12 +G]

1 +G11
≃ θ3 (β −A)

(
1 +

detG
G11

)
. (4.37)

Using Fay’s identity (2.48) we get

detG = C1C2λ1λ2
θ3(y +A)θ1(β1 − β2)θ1(β

⋆
2 − β⋆1)

θ(y −A)θ1(β1 − β⋆1)θ1(β2 − β⋆2)θ1(β1 − β⋆2)θ1(β2 − β⋆1)
(4.38)

so that

θ3 (β −A)
det[12 +G]

1 +G11
≃ θ3 (β −A) + e−|P2|(x−V2t)

θ3 (β −A) θ3(β +A)

θ3(β1 − β⋆1 + β −A)

|θ1(β1 − β2)|
|θ1(β2 − β⋆1)|

(4.39)
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Figure 10: The group velocity V ( τ2 + s
2 ) (3.4) of a dim soliton as a function of s in β = s

2 + τ
2 . Here

τ ≃ 1.36007 i, e1 = 2, e2 ≃ 1, e3 = −3, ϖ3 ≃ −0.742206i, ϖ2 ≃ 1.009452.

Now we set x = V2t+Φ
(+)
2 and obtain

−|P2|Φ(+)
2 = ln

θ3

(
V2t+Φ

(−)
2

2iϖ3
+

β1−β2−β⋆
1+β

⋆
2

2

)
θ3

(
V2t+Φ

(−)
2

2iϖ3
+A

)
|θ1(β1−β2)|
|θ1(β2−β⋆

1 )|

. (4.40)

Once again, the period average of the dislocation is〈
Φ

(+)
2

〉
=

1

|P2|
ln

|θ1(β1 − β2)|
|θ1(β2 − β⋆1)|

(4.41)

Now the shift in x location follows from the ratio of (4.40) and (4.32)

λ
(+)
2

λ
(−)
2

=
AC

AC −B2
⇒ ∆21 = − 1

|P2|
ln

AC

AC −B2
. (4.42)

Thus the total shift is

∆2(β1, β2) =
〈
Φ

(+)
2

〉
−
〈
Φ

(−)
2

〉
=

2

|P2|
ln

|θ1(β1 − β2)|
|θ1(β2 − β⋆1)|

. (4.43)

[2] Observe the argument of two functions θ3 in (4.31): on the right (β = x
4iϖ3

, x = −(V2 − ϵ)|t|)
the exponential is exponentially small and the first θ3 dominates, with the phase x

4iϖ3
− A. On the left

(x = −(V2 + ϵ)|t|) the exponential is large and the second θ3 dominates with the phase x
4iϖ3

−A+ β2 − β⋆2 .

Similarly for the other transition. ■

5 Elliptic gas of solitons for KdV

We now consider the setup of a growing number of degenerating bands on the elliptic background. Unlike

the rest of the paper, the calculations in this section are mostly formal. The total number N of collapsing

bands (solitons) of our Riemann surface RN+1(ε) is now linked with the size 2δj > 0 of the jth collapsing

band by 2δj = e−Nνj , where all νj ≥ 0. In this section, it will be more convenient for us (following [12], [7])
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to normalize the differentials dP , dE by B-periods, i.e., the B-periods of dP , dE corresponding to all the

shrinking bands are zero. The normalization on the background (resolved) part of RN+1(ε) is unchanged.

The quasi-momentum and quasi-energy differentials with the new normalization will be denoted as dP̂ , dÊ

respectively. In view of Figure 5, one can observe that dP̂ , dÊ are gap-normalized differentials, meaning

that their periods for each gap are zero. The relation between the quasi-energy and quasi-momentum used

in the previous part of the paper and the gap-normalized version used here is

dP̂ = dP −
N∑
k=1

ckωk, c =
[
B−1 0N×1

]
P ,

dÊ = dE −
N∑
k=1

γkωk, γ =
[
B−1 0N×1

]
E.

