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Abstract

We analyze a family of generalized energy densities in integrable quantum field

theories in the presence of an external field coupled to a conserved charge. By

using the Wiener-Hopf technique to solve the linear thermodynamic Bethe ansatz

equations we derive the full analytic trans-series for these observables in terms of a

perturbatively defined basis. We show how to calculate these basis elements to high

orders analytically and reveal their complete resurgence structure. We demonstrate

that the physical value of the generalized energy densities is obtained by the median

resummation of their ambiguity-free trans-series.

1 Introduction

The standard tool to investigate interacting systems is perturbation theory. The per-
turbative series is typically asymptotic and the factorial growth signals non-perturbative
terms. For a complete description one has to build a multiple series, i.e. a trans-series
both in the perturbative coupling and in the exponentially suppressed non-perturbative
corrections. This trans-series is understood as Borel resummed, and the requirement of
being free of ambiguities requires an intricate interplay between the various perturba-
tive and non-perturbative terms. The theory which formulates this is called resurgence,
which lives its renaissance now, see [1, 2, 3] for recent reviews. Most of the resurgence
applications however, originate from differential equations. In contrast, we would like to
report here on a relevant progress in a wide class of integral equations. These linear inte-
gral equations appear in integrable systems, when one calculates the ground-state energy
density via the thermodynamic limit of the Bethe ansatz equations (TBA).

Systems soluble by the Bethe ansatz are relevant in condensed matter systems, in
statistical as well as in particle physics [4, 5]. They provide explicitly soluble toy models,
where non-perturbative, strongly interacting phenomena can be analyzed in simplified
circumstances. Additionally, some of them also have experimental realizations. Recently
there has been great progress in their perturbative as well as leading non-perturbative
analysis. On the condensed matter side the groundstate energy density of the Lieb-Liniger,
Gaudin-Yang and Hubbard models together with their generalizations were investigated
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[6, 7, 8, 9, 10, 11]. The non-pertubative terms were in many cases related to the su-
perconductive gap as well as to renormalon diagrams. On the particle physics side free
energies of asymptotically free integrable quantum field theories in the presence of an
external field coupled to a conserved charge were analyzed [12, 13, 14, 15, 16, 17, 18].
These included the O(N) non-linear sigma model and its supersymmetric extension, the
Gross-Neveu model and the principal chiral field for which the large order behavior of the
perturbative series were also investigated [19, 20, 21, 22, 23]. In these quantum theories
the non-perturbative terms are related to instantons or renormalons, which were further
confirmed by large N calculations [24, 25] and in the O(3) model by introducing a θ-term
[22].

In constructing the ambiguity free trans-series the first problem is to efficiently calcu-
late the perturbative terms. This was first achieved for the energy density of O(N) models
in [26, 27] by matching the behavior of the resolvent in the central and edge regions. The
method was extended for statistical models and for the circular plate capacitor [6, 28] and
by combining with the Wiener-Hopf technique to integrable quantum field theories [29].
The first few exponentially suppressed corrections can be extracted from the asymptotics
of the perturbative coefficients [6, 29, 7, 8, 30, 31, 20, 21, 23]. A systematic treatment
based on the Wiener-Hopf approach was presented in [19], which resulted in the precise
structure of the trans-series and explicit calculations of the first few non-perturbative
corrections. This was further extended to higher orders and improved by introducing the
running coupling for the O(N) models in [23]. The aim of our present paper is to solve
completely these models by determining the full trans-series, i.e. all the non-perturbative
terms together with their perturbative expansions. We are doing this by expressing these
higher perturbative expansions in terms of the original perturbative series of generalized
observables, which we also obtain from the known perturbative series of the ground-state
energy.

The paper is organized as follows. In section 2 we introduce the integral equation, the
generalized observables and the differential equations which relate them to each other.
In section 3 we demonstrate how the Wiener-Hopf technique can be used to calculate
these generalized observables. This provides a structural result, which we make explicit
by introducing a perturbatively calculable basis in section 4 and constructing the full
trans-series. In section 5 we present a method for determining the basis and investigate
how the various parts of the trans-series are interconnected. We also relate its median
resummation to the TBA result. Finally, in section 6 we provide explicit examples and
conclude in section 7.

