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Abstract: It was recently shown how to account for all instantons of hermitian matrix mod-
els via (anti-) eigenvalue-tunneling—including both exponentially-suppressed and exponentially-
enhanced transseries-transmonomials which are predicted by resurgence. Matrix-model eigen-
value-tunneling corresponds to ZZ-branes. The present work shows how matrix-model anti -
eigenvalues correspond to negative-tension ZZ-branes; and how to compute generic nonperturba-
tive sectors—with both ZZ and negative-tension-ZZ branes—in the minimal-string free-energy.
Negative-tension D-branes are herein a requirement of resurgence. This results in the construction
of minimal-string free-energy transseries and the analytic computation of their resurgent Stokes
data. Calculations are presented via Liouville boundary conformal field theory and via (matching)
matrix model analysis. Minimal-string results are extended to Jackiw–Teitelboim gravity. Build-
ing on the matrix model analysis, one extension towards topological string theory is obtained via
the remodeling-conjecture—which allows for addressing one-cut, toric Calabi–Yau geometries.
Building on the Liouville theory calculation, one other extension towards critical string theory
is obtained via the H+

3 –Liouville correspondence—which allows for addressing negative-tension
D-instantons in AdS spacetime. Throughout, checks of the construction and formulae are made
in several examples, against both Borel resurgent analysis and string-equation transseries data.
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1 Introduction and Summary

D-branes stand as one of the great discoveries in string theory [1, 2]. They open a remarkable
nonperturbative window with wide applications ranging from black-hole microstate counting [3]
to the celebrated AdS/CFT large N duality [4]. Playing such prominent roles, it is clear that
finding all the D-branes in a given closed-string (curved) background is of paramount importance
in the full description of the theory. This, however, is not always an easy task [5]. The literature
abounds with very interesting examples, of which an extremely partial list includes, e.g., D-branes
in minimal string theory [6–8], D-branes in WZW models [9–12, 5], D-branes in AdS spacetimes
[13–19], D-branes in Calabi–Yau geometries [20, 21], and so on and on. If in addition we recall
the myriad of different D-branes one may encounter (e.g., different RR charges [2], S-branes [22],
ghost D-branes [23], and the like), this immediately begs for the question: in specific problems,
how can one be sure if we indeed found them all?

On a different line of work, and in fact much predating the discovery of D-branes, the results
in [24–27] sparked a plethora of research into the large-order growth of perturbation theory in
one-dimensional quantum-mechanics—therein regarded as another open-window into the nonper-
turbative content of these many interesting quantum problems [28–30]. Work across the years has
since shown how this is a rather generic feature, and how digging deeper into asymptotic growths
allows for unveilings of the full instanton or renormalon content of many distinct quantum and
field theories. Translating this line of thought into string theory—historically defined in an in-
herently perturbative fashion with asymptotic string-theoretic perturbative-expansion [31]—one
is immediately led to recall how the nature of its perturbative asymptotic growth was in fact a
precursor to the discovery of D-branes [32]. Might this then also be a general strategy towards
unveiling the full D-brane content of any string theory?

One context where to better frame this question is that of closed string theories associ-
ated to double-scaled multicritical hermitian matrix-models [33–37]; models which were at the
time dubbed “solvable” due to recursion-relations—obtained out of their corresponding string
equations—iteratively yielding their full perturbative data (see, e.g., [38–40] for reviews). Asso-
ciated to these perturbative data, a fair amount of nonperturbative data alongside their semi-
classical interpretation as matrix-model eigenvalue tunneling, was also obtained at the same time
[41, 42]—and these nonperturbative data were further validated against the leading large-order
growth of the corresponding perturbative sectors [43–45]. A second wave of interest in matrix-
model descriptions of string theories refocused attention upon minimal1 string theories [49, 51],
with similar properties to the aforementioned multicritical models (see, e.g., [52, 53] for reviews).
One important novelty in the minimal string story is the clear identification of matrix model
and string theoretic quantities; in particular, the identification of D-branes: eigenvalue-tunneling
corresponds to ZZ-branes [8], and the matrix-model holomorphic effective-potential describes
FZZT-branes [6, 7]. For example, many properties of ZZ-brane instanton contributions follow
quite straightforwardly from matrix model calculations [54, 49, 55–58]. Matching of matrix model
and boundary conformal field theory calculations in these models has further seen recent progress
in [59, 60]. But this is not the end of the story.

That there is more to this story than described above was sparked by [61], setting-up large-
order analyses for (off critical) matrix models and topological strings, later carried through in
[62, 63] beyond leading order. Resurgence [64] enters the game in [65], where resurgent transseries
neatly package together the full perturbative and nonperturbative multi-instanton content of

1Where the worldsheet matter-content is given by the minimal models of [46], and where the KdV times [47]
are now retuned from the multicritical to the conformal background (see, e.g., [48–50]).
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matrix models, unveiled in the aforementioned references (see, e.g., [66, 67] for reviews). This
line of research finally led to [68], which pioneered analyzing the asymptotics of multi-instanton
sectors (in the specific Painlevé I example), and where it was made clear that these transseries
are resonant, i.e., instanton actions always arise in symmetric pairs. This was extended to
(off critical) matrix models and further examples in [69–72, 50] (resonance being generic for
multicritical and minimal string models [50]). Yet, the lingering question concerned the matrix-
model semiclassical interpretation of resonance. It was recently shown in [73] that whereas
eigenvalue tunneling in the physical sheet of the matrix-model large N spectral-curve describes
the ∼ exp (−1/gs) multi-instanton sectors of a resonant resurgent-transseries, it is eigenvalue
tunneling into the non-physical sheet which describes the ∼ exp (+1/gs) resonant pairs (with gs

the string coupling). Now, the former correspond to minimal string ZZ-branes. One question we
address in this work is how the latter correspond to minimal-string2 negative-tension ZZ-branes.
Such “ghost” or “negative” branes3 have previously appeared in the literature [74, 23, 75, 76].
Herein, negative-tension D-branes turn out to be a requirement of resurgence.

One important aspect to the resurgent transseries constructions deals with their non-linear
Stokes data (precisely quantifying Stokes-phenomenon jumps of the asymptotic expansions). This
is what allows us to extend transseries from asymptotic series to full-fledged functions; but Stokes
data is generically very hard to compute analytically. In the aforementioned Painlevé I example,
one Stokes coefficient was originally known—computed as the one-loop coefficient around the
one-instanton sector associated to eigenvalue tunneling [42, 62] (extension for all multicritical
and minimal string models appeared in, e.g., [50]). But resonance predicts infinitely many
other resurgent Stokes coefficients [68, 70–72, 67]. Recently, this infinite set of (transcendental)
numbers was found in analytical closed-form via analysis of resonant resurgence [77], and then
received a direct matrix-model calculation via (anti) eigenvalue tunneling in [73]. Our present
work gives yet another take on these non-linear resurgent Stokes data, with a direct boundary
conformal field theory (B-CFT) calculation via negative-tension D-branes.

One last comment concerning Stokes phenomenon connects to the results in [78]. Let us re-
call their important main point: in the semiclassical approximation observables live on branched,
possibly multi-sheeted, geometries (e.g., the large N spectral curve)—but exact quantum observ-
ables should be entire functions; which is only possible when starting from semiclassics if Stokes
phenomena intervenes in order to achieve full analyticity [78]. A somewhat similar phenomenon
was also observed in [79]. It is now clear that full analyticity entails knowledge of all possible
Stokes jumps, everywhere on the complex plane—which at the transseries level translates to
knowledge of the complete set of transmonomials at play (be them different eigenvalue types,
different D-branes, or whatever else). Our present construction yields the complete semiclassical
interpretation of the resurgent structure of minimal strings; fully allowing implementation of all
possible Stokes phenomena at play and finally construct exact, entire quantum observables.

The Contents of the Paper: We begin in section 2 with a complete BCFT analysis of (p, q)
minimal string theory, including both standard and negative-tension D-branes. This is essen-

2The reader should bare in mind that whereas minimal string theory naturally includes negative-tension D-
branes, these are not the ones which we are referring to. Rather, our claim is that each positive-tension D-brane
will now have a negative-tension counterpart, and vice-versa. In other words, just like for the instanton actions,
also positive and negative-tension D-branes will always arise in symmetric pairs.

3Mostly they have been studied in the superstring context, with both NS and R sectors. As a quick reminder,
if we denote a D-brane boundary state by |D〉 = |NS〉 + |R〉 then its anti-D-brane counterpart will be |anti-D〉 =
|NS〉− |R〉, but its negative-tension pair is instead |negative-D〉 = − |D〉 = − |NS〉− |R〉 with an overall rather than
a relative minus sign. In this paper we only have overall minus signs, which will turn out to be quite non-trivial.
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tially the BCFT version of the matrix model calculations in [73] and very much constructs upon
[80, 81] for the computation of disk and (regularized) annulus amplitudes (in both ZZ and FZZT
cases). In fact, we immediately address the need for such a regularization in subsection 2.1,
which we set-up (building upon [81]) via careful analytic considerations—and further compare to
the recent string field theory regularization in [59]. Using such properly regularized amplitudes
immediately supports for both tension types of ZZ-branes, as discussed in the ensuing subsec-
tion 2.2. Calculations addressing different possible types of ZZ- and negative-tension ZZ-brane
contributions, across different possible sheets of the FZZT moduli space in Liouville theory, are
discussed in subsection 2.3—including explicit nonperturbative mixed sectors of the minimal-
string free-energy transseries. A generalization to pure (negative-tension) multi-ZZ-instantons is
then computed in subsection 2.4. Our ZZ-brane results are straightforwardly extended to FZZT-
branes in subsection 2.5. It is important to point out that subsection 2.3 further makes it rather
explicit how an a priori seemingly-harmless overall minus sign, associated to a negative-tension
D-brane, can become rather non-trivial. As we shall see, these negative-signs appear in expo-
nents in the integrands of Liouville amplitudes, thus leading to the appearance of integrand-poles
where one would otherwise naively expect to find integrand-zeroes—and hence to rather different
final integrals for the Liouville BCFT amplitudes wherever they are featured. The avid reader
may take a sneak preview of this phenomenon in formulae (2.49) and (2.56).

In section 3 we turn to the matrix model analysis of minimal strings, now focusing upon
(p, q) = (2, 2k − 1) as we mainly address the one-matrix model case. This is essentially the (de-
generate hyperelliptic) multi-pinched extension of the analysis in [73]—which can become quite
intricate at times. The calculation is generically discussed in subsection 3.1, in the context of
the double-scaling limit; and then is explicitly applied to the (2, 2k − 1) minimal string theory
in subsection 3.2. These matrix model results fully match the earlier BCFT results in section 2,
as will be shown in subsection 3.2. On top of this, they are further matched against results
arising from string equations (as described in appendices A and B), so that our proposal is in
fact triple checked—as will be shown in subsection 3.3. Further supporting evidence is gathered
with resurgent large-order tests for Stokes data and Borel–Padé analysis for Borel singularities,
also in subsection 3.3. This supports the overall consistency of all proposal and results. The
minimal string results are then extended to Jackiw–Teitelboim (JT) gravity [82–87] in subsec-
tion 3.4, by simple application of our generic double-scaled formulae to the spectral curve of its
matrix model [88]. The resonant nature of JT gravity, which has already been addressed in [50],
is further supported by direct Borel–Padé analysis of its Borel singularities, and by the explicit
large k limit of the earlier (2, 2k − 1) results. A very short discussion on the extension of our
matrix model calculations to the case of the two-matrix model is included in subsection 3.5.
Throughout section 3 we include many explicit calculations of non-trivial, multiple ZZ- and mul-
tiple negative-tension ZZ-instanton contributions to the minimal-string free-energy transseries,
alongside analytic computations of their non-linear Stokes data. Matrix model calculations many
times involve rather intricate integrals, and we included one generic such integral in appendix C
for the convenience of the reader who wants to reproduce our calculations.

Having gathered strong and compelling evidence for the resurgence requirement of negative-
tension D-branes within minimal string theory, one is then led to wonder if the same may hold
true across generic string theories. This is addressed in section 4, where we discuss possible
extensions towards topological string theory in toric backgrounds and towards critical string the-
ory in AdS spacetimes. The topological string extension is very much based on the fact that
the results in [73] alongside our results in section 3 are model independent, in the sense that
they only depend on spectral-curve data—and may hence be applicable in broader contexts. For
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example, for topological string theory in toric Calabi–Yau geometries it is well known that apply-
ing the topological recursion [89] to the B-model mirror curve remarkably yields the topological
string free-energy expansion [90]. This procedure was later extended to topological-string nonper-
turbative instanton-calculus in [62], addressing the one-instanton sector of the local-curve toric
geometry. Subsection 4.1 revisits the local curve at nonperturbative level, showing how an analy-
sis of Borel singularities reveals the resonant nature of its nonperturbative free energy. Formulae
in [73] and our section 3 are then applied to this problem following [61, 90, 62], yielding many
predictions for the resonant nonperturbative sectors of this model (which are further checked
against their double-scaling limit towards the Painlevé I transseries). A very brief discussion
concerning topological strings on local P2 and local P1 × P1 is also included. Turning to critical
string theory, with focus upon AdS spacetimes, at first seems harder. But in subsection 4.2 we
build upon the remarkable H+

3 –Liouville correspondence [91–93], allowing for use of our Liouville
results from section 2 in addressing D-branes in euclidean AdS3. In this light, Liouville FZZT
branes correspond to AdS2 branes in AdS3, and the Liouville ZZ branes have D-instanton ana-
logues in AdS3 [18]. Building on our discussion of resonant negative-tension D-branes in Liouville
theory earlier on, we can thus infer on the existence of negative-tension D-instantons in AdS3.
The evidence is circumstantial as we mainly rely on the H+

3 –Liouville map—implying that due
to the natural added computational intricacies, the results herein are not as exhaustive as in
the minimal or topological string examples. We nonetheless believe they amount to clear and
supporting evidence, and further work along these directions will be reported in the near future.

A Resurgence Requirement: Let us stress how our overall results are a direct requirement of
resurgence, simply given the nature of the large-order growth of the string perturbative-expansion.
With hindsight, in fact, one could even claim that our results are obviously expected. Consider
the perturbative expansions for either the string-theoretic free energy or the multi-resolvent4

correlation functions,

F '
+∞∑
g=0

Fg(t) g
2g−2
s , (1.1)

Wh (x1, . . . , xh) '
+∞∑
g=0

Wg,h (x1, . . . , xh; t) g2g−2+h
s (1.2)

(with t some background-geometry modulus). These expansions are asymptotic, with leading
large-order growths Fg(t) ∼ (2g)! and Wg,h(t) ∼ (2g + h)!. While it is very well-known how the
naive expectation where such growths would lead to nonperturbative exponential corrections of
the type ∼ exp

(
−1/g2

s

)
is incorrect—rather leading to the extremely well-known D-brane-type

nonperturbative exponential corrections ∼ exp (−1/gs)—it seems that the need for the resonant
siblings ∼ exp (+1/gs) has somehow escaped detailed scrutiny; but see the discussions in [70, 67].
In fact these resonant pairs are required simply so as to keep the above asymptotic perturbative
expansions in even powers of the string coupling. This is a straightforward statement on the
Borel plane (see, e.g., [67]). Taking a Borel transform B : C[[gs]]→ C{s} of the above asymptotic
series (1.1)-(1.2) immediately yields parity-fixed functions5,

B [F ] (s) = −B [F ] (−s), B [Wh] (s) = (−1)h−1B [Wh] (−s). (1.3)

4These are the Laplace transforms of multiple macroscopic-loop operator insertions [94, 48, 95].
5The resonant nature of multi-resolvent correlation functions is addressed in [95].
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This simple statement immediately implies that Borel singularities are symmetrically distributed
upon the complex Borel plane s ∈ C, i.e., it immediately implies the aforementioned resonant
behavior of their associated nonperturbative exponential contributions. As already mentioned,
this then leads to the minus signs which end up swapping zeros and poles inside integrands over
D-brane moduli space (as will be later be made explicit in, e.g., formulae (2.49) and (2.56)).

Moving Forward in Future Work: At the root of the string-theoretic results reported in this
paper lies the study of the adequate analytic regularization of ZZ- and FZZT-brane amplitudes
in Liouville BCFT6. Given the centrality of Liouville theory in the whole string theory construct
[97, 98], it would certainly not come as a big surprise if the present results would be transverse to
larger classes of backgrounds. We give evidence along this direction for strings in toric Calabi–
Yau and Anti-de Sitter backgrounds. Nonetheless, further evidence and further backgrounds
are certainly required in order to make any definite statements. For example, in upcoming
work we plan to report on the matrix-model multi-cut analysis, building on [99, 100, 63, 101].
Other models and examples we plan to address in the near future include Chern–Simons matrix
models, following upon [102–104]; and more intricate toric Calabi–Yau geometries such as local
P2 or local P1×P1, following upon [61, 90]. Hopefully these will stand as strong stepping-stones
on the road to address ABJM gauge theory [105] along the lines of [106–110]; or the more intricate
topological-string matrix-models associated to generic toric Calabi–Yau threefolds constructed
in [111–114]. This seems to us as a solid line of research also in light of the large amount of work
which exists in the literature tackling resurgence and transseries within topological string theory;
e.g., [61, 62, 65, 63, 69, 115, 110, 116–125]. Another rather standard line of research going forward
would be to work out the supersymmetric extension of our present bosonic results, which should
be straightforward albeit possibly more technically involved. As already mentioned in [73], it
would furthermore be very interesting to automatize our whole resonant-resurgence construction
within the (nonperturbative) topological recursion framework [89, 95]. Finally, we would like to
understand which—if any—would be the consequences of our results on what concerns generic
nonperturbative corrections to the full gauge-theoretic large N expansion [126] and their eventual
role within the AdS/CFT correspondence [4].

2 On All ZZ-Brane Amplitudes of Minimal Strings

Let us begin by addressing the full resurgence content of D-branes in minimal string theory, build-
ing upon [80, 49, 81, 78]. This first requires swiftly recalling some elementary data concerning
these models (see, e.g., [52, 53, 127] for reviews and a list of references). The closed-string world-
sheet CFT is composed of a (p, q) minimal model [46] describing the background; of Liouville
theory describing the conformal mode

SL[ϕ] =
1

4π

∫
d2σ

(
(∂aϕ)2 + 4πµ e2bϕ

)
; (2.1)

and of the usual reparametrization ghosts

Sgh[b, c] =
1

2π

∫
d2σ b∂̄c. (2.2)

6Analytic continuation of Liouville CFT was studied in [96].
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Herein, µ is the bulk cosmological constant and b > 0 is the Liouville coupling constant. The
matter, Liouville, and ghost central charges are

cp,q = 1− 6
(p− q)2

pq
< 1, cL = 1 + 6

(
b+

1

b

)2

> 25, cgh = −26, (2.3)

and the on-shell requirement of vanishing total central charge yields

b2 =
p

q
. (2.4)

Moving towards minimal-string D-branes, these also factorize into D-branes of minimal mod-
els and D-branes of Liouville theory. The latter then split into ZZ-branes [8] and FZZT-branes
[6, 7]. The FZZT-branes are labeled by a continuous parameter, which is sometimes taken to be
µB, the boundary cosmological constant of the boundary term in the Liouville action

SL,B[ϕ] = µB

∮
ebϕ. (2.5)

More conveniently, we shall use the uniformization variable

ζ = cosh
1

p
arccosh

µB√
µ
, (2.6)

and denote FZZT-branes by |ζ〉FZZT with ζ ∈ C. It is also convenient to introduce variables x
and y (which will play more prominent roles in section 3 as the spectral curve y = y(x)) as [49]

x ≡ µB√
µ
≡ Tp(ζ), (2.7)

y ≡ µ−
1

2b2
∂AD

∂µB
≡ Tq(ζ). (2.8)

Herein Tp (cos θ) = cos pθ are Chebyshev polynomials of first kind, the variables x and y satisfy
Tq(x) = Tp(y) essentially by definition, and AD is the FZZT disk amplitude. We have visualized
this Riemann surface in figure 1 for (p, q) = (2, 5). One may equally write (with pictorial notation
which will be handy as we move on) [49]

AD (ζ) =

ζ

= µ
p+q
2p

∫ x(ζ)

dx y(x). (2.9)

This is the full D-brane tension, including a factor of gs which we may then identify as gs = µ
− p+q

2p .
From now on, we follow [49, 81] and rescale µ by πγ(b2) with γ(x) = Γ(x)/Γ(1− x).

The algebraic relation Tq(x) = Tp(y) describes a Riemann surface Σp,q which is a p-sheeted
covering of the x complex-plane, and we can label these different sheets by simply considering
the inverse-map to Tp(ζ), which is the set [128]

T−1
p = {ζ0, . . . , ζp−1}. (2.10)

Herein ζα with α = 0, . . . , p− 1 live in the different sheets, in the uniformization-cover language
(see figure 1 again). Further introducing [81]

ζ = cosh

(
πbσ

p

)
, (2.11)
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a x1,1 x1,2

α = 0

α = 1

Figure 1: Example of the (2, 5) minimal-string FZZT Riemann surface. Its two sheets are
separated by the cut (in green) starting at a and ending at ∞ (from the matrix model point-of-
view to be discussed later, this is a double-scaled spectral curve). Furthermore, we have labeled
the two sheets with α = 0 (physical sheet in blue) and with α = 1 (orange); following (2.10).
Throughout this section we shall return to similar figures to illustrate our discussion.

the relation between sheets may be explicitly expressed as

ζα = cosh

(
πbσ

p
+

2πiα

p

)
= cosh

(
πb

p

(
σ +

2iα

b

))
. (2.12)

In particular, jumping in-between sheets may be understood via the shift σ 7→ σα = σ+ 2iα
b . For

the upcoming discussions it will also prove useful to have the expressions for the FZZT disk and
annulus amplitudes explicitly given in terms of the uniformization variable [80, 49, 81],

AD(ζ) =

ζ

= µ
p+q
2p

p

2

(
Tq+p(ζ)

q + p
− Tq−p(ζ)

q − p

)
, (2.13)

AA(ζ, ζ̃) = ζ

ζ̃

= log

(
ζ− ζ̃

x(ζ)− x(ζ̃)

)
. (2.14)

Having described FZZT-branes, let us move on to ZZ-branes. These are differences of FZZT-
branes [8, 80],

|m,n〉ZZ =

∣∣∣∣cosπ

(
m

p
− n

q

)〉
FZZT

−
∣∣∣∣cosπ

(
m

p
+
n

q

)〉
FZZT

, (2.15)

where both FZZT boundary-states share the same value of µB = (−1)m
√
µ cosπb2n [80]. As

such, ZZ-branes are labeled by two discrete (integer) parameters m and n, and we shall denote
them by7

|m,n〉ZZ with 1 ≤ m ≤ p− 1, 1 ≤ n ≤ q − 1, qm− pn > 0, (2.16)

and where reflexivity further implies |m,n〉ZZ = |p−m, q − n〉ZZ. In addition the ZZ-branes are
directly related to the singularities of the FZZT Riemann surface Σp,q underlying the algebraic

7There is a connection between the labeling of sheets α for FZZT branes and the labeling of pinches (m,n) for
ZZ branes which will soon be made clear in subsection 2.1.
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relation Tq(x) = Tp(y) (this is a genus-zero Riemann surface with 1
2 (p− 1) (q − 1) singularities)

which are located at [49]

(xmn, ymn) =

(
(−1)m cos

πnp

q
, (−1)n cos

πmq

p

)
, ζ±mn = cos

π (mq ± np)
pq

. (2.17)

Note that it is sometimes more convenient to use the parameter σ in (2.11) rather than ζ, for
which the above singularities correspond to

σ (m,±n) = i
(m
b
± nb

)
. (2.18)

The ZZ disk amplitudes are then given as period-integrals

AD(m,n) =

(n,m)

= µ
p+q
2p

∮
Bmn

dx y(x), (2.19)

where Bmn is a B-cycle between the cut of the Riemann surface and the singular point (xmn, ymn)
(e.g., one such example will later be illustrated in figure 3).

