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ABSTRACT
We model the Parker instability in vertically stratified isothermal gas using non-ideal MHD three-dimensional simulations.
Rotation, especially differential, more strongly and diversely affects the nonlinear state than the linear stage (where we confirm
the most important conclusions of analytical models), and stronger than any linear analyses predict. Steady state magnetic fields
are stronger and cosmic ray energy density higher than in comparable nonrotating systems. Transient gas outflows induced by the
nonlinear instability persist longer, of order 2 Gyr, with rotation. Stratification combined with (differential) rotation drives helical
flows, leading to mean-field dynamo. Consequently, the nonlinear state becomes oscillatory (while both the linear instability and
the dynamo are non-oscillatory). The horizontal magnetic field near the midplane reverses its direction propagating to higher
altitudes as the reversed field spreads buoyantly. The spatial pattern of the large-scale magnetic field may explain the alternating
magnetic field directions in the halo of the edge-on galaxy NGC 4631. Our model is unique in producing a large-scale magnetic
structure similar to such observation. Furthermore, our simulations show that the mean kinetic helicity of the magnetically driven
flows has the sign opposite to that in the conventional non-magnetic flows. This has profound consequences for the nature of
the dynamo action and large-scale magnetic field structure in the coronae of spiral galaxies which remain to be systematically
explored and understood. We show that the energy density of cosmic rays and magnetic field strength are not correlated at scales
of order a kiloparsec.
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1 INTRODUCTION

The Parker instability is a magnetic Rayleigh–Taylor or magnetic
buoyancy instability modified by cosmic rays that carry negligible
weight but exert significant pressure. The instability is an important
element of the large-scale dynamics of the interstellar medium (ISM)
as it affects the vertical distributions of the gas, magnetic fields and
cosmic rays and can drive gas outflows, thereby affecting the star
formation. In our previous work (Tharakkal et al. 2022a), we explored
the development of the instability, with a focus on its nonlinear
saturation, in a non-rotating disc with imposed unstable distributions
of the gas, magnetic field and cosmic rays. Among the essentially
nonlinear features of the instability are a transient gas outflow in the
weakly nonlinear stage and a strong redistribution of magnetic fields,
cosmic rays and thermal gas, resulting in a thinner thermal gas disc
and very large scale heights and low energy densities of the magnetic
field and cosmic rays. In this paper, we address the effect of rotation
on the Parker instability.

Rotation is known to reduce the growth rate of the weak pertur-
bations but it does not suppress the instability completely (Zweibel
& Kulsrud 1975; Foglizzo & Tagger 1994, 1995; Matsuzaki et al.
1998; Kowal et al. 2003). However, rotation introduces a fundamen-
tally new feature to the system: under the action of the Coriolis force,
the gas flows produced by the instability become helical and can drive
mean-field dynamo action that generates a magnetic field at a large

scale comparable to that of the initial unstable configuration. Hanasz
(1997), Hanasz & Lesch (1997, 1998) and Thelen (2000a) simulate
numerically the mean-field dynamo action driven by the magnetic
buoyancy with and without cosmic rays, while Moss et al. (1999)
present an analytical formulation. A striking feature of the nonlinear
evolution of a rotating system, noticed by Machida et al. (2013) in
their simulations of the galactic dynamo using ideal magnetohydro-
dynamics (MHD), is the possibility of quasi-periodic magnetic field
reversals at the time scale of 1.5 Gyr, both near the disc midplane
and at large altitudes. This appears to be an essentially nonlinear
effect that relies on rotation since the linear instability does not de-
velop oscillatory solutions and the nonlinear states are not oscillatory
without rotation (Tharakkal et al. 2022a). Foglizzo & Tagger (1994,
their Section 7.1) find that the Parker instability can be oscillatory in
a certain range of the azimuthal wave numbers. Machida et al. (2013)
relate the reversals to the magnetic flux conservation, but we note that
the large-scale magnetic flux is not conserved when the mean-field
dynamo is active. Our simulations of the nonlinear Parker instability
in a rotating system suggest a different, more subtle explanation that
relies on the correlations between magnetic and velocity fluctuations
not dissimilar to those arising from the 𝛼-effect that drives the mean-
field dynamo action (see below). Large-scale magnetic fields whose
horizontal direction alternates with height emerge in the simulations
of mean-field dynamo action by Hanasz et al. (2004). This spatial
pattern may be related to the field reversals near the midplane.
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Table 1. The list of simulation runs discussed: the numerical resolutions
along each axis, the angular velocity and rotational shear, and the instability
growth rate computed for 𝑢𝑧 and 𝑏𝑧 .

(Δ𝑥, Δ𝑦, Δ𝑧) Ω 𝑆 Γ

[pc] [km s−1 kpc−1] [km s−1 kpc−1] [Gyr−1 ]
Ω00N (15,7,13) 0 0 23
Ω30N (31,15,27) 30 0 22
Ω30S (31,15,27) 30 −30 12
Ω60S (31,15,27) 60 −60 7

We explore the effects of rotation on the Parker instability in a
numerical model similar to that of Tharakkal et al. (2022a), quanti-
fying both its linear and nonlinear stages and identifying the roles of
the Coriolis force and the velocity shear of the differential rotation.
We consider the instability in a local rectangular box with parame-
ters similar to those of the Solar neighbourhood of the Milky Way.
The structure of this paper is as follows. Section 2 describes briefly
the numerical model, and in Section 3 we consider the linear stage
of the instability. Section 4 presents a detailed comparison of the
distributions of the thermal and non-thermal components of the sys-
tem in the nonlinear, saturated stage of the instability and how they
change when the rotational speed and shear rate vary. in Section 5,
we clarify the mechanism of the magnetic field reversal and Section 8
discusses the effects of rotation on the systematic vertical flows. The
mean-field dynamo action of the motions induced by the instability
is our subject in Section 6 where we discuss the kinetic and magnetic
helicities.

2 BASIC EQUATIONS AND THE NUMERICAL MODEL

We use a model very similar to that of Tharakkal et al. (2022a), with
the only difference being that we now consider rotating systems,
with either a solid-body or differential rotation. We consider the
frame rotating at the angular velocity of the centre of the domain
with the 𝑧-axis aligned with the gravitational acceleration and the
angular velocity 𝛀, the 𝑦-axis directed along the azimuth and the
𝑥-axis parallel to the radial direction of the local cylindrical frame.
Vector 𝑥-components are occasionally referred to as radial, while
𝑦-components are called azimuthal.

The non-ideal MHD equations are formulated for the gas density
𝜌, its velocity 𝑼, total pressure 𝑃 (which includes the thermal, mag-
netic and cosmic-ray contributions), magnetic field 𝑩 and its vector
potential 𝑨, and the energy density of cosmic rays 𝜖cr. The initial
conditions represent an unstable magneto-hydrostatic equilibrium,
and the corresponding distributions 𝜌0, 𝑩0 and 𝜖cr,0 in 𝑧 are main-
tained throughout the simulation as a background state. We solve
for the deviations from them, denoted 𝜌′ for the density, 𝒖 for the
velocity, 𝑃′ for the total pressure, 𝒃 for the magnetic field and 𝒂 for
its vector potential, and 𝜖 ′cr and 𝑭′ for the cosmic-ray energy density
and flux. Cosmic rays are described in the fluid approximation with
non-Fickian diffusion, so we have separate equations for their energy
density and flux. The governing equations are solved numerically in a
rectangular shearing box of the size 4×4×3.5 kpc3 along the 𝑥, 𝑦 and
𝑧 axes, respectively, with the mid-plane at 𝑧 = 0 and |𝑧 | ≤ 1.75 kpc.
The boundary conditions are periodic in 𝑥, sliding-periodic in 𝑦 and
allow for a free exchange of matter through the top and bottom of the
domain as specified in detail by Tharakkal et al. (2022a).

