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ABSTRACT4

Instabilities driven by some combination of rotation, velocity shear and magnetic field in a stratified5

fluid under gravity play an important role in many astrophysical settings. Of particular note are the6

centrifugal instability, the magnetorotational instability and magnetic buoyancy instability. Here, we7

consider a Cartesian model of an equatorial region incorporating all the physical ingredients necessary8

to study their competition. We investigate the linear instability to interchange (‘axisymmetric’) modes9

of an inviscid, perfectly conducting, isothermal gas, including the effects of rotation, velocity shear,10

and poloidal and toroidal magnetic fields. The stability problem can be reduced to a second order11

boundary value problem, with the growth rate as the eigenvalue. We can make analytic progress12

through consideration of the physically relevant regime in which the transverse horizontal wavenumber13

k ≫ 1. Via a perturbation analysis, with 1/k as the small parameter, we can derive the growth rate14

and the spatial dependence of the eigenfunctions: the unstable modes are strongly localized in the15

vertical direction, being either ‘wall modes’ (localized near a boundary of the domain) or ‘body modes’16

(localized in the interior). We describe the conditions under which the joint action of the separate17

instability mechanisms leads to enhancement or suppression of the instability. Our analytical results18

are supplemented by numerical solutions of the stability problem. The most unstable mode found19

analytically is typically in excellent agreement with that found numerically through consideration of a20

wide range of wavenumbers. Finally, we discuss how our results relate to the solar tachocline.21

1. INTRODUCTION22

Differential rotation, magnetic fields and convective stratification — stable or unstable — are crucial ingredients23

in determining the dynamics of all astrophysical bodies. Understanding the instabilities that may arise from these24

various elements is thus an important goal in astrophysical fluid dynamics. In its simplest form, in which the effects25

of magnetic field, stratification and diffusion are all neglected, a differential rotation profile is unstable if, somewhere,26

the angular momentum decreases with cylindrical radius, a result that dates back to Rayleigh (1917). The criterion27

for this centrifugal instability (CI) is modified by the incorporation of magnetic fields and convective stratification, as28

shown by Acheson (1978). Of great astrophysical interest is that a weak magnetic field can destabilize a flow that is29

stable by the Rayleigh criterion (i.e. a flow with angular momentum everywhere decreasing outwards). This instability,30

now known as the magnetorotational instability (MRI), was first investigated by Velikhov (1959) and Chandrasekhar31

(1960) and later by Acheson (1978). However, its tremendous astrophysical significance, as an instability mechanism32

capable of destabilizing Keplerian flows, as occur in accretion disks, was not recognised until the work of Balbus &33

Hawley (1991). Subsequent to this extremely important realisation, there has been a huge amount of research into the34

MRI: in the linear and nonlinear regimes, computationally and experimentally, and with a variety of magnetic field35

configurations (see, e.g., Hawley et al. 1995; Balbus & Hawley 1998; Goodman & Ji 2002; Balbus 2003; Hollerbach &36

Rüdiger 2005; Ogilvie 2007; Fromang et al. 2013).37

A horizontal magnetic field that varies with depth can also act as the agent for destabilizing a convectively stable38

atmosphere through the mechanism known as magnetic buoyancy instability (MBI). MBI was first analysed, via the39

energy principle and in a general setting, by Newcomb (1961); it was first investigated in an astrophysical context by40

Parker (1966), who proposed MBI as the mechanism for the clumping of the interstellar medium. Subsequently, MBI41

has been invoked as the dominant mechanism underlying the escape of magnetic field from the solar tachocline, as42

reviewed by Hughes (2007), and can also be an important player in the dynamics of accretion disks (e.g. Foglizzo &43
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Tagger 1994). Theoretical developments of MBI have been undertaken both in the linear regime (e.g. Gilman 1970;44

Acheson 1978, 1979; Hughes 1985) and through numerical simulations of the nonlinear development of the instability45

(e.g. Cattaneo & Hughes 1988; Matthews et al. 1995; Kim et al. 1998; Fan 2001; Kersalé et al. 2007; Hughes &46

Brummell 2021).47

Although studies of CI, MRI or MBI most often treat the instability mechanisms in isolation, astrophysical bodies,48

in general, possess regions of differentially rotating, convectively stratified, magnetic fluid; the solar tachocline, for49

example, is clearly a magnetized region of strong differential rotation. It is therefore important to consider the50

competition between these various instabilities. Our aim therefore in this paper is to consider a framework in which we51

can analyse this competition. We consider a local Cartesian model, similar to that of the shearing box approximation,52

involving all the necessary factors for development of CI or MRI, and MBI. The domain is a local representation of the53

equatorial region, with the rotation axis perpendicular to gravity. As a basic state, we include the effect of velocity shear54

— a horizontal (‘toroidal’) flow, perpendicular to rotation and dependent on height — a constant ‘poloidal’ magnetic55

field (parallel to the rotation axis) and a toroidal field of strength decreasing with height. We perform a linear stability56

analysis, making the simplifying assumption that all perturbation quantities are ‘axisymmetric’. The key feature57

is applying a Rayleigh–Schrödinger perturbation analysis in the limit of short-horizontal-wavelength perturbations,58

where ‘short’ is in comparison with the vertical variation of basic state quantities such as density or pressure. The59

short-horizontal-wavelength assumption has the consequence that the perturbations become highly localized vertically.60

Thus, through a boundary/internal layer analysis, following the approach adopted in Mizerski et al. (2013), Bowker61

(2016) and Gradzki & Mizerski (2018), we are able to determine a height-dependent growth rate function σ(z) and62

hence determine the location of the localization of the eigenfunctions. As explained in Bowker (2016), the presence63

of strong shear is a complicating feature of the analysis: in particular, the relation between the particular growth64

rate value σ(z0) at a selected height z0 and the height at which the eigenmode associated with this eigenvalue is65

localized becomes highly non-obvious. We are able to compare our asymptotic solutions with solutions of the full66

system obtained numerically. Our work should be regarded as being complementary to earlier studies by Acheson67

(1978) and Gilman (2018a,b), both of whom also explored systems in which CI, MRI and MBI could occur. Acheson68

(1978) performed a local linear stability analysis, in cylindrical geometry, of a quite general system involving basic state69

functions that depend on both radius r and axial direction z, making analytic progress with this complicated system70

through the consideration of specific asymptotic parameter regimes. Gilman (2018a,b) also performed a local stability71

analysis, in spherical geometry, of basic states with toroidal flows and toroidal magnetic fields, focusing particularly72

on profiles appropriate to the solar tachocline. In contrast to Acheson (1978) and Gilman (2018a,b), our basic state73

magnetic field has a (uniform) poloidal component, which is necessary for bringing the axisymmetric MRI into play.74

The paper is organized as follows. The mathematical formulation of the problem is contained in Section 2. Sections 375

and 4 contain, respectively, the main results of the leading and first order asymptotic analyses for the growth rate σ;76

the details of the calculations can be found in Appendix C (leading order) and Appendix D (higher order). Section 577

presents the numerical solutions of the full linear stability equations for some selected representative parameter values,78

and makes a comparison with those obtained via the short-horizontal-wavelength perturbation approach. In Section 679

we summarize and discuss the results.80

2. MATHEMATICAL FORMULATION81

Following Gilman (1970) and Mizerski et al. (2013), we consider a plane layer, of thickness d, of compressible,82

inviscid, isothermal and electrically perfectly conducting fluid, described by the perfect gas equation of state. The83

geometry of the system corresponds to that of the local shearing box approximation, often applied locally to natural84

systems such as accretion discs, or stellar and planetary interiors at the equator (e.g. Hawley et al. 1995). We adopt a85

Cartesian coordinate system in which the x-axis points east (the ‘toroidal’ direction), the y-axis north, and the z-axis86

radially (in the direction opposite to gravity). We assume the presence of a constant acceleration of effective gravity87

g = (0, 0,−g) and constant rotation Ω = (0, Ω, 0). The basic state is characterized by a depth-dependent toroidal88

shear flow u0(z) = (u0(z), 0, 0) and a magnetic field with depth-dependent, toroidal component and constant poloidal89

component, B0(z) = (a0(z), b0, 0) (see Figure 1). Such a physical setting is constructed in order to accommodate three90

types of linear instability — magnetic buoyancy instability (MBI), magnetorotational instability (MRI) and centrifugal91

instability (CI) — and to study the interactions and competition between them. The system of equations for the9293

velocity u, the magnetic field B, density ρ and pressure p, consists of the Navier-Stokes (momentum) equation, the94

mass conservation (continuity) equation, the magnetic induction equation (supplemented by the solenoidal condition95



3

Figure 1. Configuration of the basic state, with depth-dependent horizontal shear flow u0(z), depth-dependent toroidal field
a0(z), constant poloidal field b0, rotation Ω and gravity g.

on the magnetic field) and the equation of state of an ideal gas. For the purpose of nondimensionalization, we adopt96

the layer thickness d and the free fall time
√
d/g for the units of length and time respectively. For the units of velocity97

in the y- and z-directions we choose the free fall velocity
√
gd; however, for the x-component, we adopt a typical98

magnitude of the shear flow Us. We denote the scales of pressure, density and magnetic field by ps, ρs, Bs respectively,99

where ps and ρs are taken as the values of pressure and density at the top of the layer. In dimensionless form, the100

governing equations may be expressed as101

ρ
∂u

∂t
+ UΩρ ez × u+ ρu ·∇u = −∇

(
Pp+ Λ

B2

2

)
+ ΛB ·∇B − ρez, (1)102

103

∂ρ

∂t
+∇ · (ρu) = 0, (2)104

105

∂B

∂t
+ u ·∇B = B ·∇u−B (∇ · u) , (3)106

107

∇ ·B = 0, (4)108

109

p = αρ. (5)110

The (positive) non-dimensional parameters are defined as111

UΩ =
2Ωd√
gd
, P =

ps
ρsgd

, Λ =
B2

s

µ0ρsgd
= β−1P, α =

RρsTs
ps

, (6)112

where µ0 is the vacuum permeability, R is the gas constant, and Ts is the constant temperature of the system. The113

parameter Λ and the product Pα represent the non-dimensional squared Alfvén speed and squared isothermal speed114

of sound respectively, scaled with the square of the free-fall speed; UΩ is the non-dimensional rotation rate and the115

‘plasma β’ denotes the ratio of the gas pressure to twice the magnetic pressure, β = µ0ps/B
2
s . Owing to the choice116

of a different scaling for the velocity in the x-direction, the dimensionless velocity in equations (1)–(3) has the form117

u = Uuuex + vey + wez, where118

Uu =
Us√
gd

(7)119
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is the ratio of a typical shear flow speed to the free-fall speed. Positive (negative) values of Uu correspond to eastward120

(westward) flows.121

To determine the basic state, the linear stability of which we shall investigate, we consider a layer of fluid in122

equilibrium, in the region 0 ≤ z ≤ 1, with a shear flow u0(z) and horizontal magnetic field B0(z), as described above.123

The basic state density ρ0(z) and pressure p0(z) are then determined by the equations124

D
(
Pp0(z) + Λa20(z)/2

)
= (UΩUuu0(z)− f) ρ0(z), (8)125

126

p0(z) = αρ0(z), (9)127

where D denotes d/dz, together with ρ0(1) = 1 (recall, ρs was chosen as the density value at the top of the fluid layer).128

In addition, in order to identify clearly the effect of buoyancy, we introduce the parameter f , which takes the value 1129

if the buoyancy force is present in the momentum equation, and 0 if it is not.130

At this stage, we also define the following functions of the basic-state variables:131

F (z) = Λa20 (z) + Pαρ0 (z) , H−1
U (z) = u−1

0 (z)Du0 (z) , (10a)132

133

H−1
ρ (z) = ρ−1

0 (z)Dρ0 (z) , H−1
B (z) = a−1

0 (z)Da0 (z) , (10b)134

where F (z) is related to the speed of isothermal magnetosonic waves, and where H−1
u (z), H−1

ρ (z) and H−1
B (z) are135

the depth-dependent inverse scale heights of shear flow, density and magnetic field respectively. We also note that the136

basic state equations (8)–(9) imply the following relation:137

PαH−1
ρ (z) =

(
−Λa20 (z) /ρ0 (z)

)
H−1

B (z)− (f − UΩUuu0 (z)) . (11)138

In order to simplify what is quite a complicated problem, we assume, as did Mizerski et al. (2013) and Gradzki &139

Mizerski (2018), that the perturbations to the basic state take the form of interchange (‘axisymmetric’) modes, i.e., all140

perturbation quantities are invariant in the x direction (parallel to the direction of the basic state constant poloidal141

magnetic field and the axis of rotation). Owing to the homogeneity of the system in the y-direction, a simple Fourier-142

mode type dependence is assumed, with the wavenumber denoted by k and the growth rate by σ. We thus express143

perturbations to the velocity, magnetic field, pressure and density as144

ũ = (ũ(z), ṽ(z), w̃(z))eσt+iky, B̃ = (ã(z), b̃(z), c̃(z))eσt+iky, p̃(z)eσt+iky, ρ̃(z)eσt+iky. (12)145

On introducing perturbations of the form (12) into equations (1)–(4) and neglecting nonlinear terms, we obtain the146

following system of linear equations:147

(Uuσρ0) ũ+ (Uuρ0Du0) w̃ = (iΛkb0) ã+ (ΛDa0) c̃− (UΩρ0) w̃, (13a)148

149

(σρ0) ṽ = −ik (P p̃+ Λa0ã) , (13b)150

151

(σρ0) w̃ = −D (P p̃+ Λa0ã)− (Λb0)Db̃+ (iΛkb0) c̃+ (UΩUuu0 − f) ρ̃+ (UΩUuρ0) ũ, (13c)152