2.1 Boundary CFT and Analytic Regularization of D-Instantons

The combinatorics of multiple, disconnected worldsheet Dirichlet-boundaries famously exponen-
tiate [1], yielding the D-brane nonperturbative one-instanton contribution8 to the string free
energy (a ratio of partition functions)

F
(1)
nonpert =

Z
(1)

nonpert

Zpert
' exp

(
AD(m,n) +

1

2
AA(m,n;m,n) + · · ·

)
. (2.20)

In this section, we want to understand the single ZZ-instanton contribution to the minimal-string
partition-function or free-energy in a purely conformal field theoretic fashion. However, the
BCFT annulus amplitude AA(m,n;m,n) of two identical ZZ-branes is known to diverge [80, 81].
Explicitly, denoting the divergent ZZ annulus with a tilde, the original BCFT calculations predict
[81]

ÃA(m,n;m′, n′) = log

(
ζ+
mn − ζ+

m′n′
) (
ζ−mn − ζ−m′n′

)(
ζ+
mn − ζ−m′n′

) (
ζ−mn − ζ+

m′n′
) , (2.21)

which diverges as one sets (m′, n′) = (m,n).
This problem has been addressed rather recently, in the string field theory framework [59,

60]—where this divergence was resolved, and a finite result for the annulus amplitude from the
worldsheet perspective was obtained which perfectly matches the corresponding matrix model
calculations in, e.g., [42, 54–58, 62, 63]. It reads [60]

AA(m,n;m,n) = 2 log

√√√√ gs

8πAD(m,n)

cot2
(
πn
q

)
− cot2

(
πm
p

)
q2 − p2

. (2.22)

8We denote with “new caligraphic” notation quantities computed via BCFT on the string worldsheet.
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ζ0(x)

ζ1(x)

a x1,1 x1,2

β = 0

α = 1

Figure 2: Visualization of the disk contribution A[−1]
αβ (x) in (2.24) as a contour integral over the

FZZT Riemann surface. Here we illustrate again the (2, 5) example as in the previous figure 1.

This regularized result was obtained by reconsidering the integration over the annulus modulus,
t, of the ZZ annulus. This (or rather its exponentiation) was given in [60] as

AA(m,n;m,n) =

∫ +∞

0

dt

t
Zp,q Zgh ZL =

∫ +∞

0

dt

t

n∑
`=1

m∑
k=1

F2k−1,2`−1(t), (2.23)

where the authors identified the (`, k) = (1, 1) contribution as problematic: expanding F1,1(t)
as an infinite sum it was observed that the zero-mode in the matter character produces a term
∼ e2πt − 2 which is leading and diverges as t → +∞. In string field theory language, this
breakdown of the integration is understood as an invalid use of Siegel gauge for the zero-modes.
Rewriting those terms using the full path-integral and undoing Siegel gauge then removes this
divergence. We refer the interested reader to [59, 60] for complete details on this calculation.

In the following we will introduce9 a different—purely BCFT—approach to obtaining the
correct finite answer to the annulus amplitude, in a setting which will turn out to be very
natural given the connection to matrix models in [73] and in section 3. This way of performing
the calculation arises due to the relation between ZZ and FZZT boundary states [80], and thus
we first take a short detour to recast the above ZZ discussion in terms of FZZT amplitudes.

Recall (2.15). If we further view ZZ annulus amplitudes as differences of FZZT annulus
amplitudes on the pinches of the Riemann surface Σp,q, then we may obtain the former via
saddle-point integrations over this FZZT moduli space around a pinch xmn. Note how this space
is parameterized by x = µB√

µ , but at the same time the choice of sheet changes the nature of the

FZZT-brane under consideration—in fact, as we shall extensively explore below. In other words,
the analogue of (2.20) but in the FZZT language is10

Zαβ

Zpert
' 1

2π

∫
Cmn

dx exp

(
A[−1]
αβ (x) +A[0]

αβ(x) + · · ·

)
. (2.24)

Herein α and β label the different sheets, as in (2.10), and the superscripts in the disk and
annulus amplitudes label their corresponding gs powers. In addition, the contour Cmn is the
steepest-descent contour associated to the saddle xmn. These amplitudes have matrix model

9A very similar calculation to the one that follows was obtained from purely string field theoretic considerations
in [128], and which further followed upon earlier work in [129].

10The ratio-of-partition-functions notation is now in full analogy with the nonperturbative contributions calcu-
lated in [62, 73], where similar ratios were computed from string-equation transseries and from matrix integrals.
All these matched each-other, as they will now further match against (2.24) in the present paper.
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analogues which were discussed in [62, 73]. For α 6= β we define the difference of FZZT disk
amplitudes as

A[−1]
αβ (x) ≡ AD (ζα(x))− AD (ζβ(x)) =

ζα

−
ζβ

. (2.25)

Using formula (2.9) we can give a nice interpretation to the above expression as an integration
over the FZZT Riemann surface starting at ζβ and ending at ζα. This is visualized in figure 2.
In addition we need the linear combination of FZZT annulus amplitudes (with all possible FZZT
annuli, this is the particular combination whose saddles will reproduce the ZZ annulus (2.21) on
the pinches of the spectral curve)

A[0]
αβ(x) =

1

2

 ζα

ζα

− ζα

ζβ

− ζβ

ζα

+ ζβ

ζβ
 . (2.26)

The above global factor of 1/2 comes from the cumulant expansion. In addition, the 1/2π
prefactor in (2.24) originates from the U(1) symmetry of the FZZT boundaries (see as well
[130]). There are essentially two distinct types of amplitudes appearing in the above expression:

1. The first of these has both boundary parameters living on the same sheet, α, is regular,
and is given via (2.14) by [81]:

AA(ζα, ζα) = ζα

ζα

= log

(
ζα − ζ̃α

x(ζα)− x(ζ̃α)

)∣∣∣∣∣
ζ̃α→ζα

= − log (pUp−1(ζα)) . (2.27)

Herein Up−1 (cos θ) sin θ = sin pθ are Chebyshev polynomials of the second kind.

2. The second type of annulus amplitudes sees its boundaries living on different sheets, labeled
by ζα and ζβ, but projecting to the same physical location x via the uniformization map
(2.7)-(2.8). Such amplitude is divergent [81]. This is the divergence already alluded to—
given by (2.23) prior to treating the zero-mode divergence—and which was addressed for
ZZ-branes in [59]. This can be seen as follows: recall that the divergence of the ZZ annulus
in (2.23) originates in F1,1(t) behaving like ∼ e2πt − 2; which exactly maps to the FZZT

divergence discussed herein when spelling out A[0]
αβ before the t integration,

A[0]
αβ =

∫ +∞

0

dt

2t
Zp,q Zgh

{
ZL(ζα, ζα)− ZL(ζα, ζβ)− ZL(ζβ, ζα) + ZL(ζβ, ζβ)

}
. (2.28)

Here ZL is the annulus Liouville partition function, Zp,q the minimal-matter contribution,
and Zgh captures the ghosts. Around the ZZ singular points it is well known how to evaluate
the above and indeed we find back the leading expression ∼ e2πt − 2, regularized in [59].

We propose that, on the FZZT-brane side, the required regularization comes down to:

AA(ζα, ζβ) = ζα

ζβ

= log (ζα − ζβ) . (2.29)
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This expression for the FZZT annulus has its history: it is discussed at length in the
original computation of the annulus [81]. An additional exposition motivated by matrix
model calculations is provided in [78], and a detailed string field theory analysis in [128].

Having established a (alternative) regularization procedure let us check it by testing if our
purely BCFT calculation matches the string field theory considerations in [59, 60]. Combining
all of the results above, we find for the contribution of the annuli

A[0]
αβ(x) = −1

2
log
(
−p2 Up−1(ζα)Up−1(ζβ) (ζα − ζβ)2

)
. (2.30)

Further recall that the FZZT disk amplitudes contain a factor of µ
p+q
2p , which we associate to g−1

s .
Next we have to evaluate the integral (2.24), which we do using saddle-point integration. Let us
perform this computation explicitly as it will clarify the relation between the sheets labeled by
α, β and the saddle-point labeled by m,n. The saddles of this integral are given by the zeros of

∂xA[−1]
αβ , which from (2.9) may be expressed as

y(ζα)− y(ζβ) = 0. (2.31)

In terms of the uniformization variable ζ this is solved by

ζ? = cos

(
π

(
−α+ β

p
+
n

q

))
, n ∈ {1, . . . , q − 1}, (2.32)

or, explicitly evaluated on the different sheets we have [128] (recall (2.17)),

ζ?α = cos

(
π

(
β − α
p
− n

q

))
= cos

(
π

(
m

p
− n

q

))
≡ ζ−mn, (2.33)

ζ?β = cos

(
π

(
β − α
p

+
n

q

))
= cos

(
π

(
m

p
+
n

q

))
≡ ζ+

mn. (2.34)

Here we have made the identification11 of labels m = |β − α| between our labeling of sheets
on the one hand, and the standard labeling of pinches in the Riemann surface Σp,q on the
other [78]. Notice how the sheets α, β interplay with the label m but not directly with the
label n of the a priori chosen saddle-point xmn in this identification. This calculation again
underlines how we may view the ZZ disk amplitudes (labeled by (m,n)) as disk “FZZT difference”
amplitudes (labeled by (α, β)) on the saddles of the integral (2.24). The information about the

sheets that touch at xmn = x(ζ±mn) = x(ζ?) is completely encoded in A[−1]
αβ (x) (see figures 1, 2

and 3). Recalling that A[−1]
αβ (x) contains a factor of 1/gs, we may finally perform the saddle-point

integration to find

Zαβ

Zpert
' 1

2π

∫
Cmn

dx exp

(
A[−1]
αβ (x) +A[0]

αβ(x) + · · ·

)
=

' 1√
−2π ∂2

xA
[−1]
αβ (xmn)

eA
[−1]
αβ (xmn) exp

(
A[0]
αβ(xmn)

)
+ · · · . (2.35)

11Note the absolute value. This ensures that m cannot be negative, upon for example swapping α and β.
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Making explicit use of the result in (2.30) for the differences of FZZT annuli, and of the ZZ disk
amplitude (2.19), we find

Zαβ

Zpert
' 1√

−2π ∂2
xA

[−1]
αβ (xmn)

exp

{
−1

2
log
(
−p2 Up−1(ζ?α)Up−1(ζ?β)

(
ζ?α − ζ?β

)2)}
eAD(m,n)+· · · .

(2.36)
To make the comparison against (2.22) it remains to express the second derivative of the disk
amplitude in terms of the disk itself, which is evaluated on the saddle to be

∂2
xA

[−1]
αβ (xmn) =

p2 − q2

p2 sin2
(
nπp
q

) A[−1]
αβ (xmn). (2.37)

Substitution into the above result and evaluating everything on the pinches ζα, ζβ we obtain

Zαβ

Zpert
' 1√

−AD(m,n)

√√√√√ cos
(

2πn
q

)
− cos

(
2πm
p

)
16π (p2 − q2) sin2

(
πm
p

)
sin2

(
πn
q

) eAD(m,n) + · · · , (2.38)

precisely matching the result in (2.22). To see this in an concrete example, let us specialize the
above to the (p, q) = (2, 2k − 1) case and be fully explicit (this will also be useful later, when
doing comparisons in section 3). Noting that for these cases m = 1, we first explicitly evaluate
the appropriate differences of (2.13) on the pinches to find the known

AD(1, n) =
2

gs
(−1)k+n

(
1

2k + 1
+

1

2k − 3

)
sin

2πn

2k − 1
. (2.39)

Substituting this into (2.38), it then becomes

Zαβ

Zpert

∣∣∣∣
(2,2k−1)

'

√√√√√gs

(−1)k+n cot
(

πn
2k−1

)
64π (2k − 1) sin2

(
πn

2k−1

) eAD(1,n) + · · · . (2.40)

To conclude this subsection let us emphasize again that the above calculation was a purely
BCFT calculation. Moreover, the FZZT annulus regularization (2.29), which had already been
discussed in the literature, is now further supported by the demonstration that it is in fact
required so as to match to the corresponding string field theory ZZ regularization in (2.22).

2.2 Resonant Resurgence from the Worldsheet

Having established the one-instanton calculation purely from BCFT, let us investigate it more
closely in light of the resonant (anti) eigenvalue pairs recently proposed in [73]. Indeed considering
the general expression (2.24) and swapping sheets (meaning exchanging α and β) will produce a
minus sign in the disk contribution—immediately evident in formula12 (2.25). This is consistent
with reversing the integration direction of the Bmn B-cycles which correspond with each saddle-
point xnm of the minimal-string FZZT Riemann surface (2.7)-(2.8) (again visualized in figure 3 in

12Note that exchanging α and β basically exchanges ζ+
mn with ζ−mn; see formulae (2.33)-(2.34).
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a x1,1 x1,2

β = 0

α = 1

a x1,1 x1,2

α = 1

β = 0

Figure 3: The (2, 5) FZZT surface revisited. On the left-plot we show the integration cycle
associated to the configuration Z10 (this is (2.24) with α = 1, β = 0, which culminates in
(2.38)). On the right-plot we show the exactly switched configuration Z01 (again (2.24), this
time around with α = 0, β = 1, or, equivalently, as visualized above, (2.41) with α = 1, β = 0).

our usual example). Therefore, the above immediately translates to the result of the saddle-point
approximation (2.38) as AD(m,n)→ −AD(m,n). This is shown in figure 3. We thus find

Zβα

Zpert
' 1√

AD(m,n)

√√√√√ cos
(

2πn
q

)
− cos

(
2πm
p

)
16π (p2 − q2) sin2

(
πm
p

)
sin2

(
πn
q

) e−AD(m,n) + · · · , (2.41)

which indeed yields the resonant sibling of (2.38). This is consistent with the results of [73] and
we can hence be explicit about the resonant pair of D-instanton actions associated to a saddle
xmn, given by

AD(m,n) and − AD(m,n). (2.42)

This establishes the parallel that while eigenvalues correspond to ZZ-branes, anti-eigenvalues now
correspond to (pairwise) negative-tension ZZ-branes fully explicitly13. Let us explore this next.

Just to finish this discussion we specialize to the case (2, 2k − 1) and insert (2.39) to find

Zβα

Zpert

∣∣∣∣
(2,2k−1)

'

√√√√√gs

(−1)k+n+1 cot
(

πn
2k−1

)
64π (2k − 1) sin2

(
πn

2k−1

) e−AD(1,n) + · · · . (2.43)

2.3 On Boundary CFT for Generic ZZ-Instanton Contributions

Having established a BCFT formulation of the one D-instanton contribution in our previous
subsection 2.1, we can now ask what a general two D-instanton calculation might look like.
Interestingly, we can capture the general two D-instanton amplitude in a single double-integral,
which, depending on the choice of sheets for the disks and annuli and the saddle-points we

13Let us stress an important point on conventions. As mentioned in appendix B of [81], there is a relative
minus sign between the ZZ disk-amplitudes on the BCFT side, and the holomorphic effective-potential on the
matrix-model side. This difference implies a reversal of the direction of integration between the definition of ZZ
branes on the BCFT side, and the definition of eigenvalue tunneling on the matrix model side. In other words,
there will be a reversal of directions between the cycles drawn throughout our present section 2, describing the
usual exp(AD(m,n)) ZZ branes in BCFT language and starting at the physical sheet and ending at the unphysical
sheet; and the cycles implicit throughout the upcoming section 3 (explicitly shown in [73]), describing the usual
instanton contributions as eigenvalue tunneling from the cut to the physical sheet on the matrix model side.
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integrate around, will produce different nonperturbative contributions. As we shall later see in
section 3 these contributions precisely match the matrix model expectations. In the following
we will view the αβ sheet-labels as belonging to the FZZT labeled by x (integrated around the
saddle xmn) whereas γδ label the x̃-FZZT (integrated around the saddle xm̃ñ). This is visualized
throughout figures 2, 3, 4 and 5. The integral to consider reads

Zαβ,γδ

Zpert
'
∫
Cmn

dx

2π

∫
Cm̃ñ

dx̃

2π
exp

(
A[−1]
αβ (x) +A[−1]

γδ (x̃) +A[0]
αβ(x) +A[0]

γδ(x̃) +A[0]
αβ,γδ(x, x̃) + · · ·

)
,

(2.44)
where, in addition to the definitions in subsection 2.1, we have introduced the following combi-
nation of FZZT annulus amplitudes (compare to formula (2.26)—again, with all possible FZZT
annuli, this is the particular combination whose saddles will reproduce the ZZ annulus (2.21) on
the pinches of the spectral curve)

A[0]
αβ,γδ(x, x̃) = ζα

ζ̃γ

− ζα

ζ̃δ

− ζβ

ζ̃γ

+ ζβ

ζ̃δ

. (2.45)

As mentioned above, depending on the choice of sheets in the form of α, β, γ, δ and the saddle-
points xmn and xm̃ñ, we will produce different nonperturbative contributions. We may split them
into the following three cases:

1. (m̃, ñ) = (m,n), γ = α, δ = β, α 6= β: This corresponds to a (2, 0) configuration for the non-
perturbative saddle xmn, i.e., both FZZT branes localize around the same saddle (with the
same sheet configuration) and one ends-up with two ZZ branes and no negative-tension
ZZ branes—which also explains the (2, 0) notation. This is visualized in figure 4. Let us
evaluate the integral (2.44) under the above assumptions. It is useful to first rewrite (2.45)

for A[0]
αβ,αβ(x, x̃) as

A[0]
αβ,αβ(x, x̃) = Â[0]

αβ,αβ(x, x̃) + log
{(
x(ζα)− x(ζ̃α)

)(
x(ζβ)− x(ζ̃β)

)}
, (2.46)

where we have introduced the “regular” difference of FZZT annulus amplitudes which,
using

x(ζα)− x(ζ̃α)

ζα − ζ̃α
= pUp−1(ζ̃α) +

1

2
x′′(ζ̃α)

(
ζα − ζ̃α

)
+ · · · (2.47)

evaluated around ζ = ζ̃, reads:

Â[0]
αβ,αβ(x, x̃) = − log

(
−p2 Up−1(ζ̃α)Up−1(ζ̃β)

(
ζ̃α − ζ̃β

)2
)

+ o(ζ− ζ̃). (2.48)

Further, note how the logarithmic term in (2.46) is effectively producing a matrix-model-
like Vandermonde determinant in the integrand of (2.44). In fact, the integral for the (2, 0)
configuration may now be written as14

Zαβ,αβ

Zpert
' 1

2

∫
Cmn

dx

2π

∫
Cmn

dx̃

2π
(x− x̃)2× (2.49)

14Since we wish to integrate over the moduli space of FZZT-branes exactly once, and given that both FZZT-
branes are indistinguishable, we have to insert an additional global prefactor of 1

2
.
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a x1,1 x1,2

β = 0

α = 1

Figure 4: Example of the Zαβ,αβ configuration with β = 0 and α = 1, for the x1,1 saddle of the
(2, 5) minimal string. The figure illustrates how each pair αβ denotes one full B-cycle associated
to the saddle-point x1,1, where the cycle starts on sheet β = 0 and ends on sheet α = 1.

× exp

(
A[−1]
αβ (x) +A[−1]

αβ (x̃) +A[0]
αβ(x) +A[0]

αβ(x̃) + Â[0]
αβ,αβ(x, x̃) + o(gs)

)
.

Performing the saddle-point evaluation in analogy to the computation in subsection 2.1 we
immediately arrive at

Zαβ,αβ

Zpert
' 1

2π
(
−∂2

xA
[−1]
αβ (xmn)

)2 exp
(

2A[0]
αβ(xmn) + Â[0]

αβ,αβ(xmn)
)

e2AD(m,n) + · · · .

(2.50)

Using our explicit expressions for Â[0]
αβ,αβ , A[0]

αβ and ∂2
xA

[−1]
αβ we finally obtain

Zαβ,αβ

Zpert
'

− cot2
(
πm
p

)
− cot2

(
πn
q

)
4
√

2π AD(m,n) (p2 − q2)

2

e2AD(m,n) + · · · . (2.51)

This is in precise agreement with results in the literature; e.g., [54–56, 58, 63, 60]. Further
specializing this formula to the (2, 2k − 1) case, we find

Zαβ,αβ

Zpert

∣∣∣∣
(2,2k−1)

' g2
s

cot2
(

πn
2k−1

)
2048π (2k − 1)2 sin4

(
πn

2k−1

) e2AD(1,n) + · · · . (2.52)

2. (m̃, ñ) = (m,n), γ = β, δ = α, α 6= β: Having swapped from γδ = αβ to γδ = βα this now
corresponds to a (1, 1) configuration, where we still have one ZZ-brane but now with one
negative-tension ZZ-brane associated to the nonperturbative saddle xmn. Upon saddle-
point integration we again find two times the same B-cycle but now one of them has its
integration-direction reversed. See figure 5 for a visualization of the sheets and correspond-
ing contours. This case has recently been covered from the matrix model side in [73], but it
is a novelty as far as the BCFT calculations in the literature are concerned. Using precisely
the same methods as above, and again splitting the annulus contributions into a “regular”
and a “logarithmic” part as in (2.46), we now obtain

A[0]
αβ,βα(x, x̃) = Â[0]

αβ,βα(x, x̃)− log
{(
x(ζα)− x(ζ̃β)

)(
x(ζβ)− x(ζ̃α)

)}
. (2.53)
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In particular we have

Â[0]
αβ,βα(x, x̃) = −Â[0]

αβ,αβ(x, x̃). (2.54)

In fact we further find the overall property, exactly consistent with known matrix model
results [73], of

A[0]
αβ,αβ(x, x̃) = −A[0]

αβ,βα(x, x̃). (2.55)

The novelty now is to note how the logarithmic term in (2.53) (which has the opposite
sign from the corresponding logarithmic term in (2.46)) will effectively produce an inverse
Vandermonde-like contribution in the integrand of (2.44); i.e., a double pole contribution.
The integral for the (1, 1) configuration is written as

Zαβ,βα

Zpert
'
∫

dx

2π

∫
dx̃

2π

1

(x− x̃)2× (2.56)

× exp

(
A[−1]
αβ (x) +A[−1]

βα (x̃) +A[0]
αβ(x) +A[0]

βα(x̃) + Â[0]
αβ,βα(x, x̃) + o(gs)

)
.