The total velocity is given by 𝑼 = 𝑼0 + 𝒖, where 𝑼0 = 𝑆𝑥 �̂� is
the mean rotation velocity in the rotating frame with the shear rate

𝑆 = 𝑥 dΩ/d𝑥, and 𝒖 is the deviation from this, associated with the
instability. For a solid-body rotation, 𝑆 = 0, we have 𝑼0 = 0. Both
𝑆 and Ω are assumed to be independent of 𝑧 and 𝑆 < 0 for realistic
galactic rotation profiles. We neglect the vertical gradient ofΩ and 𝑆;
for its observed magnitude of order−15–25 km kpc−1 (Section 10.2.3
of Shukurov & Subramanian 2021, and references therein), Ω and 𝑆

only vary by about 10–15 per cent within |𝑧 | ≲ 1.5 kpc.
The presence of rotation only affects the momentum and induc-

tion equations, so equations (1), (4)–(6), (9) and (10) for the mass
conservation and cosmic rays of Tharakkal et al. (2022a) still apply
and only the momentum and induction equations are augmented with
terms containing Ω and 𝑆:

D𝒖

D𝑡
= −∇𝑃

𝜌
+ 𝒈 + (∇ × 𝑩) × 𝑩

4𝜋𝜌
− 𝑆𝑢𝑥 �̂� − 2𝛀 × 𝒖 + ∇ · 𝝉 , (1)

𝜕𝒂

𝜕𝑡
= 𝒖 × (∇ × 𝑨) − 𝑆𝑎𝑦 �̂� − 𝑆𝑥

𝜕𝒂

𝜕𝑦
− 𝜂∇ × (∇ × 𝒂) , (2)

where D/D𝑡 = 𝜕/𝜕𝑡 + (𝑼0 + 𝒖) · ∇ is the Lagrangian derivative, 𝒈 is
the gravitational acceleration and 𝝉 is the viscous stress tensor. The
Kepler gauge for the vector potential, as described by Oishi & Mac
Low (2011) (see also Brandenburg et al. 1995), is appropriate for
this shearing box framework.

We use the gravity field 𝒈 = −𝑔(𝑧)𝒛 obtained by Kuijken &
Gilmore (1989) for the Solar vicinity of the Milky Way and con-
sider an isothermal gas with the sound speed 𝑐s = 18 km s−1 and
temperature 𝑇 = 3.2 × 104 K. In the background state (identified
with the subscript zero, this is also the initial state), both the mag-
netic and cosmic ray pressures are adopted to be half the thermal
pressure, 𝑃m,0/𝑃th,0 = 𝑃cr,0/𝑃th,0 = 0.5, where 𝑃th,0 = 𝑐2

s 𝜌0 (0),
𝑃m,0 = 𝐵2

0 (0)/(8𝜋) and 𝑃cr,0 = 𝜖cr0 (0)/3 are the thermal, magnetic
and cosmic ray pressures, respectively, and 𝐵0 (0) = 5µG. The gas
viscosity 𝜈 (included in 𝝉) and magnetic diffusivity 𝜂 are chosen
as 𝜈 = 0.1 kpc km s−1 and 𝜂 = 0.03 kpc km s−1, respectively, to be
somewhat smaller than the turbulent values in the ISM (see Tharakkal
et al. 2022a, for further details and justification).

Table 1 presents the simulation runs discussed in this paper. The
value of Ω near the Sun is close to 30 km s−1 kpc−1 (referred to as
the nominal value hereafter), and 𝑆 = −Ω when the rotational speed
is independent of the galactocentric distance (a flat rotation curve),
|𝛀×𝒓 | = const. ModelΩ00N is identical to Model Sim6 of Tharakkal
et al. (2022a), Model Ω30N only differs by the solid-body rotation
at the nominal angular velocity, Model Ω30S adds the large-scale
velocity shear (differential rotation), whereas Model Ω60S has both
the angular velocity and its shear doubled. The averages at 𝑧 = const
(horizontal averages) are denoted ⟨· · · ⟩h.

Figure 1 presents a pictorial summary of the changes in the mag-
netic field and gas density as the instability develops through its linear
stage and then saturates in Model Ω30S. During the linear phase, at
𝑡 = 0.3 Gyr, the magnetic field and gas density retain the structure
of the imposed fields with weak perturbations in 𝜌. By the weakly
nonlinear stage at 𝑡 = 0.6 Gyr, both the gas density and magnetic
field are strongly perturbed to the extent that the mean azimuthal
magnetic field ⟨𝐵𝑦⟩h starts reversing. The reversal is complete in the
late nonlinear stage at 𝑡 = 1.6 Gyr and magnetic loops are prominent.
We explain and detail these processes below.

3 THE LINEAR INSTABILITY

The linear phase of the Parker instability in the absence of rota-
tion is discussed in detail in our previous work (Tharakkal et al.
2022a), where we compare the growth rate and the spatial structure
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Figure 1. The evolution of the gas density and magnetic field in Model Ω30S is illustrated for its three significant epochs: (a) the linear stage, (b) beginning of
the magnetic field reversal in the early nonlinear stage and (c) the advanced nonlinear state (the specific simulation times are indicated for each frame). Selections
of magnetic lines are shown (with colour representing the local magnetic field strength in µG) in the (𝑥, 𝑦, 𝑧)-space at the time indicated to the left of each
frame. The horizontal average of the azimuthal magnetic field ⟨𝐵𝑦 ⟩h in µG is shown with colour on the vertical (𝑧, 𝑡)-plane as it evolves continuously (rather
than at discrete times used for the magnetic lines). The gas density distribution is shown with colour on the vertical (𝑥, 𝑧)-planes (in g cm−3) for each time.

of the most rapidly growing mode with those obtained in a range
of analytical and numerical models. In this section, we focus on the
modifications of the exponentially growing perturbations caused by
the rotation and velocity shear.

Figures 2a,b show the evolution (in both the linear and nonlinear
stages) of the root-mean-square (r.m.s.) magnitudes of the perturba-
tions in the magnetic field and velocity, while Panels (c) and (d) show
how the total magnetic field strength 𝐵r.m.s. and the mean cosmic ray
energy density 𝜖cr at 𝑧 = 0, respectively, evolve in the models of
Table 1. As expected (Shu 1974; Zweibel & Kulsrud 1975; Foglizzo
& Tagger 1994, 1995; Hanasz & Lesch 1997), the instability growth
rate Γ (given in Table 1) decreases systematically with the angu-
lar velocity. The stretching of the magnetic lines along the radial
(𝑥) direction by the Coriolis force enhances the magnetic tension
thus opposing the instability while the differential rotation shears the
perturbations to reduce the radial wavelength also suppressing the
instability (Foglizzo & Tagger 1994).

The spatial structure of the unstable modes is illustrated in Fig. 3,
which presents the two-dimensional power spectra of the perturba-
tions affected by the solid-body (c–d) and differential (e–f) rotation
and compares them with the non-rotating case (a–b). The spectra
of the velocity and magnetic field perturbations are identical when
Ω = 0 but noticeable differences develop in rotating systems. In
agreement with the analysis of Shu (1974), the dominant azimuthal
wave number 𝑘𝑦 decreases under the influence of rotation. The solid-
body rotation leads to wider spectra in the radial and azimuthal
wave numbers, consistent with the weaker variation of the instability
growth rate with 𝑘𝑦 in a rotating system (Fig. 1 of Foglizzo & Tag-
ger 1994). Since the Coriolis force couples the radial and azimuthal
motions, the spectra in 𝑘𝑥 and 𝑘𝑦 are more similar to each other than
in the case Ω = 0. However, the velocity shear strongly reduces the

range of 𝑘𝑦 while the perturbations have significantly larger radial
wave numbers 𝑘𝑥 than in the cases Ω = 0 and 𝑆 = 0.