153

σρ̃+ (ikρ0) ṽ + (Dρ0) w̃ + ρ0Dw̃ = 0, (13d)154

155

σã+ (Da0) w̃ = (iUukb0) ũ+ (UuDu0) c̃− (ika0) ṽ − a0Dw̃, (13e)156

157

σb̃ = −b0Dw̃, (13f)158

159

σc̃ = (ikb0) w̃, (13g)160

161

(ik) b̃+Dc̃ = 0, (13h)162

163

p̃ = αρ̃. (13i)164

Equations (13a)–(13h) can be manipulated to yield a single second order ordinary differential equation for the z-165

dependent amplitude of the vertical velocity perturbation w̃(z), with the growth rate σ determined as the eigenvalue166

of the problem. We may express this differential equation in the general form167 [
W̃2(z)

]
D2w̃(z) +

[
W̃1(z)

]
Dw̃(z) +

[
W̃0(z)

]
w̃(z) = 0, (14)168
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where the coefficients W̃0(z), W̃1(z) and W̃2(z) depend on the basic-state functions and their derivatives, the horizontal169

wavenumber k, the growth rate σ, and the various dimensionless constants of the system. The top and bottom170

boundaries are assumed impermeable, which implies the boundary conditions171

w̃ = 0 on z = 0, 1. (15)172

Equation (14) with boundary conditions (15) constitutes a second order boundary value problem, with the growth rate173

σ appearing as the eigenvalue. The coefficients of equation (14) are though very complicated and hence, in general, (14)174

requires a numerical solution. However, under certain assumptions, it is possible to make analytic progress through175

an asymptotic Rayleigh–Schrödinger perturbation approach. Such an approach is described by Griffiths (2008) (for176

inertial instabilities), Mizerski et al. (2013) (for non-diffusive MBI) and Gradzki & Mizerski (2018) (for diffusive MBI).177

In our analytical study, we assume that all the basic-state functions and their derivatives, the growth rate σ, and178

the dimensionless parameters are of order unity in terms of any asymptotic parameters in the theory. As argued179

first by Gilman (1970), the growth rate of the MBI, in the absence of diffusion, increases with increasing transverse180

wavenumber k, tending to some finite value as k → +∞. Thus, the limit of k → +∞ is the first asymptotic limit181

assumed here. Furthermore, in some natural systems, such as, for example, the solar tachocline, the poloidal magnetic182

field is expected to be relatively weak in comparison with the toroidal component. It thus turns out to be instructive183

to assume a second asymptotic limit of b0 → 0.184

In general, one must construct double asymptotic expansions in the two small parameters: the inverse wavenumber185

k−1 and the weak poloidal magnetic field b0. However, since we are interested in investigating interactions between186

MBI, MRI and CI, we assume that k ∼ b−1
0 , which not only simplifies the asymptotic analysis to one small parameter,187

but ensures that the contributions to the growth rate of perturbations from all three instability types are of comparable188

order of magnitude. In other words, it is only for a weak field b0 that the three instability mechanisms are captured at189

leading order; this assumption is also consistent with the linear MRI analysis presented by Balbus & Hawley (1991).190

Further justification for this assumption is given in Appendix B. To summarize, we shall show that the assumptions191

k → +∞, b0 → 0, k ∼ b−1
0 (16)192

allow the presence of all possible types of instability at the leading order of the asymptotic approach, thus providing the193

opportunity to study their mutual interactions and competition. The relation k ∼ b−1
0 establishes the horizontal spatial194

scale of the interchange perturbations (12) by relating it to the weak magnitude of the constant poloidal magnetic195

field b0.196

3. LEADING ORDER ASYMPTOTIC ANALYSIS197

The full details of the leading order asymptotic analysis are presented in Appendix C; here we provide the most198

important results, together with an explanation of the method adopted. The first stage of the analysis leads to the199

conclusion that all possible eigenvalues σ of the system of equations (13a)–(13h) have their leading (zeroth) order200

asymptotic approximations, namely σ0, in the image of the z-dependent function called the ‘growth rate function’201

denoted as σ(z). This function is given implicitly by the leading order solution of the quartic equation W̃0(z) = 0,202

where W̃0(z) is the coefficient of w̃ in equation (14), defined by (53c) and (54c). Hence the leading order values σ0 of203

all the growth rates are determined by the growth rate function σ(z) evaluated at initially unknown points z0, called204

the ‘evaluation points’. That is, for one particular eigenmode we have σ0 = σ(z0), for some z0 ∈ [0, 1]. With every205

eigenvalue σ there is an associated eigenmode w̃(z), which is a solution of the equation (14). Based on the form of206

equation (14), we can anticipate boundary layer-type, highly localized, solutions (cf. Mizerski et al. 2013; Gradzki &207

Mizerski 2018). However, the precise spatial structure of the eigenmodes can be determined only by considering first208

order corrections to the growth rate σ; hence, solving for the mode structure is postponed until Section 4.209

Determining the set of allowed evaluation points z0 is tantamount to finding the leading order spectrum of the linear210

differential operator given by the system of equations (13a)–(13h). Our Rayleigh–Schrödinger perturbation analysis211

shows that the eigenmodes may exist in two cases of distinct character. First, the eigenmodes may be associated with212

the evaluation points z0 lying on the boundaries of the domain, that is z0 = 0 or z0 = 1; we refer to these boundary213

layer-type solutions as ‘wall modes’. Second, eigenmodes with an internal layer type may exist for evaluation points z0214

lying strictly inside the domain 0 < z0 < 1; we refer to these solutions as ‘body modes’. However, the details of these215

modes, as well as the determination of the evaluation points of the body modes, is obtained by consideration of the216

next order corrections to the growth rate σ (see Section 4 and Appendix D).217



6

In addition to eigenmodes with a highly localized structure, there may also exist WKB modes, with oscillations218

throughout the bulk of the layer, on intervals determined by the evaluation points z0 and the form of the growth rate219

function σ(z). However, as shown by Mizerski et al. (2013) for the pure MBI, the WKB solutions are always less220

unstable, characterized by lower values of ℜ (σ0) than the boundary layer modes. Numerical simulations confirm that221

this remains the case for the more complicated setup considered here. Therefore, in any temporal linear evolution, the222

most unstable boundary layer mode (be it a wall mode or a body mode) will ultimately dominate.223

From the governing ordinary differential equation (14), the leading order contribution to the growth rate σ0 associated224

with the evaluation point z0 is a solution of the quartic equation (cf. equation (68))225

A4 (z0)σ
4
0 +A2 (z0)σ

2
0 +A1 (z0)σ0 +A0 (z0) = 0, (17)226

where the coefficients Ai, given by expressions (55a)–(55d), are functions of the basic state variables, the parameters (6)227

and positive integer powers of the product kb0. In particular, under the assumptions (16), σ0 does not depend separately228

on k or b0. The value of b0 establishes the order of magnitude for the wavenumber k of the eigenmodes; a similar idea229

arose in the treatment of magnetic diffusivity by Gradzki & Mizerski (2018).230

In general, for a given value of z0, the four solutions σ0 of (17) are complex. If there exists at least one solution with231

ℜ (σ0) > 0, the associated eigenmode w̃(z) is unstable. In general, any instability involves coupling between the three232

types of instabilities: MRI, MBI and CI. Although there are closed algebraic formulae for the solutions of any quartic233

equation, they are somewhat unwieldy. Therefore, it is not possible to give a general simple formula for σ0 and hence234

a general stability criterion. However, for a fixed value of the evaluation point z0, the algebraic equation (17) can be235

solved numerically in a straightforward manner for any specific values of the system parameters (6). Furthermore, for236

some important cases, equation (17) reduces to a biquadratic, with relatively simple analytic solutions. This happens237

for any ‘subcase’ of the full system, defined by neglect of one or more of the following factors: rotation Ω, shear238

flow u0(z), toroidal field a0(z), or poloidal field b0. For each of these subcases, we need consider only an individual239

instability mechanism or a coupling of at most two. Analysis of the various subcases allows us to investigate the240

constituent parts of the instability of the complete system, and to make comparison with earlier studies. In the241

following subsections, we present the analytical approach to these subcases, which prepares the ground for the detailed242

analysis of the full system.243

3.1. Centrifugal instability244

If we neglect the effect of the magnetic field, namely we set a0(z) = 0 and b0 = 0 in the system of equations245

(13a)–(13h), and hence also in (17), we obtain a purely hydrodynamic system, with the only possibility of instability246

being centrifugal. In this case, the growth rate at leading order σ0, which we denote by σCI , is given by the simple247

expression248

σ2
CI (z0) = −κ2(z0), (18)249

where250

κ2(z) = UΩ (UΩ − Uu (−Du0 (z))) (19)251

is the square of the depth-dependent nondimensional local form of the epicyclic frequency κ, which is the frequency of252

oscillations of a radially displaced fluid parcel in a differentially rotating system (cf. Balbus & Hawley 1991).253

It can be seen that in the absence of a basic-state shear flow u0(z), κ
2 > 0 and so the system supports only waves254

with rotational frequency UΩ > 0. However, in the presence of a shear flow, instability will ensue if κ2 (z0) < 0 at255

some level z0 in the fluid layer; equivalently256

Uu(−Du0(z0)) > UΩ for some z0. (20)257

Inequality (20) is a local equivalent of the well-known Rayleigh criterion for a differentially rotating fluid; namely that,258

for a given radial profile of the angular velocity Ω(R), a necessary condition for instability is that the fluid specific259

angular momentum R2Ω(R) must decrease with increasing distance R from the rotation axis, i.e. d(R2Ω(R))2/dR < 0.260

This inequality may be rewritten as 2Ω(2Ω+RdΩ/dR) < 0, where the left hand side of this inequality is the standard261

definition of the epicyclic frequency for a differentially rotating fluid. It agrees with our local model, in which the262

rotation parameter UΩ and the shear flow gradient UuDu0 correspond to the quantities 2Ω(R) and RdΩ(R)/dR263

respectively. For the particular case when then the basic flow u0(z) is a linear function of z with negative gradient264
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(i.e., the epicyclic frequency κ is constant), our model reduces to a standard shearing box approximation. However,265

our asymptotic analysis is valid for an arbitrary shear flow profile u0(z). It follows that for the full system governed266

by equations (13a)–(13h), we can expect that a threshold value of the flow gradient, at which the squared epicyclic267

frequency κ2(z) first becomes negative somewhere in the layer, will play an important role in the dynamics.268

3.2. Magnetorotational instability269

For the less restrictive system in which the poloidal component is retained, but the basic state toroidal magnetic270

field is still neglected (i.e. we set a0(z) = 0 and b0 ̸= 0 in (13a)–(13h)), besides the centrifugal instability we may also271

expect the axisymmetric MRI. In general, the MRI occurs when, in a rotating magnetized fluid, the angular velocity272

decreases with radius. However, we demonstrate in Appendix C that under the assumption of weak poloidal field273

(b0 → 0), the MRI instability is apparent at leading order only for high wavenumbers satisfying k ∼ b−1
0 . The other274

regimes, namely 1 ≪ k ≪ b−1
0 and k ≫ b−1

0 ≫ 1, lead to the pure CI (if κ2(z0) < 0) and stability (at least at leading275

order), respectively. This is a well-known result for weak magnetic fields (e.g. Balbus & Hawley 1991).276

By the use of equation (17), for the case at hand, the leading order contribution to the growth rate σ0 ≡ σMRI takes277

the following form (cf. expression (62)):278

σ2
MRI (z0) = − k2b20

ρ0 (z0) /Λ
− κ2(z0)

2
+

[
U2
Ω

k2b20
ρ0 (z0) /Λ

+

(
κ2(z0)

2

)2
]1/2

. (21)279

An important difference from the pure CI case, with growth rate given by (18), is that now, at leading order, the280

growth rate depends on the wavenumber k. Thus the corresponding growth rate function is dependent on both height281

and wavenumber, σ(z, k), which makes the identification of the most unstable mode somewhat more complicated. It282

is instructive to consider separately the cases of κ2(z0) < 0, in which case the CI is present in the absence of magnetic283

field, and κ2(z0) > 0, in which it is not.284

If κ2(z0) < 0, there is instability provided that285

0 <
k2b20

ρ0 (z0) /Λ
< U2

Ω − κ2 (z0) , (22)286

thus showing that the CI is eventually stabilized by a sufficiently large value of kb0. If287

UΩ
2 + κ2(z0) > 0, (23)288

then the CI is initially destabilized by the inclusion of a very weak magnetic field, before eventually being stabilized289

as the field strength (or, to be more precise, the product kb0) is increased. If, on the other hand, inequality (23) is not290

satisfied, then increasing the magnetic field strength b0 is monotonically stabilizing.291

It is when κ2(z0) > 0, and hence the flow is stable to CI in the absence of b0, that the influence of the magnetic292

field becomes particularly significant. In this case, from expressions (19) and (21), the criterion for instability — to293

an axisymmetric MRI — takes the form:294

UΩ
2 − κ2(z0) = UΩUu(−Du0(z0)) >

k2b20
ρ0(z0)/Λ

, (24)295

which is a local form of the standard criterion for the MRI, −RdΩ2(R)/dR > k2b20/(µρ0) (cf. Balbus & Hawley296

1991). Hence, in our system, the rotation rate or the negative shear flow gradient must be sufficiently strong in order297

to destabilize the flow. On the other hand, without rotation (UΩ = κ = 0), expression (21) simply reduces to the298

dispersion relation for Alfvén waves, whereas with rotation but no shear (Du0 = 0 ⇔ U2
Ω = κ2 > 0), such waves are299

coupled with inertial waves. In both cases, the system is always stable, i.e. σ2
MRI ⩽ 0.300

From expression (21), it is straightforward to show that the wavenumber of the mode of maximum growth rate, for301

fixed b0, is given by302

k = kMRI = b−1
0

[
ρ0 (z0)

Λ

(
U4
Ω − κ4 (z0)

)
4U2

Ω

]1/2
, (25)303

with associated maximum growth rate given by304

σ2 = σ2
MRI (z0,kMRI) =

(
U2
Ω − κ2 (z0)

)2
4U2

Ω

. (26)305
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As noted by Balbus & Hawley (1991), although the wavenumber of the mode of maximum growth rate, given by306

expression (25), depends on b0, the maximum growth rate itself, given by (26), does not. It is also worth noting that307

expressions (25) and (26) are in accord with those for an isothermal, incompressible Keplerian disc, for which the308

preferred mode is given by k2MRIb
2
0 = 15ρ0U2

Ω/64Λ, with maximum growth rate given by σMRI = 3UΩ/8.309

Expression (25) in fact defines a range of wavenumbers for all possible evaluation points z0 ∈ [0, 1], with corresponding310

growth rates σMRI given by (26). In particular, for the simplest form of the basic shear flow u0(z), namely a linear311

shear (where the epicyclic frequency κ is constant), all modes with wavenumbers k ∈ kMRI(z0), have the same growth312

rate at leading order, namely σMRI(kMRI); the difference appears only in the higher order analysis, which is described313

in Section 4 for the general case. Thus, for a linear shear, we expect a plateau in the dispersion relation σ(k) in the314

range between the minimum and maximum values of kMRI . For a basic state shear flow with a nonlinear dependence315

on z, the dispersion relation is more complicated, and depends on the form of the depth-dependent epicyclic frequency316

κ(z).317

100 102 104 106

10-4

10-2

100

Figure 2. Positive branches of the real parts of the growth rates ℜ(σ(k)) as functions of wavenumber k for a system that is
unstable owing to the MRI or CI. The basic state has a linear shear flow of the form u0(z) = −ζz, with ζ = 0.5 (red), ζ = 1.0
(green) and ζ = 2.0 (blue). The values of the remaining parameters are a0 = 0, b0 = 10−4, Λ = 0.2, Uu = 1.0, UΩ = 1.0, P = 1.9,
α = 1.0, f = 1. Solid lines denote the leading order growth rate σ0; circles denote the numerically determined eigenvalues σ.
The blue dashed line indicates the wavenumber-independent analytical value of σ0 for the pure CI subcase (with b0 = 0).