Comparing (2.56) above with our earlier (2.49) we finally see how the seemingly harmless
negative-tension minus-sign has grown to prominence: it has traded an integrand zero in
(2.49) with an integrand pole in (2.56), hence leading to a rather different end result for the
amplitude. In order to compute this integral properly we need to reconsider our admissible
integration contours in light of this pole in the integrand. As explained in [73] these contours
are sorted by their behavior at infinity and by which saddles they cross—we no longer just
have to consider steepest-descent contours but also closed contours that pick up residue
contributions. As it turns out, to lowest order in gs we will not encounter any saddle-point
integrals but simply find a residue contribution arising from the poles in the integrand15.
Skipping the details in [73], the bottom line is that the integration contour for x is a closed
contour encircling the endpoint a of the cut of the FZZT surface and our saddle-point xmn,
while the x̃ contour is still the steepest-descent contour. Then after performing the residue
integration one first finds

Zαβ,βα

Zpert
' i

2π

∫ xm,n

xm,−n

dx̃
(
∂xA[−1]

βα (x) + ∂xA[0]
βα(x) + ∂xÂ[0]

αβ,βα(x, x̃) + o(gs)
)∣∣∣
x=x̃

, (2.57)

where we note that herein we take into account contributions up to first-order in the power-

series expansion of Â[0]
αβ,βα(x, x̃). Interestingly, the non-differentiated annulus amplitudes

appearing in the above exponential have exactly canceled at this lowest order in gs. More-
over, their derivatives satisfy the relation

∂xÂ[0]
αβ,βα(x, x̃)

∣∣∣
x=x̃

= −∂x̃A[0]
βα(x̃). (2.58)

Thus, the only term that actually survives at this lowest order is the ZZ disk amplitude;
in which case we finally find

Zαβ,βα

Zpert
' − i

2π
AD(m,n) + 0 + o(gs). (2.59)

15This is rather a subtle calculation, which was addressed with very explicit details in [73].
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a x1,1 x1,2

β = 0

α = 1

Figure 5: Example of the Zαβ,βα configuration with α = 1 and β = 0, for the x1,1 saddle of the
(2, 5) minimal string. The figure illustrates how each pair α, β denotes one full B-cycle associated
to the saddle point x1,1. In comparison with figure 4, we now see how for the first pair α, β, the
integration cycle (blue) starts on sheet β = 0 and ends on sheet α = 1; whereas for the second
pair the integration cycle (orange) reverses direction and starts on sheet α and ends on sheet β.

Illustrating this result for the (2, 2k − 1) case, one has

Zαβ,βα

Zpert

∣∣∣∣
(2,2k−1)

' − i

πgs
(−1)k+n

(
1

2k + 1
+

1

2k − 3

)
sin

(
2πn

2k − 1

)
+ 0 + o(gs). (2.60)

Observe that we have obtained the two lowest orders in gs but to compute the next order
the bi-annulus amplitude would be required. This caveat may be circumvented by resorting
to the matrix model. Indeed, as we shall see in section 3, this coincides with the result
obtained from the double-scaling limit of the matrix model result in [73]. As another
independent check, in section 3 we will further verify this result by comparing against
direct calculations from the string equations for the arbitrary (2, 2k − 1) minimal string.

3. (m̃, ñ) 6= (m,n): When considering distinct saddles, there is now no a priori restriction
on the sheets. For example, this can correspond to configurations of the type (1, 0)(1, 0)
or any permutations thereof—where two (negative-tension) ZZ-branes occupy two distinct
saddles. Two such possible configurations are illustrated in figure 6. For standard ZZ-
branes this case has been studied [60], but which now needs extension to the new missing

configurations. A[0]
αβ,γδ needs no further treatment and we may proceed directly to the

evaluation of the integral. In this case one can simply write (2.45) directly and obtain

A[0]
αβ,γδ(x, x̃) = log

(
ζα − ζ̃γ

)(
ζβ − ζ̃δ

)
(
ζα − ζ̃δ

)(
ζβ − ζ̃γ

) . (2.61)

The integration contours are similar to the first case, only with two distinct saddles. Such
integral is simply evaluated via standard saddle-point techniques, and, to lowest order in
gs, it is written as

Zαβ,γδ

Zpert
'
∫
Cmn

dx

2π

∫
Cmn

dx̃

2π
exp

(
A[−1]
αβ (x) +A[−1]

γδ (x̃) +A[0]
αβ(x) +A[0]

γδ(x̃) +A[0]
αβ,γδ(x, x̃) + o(gs)

)
.

(2.62)
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a x1,1 x1,2

β = 0

α = 1

δ = 0

γ = 1

a x1,1 x1,2

β = 0

α = 1

γ = 0

δ = 1

Figure 6: Our usual example. On the left-plot we illustrate the Zαβ,γδ configuration for α =
1, β = 0 at the x1,1 saddle, and γ = 1, δ = 0 at the x1,2 saddle. Similarly to previous figures, the
pair αβ denotes one full B-cycle associated to the saddle-point x1,1, while the pair γδ denotes one
full B-cycle now associated to the saddle-point x1,2. On the right-plot we illustrate the Zαβ,γδ

configuration for α = 1, β = 0 at the x1,1 saddle, and γ = 0, δ = 1 at the x1,2 saddle. The pair αβ
still denotes one full B-cycle associated to the saddle-point x1,1, while now the pair γδ denotes
one full B-cycle with reversed direction of integration associated to the saddle-point x1,2.

The final result follows, and is most neatly written in terms of one-instanton contributions
of both saddles as

Zαβ,γδ

Zpert
'

Zαβ

Zpert
×

Zγδ

Zpert
×

(
ζ?α − ζ?γ

) (
ζ?β − ζ?δ

)
(
ζ?α − ζ?δ

) (
ζ?β − ζ?γ

) + o(gs). (2.63)

Once again, we further specialize to the (2, 2k − 1) example. We find

Zαβ,γδ

Zpert

∣∣∣∣
(2,2k−1)

' gs

in+ñ
(

csc
(

πn
2k−1

)
− csc

(
πñ

2k−1

))2

128π (2k − 1)
(

sin
(

πn
2k−1

)
+ sin

(
πñ

2k−1

))2× (2.64)

×

√∣∣∣∣sin( 2πn

2k − 1

)
sin

(
2πñ

2k − 1

)∣∣∣∣ eAD(1,n)+AD(1,ñ) + · · · .

We conclude the discussion emphasizing our main message once again. In the above calcula-
tions, we have found a highly non-trivial distinction between case 1, a familiar result previously
explored in the literature, and case 2, a more recent result explored in the matrix model context
in [73]. It is striking that these rather distinct features (e.g., poles versus zeros in the integrand)
have been obtained by allowing a seemingly minuscule change in our considerations: the flipping

of signs of the (FZZT differences) disk and annulus amplitudes, A[−1]
αβ and A[0]

αβ,βα. Such seem-
ingly small distinction at the level of FZZT amplitudes, or indeed ZZ amplitudes, might naively
and a priori not be expected to yield such different results. However, as we have seen, this
minus sign has the effect of turning zeros into poles in the integrand and vice-versa, which ends
up having highly non-trivial effects when it comes to performing the integration. It would be
very interesting to explore the possibility of obtaining the very same results as in case 2 without
the use of saddle-point integration of FZZT amplitudes, but rather by directly considering ZZ
amplitudes (e.g., as was done in [59, 60]). If indeed possible, the repercussions of the minus sign
will have to manifest themselves in some different, perhaps string field theoretic way.
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Multiple Mixed Configurations: Moving towards multiple mixed (negative-tension) D-
instanton configurations leads to increasingly harder integrals. Having explained our main BCFT
message in the (above) context of double-integrals, let us next outline the calculations for the
(2, 1) and the (1, 1)(1, 0) triple-integral configurations. The procedure is now always the same,
albeit increasingly more technically involved. We find:

1. The (2, 1) Sector: First consider the nonperturbative contributions to the free energy arising
from the (2, 1) sector. These have recently been computed using matrix integrals in [73],
where they were of particular interest also in demonstrating the universality of the γE

Euler–Mascheroni constant in the Stokes data of hermitian matrix models. Herein we
shall obtain the same conclusion, now in BCFT. To set-up this calculation one needs to
consider an integral over D-brane moduli space which yields two ZZ-branes on a pinch,
xmn, alongside one negative-tension ZZ-brane on the same pinch. Based on our earlier
experience, we consider the integral

Zαβ,αβ,βα

Zpert
' 1

2

∫
Cmn

dx1

2π

∫
Cmn

dx2

2π

∫
C̄mn

dx̃

2π

(x1 − x2)2

(x1 − x̃)2 (x2 − x̃)2 exp

(
A[−1]
αβ (x1) +A[−1]

αβ (x2) +A[−1]
βα (x̃)+

+A[0]
αβ(x1) +A[0]

αβ(x2) +A[0]
βα(x̃) + Â[0]

αβ,αβ(x1, x2) + Â[0]
αβ,βα(x1, x̃) + Â[0]

αβ,βα(x2, x̃) + o(gs)

)
,

(2.65)

where the integration contours Cmn are steepest-descent contours associated to the saddle
xmn, together with the corresponding residue contributions [73], and C̄mn is the steepest-
ascent contour associated to xmn. Note how the above combination of (regular) annuli
is chosen so that they precisely match the six possible ZZ interactions that we expect—
and each of these is then rewritten in terms of the appropriate FZZT differences which
will produce the corresponding ZZ interaction on the saddles of the above triple-integral.
The evaluation of the integral (2.65) now follows in the spirit of [73]—indeed, once the
BCFT analysis leads to the relevant diagrammatics as an integral over D-brane moduli
space, the evaluation of this integral is then completely analogous to its matrix model
counterpart. Using the expressions for the annulus established above, and subtracting-out
product contributions (i.e., focusing on the true novel contributions associated to the (2, 1)
sector; see [73]) we then find

Zαβ,βα,αβ

Zpert
−

Zαβ,βα

Zpert

Zαβ

Zpert
' i

8 (2π)2

√
2π

−∂2
xA

[−1]
αβ (xmn) (xmn + 1)2

eAD(m,n)× (2.66)

×
{

2γE + log

(
28
(
∂2
xA

[−1]
αβ (xmn)

)2
(xmn + 1)4

)}
+ o(g3/2

s ).

Let us specialize to the friendly (2, 2k − 1) case. The above formula becomes:

Zαβ,βα,αβ

Zpert
−

Zαβ,βα

Zpert

Zαβ

Zpert
' i

32π2

√√√√√gs

(−1)k+nπ cot
(

πn
2k−1

)
(2k − 1) sin2

(
πn

2k−1

) eAD(1,n)× (2.67)

×
{

2γE + log

(
210

g2
s

(2k − 1)2 sin4

(
πn

2k − 1

)
tan2

(
πn

2k − 1

))}
+ o(g3/2

s ).
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2. The (1, 1)(1, 0) Sector: Finally, let us address the (1, 1, 1, 0) nonperturbative contribution:
where we consider a ZZ-brane of type (n1,m1), alongside its negative-tension counterpart;
and an additional ZZ-brane of different type (n2,m2) 6= (n1,m1). This leads to an integral
of the form

Zαβ,βα,γδ

Zpert
' 1

2

∫
Cm1n1

dx

2π

∫
C̄m1n1

dx̃

2π

∫
Cm2n2

dy

2π

(x− y)2

(x− x̃)2 (y − x̃)2 exp

(
A[−1]
αβ (x) +A[−1]

βα (x̃)+

+A[−1]
γδ (y) +A[0]

αβ(x) +A[0]
βα(x̃) +A[0]

γδ(y) + Â[0]
αβ,γδ(x, y) + Â[0]

αβ,βα(x, x̃) + Â[0]
γδ,βα(y, x̃) + o(gs)

)
,

(2.68)

where Cm1n1 is the steepest-descent contour (together with a residue contribution exactly as
in (2.56)) associated to the xm1n1 saddle; whereas C̄m1n1 is the corresponding steepest-ascent
contour (and the same for Cm2n2). The αβ labels relate to the saddle-point xm1n1 whereas
the γδ ones describe the multi-sheeted structure around xm2n2 . Following the methods
developed in [73], we first notice that—in analogy with the above (2, 1) sector—it makes
sense to factor-out specific product contributions which add nothing new to the calculation,
and rather focus on the true novel contributions associated to this sector. Evaluating the
integral at lowest gs order yields

Zαβ,βα,γδ

Zpert
−

Zαβ,βα

Zpert

Zγδ

Zpert
'

Zγδ

Zpert
× (2.69)

× i

2π

∫
C̄m1n1

dx̃

(
2

(x̃− xm2n2)
+
[
∂xÂ[0]

αβ(x) + ∂xÂ[0]
αβ,γδ(x, xm2n2) + ∂xÂ[0]

αβ,βα(x, x̃)
]
x=x̃

)
+ · · · .

Notice that the second and fourth terms in the integrand above in fact cancel. Then
computing the remaining integral leads to (displaying the different structures at play)

Zαβ,βα,γδ

Zpert
−

Zαβ,βα

Zpert

Zγδ

Zpert
' (2.70)

'
Zγδ

Zpert

i

2π

(
2 log (xm1n1 − xm2n2) + Â[0]

αβ,γδ(xm1n1 , xm2n2)
)

+ · · · =

=
Zγδ

Zpert

i

2π
A[0]
αβ,γδ(xm1n1 , xm2n2) + · · ·

=
Zγδ

Zpert

i

2π
log


(

cos
(
πm1
p −

πn1
q

)
− cos

(
πm2
p −

πn2
q

))
(

cos
(
πm1
p + πn1

q

)
− cos

(
πm2
p −

πn2
q

)) ×
×

(
cos
(
πm1
p + πn1

q

)
− cos

(
πm2
p + πn2

q

))
(

cos
(
πm1
p −

πn1
q

)
− cos

(
πm2
p + πn2

q

))
+ · · · .

As usual, let us specialize to the case (2, 2k − 1). We then find

Zαβ,βα,γδ

Zpert
−

Zαβ,βα

Zpert

Zγδ

Zpert
'

Zγδ

Zpert

i

2π
log

∣∣∣∣∣∣
sin
(
πn1

2k−1

)
− sin

(
πn2

2k−1

)
sin
(
πn1

2k−1

)
+ sin

(
πn2

2k−1

)
∣∣∣∣∣∣+ · · · . (2.71)
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2.4 Multiple ZZ- and Negative-Tension ZZ-Instantons

Having gathered calculational evidence for the role and corresponding amplitudes associated
to both ZZ- and negative-tension ZZ-branes in Liouville BCFT, let us next address the case of
multiple pure (negative-tension) ZZ D-instantons. We recover results in the literature concerning
multiple ZZ-instantons, and enlarge this class to also include negative-tension ZZ-instantons.

Starting off with the integral for ` multiple ZZ D-instantons we first consider16

Zαβ,...,αβ

Zpert
' 1

`!

∫
Cmn

∏̀
i=1

dxi
2π

∏
i<j

(xi − xj)2× (2.72)

× exp

∑̀
i=1

A[−1]
αβ (xi) +

∑̀
i=1

A[0]
αβ(xi) +

∑̀
i=1

∑̀
j=i+1

Â[0]
αβ,αβ(xi, xj) + · · ·

 .

Notice now the appearance of a more general Vandermonde-like determinant, of dimension `, as a
direct generalization of splitting the annulus contributions in “regular” and “logarithmic” parts as
in equations (2.46) and (2.53). This saddle-point integration is straightforward to perform, albeit
for completeness we fill in some of the steps below. Firstly, expanding around xi = x? + λi

√
gs

we have at lowest gs orders

Zαβ,...,αβ

Zpert
' g

`2

2
s

(2π)` `!
exp

(
`
(
A[−1]
αβ (xnm) +A[0]

αβ(xnm)
)

+
1

2

(
`2 − `

)
Â[0]
αβ,αβ(xnm, xnm)

)
×

(2.73)

×
∫ ∏̀

i=1

dλi
∏
i<j

(λi − λj)2 e
1
2
gs
∑̀
i=1

λ2
i ∂

2
xA

[−1]
αβ (xnm)

+ · · · .

Recalling that the relation between A[0]
αβ and Â[0]

αβ,αβ at lowest gs-order is simply a factor of two,
we perform the saddle-point integration to find

Zαβ,...,αβ

Zpert
' G2 (`+ 1)

(2π)`/2

cot2
(
πm
p

)
− cot2

(
πn
q

)
4AD(m,n) (p2 − q2)


`2

2

e`AD(m,n) + · · · , (2.74)

where G2(x) is the Barnes G-function. This agrees exactly with well-known results across the
literature; e.g., [54–56, 58, 63, 60]. As usual, we specialize the above result to the (2, 2k − 1)
minimal-string case and find

Zαβ,...,αβ

Zpert

∣∣∣∣
(2,2k−1)

' G2 (`+ 1)

(2π)`/2

(
gs

(−1)n+k cot nπ
2k−1

32 (2k − 1) sin2 nπ
2k−1

) `2

2

e`AD(1,n) + · · · . (2.75)

Next, let us extend the above result for the case of multiple negative-tension ZZ-branes. This
just amounts to exchanging the sheets in (2.72) with each other (i.e., swapping α and β). Thus
we consider the integral

Zβα,...,βα

Zpert
' 1

`!

∫
C̄mn

∏̀
i=1

dxi
2π

∏
i<j

(xi − xj)2× (2.76)

16As in the (2, 0) case, we include a combinatorial factor accounting for all FZZT branes on the same sheets αβ.
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× exp

∑̀
i=1

A[−1]
βα (xi) +

∑̀
i=1

A[0]
βα(xi) +

∑̀
i=1

∑̀
j=i+1

Â[0]
βα,βα(xi, xj) + · · ·

 ,

where C̄mn denotes the steepest-ascent contour through the saddle-point xmn instead of the
steepest-descent contour Cmn. As may already be familiar to the reader, when one finds purely
physical-sheet or purely non-physical-sheet ZZ-brane configurations under consideration, the re-

sulting contributions are simple to evaluate. Noting that A[−1]
βα (xnm) = −A[−1]

αβ (xnm), we find by
comparison with the previous integral:

Zβα,...,βα

Zpert
' G2 (`+ 1)

(2π)`/2

−cot2
(
πm
p

)
− cot2

(
πn
q

)
4AD(m,n) (p2 − q2)


`2

2

e−`AD(m,n) + · · · . (2.77)

Once again specializing to the (2, 2k − 1) case we have

Zβα,...,βα

Zpert

∣∣∣∣
(2,2k−1)

' G2 (`+ 1)

(2π)`/2

(
−gs

(−1)n+k cot nπ
2k−1

32 (2k − 1) sin2 nπ
2k−1

) `2

2

e−`AD(1,n) + · · · , (2.78)

We see that we find a contribution which only differs from the previously known ones essentially
by minus signs17. Ensemble, these two formulae (2.74) and (2.77) are an example of a more
general case of the resonant behavior alluded to in subsection 2.2. It is also interesting to
compare these formulae (2.74) and (2.77) with the corresponding multi-instanton formulae, for
pure eigenvalue tunneling and for pure anti-eigenvalue tunneling, in [73]. This is a well-known
phenomenon that is sometimes dubbed backward-forward relation [77, 73].

2.5 Boundary CFT for Resurgent FZZT Branes

Having understood ZZ D-instantons from a BCFT perspective we can ask if this also gives us
some leverage on negative-tension FZZT-brane calculations. A natural question to pose would
be if resonance also naturally extends to those contributions, possibly due to the multi-sheeted
nature of the FZZT moduli space. Such nonperturbative contributions would appear for example
in the study of the large-order behavior of correlation functions of the type

Wh (x1, . . . , xh) = 〈O(x1) · · · O(xh)〉 , (2.79)

where O(x) denotes a macroscopic-loop operator (i.e., a worldsheet partition-function with fixed
boundary length) or a resolvent operator for example. This type of FZZT nonperturbative
contributions and their large-order effects may be found in [95], in the JT-gravity context.

Let us start with the discussion of a single FZZT-brane with boundary parameter on the
sheet α. The argument is the same as before: the combinatorics of boundaries leads to an
exponentiation of the disconnected surfaces [1] and we thus find the contribution18

WFZZT
1 (x) ' exp


ζα

+
1

2
ζα

ζα

+ · · ·

 =

17We stress yet once again that although the minus sign in the exponent only trivially alters contributions of
purely negative-tension configurations, its effect in mixed sectors is the furthest from trivial: it introduces poles
in the integrands and therefore a completely novel set of predictions emerged.

18Recall that the annulus contribution herein does not need to be regularized.
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' exp

(
AD (ζα(x)) +

1

2
AA (ζα(x), ζα(x)) + · · ·

)
, (2.80)

where the disk and annulus were already computed in (2.13) and (2.27). It is interesting to study
the above expression in more detail. There are two cases to consider:

1. We start with (p, q) = (2, 2k − 1) for simplicity, as in this case the FZZT moduli space is
just double-sheeted. Those sheets are labeled by α ∈ {0, 1} where α = 0 is the canonical
choice for the physical sheet. Calculating the D-brane tension we find (similarly to our
earlier ZZ story) a resonant pair associated to the two-sheets (this is in some sense the
single disk-amplitude analogue of formula (2.25))

AD (ζ1(x)) = µ
p+q
2p

∫ x(ζ0)

dx (−1) y(x) = −AD (ζ0(x)) . (2.81)

This implies that for (p, q) = (2, 2k− 1) minimal string theories the nonperturbative struc-
ture of FZZT-brane contributions is quite similar to the structure of ZZ contributions.

2. The story changes when considering p > 2. Then the moduli space has more sheets and the
relation between the disk amplitudes on the different sheets will be more complicated (even
though it still is resonant, it will be so in a more intricate way). Here the nonperturbative
structure of FZZT contributions will fundamentally differ from the ZZ story outlined above.

The hermitian matrix model analogue of the above calculation is well-known and we follow
[62, 73]. We will come back to this in the next section 3, but for the moment consider M a N×N
hermitian matrix, V (x) the matrix model potential, Vh;eff(x) the corresponding holomorphic
effective potential, and with A0;2(x, x) to be found in [73]; so as to write

e
− 1

2gs
V (x) 〈det (x−M)〉 ' exp

(
− 1

2gs
Vh;eff(x) +A0;2(x, x) + · · ·

)
. (2.82)

Upon double-scaling, (2.80) and (2.82) agree and a detailed discussion may be found in [88].
Having established the resurgent resonance of a single FZZT-brane, we can ask for the general

case. With all we have said above, it is not complicated to arrive at

WFZZT
h (x1, . . . , xh) ' exp

 h∑
i=1

AD (ζαi(xi)) +
1

2

h∑
i=1

h∑
j=1

AA

(
ζαi(xi), ζαj (xj)

)
+ · · ·

 . (2.83)

Let us quickly comment on this result. The one obvious difference between (2.83) and the FZZT
amplitudes in earlier subsections is that we are now no-longer writing differences of FZZT-branes.
Those differences are convenient to use as the choice of base-point for the FZZT integration in,
for example, (2.9) drops out. Herein we are interested in exactly one FZZT brane and so we have
to deal with this intricacy19. More on this question may be found in [78, 88]. In addition, for
xi 6= xj the above annulus contributions are all well-defined and there is need of regularization

19Writing differences of FZZT amplitudes in comparison to single ones will contribute a factor of 2 in the result
for the minimal string branes: in the latter case we consider half-cycles (single FZZT branes) while in the former
case we have a full-cycle (difference of two FZZT branes). It would be interesting to compare the two approaches
further. Note how the distinction in these two approaches is responsible for the well-known difference of a factor
of 2 between matrix-model instanton actions and minimal-string ones (for example, compare to formula (2.82)).
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(up to the infinite constant terms which can appear [88]). Finally, depending on the choice of
sheets characterized by {αi}, (2.83) will calculate different nonperturbative contributions.