4 THE SATURATED STATE

Figure 2 also shows that the nonlinear development of the instability
and its statistically steady state are strongly affected by the rota-
tion and velocity shear. Solid-body rotation does not affect much the
magnitude of the magnetic field perturbations at 𝑡 ≳ 1 Gyr, presented
with the solid and dash-dotted curves in Panel (a), but reduces the
velocity perturbations shown in Panel (b). Understandably, the veloc-
ity shear enhances both (the dotted curves) by stretching the radial
magnetic fields which, in turn, affect the motions. The case of faster
rotation and correspondingly stronger shear confirms this tendency
(dashed curves).

Panels (c) and (d) of Fig. 2, which show the total magnetic field
strength and cosmic ray energy density at 𝑧 = 0, suggest that the
structure of the magnetic field is changed profoundly by rotation
and, especially, by the velocity shear. For example, the magnitude
of the magnetic field perturbations in Model Ω30S shown with the
dotted curve in Panel (a) is less than twice larger than at Ω = 0
(solid curve), but the total magnetic field at 𝑧 = 0 shown in Panel (c)
is almost an order of magnitude stronger since the perturbation is
better localised near 𝑧 = 0 (see below). The instability still removes
both the magnetic field and cosmic rays from the system as in the
case Ω = 0, but at a much lower efficiency that depends on both the
angular velocity and the rotational shear.

As compared to the case Ω = 0, the system retains stronger mag-
netic field under the solid-body rotation but less cosmic rays, as
shown with the solid and dash-dotted curves in Fig. 2(c,d). Figure 4
clarifies the details of the changes effected by rotation and velocity
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Figure 2. The evolution of the root-mean-square magnitudes at the midplane
𝑧 = 0 of (a) the magnetic field perturbation |𝒃 |, normalised to 𝐵0 (0) (the
strength of the background magnetic field at 𝑧 = 0), and (b) gas speed in the
Models Ω00N (solid, no rotation), Ω30N (dash-dotted, solid-body rotation
at the nominal Ω), Ω30S (dotted, differential rotation at the nominal Ω and
𝑆) and Ω60S (dashed, doubled Ω and 𝑆). Similarly, panels (c) and (d) show
the horizontally averaged total magnetic and cosmic ray energy densities at
𝑧 = 0 for those models, normalized to the respective midplane values in the
background state, ⟨𝐵⟩𝑥𝑦 (0)/𝐵0 (0) and ⟨𝜖cr ⟩𝑥𝑦 (0)/𝜖cr0 (0) , respectively.

0

3

6

k y
[k

p
c]−

1

(a)

0

3

6

(b)

0

3

6

k y
[k

p
c]−

1

(c)

0

3

6

(d)

0 3 6 9 12 15

kx [kpc]−1
0

3

6

k y
[k

p
c]−

1

(e)

0 3 6 9 12 15

kx [kpc]−1
0

3

6

(f)

10−2

10−1

100

Figure 3. The two-dimensional power spectra of 𝑢𝑧 (left column, in the
units of kpc2 km2 s−2) and 𝑏𝑧 (right column, in kpc2 µG2), averaged over
|𝑧 | < 1.75 kpc, in Models Ω00N (a–b), Ω30N (c–d) and Ω30S (e–f) at
𝑡 = 0.3 Gyr (the linear stage of the instability).

shear, presenting the varying vertical profiles of the gas density, mag-
netic fields and cosmic rays in Models Ω00N, Ω30N and Ω30S. Both
solid-body and differential rotations reduce the gas scale height in the
saturated state. The comparison of Panels (b–c) and (e–f) shows that
the solid-body rotation leads to narrower distributions (smaller scale
heights) of both magnetic field and cosmic rays about the midplane.
Moreover, as we discuss below, the gas flow becomes helical in a
rotating system (see Section 6), supporting the mean-field dynamo
action. As a result, a large-scale radial magnetic field 𝐵𝑥 , clearly
visible in Fig. 5(d,f), emerges in a rotating system.

The velocity shear changes the nonlinear state qualitatively. Firstly,
the scale heights of 𝐵 and 𝜖cr near the midplane are even smaller at
𝑡 = 0.6–0.9 Gyr in Panels (h) and (i) than at the comparable times in
Panels (e) and (f). Secondly, and more importantly, the vertical profile
of the magnetic field strength evolves to become more complicated
at 𝑡 = 1.6 Gyr in Panel (h), and the cosmic ray distribution reflects
this change. The energy density of cosmic rays in Model Ω30S,
⟨𝜖cr⟩h (0) = 0.2𝜖cr0 at 𝑡 = 1.6 Gyr (Fig. 4i) is ten time larger than in
Model Ω00N. Differential rotation helps to confine cosmic rays be-
cause it drives dynamo action generating strong horizontal magnetic
field, and this slows down the escape of cosmic rays as they spread
along larger distances guided by the magnetic field.

The change in the vertical profile of ⟨𝐵⟩h in Model Ω30S at 𝑡 =
1.6 Gyr reflects the reversal of the horizontal magnetic field near the
midplane discussed and explained in Section 5.

5 MAGNETIC FIELD REVERSAL

The reversal of the magnetic field in the nonlinear stage of the in-
stability has been noticed earlier by a few authors (see Section 1)
but our simulations identify it as a generic feature of the Parker and
magnetic buoyancy instabilities in rotating systems. This process is
illustrated in Fig. 5 which shows how the evolution of the large-scale
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Figure 4. The evolution of the vertical profiles of the horizontally averaged and normalised gas density ⟨𝜌⟩h/𝜌0 (0) (left-hand column), magnetic field strength
⟨𝐵⟩h/𝐵0 (0) (middle) and cosmic ray energy density ⟨𝜖cr ⟩h/𝜖cr0 (0) (right-hand column). First row: Model Ω00N (no rotation), second row: Model Ω30N
(nominal solid-body rotation), third row: Model Ω30S (nominal rotation and shear). The times corresponding to the line styles are given in the legend of each
row. Note that the direction of the mean azimuthal magnetic field ⟨𝐵𝑦 ⟩h has reversed within a certain distance of the midplane at the later times, 𝑡 = 1.6 and
2.6 Gyr.

horizontal magnetic field components ⟨𝐵𝑥⟩h and ⟨𝐵𝑦⟩h depends on
rotation and the velocity shear.

Figure 5a shows again (see also Tharakkal et al. 2022a, for details)
that, in a non-rotating system, the azimuthal magnetic field ⟨𝐵𝑦⟩h de-
creases with time in strength and its scale height increases, while the
radial field ⟨𝐵𝑥⟩h shown in Fig. 5b is much weaker and varies along 𝑧

without any systematic pattern. Solid-body rotation causes two major
changes: the azimuthal field strength (Fig. 5c) first decreases faster
than without rotation but then starts growing and, at late times, is
stronger than for Ω = 0. The field direction remains the same as of
the imposed field, ⟨𝐵𝑦⟩h > 0. Meanwhile, the radial field (Fig. 5d)
is, at late times, comparable in strength to ⟨𝐵𝑦⟩h, well-ordered and
is predominantly negative, ⟨𝐵𝑥⟩h < 0. This change is a result of the
mean-field 𝛼2-dynamo action driven by the mean helicity of the gas
flow as discussed in Section 6.