As a specific example to illustrate the relationship between the asymptotic results (valid for k ≫ 1) and the318

numerical results (which can be obtained for all k), we consider basic states with a uniform linear shear flow; thus319

we set u0(z) = −ζz, with ζ > 0 to allow for the possibility of CI and MRI. Figure 2 shows selected positive branches320

of the real parts of σ(k) for three cases, differing only in the value of ζ, chosen to highlight the role of the CI and321
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MRI: the state with ζ = 2 is unstable to CI; that with ζ = 0.5 is stable to CI; and that of ζ = 1 is marginally322

stable. The theoretical relationship (21) is shown as solid lines, where the highest growth rate value σ0 is determined323

over the range of wavenumber values k; there is clearly a preferred wavenumber that maximizes the growth rate.324

For comparison, the blue dashed line denotes the wavenumber-independent growth rate for the non-magnetic case325

(b0 = 0) with ζ = 2, where we can, at most, expect only CI, as described in Section 3.1. The numerically-determined326

eigenvalues σ (marked by circles on Figure 2) are obtained from the full equation (14) (with basic toroidal field a0(z)327

set to zero); the numerical method of solution is described in detail in Section 5. From Figure 2 we can see, as noted328

above, that a weak constant poloidal magnetic field b0 can destabilize the system with respect to the pure centrifugal329

instability (ζ = 0.5 and ζ = 1.0 cases). However, if the shear gradient ζ is increased, with all other parameters fixed330

(which also implies enhancement of the magnitude of the negative squared epicyclic frequency κ2), the CI eventually331

become so vigorous that there is no noticeable impact of the magnetic field on the growth rate σ. Nevertheless, the332

field b0 establishes a range of wavenumbers k for instability, given by inequality (24), which is accurately captured by333

the numerically-determined solutions. Of particular note in Figure 2 is the excellent at large k between the analytical334

expression for the growth rate σMRI , given by equation (21), with σ determined numerically from equation (14).335

Indeed, although, our asymptotic results are obtained under the assumption k ∼ b−1
0 ≫ 1, the agreement between336

analytical and numerical results is very good even for k = O(10). Moreover, this agreement can be improved by taking337

into account the next order corrections to σ, as described in Section 4.338

3.3. MBI of a toroidal field, with shear flow and rotation339

The pure axisymmetric MBI, in the absence of poloidal field, shear flow and rotation, was studied in the limit of340

k → ∞ by Mizerski et al. (2013). Here, through similar methods, we investigate the influence of shear flow and rotation341

on the MBI of a toroidal field. From equation (17), we can express the leading order growth rate σ0, which we shall342

denote by σMBIκ, as343

σ2
MBIκ (z0) = σ2

MBI + σ2
MBIC − κ2 (z0) . (27)344

In (27), σ2
MBI is the growth rate at leading order of the pure MBI (when UΩ = κ = 0) at a given evaluation point z0345

(cf. equation (35) in Mizerski et al. 2013), given by346

σ2
MBI (z0) =

Λa20 (z0) f

F (z0)

[
H−1

ρ (z0)−H−1
B (z0)

]
. (28)347

The expression for σ2
MBIC is analogous, but with gravity replaced by the z-component of the Coriolis force:348

σ2
MBIC (z0) = −Λa20 (z0)UΩUuu0(z0)

F (z0)

[
H−1

ρ (z0)−H−1
B (z0)

]
. (29)349

It can be seen from (28) that the pure MBI of an axisymmetric (interchange) mode is driven by a decrease in height350

of B/ρ, a result that may be recovered from a standard fluid parcel argument (e.g. Acheson 1979). The influence351

of uniform rotation is represented by a negative final term in (27), and hence is such that it always suppresses the352

instability, in accordance with previous studies (e.g. Gilman 1970; Acheson 1979). The influence of the shear flow353

u0(z0), on the other hand, is more subtle, since it can either stabilize or destabilize the system. First, the horizontal354

basic flow affects the effective gravity through the Coriolis force (the Eötvös effect). Second, the sign of the shear flow355

gradient (or the epicyclic frequency squared, κ2) determines whether or not the shear will amplify the MBI.356

The growth rate in the form (27) may be regarded as a coupling of the growth rates of the effective MBI (the first two357

terms) and the CI. We observe that the CI can be amplified by a sufficiently strong negative gradient of the toroidal358

magnetic field. We note that in this case the Coriolis force acts as an effective gravity (contributing to g). Through359

this effect the MBI is enhanced provided that the shear flow u0(z) is negative (westward).360

3.4. MBI with poloidal magnetic field361

As a final subcase, we consider the separate influence of the constant weak poloidal field b0 on the MBI, in the362

absence of both rotation (UΩ = 0) and shear flow (u0 = 0). As for the MRI subcase described in Section 3.2 and363

Appendix B, it can be shown that under the assumptions of short perturbation wavelengths (essential for the MBI)364

and weak field b0, there are three possible regimes. The regime 1 ≪ k ≪ b−1
0 yields the pure MBI, as in Mizerski365

et al. (2013), while for k ≫ b−1
0 ≫ 1 there is no instability at leading order. There is a leading order influence of the366
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poloidal magnetic field b0 on the growth rate only for k ∼ b−1
0 . For this range of wavenumbers, equation (17) reduces367

to a quadratic in σ2
0 , with the greater root taking the form368

σ2 = σ2
MBIP (z0) =

1

2

(
σ2
MBI − ϕ (z0)

)
+

1

2

[(
σ2
MBI − ϕ (z0)

)2
+ 4ψ (z0)

]1/2
, (30)369

where the functions ϕ(z) and ψ(z) are defined as370

ϕ (z) =
k2b20Λ

ρ0 (z)

(
1 +

Pαρ0 (z)
F (z)

)
, (31)371

372

ψ (z) =
k2b20Λ

ρ0 (z)

(
Pαρ0 (z)
F (z)

)[
σ2
MBI −

(
k2b20Λ

ρ0 (z)
− f2Λa20 (z)

PαF (z)

)]
. (32)373

On using the basic state equation (11), with UΩ = 0, the growth rate of the pure MBI (σMBI), defined by (28), may374

be expressed in terms of the inverse scale height of the toroidal magnetic field H−1
B (z) as375

σ2
MBI (z0) =

fΛa20 (z0)

Pαρ0 (z0)

[
−H−1

B (z0)−
fρ0 (z0)

F (z0)

]
. (33)376

Moreover, it can be seen from expression (30) that the growth rate (at leading order) of the MBI becomes dependent377

on the wavenumber k in the presence of a constant weak poloidal magnetic field b0, or, in other words, that the growth378

rate function is now depth- and wavenumber-dependent, σ(z, k). It can also be shown that σ2
MBIP is always real;379

hence the growth rate σMBIP can take either real or purely imaginary values, just like σMBI .380

Expression (30) yields a simple instability criterion, which may be expressed as a condition on the inverse magnetic381

field scale height at a point z0 somewhere in the fluid layer:382

−H−1
B (z0) >

k2b20Pα
fa20(z0)

> 0. (34)383

With the aid of (33), the criterion (34) can be rearranged into the following form:384

k2b20Λ

ρ0 (z0)
< σ2

MBI +
f2Λa20 (z0)

PαF (z0)
, (35)385

or, equivalently,386

1 ≪ k ≲ b−1
0

[
ρ0 (z0)

Λ

(
f2Λa20 (z0)

PαF (z0)
+ σ2

MBI

)]1/2
. (36)387

Thus, any system that is unstable at a point z0 with respect to the pure MBI (σMBI > 0) will always be unstable388

(σMBIP > 0) in the presence of a weak field b0 for some range of large wavenumbers k, provided that the asymptotic389

assumption 1 ≪ k ∼ b−1
0 is also satisfied. An interesting consequence of criterion (36) is that it can by satisfied even390

for σ2
MBI < 0, provided that the condition H−1

B (z0) < 0 is met. Thus, a poloidal field b0 can destabilize an eigenmode391

associated with the evaluation point z0 that is stable due to pure MBI.392

Just as in the subcase of the pure MRI presented in Section 3.2 (see also Appendix B), we can find the range of393

wavenumbers k for the most unstable modes, since expression (30) for the growth rate σMBIP depends explicitly on k.394

It is readily shown that the critical wavenumber k = kMBIP is determined by a biquadratic equation. Since, without395

loss of generality, we may concentrate on positive values of kMBIP , it can be demonstrated that there can be at most396

one positive solution kMBIP > 0, which exists if the following condition is satisfied:397

−
(
f2ρ0
F

)(
Λa20
Pαρ0

)
< σ2

MBI <

(
f2ρ0
F

)(
Λa20
F

)
; (37)398

for clarity, we have omitted the argument z0 in all z-dependent functions, as we will also do in the subsequent399

expressions in this section. The interpretation of (37) is that if the negative gradient of the toroidal magnetic field400

is too strong or too weak (making σ2
MBI too large or ‘too negative’), the growth rate σMBIP , if positive, reaches its401

maximum value somewhere on the boundaries of the region defined by k ∼ b−1
0 and not in the form of a critical point402
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kMBIP . However, if condition (37) is met, the growth rate σ2
MBIP attains its (always positive) maximum given by the403

expression404

σ2
MBIP (kMBIP , z0) =

Pαρ0
Λa20

(√
f2ρ0
F

− σ2
MBI −

√
f2ρ0
Pαρ0

)2

, (38)405

with the wavenumber given by406

kMBIP = b−1
0

[
(F + Pαρ0) fρ0
Λ2a20 (Pα)

1/2

(
f2ρ0
F

− σ2
MBI

)1/2

− Fρ0
Λ2a20

(
2
f2ρ0
F

− σ2
MBI

)]1/2
. (39)407

Expression (39) determines the range of wavenumbers of the most unstable modes k ∈ kMBIP (z0) for all evaluation408

points z0 ∈ [0, 1] at the leading order of the asymptotic analysis.409

We may also investigate the condition for enhancement of the MBI by inclusion of the field b0, for the most unstable410

modes with growth rate σMBIP given by (38) and wavenumber kMBIP given by (39), both calculated at the evaluation411

point z0 that maximizes σMBIP . The sufficient condition for σMBIP (kMBIP ) > σMBI takes the following simple form:412

σ2
MBI <

(
f2ρ0
F

)(
1−

√
Pαρ0
F

)2

. (40)413

Therefore, if the pure MBI is not ‘too unstable’, the inclusion of the poloidal field b0 can enhance the growth rate,414

provided that criterion (37) is also met.415416

Figure 3 shows selected positive branches of the real parts of the ‘dispersion relations’ σ(k) for three sets of values of417

the system parameters. The theoretical relationship (solid lines) follows from expression (30), where the highest value418

of the growth rate at leading order, σ0, is determined for each wavenumber k. This allows for identification of the419

range of wavenumbers of the most unstable modes. The dashed lines on Figure 3 mark the wavenumber-independent420

σ0 for the case of pure MBI with b0 = 0, given by expression (28). The numerical eigenvalues σ (marked by circles)421

are obtained from the full equation (14) in the absence of both rotation and a basic shear flow (UΩ = u0(z) = 0) and422

for a linear basic toroidal magnetic field of the form a0(z) = 1+λ(1− z), solved by the method described in Section 5.423

From Figure 3, we can see that, in accordance with our theory, a weak constant poloidal magnetic field b0 establishes424

a finite wavenumber range of the most unstable modes with k ∼ b−1
0 , suppressing the shorter perturbations to a zero425

growth rate. For a sufficiently strong gradient of the toroidal magnetic field (represented by the λ = 1.35 and λ = 1.95426

cases), with all other parameters fixed, the highest σ value achieved is very well approximated by the analytical growth427

rate at leading order, σ0, from both (30) and (38). This growth rate is also almost equal to the eigenvalue σ of the428

most unstable modes for the case of pure MBI with b0 = 0, when the finite wavenumber k of the most unstable modes429

cannot be established (the pure MBI growth rate is maximized when k → ∞). On the other hand, when the toroidal430

field gradient λ is relatively weak (as shown by the case of λ = 0.45), so that the pure MBI is not excited, under431

condition (40) the presence of the poloidal field b0 can destabilize the system; the growth rate of the most unstable432

mode is then very well approximated by (30) and (38). This is a somewhat surprising effect, since in our setup the433

poloidal field b0, in the absence of a toroidal field a0(z), is not a source of any type of instability in a non-rotating434

system. It is the joint action of b0 and the weak toroidal field gradient that leads to destabilization.435

3.5. Viewing the full system through the subcases436

It is of interest to consider the role of the various subcases for different basic states, to determine which subcase, if437

any, dominates, together with the relationship between the full system and the various subcases. In this section, to438

address these points, we consider, as an illustrative example, two families of basic states and, within each, we explore439

the dependence on the basic state shear flow u0(z). We consider the two sets of parameter values:440

P = 1.9, α = 1.0, Λ = 0.2, λ = 1.35, Uu = 1.0, UΩ = 1.0, (41)441

and442

P = 1.9, α = 1.0, Λ = 0.2, λ = 1.95, Uu = 1.0, UΩ = 0.4, (42)443

where the parameter λ is the constant gradient of the basic toroidal magnetic field, a0(z) = 1 + λ(1 − z). The basic444

state shear flow is also taken to be linear with a negative gradient, which is necessary in order to excite the MRI and445
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Figure 3. Positive branches of the real parts of the growth rates ℜ(σ(k)) as functions of the wavenumber k, for a system that
is unstable to MBI in the presence of a weak constant poloidal field b0 and in the absence of both rotation and a basic shear
flow (UΩ = u0(z) = 0). The basic state toroidal magnetic field takes the form a0(z) = 1+ λ(1− z), for λ = 0.45 (red), λ = 1.35
(green) and λ = 1.95 (blue). The values of the remaining parameters are b0 = 10−4, Λ = 0.2, Uu = 1.0, P = 1.9, α = 1.0, f = 1.
Solid lines denote the leading order growth rate σ0; circles denote the numerically determined eigenvalues σ. The dashed lines
indicate the wavenumber-independent analytical value of σ0 for the pure MBI subcase with b0 = 0.