Let us consider some instructive examples of formula (2.83). We have already seen the one-
brane contribution above. The generalization to ` branes of the same type (i.e., with x1 = x2 =
· · · = x` ≡ x and α1 = α2 = · · · = α` ≡ α) is straightforward and reads

W `-FZZT
1 (x) ' 1

`!
exp

(
`AD (ζa(x)) +

`2

2
AA (ζα(x), ζα(x)) + · · ·

)
, (2.84)

where we have included a symmetry factor of 1/`!, and the annulus contribution needs no reg-
ularization and is computed via (2.27). Let us mention in passing that for (p, q) = (2, 2k − 1)
a resonant pair (α = 0 and α = 1) will emerge from (2.84) exactly as described in and below
formula (2.80). Further, it is interesting to understand the FZZT analogue of the (1, 1) contri-
bution earlier discussed for ZZ-branes. Explicitly choosing (p, q) = (2, 2k − 1), and α1 = 0 and
α2 = 1, we find

W
(1,1)-FZZT
2 (x1, x2) ' exp

(
AD (ζ0(x1)) + AD (ζ1(x2)) +

1

2
AA (ζ0(x1), ζ0(x1)) +

+
1

2
AA (ζ1(x2), ζ1(x2)) + AA (ζ0(x1), ζ1(x2)) + · · ·

)
. (2.85)

Here an interesting question arises: what happens as x2 → x1? To this end, let us spell out this
formula explicitly

W
(1,1)-FZZT
2 (x1, x2) ' 1

4p2

(
1

ζ1(x2)
− 1

ζ0(x1)

)
1

x1 − x2
eAD(ζ0(x1))−AD(ζ0(x2)) + · · · . (2.86)

First, as x2 → x1 the disk contributions in the exponential cancel each other. This discussion is
analogous to the one in (and under) formula (2.56) (just that here we do not perform integrations
over FZZT moduli as in the earlier ZZ case). Further, from the annulus contributions we find
a divergence as x2 approaches x1. This is again in line with the discussion in subsection 2.3.
Physically, the term 1/(x1−x2) implies that FZZT-branes on different sheets behave a lot like the
eigenvalue–anti-eigenvalue pairs discussed in [73]. Two FZZT branes attract, and if they do so
close to a pinch of the moduli space they form a bound state—exactly as discussed in the previous
subsection. On the other hand if they meet somewhere else on moduli space, they just annihilate.
Last but not least let us comment on a curious fact: the above (1, 1) nonperturbative contribution
appears for example as a nonperturbative correction to the correlator W2(x1, x2) = 1

(x1−x2)2 (· · · )
[62], which itself is intricately related to the Bergmann kernel that plays a prominent role in
the topological recursion construct [89] (in appropriate coordinates it is just a double-pole as
x2 → x1). In fact, the Bergmann kernel sets up the computation of perturbative contributions
in the recursion, and it is hence quite interesting how the above (1, 1) correction appears to show
a similar coordinate behavior. This could hint that this kernel may yet also play some relevant
role in the computation of nonperturbative corrections via the topological recursion (see [95]).

3 All Instantons of Nonperturbative Minimal Strings

Let us now turn to the matrix model analysis. This will first consist of a multi-pinched (de-
generate hyperelliptic) generalization of [73], which can then be applied to the double-scaled
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minimal-string spectral curves of [49] so as to find a match against20 the (p, q) = (2, 2k − 1)
BCFT results across the previous section. Such results also allow for a study of JT gravity [88].

Setting the matrix-model stage following, e.g., [131, 62, 63], we first recall the partition
function in diagonal gauge

ZN =
1

N !

∫ N∏
i=1

dλi
2π

∆2(λ) e
− 1
gs

N∑
i=1

V (λi)
. (3.1)

Exponentiation of the Vandermonde determinant ∆(λ) naturally leads to the introduction of
the holomorphic effective potential Vh;eff(x) from where the large-N (at fixed t = gsN ’t Hooft
coupling [126]) spectral-curve y(x) follows as V ′h;eff(x) = y(x) [132, 133]. This is the prime input
for the topological recursion [89], which then yields the matrix-model free energy F = logZ
genus-by-genus as Fg(t), as an asymptotic perturbative expansion in the string coupling.

If the matrix-model potential V (λ) has s critical points, the most general eigenvalue config-
uration will have support on a multi-cut configuration C = [a1, a2] ∪ [a3, a4] ∪ · · · ∪ [a2s−1, a2s],
with corresponding hyperelliptic spectral curve

y2(x) = M2(x)
2s∏
i=1

(x− ai) , (3.2)

where M(x) is the moment function. Distributing the total N eigenvalues across these s-cuts, it
is natural to associate partial ’t Hooft couplings ti = gsNi with each cut. These are moduli for
the matrix model, albeit fixed to adding up to the total ’t Hooft coupling t. We will be interested
in the minimal-string double-scaling limit, with all degenerate cuts but for the perturbative cut,
hence geometrically corresponding to a multi-pinched spectral curve.

In particular, we are interested in the spectral curve description of (p, q) = (2, 2k−1) minimal
string theory following [49]. These models are described by

Tp(y) = Tq(x), (3.3)

where recall Tp (cos θ) = cos pθ are Chebyshev polynomials of the first kind. This geometry
describes a p-sheeted covering of the complex x-plane, which is obtained from a degenerate
hyperelliptic spectral curve with 1

2 (p− 1) (q − 1) pinched A-cycles in the double-scaling limit—
hence resulting in a genus-zero Riemann surface, i.e., we find a double-scaled single-cut along
C = (−∞, 1]. This is essentially the Riemann surface Σp,q of section 2 [78], where the eigenvalue
complex x-plane is identified with µB as in (2.7). In our one-matrix model scenario this simplifies,
as T2(y) = 2y2 − 1, and the double-scaled spectral curve becomes

y2 =
1

2
(1 + T2k−1(x)) = 22k−3 (x+ 1)

k−1∏
n=1

(x− x?n)2 , (3.4)

with x?n = − cos 2πn
2k−1 for 1 ≤ n ≤ k−1. This is clearly of the form (3.2) albeit for a single infinite

cut. The moment function can be extracted from the above expression as21

20We mainly address the one-matrix model throughout this section, albeit we will comment on possible future
research venues to fully extend our results to the two-matrix model in subsection 3.5.

21Note that there is a minus-sign difference between conventions herein and the ones used in [50]. The reason
for this is so that in the following subsections we match notation against the matrix model results in [73], where
eigenvalue tunneling to the physical sheet is related to the saddles of Vh;eff(x). This is also consistent with the
difference in the sign of the exponent between sections 2 and 3 (recall footnote 13 in subsection 2.2).
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M(x) = − 1√
2

Tk(x) + Tk−1(x)

x+ 1
, (3.5)

whose zeroes are precisely at the pinched A-cycles. These x?n are of course the relevant points in
the definition of ZZ-branes from FZZT-branes in (2.15); i.e., they are where the ZZ-branes sit
(on the physical sheet). Finally, the corresponding holomorphic effective potential is given by

Vh;eff(x) = − 1

2k + 1
T 2k+1

2
(x) +

1

2k − 3
T 2k−3

2
(x) (3.6)

(see, e.g., [50] for a recent discussion of these topics).

3.1 Arbitrary Double-Scaled Spectral Geometry

We begin by reconsidering the matrix-model predictions for various transseries sectors in [73]
and extend them to our multi-pinched, double-scaled configurations.

On Transseries Sectors from Matrix Models: Let us immediately specialize to the one-cut
setting with s = 1 in (3.2) and C = [a, b],

y(x) = M(x)
√

(x− a)(x− b), (3.7)

where the moment function M(x) has multiple zeros x?1, x?2, . . ., as nonperturbative saddle
points. There is one additional subtlety appearing in this multi-saddle-point case in comparison
to the single-pinch considered in [73]: depending on the locations of the x?i , (anti) eigenvalue-
tunneling may now also happen in-between nonperturbative saddles. For example, a previously
perturbative eigenvalue might first tunnel to x?1 and only then, upon crossing the next Stokes
line, will it tunnel to x?2—where the saddle-point x?2 would otherwise never be directly reachable
by tunneling straight from the perturbative-cut. For this reason, the configuration of saddle
points is crucial and here we shall only consider the two saddles closest to the cut (x?1 and x?2).
The generic case with an arbitrary number of nonperturbative saddles may then be obtained
straightforwardly building on our ensuing discussion.

More specifically, focus upon the following setting: both saddles lie on the real line, with
x1 siting closer to the cut than x2. In addition we require the instanton actions to be real and
labeled analogously to the saddles; such that A1 is associated to x1 and A2 to x2. Furthermore
we require that A1 and A2, although themselves resonant, do not resonate between each other.
One such configuration is depicted in figure 7. The fact that the instanton actions are both real
and resonant [73] implies that the problem we are studying has two Stokes lines: a forward one
along the positive real axis, and a backwards one across the negative real axis (see figure 9).

Following the notation introduced in [73], we denote the corresponding partition-function
and free-energy matrix-model nonperturbative contributions as

Z(`1|¯̀1)(`2|¯̀2), F (`1|¯̀1)(`2|¯̀2), (3.8)

where `1 (¯̀
1) (anti) eigenvalues sit at x?1 and likewise for x?2 (generically `1 6= ¯̀

1 6= `2 6= ¯̀
2).

The above matrix-integral quantities may alternatively be computed out of string equations
(more on this in appendices A and B). Again following the notation in [73], string-equation
nonperturbative transseries-sectors are now denoted with standard22 “roman notation”, and the

22Recap notation: transseries as Z and F , matrix-integral as Z and F , and BCFT as Z and F .
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Figure 7: Schematic plot of the real-part of the matrix-model holomorphic effective-potential
(on the physical sheet) with two real saddle-points x?1 and x?2. The saddle x?1 is closer to the cut
with endpoints a and b. The corresponding instanton actions A1 (to x?1) and A2 (to x?2) are real
and resonant. Compare this plot to the double-scaled (2, 5) minimal-string plot in figure 10.

above configuration with two resonant saddle-points translates to a four-parameter resonant
resurgent-transseries of the form (see, e.g., [67, 50])

F (gs,σ) =
∑
n∈N4

0

σn e
−(n1−m1)

A1
gs
−(n2−m2)

A2
gs F (n)(gs), (3.9)

where σ is the four-dimensional vector of transseries parameters, A1 and A2 are resurgent in-
stanton actions, and F (n)(gs) are nonperturbative transseries sectors. These sectors are usually
labeled as n = (n1,m1, n2,m2) to distinguish from the (anti) eigenvalue labeling in (3.8), albeit
they are of course in correspondence as we discuss below [73]. In short, (anti) eigenvalue tunnel-
ing is associated to instantons on the (non) physical sheet, producing exponentially suppressed
∼ e−`A/gs (enhanced ∼ e+¯̀A/gs) contributions associated to action A. For a particular single
A, these contributions span a two-dimensional lattice of nonperturbative contributions labeled
by (`|¯̀) where the two directions are then in resonant correspondence with the suppressed (en-
hanced) instantons in the transseries. The general case would include an arbitrary number of
resonant instanton actions; e.g., [67, 50].

Let us start by understanding the intricacies of eigenvalue-tunneling in the setting described
above. It has been thoroughly established how to populate the saddle x?1 in [73]. Namely, starting
with the perturbative-sector we can undergo a forward discontinuity which tunnels eigenvalues
to the saddle x?1; or we can undergo a backward discontinuity which tunnels anti-eigenvalues to
x?1 (see figure 9). Interestingly, both options leave the second saddle-point x?2 empty. Given that
there are only forward and backward Stokes lines, this implies that there is no direct tunneling
from the perturbative-cut to x?2. On the other hand, having first populated x?1, it is now possible
to tunnel eigenvalues and anti-eigenvalues from there to x?2. In other words, if we wish to
populate x?2, we first need to populate x?1 and only thereafter tunnel to x?2. Let us illustrate
this procedure with the example of a single eigenvalue. The first step, where an eigenvalue has
left the cut in favor of x?1, is well-known [62, 73] (see figure 8). On the matrix model side this
eigenvalue-tunneling contour-deformation reads

Z(1|0)(0|0)(t, gs) =
1

2π
Z(0|0)(0|0)(t− gs, gs)

∫
C?1

dx e
− 1
gs
V (x)

〈
det (x−M)2

〉
, (3.10)
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Contour Deformations Resurgent Borel Plane

Z(0|0)(0|0)(|gs|ei0+

)−Z(0|0)(0|0)(|gs|ei0−
)→ Z(1|0)(0|0)(gs)

Z(1|0)(0|0)(|gs|eiπ+

)−Z(1|0)(0|0)(|gs|eiπ−
)→ Z(0|0)(1|0)(|gs|eiπ) + · · ·

Disc0Z
(0,0,0,0) = e

−A1
gs ×

×S(0,0,0,0)→(1,0,0,0)Z
(1,0,0,0)

DiscπZ
(1,0,0,0) = e

−A2−A1
gs ×

×S(1,0,0,0)→(0,0,1,0)Z
(0,0,1,0)

a b x?2x?1

ε→0−−−→
C+

C− a b x?2x?1

C?1
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ε→0−−−→
C?1,+

C?1,− a b x?2x?1

C?2

A1

S0

A2 −A1
Sπ

Figure 8: Schematic visualization of tunneling one eigenvalue from the perturbative-cut to the
saddle x?2, using the matrix-model potential in figure 7. First (upper row), undergoing a forward
discontinuity with the perturbative configuration tunnels an eigenvalue from the perturbative-cut
to x?1 (here the cut of the effective potential is visualized in green; the nonperturbative saddles
are shown in red; the eigenvalue steepest-descent contours are schematically plotted in blue; and
ε denotes the offset of the argument of gs coming from the discontinuity). The corresponding
Borel plane picture is shown on the right, where the residue attached to the action A1 is picked
up (we only show the singularity relevant for our transition). Second (lower row), we undergo the
backwards discontinuity starting from the (1|0)(0|0) configuration. Because we are employing
the backwards discontinuity the phase of gs has shifted by π. We observe how the backwards
discontinuity indeed populates the second saddle x?2 in this way. Notice also the appearance of
an additive perturbative term in this transition which has been studied in [73]. Again on the
right-hand side we show the Borel plane with the singularity shown in red.

where we follow the notation from [73], and C?1 is the steepest-descent contour associated to x?1.
Furthermore we have the well-studied “bridge” relation [41, 62, 73]

e
−A1
gs S(0,0,0,0)→(1,0,0,0)

Z(1,0,0,0)(t, gs)

Z(0,0,0,0)(t, gs)
' Z

(1|0)(0|0)(t, gs)

Z(0|0)(0|0)(t, gs)
. (3.11)

Let us now tunnel the eigenvalue sitting at x?1 to the furthest saddle x?2. This contour deformation
occurs at the backwards discontinuity as illustrated in figure 8, and we focus only on the (0|0)(1|0)
contribution of the full discontinuity23. We arrive at

Z(0|0)(1|0)(t, gs) =
1

2π
Z(0|0)(0|0)(t− gs, gs)

∫
C?2

dx e
− 1
gs
V (x)

〈
det (x−M)2

〉
. (3.12)

23Notice how the contour deformation picks up an additional, additive perturbative term. This phenomenon
was discussed in [73]. Herein we are only interested in the (0|0)(1|0) contribution and we will ignore such term.
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On the resurgent-transseries side, the backward discontinuity of the (1, 0, 0, 0) contribution at
leading exponential damping amounts to

e
−A1
gs S(0,0,0,0)→(1,0,0,0) DiscπZ

(1,0,0,0) = e
−A2
gs S(0,0,0,0)→(1,0,0,0) S(1,0,0,0)→(0,0,1,0) Z

(0,0,1,0) + · · · .
(3.13)

Now comparing the matrix-integral calculation with the resurgent transseries, in the spirit of
[73], we find the “bridge” relation

e
−A2
gs S(0,0,0,0)→(1,0,0,0) S(1,0,0,0)→(0,0,1,0)

Z(0,0,1,0)(t, gs)

Z(0,0,0,0)(t, gs)
' Z

(0|0)(1|0)(t, gs)

Z(0|0)(0|0)(t, gs)
. (3.14)

It is interesting to compare this result with the one for the (1, 0, 0, 0) sector in (3.11). At first one
might have expected the Borel residue S(0,0,0,0)→(0,0,1,0) to appear in (3.14)—but this Borel residue
actually vanishes as there is no direct tunneling between the cut and the x?2 saddle. This explains
the appearance of a more complicated combination of Borel residues in (3.14) (as we have to walk
two “resurgent steps” to arrive at the (0, 0, 1, 0) sector). On the other hand it is interesting to
note how the (0, 0, 1, 0) transseries sector is still computed around the nonperturbative saddle
x?2. In fact, only the structure of its Borel residue pre-factor has changed.

We are now in a position to briefly outline the full tunneling mechanics for the example
of the matrix-model potential depicted in figure 7. Eigenvalues (anti-eigenvalues) sitting in the
perturbative cut tunnel to the nonperturbative saddle x?1 at the forward (backward) discontinuity.
This is exactly the scenario outlined in [73]. Now, including the second nonperturbative saddle-
point x?2, this picture needs generalization. Tunneling directly from the cut to x?2 is impossible,
as outlined above. On the other hand tunneling between the two nonperturbative saddles can
happen, albeit with a twist: now eigenvalue tunneling occurs at the backwards discontinuity,
whereas anti-eigenvalues tunnel at the forward discontinuity. This is illustrated in figure 9.

Armed with the full tunneling-mechanics for the doubly-pinched case, let us expand on the
above example with the (novel) calculation of the (1|1)(1|0) free-energy contribution (this will
add to our upcoming non-trivial checks). Following [73] and the arguments outlined above we
arrive at this sector by undergoing a forward discontinuity, picking up the (1|0)(0|0) contribution,
and then undergoing a backwards discontinuity. This result contains the (0|1)(1|0) contribution,
which we pick out. Then we are left to undergo a final forward Stokes transition to reach
(1|1)(1|0), and this will be our focus in the following. Carrying out this procedure carefully for
both resurgent-transseries and matrix-integral quantities described above, yields the “bridge”
relation between both as (we refer the reader to [73] for details on this type of calculations)

e
−A2
gs S(0,0,0,0)→(1,0,0,0) S(1,0,0,0)→(0,1,1,0) S(0,1,1,0)→(1,1,1,0)

Z(1,1,1,0)(t, gs)

Z(0,0,0,0)(t, gs)
' Z

(1|1)(1|0)(t, gs)

Z(0|0)(0|0)(t, gs)
.

(3.15)

Evaluation of the above right-hand side requires solving the triple integral (which we shall do up
to order

√
gs) [73]

Z(1|1)(1|0)(t, gs)

Z(0|0)(0|0)(t, gs)
=

1

2

Z(0|0)(0|0)(t− gs, gs)

Z(0|0)(0|0)(t, gs)
PV

∫
Cres

1 +C?1

dx1

2π
PV

∫
C?2

dx2

2π
PV

∫
C̄?1

dx̄1

2π
× (3.16)

× (x1 − x2)2

(x1 − x̄1)2 (x2 − x̄1)2 e
− 1
gs

(V (x1)+V (x2)−V (x̄1))

〈
det (x1 −M)2 det (x2 −M)2

det (x̄1 −M)2

〉
N−1

,
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Figure 9: Schematic visualization of the mechanics of (anti) eigenvalue tunneling, for the holo-
morphic effective potential shown in figure 7. The physical sheet is plotted in blue and the
non-physical one is orange, while the cut if shown in green. Whereas the tunneling to the saddle
closest to the cut (x?1) is exactly the same as discussed in [73] the picture needs generalization
for the second saddle (x?2), which cannot be directly reached from the perturbative cut. In-
stead, it gets populated by tunneling starting from the closer nonperturbative saddle (x?1). This
comes with an inversion relative to the standard picture, as now eigenvalues (blue) tunnel at the
backward discontinuity while anti-eigenvalues (orange) tunnel at the forward one.

where the contour C?1 (C?2) is the eigenvalue steepest-descent contour associated to x?1 (x?2), the
contour Cres

1 is the residue contour connecting the saddle-point x?1 to the positive endpoint of the
cut, b, and the contour C̄?1 is the anti-eigenvalue steepest-descent contour associated with x?1. For
details on the contours and on the following calculation we must again refer the reader to [73].
Let us observe that the lowest gs-order of the (1, 1, 1, 0) free-energy sector appears at order

√
gs

in the above calculation24. Isolating this contribution we find the result25

e
−A2
gs S(0,0,0,0)→(1,0,0,0) S(1,0,0,0)→(0,1,1,0) S(0,1,1,0)→(1,1,1,0) F

(1,1,1,0) ' (3.17)

' Z
(1|1)(1|0)(t, gs)

Z(0|0)(0|0)(t, gs)
− Z

(1|1)(0|0)(t, gs)

Z(0|0)(0|0)(t, gs)

Z(0|0)(1|0)(t, gs)

Z(0|0)(0|0)(t, gs)
=

i

(2π)3/2
e
− 1
gs

(Veff(x?2)−Veff(b))
√

gs

V ′′h,eff(x?2)
×

× b− a
8 (x?2 − a) (x?2 − b)

∫ x?1

b
dx̄1

{
∂x1

(
(x?2 − x1)2

(x?2 − x̄1)2
eA0(x1,x̄1)+4A0;2(x1,x?2)−4A0;2(x̄1,x?2)

)∣∣∣∣
x1=x̄1

}
+ o(gs),

24Note how for the (1, 1, 1, 0) free-energy sector the overall lowest-appearing order is
√
gs, whereas for the matrix-

integral contribution (1|1)(1|0) the lowest-order appears at 1/
√
gs. This order is assembled by the product of the

(1|1)(0|0) and (0|0)(1|0) contributions—sectors which have been calculated in [73]. Although this is a good check
on our earlier results, it yields no new information. Therefore we can cancel those terms on both sides of (3.15).

25Amplitude definitions are in formula (3.30) of [73], where A0(x, x̄) = 2A0;2(x, x) + 2A0;2(x̄, x̄)− 4A0;2(x, x̄).
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which we can evaluate to yield

e
−A2
gs S(0,0,0,0)→(1,0,0,0) S(1,0,0,0)→(0,1,1,0) S(0,1,1,0)→(1,1,1,0) F

(1,1,1,0) ' i

(2π)3/2
e
− 1
gs

(Veff(x?2)−Veff(b))×

×
√

gs

V ′′h,eff(x?2)

1

(x?2 − a) (x?2 − b)
b− a

8
log

{(
2
√

(x?1 − a)(x?1 − b) + a+ b− 2x?1

)2

(a− b)4 (x?2 − x?1)2 × (3.18)

×
(

(a+ b) (x?2 + x?1)− 2

(√
(a− x?2)(a− x?1)(x?2 − b)(x?1 − b) + x?2x

?
1 + ab

))2
}

+ o(gs).

One interesting feature of this result is the appearance of a logarithmic contribution which is
not directly associated to resonance (e.g., compare with the logarithmic contributions in [73]).
Furthermore, note how the pre-factor of the logarithm is just the usual (0|0)(1|0) contribution.

Many other sectors have been recently computed in [73], to where we refer the reader for
more details on the match between transseries and matrix-integrals nonperturbative data.