The differential rotation of Model Ω30S (Fig. 5e,f) changes the
evolution even more dramatically: it drives the more efficient 𝛼𝜔-
dynamo with stronger ⟨𝐵𝑥⟩h and, remarkably, exhibits a reversal of
the large-scale horizontal magnetic field. The reversal starts in the
weakly nonlinear phase at 𝑡 = 0.5 Gyr with a rather abrupt emergence
of a relatively strong positive radial magnetic field near the midplane,
⟨𝐵𝑥⟩h > 0. The velocity shear with 𝑆 < 0 stretches the positive radial
field into a negative azimuthal magnetic field, so that ⟨𝐵𝑦⟩h starts
decreasing and reverses at 𝑡 = 1.6 Gyr (Fig. 5e). The total horizontal
magnetic field strength (⟨𝐵𝑥⟩2h + ⟨𝐵𝑦⟩2h)1/2 decreases to a minimum
before increasing again, as ⟨𝐵𝑦⟩h decreases to zero and then re-
emerges with the opposite direction. These changes in the large-scale
magnetic field structure start near the midplane and spread to larger
altitudes because of the magnetic buoyancy.

5.1 The mechanism of the reversal

To understand the process that leads to the reversal of the large-scale
azimuthal magnetic field, we consider individual terms in the induc-
tion equation written for the deviation from the imposed magnetic
field,

𝜕𝒃

𝜕𝑡
= −(𝑼 · ∇)𝑩 + (𝑩 · ∇)𝑼 − 𝑩∇ ·𝑼 + 𝜂∇2𝒃 . (3)

Figure 6 shows, for Model Ω30S, the evolution of the mean radial
and azimuthal components of the first three terms on the right-hand
side of this equation, which represent the advection, stretching and
compression of the corresponding magnetic field components near
the midplane. The stretching terms (𝑩 · ∇)𝑈𝑥 and (𝑩 · ∇)𝑈𝑦 clearly
dominate, producing a mean radial field ⟨𝐵𝑥⟩h > 0 during the weakly
nonlinear stage, 0.6 ≲ 𝑡 ≲ 0.8 Gyr, which decreases only slowly at
later times (because of diffusion and buoyancy) while being gradually
stretched by the differential rotation 𝑆 < 0 into a negative azimuthal
field ⟨𝐵𝑦⟩h, eventually leading to the reversal of the initially positive
⟨𝐵𝑦⟩h. This picture is very different from that for Model Ω00N,
where the stretching terms in both components rapidly vanish after a
negative excursion during the early nonlinear phase (see Figs 5a,b and
7). Under the solid-body rotation, a positive radial field does emerge
near 𝑧 = 0 in the early nonlinear stage but, without the velocity shear,
this does not lead to the reversal of the azimuthal field (Fig. 5c,d).

We have analyzed various parts of the averaged stretching term
⟨(𝑩 ·∇)𝑈𝑥⟩h in the 𝑥-component of equation (3) to understand which
of them produces a positive radial component of the mean field. We
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Figure 5. The evolution of the horizontally averaged magnetic field components, ⟨𝐵𝑦 ⟩h (left-hand column) and ⟨𝐵𝑥 ⟩h (right-hand column) in Models Ω00N
(a–b), Ω30N (c–d) and Ω30S (e–f). For Ω30S the mean azimuthal field ⟨𝐵𝑦 ⟩h decreases after 𝑡 = 0.6 Gyr, and undergoes a reversal in sign at 𝑡 ≈ 1.6 Gyr,
with the reversal then spreading to higher altitudes. Meanwhile, the mean radial field ⟨𝐵𝑥 ⟩h becomes positive and relatively strong near 𝑧 = 0 rather abruptly at
𝑡 ≈ 0.5 Gyr and then also spreads away from the midplane.
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Figure 6. The evolution of the three terms on the right-hand side of the
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(a) the radial (𝑥) and (b) the azimuthal (𝑦) components of the stretching term
(𝑩 · ∇)𝑼 (solid), advection −(𝑼 · ∇)𝑩 (dotted) and compression −𝐵(∇ ·𝑼)
(dash-dotted), in model Ω30S.
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Figure 7. As in Fig. 6, but for model Ω00N.

note that ⟨𝑈𝑥⟩h = 0 and then ⟨(𝑩 · ∇)𝑈𝑥⟩h = ⟨(𝒃 · ∇)𝑢𝑥⟩h. Thus,

⟨(𝑩 · ∇)𝑈𝑥⟩h =

〈
𝑏𝑥

𝜕𝑢𝑥

𝜕𝑥

〉
h
+
〈
𝑏𝑦

𝜕𝑢𝑥

𝜕𝑦

〉
h
+
〈
𝑏𝑧

𝜕𝑢𝑥

𝜕𝑧

〉
h
. (4)
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Figure 8. The vertical variation of the horizontally averaged stretching
terms in equation (4) in Model Ω30S at 𝑡 = 0.7 Gyr near the midplane:
⟨𝑏𝑥 𝜕𝑢𝑥/𝜕𝑥 ⟩h (solid), ⟨𝑏𝑦 𝜕𝑢𝑥/𝜕𝑦⟩h (dashed) and ⟨𝑏𝑧 𝜕𝑢𝑥/𝜕𝑧⟩h (dot-
ted).

Figure 8 shows that the first two terms on the right-hand side
of this equation are less significant than the third term, and that
⟨𝑏𝑧 𝜕𝑢𝑥/𝜕𝑧⟩h > 0 at |𝑧 | ≲ 0.2 kpc. The term ⟨𝑏𝑥 𝜕𝑢𝑥/𝜕𝑥⟩h also
contributes to the generation of a positive ⟨𝐵𝑥⟩h at all 𝑧.

The positive correlation between 𝑏𝑧 and 𝜕𝑢𝑥/𝜕𝑧, the main driver
in the generation of the positive ⟨𝐵𝑥⟩h, arises because of: (i) the
Coriolis force; and (ii) the emergence of a local minimum of ⟨𝐵𝑦⟩h
at the midplane produced by the buoyancy. To demonstrate this, we
express 𝑢𝑥 using the 𝑦-component of the momentum equation (1)
with 𝑆 = −Ω, differentiate the result with respect to 𝑧, multiply it by
𝑏𝑧 and average to obtain

𝜌Ω

〈
𝑏𝑧

𝜕𝑢𝑥

𝜕𝑧

〉
h
=

1
4𝜋

〈
𝑏2
𝑧

𝜕2𝐵𝑦

𝜕𝑧2

〉
h
+ 1

8𝜋

〈
𝜕𝑏2

𝑧

𝜕𝑧

𝜕𝐵𝑦

𝜕𝑧

〉
h

+
〈
𝑏𝑧

𝜕Ψ

𝜕𝑧
− 𝑏𝑧

𝜕𝜌

𝜕𝑧
Ω𝑢𝑥

〉
h
, (5)

where we have neglected the fluctuations in 𝜌 when averaging on
the left-hand side (which is justifiable since the random gas speed is
subsonic) and Ψ combines all other terms:

Ψ = −𝜌D𝑢𝑦

D𝑡
− 𝜕𝑃

𝜕𝑦
− 1

8𝜋
𝜕𝑏2

𝜕𝑦
+ 1

4𝜋

(
𝑏𝑥

𝜕𝑏𝑦

𝜕𝑥
+ 𝑏𝑦

𝜕𝑏𝑦

𝜕𝑦

)
, (6)

where we neglect the viscosity (represented by the viscous stress
tensor 𝝉) and 𝑏2 = 𝑏2