CI instabilities; thus u0(z) = −ζz. Parameters (41) describe what we shall term as the ‘weak-MBI’ case, since, for446

these parameter values, in the absence of the shear flow u0(z), the MBI is entirely suppressed by rotation, regardless447

of the presence of the poloidal field b0. We shall refer to the case described by parameters (42), in which the MBI is448

not suppressed by rotation in the absence of a shear flow u0(z), as the ‘strong-MBI’ case.449

Figure 4 (for the weak-MBI case) and Figure 5 (for the strong-MBI case) present theoretical (high wavenumber)450

values of σ0 (the leading order growth rate) and numerical values of σ (the full growth rate) for the most unstable451

modes, as a function of the basic shear flow gradient ζ. The results for the various subcases are shown, together452

with those for the full system. Numerical results are obtained from solving the full equation (14) for a wide range of453

wavenumbers k; details of how the numerical results are obtained are contained in Section 5. In this subsection, for454

the numerical results, we follow our theoretical assumption and take b0 = 1/k. It is though worth noting that from455

the results of Section 5, in which we fix the value of b0, our assumption here on b0 is not particularly restrictive. It456

can be seen that there is excellent agreement between the analytical and numerical results.457

Considering first the weak-MBI case, for sufficiently large shear gradients (ζ ≳ 3), the dynamics is dominated by458

the centrifugal instability. However, for weaker shear, it can be seen that different instability types require different459

minimum values of ζ to enter the dynamics. The pure CI is destabilized for ζ > 1.0. However, with rotation present,460

a slightly lower value (ζ ≈ 0.91) initiates the MBI, due to the influence of the Coriolis force on the effective gravity.461
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A significantly weaker threshold value (ζ > 0.11) is needed for emergence of the MRI, which turns out to be the most462

unstable subcase among the instabilities considered individually. Finally, the full system — including rotation, shear463

flow and magnetic field (both poloidal and toroidal) — is destabilized by the weakest shear threshold (ζ > 0.044).464

From Figure 4, it can be seen that for a given value of the shear gradient ζ, the growth rate for the full case exceeds465

that of any of the subcases. This may be interpreted as the full system experiencing reinforcement form the component466

instability mechanisms. By contrast, Figure 4 also shows three shear-independent cases: the pure MBI, the MBI under467

the sole influence of the poloidal field b0, and the MBI under the sole influence of rotation Ω. It can be seen that the468

MBI in the absence of shear flow is entirely suppressed by rotation and significantly weakened by the poloidal field.469

With an increasing shear flow gradient ζ, the instabilities in all the other subcases eventually become more unstable470

than any shear-independent case, owing to the presence of MRI and CI.471

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Figure 4. Positive branches of the real parts of the leading order growth rates of the most unstable modes of the full system
and the various subcases, as a function of the basic shear flow gradient ζ for the weak-MBI case, defined by (41). The poloidal
magnetic field has magnitude b0 = 1/k. Analytic results (a) are represented by solid lines, numerical results (n) by circles.
Dashed lines denote the shear-independent cases explained in the legend.

We now turn to the second set of parameter values given in (42), which describes the strong-MBI case. Figure 5472

shows σ0, calculated theoretically, and σ, calculated numerically from (14), for the most unstable modes as a function473

of the shear flow gradient ζ; the upper plot covers the range 0 < ζ < 8, the lower plot shows the range 0 < ζ < 1 in474

more detail. As for the weak-MBI case, the dynamics for sufficiently strong shear gradients (here ζ ≳ 8.0) is eventually475

dominated by the centrifugal instability for all subcases. However, for weaker shear we again see that the different476

instability types require different minimum threshold values of ζ to enter the dynamics. Similarly to the weak-MBI477

case, here it is also the pure CI for which shear gradient threshold is highest (ζ > 0.4). A slightly lower value of ζ478
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(ζ > 0.28) is sufficient to excite the MRI. However, now the system is unstable even in the absence of a shear flow479

(ζ = 0) because of the relatively strong toroidal magnetic field gradient λ. It is also of note that, for any value of480

the shear gradient ζ > 0.1, the greatest value of σ0 is observed for the subcase combining only the MBI and CI.481

Thus, for the strong-MBI case, the introduction of a constant weak poloidal magnetic field b0 acts to stabilize the482

system (provided that the shear is not too weak). It can also be seen from Figure 5 that, on increasing the shear483

flow gradient ζ, all the shear-dependent subcases eventually become more unstable than any of the shear-independent484

subcases, owing to the marked amplification of the MRI and CI with increasing ζ.485486

4. NEXT ORDER ASYMPTOTIC ANALYSIS487

The next order analysis allows us to determine the potential evaluation points z0 for the most unstable eigenmode488

w̃(z) of equation (14), as well as the leading order asymptotic approximation of such a solution, denoted by w̃0(z).489

As explained in Appendix C, the solution at zeroth order (the main flow) is simply w = 0. The perturbation method490

reveals the strongly localized perturbations to this trivial solution. They can be classified into two categories: wall491

modes and body modes. Wall modes take the form of boundary layer solutions in which the evaluation points z0 lie492

on the boundaries of the domain; on one side, they satisfy the impermeability condition (15), and on the other they493

match smoothly to the zero main flow solution. Body modes, on the other hand, are internal layer-type solutions in494

which ℜ(z0) lies strictly inside the domain and which decay on both sides to zero. We now discuss the results for these495

two types of modes, with further details provided in Appendix D.496

4.1. Wall modes497

Wall modes are solutions w̃(z) of equation (14) in the form of a boundary layer in the vicinity of the boundaries of498

the domain, either z0 = 0 or z0 = 1, with the thickness of the boundary layer decreasing with increasing wavenumber499

k. This boundary layer thickness, denoted by δ1, scales with the value of k and by the relation (16) also with the value500

of the weak constant poloidal magnetic field b0:501

δ1 ∼ k−2/3 ∼ b
2/3
0 . (43)502

It follows that the relation (43) establishes the vertical and horizontal spatial scales of the variations of interchange503

wall modes.504

The leading order asymptotic approximation of the most unstable wall mode, which satisfies the impermeability505

condition w̃(z0) = 0, takes the form of an Airy function of the first kind (cf. formula (78)):506

w̃(z) ∼ w̃0(z) = Ai
[
χ1 + k2/3 (z − z0) Σ̃

1/3
z

]
, (44)507

where χ1 ≈ −2.338 is the first zero of the Airy function, and where the complex number Σ̃z is defined by evaluating508

(72) at z = z0. Hence w̃0(z) is a complex function with the real and imaginary parts oscillating under the envelope of509

the function modulus |w̃0(z)|. Selected plots of the wall modes are presented in Section 5.510

It should be noted that in the subcases of the full problem related to the pure MBI or pure MRI, described in511

Section 3, the wall modes are approximated by the Airy function in a form similar to (44). However, in all these512

simpler unstable cases, the growth rate function σ(z) is a purely real positive function (at least on a part of the513

domain) and hence the growth rates σ are real numbers and also the eigenmodes w̃(z) are purely real functions. For514

this reason, there could be at most one wall mode (when the growth rate function σ(z) is maximized at the boundary515

of the domain) or none (when σ(z) is maximized strictly inside the layer). In the full system, however, the situation is516

different: owing to the complex form of (17), the wall modes given by (44) always exist at both edges of the domain,517

provided that they are unstable, namely ℜ(σ0 = σ(z0)) > 0 at the evaluation points z0 = 0 or z0 = 1. In addition,518

these complex solutions exhibit very strong oscillations in the real and complex parts, but still have a smooth Airy-type519

envelope |w̃0(z)|. Finally, for the wall mode (44), the asymptotic approximation of the growth rate σ, including the520

first order correction (77), takes the form521

σ = σ0 −
(
|χ1|Σ̃−1

σ Σ̃2/3
z

)
k−2/3 + o

(
k−2/3

)
, (45)522

where Σ̃σ is defined by (72), and where k−2/3 ∼ b
2/3
0 from (43).523
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Figure 5. Positive branches of the real parts of the leading order growth rates of the most unstable modes of the full system and
the various subcases, as a function of the basic shear flow gradient ζ ∈ [0.0, 8.0] (upper plot) and ζ ∈ [0.0, 1.0] (lower plot) for
the strong-MBI case, defined by (42). The poloidal magnetic field has magnitude b0 = 1/k. Analytic results (a) are represented
by solid lines, numerical results (n) by circles. Dashed lines denote the shear-independent cases explained in the legend.
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4.2. Body modes524

For the pure MBI or pure MRI, described in Section 3, σ is real, and the body modes are the solutions w̃(z) of525

equation (14) in the form of an internal layer confined strictly inside the domain in the vicinity of the evaluation526

point 0 < z0 < 1. Outside this layer the body mode decays exponentially to match the zero main flow solution. The527

evaluation point z0 for the most unstable body mode is defined by the location where the growth rate function σ (z)528

has its global maximum inside the domain. More details of the analysis of the pure MBI case can be found in Mizerski529

et al. (2013).530

However, for the full problem, the situation is more complicated, as described in detail in Appendix D. The leading531

order expression for the growth rate, σ0, is now complex and the evaluation point z0 is initially unknown. In other532

words, the growth rate function σ (z), given implicitly by the equation W0(z, σ) = 0, where W0 is defined by (54c), is533

complex. It can then be shown — see Appendix D — that the condition for the existence of body modes is that the534

derivative of the growth rate function with respect to z has to vanish at the point z0. This leads to a system of two535

algebraic equations for the unknown pair (z0, σ0), i.e.536

0 =W0 (z0, σ0) , 0 =
∂

∂z
W0 (z, σ)

∣∣∣∣
(z,σ)=(z0,σ0)

. (46)537

Solution of the system (46) yields all allowed evaluation points z0 for the body modes and the leading order form of538

their growth rates σ0. However, it turns out that (except in special cases) all z0 solutions are essentially complex,539

i.e. ℑ(z0) ̸= 0. Thus, significantly, ℜ(z0) is not, in general, the point where the function ℜ(σ (z)) has its maximum.540

Instead, the evaluation point z0 is a point where the complex-z derivative of the growth rate function σ (z) is zero on541

the subdomain of the complex plane 0 < ℜ(z0) < 1 (Soward 1977; Soward & Jones 1983; Yano 1992; Jones et al. 2000).542

The asymptotic solution of equation (14) is a complex-valued function w̃0(z) of the real variable z with the associated543

complex eigenvalue σ at leading order equal to σ0. Furthermore, the modulus, as well as the real and imaginary parts544

of the body modes w̃0(z) do not, in general, localize in the vicinity of the point ℜ(z0), but rather about some other545

point 0 < zmax < 1, which we term the ‘localization point’. This fact has an important impact on the numerical search546

for solutions. Finally, it should be mentioned that for the pair (z0, σ0) satisfying equations (46) the body mode does547

not necessarily have to exist, since additionally it has to fulfill the boundary conditions (15).548

Next, the thickness of the internal layer-type body mode, denoted as δ2, needs to be established in terms of scaling549

with the value of k and by the relation (16) also with the value of the weak constant poloidal wavenumber b0. Similarly550

to Mizerski et al. (2013), and as explained in Appendix D,551

δ2 ∼ k−1/2 ∼ b
1/2
0 . (47)552

The relation (47) determines the vertical and horizontal spatial scales of variation of the interchange body modes.553

The leading order asymptotic approximation of the most unstable body mode has the form of a complex Gaussian554

function (cf. expression (91))555

w̃(z) ∼ w̃0(z) = exp

[
−1

4
k (z − z0)

2
Υ̃1/2

z

]
, (48)556

where Υ̃z, which is complex, is defined by (85). Hence w̃0(z) is a complex function with real and imaginary parts557

oscillating under the envelope of the function modulus |w̃0(z)|. The modulus takes the shape of a Gaussian function558

of a real variable on the domain [0, 1], localized near the localization point zmax, which is determined by559

zmax = ℜ (z0)−ℑ (z0)
ℑ
(
Υ̃

1/2
z

)
ℜ
(
Υ̃

1/2
z

) . (49)560

Expression (49) demonstrates clearly the difference between the evaluation point z0 and the localization point zmax,561

i.e. the presence of the non-zero imaginary parts of z0 and Υ̃z (note that in the subcases related to the pure MBI or562

pure MRI, z0 and Υ̃z are both real, in which case zmax = z0).563

The eigenmode approximation w̃0(z) given by (48) has the same structure as the body modes in the case of the pure564