2 Observables and their properties

We investigate linear integral equations of the form

χn(θ)−
∫ B

−B

dθ′K(θ − θ′)χn(θ
′) = rn(θ) ; |θ| ≤ B , (1)

where rn(θ) = coshnθ and the kernel is a symmetric function, which, in most of the
applications, is related to the logarithmic derivative of the scattering matrix [12, 13, 14,
15, 16, 17, 18, 6]. We are interested in the observables

On,m =

∫ B

−B

dθ

2π
χn(θ)rm(θ) (2)

as functions of B, but we do not indicate this dependence explicitly. This observable
is symmetric in n and m, which are not necessarily integers but non-negative. Its B-
derivative (which we denote by a dot) can be written in terms of the boundary values of
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χn-s as [23]
dOn,m

dB
≡ Ȯn,m =

1

π
χn(B)χm(B) . (3)

By generalising the manipulation of the integral equation in [11, 10] one can show that
these boundary values satisfy the differential equation

χ̈n(B)

χn(B)
− n2 = f(B) , (4)

where f(B) is an n-independent function, which can be calculated, for instance, from the
n = 1 case. These equations connect all observables to one of them, say to O1,1, which is
the groundstate energy of the integrable model in a magnetic field coupled to a conserved
charge. The observable On,m for n,m integers can be interpreted as the expectation
value of the conserved spin m charge, in the presence of the magnetic field, when the
Hamiltonian is given by the conserved spin n charge.

3 Wiener-Hopf integral equation

The standard way to solve the integral equation is the Wiener-Hopf technique [13, 14, 19,

23]. As a first step we extend the source as rn(θ) = Θ(−θ + B) e
nθ

2 + Θ(θ + B) e
−nθ

2 as
well as the integrations, (but not χn(θ)), for the whole line

χn(θ)−
∫

∞

−∞

dθ′K(θ − θ′)χn(θ
′) = rn(θ) + L(θ) +R(θ) (5)

by paying the price of introducing an unknown function R(θ) = L(−θ), which, how-
ever, vanishes for θ < B. In solving the equation in Fourier space the key point is the
factorization

1

1− K̃(ω)
= G+(ω)G−(ω) ; G−(ω) = G+(−ω) (6)

into factors analytic in the lower and upper half planes. Implementing the separation of
the equation into lower and upper half analytical pieces we arrive at

Xn(iκ) +

∫

∞

−∞

e2iωBσ(ω)Xn(ω)

κ− iω

dω

2π
=

1

n− κ
, (7)

where σ(ω) = G−(ω)
G+(ω) and the unknown function Xn(ω) is related to the Fourier transform

of R(θ) as Xn(ω) =
2e−(n+iω)BG+(ω)R̃(ω)

G+(in) + G+(ω)
G+(in)

1
(n+iω) . Except for the explicitly intro-

duced pole at ω = in, Xn(ω) is analytic in the upper half plane. We also assume that
n > 0. The n = 0 case requires special care [19, 23] and we can recover it by solving the
differential equations (3,4).

In the typical applications σ(ω) has a cut and poles at iκl, l = 1, 2, . . . , on the positive
imaginary line. Additionally, we also have the explicit pole at in coming from Xn. It is
advantageous to disentangle the poles from the cut by moving the cut a bit away from
the imaginary line in either direction [19, 23]. We then deform the integration contour
from the real line surrounding the cut and separately the poles whose residues we collect.
We can do it in two different ways, by integrating a bit left or right of the poles. The
residues will also depend on this choice, but the final result must be the same. This is
the manifestation of a Stokes phenomena and the two different choices will be related to
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the two lateral resummations. For definiteness, we integrate a bit left of the imaginary
line ( in κ a bit above the real positive line):

Xn(iκ) + i

∞
∑

l=0

Slqn,κl

κ+ κl
e−2κlB +

∫

C+

e−2Bκ′ δσ(iκ′)Xn(iκ
′)

κ+ κ′

dκ′

π
=

1

n− κ
, (8)

where qn,κl
= Xn(iκl) and Sl is the residue of iσ(iκ+ 0) at κl, while δσ(κ) = 1

2i (σ(iκ −
0)− σ(iκ+ 0)) is the discontinuity of σ. We included in the sum the contribution of the
pole of Xn(iκ) at κ0 = n with residue S0 = −iσ(in+0) = −iσ+

n with the convention that
qn,n = 1. Here we assume that all poles κl are distinct, including κ0, i.e. n 6= κl. In the
more general case, σ(iκ) can have higher order poles, which could even coincide with the
pole at in. In this case Sl and qn,κl

are related to the expansion of the functions around
the singularity, however, we do not consider these complicated cases in this short letter,
see our upcoming paper for further details [32].