𝑥 + 𝑏2
𝑦 + 𝑏2

𝑧 . Figures 9a,b show vertical profiles
of ⟨𝐵𝑦⟩h in Models Ω30N (where no reversal occurs) and Ω30S,
while Fig. 9c clarifies the form of various terms in equation (5). The
positive correlation ⟨𝑏𝑧 𝜕𝑢𝑥/𝜕𝑧⟩h emerges because of the first term
on the right-hand side as soon as magnetic buoyancy produces a
local minimum of ⟨𝐵𝑦⟩h at 𝑧 = 0 (see Fig. 9b), so that 𝜕2𝐵𝑦/𝜕𝑧2 is
systematically positive at 𝑧 = 0. Such a minimum does not develop
in the case of solid-body rotation (Fig. 9a) where no reversal of
⟨𝐵𝑦⟩h happens. As shown in Fig. 9c, the second and third terms in
equation (5) are smaller in magnitude than the first term near 𝑧 = 0
and partially compensate each other. The correlation ⟨𝑏𝑧 𝜕𝑢𝑥/𝜕𝑧⟩h
is dominant and positive near 𝑧 = 0, driving a reversal in the large-
scale magnetic field near the midplane which then spreads to larger
|𝑧 | as shown in Fig. 6e,f because of the magnetic buoyancy. We stress
that the minimum of ⟨𝐵𝑦⟩h at 𝑧 = 0 can only arise at the nonlinear
stage of the instability, because only then do the fluctuations 𝑏𝑦 not
average to zero.

We have verified that the reversal is not sensitive to the direction
of the imposed magnetic field 𝐵0 (𝑧) �̂�; i.e., it occurs in the exactly the
same manner for 𝐵0 (𝑧) > 0 and 𝐵0 (𝑧) < 0. Our simulations extend to
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Figure 9. The vertical profiles of the horizontally averaged azimuthal field,
⟨𝐵𝑦 ⟩h, at = 0.5 Gyr (solid), 𝑡 = 0.7 Gyr (dashed) and 1.5 Gyr (dotted) in
Models (a) Ω30N and (b) Ω30S. Panel (c) shows the variation with 𝑧 of
the correlations on the right-hand-side of equation (5) for Model Ω30S
at 𝑡 = 0.7 Gyr: ⟨(𝑏𝑧)2 𝜕2𝐵𝑦/𝜕𝑧2 ⟩h (solid), ⟨ 1

2𝜕(𝑏𝑧)2/𝜕𝑧 𝜕𝐵𝑦/𝜕𝑧⟩h
(dashed) and ⟨𝑏𝑧 𝜕Ψ/𝜕𝑧⟩h (dotted).

4 Gyr in duration (see Fig. 5). This is already a significant fraction of
the galactic lifetime; therefore, we did not extend them further to find
out if a further reversals would occur at later times. However, periodic
reversals occur in a similar model where the unstable magnetic field
is generated by an imposed mean-field dynamo action (Y. Qazi et
al. 2022, in preparation). It appears that the emergence of the local
minimum of ⟨𝐵𝑦⟩h at 𝑧 = 0 and its ensuing reversal is related to
the mean-field dynamo action (which our imposed field emulates).
The dynamo is driven by the mean helicity of the gas flow, and
both Models Ω30N and Ω30S support this mechanism (as discussed
below). However, the dynamo in Model Ω30N, which has solid-body
rotation (so is an 𝛼2-dynamo), is too weak, whereas the differential
rotation of Model Ω30S enhances the dynamo enough (making it an
𝛼𝜔-dynamo) to produce the reversal. In the next section, we compute
and discuss the mean helicity of the gas flow and other evidence for
the mean-field dynamo action in Model Ω30S.
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Figure 10. The evolution of the horizontally averaged (a) kinetic helicity
⟨�̃� · (∇ × �̃�) ⟩h and (b) current helicity ⟨�̃� · (∇ × �̃�⟩h) in Model Ω30S.

6 HELICITY AND DYNAMO ACTION

In Models Ω30N, Ω30S and Ω60S, the Coriolis force causes the
gas motions to become helical, and the resulting 𝛼-effect produces a
large-scale radial magnetic field ⟨𝐵𝑥⟩h (e.g., Sect. 7.1 of Shukurov
& Subramanian 2021). Differential rotation (in Models Ω30S and
Ω60S) enhances the dynamo significantly, and we have discovered
that this leads to a reversal in the azimuthal magnetic field direction
discussed in Section 5. Both types of the turbulent dynamo (𝛼2

dynamo in Ω30N and 𝛼𝜔 in Ω30S and Ω60S) are driven by the
mean kinetic helicity of the gas flow 𝜒k = �̃� · (∇ × �̃�), and the current
helicity of the magnetic fluctuations 𝜒m = �̃� · (∇ × �̃�) opposes the
dynamo instability leading to a reduction of the 𝛼-coefficient until a
steady state is achieved (e.g., Sect. 7.11 of Shukurov & Subramanian
2021). Here overbar denotes a suitable averaging, and we use the
horizontal averages in our discussion, so �̃� and �̃� are understood as
the deviations from the horizontal averages ⟨𝑩⟩h and ⟨𝑼⟩h, such that

𝑩 = ⟨𝑩⟩h + �̃� , 𝑼 = ⟨𝑼⟩h + �̃� ,
〈
�̃�
〉
h = 0 , ⟨�̃�⟩h = 0 . (7)

Figure 10 shows the evolution of the kinetic and current helicities
and their variation with 𝑧 obtained using the horizontal averages. As
expected, both quantities have odd symmetry in 𝑧 (e.g., Sect. 11.3.1
of Shukurov & Subramanian 2021). Both are weak throughout the
linear phase when the instability-driven perturbations are still weak,
but increase significantly in magnitude during the early nonlinear
phase at about 𝑡 = 0.5 Gyr. The kinetic helicity reaches its maximum
magnitude |𝜒k | = |⟨�̃� · (∇× �̃�⟩h | = 851 km2 s−2 kpc−1 near the upper
and lower boundaries, 𝑧 = ±1.6 kpc, during the transitional phase at
𝑡 = 0.6 Gyr. At a later time, 𝑡 = 1.9 Gyr, the kinetic helicity reduces
to a maximum of |𝜒k | = 340 km2 s−2 kpc−1 at |𝑧 | = 1.6 kpc. At
early stages of the evolution, the current helicity has local extrema
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Figure 11. The spatial distribution of the mean kinetic helicity 𝜒k at 𝑡 =

0.7 Gyr for four imposed (initial) magnetic field strengths specified by the
parameters 𝛽m,0 and 𝛽cr,0 defined in equation (12) and given in the legend.
Among the models shown in this figure, cosmic rays are present only in
Model Ω30S where (𝛽m,0, 𝛽cr,0) = (0.5, 0.5) (dash-dotted: this is a vertical
cross-section of the distribution in Fig. 10a).
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Figure 12. The time autocorrelation function of the vertical velocity com-
ponent, equation (11), for 0 ≤ 𝑡 ≤ 2 Gyr (with the minimum time lag of
10 Myr) at 𝑧 = 0 (solid), 0.6 (dashed) and 1 kpc (dotted) in Model Ω30S. The
correlation time 𝜏0 at each 𝑧 is given in the legend, obtained from the fits of
the form 𝐶 (𝜏) = exp(−𝜏/𝜏0) , shown with dotted curves.

close to the midplane, where the magnetic field is stronger, |𝜒m | =
|⟨�̃� · (∇ × �̃�)⟩h | = 89µG2 kpc−1 at 𝑡 = 0.6 Gyr, |𝑧 | = 0.1 kpc.
The extrema move away from the midplane in the nonlinear stage,
to reach |𝜒m | = 7µG2 kpc−1 at 𝑡 = 1.2 Gyr, |𝑧 | = 0.5 kpc and
|𝜒m | = 5µG2 kpc−1 at 𝑡 = 3 Gyr, |𝑧 | = 1 kpc.