MBI (cf. Mizerski et al. 2013) as well as in the case of the MBI with magnetic diffusion (cf. Gradzki & Mizerski 2018).565

In the latter case, the weak magnetic diffusivity plays a similar role as the weak poloidal field b0 in the current study,566
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namely establishing the horizontal and vertical length scales of variation of the most unstable perturbation. Finally,567

for a body mode given by (48), the asymptotic approximation of the growth rate σ up to first order takes the form568

σ = σ0 −
(
1

2
Υ̃−1

σ Υ̃1/2
z

)
k−1 + o

(
k−1

)
, (50)569

where Υ̃σ, which is complex, is defined by (88), and k−1 ∼ b0 from the relation (47).570

5. NUMERICAL SOLUTIONS OF THE FULL SYSTEM571

The linear stability to interchange modes of the system under consideration is governed, in general, by the second572

order ordinary differential equation (14) for w̃(z), the amplitude of the vertical velocity perturbation; the growth rate573

σ is determined as the eigenvalue. In Sections 3 and 4, we considered the high-wavenumber limit (k ≫ 1), thereby574

allowing analytical progress in determining both the growth rate and spatial structure of the unstable modes. Here,575

we present numerical solutions of (14), with boundary conditions (15), and compare these with the corresponding576

analytical expressions from Sections 3 and 4.577

In Section 3.5 we presented numerical results for subcases of the full system, with at least one of the main physical578

ingredients neglected. In this section, we utilize the same two representative sets of parameter values: set (41), which579

we refer to as the ‘weak-MBI’ case, and set (42), which we refer to as the ‘strong-MBI’ case. However, contrary to the580

approach of Section 3.5, here we present the results for certain fixed values of the shear gradient ζ, so as to focus on581

verification of the analytical results from Section 4, together with identification of the most unstable mode. In this582

section we treat the poloidal magnetic field b0 as a constant, though consider different values of b0. Recall that in583

the theoretical analysis of Sections 3 and 4 we adopted the ordering b0 ∼ 1/k; it is therefore important to examine584

the validity of this assumption by investigating cases in which b0 is fixed and we explore, numerically, a wide range585

of wavenumbers k. To solve equation (14) numerically, we utilize the MATLAB bvp4c function for the solution of586

boundary value problems. The solver employs a finite difference routine that implements the three-stage, fourth order587

Lobatto IIIa implicit method (for details, see Shampine & Kierzenka 2001). Since we are considering interchange588

solutions, with transverse wavenumber k, we seek to maximize the eigenvalue σ over all positive k, for a chosen basic589

state and a fixed set of non-dimensional parameters of the system, in particular the weak constant poloidal magnetic590

field b0.591

In Section 5.1, for the weak-MBI case, and Section 5.2, for the strong-MBI case, we present a comparison of the592

analytical and numerical results. We consider three representative values of the negative shear flow gradient, leading593

to three distinct cases: CI-stable (with κ2 > 0), CI-neutral (κ2 = 0) and CI-unstable (κ2 < 0). Initially we focus on594

one selected value for the magnitude of the weak poloidal field, namely b0 = 10−4; under assumption (16), we thus595

anticipate wavenumbers of the most unstable modes of O
(
104
)
. For this value of b0, we show the analytically and596

numerically obtained dispersion relations σ(k) for the three cases of κ2 > 0, κ2 = 0 and κ2 < 0. We then present each597

of the three cases separately, together with the dispersion relations for all the subcases described in Section 3. This598

makes it possible to observe which of the physical ingredients has a stabilizing or destabilizing effect on the flow and599

how they affect the full system. We then focus on the most interesting situation (κ2 = 0), in which only the MBI and600

MRI compete at leading order. For the most unstable modes, we show the eigenmode solutions of equation (14) and601

the scaling relation k(b0) for a wide range of poloidal field strengths, with b0 ranging from 10−1 to 10−10.602

5.1. Weak-MBI case603

The weak-MBI case is defined by the physical parameters (41), namely604

P = 1.9, α = 1.0, Λ = 0.2, λ = 1.35, Uu = 1.0, UΩ = 1.0, (51)605

together with a linear basic state toroidal magnetic field a0(z) = 1 + λ(1 − z), a basic state shear flow u0(z) = −ζz606

(ζ > 0), and the strength b0 of the uniform poloidal field. As noted earlier, for such a setup in the absence of the shear607

flow (ζ = 0), the MBI is completely suppressed by rotation, regardless of the presence of the poloidal field. Hence we608

can expect that, in this case, the major role is played by the MRI (for moderate values of ζ) or the CI (for sufficiently609

strong ζ). We may then ask how the MRI and CI are affected by the presence of the toroidal magnetic field a0(z).610611

Figure 6 shows the growth rates — calculated both analytically and numerically — as a function of wavenumber for612

a uniform poloidal magnetic field b0 = 10−4, and for three values of ζ (leading to the three cases in κ2). In all cases,613
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Figure 6. ℜ(σ(k)) as a function of k for the weak-MBI case, with b0 = 10−4. Solid lines and circles respectively denote the
analytically and numerically determined values of σ: ζ = 0.5 (cyan, κ2 > 0); ζ = 1.0 (magenta, κ2 = 0); ζ = 2.0 (black, κ2 < 0).

the dispersion relation has a clear global maximum around k ≈ 104; importantly, the preferred wavenumber, calculated614

numerically without any prior assumption, is in line with our assumed theoretical scaling k ∼ b−1
0 . The influence of615

the basic shear flow gradient ζ is also clearly visible. Greater values of ζ make the instability more vigorous since the616

shear amplifies both the MRI and CI (cf. expressions (18) and (26)). Increasing ζ also enhances the instability on617

wavelengths longer than that of the most unstable mode, reflecting the fact that for sufficiently large shear, the system618

is dominated by the CI, the growth rate of which is independent of wavenumber at leading order.619

Figure 7 shows separately the growth rates as functions of k for the three cases of Figure 6, together with the relevant620

subcases. For the subcases with no poloidal field (namely MBI, CI and MBI+CI), the growth rate at leading order621

σ0 is independent of wavenumber. We can see that the full weak-MBI case is always more unstable than the relevant622

subcases (i.e., those including the basic shear flow and rotation). Thus, incorporation of the basic state toroidal field623

a0(z) into the system enhances the instability from the MRI+CI subcase, regardless of whether or not the system624

is stable with respect to the CI. This is not an obvious result, especially in the CI-stable case (Figure 7a), in which625

the rotation is strong enough to suppress the pure MBI completely, but the vertical Coriolis force is too weak to626

destabilize the toroidal magnetic field a0(z) itself (cf. expression (27)). Furthermore, incorporation of the toroidal627

field modifies the shape of the function ℜ(σ(k)), making its global maximum more prominent. On the other hand,628

with increasing shear flow gradient ζ, the nature of the instability of the full system becomes similar to the MRI+CI629

subcase, with the growth rate σ0 tending to the value of the CI, MRI+CI and MBI+CI subcases. As the shear630

increases, κ2 decreases (becoming more negative) (see expressions (21) and (27)), and hence the purely hydrodynamic631

effect of rotation dominates over all magnetic factors.632
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Figure 7. ℜ(σ(k)) as a function of k: a comparison between the full weak-MBI case (red) and its subcases (green and blue),
with constant poloidal magnetic field b0 = 10−4: (a) ζ = 0.5, κ2 > 0; (b) ζ = 1.0, κ2 = 0; (c) ζ = 2.0, κ2 < 0. Analytically
and numerically determined growth rates σ are denoted by solid lines and circles respectively. The blue and green solid lines
and circles correspond respectively to the MBI+b0 and MRI+CI subcases. The horizontal lines indicate the k → ∞ limit of the
following subcases: pure MBI (blue dashed line), MBI+CI (blue dotted line) and pure CI (green dashed line).
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Figure 8. Real parts of the analytic (dashed lines) and numerical (solid lines) solutions for the most unstable eigenmodes
ℜ(w̃(z)) for b0 = 10−1 (k = 14; magenta), b0 = 10−2 (k = 115; green), b0 = 10−3 (k = 1100; blue), b0 = 10−4 (k = 10890; red).
The plots correspond to the full weak-MBI case that is neutrally stable with respect to the pure CI (κ2 = 0). For b0 ≤ 10−3,
the analytical and numerical results are indistinguishable.

Finally, we focus on the situation with κ2 = 0 (ζ = 1.0), where, at leading order of the full weak-MBI case, only633

the MBI and MRI come into play. For b0 = 10−4, the dispersion relation is presented in Figure 7b. A more detailed634

study, covering a wide range of values of b0, reveals that the most unstable mode w̃(z) is always a wall mode localized635

near the top of the layer. Hence, it can be approximated by a complex Airy function of the first kind, given by (44),636

with z0 = 1. Figure 8 shows the real parts of the eigenfunctions w̃(z) for four different values of the poloidal magnetic637

field strength: b0 = 10−1, 10−2, 10−3 and 10−4. Since our theoretical results are obtained under the asymptotic638

assumptions of short-wavelength modes (k ≫ 1) and a weak magnetic field (b0 ≪ 1, with b0 ∼ 1/k), it is clear that639

the agreement between the theoretical and numerical results must increase with decreasing b0. As can be seen from640

Figure 8, for b0 = 10−1 (for which the preferred wavenumber is k = 14), the agreement is relatively poor, whereas641

for b0 = 10−2 (k = 115), the location of the maximum of the eigenfunction (although not its entire spatial extent) is642

well captured by the asymptotic approach. For b0 = 10−3 (k = 1100) and even weaker poloidal fields, the analytic643

and numerical results are indistinguishable. With decreasing b0 (and hence increasing wavenumber k), the eigenmodes644

become more and more localized near the upper boundary of the layer, in agreement with the results of Mizerski et al.645

(2013), and Gradzki & Mizerski (2018) for the case of the pure MBI.646

The agreement between the analytic and numerical results validates not only the asymptotic assumptions of k ≫ 1647

and b0 ≪ 1 but also, significantly, the assumed scaling k ∼ b−1
0 for the wavenumber of the most unstable mode.648

Figure 9 plots the wavenumber of the most unstable mode versus b0 for the range 10−10 < b0 < 10−1. The red solid649

line shows the preferred wavenumber obtained analytically, by maximizing expressions (45) and (50) with respect to650
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Figure 9. Wavenumber k of the most unstable mode as a function of b0 for the full weak-MBI case with κ2 = 0. The blue
circles are calculated numerically from the full system (14). The red solid line is obtained analytically from equations (45) and
(50).

the wavenumber k, having identified the localization point z0 and determined the preference between wall and body651

modes for each k. The slope of the red line is very close to minus one; more precisely the red line can be described by652

the fit k = Cw(b0)b
−1
0 , where the coefficient Cw(b0) = 1.24b0.0080 . Note that the scaling holds over a wide range of b0;653

from relatively long ‘short waves’ k ∼ 10 (and relatively strong ‘weak poloidal field’ b0 ∼ 0.1) to very high values of654

k (and accordingly weak b0) that such modes would probably no longer be physically significant, owing to diffusion.655

Thus the scaling k ∼ b−1
0 for the wavenumber of the most unstable mode is satisfied for the entire physically significant656

range of values of the weak constant field b0 (cf. Figures 2b, 4b and 6b in Gradzki & Mizerski (2018), for a similar657

relationship between k and diffusivities).658

5.2. Strong-MBI case659

We now turn to the strong-MBI case, defined by parameter set (42), namely660

P = 1.9, α = 1.0, Λ = 0.2, λ = 1.95, Uu = 1.0, UΩ = 0.4, (52)661

together with a linear basic state toroidal magnetic field a0(z) = 1 + λ(1 − z), a basic state shear flow u0(z) = −ζz662

(ζ > 0), and the value of the weak uniform poloidal magnetic field b0. For such a setup, and in contrast to the663

weak-MBI case, the MBI is not suppressed by rotation, regardless of the presence of the poloidal field b0 or the shear664

flow u0(z). Hence, in this case, we can expect a coupling between the MBI and MRI (for relatively moderate values665

of ζ) and between the MBI and CI (for sufficiently large ζ).666
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Figure 10. ℜ(σ(k)) as a function of k for the strong-MBI case, with b0 = 10−4. Solid lines and circles respectively denote the
analytically and numerically determined values of σ: ζ = 0.1 (cyan, κ2 > 0); ζ = 0.4 (magenta, κ2 = 0); ζ = 1.0 (black, κ2 < 0).