Typically, we can always introduce a running coupling v

κ = vx ; 2B =
1

v
+ γ log v + L (9)

with an arbitrary constant L, such that the integral equation for the rescaled variable
Qn(x) = Xn(ivx) takes the generic form

Qn(x) + i
∞
∑

l=0

Slqn,κl
νκl

κl + vx
+

∫

C+

e−yA(y)Qn(y)

x+ y

dy

π
=

1

n− vx
, (10)

where qn,κl
= Qn(

κl

v ), qn,n = 1 and ν = e−2B = e−Lv−γe−1/v. The model-dependent

parameter γ has to be chosen such that A(y) = e−vy(γ log v+L)δσ(vy) has a power-series
expansion in v without any log v terms: A(y) =

∑

∞

j=0 v
jαj(y). By appropriately choosing

L the linear y-dependence in logA(y) can be canceled. Here qn,κl
-s (except qn,n = 1) are

also unknowns, which have to be calculated by evaluating the integral equation (10) at
the positions xv = κl. If Qn(x) including qn,κl

are determined, then the observable On,m

can be written (similarly to [23]) as

Onm =
e(n+m)B

4π
G+(im)G+(in)Wn,m (11)

with

Wn,m =
1

n+m
+ i

∞
∑

l=0

Slqn,κl
νκl

m− κl
+ σ+

mνmqn,m +
v

π

∫

C+

e−xA(x)Qn(x)

m− vx
dx , (12)

where qn,m = Qn(
m
v ). Here we assumed that n 6= κl and n 6= m, otherwise we have to

calculate the residue of a second order pole. The n = m case can be recovered by taking
the n → m limit. For the boundary value of the field, similarly to [23], we obtain

χn(B) =
enB

2
G+(in)wn (13)

with

wn = 1 + i
∞
∑

l=0

Slqn,κl
νκl +

v

π

∫

C+

e−xA(x)Qn(x)dx (14)

for n 6= 0. In the case of n = 0 we need to calculate f from χ1 in (4) and solve the
equation (4) for χ0 and (3) for O0,0.
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4 Trans-series ansatz and its solution

We solve these equations for Qn(x) in terms of a trans-series ansatz

Qn(x) =

∞
∑

l=0

νdl

∞
∑

j=0

Q
(dl)
n,j (x)v

j , (15)

where the set of nonzero Q
(dl)
n,j -s is model-dependent. One has to investigate the set {κl},

which (up to some isolated cases such as κ0) can be described as a union of finitely
many sets of the form {ail + bi} with l = 1, 2, . . . . We should introduce dl such that all
non-peturbative corrections are accounted for. We give concrete examples later.

The generic solution to (15) can be calculated iteratively in l. We start with the l = 0
perturbative part, i.e. we have to solve perturbatively the following problem:

Pα(x) +

∫

C+

e−yA(y)Pα(y)

x+ y

dy

π
=

1

α− vx
. (16)

This can be done by expanding A(y) and the source term in power series in v and
iteratively solving at any order based on lower order solutions [19, 23]. We will see,
however, that the explicit solution is not needed. Observe also that originally we needed
Pα for α > 0, but the equation and the perturbative solution make perfect sense also for
α < 0. Using these solutions the unknown Qn(x) can be written as

Qn(x) = Pn(x) + i
∞
∑

l=0

Slqn,κl
νκlP−κl

(x) , (17)

where, from the definition of qn,κs
, we obtain a closed system of linear equations of the

form

qn,κs
− i

∞
∑

l=0

Slqn,κl
νκlA−κl,−κs

= An,−κs
(18)

with the exception of qn,n = 1. Here we introduced the symmetric building block (for
α 6= −β) as

Aα,β =
1

α+ β
+ 〈Pα〉β , (19)

which contains the moment

〈Q〉β =

∫

C+

e−xA(x)Q(x)

β − vx

vdx

π
. (20)