The vertical profiles of both kinetic and current helicities evolve
in a rather complicated manner, with 𝜒k < 0 at 𝑧 > 0 close to the
midplane (although the magnitude is small), and 𝜒k > 0 at larger
𝑧 in the case of pure magnetic buoyancy (dotted curve in Fig. 11
representing 𝑡 = 0.7 Gyr). In Model Ω30S, 𝜒k < 0 at 𝑧 > 0 close
to the midplane just before 𝑡 = 0.7 Gyr. Negative 𝜒k at 𝑧 > 0 is
expected from the action of the Coriolis force on the ascending and
descending volume elements (Sect. 7.1 of Shukurov & Subramanian
2021). However, 𝜒k > 0, as it occurs at larger 𝑧 for all models
presented in Fig. 11, is unexpected (see below for a discussion).

The 𝛼-coefficient of the nonlinear mean-field dynamo is related
to the kinetic and current helicities as (Sect. 7.11.2 of Shukurov &
Subramanian 2021)

𝛼 = 𝛼k + 𝛼m , (8)

where, in terms of the horizontal averages,

𝛼k = − 1
3 𝜏0⟨�̃� · (∇ × �̃�)⟩h , 𝛼m = 1

3 𝜏0
⟨�̃� · (∇ × �̃�)⟩h

4𝜋𝜌
, (9)

and 𝜏0 is the characteristic (correlation) time of the random flow.
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Figure 13. The evolution of (a) 𝛼k and (b) 𝛼m, given in equations (9), in
Model Ω30S.

The relevant time scale 𝜏0 differs from the time scale of the linear
instability 2𝜋/(𝑢0𝑘𝑦) where 𝑢0 and 𝑘𝑦 are the characteristic speed
and azimuthal wave number of the most unstable mode shown in
Figs 2b and Fig. 3e–f, respectively. Instead, 𝜏0 is determined by
nonlinear effects and has to be measured separately. We calculate
the correlation time using the time autocorrelation function 𝐶 (𝜏) of
𝑢𝑧 (the vertical velocity 𝑢𝑧 is a representative component since it is
directly related to the instability),

𝜏0 =

∫ ∞

0
𝐶 (𝜏) d𝜏 , (10)

with the normalized autocorrelation function calculated as

𝐶 (𝜏) = 1
𝑇
〈
�̃�2
𝑧

〉
h

〈∫ 𝑇

0
�̃�𝑧 (𝑡, 𝒙)�̃�𝑧 (𝑡 + 𝜏, 𝒙) d𝑡

〉
h
, (11)

where𝑇 is the duration of the time series used to compute𝐶 (𝜏). For a
given 𝑧, the integral in equation (11) is calculated for each (𝑥, 𝑦) and
the result is averaged over (𝑥, 𝑦). Thus defined, the autocorrelation
function and the corresponding correlation time depend on 𝑧.

Figure 12 shows the time autocorrelation of 𝑢𝑧 at three values of 𝑧,
and the form 𝐶 (𝜏) = exp(−𝜏/𝜏0) provides a good fit, with the fitted
values of 𝜏0 given in the legend: they vary between 18 Myr at 𝑧 = 0
and 40 Myr at 𝑧 = 1.5 kpc. We use the fitted 𝐶 (𝜏) to estimate 𝜏0 as
this provides a more accurate result than the direct integration as in
the definition (10).

We use 𝜏0 = 30 Myr in equations (9), and the results are shown in
Fig. 13. The largest in magnitude values |𝛼k | ≈ 7 km s−1 are reached
during the transition phase around 𝑡 = 0.6 Gyr near |𝑧 | = 1.5 kpc,
whereas |𝛼m | is at its maximum around 3 km s−1 during the nonlinear
phase at 𝑡 = 3.6 Gyr.
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Figure 14. The variation of the normalised 𝛼k with 𝑧 in the early (𝑡 = 0.7 Gyr,
solid) and late (𝑡 = 2.6 Gyr, dotted, 𝑡 = 3.6 Gyr, dashed) nonlinear stages in
Model Ω30S.

The spatial structure of 𝛼k is relatively simple during the early
nonlinear phase but becomes more complicated later. Closer to the
midplane and at later stages of the evolution, 𝛼k > 0 at 𝑧 > 0
(and 𝛼k < 0 at 𝑧 < 0) as expected, and the region where 𝛼k is
predominantly positive (albeit small in magnitude) extends to larger
|𝑧 | with time (see Fig. 14 representing vertical sections of Fig. 13a).

As expected, the sign of the current helicity is opposite to that of𝛼k
at almost all 𝑧 and 𝑡, so that the back-reaction of the magnetic field
on the flow weakens the dynamo action leading to a (statistically)
steady state at 𝑡 ≳ 3 Gyr.

The negative sign of 𝛼k at 𝑧 > 0 (corresponding to the positive
kinetic helicity 𝜒k) appears to be a specific feature of a system driven
by magnetic buoyancy or another magnetically driven instability such
as the magneto-rotational instability (MRI). Hanasz & Lesch (1998)
argue, using a model of reconnecting magnetic flux ropes, that neg-
ative 𝛼k at 𝑧 > 0 can occur in magnetic buoyancy-driven mean-field
dynamos. In his analysis of the mean electromotive force produced by
the magnetic buoyancy instability in its linear stage, Thelen (2000a,
his Fig. 4) finds 𝛼 < 0 in the unstable region of the northern hemi-
sphere in spherical geometry (corresponding to 𝑧 > 0 in our case),
although the ‘anomalous’ sign of 𝛼k remained unnoticed (Thelen
2000b). However, Brandenburg & Schmitt (1998) find 𝛼k > 0 at
𝑧 > 0 in their analysis of the 𝛼-effect due to magnetic buoyancy.
Brandenburg & Sokoloff (2002) find 𝛼k < 0 at 𝑧 > 0 in simulations
of the MRI-driven dynamos (their Section 2 and 𝛼𝑦𝑦 in Figs 5, 7, 9
and 11). Kinetic helicity (and the corresponding 𝛼k) of this ‘anoma-
lous’ sign is also found in the simulations of MRI-driven dynamos of
P. Dhang et al. (2023, in preparation) (K. Subramanian 2022, private
communication). The origin and properties of the kinetic helicity of
random flows driven by magnetic buoyancy and MRI deserves fur-
ther attention. Our results indicate not only that the kinetic helicity
has the anomalous sign but also that it can change in space and time.

The current helicity (Fig. 10b) and the corresponding contribution
to the𝛼-effect (Fig. 13b) have the opposite signs to, and closely follow
both the spatial distribution and evolution of, 𝜒k and 𝛼k respectively
(although the magnetic quantities have smoother spatial distributions
than the corresponding kinetic ones). This confirms that the action of
the Lorentz force on the flow weakens the dynamo action as expressed
by equation (8). Together with the removal of the large-scale magnetic
field by the Parker instability, this leads to the eventual evolution of
the system to the statistically steady state.