(5.1)

Here ωj , j = 1, . . . , N + 1, are the normalized holomorphic differentials on RN+1(ε), B is the N ×N block

matrix of their B-periods (2.38), and P and E are the N + 1 dimensional vectors of B-periods of dP and

dE respectively, (2.54). According to [12], [7] the A -periods of dP̂ , dÊ, related to the shrinking bands,

define the wavenumbers kj and frequences wj , j = 1, . . . , N , of the nonlinear wave (finite gap) solutions to

the KdV equation defined by RN+1(ε). Then the Riemann bilinear identities on RN+1(ε) yield

lim
ε→0

N∑
l=1

∮
Al

dP̂

∮
Bl

ωj =
2πi

4ϖ3

ωj
dβ

∣∣∣
β=0

,

lim
ε→0

N∑
l=1

∮
Al

dÊ

∮
Bl

ωj =
2πi

32ϖ3
3
∂2β
ωj
dβ

∣∣∣
β=0

,

(5.2)

where j = 1, . . . , N and

lim
ε→0

N∑
l=1

∮
Al

dP̂

∮
Bl

ωN+1 −
∮

BN+1

dP̂ =
2πi

4ϖ3
,

lim
ε→0

N∑
l=1

∮
Al

dÊ

∮
Bl

ωN+1 −
∮

BN+1

dÊ = 0.

(5.3)

Equations (2.39) imply that

kN+1 :=

∮
BN+1

dP̂ =

N∑
j=1

kj(βj − β⋆j )−
πi

2ϖ3
, wN+1 :=

∮
BN+1

dÊ =

N∑
j=1

wj(βj − β⋆j ), (5.4)

where kj , wj denote the Aj periods of dP̂ ,dÊ respectively, j = 1, . . . , N . Substituting (2.39) into (5.2), we

obtain

O(− ln δj)kj +

N∑′

ℓ=1

kℓ ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj − β⋆ℓ )

∣∣∣∣ = − iπ

2ϖ3

[
∂β ln θ1(β)|β=βj

+ πiχ(βj)
]
,

O(− ln δj)wj +

N∑′

ℓ=1

wℓ ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj − β⋆ℓ )

∣∣∣∣ = − iπ

16ϖ3
3
∂3β ln θ1(β)

∣∣∣∣∣∣
β=βj

,

(5.5)

where χ(β) is the characteristic function of (e2, e1) (the cool solitons),
∑′

denotes the summation with

ℓ ̸= j and j = 1, . . . , N . Equations (5.5) imply that for a fixed N ∈ N and some δj → 0 we will necessarily

have kj , wj → 0. Therefore, following [9], we will refer to the wavenumbers kj and the frequences wj ,

j = 1, . . . , N , as solitonic, whereas the remaining wavenumber kN+1 and the frequency wN+1 will be refered

to as carrier.

The last part of (2.66) can be conveniently rewritten as

∂β ln θ1(β) = −4ϖ3ζ(ϖ3)β + 2ϖ3ζ(2ϖ3β), (5.6)
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which yields

∂2β ln θ1(β) = −4ϖ3ζ(ϖ3)− 4ϖ3
2℘(2ϖ3β), ∂3β ln θ1(β) = −8ϖ3

3℘′(2ϖ3β), (5.7)

where the former expression essentually is given in [3, Eq. 1035.01]. Using now the asymptotics of
∮
Bj
ωj ,

j = 1, . . . , N from [25], [7], [8] and (5.6), (5.7), we can rewrite (5.5) as

Nνjkj +

N∑′

ℓ=1

kℓ ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj − β⋆ℓ )

∣∣∣∣ = −iπ
[
ζ(2ϖ3βj)− 2ζ(ϖ3)βj +

iπ

2ϖ3
χ(βj)

]
,

Nνjwj +

N∑′

ℓ=1

wℓ ln

∣∣∣∣ θ1(βj − βℓ)

θ1(βj − β⋆ℓ )

∣∣∣∣ = −iπ
2
℘′(2ϖ3βj).