The symmetric moments 〈Pα〉β are understood perturbatively in v and are well-defined
for any signs of α and β. We note that the recursive structure for qn,κl

is the consequence
of the integral equation, where the model-specific feature lies in the set κl (the non-
perturbative nature) as well as in An,m (the perturbative nature). In the following we
solve this linear system of equations. Since qn,n = 1 is not an unknown, we regard its
contribution as an inhomogeneous source term

qn,κs
−i

∞
∑

l=1

qn,κl
Slν

κlA−κl,−κs
= sn,−κs

; sn,−κs
= An,−κs

+σ+
n ν

nA−n,−κs
. (21)

This linear matrix equation (I−A)qn = sn, with As,l = iSlν
κlA−κs,−κl

can be solved
by inversion qn = (I−A)−1sn, which can be represented by the Neumann series qn =
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(I + A+A2 + . . .)sn and expanded in ν. Alternatively, we can plug back recursively
every lower order solution in to the ν-expansion, leading to

qn,κs
=

∑

paths

sAn,path,−κs
Spath , (22)

where a path means a sequence starting from n and ending at −κs: (n, l1, l2, . . . , lN ,−κs).
The contribution of such a path is

sAn,path,−κs
= sn,−κl1

A−κl1
,−κl2

. . . A−κlN−1
,−κlN

A−κlN
,−κs

Spath = iSl1ν
κl1 . . . iSlN ν

κlN , (23)

where the inner indices take only the values lk = 1, 2, . . . . At each non-perturbative order
in ν we have only a finite number of terms contributing. With this solution the unknown
function can also be written as

Qn

(m

v

)

= qn,m = An,−m + i

∞
∑

l=0

Slqn,κl
νκlA−κl,−m . (24)

The observables Wn,m can be obtained in terms of qn,κl
as

Wn,m = sm,n + i
∞
∑

l=0

Slqn,κl
νκlsm,−κl

= An,m +O(ν) . (25)

Clearly, the basic building block An,m is nothing but the perturbative part of our generic
observable Wn,m. The boundary value of the field can be expressed as

wn = an + i
∞
∑

l=0

Slqn,κl
νκla−κl

, (26)

where aα = limβ→∞ βAα,β .
By this we provided a complete solution of the problem, i.e. we expressed the observ-

ables in terms of the perturbatively defined An,m-s. In the following we explain how the
perturbative expansion of the building blocks can be calculated.

5 Median resummation and alien derivatives

Let us summarize what we have achieved so far. The observables On,m and χn(B) can
be written in terms of Wn,m and wn as

Onm =
e(n+m)B

4π
G+(im)G+(in)Wn,m ; χn(B) =

enB

2
G+(in)wn , (27)

which satisfy two differential equations

(n+m)Wn,m + Ẇn,m = wnwm (28)

2nẇn + ẅn = fwn (29)

and have the solutions (25) and (26) in terms of qn,κs
, which is given by (22).

The perturbative parts An,m and an satisfy the W → A,w → a differential equations
(28,29). Since Volin’s method [26, 27, 29] determines W1,1 at the perturbative level it
provides A1,1. We can then extract the perturbative part of w1, namely a1 from (28),
and by plugging back to eq. (29) we can extract an for any n, not necessarily positive
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integer. These perturbative series then can be used to calculate the expansion of An,m to
the desired order from the perturbative part of (28). By using these building blocks the
all order solution for qn,κl

, Wn,m and wn can be built up.
The results for qn,m, Wn,m and wn are given in terms of trans-series, which is under-

stood as laterally Borel resummed. This prescription does not follow from our derivation,
although very plausible from the contour shift, see also [19] for comments about this
point. Thus we assume that the lateral Borel resummation of the trans-series solution
gives the TBA result. Since the TBA result is free of ambiguities, we can calculate the
various alien derivatives of An,m from the ambiguity cancellations. These quantities differ
only by the various source terms, thus we expect that the (I−A)−1 operation guarantees
the ambiguity cancellation.