Although the gas flows that become helical are driven by the
instability, no simple and obvious relation of the mean helicity to
the parameters that control the strength of the instability is apparent.
Figure 11 shows how the vertical profile of the kinetic helicity 𝜒k
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Figure 15. The evolution and vertical variation of the dynamo number of
equation (13) in Model Ω30S.

changes with the magnetic and cosmic ray pressures in the initial
(imposed) state, specified in terms of their ratios to the thermal
pressure at 𝑧 = 0,

𝛽m0 =
𝐵0 (0)2

8𝜋𝑐2
s 𝜌0 (0)

and 𝛽cr0 =
(𝛾cr − 1)𝜖cr0 (0)

𝑐2
s 𝜌0 (0)

, (12)

where 𝛾cr = 4/3. To avoid complications associated with the cos-
mic rays in the system behaviour, only one model of the four il-
lustrated in Fig. 11 contains cosmic rays (Model Ω30S discussed
elsewhere in the text). The midplane strengths of the imposed mag-
netic field 𝐵0 (0) corresponding to 𝛽m0 = 0.5, 1 and 1.5 are 5,
7 and 9µG, respectively. When (𝛽m0, 𝛽cr0) = (0.5, 0), the mag-
netic field is too weak to be unstable and the system remains in
the state of magneto-hydrostatic equilibrium, 𝜒k = 0. Adding cos-
mic rays, (𝛽m0, 𝛽cr0) = (0.5, 0.5) (Model Ω30S) destabilises the
system producing helical flows discussed above. Adding magnetic
rather than cosmic ray pressure, (𝛽m0, 𝛽cr0) = (1, 0), also makes
the system unstable, and the resulting mean helicity at larger |𝑧 | is
greater than for (𝛽m0, 𝛽cr0) = (0.5, 0.5). A still stronger magnetic
field, (𝛽m0, 𝛽cr0) = (1.5, 0) leads to comparable 𝜒k the previous two
cases in |𝑧 | ≲ 1 kpc, except near the midplane. Altogether, it is dif-
ficult to identify a clear pattern in the dependence of the magnitude
and spatial distribution of the mean helicity of the gas flow driven
by the Parker instability; this invites further analysis, both analytical
and numerical.

The dimensionless measure of the mean-field dynamo activity in
a differentially rotating gas layer is provided by the dynamo number
(Section 11.2 of Shukurov & Subramanian 2021)

𝐷 =
𝛼𝑆ℎ3

𝛽2 , (13)

where ℎ is the layer scale height, 𝑆 is the velocity shear rate (𝑆 = −Ω
in our case), 𝛼 is given in equation (8) and

𝛽 = 1
3 𝜏0⟨�̃�2⟩h + 𝜂 (14)

is the magnetic diffusivity. The first term in this expression is the
turbulent diffusivity and 𝜂 is the explicit magnetic diffusivity from
equation (2) or (3). As we use the horizontal averages in these re-
lations, 𝐷 is a function of 𝑧 and varies with time together with ℎ,
𝛼 and 𝛽; thus defined, 𝐷 might be better called the local dynamo
number, a measure of the dynamo efficiency at a given 𝑧 and 𝑡. In
Model Ω30S, 𝜂 = 0.03 kpc km s−1 while the turbulent diffusivity
varies, at 𝑡 = 1 Gyr, from 0.03 kpc km s−1 at 𝑧 = 0 to 0.5 kpc km s−1

Table 2. The cross-correlation coefficient 𝑟 of the fluctuations in various
energy densities in the statistically steady state of Model Ω30S at 𝑡 = 2.6 Gyr
presented as 𝑎, 𝑏, where 𝑎 and 𝑏 refer to 𝑧 = 0.5 and 1 kpc, respectively.

𝜖 ′th 𝜖 ′cr 𝜖 ′m 𝜖 ′k

𝜖 ′th 1, 1 0.2, −0.03 −0.02, −0.2 −0.14, 0.12
𝜖 ′cr 1, 1 −0.4, −0.8 0.2, 0.05
𝜖 ′m 1,1 −0.29, −0.1
𝜖 ′k 1, 1

at 𝑧 = 1 kpc (a nominal turbulent diffusivity in the ISM, where turbu-
lence is mainly driven by supernovae, is 1 kpc km s−1). The dynamo
amplifies a large-scale magnetic field provided |𝐷 | > 𝐷c, where 𝐷c
is a certain critical dynamo number (see below).

Figure 15 shows how the dynamo number varies with 𝑡 and 𝑧.
During the transient phase, ⟨�̃�2⟩h is relatively low while |𝛼 | is at
its maximum. The resulting dynamo number is as large as |𝐷 | ≃
104. As the system evolves into the nonlinear state, the turbulent
diffusivity increases and the dynamo number reduces in magnitude.
At 𝑡 = 0.6 Gyr, 𝐷 varies from 4 near the midplane to 6 × 103 at
𝑧 = 1 kpc. At later times, 𝐷 is larger near the midplane and reduces
further in magnitude: at 𝑡 = 0.9 Gyr, 𝐷 = 300 near the midplane and
9 at 𝑧 = 1 kpc.

As shown by Ruzmaikin et al. (1980), the 𝛼𝜔-dynamo in flat ge-
ometry generates oscillatory magnetic fields for 𝐷 > 0, quadrupolar
for 𝐷 ≳ 180 and dipolar for 𝐷 ≳ 550. The behaviour of the large-
scale magnetic field in Model Ω30S is consistent with these results:
it is quadrupolar and oscillatory.

7 RELATIVE DISTRIBUTIONS OF COSMIC RAYS AND
MAGNETIC FIELD

Similar to our analysis in Tharakkal et al. (2022a), we present in
Table 2 the Pearson cross-correlation coefficient between the fluctu-
ations in energy densities for different components in model Ω30S at
𝑧 = 0.5 and 1 kpc for the late nonlinear stage at 𝑡 = 2.6 Gyr, derived
as

𝜖 ′m =
𝐵2 − 〈

𝐵2〉
h

8𝜋
, 𝜖 ′cr = 𝜖cr − ⟨𝜖cr⟩h ,

𝜖 ′th = 𝑐2
s (𝜌 − ⟨𝜌⟩h) , 𝜖 ′k = 1

2 𝜌�̃�
2 −

〈
1
2 𝜌�̃�

2
〉

h
.

(15)

The only significant entry in the table is the anti-correlation between
the magnetic and cosmic ray energy fluctuations at 𝑧 = 1 kpc where
their contribution to the total pressure is noticeable (see Section 8).
There are no signs of energy equipartition between cosmic rays and
magnetic fields at kiloparsec scales; nor are there indications of
equipartition at the turbulent scales, for either cosmic ray protons
(Seta et al. 2018) or electrons (Tharakkal et al. 2022b).

8 VERTICAL FLOWS AND FORCE BALANCE

Rotation affects significantly the vertical gas flow driven by the
instability. As discussed by Tharakkal et al. (2022a) (and also in
Model Ω00N), a systematic gas outflow is transient without rotation
and only occurs during the early nonlinear stage. Figure 16 shows
the horizontally averaged vertical velocity ⟨𝑢𝑧⟩h in Models Ω30N
(solid-body rotation) and Ω30S (differential rotation). In both cases,
systematic vertical flows occur at |𝑧 | ≳ 1 kpc. The solid-body ro-
tation (Fig. 16a) does not change much the structure of the flow in
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Figure 16. The evolution and variation with 𝑧 of the horizontally averaged
vertical velocity ⟨𝑢𝑧 ⟩h in Models (a) Ω30N and (b) Ω30S.

comparison with the non-rotating system, with a transient outflow
during the early nonlinear stage and a weak inflow at later times. In
Model Ω30N, the maximum outflow speed is |⟨𝑢𝑧⟩h | = 9 km s−1 at
𝑡 = 0.7 Gyr, followed by the inflow at the speed |⟨𝑢𝑧⟩h | = 7 km s−1

at 𝑡 > 1.4 Gyr. However, differential rotation not only changes dra-
matically the magnetic field structure and evolution (Fig. 5), but
also supports a prolonged period of a systematic gas outflow at
0.6 ≲ 𝑡 ≲ 3 Gyr, which eventually evolves into a weak gas inflow at
large |𝑧 | (Fig. 16b). The maximum outflow speed in Model Ω30S is
|⟨𝑢𝑧⟩h | = 7 km s−1 at 𝑡 = 0.6 Gyr at large |𝑧 |, while the later inflow
speed is |⟨𝑢𝑧⟩h | = 1 km s−1 at 𝑡 ≳ 3 Gyr.