Figure 10 shows the growth rates, obtained analytically and numerically, as a function of wavenumber, for a uniform667

poloidal magnetic field b0 = 10−4 and for three values of ζ (leading again to the three cases in κ2). In all the cases, the668

dispersion relation σ(k) has a distinct global maximum for k ∼ 104, and hence in line with our assumed theoretical669

asymptotic scaling k ∼ b−1
0 . Again, greater values of ζ enhance the instability through amplification of the MRI and670

the CI (cf. expressions (18) and (26)), but also indirectly by amplification of the MBI (expression (27)). As the shear is671

increased, the mode of maximum growth rate assumes a smaller wavenumber, which is accompanied by a broadening672

of the maximum. For sufficiently large shear (strongly negative κ2), the system is dominated by the CI (which is673

dispersionless at leading order).674

Figure 11 shows separately the growth rates versus k for the three cases of Figure 10, together with the relevant675

subcases. For all the subcases with no poloidal magnetic field (i.e., MBI, CI, MBI+CI and MBI+UΩ , the leading676

order growth rate σ0 is independent of wavenumber. It can be seen that the full strong-MBI case is always more677

unstable than the relevant subcases; i.e., those including the effects of the basic state shear flow and rotation. Thus,678

the incorporation of a toroidal magnetic field a0(z) enhances the instability from the MRI+CI subcase (green solid679

line and circles) regardless of whether the system is stable (κ2 ≥ 0) or not (κ2 < 0) with respect to the CI alone680

(green dashed line). The amplification is clearly stronger than in the weak-MBI case shown in Figure 7, since here681

the MBI is more vigorous. On the other hand, for shear flow gradient ζ = 1.0, the maximum growth rate σ of the682

full system, corresponding to a fixed wavenumber k, is nearly the same as the leading order value σ0 of the MBI+CI683

subcase (where b0 = 0) (Figure 11c). This shows the domination of the MBI in the strong-MBI case. For very strong684

shear gradients, i.e. ζ ≫ 1.0, the system, as expected, eventually becomes dominated by the CI-like instability.685
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Figure 11. ℜ(σ(k)) as a function of k: a comparison between the full weak-MBI case (red) and its subcases (green and blue),
with constant poloidal magnetic field b0 = 10−4: (a) ζ = 0.1, κ2 > 0; (b) ζ = 0.4, κ2 = 0; (c) ζ = 1.0, κ2 < 0. Analytically
and numerically determined growth rates σ are denoted by solid lines and circles respectively. The blue and green solid lines
and circles correspond respectively to the MBI+b0 and MRI+CI subcases. The horizontal lines indicate the k → ∞ limit of the
following subcases: pure MBI (blue dashed line), MBI+UΩ (blue dotted-dashed line), MBI+CI (blue dotted line) and pure CI
(green dashed line).
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Figure 12. Real parts of the analytic (dashed lines) and numerical (solid lines) solutions for the most unstable eigenmodes
ℜ(w̃(z)) for b0 = 10−1 (k = 8; magenta), b0 = 10−2 (k = 59; green), b0 = 10−3 (k = 510; blue), b0 = 10−4 (k = 4840; red). The
plots correspond to the full strong-MBI case that is neutrally stable with respect to the pure CI (κ2 = 0). For b0 ≤ 10−3, the
analytical and numerical results are indistinguishable.

Finally, we focus on the situation when κ2 = 0 (i.e., ζ = 0.4), in which, at leading order, the full strong-MBI686

contains interactions only between the MBI and MRI; the dispersion relation for this case, for b0 = 10−4, is presented687

in Figure 11b. A study covering a wide range of values of poloidal field strength b0 reveals that the most unstable mode688

w̃(z) is always a wall mode localized near the bottom of the layer. It can thus be approximated by a complex Airy689

function of the first kind, given by expression (44) for z0 = 0; the eigenfunctions are plotted in Figure 12, for b0 = 10−1,690

10−2, 10−3 and 10−4. As described above for the weak-MBI case, the agreement between theoretical and numerical691

results must increase with decreasing b0. For b0 = 10−1 (for which the wavenumber of the most unstable mode is692

k = 8), the agreement is relatively poor; for b0 = 10−2 (k = 59), the location of the maximum of the eigenmode is693

correctly predicted by the analytical result (green dashed line); for yet weaker poloidal fields (b0 ≲ 10−3), the analytic694

and numerical results over all z are indistinguishable. With decreasing b0, (and hence increasing wavenumber k), the695

eigenmodes become more and more localized near the upper boundary of the layer, in agreement with the results of696

Mizerski et al. (2013) and Gradzki & Mizerski (2018) for the case of the pure MBI. Figure 13 shows that, as for the697

weak-MBI case, the scaling k ∼ b−1
0 is again valid; in this case the red line can be described by k ≈ Cs(b0)b

−1
0 , where698

the coefficient Cs(b0) ≈ 0.654b0.0190 .699

6. DISCUSSION700

We have investigated the linear stability of an isothermal, electrically perfectly conducting, inviscid, perfect gas,701

with respect to interchange (or ‘axisymmetric’) modes. The joint action of gravity, background rotation, and velocity702
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Figure 13. Wavenumber k of the most unstable mode as a function of b0 for the full strong-MBI case with κ2 = 0. The blue
circles are calculated numerically from the full system (14). The red solid line is obtained analytically from equations (45) and
(50).

shear, together with height-dependent toroidal and constant poloidal components of the basic state magnetic field,703

results in a coupling and competition between centrifugal (CI), magnetorotational (MRI) and magnetic buoyancy704

(MBI) instabilities. The linear perturbation equations may be reduced to a second order boundary value problem, in705

the form of equation (14) and boundary conditions (15), with the growth rate appearing as the eigenvalue. Physically,706

the preferred modes have a large transverse horizontal wavenumber k. We are able to exploit the ordering k ≫ 1707

to tackle the problem analytically via a Rayleigh–Schrödinger perturbation approach; in order to bring the uniform708

constant poloidal magnetic field into play, we furthermore assume that its magnitude b0 = O
(
k−1

)
. To aid with the709

understanding of the full system, which is quite complicated, we have also considered various subcases, comprising710

either the individual components of CI, MRI and MBI, or specific combinations of these. To complement our analytical711

approach, we have also solved the governing boundary value problem numerically, with no a priori assumption on the712

magnitude of k or b0; agreement between the analytical and numerical approaches is very good.713

A consequence of the modes possessing a large horizontal wavenumber k is that they are strongly localized in714

the vertical direction. The leading order (in k−1) of the perturbation analysis yields (17), the ‘depth-dependent715

dispersion relation’, which provides the leading order approximation to the growth rates. Determining the form of the716

eigenfunctions comes at the next order, through establishing the nature of the localization of the eigenfunctions; in717

simple subcases, the localization point z0 is real, although, in general, it is complex. The localized solutions take the718

form of either wall modes (described by Airy functions) or body modes (described by parabolic cylinder functions).719

The presence of the weak constant poloidal field b0 establishes a finite wavenumber of the most unstable mode. This720

effect is qualitatively similar to that caused by the presence of diffusion in the system. We have established that the721
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horizontal wavenumber k of the most unstable mode scales with the poloidal magnetic field b0 as k ∼ b−1
0 . Moreover,722

the vertical scale of the most unstable modes (the thickness δ of the internal/boundary layer) depends on the type of723

mode (i.e. on its localization point): δ ∼ k−2/3 ∼ b
2/3
0 for wall modes and δ1 ∼ k−1/2 ∼ b

1/2
0 for body modes.724

The epicyclic frequency κ is a convenient indicator of the presence of either the CI in the system (κ2 < 0) or725

the stabilizing non-magnetic effect of rotation (κ2 > 0). Increasing the shear gradient preferentially amplifies modes726

with wavelength longer than that of the most unstable mode, leading to a ‘flattening’ of the σ(k) curve, as shown727

in Figures 6 and 10. The MRI is always present in the full system for any non-zero shear flow no matter how weak,728

and it is in general amplified by the toroidal magnetic field. The most general case, when all the three instability729

types interact (MBI+MRI+CI) seems to be always more unstable than any subcase that involves the shear flow and730

rotation: MBI+CI, MRI+CI or pure CI. The pure MBI is always stabilized by background rotation; however, in the731

presence of a shear flow, the MBI can be amplified by the Coriolis force (which contributes to the effective gravity)732

through the coupling with the vigorous CI, if the shear flow gradient is sufficiently strong. It is also of interest to note733

that for the case of MBI+b0, the poloidal field can, in certain situations, amplify an existing MBI, or even destabilize734

a system that is stable to MBI.735

It is natural to ask how our findings relate to the Sun, and, in particular, the solar tachocline, the thin region736

of velocity shear (both radial and latitudinal) sandwiched between the convective and radiative zones. In many737

models of the solar dynamo, it is postulated that the toroidal magnetic field is generated by the shearing motions738

within the tachocline. It is generally assumed that MBI is the primary mechanism for the release of magnetic field739

from the tachocline into the overlying convection zone (see Hughes 2007). It is therefore of particular interest to740

investigate what additional role may also be played by CI or MRI. From the parameter values in Hughes et al. (2007),741

we may estimate the rotation parameter to be UΩ ∼ 10−4 and the shear flow gradient to be ζ ∼ 10−1 (calculated742

as ζ = d∆U/Us∆z, where d = 3.5 × 104 km is the thickness of the tachocline, Us = 1.4326 km s−1 is the velocity743

scale and ∆U/∆z = ∆U/(0.04 × R⊙) = 4.14062 × 10−6 s−1 is the mean shear rate). Hence, assuming a linear basic744

shear flow u0(z) = −ζz, the squared epicyclic frequency given by expression (19) is negative and small in magnitude745

(−κ2 ∼ 10−7). It follows therefore that any CI in the tachocline will be weak (σCI ∼ 10−4). If, as noted above,746

the MBI is the primary instability mechanism operative in the tachocline, then, at least in a qualitative sense, it is747

what we have called the ‘strong-MBI case’ that will be relevant in this context. A key result of our analysis is that748

even a weak poloidal field can play a major role in determining the scale of the instabilities. However, the magnitude749

of the poloidal magnetic field in the tachocline is highly uncertain. Estimates of the strength of the poloidal field750

range from very weak values of O
(
10−4 G

)
(Gough 2007) to relatively strong values of O

(
103 G

)
(e.g. Forgács-Dajka751

& Petrovay 2002). In dimensionless terms, this considerable extent of possible poloidal field strengths corresponds to752

the range 10−9 < b0 < 10−2. It follows therefore, from the scaling k ∼ b−1
0 , that the wide range of b0 would establish753

a correspondingly wide range of transverse (y) wavelengths of the most unstable modes: from the rather unphysical754

1m to 104 km, which is of the order of the thickness of the tachocline. Although very small wavelengths will be755

damped by diffusion (see, e.g., the estimates in Gradzki & Mizerski 2018), the theoretical relationship between b0 and756

the transverse scale of the instability could be a useful tool in pinning down the strength of the poloidal field in the757

tachocline.758

The results described here suggest a number of possible extensions of our model. Within linear theory, it would be759

interesting (though decidedly non-trivial) to consider three-dimensional (‘undular’) disturbances, as did Mizerski et al.760

(2013) for the pure MBI, as well as the effects of diffusion, as did Gradzki & Mizerski (2018), also for the pure MBI. Of761

particular interest would be to investigate the combined influence of the various instabilities in the nonlinear regime.762

Cattaneo et al. (1990) studied the nonlinear evolution of pure MBI of a basic state magnetic field with both toroidal763

and poloidal components, but without the effects of rotation or velocity shear. Vasil & Brummell (2008) and Silvers764

et al. (2009) considered the nonlinear evolution of magnetic buoyancy instability arising from the shearing of a weak765

vertical magnetic field by a horizontal velocity shear, but without the effects of rotation or the horizontal poloidal766

component of field. Putting all of the ingredients together in a tractable computational model would be an important767

next step towards fully understanding the instabilities of the tachocline.768
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APPENDIX A: THE COEFFICIENTS OF EQUATION (15)773

The coefficients of the governing ordinary differential equation (14) take the general form:774

W̃2 (z) = −k−2W2 (z) +O
(
k−4; k−2b20; b

4
0; k

2b60
)
, (53a)775

776

W̃1 (z) = −k−2W1 (z) +O
(
k−4; k−2b20; b

4
0

)
, (53b)777

778

W̃0 (z) =W0 (z) +O
(
k−2; k4b60; k

2b40; kb
3
0; b

2
0; k

−1b0
)
, (53c)779

where the functions W2(z), W1(z) and W0(z) are of order unity and are given by780

W2(z) =
(
k2b20Λ + σ2ρ0 (z)

) (
k2b20ΛPα+ σ2F (z)

)
, (54a)781

782

W1(z) = σ2
(
k2b20ΛPα+ σ2F (z)

)
Dρ0 (z) , (54b)783

784

W0(z) = A4 (z)σ
4 +A2 (z)σ

2 +A1 (z)σ +A0 (z) . (54c)785

The functions Ai(z) are functions of the basic state that do not contain terms involving either k or b0 alone, only786

terms proportional to kjbj0 ∼ 1 for j = 1, 2, 4. Specifically,787

A4 (z) = ρ0F = ρ0
(
Λa20 + Pαρ0

)
, (55a)788

789

A2 (z) = k2b20Λ (F + Pαρ0)− Λa20ρ0 (f − UΩUuu0)
(
H−1

ρ −H−1
B

)
+ UΩρ0F (UΩ + UuDu0) , (55b)790

791

A1 (z) = 2ikb0ΛUΩa0ρ0 (f − UΩUuu0) , (55c)792

793

A0 (z) = k4b40Λ
2Pα+ k2b20Λ

(
Λa20H

−1
B (f − UΩUuu0) + PαUΩUuρ0Du0

)
, (55d)794

where all the basic state functions and scale heights depend only on z. Using expressions (19), (21), (28) and (33), the795

coefficients A2 and A0 may be cast in the following form:796

A2 (z) = A4 (z)
k2b20Λ

ρ0

(
1 +

Pαρ0
F

)
−A4 (z)

[
σ2
MBI − κ2

]
, (56)797

798

A0 (z) = −A4 (z)

(
Pαρ0
F

)
σ2
MRI

[
σ2
MRI + κ2

]
−A4 (z)

(
Pαρ0
F

)
k2b20Λ

ρ0

[
2σ2

MRI + σ2
MBI

]
+

A2
1 (z)

4U2
ΩA4 (z)

. (57)799

APPENDIX B: THE MRI IN THE LIMIT OF A WEAK MAGNETIC FIELD800

In this appendix, we briefly demonstrate the relevance of assumption (16) — namely that 1 ≪ k ∼ b−1
0 — by801

considering a simplified system in which the toroidal magnetic field is absent, i.e., a0(z) = 0; in such a system, only802

the MRI and CI can operate (see Section 3.2). In this case, the coefficients (53a)–(53c) take the following form:803

W̃2 (z; a0 = 0) = −k2b40
(
PαΛ2

)
− b20 (2PαΛρ0)− b40

(
Λ2
)
− k−2b20σ

4 (Λρ0)− k−2σ4
(
ρ20
)
, (58)804

805

W̃1 (z; a0 = 0) = b20σ
2 (Λρ0 (f − UΩUuu0)) + k−2σ4

(
ρ20 (f − UΩUuu0)