(5.8)

Let us now assume that, as N → ∞, the degenerating bands are accumulating on some interval (or

collection of intervals) Γ ⊂ R that is separated from the stationary bands of RN , i.e., Γ ⊂ (−∞, e3)∪(e2, e1).
Let φ(z) be the (limiting) probability density of the centers bj of the j = 1, . . . , N shrinking bands on Γ,

supp φ = Γ, and ν(z) ≥ 0 be a smooth function on Γ interpolating νj = ν(bj) on Γ. Such an N → ∞
limit, subject to some additional restriction, see [7], [9], is called the thermodynamic limit of RN . In the

thermodynamic limit, equations (5.8) for the solitonic wavenumbers and frequencies become∫
Γ̃

ln

∣∣∣∣ θ1(η − β)

θ1(η + β − 1− χ(β))

∣∣∣∣u(β)dβ + σ(η)u(η) = − i

2

[
ζ(2ϖ3η)− 2ζ(ϖ3)η +

πi

2ϖ3
χ(η)

]
,∫

Γ̃

ln

∣∣∣∣ θ1(η − β)

θ1(η + β − 1− χ(β))

∣∣∣∣ v(β)dβ + σ(η)v(η) = − i

4
℘′(2ϖ3η),

(5.9)

where: Γ̃ = ℘(2ϖ3Γ) is the image of Γ in the Jacobian;

u(η) =
û(η)φ̂(η)

2π
, v(η) =

v̂(η)φ̂(η)

2π
σ(η) =

2ν(℘(2ϖ3η))

φ̂(η)
(5.10)

with û(η), v̂(η) interpolating Nkj , Nwj at βj , j = 1, . . . , N respectively, (compare with [8], Section 3.2) and;

φ̂(β) = 2ϖ3φ(℘(2ϖ3β))℘
′(2ϖ3β). (5.11)

The expressions for the thermodynamic limit of the carrier (background) wave-number k̃ = limN→∞ kN+1

and frequency w̃ = limN→∞ wN+1 obtained from (5.4), are

k̃ = 2π

[∫
Γ̃

(2β − 1− τχ(β))u(β)dβ − i

2ϖ3

]
, w̃ = 2π

∫
Γ̃

(2β − 1− τχ(β))v(β)dβ. (5.12)

Similarly to the breather gas in focusing NLS setting, see [9], equations (5.9) form the so-called solitonic

nonlinear dispersion relation (NDR) for the KdV soliton gas on the elliptic background, which we can losely

speaking call the elliptic KdV gas. The carrier NDR is given by (5.12). It is worth mentioning that, like in

the case of the fNLS soliton gas ([9]), the imaginary part of the general NDR (5.2)-(5.3) form the solitonic

NDR, whereas the real part of (5.2)-(5.3) form the carrier NDR.

Following the approach of [9], Section 5, we derive the equation of states for the speed s(η) = v(η)
u(η) of

element of the gas (tracer soliton)

s(η) = s0(η) +

∫
Γ̃

∆(η, β)[s(η)− s(β)]u(β)dβ, (5.13)

where

s0(η) =
℘′(2ϖ3η)

2[ζ(η)− 2ζ(ϖ3)η +
πi
2ϖ3

χ(η)]
, (5.14)
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has the meaning of the speed of a single solition on the elliptic background (free speed) and

∆(η, β) =
i ln
∣∣∣ θ1(η−β)
θ1(η+β−1−χ(β))

∣∣∣2
ζ(2ϖ3η)− 2ζ(ϖ3)η +

iπ
2ϖ3

χ(η)
, (5.15)

has the meaning of the (total) phase shift of the η-soliton (with the spectral parameter η) when it interacts

with the β-soliton. All the solitons are considered on the elliptic background. We want to point out that the

free speed and the phase shift expressions derived in this section for the elliptic KdV gas, see (5.14), (5.15)

respectively, coincide with the corresponding expressions (3.4) and (4.22)-(2.71) respectively, established in

the previous sections of this paper for solitons on the elliptic background.