The pattern of the vertical flows shown in Fig. 16b is not dissimilar
to the structure of the magnetic field shown in Fig. 5e–f and the
dynamo number (Fig. 15) — especially at later stages, 𝑡 ≳ 3 Gyr
— suggesting that the magnetic field contributes noticeably to the
vertical flow in Model Ω30S.

To understand what drives the vertical flows, we present in Fig. 17
the vertical forces acting during various evolutionary stages of
Model Ω30S. It is instructive to compare them with those in non-
rotating systems discussed by Tharakkal et al. (2022a). Without rota-
tion, as in Model Ω00N (see also Fig. 12 of Tharakkal et al. 2022a),
both magnetic and cosmic ray pressures are reduced significantly
as the system evolves into the nonlinear state, and the vertical gas
flows are driven by the thermal pressure gradient. This changes in
Model Ω30S, where magnetic field, and to a lesser extent cosmic
rays, make a stronger contribution to the force balance. Moreover,
the gravity force and the thermal pressure gradient balance each other
almost completely in the nonlinear state, so that the weaker magnetic
and cosmic ray pressures appear to be capable of controlling the
vertical velocity pattern, especially at |𝑧 | ≳ 0.5 kpc. This is is illus-
trated in Fig. 18, which shows that the vertical variations of the net
vertical force per unit mass are indeed similar in detail to those of
the magnetic pressure gradient.

The magnetic and cosmic ray pressure gradients are weak because

both non-thermal components of the simulated ISM are much less
stratified than the thermal gas. However, their energy densities are
large and they dominate over the thermal gas at |𝑧 | ≳ 0.5–1 kpc. Fig-
ure 19 shows the vertical profiles of the horizontally averaged ratios
of the magnetic and cosmic ray pressures to the thermal pressure, 𝛽m
and 𝛽cr respectively, defined as in equation (12) but for the evolving
quantities. Although each non-thermal pressure component is sub-
dominant near the midplane at all stages of the evolution, each of
them exceeds the thermal pressure at larger altitudes as soon as the
instability becomes nonlinear, 𝑡 ≳ 0.6 Gyr. It is useful to compare
Fig. 19 with Fig. 18 of Tharakkal et al. (2022a): rotation somewhat
reduces the magnitudes of 𝛽m and 𝛽cr at large |𝑧 | but leads to the
dominance of the non-thermal pressure components at smaller values
of |𝑧 | than in a non-rotating system, and leads to a larger contribution
from cosmic rays.

9 DISCUSSION AND CONCLUSIONS

Differential rotation affects the nonlinear state of the Parker instability
more strongly than its linear properties. Without rotation, the system
loses most of its magnetic field and cosmic rays as it evolves towards
the steady state. A solid-body rotation does not change the nonlinear
state significantly. However, differential rotation allows the system
to retain better both the magnetic field and cosmic rays. The reason
for that is the dynamo action (present also under the solid-body
rotation but significantly enhanced by the differential rotation) which
produces strong (about 2–3µG) large-scale magnetic field both near
the midplane and at large altitudes. As a result, cosmic rays (governed
by anisotropic diffusion) spend longer times within the system.

The systematic vertical gas flows are also affected by the rotation,
which prolongs the transient outflow at a speed |⟨𝑢𝑧⟩h | = 7 km s−1 to
the time interval 0.6 ≲ 𝑡 ≲ 3 Gyr. It appears that the magnetic field
contributes significantly to driving the outflow. Meanwhile, cosmic
rays do not play any significant role in driving the outflow at the
scales explored here, |𝑧 | ≤ 1.5 kpc: because of the large diffusivity
of cosmic rays, the vertical gradient of their pressure is very small.

Another dramatic effect of the dynamo action is that it leads to a
reversal of the large-scale magnetic field, in what appears to be a sign
of nonlinear oscillations of the large-scale magnetic field. Neither the
Parker instability nor the dynamo are oscillatory by themselves. We
have identified the rather subtle mechanism of the reversal and argue
that it is an essentially nonlinear phenomenon.

The reversal of the large-scale magnetic field is also reflected in its
spatial distribution. The reversal starts near the midplane and then the
reversed magnetic field spreads to larger altitudes (see Fig. 5e–f). As
a result, the direction of the large-scale magnetic field reverses along 𝑧
at any given time. An arguably similar pattern of regions with the sign
of the Faraday depth alternating along the direction perpendicular to
the disc plane is observed in the edge-on galaxy NGC 4631 (Mora-
Partiarroyo et al. 2019). The comparison of Figs 5e–f and 5c–d shows
that the Parker instability in a dynamo active system can produce
rather complicated magnetic field structures. Our use of horizontal
averages in Fig. 5 and elsewhere in the text conceals strong localised
vertical magnetic fields typical of the magnetic buoyancy (see, e.g.,
Fig. 1), also observed in NGC 4631. Because of the low gas density
at kpc-scale distances from the galactic midplane, observations of
the Faraday rotation produced there are difficult; the observations of
Mora-Partiarroyo et al. (2019) are the first of this kind, and future
observation should show how widespread are such complex patterns.
Further observational and theoretical studies of large-scale magnetic
fields outside the discs of spiral galaxies promise new, unexpected

MNRAS 000, 1–13 (2022)



12 Tharakkal et al.

−1.0

−0.5

0.0

0.5

1.0

N
o
rm

a
li

se
d

fo
rc

e
d

en
si

ty

(a)

−1.0

−0.5

0.0

0.5

1.0
(b)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

z [kpc]

−1.0

−0.5

0.0

0.5

1.0

N
o
rm

a
li

se
d

fo
rc

e
d

en
si

ty

(c)

−〈∂zPth〉h
−〈∂zPcr〉h
−〈ρg〉h
−〈∂zPm〉h

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

z [kpc]

−1.0

−0.5

0.0

0.5

1.0
(d)

Figure 17. The vertical profiles of the horizontally averaged vertical forces in Model Ω30S normalised to the maximum magnitude of the gravitational force
(dashed, repeated in all panels for reference): thermal (solid), cosmic ray (dotted) and magnetic (dash-dotted) pressure gradients. The contribution of the magnetic
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(c) 1.6 Gyr (nonlinear state when the magnetic field has just reversed near 𝑧 = 0) and (d) 3.6 Gyr (late nonlinear stage).

−200

−100

0

100

200

F
z
/ρ
[k

p
c4

G
y
r−

2
]

(a)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

z [kpc]

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

〈u
z
〉 h
[k

m
s−

1
]

(b)

t = 0.6 Gyr

t = 1.6 Gyr

t = 2.6 Gyr

t = 3.6 Gyr

Figure 18. (a) The total vertical force per unit mass and (b) the resulting
vertical velocity at times 𝑡 = 0.6 (solid), 1.6 (dotted), 2.6 (dashed) and
3.6 Gyr (dash-dotted).

insights into the dynamics of the interstellar gas and its magnetic
fields.

An unusual feature of our results, which needs further effort to
be understood, is that the mean kinetic helicity of the flows driven
by the Parker and magnetic buoyancy instabilities is positive in the
upper half-space, 𝑧 > 0, and thus has the sign opposite to that in
conventional stratified, rotating, non-magnetised systems. We note
that positive kinetic helicity also occurs in some earlier studies of
the mean-field dynamo action and 𝛼-effect in magnetically-driven
systems. However, this remarkable circumstance, which can have
profound — and poorly understood — consequences for our under-
standing of the nature of large-scale magnetic fields outside galactic
discs, has attracted relatively little attention.
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