Double-Scaling Limit: In order to reach minimal-string or JT-gravity formulae, the above
(off-critical) matrix model results have to be double-scaled (e.g., see the recent discussions in
[50]). In practice one starts from a one-cut multi-pinched spectral curve—as in (3.2) with s = 1
or, equivalently, as in (3.7)—and zooms-in on the endpoint of the cut a1, effectively producing a
single cut along C = (−∞, a1] (compare with formula (3.4)). On what concerns nonperturbative
sectors, this procedure was described in [50, 73] but which we next briefly recall. Starting from
the one-cut setting, introduce a scaling parameter ε and take26

a1 → adsl, a2 → adsl − ε, (3.19)

M(x)→ Mdsl(x)√
ε

, M ′(x)→
M ′dsl(x)√

ε
, (3.20)

in the limit ε → +∞. As we only address double-scaled quantities from now on, we drop the
“dsl” labeling of all quantities. This leads to the multi-pinched double-scaled spectral curve

y(x) = M(x)
√
x− a, (3.21)

with k pinches—which we take located at x?n with n = 1, . . . , k.
Consider the free energy which is computed from that spectral curve27 where gs is the ex-

pansion parameter now in the double-scaled theory. Focus on the nonperturbative contributions
to that free-energy when only one pinch, say, x?1, of the spectral curve (3.21) is populated. These
are transseries sectors of the type (n1,m1, 0, . . . , 0) which will be associated to (anti) eigenvalue
configurations of the type (`1|¯̀1)(0|0̄) · · · (0|0̄), with some pre-factor of Borel residues that de-
pends strongly on the resurgent path under consideration (as outlined above). But even if the
Borel residues (resurgent path) that one has to employ in order to arrive at a resurgent sector
changes, the (anti) eigenvalue configuration associated to the sector will not change—we are still
computing the same nonperturbative contributions, just with different Borel residues attached
to it. What this effectively implies is that for all practical purposes this case may be treated as if

26This scaling is simple: the one-cut double-scaled curve y(x) = M(x)
√
x− a on C = (−∞, a] may be rewritten

as on a finite-cut Cfinite = [a− ε, a] by replacing x with x+ (x−a)2

ε
. The limit ε→ +∞ then recovers Cfinite → C .

27This free energy may be computed from the spectral curve for example via the topological recursion [89].
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a single-pinch problem of the type in [73], ignoring all other zero-labelings, and we shall directly
use the results therein in the following. These results yield the double-scaled formulae that we
present below, where we will keep the single-pinch labeling of [73] for simplicity of notation.

Nonperturbative contributions from the saddle x?1 span the two-dimensional lattice (`1|¯̀1),
and we begin at its edges spelling out partition-function ratios—yielding combinations of free-
energy sectors in the double-scaled theory. For the (`1|0) and (0|¯̀1) sectors associated to the
saddle point x?1 we find (we compute here solely the lowest-appearing order in gs)

Z(`1|0)(gs)

Z(0|0)(gs)
' G2(`1 + 1)

(2π)`1/2
e
− `1
gs

(Vh;eff(x?1)−Vh;eff(a))

(
gs

16M ′(x?1) (x?1 − a)5/2

) `21
2

+ · · · , (3.22)

Z(0|¯̀1)(gs)

Z(0|0)(gs)
' G2(¯̀

1 + 1)

(2π)
¯̀
1/2

e
¯̀
1
gs

(Vh;eff(x?1)−Vh;eff(a))

(
− gs

16M ′(x?1) (x?1 − a)5/2

) ¯̀2
1
2

+ · · · . (3.23)

Similarly, we next obtain the (1|1) contribution around the saddle x?1, finding

Z(1|1)(gs)

Z(0|0)(gs)
' 1

gs

i

2π
(Vh;eff(x?1)− Vh;eff(a)) + 0 + gs

i

24π

{
3 (a− x?1)M ′(a) +M(a)

M(a)2 (x?1 − a)3/2
− (3.24)

−
4 (a− x?1)2M ′′(x?1)2 − 2 (a− x?1)M ′(x?1)

{
2 (a− x?1)M (3)(x?1) +M ′′(x?1)

}
+ 19M ′(x?1)2

8 (x?1 − a)5/2M ′(x?1)3

}
+ o(g2

s ).

Notice how this contribution has no associated exponential transmonomials, as the resonant
actions annihilate each other. Still, this is a nonperturbative contribution; see, e.g., [68, 70, 72,
67, 50, 73]. Last but not least we turn to the (2|1) configuration around the saddle x?1, where we
find

Z(2|1)(gs)

Z(0|0)(gs)
− Z

(1|0)(gs)

Z(0|0)(gs)

Z(1|1)(gs)

Z(0|0)(gs)
' e
− 1
gs

(Vh;eff(x?1)−Vh;eff(a))× (3.25)

× i

8 (2π)2

√
2πgs

M ′(x?1) (x?1 − a)5/2

{
2γE + log

(
28

g2
s

M ′(x?1)2 (x?1 − a)5

)}
+ o(g3/2

s ).

Note that we are here computing a special combination of partition-function ratios. That this
combination is the interesting one to consider is related to the very special resonant structure
that spectral curves of the type (3.21) inherently possess. Further details can be found in [73]
and we will get back to this in the upcoming subsection 3.2 .

Having understood the case where just one of the pinches (herein x?1) is populated, let us next
move-on to also populate a second pinch, say x?2—as in the off-critical matrix-model calculation
we started-off with. In this case, we find that (3.18) double-scales to

Z(1|1)(1|0)(gs)

Z(0|0)(0|0)(gs)
− Z

(1|1)(0|0)(gs)

Z(0|0)(0|0)(gs)

Z(0|0)(1|0)(gs)

Z(0|0)(0|0)(gs)
' i

(2π)3/2
e
− 1
gs

(Veff(x?2)−Veff(b))× (3.26)

×
√

gs

16M ′(x?2)

1

(x?2 − a)
5
4

log

{
2a− x?2 + 2

√
(x?2 − a) (x?1 − a)− x?1
(x?2 − x?1)

}
+ o(gs).

The lingering question at this stage is: can the above results be reproduced via BCFT?
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3.2 (2, 2k − 1) Minimal Strings: BCFT Matches the Matrix Model

Let us now use the double-scaled one-matrix model results derived above and apply them to
the (2, 2k− 1) minimal-string spectral curve (3.4). When comparing minimal-string and (double
scaled) matrix-model results, it is well known how tunneled eigenvalues correspond to ZZ-branes;
e.g., [42, 54, 49, 55, 56, 58, 62, 60]. What we can now establish by direct comparison is that the
tunneled anti-eigenvalues in [73] correspond to the negative-tension ZZ-branes proposed in sec-
tion 2. This is established by comparing BCFT results for different free-energy nonperturbative
sectors from section 2 against our present double-scaled matrix-model formulae.

We start by spelling out formulae (3.22)-(3.23)-(3.24)-(3.25)-(3.26) for the specific case of
the (2, 2k − 1) minimal string. The instanton action reads28 [49, 56]

An,k = (−1)k+n+1

(
1

2k + 1
+

1

2k − 3

)
sin

2πn

2k − 1
. (3.27)

Besides the minus-sign difference which has already been addressed in footnote 13, notice the
difference of a factor of 2 to the action computed from BCFT in formula (2.39). This factor
goes back to the the fact that the BCFT calculation considers full cycles on the moduli space
of FZZT branes while the matrix model and string equation calculations work with half cycles.
Upon comparison of the various results this factor needs to be taken into account29. Furthermore
a useful identity to use is

M ′k(x
?
n,k)

(
x?n,k − a

)5/2
= (−1)k+n (2k − 1) tan

nπ

2k − 1
sin2 nπ

2k − 1
. (3.28)

For the multiple ZZ and negative-tension ZZ contributions, we hence find to leading order

Z(`|0)
n,k (gs)

Z(0|0)
n,k (gs)

' G2 (`+ 1)

(2π)`/2
e
− `
gs
An,k

(
gs

(−1)n+k cot nπ
2k−1

16 (2k − 1) sin2 nπ
2k−1

) `2

2

+ · · · , (3.29)

Z(0|¯̀)
n,k (gs)

Z(0|0)
n,k (gs)

'
G2

(
¯̀+ 1

)
(2π)

¯̀/2
e

¯̀

gs
An,k

(
gs

(−1)n+k+1 cot nπ
2k−1

16 (2k − 1) sin2 nπ
2k−1

) ¯̀2

2

+ · · · . (3.30)

Up to the factor of 2 we just alluded to (which appears inside the brackets in the formulae above),
these expressions exactly match the corresponding BCFT calculations specialized to the (2, 2k−1)
case, which we have given in formulae (2.75) and (2.78). Proceeding with the (1|1) sector we find
next (and which we now compute to one higher order than was possible via BCFT—recall the
comment below (2.60))

Z(1|1)(gs)

Z(0|0)(gs)
=

1

gs

i

2π
An,k + 0+

+ gs
i(−1)k

192π (2k − 1) sin3
(

2πn
2k−1

) {48(−1)n cos

(
2πn

2k − 1

)
− 8 cos

(
3πn

2k − 1

)
+

+ 8 cos

(
πn

2k − 1

)(
k (k − 1)

[
cos

(
4πn

2k − 1

)
− 1

]
− 3

)
+ (3.31)

28Also recall that there is a minus-sign difference between our conventions and the ones used in [50].
29This difference of conventions can be resolved for example by rescaling the spectral curve appropriately.
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+(−1)n+1

(
[4k (k − 1)− 7] cos

(
4πn

2k − 1

)
− 4k (k − 1)− 25

)}
+ o(g2

s ).

For this sector we now need to compare against the BCFT result in (2.60), specialized to (p, q) =
(2, 2k − 1) and to the first two lowest orders—where again we find precise agreement. The next
sector we consider is (2|1), where we now have

Z(2|1)
n,k (gs)

Z(0|0)
n,k (gs)

−
Z(1|0)
n,k (gs)

Z(0|0)
n,k (gs)

Z(1|1)
n,k (gs)

Z(0|0)
n,k (gs)

' e
− 1
gs
An,k× (3.32)

× i

16π

√
gs(−1)n+k cot nπ

2k−1

2π(2k − 1) sin2 nπ
2k−1

{
2γE + log

(
28

g2
s

(2k − 1)2 sin4 nπ
2k−1

cot2 nπ
2k−1

)}
+ o(g3/2

s ).

Once again this result precisely matches its BCFT counterpart in (2.67) (once one correctly
adjusts a factor of 2 for every occurrence of the action in the above formula). Last but not least
the same holds for the (1|1)(1|0) contribution. For the saddle-points x?n and x?m, with x?n further
away from the cut, we explicitly find the relation

Z(1|1)(1|0)(gs)

Z(0|0)(0|0)(gs)
− Z

(1|1)(0|0)(gs)

Z(0|0)(0|0)(gs)

Z(0|0)(1|0)(gs)

Z(0|0)(0|0)(gs)
' i

(2π)3/2
e
− 1
gs
An,k× (3.33)

×

√√√√ gs (−1)k+n cot nπ
2k−1

16 (2k − 1) sin2 nπ
2k−1

log

∣∣∣∣∣∣
sin
(

πm
2k−1

)
− sin

(
πn

2k−1

)
sin
(

πm
2k−1

)
+ sin

(
πn

2k−1

)
∣∣∣∣∣∣+ o(g3/2

s ).

Indeed this result also perfectly matches the corresponding BCFT calculation given in (2.71),
upon the inclusion of the familiar factor of 2 in the appropriate places. Having precisely matched
many BCFT and double-scaled matrix-model results, supports both our results and our inter-
pretation. Nonetheless, we proceed with further checks—now against string-equation results and
via numerical large-order matches.

3.3 BCFT/Matrix-Model Results Match String-Equation Results

Albeit comparison of BCFT versus matrix-model results has already established a rather non-
trivial consistency check of our proposal, let us move-on and further check our results against
string equations30. Appendix A outlines the general set-up of minimal-string string-equations,
and we refer the reader to [50] for another recent discussion precisely along the lines of the ensuing
discussion. Comparisons between matrix-model and string-equation results were also extensively
conducted in [73], as string-equations iteratively yield the complete resurgent transseries solutions
including all possible nonperturbative sectors. Further note how this “triple check” is useful also
if to go forward with calculations: while BCFT or matrix model computations at high-instanton
or high-genera are very slow, the same via string equations may be quite fast and efficient.
Once the match has been established, one may then mainly rely on string equations to produce
high-instanton and high-order data, also establishing Stokes data in the process.

Let us start with a quick numerical exploration of the resonant structure of minimal strings
using string-equation data for the (p, q) = (2, 5) example. Here we check the perturbative specific-
heat up to genus 40. The explicit results are shown in figure 10 and they support how minimal

30To be fully precise, string equations really arise from matrix-model orthogonal polynomials. Hence what we
truly imply is that our earlier “matrix model” results are actually “spectral curve” or “matrix integral” results.
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Figure 10: Numerical tests for the perturbative sector of the specific-heat of the (2, 5) minimal
string. On the left-hand side we plot the holomorphic effective potential, together with large-
order checks of the perturbative sector. Here A1,g = 2g

√
ug/ug+1 and RTk denotes the kth

Richardson transform [67]. We observe that, as expected from the discussion in subsection 3.1, the
leading asymptotics only “see” the instanton action A1 which in the matrix-model computations
is associated to the saddle-point closest to the cut. On the right-hand side we plot the poles of the
Borel–Padé approximation [67] to the perturbative specific-heat, up to genus 40. The symmetry
of the Borel singularities is evident, thus supporting that minimal strings are resonant.

strings are indeed resonant (analytically shown in [50]). Notice how the asymptotic checks in
figure 10 only see the leading instanton action A1—and not the smaller action A2. This is
exactly in line with the matrix-model discussion in subsection 3.1, and reflects how eigenvalues
cannot directly tunnel to the saddle-point x?2 (note how moving between free-energy and specific-
heat via double-integration preserves the instanton actions and the Borel residues up to global
rescaling—as such, matrix-model free-energy features also reflect in the specific-heat).

We now focus on the (1, 1) sector at leading-order in genus. It turns out that this con-
tribution may be obtained analytically for arbitrary k from direct use of the minimal-string
string-equations. In appendix A we derive the formula for the lowest-genus contribution to the
(1, 1) sector of the string specific-heat, which is given explicitly in formula (A.15) for the mul-
ticritical hierarchy and in (A.17) for the minimal-string hierarchy. Then, recalling the “bridge”
relation, our results can be written in terms of free energy via simple exponentiation as [73]

S(0,0)→(0,1) S(0,1)→(1,1)
Z(1,1)(gs)

Z(0,0)(gs)
= (3.34)

= S(0,0)→(0,1) S(0,1)→(1,1)

{
F (1,1)(gs) + F (1,0)(gs)F

(0,1)(gs)
}
,

and all that remains to be done is translate the prediction of (3.31) from free energy F to specific
heat u. We do so by recalling the relation31

g2
sF
′′(z) = −1

2
u(z). (3.35)

31Herein we are focusing on the string-equation variable z-dependence, see appendix A.
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Thus, noting that at lowest genus only the (1, 1) free-energy sector contributes, it turns out that
the factors of π cancel on both sides due to the insertion of Borel residues, and the prediction
can be restated as the condition that (A.17) satisfies

u
(1,1)
0,MS-k(z) = 2A′′(z). (3.36)

The simplicity of this formula is surprising at first sight, given the complicated structure of

u
(1,1)
0,MS-k(z). However, below we will show that the two expressions exactly coincide for all k.

Firstly, one needs to use prior results obtained in [50], which we have explicitly included in
the appendix A. Then, differentiating (A.13) we can solve for A′′(z) to find

2A′′(z) = −

k−1∑
n=0

 k∑
`=k−2[ k−1

2 ]
(`− n− 1) ` t`(k)

α`,`−n
α`,`

u`−n−2
0 (z)u′0(z)

A′(z)2n

k−1∑
n=0

 k∑
`=k−2[ k−1

2 ]
n ` t`(k)

α`,`−n
α`,`

u`−n−1
0 (z)

A′(z)2n−1

. (3.37)

In fact we are almost done: first we note that by solving the kth minimal-string string-equation
at lowest genus, one can find u′0(z) as

u′0(z) =

[ k−1
2

]∑
p=0

tk−2p(k) (k − 2p)uk−2p−1
0 (z)

−1

. (3.38)

We immediately recognize this factor as the denominator of u
(1,1)
0,MS-k(z) in (A.17). Further,

we recognize the denominator of the expression for A′′(z) above to be precisely32 u
(1,0)
0,MS-k(z) ×

u
(0,1)
0,MS-k(z) = u

(1,0)
0,MS-k(z)

2. Finally, upon relabelling the sum appearing in the numerator of (3.37)
as ` → k − 2p, one sees that this term precisely matches the double-sum in the numerator of
(A.17); the first of which is associated to the minimal string KdV times, and the second belonging

to the “multicritical factors” u
(1,1)
0,MC-k(z) given in (A.15). All of the above ingredients add up so

as to precisely produce (3.37) above, thus demonstrating the equality in (3.36).
Let us perform another check, albeit less analytic, for the results for the (2, 0) sector. In

particular, we now wish to verify formula (3.29) for ` = 2 against string equation results. Notice
that the starting genus for that equation is in fact of order g2

s . In other words, at order gs the
right-hand side of this equation should equal zero and, translating to free energies, this formula
actually tells us that the lowest contributions should cancel. Therefore, at order gs we find

Z(2|0)
n,k (gs)

Z(0|0)
n,k (gs)

= S(0,0)→(0,2) e
− 2
gs
An,k

(
F

(2,0)
0 (gs) +

1

2

(
F

(1,0)
0 (gs)

)2
)

= 0. (3.39)

To check the validity of this result directly from the string equation, we again first translate the
above to a statement for the specific heat as

u
(2,0)
0,MS-k(z) =

u(1,0)
0,MS-k(z)

A′(z)

2

. (3.40)

32Due to the backward-forward relations discussed in [77], these two sectors are in fact the same at lowest genus.
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This equality may be shown to hold for all k, directly from the (A.6) (1, 0) and (A.16) (2, 0)

lowest-genus coefficients. In fact, a factor of
(
u

(1,0)
0,MS-k(z)

)2
already appears implicitly in equation

(A.16) for the (2, 0) sector, and it is then straightforward to see that the remaining terms precisely
reproduce (A.13), the defining equation for A′(z) in terms of the perturbative coefficient u0(z).
Since this is an easier calculation than the one performed for the (1, 1) sector above, and as it is
not particularly illuminating, we omit the details. Instead, we proceed to verify (3.29)-(3.39) at
next-to-leading order in gs. In full generality this would require generic higher-order coefficients
in the (2, 0) and (1, 0) sectors which are not available as expressions for arbitrary k. Nonetheless,
we can of course make explicit checks at various fixed values of k. First evaluate (3.29) with
` = 2 at order g2

s ,

Z(2|0)
n,k (gs)

Z(0|0)
n,k (gs)

=
1

2π
e
− 2
gs
An,k

(
gs

(−1)n+k+1 cot nπ
2k−1

16 (2k − 1) sin2 nπ
2k−1

)2

. (3.41)

By using the “bridge” relation established in [73] we can link the transseries partition function
to our matrix model calculation. Rewriting quantities in terms of the free energy we find

Z(2|0)
n,k (gs)

Z(0|0)
n,k (gs)

' S(0,0)→(0,2) e
− 2
gs
An,k

(
F

(2,0)
1 (gs) + F

(1,0)
1 (gs)F

(1,0)
0 (gs)

)
+ · · · . (3.42)

To make the comparison with the string equations, all we have left to do is relate the free-energy
coefficients to those of the specific heat. Similarly to what was done in [50] for the lowest two
orders in gs, we find that these free energy sectors can be rewritten as

F
(2,0)
1 (gs) = − 1

8 (A′(z))2

u(2,0)
1,MS-k(z) +

∂zu
(2,0)
0,MS-k(z)

A′(z)
− 3

2

A′′(z)

(A′(z))2 u
(2,0)
0,MS-k(z)

 (3.43)

for the (2, 0) sector, and as

F
(1,0)
1 (gs) = − 1

2 (A′(z))2

u(1,0)
1,MS-k(z) + 2

∂zu
(1,0)
0,MS-k(z)

A′(z)
− 3

A′′(z)

(A′(z))2 u
(1,0)
0,MS-k(z)

 (3.44)

for the (1, 0) sector. As already mentioned, a check at arbitrary k requires closed-forms for

the coefficients u
(2,0)
1,MS-k(z) and u

(1,0)
1,MS-k(z), which would in turn need more knowledge than we

currently have concerning the coefficients of the Gel’fand–Dikii polynomials (see appendix A for
a more detailed explanation). However, we can of course still check this explicitly for several
values of k. We have done so for k = 2, 3, 4, 5 and we obtained precise agreements between the
above equations (3.41) and (3.42). Alongside the earlier arbitrary-k check on the order-gs (2, 0)
and (0, 2) sectors (the latter being given by the former via backward forward symmetry; see for
example [77]) and order-g−1

s (1, 1) sector, we now have very compelling evidence for the validity
of the BCFT and matrix-integral results fully matching against string-equation results.

Finally, let us check the above double-scaled matrix-model results against the string-equation
transseries for (p, q) = (2, 5) (discussed in appendix B). For the following comparison we will not
fix to the conformal background, so as to understand how the matrix model computation actually
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S(0,0)→(1,0) S(0,0)→(0,1) S(0,1)→(1,1) S(1,1)→(1,0)

− i√
π

(
2
5

)3/8 1√
π

(
2
5

)3/8 − i√
π

(
2
5

)3/8 − i√
π

(
5
2

)3/8 (
γE − log

(
−10 · 21/4 · 53/4

))
Table 1: List of a few Borel residues for the (2, 5) minimal string. Here we compute only Borel
residues associated to the saddle closest to the cut (see figure 10).

reproduces the functional dependence on the string-equation variable z. The (2, 5) spectral curve
away from the conformal backround reads [50]

y(2,5)(x) =
(
8x2 − 4u0(z)x+ 3u0(z)2 − 5

)√
x+ u0(z). (3.45)

Some preliminary checks on the canonical Borel residue were already conducted in [50] and we will
not repeat them herein, but still follow notation and computations therein. This Borel residue
result can be found in table 1. Let us start with the non-trivial (2|1) contribution. Plugging-in
the spectral-curve data into (3.25) yields

Z(2|1)(gs)

Z(0|0)(gs)
−Z

(1|0)(gs)

Z(0|0)(gs)

Z(1|1)(gs)

Z(0|0)(gs)
' e
− 1
gs
A1,3

√
gs

(
U2 + 5

)7/8 (
2γE + log

(
500
√

10(5−U)5U2

g2
s (U2+5)7/2

))
4 8
√

2 · 57/8 π3/2 (5− U)5/4
√
U

+· · · ,

(3.46)

where U =
√

5
u0

√
2− u2

0. Comparing with expression (B.10) then allows for the computation of a
non-trivial Borel residue. Namely, we find

S(1,1)→(1,0) = − i√
π

(
5

2

)3/8 (
γE − log

(
−10 · 21/4 · 53/4

))
(3.47)

This result has exactly the features that we would expect from previous studies: we find the γE

number in addition to a logarithmic contribution [77, 73]. Similarly we can treat the (1|1)(1|0)
contribution where (3.26) yields

e
−
A2,3
gs S(0,0,0,0)→(1,0,0,0) S(1,0,0,0)→(0,1,1,0) S(0,1,1,0)→(1,1,1,0) F

(1,1,1,0) ' e
− 1
gs
A2,3× (3.48)

× −i

2 · 21/8 · 57/8π3/2

(
U2 + 5

)7/8
U1/2 (5 + U)5/4

tanh−1

√
10

5 + U
− 1 + · · · .

We can again compare with the transseries structure of the (2, 5) minimal string. Plugging-in
F (1,1,1,0) from (B.11), we find perfect agreement for all z. Moreover, using the fact that the

Borel residues S(0,0,0,0)→(1,0,0,0) S(0,1,1,0)→(1,1,1,0) = − 1
π

(
2
5

)3/4
are known (to be the square of the

canonical Borel residue, as dictated by resurgence) we can predict one further (so far unknown)
Borel residue,

S(1,0,0,0)→(0,1,1,0) = − i

2
√
π

(
2

5

) 3
8

. (3.49)

We summarize our results for the Borel residues of the (2, 5) minimal string in tables 1 and 2.
A thorough large-order check of these results would be interesting, but because the transseries
study of (2, 5) is rather intricate we leave it for future work.
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S(1,0,0,0)→(0,0,1,0) S(1,0,0,0)→(0,1,1,0)

i − i
2
√
π

(
2
5

)3/8
Table 2: List of a few Borel residues for the (2, 5) minimal string. Here we now compute Borel
residues which appear when both saddles are populated.