)
, (59)806

W̃0 (z; a0 = 0) =k4b40
(
PαΛ2

)
+ k2b20

(
PαΛρ0

(
2σ2 + UΩUuDu0

))
+

+
(
Pαρ20σ2

(
σ2 + UΩ (UΩ + UuDu0)

))
+

+ k2b40σ
2
(
Λ2
)
+ b20σ

4 (2Λρ0) + k−2σ4ρ20
(
σ2 + U2

Ω

)
. (60)

The governing differential equation (14), with the coefficients defined as above, can then be considered under three807

asymptotic limits, keeping in mind the assumption of a weak constant poloidal magnetic field b0 → 0. First, for long808

waves, with k → 0, it can be seen that the leading order forms of the coefficients (58)–(60) do not contain the magnetic809

field b0, and hence the MRI does not appear at leading order. Second, for wavelengths of the order of the fluid layer810

thickness, namely k ∼ 1, the situation is similar, but the pure CI appears at leading order. Third, the MRI can appear811

at leading order only for short waves, with k → +∞.812
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Having established that the relevant limits are b0 → 0 and k → +∞, we can now make the relation between k and813

b0 more precise. To this end, in the next step of the leading order asymptotic analysis we have to consider all possible814

cases that may arise from balancing different terms in the coefficients (58)–(60), corresponding to different relations815

between the parameters k and b0. This is similar to the procedure conducted by Gradzki & Mizerski (2018), where,816

in a system unstable with respect to the MBI, the weak magnetic and thermal diffusivity play a similar role to that817

played here by the weak magnetic field b0, in establishing the wavelength of the most unstable perturbation. All three818

of the above orderings lead to a similar structure of the leading order equation for w̃0(z), with the term involving819

the highest order derivative multiplied by the small parameter k−2. This is similar to the form of the corresponding820

equation in the pure MBI problem analyzed by Mizerski et al. (2013); consequently, the equations can by solved by821

the same boundary layer approach. It is straightforward to show, by consideration of the leading order components822

of the coefficients (58)–(60), that the regime k ≪ b−1
0 can excite only the localized centrifugal instability modes, while823

the regime b−1
0 ≪ k leads to a trivial null solution. Therefore, only the relation k ∼ b−1

0 can lead to excitation of the824

MRI at leading order, possibly coupled to the CI.825

Hence, under the ordering (16), the growth rate at leading order, σ0, can be obtained, as described in Section 3,826

from the equation W̃0 (σ0, z0; a0 = 0) = 0, for a given evaluation point z0. From expression (60), this equation takes827

the form:828

σ4
0 + 2σ2

0

[
k2b20

ρ0 (z0) /Λ
+
κ2 (z0)

2

]
+

k2b20
ρ0 (z0) /Λ

[
k2b20

ρ0 (z0) /Λ
+
(
κ2 (z0)− U2

Ω

)]
= 0, (61)829

with solutions830

σ2
0± = − k2b20

ρ0 (z0) /Λ
− κ2(z0)

2
±

[
U2
Ω

k2b20
ρ0 (z0) /Λ

+

(
κ2(z0)

2

)2
]1/2

. (62)831

In expression (21), we choose the solution σ2
0+, which is always greater than σ2

0−, and denote it by σ2
MRI .832

APPENDIX C: DETAILS OF THE LEADING ORDER ASYMPTOTIC ANALYSIS833

Here we explore the details of the leading order asymptotic analysis of equation (14), the general second order834

ordinary differential equation for the z-dependent amplitude of the vertical velocity perturbation w̃(z), in which the835

growth rate σ is determined as the eigenvalue of the problem. We utilize the asymptotic Rayleigh–Schrödinger approach836

(a type of boundary layer method), described in detail in Griffiths (2008) and used in related problems by Mizerski837

et al. (2013), Bowker (2016), and Gradzki & Mizerski (2018) (see also Bender & Orszag 1978).838

First we consider the ‘main flow’ (MF), namely the region outside the boundary layer, where the terms containing839

derivatives of w̃(z) in (14) are not large enough to enter the leading order balance. Under the ordering (16), namely840

k → +∞ and k ∼ b−1
0 , equation (14) at leading order takes the form841

0 =
[
W̃0(z)

]
w̃MF (z), (63)842

where W̃0(z) is defined in (53c).843

Since, in general, W̃0(z) ̸= 0 on the domain, the only solution of (63) that satisfies at least one of the boundary844

conditions (15) is the null solution w̃MF (z) = 0. Thus, the eigenmodes of the full problem defined by (14) must involve845

boundary (or internal) layers, in which the derivatives of w̃(z) are sufficiently large so as to bring the second order846

derivative term into play, despite its coefficient being O
(
k−2

)
. We thus seek non-zero solutions localized around some847

initially unknown point of the domain z0 (0 ⩽ z0 ⩽ 1) — what we shall refer to as the evaluation point. We introduce848

the boundary/internal layer local variable ξi = (z − z0)/δi, where δi is small — with its magnitude to be determined849

— and expand the growth rate as σ = σ0 + σ1δi + σ2δ
2
i + · · · . The solution w̃(z) and all the z-dependent basic state850

functions are also evaluated in the δi-vicinity of z0. The first step is to find the leading order approximation of the851

growth rate, namely σ0, which is presented in this section. The second step (presented in Appendix D) is to determine852

the higher order correction for σ0, which allows us to determine the structure of the function w̃0(z), the leading order853

asymptotic approximation of the eigenmode.854

Within the boundary/internal layer region, equation (14) takes the form855 (
W̃2(ξi)

δ2i

)
d2w̃0(ξi)

dξ2i
+

(
W̃1(ξi)

δi

)
dw̃0(ξi)

dξi
+ W̃0(ξi)w̃0(ξi) = 0, (64)856
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with transformed boundary conditions857

w̃0 (ξi = −z0/δi) = w̃0 (ξi = (1− z0)/δi) = 0, (65)858

where the functions W̃2(z) ∼ O(k−2), W̃1(z) ∼ O(k−2) and W̃0(z) ∼ O(1) are defined by expressions (53a)–(53c). In859

terms of the the local variable ξi, W̃0 (ξi) may be expressed as the Taylor series860

W̃0 (ξi) = W̃0 (z0) + (δiξi)
dW̃0 (z)

dz

∣∣∣
z=z0

+
(δiξi)

2

2

d2W̃0 (z)

dz2

∣∣∣
z=z0

+ · · · , (66)861

with similar expansions for W̃1(ξi) and W̃2(ξi).862

On defining the variable ξ0 = (z − z0)/δ0, where δ0 ∼ k−1 denotes the thin extent of the boundary/internal layer,863

equation (64) at leading order yields864 (
W2(z0)

δ20k
2

)
d2w̃0(ξ0)

dξ20
+

(
W1(z0)

δ0k2

)
dw̃0(ξ0)

dξ
+W0(z0)w̃0(ξ0) = 0, (67)865

where W0(z0), W1(z0) and W2(z0) — without the tildes — denote the leading order forms at z0 of W̃0(z0), W̃1(z0)866

and W̃2(z0) respectively. There are no solutions of (67) that match smoothly to the main flow (zero flow) solution and867

so, on this very small scale, we must require w̃0(ξ0) = const., with W0(z0) = 0. Thus, at this order, we can deduce868

the form of the equation governing the leading order contribution to the growth rate. At the next order, which we869

discuss in Appendix D, we can establish the evaluation point z0, which allows us to determine σ0, together with the870

next order correction to the growth rate, σ1 or σ2, and also the form of the eigenfunction.871

Equation (54c) yields a quartic equation for the leading order approximation of the growth rate σ0 in the form872

W0(z0, σ0) = A4 (z0)σ
4
0 +A2 (z0)σ

2
0 +A1 (z0)σ0 +A0 (z0) = 0, (68)873

where it should be noted that the coefficient A1, defined in (55c), is purely imaginary, and thus σ0 is, in general,874

complex, even for real z0. In the following, it is helpful to treat W0 as a function of two variables: W0(z, σ). Hence,875

equation (68) expresses the relation W0(z, σ) = 0 taken at an as-yet-undetermined point (z0, σ0). It is an algebraic876

equation for two unknowns: the evaluation point z0 and the growth rate at leading order σ0.877

The equation W0(z, σ) = 0 can be considered as an implicit definition of a function σ(z) — the so-called ‘growth878

rate function’ — which can be interpreted as a ‘depth-dependent dispersion relation’ (cf. Gilman 1970; Mizerski et al.879

2013). It needs to be formally established by the asymptotic analysis, and for every eigenmode w̃(z) characterized by880

the evaluation point z0, that the associated growth rate σ ≈ σ(z0) is the eigenvalue of the problem. The leading order881

approximations σ0 of all possible eigenvalues are considered as values of the growth rate function σ(z) evaluated at882

some (initially unknown, but determined by the analysis below) evaluation points z0: σ0 = σ(z0), where z0 ∈ [0, 1].883

APPENDIX D: DETAILS OF THE HIGHER ORDER ASYMPTOTIC ANALYSIS884

There are two cases to consider within the next order analysis: modes w̃(z) localized near the domain boundaries,885

z0 = 0 or z0 = 1 (boundary layer type solutions denoted as ‘wall modes’) and modes localized strictly inside the domain,886

0 < z0 < 1 (internal layer type solutions denoted as ‘body modes’). To determine their structure we must take into887

account higher order terms in the asymptotic expansion of the growth rate σ; thus we write σ = σ0+σ1δ1+σ2δ
2
2 + ....888

In the case of the body modes, in order to determine both z0 and σ0, we need one more equation in addition to (68).889

This is provided by the distinguished limit of (64) in the next order analysis, which requires conditions (46). This890

section shows that the wall mode case is related to the correction σ1 and the body mode case to the correction σ2.891

D.1. WALL MODES892

Here we assume that the evaluation point z0 is on the boundary of the domain, either at z0 = 0 or z0 = 1. To find893

the structure of the leading order approximation for the most unstable mode w̃0(z) and the first order correction to the894

growth rate σ1, we evaluate all the z-dependent functions from equation (64) in the δ1-vicinity of z0, where δ1
k→0−−−→ 0895

is the boundary layer thickness, and where σ = σ0 + σ1δ1. Thus, taking into account equation (68), obtained at the896

leading order of the analysis, namely W0(z0, σ0) = 0, equation (64) in terms of the local variable ξ1 = (z−z0)/δ1 takes897

the form898

d2w̃0(ξ1)

dξ21
= k2δ31

[
σ1

(
∂σW0

W2

)
+

(
∂zW0

W2

)
ξ1

]
w̃0(ξ1), (69)899
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where, here and below, the function W2(z, σ) and the derivatives of W0(z, σ) are taken at the point (z0, σ0) given by900

equation (68) for an assumed value of z0 = 0 or z0 = 1.901

The boundary conditions (65) take the following form, depending on the chosen point of evaluation z0 (i.e. whether902

we consider the top or bottom boundary layer mode):903

z0 = 0 ⇒ w̃0 (ξ1 = 0) = w̃0 (ξ1 = 1/δ1) = 0, (70a)904

905

z0 = 1 ⇒ w̃0 (ξ1 = −1/δ1) = w̃0 (ξ1 = 0) = 0, (70b)906

under the assumptions k → +∞, δ1 → 0, k ∼ b−1
0 .907

The distinguished limit is obtained by taking δ1 ∼ k−2/3, which transforms equation (69) to the Airy equation. To908

that end, we introduce a new variable s defined by909

s(ξ1) = (Σσσ1 +Σzξ1) Σ
−2/3
z , (71)910

where911

Σσ = k2δ31

(
∂σW0

W2

) ∣∣∣∣∣
z0

= k2δ31Σ̃σ, Σz = k2δ31

(
∂zW0

W2

) ∣∣∣∣∣
z0

= k2δ31Σ̃z. (72)912

The three different roots of Σ
−2/3
z in expression (71) lead to three different forms of the new complex independent913

variable s. Application of the transformation (71) to equation (69) leads to the standard form of the Airy equation,914

d2w̃0(s)

ds2
= s w̃0(s). (73)915

The boundary conditions (70a)-(70b) are transformed to916

w̃0

(
s = σ1ΣσΣ

−2/3
z

)
= w̃0

(
s = (σ1Σσ +Σz/δ1) Σ

−2/3
z

)
= 0 on z0 = 0, (74a)917

or918

w̃0

(
s = σ1ΣσΣ

−2/3
z

)
= w̃0

(
s = (σ1Σσ − Σz/δ1) Σ

−2/3
z

)
= 0 on z0 = 1. (74b)919

For either choice of z0, matching with the main flow zero solution is achieved by920

w̃0

(
s = (σ1Σσ ± Σz/δ1) Σ

−2/3
z

δ1→0−−−→ ∞
)
→ 0. (75)921

In expression (75), the path in the complex plane along which the limit s → ∞ is taken needs to be specified; it922

depends on the assumed evaluation point z0, the values of the complex parameters Σσ and Σz, and on the choice of923

one of the three roots for the term Σ
−2/3
z .924

The general solution of equation (73) is expressed as w̃0(s) = CAAi(s) + CBBi(s), where CA and CB are complex925

constants, and where Ai(s) and Bi(s), which are linearly independent special functions, are respectively Airy functions926

of the first and second kind (Abramowitz & Stegun 1972; Bender & Orszag 1978). This general solution has to satisfy927

the boundary conditions (74a) or (74b), depending on whether we consider the top or bottom boundary layer mode.928

In both cases (z0 = 0 or z0 = 1), the matching condition (75) restricts our choice of the Airy function and the root929

of the term Σ
−2/3
z to those which exhibit exponential decay as s

δ1→0−−−→ ∞. From the asymptotic expansions of the930

Airy functions for a large argument, it can be shown that only the function Ai(s) for |Arg(s)| < π/3 can satisfy this931

condition. This determines the choice of the root of the term Σ
−2/3
z , and hence the path of the limit s→ ∞. It follows932

that the solution of (73) is reduced to w̃0(s) = Ai(s), where, without loss of generality for this linear problem, we have933

set CA = 1.934

The boundary conditions (74a) or (74b) determine the growth rate correction σ1, since, from935