We analyze the behaviour of qn,m using resurgence theory and alien derivatives fol-
lowing [2, 3, 31]. Assuming m > 0 and n > κ1, the leading singularity of the Borel
transform of An,−m on the positive real line is at κ1. The corresponding ambigu-
ity, which is encoded in the alien derivative1 ∆κ1An,−m has to be canceled by the
leading non-perturbative correction of order νκ1 , i.e. by iSlAn,−κl

A−κl,−m leading to
∆κ1An,−m = 2iS1An,−κ1A−κ1,−m. By moving iteratively further and subtracting the
already known alien derivatives one can show that

∆κl
An,m = 2iSlAn,−κl

A−κl,m . (30)

We can then construct a multi-parameter trans-series for our basic quantity as

q̂n,m({σ}) =
∑

paths

sAn,path,−mσpath , (31)

where
σpath = σl1ν

κl1 . . . σlN νκlN . (32)

By using (22) and (30) one can show that the action of the pointed alien derivative ∆̇κl

on the trans-series is equivalent to 2iSl times differentiation wrt. σl:

∆̇κl
q̂n,m({σ}) ≡ νκl∆κl

q̂n,m({σ}) = 2iSl∂σl
q̂n,m({σ}) . (33)

The Stokes automorphism which relates the two lateral Borel resummations is the expo-
nentiation of all the alien derivatives, which then acts as

S q̂n,m({σ}) = e
∑

l
∆̇κ

l q̂n,m({σ}) = e
∑

l
2iSl∂σ

l q̂n,m({σ})
= q̂n,m({σl → σl + 2iSl}) . (34)

The ambiguity free median resummation

S 1
2 q̂n,m({σ}) = q̂n,m({σk → σk + iSk}) (35)

is then nothing but the TBA result, if we turn off every σ expect the one corresponding
to the source (22). Similarly, Wn,m = S 1

2 (sm,n).

6 Examples

In this section we provide some examples. There is a large class of integrable particle-
models, where a magnetic field can be coupled to one of the global charges and the energy

1The alien derivative is understood in the running coupling v as: ∆̇n = νn∆n, where [∆̇n, ∂B ] = 0.
Thus it has an extra v−γ factor compared to the standard definition.
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density can be investigated by the thermodynamic limit of the Bethe ansatz equations.
In these cases the kernel is related to the logarithmic derivative of the scattering matrix
and the Wiener-Hopf method leads to a generic structure. We focus here on the bosonic
models having

σ(iκ± 0) = eγκ log κ+bκH(−κ)

H(κ)

(

∓i cos(
γπκ

2
) + sin(

γπκ

2
)
)

, (36)

where γ, b are model-dependent constants, while H(κ) is a model-dependent product of
gamma-functions. We indicated the signs of the residues depending on the two possible
ways how we can shift the cut away from the imaginary line. The poles on the imaginary
line are determined by the careful analysis of H(κ), which we go through model by
model. Clearly, the running coupling can be always introduced with γ and b, together
with another linear term coming from the H-s, can be transformed out by an appropriate
choice of L. With this choice the kernel in the integral equation takes the form

A(x) = cos(
γπvx

2
)eγvx log x+

∑
∞

k=1 z2k+1(vx)
2k+1

, (37)

where zk is proportional to ζk in a model-dependent way.
We start with the observable A1,1, which can be calculated by modifying Volin’s

method to keep track of the ζ-s coming from the kernel. The result is

2A1,1 = 1 +
v

2
+

(

5γ

4
+

9

8

)

v2 +

(

10γ2

3
+

53γ

8
+

57

16

)

v3 (38)

+
1

384
v4

(

−36γ3(21ζ3 − 94) + 10924γ2 + 13344γ + 9(144z3 + 625)
)

+O
(

v5
)

.

We regard this as an input to our analysis and show how all the non-perturbative parts
can be determined from this. We can calculate this series analytically up to 50 orders
and numerically up to few hundred orders with very high precision [30, 31, 21]. For
demonstration, we merely included here the first few terms, and keep doing the same
from now on. By using the differential equation 2A1,1 + Ȧ1,1 = a21, i.e. the perturbative
part of (28), one can obtain

a1 = 1 +
v

4
+

(

5γ

8
+

9

32

)

v2 +

(

5γ2

3
+

53γ

32
+

75

128

)

v3 (39)

+
v4

(

−288γ3(21ζ3 − 94) + 43696γ2 + 35160γ + 9(1152z3 + 1225)
)

6144
+O

(

v5
)

.

Then using (29) for n = 1 we obtain

f = −v2 − 6γv3 − 26γ2v4 + v5
(

1

4
γ3(63ζ3 − 386)− 27z3

)

+O
(

v6
)

. (40)

By solving (29) for other n-s we can get

an = 1 +
v

4n
+

v2(20γn+ 9)

32n2
+

v3
(

640γ2n2 + 636γn+ 225
)

384n3
(41)

+
v4

(

288n3
(

γ3(94− 21ζ3) + 36z3
)

+ 43696γ2n2 + 35160γn+ 11025
)

6144n4
+O

(

v5
)

.