3.4 The Case of Jackiw–Teitelboim Gravity

The (2, 2k − 1) minimal-string series has a well-defined k → +∞ limit which has seen great
interest in recent years: this is the double-scaled matrix model [88] describing quantum JT-
gravity [82–87]. At strict nonperturbative level, this limit was recently addressed in [50], and
the resurgent asymptotics of JT gravity studied in detail in [95]—at least on what concerns the
non-resonant part of the JT transseries. What we can now add, given our present results, is
what happens at nonperturbative resonant level. For that, we just apply our earlier machinery
to the JT-gravity double-scaled spectral curve [134, 88],

y(x) =
1

2π
sin
(
2π
√
x
)
. (3.50)

Note how running the topological recursion on this JT spectral curve is quite straightforward,
e.g., [88, 50, 95]. The same holds true for our nonperturbative resurgent formulae. The zeros
of this spectral curve are located at

√
x?n = ζ?n = n

2 , with n ∈ N+. Furthermore we find the (to
become useful below) expressions for the moment function M ′(x?n) = (−1)n 2

n2 and the instanton
action (see [95] for further details)

An = (−1)n+1 n

4π2
. (3.51)

The resonant nature of JT gravity has been established at the level of its string-equation
instanton-actions in [50]. We herein start by checking how resonance is further supported nu-
merically. For this we have performed a Borel–Padé approximation of the JT perturbative sector
(see, e.g., [67]) using its first 122 coefficients (and using data from [95]). The results are shown
in figure 11. A similar calculation can be performed for the one-instanton contribution, just with
much less numerical accuracy (we have used the whole 12 coefficients obtained via the nonpertur-
bative topological recursion in [95] for the one-instanton sector). The result is now visualized in
figure 12. It is clear from the symmetry of the Borel singularities, alongside the instanton-action
calculations in [50], how resonance is indeed a feature of JT-gravity.

With all this evidence we are equipped to spell out the nonperturbative contributions outlined
in subsection 3.1 for the case of JT gravity. Straightforward application of our formulae to saddle
x?n yields the results

Z(`|0)(gs)

Z(0|0)(gs)
' G2 (`+ 1)

(2π)`/2
e
− `
gs
An

(
gs

(−1)n

n3

) `2

2

+ · · · , (3.52)

Z(0|¯̀)(gs)

Z(0|0)(gs)
'
G2

(
¯̀+ 1

)
(2π)

¯̀/2
e

¯̀

gs
An

(
−gs

(−1)n

n3

) ¯̀2

2

+ · · · , (3.53)

as well as

Z(1|1)(gs)

Z(0|0)(gs)
' 1

gs

i (−1)n+1 n

8π3
+ 0 + gs

i

12πn3

{
4 + 2π2n2 + (−1)n+1

(
n2π2 + 10

)}
+ o(gs).

(3.54)

– 40 –



-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-1.0

-0.5

0.0

0.5

1.0

-0.05 0.00 0.05

-0.04

-0.02

0.00

0.02

0.04

Figure 11: Plot of poles from the Borel–Padé approximant to the perturbative-sector data (up
to gs-order 122 [95]). The poles are shown in blue, and the analytic locations of the instanton
actions in red. On the left-hand side we show a direct Borel–Padé approximation whereas on the
right we have enhanced it using a conformal transformation (also visible on the typical doubling
of the “branch-cuts”). This allows us to distinctively see the “branch-cuts” associated to higher
instanton singularities on the Borel plane. Symmetry of these singularities is evident.
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Figure 12: Borel–Padé approximant to the one-instanton sector data of JT gravity. Generating
nonperturbative data from the topological recursion is slow and it has only been computed up to
12th order [95]. As such, the Padé approximants do not produce a lot of poles. In spite of this,
both symmetric instanton contributions associated to resonance are clearly visible in the plot.

In addition we have the non-trivial (2|1) contribution,

Z(2|1)(gs)

Z(0|0)(gs)
− Z

(1|0)(gs)

Z(0|0)(gs)

Z(1|1)(gs)

Z(0|0)(gs)
' e
− 1
gs
An 1

4π

√
gs (−1)n+1

2πn3

{
2γE + log

(
n6

g2
s

)}
+ o(g3/2

s ).

(3.55)

Finally, taking two distinct saddles, x?n and x?m, with x?n further from the cut, we may also write
down the (1|1)(1|0) contribution as

Z(1|1)(1|0)(gs)

Z(0|0)(0|0)(gs)
− Z

(1|1)(0|0)(gs)

Z(0|0)(0|0)(gs)

Z(0|0)(1|0)(gs)

Z(0|0)(0|0)(gs)
' e
− 1
gs
An 1

2π

√
gs (−1)n+1

2πn3
log

(
m− n
m+ n

)
+ o(g3/2

s ).

(3.56)
Checks on the validity of the above formulae against BCFT or string equations are essentially

out of reach at the moment (but see for the JT string-equation discussions in [135, 50]). One
non-trivial check we can do, however, is to go back to the construction of JT-gravity as the
k → +∞ limit of the (2, 2k−1) minimal-string [88]. This limit received nonperturbative support
in [50], upon using the adequate rescalings of nonperturbative quantities as

y(x) =
(−1)k−1

2π
T2k−1

(
2π
√
x

2k − 1

)
k→+∞−−−−→ sin (2π

√
x)

2π
, (3.57)

– 41 –



S(0,0)→(1,0) S(0,0)→(0,1) S(0,1)→(1,1) S(1,1)→(1,0)

− i√
2π

1√
2π

− i√
2π

− i√
2π

γE
2

Table 3: List of a few Borel residues for JT gravity, for the saddle n = 1 and using the free
energy normalization given in (3.61)-(3.62). We can calculate the canonical forward Borel residue
(see as well [95]) but also its backward resonant sibling. Moreover we find the non-trivial Borel
residue S(1,1)→(1,0) which sits inside the resonant sum of the (2|1) contribution.

x?n =
(2k − 1)2

8π2

(
1− cos

2πn

2k − 1

)
k→+∞−−−−→ n2

4
, (3.58)

An,k = (−1)n+1 (2k − 1)2

16π3

4k − 2

(2k + 1)(2k − 3)
sin

2πn

2k − 1

k→+∞−−−−→ (−1)n+1n

4π2
, (3.59)

M ′(x?n) (x?n − a)5/2 =
4π(−1)n+1 cot πn

2k−1

(2k − 1)3 sin
(

π n
2k−1

)2

k→+∞−−−−→ (−1)n

32πn3
. (3.60)

Applying these rescalings and corresponding k → +∞ limits to our (2, 2k − 1) minimal-string
formulae from subsection 3.2—which themselves have already been triple-checked against BCFT
and string equation results—we have explicitly checked33 that they yield precise matches with
the above JT results. In this sense, at the very least our nonperturbative JT-gravity results are
fully consistent with the large k limit of the minimal string.

Finally let us fix a normalization for the JT-gravity transseries, and compute Borel residues
explicitly from our above “transseries reparametrization invariant” quantities [70], using the
“bridge” relations given in [73]. For the free energy, we choose to normalize sectors around the
saddle x?n as

F (1,0) =
√
gs

√
(−1)n+1

n3
+ o(g3/2

s ), F (0,1) =
√
gs

√
(−1)n+1

n3
+ o(g3/2

s ), (3.61)

F (2,1) =
√
gs

√
(−1)n+1

n3
α log

n6

g2
s

+ o(g3/2
s ), α = −1

4
. (3.62)

This immediately yields a (small) number of Borel residues which can be calculated for the
saddle-point closest to the cut, and we list them in table 3.

3.5 Towards the Two-Matrix Model?

Having focused on the one-matrix model up to this stage, and making contact with the (p, q) =
(2, 2k − 1) minimal string results of section 2, we may now ask if our formulae may be extended
to the full-fledged two-matrix model—hence if they may make contact with the complete (p, q)
BCFT formulae in section 2. Let us immediately warn the reader that this subsection does not
include a complete calculation, but rather a motivating set-up to build-upon in future work.

Two-Matrix Model: Begin with the two-matrix model [136–139, 58, 140], now with partition
function

ZN =
1

vol (U(N))

∫∫
dM1dM2 e

− 1
gs

Tr
{
V1(M1)+V2(M2)−M1M2

}
, (3.63)

33Notice that the check of the third gs-order of the (1|1) contribution needs some more terms, such as M ′′(x?n),
but even though the computation is long it is straightforward.
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where both matrices are hermitian N × N , and where the polynomial potentials have degrees
deg V ′1 = d1, deg V ′2 = d2. As for the one-matrix model, the large-N ’t Hooft limit is described
by a spectral curve, encoded in the algebraic (polynomial) equation [138, 140, 89]

E(x, y) = 0, with degx E = d1 + 1, degy E = d2 + 1, (3.64)

from where one wishes to obtain y ≡ Y (x), albeit this is now a bit more subtle. Consider a point
p ∈ Σ on the Riemann surface Σ described by (3.64) and the corresponding maps x = X (p) and
y = Y(p). More specifically, for fixed x this geometry describes a (d2 + 1)-sheeted covering of
the complex x-plane. Label these sheets34 by i = 0, . . . , d2, and let pi(x) be the points on each
of these which project down to x via X (pi) = x. Then, (3.64) is satisfied with this x and the
corresponding35

yi ≡ Yi(x) = Y(pi(x)). (3.66)

There is one (unique) special sheet, the physical 0-th sheet, where36 for x→ +∞

Y0(x) = V ′1(x)− N

x
+ o(1/x2). (3.67)

But moreover, we find branch-points whenever two of the sheets of Σ meet, i.e., whenever
Yn(x) = Ym(x) (or Xn(y) = Xm(y)) for n 6= m. We are interested in branch-points away
from the endpoints of the cuts, i.e., in the nonperturbative saddles.

Consider one such nonperturbative saddle, labeled by (xmn, ymn). As two sheets touch, this
is a double-point of the spectral curve, and we are (at least locally) in the framework of [73]—
i.e., these are two distinct points in the uniformization cover, and as such both must be taken
into account when computing nonperturbative contributions. This is in fact considered when
computing the corresponding instanton action as in [139], where one finds

Amn =

∮
Bmn

dx y =

∫ ∞
xmn

dxYn(x)−
∫ ∞
xnm

dxYm(x). (3.68)

Herein Bmn is the B-cycle through the two points, and recall that multiple sheets meet at ∞
[139]. This set-up is illustrated in figure 13.

It is now clear how the constructions in [73] should translate to the two-matrix model case.
In spite of now finding a multitude of sheets (rather than just two), the generic structure at
the nonperturbative saddle has not changed: in fact, therein, one still finds two distinct sheets
coming together. In addition, swapping sheets effectively reverses the integration direction in
(3.68) leading to an overall minus sign, and eventually to the subsequent transseries resonant
structures as computed in the one-matrix model case [73]. The difficulty now, of course, is making
this explicit for all possible nonperturbative saddles, which we leave for future work.

As a warm-up calculation, let us herein focus on the one-instanton contribution and its
resonant sibling. The two-matrix model one-instanton contribution has been investigated in

34Notice that the labeling of sheets that we are using for the two-matrix model spectral curve differs slightly
from the one used in section 2. Nevertheless they are consistent and related (see formula (2.32)-(2.34)).

35Equivalently, for fixed y, (3.64) describes a (d1 + 1)-sheeted covering of the complex y-plane. Label these
sheets by j = 0, . . . , d1, and let p̃j(y) be the points on each of these which project down to y via Y(p̃j) = y. Then,
(3.64) is satisfied with this y and the corresponding

xj ≡ Xj(y) = X (p̃j(y)). (3.65)

36Respectively, where X0(y) = V ′2 (y)− N
y

+ o(1/y2) for y → +∞.
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Figure 13: Spectral curve of the two-matrix model with d1 = 2, d2 = 1. On the left we plot
the spectral curve via uniformization on the sphere, where the two points are identified with
each other, i.e., x12 = X (p). Their connecting B-cycles are plotted in analogy with [73], and the
different sheets are also illustrated (either by color or by name). Swapping Y (x) physical (blue)
and non-physical (orange) sheets as in (3.68) effectively corresponds to reversing the integration
direction of the cycle (recall that the integration direction which is consistent with the matrix
model is opposed to the BCFT one). More complicated configurations will have a multitude
of sheets, albeit nonperturbative saddles always lie at double-points and (at least locally) the
discussion in [73] applies. These present plots build on figures first appearing in [139].

detail in [58]. Moreover the full double-scaled minimal-string result was computed therein and
it is consistent with the computations in this paper (e.g., compare formulae (27) and (35) in
section 4 of [58] to our formula (2.38)). Indeed the instanton action computed in [58] is exactly
of the type (3.68). Therefore we expect resonance to be a clear feature of the two-matrix model.
Furthermore let us briefly investigate the chemical potential associated to the one-instanton. It
reads [58, 60]

Z(1|0)

Z(0|0)
≡ Zmn
Z

=

√
gs

2π

1

(∂X (pm)∂Y(pn)− ∂X (pn)∂Y(pm))1/2

1

pm − pn
e
−Amn

gs + · · · , (3.69)

where in the first identification we are making contact with the notation in section 2—and
hence label nonperturbative contributions by the sheets that their B-cycles connect. Let us now
understand how the chemical potential changes when comparing an instanton to a negative-
instanton. This amounts to swapping n with m in the above (3.69). This produces a factor
of i which is exactly consistent with our results in subsection 2.2. Furthermore, it agrees with
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the general expectation in resonant problems [70, 50, 73]. We leave a careful study of the full
two-matrix model nonperturbative contributions for future work.

(p, q) Minimal String Theory: The double-scaled version of the previous discussion is of
course simpler, and it further matches to the (p, q) BCFT minimal string discussion in section 2,
as well as reduces to the (2, 2k−1) one-matrix model minimal-string discussion of subsection 3.2.
Recall how the relevant Riemann surface Σp,q is now genus-zero with 1

2 (p− 1) (q − 1) pinched
A-cycles, and is given by (3.3). These (pinched) singularities sit at [49]

(xmn, ymn) =

(
(−1)m cos

nπp

q
, (−1)n cos

mπq

p

)
, ζ±mn = cosπ

(
m

p
± n

q

)
, (3.70)

with 1 ≤ m ≤ p− 1, 1 ≤ n ≤ q − 1, qm− pn > 0, and where ζ is the uniformization parameter.
The instanton contributions are given by integrating the spectral curve over B-cycles across these
singularities [49]

Amn =

∮
Bmn

dx y. (3.71)

As for the two-matrix model, swapping sheets at the pinched double-points will reverse integration
directions and produce the minus-sign which gives rise to the resonant contributions. This is
exactly our result in section 2—switching sheets will reverse the integration direction of the Bmn
cycle as underlined in subsection 2.2 (and recall that the matrix-model integration-direction is
reversed in comparison to BCFT as explained earlier).

4 Towards Topological and Critical String Theories

Having understood how negative-tension D-branes are an unavoidable part of minimal string
theory—in fact being required by resurgence—the next question is how ubiquitous may they
be across generic string theoretic backgrounds. In this section we begin the study of more
intricate models, in topological and critical string theory. The results we report upon are not as
exhaustive as in the minimal string example (due to the natural computational intricacies) but
we nonetheless believe they amount to very clear and supporting evidence. Further work along
these directions will be reported in the near future. On the topological string theory side, we
focus upon one of the simplest toric Calabi–Yau geometries, the local curve [61]. This model may
be solved with matrix-model methods and it hence builds upon [73] and our earlier section 3.
On the string theory side, we focus on D-branes in AdS, in particular the case of AdS3 where
BCFT methods come of help via the H+

3 –Liouville correspondence [91–93] mapping the present
computation to the Liouville analysis of section 2. In particular, we address the analogous to the
Liouville ZZ-calculations now for the case of discrete AdS2 D-branes inside AdS3 [18].

4.1 On Topological Strings on Toric Calabi–Yau Geometries

Let us begin with topological string theory. It is a famous result that B-model topological strings
on certain local Calabi–Yau backgrounds (the resolved p = 2 local curve, more below) are equally
described by hermitian matrix models [141]. This is to say that they are described at resurgent,
nonperturbative level by the results in [73] and section 3 herein. It is a fascinating story that
this idea applies to more general toric Calabi–Yau geometries, in particular to toric varieties
with enumerative geometry content—where making use of the topological recursion [89] on the
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mirror curve37 of the toric variety remarkably yields38 the complete B-model topological-string
perturbative free-energy expansion, anywhere in moduli space [61, 90] (in fact yielding both open-
and closed-string B-model amplitudes). This further stands as an alternative computational
procedure to the holomorphic anomaly equations [142], free from any such ambiguities. Now,
one clear feature of the results in [73] alongside our matrix-model results in section 3 is that they
only depend upon large N spectral-curve data. As such, they may also be (adequately) applied
to a mirror curve and hence describe the resonant and resurgent nonperturbative content of these
backgrounds [62]. The one caveat is that our results only apply to one-cut models. Effectively,
this reduces our range of topological string examples to local curves.

The local curve Xp is a (family of) non-compact toric Calabi–Yau threefold described by the
total space of a complex fiber bundle over a sphere (a direct sum of two line bundles; see, e.g.,
[131] for a review)

Xp = O(p− 2)⊕ O(−p)→ P1. (4.1)

It is labeled by a single integer p ∈ Z, but as unchanged by −p ↔ p − 2 one may restrict to
p ∈ N. When p = 1 this is the resolved conifold geometry [143, 144]. When p = 2 we obtain
the aforementioned Dijkgraaf–Vafa geometries O(0)⊕ O(−2)→ P1 related to hermitian matrix
models [141]. Herein we will explicitly use the non-trivial example of p = 3. The free energies
of A-model topological strings on Xp were set-up in [145], and—albeit mirror symmetry in these
geometries is subtle—a B-model-like computation was also set-up in this reference. Topological
string amplitudes on this background have familiar (phase transition) singularities, but which
are now in the c = 0 critical class [145] (where its associated double-scaled Painlevé I equation
was addressed in our present context in [73]) rather than the usual conifold c = 1 class [143].

The B-model-like computation of [145] was revisited in [62, 121] and we will use the data
computed therein (and refer the reader to those references for further details). This computation
first yields the topological-string genus-g free-energies on Xp as Fg ≡ Fg(ξ), where ξ is a mirror-
like coordinate relating to the Kähler parameter t (the size of the P1) via the mirror map39

e−t = ξ (1− ξ)p(p−2) . (4.2)

As already mentioned, one may also compute free energies for toric geometries using the topo-
logical recursion [89] on the appropriate curve—in this case on the mirror curve [61, 90]. For the
example we are interested in, it turns out that the curve will still be of the form (3.2) albeit now
with non-polynomial moment function. More specifically, for the local curve one finds [61, 90]
(similar-looking spectral curves also hold for other toric mirrors)

y(x) =
2

x

(
tanh−1

(√
(x− a) (x− b)
x− 1

2 (a+ b)

)
− p tanh−1

(√
(x− a) (x− b)
x+
√
ab

))
, (4.3)

in which parametrization we can indeed apply the usual recursion [89]. Herein, the endpoints of
the single cut C = [a, b] are located at

a =

(
1−
√
ξ
)2

(1− ξ)p
, b =

(
1 +
√
ξ
)2

(1− ξ)p
. (4.4)

37Recall how the mirror geometry to a toric Calabi–Yau threefold is essentially captured by a Riemann surface.
38There is one subtlety: this is not a verbatim application of the topological recursion, as the mirror curve lives

in C∗ × C∗ rather than C× C; see [90] for details on the required meromorphic-differential modification.
39A word on conventions: the mirror-like coordinate w in [145, 121] relates to ξ in [61, 62] as w = 1− ξ.
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The nonperturbative study of topological strings on this background was initiated in [61] and
then continued in [62, 121]. Nonperturbative saddles sit at the zeroes of the moment function,
which for the explicit p = 3 example yields

x? =
4ab

(
√
a−
√
b)2

, p = 3. (4.5)

This leads to its corresponding instanton action, albeit the expression is now very lengthy [61].
For completeness, first introduce the functions

f1(x) =
√

(x− a) (x− b) + x− 1

2
(a+ b) , (4.6)

f2(x) =
√

(x− a) (x− b) + x+
√
ab, (4.7)

which are then used in the main expression
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4
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√
b)2

)
−

−2 Li2

(
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− 2pLi2
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2
√
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)
+ 2pLi2

(
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√
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√
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−
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log f1(x) + log
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2f1(x)

(
√
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√
b)2

)
− 2 log
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1 +

2f1(x)

(
√
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log f1(x)−

−p
{

log f2(x)− log

(
1− 2f2(x)

(
√
a+
√
b)2

)
+ 2 log

(
1− f2(x)

2
√
ab

)}
log f2(x). (4.8)

The instanton action finally follows from the usual “difference of holomorphic effective potentials”
as

A(ξ) = F (x?)− F (a). (4.9)

For the explicit example of p = 3, the instanton-action alongside one- and two-loop coeffi-
cients around the one-instanton sector were tested against large-order behavior in [62]. Let us
now briefly expand on these. Such tests are carried out in the B-model but use the computa-
tion of the free-energy coefficients which is obtained from A-model data following [145, 61, 121].
This A-model computation is based on the knowledge of high-degree Gromov–Witten invariants
and is therefore limited in its computational capacity. Herein we have computed the first 18
perturbative free-energy coefficients. The results of the corresponding Borel–Padé analysis are
visualized in figure 14 and they perfectly support the resonance hypothesis for the local curve.

On top of these tests, we can now directly use the matrix model results of [73], as well as our
section 3, in order to compute several transseries sectors for the free energy of the topological
string on the local curve Xp (we shall occasionally specialize to the case p = 3, where we can
evaluate the saddle x? explicitly in a simple form). As usual we begin with the (`|0) sector.
Curiously, even though the moment-function has a complicated functional form, its derivative
evaluated on the saddle x? simplifies considerably as

M ′(x?) =
(p− 2)x? − p

√
ab

(x?)2 (a− x?) (x? − b)
. (4.10)
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Figure 14: Plot of poles from the Borel–Padé approximant to the perturbative-sector data of
the local curve with p = 3 (using data up to gs-order 18 [145, 61, 62, 121]). The upper plot is for
ξ = 0.24 while the lower one was plotted at ξ = 0.15. The data points are shown in blue while
the theoretical prediction for the resonant instanton actions is visualized in red. The inherent
symmetry of Borel singularities in the plots fully supports our hypothesis of resonance.

Then, inserting the explicit expression for the (`|0) sector given in [73] (whose double-scaled
version is given in (3.22)) we find40

Z(`|0)
Xp

(ξ, gs)

Z(0|0)
Xp

(ξ, gs)
' G2(`+ 1)

(2π)`/2
e
− `
gs
A(ξ)

 gs (x?)2 (a− b)2

16 (x? − a)3/2 (x? − b)3/2
{
p
√
ab− (p− 2)x?

}
 `2

2

+ · · · .

(4.11)
Since some of our explorations are done for the explicit case of p = 3, we specialize the above
expression to this value and evaluate explicitly on the saddle (4.5) to find
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√
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√
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2

+

+ · · · .