Ai(s = σ1ΣσΣ
−2/3
z ) = 0, (76)936

we have937

σ1 = χnΣ
−1
σ Σ2/3

z = χn

(
k−2/3δ−1

1

)( W2

∂σW0

)(
∂zW0

W2

)2/3

, (77)938
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where k−2/3δ−1
1 ∼ 1 and χn is the nth zero of the Airy function, Ai(χn) = 0. All the zeros of the Airy function of939

the first kind are purely real negative numbers; therefore, for a chosen evaluation point z0 = 0 or z0 = 1, the complex940

growth rate of the eigenmode w̃0(s) has the form σ = σ0 + σ1δ1 + o(δ1), where δ1 ∼ k−2/3, and where σ1 is given by941

(77).942

Next, using (71), we can obtain the leading order approximation of the eigenmode w̃(z) as a function of the original943

variable z:944

w̃0(z) = Ai

[
χn + k2/3 (z − z0)

(
∂zW0

W2

)1/3
]
. (78)945

It should be noted that the root of the term (∂zW0/W2)
1/3 = Σ̃

1/3
z in expression (78) is already selected by the main-946

flow matching condition (75), as described above. Moreover, utilizing the result (77), we can simplify this matching947

condition to948

w̃0

(
s = χn ± Σ

1/3
z

δ1

δ1→0−−−→ ∞

)
→ 0, (79)949

where the + sign corresponds to z0 = 0 and the − sign corresponds to z0 = 1. It can be clearly seen that, in general,950

there are three paths for the limit s → ∞ in the complex plane, and that these are half-lines starting from χn and951

extending to infinity. In the limit δ1 → 0, the angle between each of the lines and the real axis is equal to Arg(Σ
1/3
z );952

the smallest angle between two selected paths is always equal to 2π/3. Since the condition |Arg(s)| < π/3 has to be953

satisfied in order for the solutions to vanish at infinity, it follows that, in general, there is only one allowed path for954

the limit s → ∞, with one corresponding root of Σ
1/3
z ; hence the solution in the form (78) typically exists. There955

is only one exception: when the parameter Σ
1/3
z has one purely real root — either negative when z0 = 0 or positive956

when z0 = 1. In such a case, the boundary condition (79) cannot be satisfied and there is no solution to equation (69)957

in the form (78). The same situation was observed by Mizerski et al. (2013) for the case of the pure MBI when the958

growth rate function σ(z) was either increasing at z0 = 0 or decreasing at z0 = 1, i.e. the solution did not exist at the959

boundary where the growth rate function was not maximized. However, for the case at hand, the term Σ
1/3
z typically960

has three complex roots and thus, for a fixed n, there is a unique solution in the form (78).961

Finally, in order to obtain the most unstable wall mode for a given evaluation point z0, we take n = 1 in ex-962

pressions (77) and (78), i.e. the first zero of the Airy function, χ1 ≈ −2.338. This justifies expressions (44) and963

(45).964

D.2. BODY MODES965

In this section, we assume that the evaluation point is inside the domain. As we will see, it turns out that z0 is966

complex; hence, to be specific, we assume that 0 < ℜ(z0) < 1. However, at this stage, after the leading order growth967

rate analysis, we do not yet know which values of z0 are permissible and will lead to solutions for the leading order968

asymptotic approximation w̃0(z) of the eigenmodes w̃(z). An Airy function solution, as constructed for wall modes in969

Appendix D.1, does not decay exponentially on both sides of z0. It thus follows that we must consider the next order970

terms in the asymptotic expansions of the eigenvalue σ and all z-dependent functions. We therefore introduce a new971

boundary layer of thickness δ2
k→0−−−→ 0 and a new local variable ξ2 = (z − z0)/δ2. Equation (64) becomes972

d2w̃0(ξ2)

dξ22
=
k2δ22
W2

[
δ2 (σ1∂σW0 + ξ∂zW0) + δ22

(
1

2
σ2
1∂

2
σW0 + σ2∂σW0 + σ1ξ2∂

2
z,σW0 +

1

2
ξ22∂

2
zW0

)]
w̃0(ξ2), (80)973

where all the z-dependent functions are evaluated in the vicinity of an as-yet-undetermined evaluation point z0. The974

function W2 and the derivatives of the function W0 are taken at (z0, σ0), and the growth rate at leading order σ0 is975

obtained from equation (68), once the evaluation point 0 < z0 < 1 is determined at a further stage of the analysis976

described below. The boundary conditions (65) for equation (80) become977

w̃0 (ξ2 = −z0/δ2) = w̃0 (ξ2 = (1− z0)/δ2) = 0, (81)978

where we recall the asymptotic assumptions k → +∞, b0 → 0 and k ∼ b−1
0 .979

We seek a distinguished limit in (80) in which ∂zW0 = 0 and σ1 = 0, thus removing the first bracketed term on the980

right hand side. Equation (80) then becomes981

d2w̃0(ξ2)

dξ22
= k2δ42

[
σ2

(
∂σW0

W2

)
+

(
∂2zW0

2W2

)
ξ22

]
w̃0(ξ2). (82)982
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Equation (68), namely W0(z0, σ0) = 0, together with the condition ∂zW0 = 0, now establish the following system of983

two complex algebraic equations for the growth rate σ0 and the evaluation point z0:984

0 = A4 (z0)σ
4
0 +A2 (z0)σ

2
0 +A1 (z0)σ0 +A0 (z0) , (83a)985

986

0 = (DA4 |z=z0 )σ
4
0 + (DA2 |z=z0 )σ

2
0 + (DA1 |z=z0 )σ0 + (DA0 |z=z0 ) , (83b)987

where the functions Ai(z) are defined in (55a)–(55d). The system of equations (83a)–(83b) has solutions in the form of988

complex pairs (z0, σ0), with the evaluation points in the form z0 = ℜ(z0)+iℑ(z0), where 0 < ℜ(z0) < 1. Equation (82)989

must be solved for δ2 ∼ k−1/2 and any pair (z0, σ0) satisfying the system of equations (83a)–(83b). As in Mizerski990

et al. (2013), we seek to transform (82) into the form of a parabolic cylinder equation. To this end, we introduce a991

new variable ς defined by992

ς(ξ2) = Υ1/4
z ξ2, (84)993

where994

Υz = k2δ42

(
2
∂2zW0

W2

) ∣∣∣∣∣
z0

= k2δ42Υ̃z, say. (85)995

The four different roots of Υ
1/4
z in expression (84) lead to four different possible definitions of the new complex996

independent variable ς. After application of the transformation (84), equation (82) takes the standard form of the997

parabolic cylinder equation (e.g. Abramowitz & Stegun 1972; Bender & Orszag 1978):998

d2w̃0(ς)

dς2
=

[
1

4
ς2 − ν − 1

2

]
w̃0(ς), (86)999

where the parameter ν is defined as1000

ν = −1

2
−ΥσΥ

−1/2
z σ2 (87)1001

with1002

Υσ = k2δ42

(
∂σW0

W2

) ∣∣∣∣∣
z0

= k2δ42Υ̃σ, say. (88)1003

The boundary conditions (81) are now1004

w̃0

(
ς = −z0Υ1/4

z /δ2
δ2→0−−−→ ∞

)
→ 0, (89a)1005

1006

w̃0

(
ς = (1− z0)Υ

1/4
z /δ2

δ2→0−−−→ ∞
)
→ 0, (89b)1007

where we bear in mind that there are, in general, four possible paths in the complex plane for the limit ς → ∞. The1008

paths depend on the value of the complex evaluation point z0 as well as on the choice of the root of Υ
1/4
z . Because we1009

have two boundary conditions and four possible roots, we must investigate four pairs of paths.1010

In the case of pure MBI considered by Mizerski et al. (2013), there always exist purely real roots of Υ
1/4
z and,1011

furthermore z0 is a purely real number; hence the paths in (89b)–(89b) are simply the limits to real positive and1012

negative infinity. However, for complex z0 and complex roots of Υ
1/4
z , the pairs of paths for the limits (89b)–(89b) are1013

two separate half-lines tending to infinity in directions defined by Arg(−z0Υ1/4
z ) and Arg((1 − z0)Υ

1/4
z ) in the limit1014

δ2 → 0. The angle between the two lines tends to |Arg(−z0) − Arg(1 − z0)|, which tends to π when ℑ(z0) → 0 and1015

which tends to 0 when ℑ(z0) → ±∞. Hence, this angle can take any value in the interval [0, π], and a pair of paths1016

for the limits (89b)–(89b) can, in general, have any direction in the complex plane, thus representing an important1017

difference to the case of the pure MBI. Moreover, in the limit δ2 → 0, these four pairs of paths are rotated (around the1018

origin) relative to each other through multiples of the angle π/2, since they are associated with an arithmetic root of1019

the fourth degree. This is an important property in the context of seeking solutions w̃0(ς) that satisfy the boundary1020

conditions (89a)–(89b).1021

Solutions of equation (86) are known as parabolic cylinder functions; they are denoted by Dν(±ς) and D−ν−1(±iς),1022

where only two of these functions are linearly independent. To obtain the solution that satisfies the boundary conditions1023

(89a)-(89b) we first need to find the regions in the complex plane where the parabolic cylinder functions decay to zero1024

or diverge to infinity as ς → ∞. From the asymptotic expansions of the parabolic cylinder functions in the limit ς → ∞1025

it can be shown that1026
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1. |Arg(ς)| < 1
4π ⇒ Dν(±ς)

ς→∞−−−→ 0 and D−ν−1(±iς)
ς→∞−−−→ ∞ for all values of ν.1027

2. 3
4π < Arg(ς) < 5

4π ⇒ Dν(±ς)
ς→∞−−−→ 0 only for the values of ν such that 1/Γ(−ν) = 0; also1028

D−ν−1(±iς)
ς→∞−−−→ ∞ for all values of ν.1029

3. ( 14π < Arg(ς) < 3
4π)∪ ( 54π < Arg(ς) < 7

4π) ⇒ D−ν−1(±iς)
ς→∞−−−→ 0 and Dν(±ς)

ς→∞−−−→ ∞ for all values of ν.1030

It follows that the boundary conditions (89a)-(89b) impose the solution either in the form Dν(±ς) or D−ν−1(±iς),1031

for pairs of paths along which the limits ς → ∞ are taken either within region 3 defined above (for the latter case1032

of D−ν−1(±iς)) or in the sum of regions 1 and 2 (for the former case of Dν(±ς)). In general, for any pair (z0, σ0)1033

satisfying the system of equations (83a)-(83b), we may have one or more of the following situations:1034

a) For at least one pair of paths, one of the paths lies in region 3 and the other lies in region 1 or 2.1035

b) There is a pair of paths with both paths lying in region 1 or both in region 3.1036

c) There is one pair of paths with both paths lying in region 2.1037

d) There are two pairs of paths with one path in region 1 and the other in region 2. These two pairs of paths are1038

symmetrical about the origin.1039

It is straightforward to see that for case a) there are no solutions that satisfy both boundary conditions (89a)–(89b)1040

for any root of Υ
1/4
z . Cases b) and c) can occur simultaneously, as well as b) and d), owing to the (π/2)-shift between1041

the roots. However, in case b), the relevant parabolic cylinder functions satisfy the boundary conditions for all values1042

of the parameter ν, which means that the correction σ2 related to ν through (87) cannot be determined; hence also1043

the form of the solution w̃0(ς) cannot be determined at this order. We can obtain the correction σ2 only for cases c)1044

or d), namely when there exists at least one pair of paths with at least one path in region 2; i.e. the region where some1045

restriction on the parameter ν is imposed. For this case, we can write down the solution in the form w̃0(ς) = Dν(ς).1046

The condition 1/Γ(−ν) = 0 determines all possible values of the parameter ν, which must be a non-negative integer,1047

ν = 0, 1, 2, 3, · · · . Hence, from (87), we obtain1048

σ2 =

(
−1

2
− ν

)
Υ−1

σ Υ1/2
z =

(
−1

2
− ν

)
k−1δ−2

2

(
W2

∂σW0

)(
2
∂2zW0

W2

)1/2

, (90)1049

where k−1δ−2
2 ∼ 1. We note that in expression (90), Υz appears as a square root but not as a smaller power; hence,1050

even in case d), the value of σ2 is determined uniquely, even though there are two distinct roots of Υ
1/4
z that lead to1051

the solution. In case c), only one root of Υ
1/4
z is allowed.1052

In the case of ν = 0, 1, 2, 3, · · · , the parabolic cylinder function Dν(x) can be expressed in terms of the ν-degree1053

modified Hermite polynomial Heν(x) as Dν(x) = exp(−x2/4)Heν(x); the first few polynomials Heν(x) are He0(x) = 1,1054

He1(x) = x, He2(x) = x2 − 1, He3(x) = x3 − 3x (see Abramowitz & Stegun 1972; Bender & Orszag 1978). Thus,1055

for any pair (z0, σ0) for which there exists a solution (with a uniquely determined correction σ2) given by (90), the1056

complex growth rate of the eigenmode w̃(s) is given by σ = σ0 + σ2δ
2
2 + o(δ22), where δ2 ∼ k−1/2. The leading order1057

approximation of such an eigenmode, expressed as a function of the original independent variable z, takes the form1058

w̃0 (z) = exp

[
−1

4
k (z − z0)

2

(
2
∂2zW0

W2

)1/2
]
Heν

[
k1/2 (z − z0)

(
2
∂2zW0

W2

)1/4
]
, (91)1059

where z0 is the complex evaluation point, with real part satisfying 0 < ℜ(z0) < 1.1060

Finally, the most unstable body mode for a given evaluation point z0 is defined by ν = 0, i.e. the smallest possible1061

value of the parameter ν in expressions (90) and (91). This justifies expressions (48) and (50); the former, in particular,1062

is relatively simple, since He0(x) = 1. This allows us readily to determine the localization point zmax (different from1063

the evaluation point z0) of the Gaussian-shaped function modulus |w̃0 (z) | for ν = 0. The resulting expression for zmax1064

is given by (49).1065
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