The equation (5.13) is an integral equation to find s(η) considering u(η) given. It was first suggested by

V. Zakharov in [28] for diluted soliton gas (with no background) and was later extended by G. El [7] to the

case of dense gases. Equation (5.13) naturally extends results of [28] , [7] to the soliton gas on an elliptic

background.

A Arbitrary genus

Suppose Cϵ is a family of degenerating curves which, as ϵ → 0 becomes an irreducible nodal curve C0 with

a resolution C of genus g. On the resolution C we fix a basis of A ,B cycles (in homotopy first, and then

as their image in homology) and dissect the surface C so as to obtain a simply connected domain L. We

choose the cycles that avoid all the nodes.

On the resolution there are N pairs of points pj , p
⋆
j , j = 1, . . . , N which correspond to the two point of

the resolution of the nodes. The basis of cycles of the family is chosen so that

1. The vanishing cycles Ag+j reduce in the limit to small counterclockwise circles around pj ∈ C0;

2. the logarithmic cycles Bg+j reduce to mutually disjoint paths from pj to p⋆j within the fundamental

dissection L.

Notations and conventions. We denote by ωj the normalized holomorphic differentials on the resolved

nodal curve C and by τ the g × g matrix of normalized B–periods:∮
Aj

ωk = δjk, τ jk =

∮
Bj

ωk = τkj . (A.1)

We denote by A the Abel map A : C → J(C) in the Jacobian of C, with basepoint p0:

A(p) =

∫ p

p0

 ω1

...
ωg

 (A.2)

where the path is the unique path within L. We denote by K = Kp0 the vector of Riemann constants [10].

Finally we have the Riemann theta function

Θ(X; τ ) =
∑
n∈Zg

exp iπ (n⊺τn+ 2n⊺X) (A.3)

If ∆ = [⃗ϵ, δ⃗] denotes a half–period ∆ = 1
2 ϵ⃗+

1
2τ δ⃗ ∈

1
2Z

g+ 1
2τZ

g, the Theta function with characteristic ∆ is

Θ∆(X; τ ) =
∑

n∈Zg+ 1
2 δ⃗

exp iπ

(
n⊺τn+ 2n⊺

(
X − 1

2
ϵ⃗

))
. (A.4)
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A simple verification shows that (we omit τ from the notation for brevity)

Θ∆(−X) = (−1)δ⃗·⃗ϵΘ∆(X) (A.5)

and thus such half–periods are called even or odd according to the parity of δ⃗ · ϵ⃗ ∈ Z. Those odd periods for

which the gradient of Θ∆ at the origin is not zero are called non-singular. A theorem [21] guarantees that

there is at least one odd, non-singular such odd period. From now on we denote by ∆ one such choice.

The main use of Θ∆ is explained below. If p, p⋆ are two arbitrary points on C and we want the expression of

the unique third–kind differential with poles at p (with residue +1) and at p⋆ with residue −1 and vanishing

A –periods is then

ρp,p⋆(q) = dq ln
Θ∆ (A(q)− A(p))

Θ∆(A(q)− A(p⋆))
. (A.6)

It is of paramount importance that the contour of integration of the Abel map be taken within the same

fundamental domain L, for otherwise the A –periods are not zero.

Now, following the same logic as explained in the text, we have that the degeneration limit of the B

matrix of periods is

Ωϵ ≃
[
τ µ
µ⊺ B

]
, (A.7)

where B ∈ MatN×N , τ ∈ Matg×g and µ ∈ Matg×N . The diagonal of B diverges to +i∞ while

Bℓm → 1

2iπ
ln

(
Θ∆(A(pℓ)− A(pm))Θ∆(A(p

⋆
ℓ )− A(p⋆m))

Θ∆(A(pℓ)− A(p⋆m))Θ∆(A(p⋆ℓ )− A(pm))

)
(A.8)

µℓ,a →
∫ pℓ

p⋆ℓ

ωa = Aa(pℓ)− Aa(p
⋆
ℓ ). (A.9)