We now move on to the case (0|¯̀). As is by now expected, this case only differs by the sign flip
of the action, yielding

Z(0|¯̀)
Xp

(ξ, gs)

Z(0|0)
Xp

(ξ, gs)
' G2(¯̀+ 1)

(2π)
¯̀/2

e
+

¯̀

gs
A(ξ)

− gs (x?)2 (a− b)2

16 (x? − a)3/2 (x? − b)3/2
{
p
√
ab− (p− 2)x?

}


¯̀2

2

+ · · · .

(4.13)

40The sign in front of the instanton-action in the exponent is consistent with the conventions in [61]. Furthermore,
as we shall shortly see, it is also consistent with the sign-convention used in our minimal string actions (3.27).
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Specializing once more to p = 3 we find

Z(0|¯̀)
X3

(ξ, gs)

Z(0|0)
X3

(ξ, gs)
' G2(¯̀+ 1)

(2π)
¯̀/2

e
+

¯̀

gs
A(ξ)× (4.14)

×

− gs a
2b2 (a− b)2

(√
a−
√
b
)4

(
ab

(
4a−

(√
a−
√
b
)2
)(

4b−
(√

a−
√
b
)2
))3/2(

3
√
ab
(√

a−
√
b
)2
− 4ab

)


¯̀2

2

+

+ · · · .

The interesting non-trivial sectors are hidden in the “bulk” of the transseries. With a little bit
more of work, we can compute the local curve (1|1) transseries sector, up to and including order
gs terms. This expression is however a bit messier, so below we only write the generic formula:

Z(1|1)
Xp

(ξ, gs)

Z(0|0)
Xp

(ξ, gs)
=

i

2πgs
A(ξ)− (4.15)

− igs

96π (x? − a)3/2 (x? − b)3/2
(
p
√
ab− (p− 2)x?

)3

{
ab p2

{
2 (x?)2 (a2 + b2

)
− 4a2b2 + 7ab x? (a+ b)

}
+

+ (p− 2)2 (x?)4
{

2
(
a2 + b2

)
+ 7x? (a+ b)− 4 (x?)2

}
+ 2p (p− 2)x?

√
ab×

×
{

5a2b2 − 9 (x?)3 (a+ b)− (x?)2
(
a− 10

√
ab+ b

)(
a+ 3

√
ab+ b

)
− 9ab x? (a+ b) + 5 (x?)4

}
+

+ 4ab (x?)2
{(

24 (p− 1)− 7p2
) (
ab+ (x?)2

)
− 20ab (p− 1) + 7x? (a+ b)

}}
−

−
igs

(
(p− 2)

√
ab− px?

)
48π (x? − a)3/2 (x? − b)3/2

(
(p− 1)2

(√
a−
√
b
)2
−
(√

a+
√
b
)2
)2 ×

×
{(

(p− 1)2
(√

a−
√
b
)2
−
(√

a+
√
b
)2
)((

3a+ 2
√
ab+ 3b

)(
(x?)2 + ab− 2

9
x?
(

6a−
√
ab+ 6b

))
+

+
32

9
ab x?

)
+ 4
√
ab
(√

a+
√
b
)2

(a− x?) (b− x?)
}

+ · · · .

Finally, the (non-trivial part of the) (2|1) sector is given by

Z(2|1)
Xp

(ξ, gs)

Z(0|0)
Xp

(ξ, gs)
−
Z(1|0)
Xp

(ξ, gs)

Z(0|0)
Xp

(ξ, gs)

Z(1|1)
Xp

(ξ, gs)

Z(0|0)
Xp

(ξ, gs)
' e
−A(ξ)

gs

ix? (a− b)
√
gs

√
(a− x?) (b− x?)

8π3/2 (a− x?) (x? − b)
√

2p
√
ab− 2 (p− 2)x?

×

×

2γE + log

256 (a− x?)3 (b− x?)3
(
p
√
ab− (p− 2)x?

)2

g2
s (x?)4 (a− b)4


+ · · · . (4.16)
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Specializing to the case p = 3 we find

Z(2|1)
X3

(ξ, gs)

Z(0|0)
X3

(ξ, gs)
−
Z(1|0)
X3

(ξ, gs)

Z(0|0)
X3

(ξ, gs)

Z(1|1)
X3

(ξ, gs)

Z(0|0)
X3

(ξ, gs)
' e
−A(ξ)

gs × (4.17)

×
i
(√

a−
√
b
)3
√
gs

(
a− 2

√
ab+ b

)√
ab(4a

√
ab−3a2+14ab−3b2+4b

√
ab)

(
√
a−
√
b)

4

2π3/2
√

6a
√
ab− 20ab+ 6b

√
ab
(√

a− 3
√
b
)(

3
√
a−
√
b
)(√

a+
√
b
)×

×

2γE + log


(
a+ 2

√
ab+ b

)(
10
√
ab− 3a− 3b

)3 (
3a
√
ab− 10ab+ 3b

√
ab
)2

g2
s ab

(√
a−
√
b
)12


+ · · · .

One a priori clue that the results we just described were somehow bound to work, at least
on what concerns the existence of negative-tension toric D-branes for the local curve, is that in
the adequate double-scaling limit these D-branes become c = 0 FZZT-branes [61]. On top of
this, either matrix model [62] or local curve [61, 62] instanton actions are given by differences of
holomorphic effective potentials, which is very much the same spirit in which ZZ-brane instantons
are written as differences of FZZT branes (2.15) [8, 80] (and this was further discussed from the
point-of-view of toric D-branes in [62]). It hence should come as no surprise that our earlier
Liouville results in section 2 have uplifted to topological strings on a toric Calabi–Yau.

Let us make this explicit in the following (also serving as a double-check on our formulae
above). The c = 0 critical point is of course fully described by the Painlevé I two-parameter
resurgent transseries which has been greatly studied in the literature [68, 70, 72, 77, 73]. The
aforementioned double-scaling of the local curve has been addressed at the level of the per-
turbative free energies and instanton action in [145, 61] and we shall now do this at full (two
parameter) transseries level. Our first observation is the (relative) simplicity of the above local-
curve transseries-sectors. For instance, note how the inverse hyperbolic tangent function does not
seem to play any relevant role at transseries level, whereas it is very much present in the moment
function in (4.3). This will somehow conspire so as to make the upcomning double-scaling limit
quite straightforward even at full nonperturbative level. In the conventions41 of [61, 70], the
Painlevé I equation is given by

u2(z)− 1

6
u′′(z) = z. (4.18)

Let us now establish a strong consistency test on the local-curve results via double-scaling to the
Painlevé I transseries data (for example, see section 5 of [70]). Following directly the setup in
[145, 61], we write the local curve modulus ξ in terms of the Painlevé I variable as

ξ = ξcrit −

(
4 (1− ξcrit)

3 g2
s z

5/2

(p− 1)8

) 1
5

, (4.19)

with ξcrit = 1
(p−1)2 . As explained in [61], the double-scaling limit of the local-curve at criticality

is obtained for p > 2, by taking gs → 0 and ξ → ξcrit while keeping z fixed. Choosing p = 3, let
us first make this calculation very explicit for our results of the (`|0) sectors in (4.12). Writing

41Up to differences in conventions, this is almost the result of setting k = 2 in our results of section 3; but see
[77] for full details on the different conventions at play.
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the endpoints of the cut a, b in terms of ξ, and substituting in the definition (4.19), we find to
lowest order in gs (note ξcrit = 1

4 here)

Z(`|0)
X3

(gs)

Z(0|0)
X3

(gs)
' G2(`+ 1)

(2π)`/2

(
− 1

96
√

3z5/4

) `2

2

e−`
8
√

3
5
z

5
4 + · · · . (4.20)

This formula precisely matches what we would expect for the Painlevé I multi-instantons. In
fact, it is enough to show this matching for ` = 1 where the above becomes

Z(1|0)
X3

(gs)

Z(0|0)
X3

(gs)
' i

8 · 3
3
4
√
π

e−
8
√

3
5
z

5
4 + · · · . (4.21)

Using the canonical Stokes coefficient straight from [70, 77], S(0,0)→(1,0) = − i 4√3
2
√
π

alongside the

first non-zero free-energy coefficient in the (1, 0) sector F
(1,0)
0 = − 1

12 , we find that their product
precisely reproduces the above double-scaling limit. Moving on, we compute the double-scaling
limit of the (0|¯̀) sectors (again for p = 3). Without surprise, these are given by

Z(0|¯̀)
X3

(gs)

Z(0|0)
X3

(gs)
' G2(¯̀+ 1)

(2π)
¯̀/2

(
1

96
√

3z5/4

) ¯̀2

2

e
¯̀8
√

3
5
z

5
4 + · · · , (4.22)

where again we find immediate exact matching by comparison against the data in [70]. A
more non-trivial check is to consider the double-scaling at p = 3 of formula (4.15) for the (1|1)
transseries sector, at next-to-leading order in the genus42. In spite of the lengthy formula, it
turns out we immediately find the rather simple

Z(1|1)
X3

(gs)

Z(0|0)
X3

(gs)
' 4i
√

3

5π
z

5
4 +

17i

384
√

3π

1

z5/4
+ · · · , (4.23)

again in perfect agreement with the expected Painlevé I results. Finally, we compute the double-
scaled results for the (2|1) sector at p = 3. This is

Z(2|1)
X3

(gs)

Z(0|0)
X3

(gs)
−
Z(1|0)
X3

(gs)

Z(0|0)
X3

(gs)

Z(1|1)
X3

(gs)

Z(0|0)
X3

(gs)
' −4γE + 5 log z + 20 log 2 + log 729

32 · 33/4π3/2 z5/8
e−

8
√

3
5
z

5
4 + · · · , (4.24)

once again in precise agreement with the expected results one obtains by substituting Painlevé I
data from [70] into the double-scaled matrix models in [73]. All these checks amount to rather
strong motivation on the correctness of all our above topological-string expressions and their
nonperturbative materialization for the local curve.

Having obtained the nonperturbative free energy for topological string theory on the local
curve, we may ask about its enumerative-geometry content. On this regard, a relation between
Stokes data and nonperturbative enumerative-invariants of toric Calabi–Yau geometries via topo-
logical strings was recently established in [123]—and which we very briefly follow next. Consider
the A-model genus-g free energies written in the flat coordinate T , as Fg ≡ Fg(T ), and where T

42The calculation at lowest genus is effectively just the instanton-action, which to some extent had already been
checked to double-scale correctly in [145, 61].
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is now chosen43 so that the Painlevé I c = 0 critical point is located at T = 0. Mapping the free
energies back from the B-model via (4.2), this then simply amounts to a shift of the standard
Kähler parameter t by [145]

tc = log
(

(p (p− 2))p(2−p) (p− 1)2(p−1)2
)
. (4.25)

In this frame, and much like in [123], the perturbative local-curve free-energies split as

Fg(T ) = F sing
g (T ) + F reg

g (T ). (4.26)

Herein, the singular piece—which was the familiar conifold contribution [143] in [123]—is now
the “A-model version of Painlevé I”. It is an expansion in both integer and half-integer powers
of T = t − tc, and where the usual gap-condition is of course not present: instead all negative
(half-integer) powers are present up to −5

2 (g − 1). The general structure is

F sing
g (T ) =

5(g−1)∑
j=0

F sing
g,j (p)

T j/2
. (4.27)

For example, the leading singularity at g = 2 is

F sing
g=2 (T ) = − 7i

5760
√

2

(p (p− 2))
5
2
p(p−2)+ 1

2

(p− 1)5p(p−2)+4

1

T 5/2
+ · · · , (4.28)

and the full expansion at g = 2 and p = 3 is

F sing
g=2 (T ) =

5103 i

335544320
√

2T 5/2
− 675

8388608T 2
− 871 i

10485760
√

2T 3/2
− 3

4096T
−

− 890827 i

477757440
√

2
√
T
− 76849

201553920
. (4.29)

As for the regular piece, it features the same inclusion of half-integer powers of T ; and for example
with g = 2 and p = 3 it reads

F reg
g=2(T ) = − 65861 i

√
T

725594112
√

2
− 249923T

573956280
− 153426341 iT 3/2

66119763456
√

2
+

256655242T 2

52301766015
+ · · · . (4.30)

The interest of [123] is in Stokes data which is purely associated to the regular parts of these
free energies (e.g., herein the singular-part Stokes data are the Painlevé I Stokes data which were
already obtained in [77]). These Stokes data (eventually relating to nonperturbative enumerative
invariants of the local curve) should then follow by applying the same procedure as above to our
diverse new transseries sectors. In this exact same fashion, we then find, for instance,

F
(`|0)
X3

(T ) ' G2(`+ 1)

(2π)`/2
e
− `
gs

(
6Li2(− 2

3)+ 7π2

2
−15iπ log 2+log 27 log 81

32
+···

)(
− gs

48 23/4 4
√

3T 5/4

) `2

2

+ · · · ,

(4.31)

43Instead of the usual large-radius expansion yielding perturbative Gromov–Witten invariants as in [145].
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F
(0|`)
X3

(T ) ' G2(`+ 1)

(2π)`/2
e

+ `
gs

(
6Li2(− 2

3)+ 7π2

2
−15iπ log 2+log 27 log 81

32
+···

)(
gs

48 23/4 4
√

3T 5/4

) `2

2

+ · · · ,

(4.32)

F
(1|1)
X3

(T ) ' i

2πgs

(
6Li2

(
−2

3

)
+

7π2

2
− 15iπ log 2 + log 27 log

81

32

)
+

17igs

192 23/4 4
√

3π T 5/4
+ · · · .

(4.33)

It would be very interesting to address the complete resurgence of the local curve, and the relation
of its Stokes data to enumerative geometry in future work.

One question we will have to address in future work is whether the above results for the
local curve will uphold when considering more complicated toric geometries—to start-off with,
the canonical topological-string examples of local P2 and local P1 × P1 (with a single and with
two Kähler parameters, respectively). As for the local curve described above, these backgrounds
also lead to spectral geometries of the type (3.2), with non-polynomial moment functions, but
geometries which are now intrinsically two-cut configurations [61, 90] (i.e., the mirror curve has
genus one). Borel singularities of the perturbative series for local P2 have actually been much
addressed in the literature, with numerical plots to be found in, e.g., [118, 122–125]. All these
instances clearly illustrate the hallmark of resonance with the existence of symmetrically reflected
Borel singularities. There is less evidence for local P1 × P1, but for the interesting analysis in
[110] pertaining to its large N dual, ABJM gauge theory on S3 [105]—more precisely, the Chern–
Simons matrix model on the lens space S3/Z2 [107, 108]. It was shown in [109, 110] via large-order
analysis of the Borel singularities of the ABJM perturbative series that they always appear in
symmetric pairs. This was explicitly shown to be true at the relevant different points in moduli
space (orbifold, conifold, large-radius), with instanton actions again always arising in symmetric
pairs [110]. This is another distinct appearance of our by-now familiar hallmark of resonance.
All evidence considered certainly begs for an extensive analysis of these models in future work.

Recall that the ABJM partition function on S3 computes the type IIA string theory partition
function on AdS4×CP3 [105]. Rather interestingly, Chern–Simons matrix-model instantons were
identified in [110] as dual type IIA D2-branes wrapping an RP3 inside the CP3. In light of this,
one is immediately led to ask if our resurgence negative-tension D-brane results may be in any
way directly addressed for critical strings in an AdS background. This is what we shall turn to
next, in the context of D-branes in AdS3.

4.2 On Critical Strings and Negative-Tension D-Branes in AdS

One string-theoretic example of a curved background where D-branes have been much studied
is that of D-branes in AdS3 [13]. Perhaps the most studied D-branes in this background have
been AdS2 D-branes, but there are other types [14–19]. Attempting a direct BCFT calculation
in AdS3 would of course take us far from the main line of this paper, but there is a remarkable
correspondence between euclidean AdS3 (usually denoted by H+

3 ) and Liouville (B)CFT’s [91–93]
which allows for direct contact with our analysis in section 2. This is usually known as the H+

3 –
Liouville correspondence. In particular, we are interested in the results of [18], mapping D-branes
in AdS3 to D-branes in Liouville theory. Roughly speaking, therein FZZT branes correspond to
AdS2 D-branes and ZZ branes correspond to “discrete” AdS2 D-branes—which then allows us
to translate the AdS discussion back to our results in section 2 and hence, focusing on ZZ-like or
“discrete” AdS2 D-branes, infer on the existence of negative-tension D-branes in AdS3.
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Consider (bosonic) string theory on (euclidean) AdS3. The metric is taken in Poincaré-type
coordinates

g = R2
(

dφ⊗ dφ+ e2φ dγ ⊗ dγ̄
)

(4.34)

(with φ ∈ R and γ, γ̄ ∈ C, and spacetime boundary the complex plane parametrized by (γ, γ̄) at
φ→ +∞), and the NS B-field is

B = R2 e2φ dγ ∧ dγ̄. (4.35)

The corresponding closed-string world-sheet CFT is [146]

SAdS3 [φ, β, γ] =
1

4π

∫
d2σ

(
∂φ∂̄φ− γ∂̄β − γ̄∂β̄ − b2 ββ̄ e2bφ

)
, (4.36)

alongside some compact manifold CFT44 and bc reparametrization ghosts. Herein, φ is a free
boson with background charge and the bosonic βγ-system alone has central charge 2. At level
k + 2 (relating to the AdS3 radius as R2 = k + 2) the AdS3 CFT central charge is

cAdS3 = 3 +
6

k
. (4.37)

Moving towards D-branes, in particular euclidean AdS2 D-branes (see below), one finds the extra
boundary term in the AdS3 action [147]

SAdS3,B[φ, β] = µ

∮
β ebφ. (4.38)

The AdS2 D-branes we are interested in are most evident in the “AdS coordinates” of [14],
with metric description

g = R2
(
dψ ⊗ dψ + cosh2 ψ

(
dω ⊗ dω − cosh2 ω dτ ⊗ dτ

))
. (4.39)

AdS2 D-branes (defined via the twined conjugacy classes of SL(2,R) [14]) are the AdS2 leaves of
the constant ψ = ψ foliation of AdS3, i.e., they slice AdS3 in terms of fixed radius AdS2 leaves
at fixed ψ. They are hence labeled by a single real parameter ψ ∈ R, and have varying radius
ρAdS2 = RAdS3 coshψ. Denote them by

|ψ〉AdS2
. (4.40)

As we discuss next, these D-branes are essentially the Liouville FZZT D-branes [18, 92, 147].
Remarkably [91, 93] arbitrary correlation functions in the H+

3 CFT may be simply written
in terms of Liouville CFT correlation functions, on surfaces of arbitrary genus. This correspon-
dence is extendable to correlation functions on the disk with AdS2 D-brane boundary conditions,
now rewritten in terms of Liouville BCFT correlation functions with FZZT D-brane boundary
conditions [92]. The bulk H+

3 –Liouville correspondence identifies the H+
3 level k + 2 with the

Liouville coupling b as

b2 =
1

k
, (4.41)

44For example, in this bosonic-string setting we could consider the compact manifold to be a WZW three-sphere
alongside an adequate torus; say: H+

3,k+2 ⊕ SU(2)k−2 ⊕ 20 free bosons⊕ bc with vanishing total central charge.
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and, at D-brane level [18, 92], it identifies the AdS2 D-brane parameter ψ with (two opposite45

values of) the Liouville boundary cosmological constant µB as46

µB = i

√
µL

sinπb2
sinhψ. (4.42)

This yields the relation between FZZT and AdS2 D-branes as47

|ψ〉AdS2
7→
∣∣∣∣ζ = cosh

1

p

(
ψ+ i

π

2

)〉
FZZT

. (4.43)

Now, as we already reviewed in (2.15), Liouville ZZ-branes may be constructed as differences
of FZZT-branes [8, 80]. Having a map (4.43) between FZZT and AdS2 D-branes, naturally led
[18] to construct discrete ZZ-like AdS2 D-branes from differences of standard (4.40) AdS2 D-
branes—building on the H+

3 –Liouville correspondence and in complete analogy with ZZ-branes
in (2.15). These discrete D-instantons are defined and denoted by48

|m,n〉AdS2
=

∣∣∣∣iπ(m− b2n− 1

2

)〉
AdS2

−
∣∣∣∣iπ(m+ b2n− 1

2

)〉
AdS2

, (4.44)

with n,m ∈ N [18]. Note that this discrete set of D-branes lives in the analytic continuation
of AdS3 according to (4.39). It is now immediate to further consider their negative-tension
counterparts in full analogy with what was earlier done for Liouville D-branes in section 2.
First recall from section 2 how resonance arises in minimal string theory as a consequence of
the switching of sheets in the FZZT moduli space, which, at the level of ZZ-branes, amounts
to exchanging n with −n as in formulae (2.33)-(2.34). In this spirit, we are led to conjecture
negative-tension discrete AdS2 D-branes as

|m,n〉AdS2
≡ |m,−n〉AdS2

=

∣∣∣∣iπ(m+ b2n− 1

2

)〉
AdS2

−
∣∣∣∣iπ(m− b2n− 1

2

)〉
AdS2

. (4.45)

A complete, explicit treatment of such nonperturbtive contributions is quite complicated and
outside the scope of this paper, but we can nevertheless perform some calculations in this direction
which give clear support to our proposal and the resonant resurgence hypothesis. We start with
the empty disk which was computed in [18] for standard D-branes, and which is then immediate
to extend to negative-branes as

〈0|m,n〉AdS2
= +21/4 (−1)m+1

√
8πbΓ (1− b2) Γ (1 + b2) sinnπb2, (4.46)

45The reader should not be mislead to wonder if this “opposite” has anything to do with negative-tension D-
branes in Liouville theory—it does not. Recall from section 2 that standard and negative D-branes share the same
value of µB, as x in (2.7) is the same for both. The “opposite” simply adds a ± in front of (4.42), but because
this is irrelevant for our argument we choose to simply work with the positive sign everywhere below.

46A word on conventions: in section 2 we followed the minimal string conventions of [49, 81] for the Liouville
bulk/boundary cosmological constants. Herein, to follow standard notation in the H+

3 –Liouville correspondence,
it is convenient to undo such conventions and revert back to the original Liouville bulk/boundary cosmological
constants present in (2.1)-(2.5). Effectively this gives rise to the term sinπb2 in the following equation.

47Reverting Liouville bulk/boundary cosmological constant conventions as mentioned in the previous footnote
changes (2.7) to µB√

µ

√
sinπb2 = Tp(ζ), in which case the ensuing equation immediately follows.

48At this stage one might recall how ZZ-branes are located at the pinches of the spectral curve as in (2.17).
Herein, it is interesting to notice that, from an AdS3 perspective, the discrete AdS2 D-branes are associated with
leaves of (symmetrically alternating) radii ρAdS2 (m,n) = RAdS3 (−1)m+1 sinnπb2.
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〈0|m,n〉AdS2
= −21/4 (−1)m+1

√
8πbΓ (1− b2) Γ (1 + b2) sinnπb2, (4.47)

where clearly a resonant structure is emerging by construction. Indeed, we do find an extra (at
first seemingly harmless) minus-sign exactly as we did in section 2, say in (2.42) or (2.43). Of
course the main point of section 2 was to show how this innocent minus-sign can indeed lead to
very non-trivial consequences, due to its appearance in the argument of the exponential terms
sitting inside the integrals over D-brane moduli space—the reader may recall the comparison
between (2.49) and (2.56). As such, our goal in the present subsection is to show how a similar
effect also occurs for the above (negative) discrete AdS2 D-branes (albeit this time around there
is no “matrix model” calculation to check the resulting transseries structure against).