Actually an can be obtained directly from a1 by the v → v
n , γ → γn, z2k+1 → n2k+1z2k+1

replacements.The exceptional χ0 is

χ0 =
1√
v

(

1− γv

2
− 5γ2v2

8
+

1

16
v3

(

γ3(7ζ3 − 15)− 12z3
)

+O(v4)

)

. (42)
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Finally, by solving (28) we obtain the basic building blocks

An,m =
1

m+ n
+

v

4mn
+

v2(20γmn+ 9m+ 9n)

32m2n2
(43)

+
v3

(

m2
(

640γ2n2 + 636γn+ 225
)

+ 6mn(106γn+ 39) + 225n2
)

384m3n3
+O

(

v4
)

.

In order to get the generic solutions in terms of these A-s as (22,25,26) we need the
locations κl and Stokes constants Sl, which we analyse model by model.

6.1 O(N) models

The O(N) non-linear sigma models in a magnetic field coupled to one of the O(N) charges
[13, 14] can be analyzed by the thermodynamic limit of the Bethe Ansatz equation, which
takes the form of the integral equation (1) with the kernel related to the S-matrix [33]

S(θ) = −Γ(12 − iθ
2π )Γ(∆− iθ

2π )Γ(1 +
iθ
2π )Γ(∆ + 1

2 + iθ
2π )

Γ(12 + iθ
2π )Γ(∆ + iθ

2π )Γ(1− iθ
2π )Γ(∆ + 1

2 − iθ
2π )

(44)

as K(θ) = 1
2πi∂θ log S(θ), where ∆ = 1

N−2 . For the coshnθ source term On,m describes
the expectation value of the spin m conserved charge with the Hamiltonian being the
spin n charge. The energy density analyzed in the literature corresponds to O11. The
Wiener-Hopf decomposition gives (36) with

γ = 2∆− 1 ; H(κ) =
Γ(1 + ∆κ)

Γ(12 + κ
2 )

(45)

and the kernel is described by

z2k+1 = 2
ζ2k+1

2k + 1
(∆2k+1 − 1 + 2−2k−1) . (46)

The zeros of σ(iκ) are located model-independently at the positions κ = 2l− 1, while its
poles are at κ = l(N − 2), where l ∈ N. This implies that κl = lκ1 with κ1 = N − 2 for
N even and κ1 = 2N − 4 for N odd [19, 23].

6.1.1 O(4) model

Let us start with the O(4) model, which is the simplest. In this case the running coupling
is v = 1

2B and ∆ = 1
2 . The poles and the zeros do not interact and κl = 2l; l = 1, 2, . . . ,

with residues

Sl =
((2l − 1)!!)2

22l−1l!(l− 1)!
. (47)

Observe also that σ(in) = 0 for n odd, i.e. S0 = 0, so in these cases κ0 = n is not
singular and we do not have the l = 0 term in the sums. With these building blocks the
trans-series for the observable w1 takes the form

w1 = a1 +
∑

l1,l2,...

e−4(l1+l2+... )B(iSl1)(iSl2) . . . A1,−2l1A−2l1,−2l2 . . . a−lk . (48)

It is free of ambiguities due to the relation

∆2lAα,β = 2iSlAα,−2lA−2l,β . (49)
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Finally W1,1 can be obtained from eq. (28) as

W1,1 = A1,1 +Me−2B +
∑

l1,l2,...

e−4(l1+l2+... )BiSl1iSl2 . . . A1,−2l1A−2l1,−2l2 . . . A−lk,1 ,

(50)
where M is an integration constant, which comes from the zero mode of 2+∂B. By taking
the n → 1 and m → 1 limit in (25) it can be calculated explicitly to be M = −2i. The
first few terms take the form

W1,1 = A1,1 +Me−2B + ie−4BS2A
2
1,−2 + e−8B((iS2)

2A2
1,−2A−2,−2 + iS4A

2
1,−4) + . . . .

(51)
By explicitly investigating the analytic structure of A1,1 on the Borel plane we confirmed
the perturbative expansion of all these terms up to high orders. We also verified numeri-
cally that the median resummation reproduced the TBA result.