In other words, the ℓ–th column of µ tends to the Abel map on the resolved limiting curve of the difference

of the points of the resolution of the ℓ–th node. The reader may object about the ambiguity on the

determination in the formula (A.8), to which we refer to the discussion in the main text; we assume,

however, that the real part in (A.8) has been completely determined (by the choice of cycles). It is now

really an exercise to track the same proof of Theorem 2.2 and obtain

Theorem A.1. Let X ∈ Cg+N be the vector

X =

[
w
z

]
, w ∈ Cg, z ∈ CN . (A.10)

The Riemann–Theta function Θ̃ of the degenerating family of curves Cϵ satisfies

lim
ϵ→0

Θ̃


X− 1

2
Ωϵ



0
...
0
1
...
1


;Ωϵ


= det [1N +G] Θ (z−A; τ ) (A.11)
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where

A =
1

2

N∑
j=1

(
A(pj)− A(p⋆j )

)
(A.12)

Gℓ,m =
Θ(A(pℓ)− A(p⋆m) +w −A)

Θ∆ (A(pℓ)− A(p⋆m))Θ (w −A)
Cℓe

iπ(ψℓ+ψm) (A.13)

Cℓ = Θ∆ (A(pℓ)− A(p⋆ℓ ))

 ∏
k: k ̸=ℓ

Θ∆ (A(pℓ)− A(p⋆k))Θ∆ (A(p⋆ℓ )− A(pk))

Θ∆ (A(pℓ)− A(pk))Θ∆ (A(p⋆ℓ )− A(p⋆k))

 1
2

(A.14)

where the square root is defined by eiπBℓm in terms of the determination chosen in (A.8). If we omit a 1 in

the g+ ℓ-th position in the half-period shift, then the theorem holds but with the ℓ-th row and column of the

matrix G removed.

The proof is an exercise following the same steps as in the proof of Theorem 2.2, using the general Fay

identity

det

[
Θ(A(pℓ)− A(qm) + e)

Θ∆ (A(pℓ)− A(qm))Θ (e)

]K
ℓ,m=1

=

=
Θ(A+ e)

Θ (e)

∏
ℓ<mΘ∆ (A(pℓ)− A(pm))Θ∆ (A(qm)− A(qℓ))∏K

ℓ,m=1 Θ∆ (A(pℓ)− A(qm))
, (A.15)

A :=

K∑
ℓ=1

(A(pℓ)− A(qℓ)) . (A.16)

B Average and convergence in probability

We now consider the following scenario where the initial phases of the degenerating curve are tuned in a

random way in the part of the Jacobian associated to the degenerating cycles. In other words we consider a

probability ensemble where the probability space is O = (S1)N representing the choices of phases associated

with the gaps adjacent to the degenerating bands. We want to prove that, in probability, the solution

converges to the deterministic solution (uniformly for (x, t) in compact sets) given by the elliptic cnoidal

background. The Proposition below is the key estimate from which the Theorem B.2 about the convergence

in probability follows easily. From the point of view of the geometry of the (real section of the) Jacobian of

the degenerating curve, together with Thm. 2.2, it shows that the probability of seeing a disturbance is an

exceedingly rare event, localized in a small slice of the Jacobian around the particular half-period indicated

in Thm. 2.2. We parametrize the N–torus by [−1, 1]N (modulo even integers) for convenience.