The next step in this reasoning is to compute string-theoretic annulus amplitudes for (nega-
tive) discrete AdS2 D-branes. This yields information on the nature of the interactions between,
say, two discrete AdS2 D-branes or a discrete AdS2 D-brane with its negative-tension counterpart.
Let us do this calculation following our strategy in section 2; in particular by making manifest
the different nature of the interaction between two D-branes versus the interaction between a
D-brane and its negative-tension sibling, as in (2.49) versus (2.56). First focus on the (2, 0)
nonperturbative sector. Via the H+

3 –Liouville correspondence one can write the contribution of
two discrete AdS2 branes in terms of a double-integral over the moduli space of AdS2 branes—as
in the Liouville counterpart (2.49). But in order to herein apply (2.49) a slight modification is
however required. Recall how in section 2 swapping sheets was related to switching the sign of
m in |m,n〉ZZ. In the present AdS construction [18], however, it is swapping the sign of n in
|m,n〉AdS2

which is employed to construct discrete AdS2 branes. To be directly consistent with
this choice let us now choose to foliate the Liouville surface with q sheets instead of p. Specifi-
cally, in (2.49) we used αβ to label the p sheets of the minimal-string FZZT moduli-space, but we
could equally have described the same surface using q sheets—now given by the map y = Tq(ζ)
(recall (2.7)-(2.8)). As explained, this is what we will do from now on for the Liouville side, and
hence use α, β ∈ {0, . . . , q − 1}. Then, the H+

3 –Liouville correspondence replaces

AL
D (ζα) −→ AAdS3

D (ψα) , (4.48)

AL
A (ζα, ζβ) −→ AAdS3

A (ψα,ψβ) , (4.49)

where
ψα ≡ ψ+ 2πib2 α, (4.50)

and where the disk and annulus amplitudes are AAdS3
D (ψ) = 〈0|ψ〉 and AAdS3

A (ψ, ψ̃) = 〈ψ|ψ̃〉.
Notice how the q sheets of the FZZT moduli space (in the language of section 2, where the
Liouville surface was foliated with p sheets, these were made explicit in (2.12)) are now translated
to the q values of the AdS2 modulus in (4.50), once we identify Liouville and AdS data as in (4.43).
Further notice how a shift of ψ by 2πib2 α corresponds to a switching of sheets in the Liouville
analogue of section 2, as follows from (4.44)-(4.45). Then, further including compact-manifold
matter and bc ghost contributions (dropping the AdS3 CFT superscript, and keeping the AdS2

BCFT label implicit as this is our only relevant boundary condition in full string theory) the
string-theoretic (2, 0)-sector becomes (compare with (2.49))

Z (2,0)

Zpert
' 1

2

∫
C

dψ

2π

∫
C

dψ̃

2π
exp

(
A[−1]
αβ (ψ) +A[−1]

αβ (ψ̃) +A[0]
αβ(ψ) +A[0]

αβ(ψ̃) +A[0]
αβ,αβ(ψ, ψ̃) + o(gs)

)
,

(4.51)
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where C represents (eventually saddle-point) integration over the moduli space of an AdS2 brane.
In addition we have (compare with the corresponding Liouville definitions in (2.25), (2.26) and
(2.45))

A[−1]
αβ (ψ) = AD(ψ− 2πib2 α)− AD(ψ− 2πib2 β), (4.52)

A[0]
αβ(ψ) =

1

2

(
AA(ψα,ψα)− AA(ψα,ψβ)− AA(ψβ,ψα) + AA(ψβ,ψβ)

)
, (4.53)

A[0]
αβ,γδ(ψ, ψ̃) = AA(ψα, ψ̃γ)− AA(ψα, ψ̃δ)− AA(ψβ, ψ̃γ) + AA(ψβ, ψ̃δ). (4.54)

We can check that upon localization on the saddle-points of the integral, the leading contribution
from (4.51) indeed reproduces the instanton action (4.46) (up to the expected factor of 2). Namely
setting the derivative of (4.52) to zero we arrive at the condition49

sinh

(
ψ+ 2πib2 α− i

2

)
= sinh

(
ψ+ 2πib2 β − i

2

)
. (4.55)

The above condition is exactly solved by the moduli which give rise to the discrete ZZ-like
branes in (4.44). However, in order to perform the saddle-point integration to higher orders
an explicit and regularized expression for the annulus amplitude is required (which at Liouville
level is essentially our discussion in subsection 2.1). Unfortunately, to the best of our knowledge,
regularized AdS annuli have not been addressed in the literature: from the standpoint of the H+

3 –
Liouville correspondence, the map has only been properly established for disk amplitudes [92];
and when directly addressing euclidean AdS2 D-branes in AdS3, the relevant annulus amplitude
may be found in [17], but only the unregularized version of this amplitude—which still prevents
us from moving to next order. Nevertheless, for our purposes in the present subsection it turns
out that leaving the result unintegrated, as in (4.51), suffices.

Let us compare the (2, 0) contribution in (4.51) with the (1, 1) contribution which would
result from the interaction of a discrete AdS2 D-brane with its negative-tension counterpart.
Following the exact same procedure as above we now find the integral (compare with (2.56))

Z (1,1)

Zpert
' 1

2

∫
C

dψ

2π

∫
C̄

dψ̃

2π
exp

(
A[−1]
αβ (ψ) +A[−1]

βα (ψ̃) +A[0]
αβ(ψ) +A[0]

βα(ψ̃) +A[0]
αβ,βα(ψ, ψ̃) + o(gs)

)
.

(4.56)

Upon comparison with (4.51), describing the interaction of two identical discrete AdS2 D-branes,
a trivial calculation using (4.54) shows that, much like for Liouville, one has50

A[0]
αβ,βα(ψ, ψ̃) = −A[0]

αβ,αβ(ψ, ψ̃). (4.57)

This implies that, in complete analogy with the Liouville calculation, the present (1, 1) contri-
bution differs from the (2, 0) calculation by two minus signs. The first one is almost harmless,
and it can be found in front of the instanton action; whereas the second one is non-trivial: it sits

49We are leaving some details under the rug. Indeed, there are two common ways of labeling operators in AdS3,
and the H+

3 –Liouville map is formulated in the Laplace-transformed basis often labeled by µ (unrelated to Liouville
µ). It is in this basis which the calculation is usually done. On the other hand, the disk amplitudes (4.46)-(4.47)
were written in the physical x basis for convenience. Indeed, for these empty disks all x dependence drops out
which is consistent with their correspondence to instanton actions.

50This should come without surprise as it is a purely diagrammatic statement. It is likely generic.
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inside the exponential in the integrand and will produce inverse integrand-terms upon compar-
ison between (2, 0) and (1, 1) contributions—hence rather distinct final amplitudes (this is the
same overall discussion as in section 2 and we need not repeat it). We hope to come back to this
calculation in the near future, to make it as explicit as in the Liouville/minimal-string case.

The above reasoning supports the existence of negative-tension D-instantons in AdS3, but it
is by no means an absolute proof and further work is required. Going forward, one interesting
point we have not discussed is the analogue extension of our Liouville BCFT analysis in section 2
to a direct AdS3 BCFT analysis following [15–17]. It should be possible to compute both disk
and annulus amplitudes involving negative-tension D-branes in AdS3 and hence further build
upon our discussion above—and this would also be very interesting future research. Such would-
be negative-tension results could further have interesting applications, most notably due to the
relation of the AdS3 CFT to two- and three-dimensional black holes, as well as to the near-horizon
geometry of NS5-branes. Another closely related future research venue would be to extend our
results to the settings of [148, 19] which are also in close Liouville proximity.
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A On General Minimal-String String-Equations

This appendix includes some generalities alongside some new results concerning minimal-string
string-equations, which are used for checks of our BCFT and matrix-model results in the main
body to the text. We refer the reader to the discussion in [50] (which we will partially follow
upon next) for further details and for a compete list of the relevant references.

Consider (p, q) = (2, 2k − 1) minimal string theory. Its string (differential in z) equation,
computing the string specific-heat u(z), is given by

[ k−1
2 ]∑

p=0

tk−2p(k)
k − 2p

αk−2p,k−2p
Rk−2p [u(z)] = z, (A.1)

where the α-coefficients are

αij = (−1)j
Γ (2i) Γ ((i− j) + 1)

22` Γ (i) Γ (j) Γ (2 (i− j) + 2)
, (A.2)

and where the KdV times tp(k) are given by

tp(k) =
2p−

5
2 (2k − 1)

√
π

Γ (p+ 1) Γ
(

3−k−p
2

)
Γ
(

2+k−p
2

) . (A.3)

The Gel’fand–Dikii KdV potentials Rk [u] are polynomials in the specific-heat u(z) as well as its
z-derivatives. Moreover, they are given by the recursion relation [47]

R′k+1 =
1

4
g2

s R
′′′
k − uR′k −

1

2
u′Rk, (A.4)

with the starting coefficient R0 [u] = 1
2 . The hierarchy of minimal-string string-equations are

non-linear ordinary differential equations in z, which, at the end-of-the-day, must still be tuned
to the conformal background [48, 49] so that the specific-heat is dependent only upon the string
coupling, u ≡ u(gs). Although we are mainly interested in this minimal-string hierarchy, it will
prove useful to consider the multicritical hierarchy as a basis for what follows. This multicritical-
string hierarchy of equations is simpler, as [33–37]

(−1)k
2k+1 k!

(2k − 1)!!
Rk [u(z)] = z. (A.5)

In the main body of the paper we are interested in understanding the generic (2, 2k − 1)
minimal string theory alongside its k → +∞ JT-gravity limit. In principle this might come about
by writing down the generic string equation (minimal or multicritical alike) that follows from
solving (A.4). This is not so easy, since there is no known closed-form expression for an arbitrary
Gel’fand–Dikii polynomial Rk. There is, however, some work constructing partial closed-forms
for these polynomials [43, 44, 50]. It turns out that even with only partial knowledge of these
Rk, some calculations may be made yielding certain quantities in the transseries solutions to the
generic kth string equation. For example, it was obtained in [50] a closed-form expression for the
first non-zero coefficient of the one-instanton sector of the kth minimal string (MS), as

u
(1,0)
0,MS-k(z) = σ

k−1∑
n=0

k∑
`=k−2[ k−1

2 ]

` n t`(k)
α`,`−n
α``

u`−n−1
0 (z)A′(z)2n−1


− 1

2

, (A.6)
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for some arbitrary normalization constant σ, where u0(z) is the perturbative solution to the
string equation at lowest genus, and where A(z) is the instanton action for this instanton sector.

Gel’fand–Dikii Coefficients: The analysis in [50], from which the above-mentioned arbitrary-

k statement for u
(1,0)
0,MS-k followed, only made use of closed-form coefficients for terms in the

Gel’fand–Dikii polynomials with the following schematic structure

Rk ≡ Rk
{
uk, u•

d•u

dz•
, u•

d•u

dz•
du

dz

}
. (A.7)

Herein • is an element of some index set that is summed over (see equation (3.50) of [50]). As it
turns out, however, knowledge of closed-form Gel’fand–Dikii coefficients must now be extended
if we are to check the (1, 1) nonperturbative sector at arbitrary k in this paper using string
equations. Via similar methods to those in [50], and moreover by using the relation between the
Gel’fand–Dikii polynomials and the Miura–Gardner–Kruskal recurrence [149], we were able to
obtain closed-forms of all coefficients of the enlarged schematic structure

Rk ≡ Rk

{
uk, u•

d•u

dz•
, u•

(
d•u

dz•

)2

, u•
(

d•u

dz•

)3
}
. (A.8)

As expected, these coefficients become more and more complicated and it is not enlightening to

show the full results here. Below we will present formulae only up to terms like u•
(

d•u
dz•

)2
, for

which we find

Rk = αk u
k +

k−1∑
p=1

αk,p u
k−p−1 d2pu

dz2p
g2p
s + (A.9)

+
k+1∑
p1=4

p1−4∑
p2=0

αk,p1,p2 u
k+1−p1

d2p1−p2−7u

dz2p1−p2−7

dp2+1u

dzp2+1
g2p1−6
s + · · · ,

where the coefficients above are given respectively by

αk = (−4)−k
Γ (2k)

k Γ (k)2 , (A.10)

αk,p = (−1)k+p 2−2(p+1) Γ
(
k + 1

2

)
Γ
(
p+ 3

2

)
Γ (k − p)

, (A.11)

αk,p1,p2 = (−1)k+p1+p2+1 41−p1 (δ4,p1−p2 − 2)
Γ
(
k + 1

2

)
Γ
(
p1 − 1

2

)
Γ (k − p1 + 2)

× (A.12)

×
(

1− Γ (p2 − 2p1 + 6)

Γ (4− 2p1) Γ (p2 + 3)

)
.

Note the relation to the previously defined coefficients, αk =
αk,k
k and αk,p = αk,k−p.

Using the above formulae, we were able to extend the current predictions for the specific-heat
leading-coefficients of order-k multicritical or minimal strings; which we present below. In the
main text, we will use these results to obtain a non-trivial check of matrix model and BCFT
results for the free energies. But before moving on to the new results, we recall from [50] that
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the derivatives of the minimal-string instanton-actions obey certain algebraic equations. Since
these results will be used in the main text as well, we include them explicitly herein as

k−1∑
n=0

 k∑
`=k−2[ k−1

2 ]

` t`(k)
α`,`−n
α``

u`−n−1
0 (z)

A′(z)2n = 0. (A.13)

Transseries Coefficients: For simplicity we begin with the multicritical theory, whose order-
k specific-heat satisfies the string equation (A.5). Using a two-parameter51 transseries ansatz,
alongside the newly-found closed-form Gel’fand–Dikii coefficients, this allows us to write the first
non-zero contribution to the (2, 0) sector of the kth multicritical string (MC) as

u
(2,0)
0,MC-k(z) =

k−2∑
i=0

(−1)i+k+1 ( 1
4
−4−2−i) Γ(k+ 1

2)
Γ(i+ 5

2)Γ(k−1−i) uk−i−2
0 (z)A′(z)2i

k−1∑
i=0

22i αk,i u
k−i−1
0 (z)A′(z)2i

(
u

(1,0)
0 (z)

)2
. (A.14)

Note that on the right-hand side u
(1,0)
0 (z) would be better denoted by u

(1,0)
0,MC-k(z). However this

will not be convenient in the following where we will use this very same equation but rather with

u
(1,0)
0,MS-k(z), as in (A.6), in its right-hand side. Hence we leave it herein unspecified. In the same

fashion, the first non-zero contribution to the (1, 1) sector of the kth multicritical string is given
by

u
(1,1)
0,MC-k(z) =

k−2∑
i=0

(−1)i+k+1 4−1−i Γ
(
k + 1

2

)
αk,k Γ

(
i+ 3

2

)
Γ (k − 1− i)

u−i−1
0 (z)A′(z)2i

(
u

(1,0)
0 (z)u

(0,1)
0 (z)

)
.

(A.15)
Using the above formulae it is then straightforward to immediately obtain the results we want
for the specific heat of the (2, 2k − 1) minimal string, now satisfying the string equation (A.1).
Writing these explicitly, we find that the first non-zero contribution to the minimal-string (2, 0)
sector is given by

u
(2,0)
0,MS-k(z) =

[ k−1
2 ]∑

p=0

tk−2p(k)
αk−2p,k−2p

(
k−2p−1∑
i=0

(−1)k−2p−i Γ(k−2p+ 1
2)uk−2p−i−1

0 (z)A′(z)2i

4 Γ(i+ 3
2) Γ(k−2p−i)

)
u

(2,0)
0,MC-(k−2p)(z)

[ k−1
2 ]∑

p=0

tk−2p(k)
αk−2p,k−2p

(
k−2p−1∑
i=0

(−1)k−2p−i Γ(k−2p+ 1
2)uk−2p−i−1

0 (z)A′(z)2i

4 Γ(i+ 3
2) Γ(k−2p−i)

) ,

(A.16)
while the first non-zero contribution to the minimal-string (1, 1) sector simplifies and is given by

u
(1,1)
0,MS-k(z) =

[ k−1
2

]∑
p=0

tk−2p(k) (k − 2p) uk−2p−1
0 (z)u

(1,1)
0,MC-(k−2p)(z)

[ k−1
2

]∑
p=0

tk−2p(k) (k − 2p) uk−2p−1
0 (z)

. (A.17)

Keep in mind that in (A.16) and (A.17) we are using (A.14) and (A.15) but whose latter respective
right-hand sides use lower-instanton minimal string data (and not multicritical data).

51See [50] for a more generic set-up. However, a one-parameter transseries ansatz was mainly used as there were
not enough closed-form Gel’fand–Dikii coefficients available to obtain data in the “bulk” of the transseries.
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B On the (2, 5) Minimal-String String-Equation

Having discussed generics on minimal-string string-equations in the previous appendix A, let
us now focus on a concrete, non-trivial example. We will address the string equation for (2, 5)
minimal string theory, following upon the analysis in [50]. The string equation (A.1) becomes

5

4
√

2

(
−u+ u3 − g2

s uu
′′ − 1

2
g2

s

(
u′
)2

+
1

10
g4

s u
′′′′
)

= z, (B.1)

where, at the end-of-the-day, we will need to fix z = 0 in order to reach the conformal background.
The full four-parameter transseries solution to this equation will be of the form (3.9), which

we write for the specific heat as

u (z, gs,σ) =
∑
n∈N4

0

σn e
−(n1−m1)

A1(z)
gs
−(n2−m2)

A2(z)
gs u(n)(z, gs), (B.2)

where n = (n1,m1, n2,m2) and where the transseries sectors are given by asymptotic series with
starting genus βn1m1n2m2 as

u(n)(z, gs) '
+∞∑
g=0

g
g+βn1m1n2m2
s ung (z). (B.3)

Details of the calculation have been outlined in [50], together with the perturbative and the
one-instanton sectors. Let us therefore only list a few nonperturbative sectors herein. Recall
that for this, and at either perturbative or nonperturbative levels, it makes sense to introduce
additional variables [150, 151, 50] (implicitly encoding z-dependence in a user-friendly way for
the specific calculations; see [50]) as

5

4
√

2

(
u0(z)3 − u0(z)

)
= z, (B.4)

U(z) =

√
5

u0(z)

√
2− u2

0(z), U(z) =

√
5− U(z)

5 + U(z)
, (B.5)

where (B.4) is the classical, genus-zero string equation. Then we have the sectors

u
(1,1,0,0)
0 (z) = 0, u

(1,1,0,0)
1 (z) =

√
10

(U − 1)
(
U2 + 5

)5/4
U
√
U + 5 (U2 − 25)

, (B.6)

u
(0,1,1,0)
0 (z) = 0, u

(0,1,1,0)
1 (z) =

21/4

57/4

(
3U4 − 4U2 + 3

)5/4
(−U)3/2 (U2 − 1)

, (B.7)

u
(2,1,0,0)
0 (z) =

(
5
2

)3/4 (
U2 + 5

)3/8
8
√
U 4
√

5− U
log

U4 (5− U)10

(U2 + 5)7 , (B.8)

and furthermore the one that we are interested-in for our comparison is the (1, 1, 1, 0) sector. For
that we interestingly find the non-rational term

u
(1,1,1,0)
0 (z) = 103/8

(
3U4 − 4U2 + 3

)3/8
(1− U2)1/2

tanh−1 U . (B.9)
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All we have left to do is to translate these results to the free energy. As this involves the term
A′(z) it is convenient to revert back to the variable U(z). With the procedure outlined in [50]
we readily obtain

F
(2,1,0,0)
0 (z) = −

(
5
2

)1/4 (
U2 + 5

)7/8
32
√
U (5− U)5/4

log
U4 (5− U)10

(U2 + 5)7 , (B.10)

F
(1,1,1,0)
0 (z) =

1

2

(
5

2

)1/4
(
U2 + 5

)7/8
U1/2 (5 + U)5/4

tanh−1

√
10

5 + U
− 1. (B.11)

In the (2, 5) minimal-string conformal-background where z → 0, u0 → 1, U →
√

5, we find

F
(1,1,1,0)
0 =

1

2

25/8 · 57/8(
5 +
√

5
)5/4 tanh−1

√
1

2

(
3−
√

5
)
. (B.12)

C Useful Formula for Matrix-Model Computations

For completeness and the convenience of the reader who wishes to reproduce our calculations
in full detail, let us include one useful formula in this appendix. The following relation is very
useful as it captures the derivative method used at length in the calculations in [73],

I =

∫
C?

dx

∫
C̄?

dx̄
1

(x− x̄)2
e
− 1
gs

(V (x)−V (x̄))
{
F0(x, x̄) + gsF1(x, x̄) + · · ·

}
=

= −gs
iπ

12

1

V ′′ (x?)3

{
F0(x?, x?)

((
V (3)(x?)

)2
− V ′′(x?)V (4)(x?)

)
−

− V ′′(x?)V (3)(x?)
(
F (1,0)

0 (x?, x?) + F (0,1)
0 (x?, x?)

)
+

+ 3
(
V ′′(x?)

)2 (F (2,0)
0 (x?, x?)−F (1,1)

0 (x?, x?) + F (0,2)
0 (x?, x?)

)}
+ o(g2

s ), (C.1)

where C? and C̄? are steepest-descent contours through a saddle x? of V (x), and where Fi(x, x̄)
is any function (with its derivatives also featured). For example, when addressing the calculation
of the (1|1) configuration, we need to compute

Z(1|1)(t, gs)

Z(0|0)(t, gs)
=

1

(2π)2
I, (C.2)

where we pick

F0(x, x̄) = exp
(

2A0;2(x, x) + 2A0;2(x̄, x̄)− 4A0;2(x, x̄)
)

(C.3)

and

F1(x, x̄) = F0(x, x̄)
(

2A1;1(x)− 2A1;1(x̄) +
4

3
A0;3(x, x, x)− 4

3
A0;3(x̄, x̄, x̄)+

+ 4A0;3(x, x, x̄)− 4A0;3(x, x̄, x̄)
)
. (C.4)

Herein the Ag;h’s denote adequate integrated versions of the multi-resolvent W correlators, which
depend on the choice of Bergman kernel. See [73] for details.
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(1981), 85-05 (1985).

– 66 –

http://dx.doi.org/10.1016/0370-2693(91)90234-H
http://arxiv.org/abs/hep-th/9301004
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1070/RM1975v030n05ABEH001522
http://dx.doi.org/10.1016/0550-3213(91)90548-C
http://arxiv.org/abs/hep-th/0312170
http://arxiv.org/abs/2108.11409
http://arxiv.org/abs/hep-th/0412315
http://arxiv.org/abs/hep-th/0402009
http://arxiv.org/abs/hep-th/0409306
http://arxiv.org/abs/hep-th/0306177
http://arxiv.org/abs/hep-th/0405076
http://arxiv.org/abs/hep-th/0412201
http://arxiv.org/abs/hep-th/0503199
http://arxiv.org/abs/hep-th/0507263
http://arxiv.org/abs/2202.03448
http://arxiv.org/abs/2206.13531
http://arxiv.org/abs/hep-th/0612127
http://arxiv.org/abs/0711.1954
http://arxiv.org/abs/0809.2619


[65] M. Mariño, Nonperturbative Effects and Nonperturbative Definitions in Matrix Models and
Topological Strings, JHEP 0812 (2008) 114, arXiv:0805.3033[hep-th].

[66] M. Mariño, Lectures on Nonperturbative Effects in Large N Gauge Theories, Matrix Models and
Strings, Fortsch. Phys. 62 (2014) 455, arXiv:1206.6272[hep-th].
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