These results have a direct extension for N > 4. The only difference is that κ1

is N -dependent, otherwise the poles form the lattice κl = lκ1 and the generic solu-
tions in terms of the A-s (22,25,26) applies. The integration constant for W1,1 is M =

−2e(∆e )
2∆ Γ(1−∆)

Γ(1+∆)e
iπ∆.

6.1.2 O(3) model

The O(3) model is the most complicated among the O(N) models. This is due to the
fact that σ(i) 6= 0, and we have to carry the l = 0 term in the sums for W1,1 and w1. The
poles of σ(iκ) are again located at κl = 2l. The building blocks An,m can be used here
with ∆ = 1. By focusing on w1 the main difference compared to the O(4) model is that
additionally to the O(4) like sums, we also have others starting at ν:

w1 = a1 +
∑

l1,l2,...

ν2(l1+l2+... )iSl1iSl2 . . . A1,−2l1A−2l1,−2l2 . . . a−lk (52)

iS0ν

(

1 +
∑

l1,l2,...

ν2(l1+l2+... )iSl1iSl2 . . . A−1,−2l1A−2l1,−2l2 . . . a−lk

)

.

What is interesting is that the two parts are not related by any resurgence relations, i.e.
the ∆1 alien derivative of the first line is not related to the second line. This can be also
seen by noting that S0 is imaginary and the real leading term cannot be related to the
purely imaginary alien derivative of a real series. The even alien derivatives satisfy the
relations as before ∆2lAn,m = 2iSlAn,−2lA−2l,m. The observable W1,1 can be obtained
by integrating the differential equation (28). Again the constant term should be fixed
from taking the n → 1 and m → 1 limit.

6.2 Principal chiral models

The SU(N) principal chiral model can be described by

γ = 0 ; H(κ) =
Γ(1 + (1−∆)κ)Γ(1 + ∆κ)

Γ(1 + κ)
, (53)

where ∆ = 1/N . In order to use the generic forms we need the replacements

z2k+1 = 2
ζ2k+1

2k + 1

(

−1 + ∆2k+1 + (1−∆)2k+1
)

. (54)

The poles of σ(iκ) again form a lattice κl = lκ1 with κ1 = N
N−1 . This model is very

similar to the O(4) model, which is the SU(2) case here.
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6.3 Supersymmetric O(N) models

In this model we have

γ = −1 ; H(κ) =
Γ(12 + (1−2∆)κ

2 )Γ(1 + ∆κ)

Γ(12 + κ
2 )

, (55)

where ∆ = 1/(N − 2) and

z2k+1 = 2
ζ2k+1

2k + 1

(

∆2k+1 − 2 + 2−2k + (1− 2∆)2k+1(1− 2−2k−1)
)

. (56)

The low N cases are similar to the previous cases having only a simple lattice with κl = lκ1

where κ1 = 2 for N = 3, 4 while κ1 = 6 for N = 5. For N > 5 we have to distinguish
between the even and odd cases just as we did for the O(N) models. We actually have
the same set as for the O(N) models and additionally µl =

N−2
N−4(2l−1), although for odd

Ns some of the residues are zero. This is a very complicated pattern and we are planning
to investigate these cases in detail in our forthcoming publication [32].

7 Conclusion

In this paper we developed a method to solve completely the integral equations (1) in
terms of a trans-series. By taking the perturbative energy density A1,1 as an input we
determined a set observables An,m which constitute a complete basis in the trans-series
solution. We used these building blocks to construct the full trans-series for various other
observables including the generalized energy densities and the boundary values of the
Bethe Ansatz densities. We also revealed the analytical structure of all An,m-s on the
Borel plane by determining their (positive) alien derivatives. The singularities on the
positive real lines are interplayed such a way that the TBA result agrees with the median
resummation. We supported our calculations with the explicit examples of the bosonic
integrable models, in particular of the O(N) non-linear sigma models.

In the statistical physical applications the systems are not relativistically but Galiean-
invariant. This implies that the source terms and the moments has to be changed from
coshnθ to θj , see [11, 10] for details in constructing the analogue of our basis and for
describing observables at the perturbative level. Our formulas can be related to those by
differentiating wrt. n and putting n to zero. However, here we go beyond the perturbative
level, and construct the full non-perturbative trans-series. We think that by making the
appropriate differentiation the non-perturbative parts of the non-relativistic moments can
also be extracted based on our formulae.

We thus hope that our generic solution of the TBA equation will be useful and find
applications both in the statistical and particle physics.
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