Proposition B.1. Let us denote u = (1 − ϕ1, 1 − ϕ2, . . . , 1 − ϕN , 0)
T ∈ RN+1, X = [ψ, β]T ∈ (iR)N × R

and all ϕj ∈ [−1, 1]. Then there exist constants K,C such that∣∣∣∣Θ(X − 1

2
Ωu

)
− θ3 (β −A)

∣∣∣∣ ≤ K

N∑
j=1

e−(
| ln ϵ|

2 −C)|ϕj | (B.1)
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uniformly over compact subsets of X ∈ CN+1. Similar estimate (with different constants) holds for any

finite derivative ∣∣∣∣∣∣
N∏
j=1

∂
hj

Xj
∂hβ

(
Θ

(
X − 1

2
Ωu

)
− θ3 (β −A)

)∣∣∣∣∣∣ ≤ Kh

N∑
j=1

e−(
| ln ϵ|

2 −C)|ϕj | (B.2)

Proof. We trace over the steps of the proof of Theorem 2.2. With the established notations and splitting

the summation integer vector ν = [n,m]T ∈ ZN+1, 1 = (1, 1, 1, . . . , 1)T ∈ RN and ϕ = (ϕ1, . . . , ϕN )T we

have

Θ

(
X − 1

2
Ωu

)
=
∑
m∈Z

∑
n∈ZN

exp iπ

[
m2ΩN+1,N+1 + iπn⊺Bn+ 2mµ⊺n+ 2

(
mβ + n⊺ψ − 1

2
n⊺Bu− m

2
µ⊺u

)]

=
∑

n∈ZN

∑
m∈Z

exp iπ

[
m2ΩN+1,N+1 +

∑
ℓ

(n2ℓ − nℓ(1− ϕℓ))Bℓℓ +
∑′

ℓ,k

nℓ(nk − 1 + ϕk)Bℓk

+ 2m ((µ− 1/2 + ϕ/2)⊺n+ β) + 2n⊺ψ

]

=
∑

n∈ZN

exp iπ

∑
ℓ

(n2ℓ − nℓ(1− ϕℓ))Bℓℓ +
∑′

ℓ,k

nℓ(nk − 1 + ϕk)Bℓk + 2n⊺ψ

 θ3((µ− 1

2
− 1

2
ϕ⊺)n+ β

)

Now we use that Bℓℓ = i ln 1
ϵ + O(1) as ϵ → 0+ and that all other entries have a finite limit Bℓm → B0

ℓm.

Consider the quadratic form given by the off diagonal matrix B′ = [Bℓ,m]ℓ ̸=m: this is a family, depending

on ϵ, of quadratic form and hence bounded uniformly by the norm (here below a = 1− ϕ):

|iπ(n⊺B′(n+ a) + 2n⊺ψ)| < CN∥n∥2 +DN (B.3)

where CN is a positive constant and DN = DN (a,ψ) is uniformly bounded (as long as ψ is in a compact

set). On the other hand we have that, for any ϕ ∈ (0, 1),

n2 − n(1− ϕ) =

(
n− 1− ϕ

2

)2

− (1− ϕ)2

4
≥ |ϕ|

2
+
n2

2
− 1

2
, ∀n ∈ Z \ {0}. (B.4)

We thus have the estimate with Λ = ln 1/ϵ,∣∣∣∣Θ(X − 1

2
Ωu

)
− θ3(β)

∣∣∣∣ ≤ eDN max
β∈R

|θ3 (β)|
∑

n∈ZN\0

N∏
ℓ=1

exp

[
−
(
Λ

2
− CN

)
(n2ℓ − 1 + |ϕℓ|)(1− δnℓ

)

]
(B.5)

where δnℓ
= 1 if nℓ = 0 and δnℓ

= 0 if nℓ ̸= 0, and we have used that µ is a real vector.

Consider the expression:

Fρ(Λ, ϕ) :=
∑
|n|≥ρ

exp

[
−
(
Λ

2
− CN

)
(n2 − 1 + |ϕ|)(1− δn)

]
, ρ = 0, 1. (B.6)

We have F0(Λ, ϕ) = 1 + F1(Λ, ϕ) where

F1(Λ, ϕ) = exp

[
−
(
Λ

2
− CN

)
|ϕ|
] ∑
|n|≥1

exp

[
−
(
Λ

2
− CN

)
(n2 − 1)

]
(B.7)
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and the last series can be estimated by the integral test to provide a convergent sum as long as Λ > CN
(recall that Λ = ln 1/ϵ→ +∞). Hence we have the uniform estimate

F1(Λ, ϕ) ≤ K̃e−(
Λ
2 −C)|ϕ|. (B.8)

Now we can rewrite the summation in (B.5) as follows:

∑
n∈ZN\0

N∏
ℓ=1

exp

[
−
(
Λ

2
− CN

)
(n2ℓ − 1 + |ϕℓ|)(1− δnℓ

)

]
=

=
∑

n∈ZN

N∏
ℓ=1

exp

[
−
(
Λ

2
− CN

)
(n2ℓ − 1 + |ϕℓ|)(1− δnℓ

)

]
− 1 =

=

N∏
j=1

F0(Λ, ϕj)− 1 =

N∏
j=1

(1 + F1(Λ, ϕj))− 1 (B.9)

and thus we can estimate (for some K > 0)∣∣∣∣Θ(X − 1

2
Ωu

)
− θ3(β)

∣∣∣∣ ≤ K

N∑
ℓ=1

e−(
Λ
2 −C)|ϕℓ|. (B.10)

Consider now a derivative and follow the same initial steps:

N∏
j=1

(
∂Xj

2iπ

)kj
(∂β)

s
Θ

(
X − 1

2
Ωu

)
=

= (2iπ)s
∑
m∈Z

∑
n∈ZN

N∏
j=1

n
kj
j m

s exp iπ

[
m2ΩN+1,N+1 + iπn⊺Bn+ 2mµ⊺n+ 2

(
mβ + n⊺ψ − 1

2
n⊺Bu− m

2
µ⊺u

)]
=

=
∑

n∈ZN

N∏
j=1

n
kj
j exp iπ

∑
ℓ

(n2ℓ − nℓ(1− ϕℓ))Bℓℓ +
′∑
ℓ,k

nℓ(nk − 1 + ϕk)Bℓk + 2n⊺ψ

 θ(s)3

(
(µ− 1

2
− 1

2
ϕ)⊺n+ β

)
If all the kj ’s are zero (and s ̸= 0), then the estimate proceeds exactly as before. If at least one of the kj ’s

is nonzero, since the quadratic form at the exponent has its maximum at n = 0, we have the equivalent of

(B.5)∣∣∣∣∣∣
N∏
j=1

(
∂Xj

2iπ

)kj
(∂β)

s
Θ

(
X − 1

2
Ωu

)∣∣∣∣∣∣ ≤ eDN max
β∈R

∣∣∣θ(s)3 (β)
∣∣∣ ∑′

n∈ZN

N∏
ℓ=1

nkℓℓ exp

[
−
(
Λ

2
− CN

)
(n2ℓ − 1 + |ϕℓ|)(1− δℓ)

]
(B.11)

Then the same reasoning around (B.6), (B.7) applies (with different constants). ■

Theorem B.2. Denote by Φ denote the N–dimensional real torus of the phases ϕ ∈ [−1, 1)N , with the

normalized (unit) volume 1
2N

dNϕ, considered as a probability space. Let uN+1(x, t; ϕ⃗; ϵ) denote the N+1-gap

solution of the KdV equation with the initial phases ϕ1, . . . , ϕN , thought of as a random variable (depending

on x, t). Denote by u1(x, t) = 2∂2x ln θ3

(
x

4iϖ3

)
the deterministic cnoidal stationary wave solution. Then

uN+1(x, t; ϕ⃗; ϵ) → u1(x, t) (B.12)

in probability, uniformly for (x, t) in compact sets.
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Proof. Let (x, t) belong to a compact set and consider the estimate of Prop. B.1. Then for some constant

K > 0 (which depends only on the chosen compact set),

|uN+1(x, t; ϕ⃗; ϵ)− u1(x, t)| ≤ K

N∑
j=1

e−(
| ln ϵ|

2 −C)|ϕj |, (B.13)

for all (x, t) in that set. The integral of the latter function on the torus is O
(

1
| ln ϵ|

)
which tends to zero as

ϵ→ 0+. ■
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