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Abstract
The Lagrangian statistics of a time-dependent ABC flow are considered, with time-dependence introduced

via harmonic oscillation with frequencyΩ. By calculating the finite-time Lyapunov exponents (FTLEs), the

Lagrangian statistics of the system are determined for a range of values of Ω. These statistics are calculated

for the kinematic regime where the flow remains an ABC flow, the non-linear regime with dynamo action

present, and a second hydrodynamic state reached through instability of the original ABC flow. It is

found that there are significant differences between these three states, with most cases showing a decrease

in their FTLEs as the flow deviates from its original ABC form. Furthermore, these changes are highly

dependent on Ω, with lower frequencies leading to higher FTLEs in the non-linear regime, and unstable

regimes. By examining the Lagrangian statistics with respect to the dynamo behaviour observed, we discuss

their potential relevance to non-linear saturation, self-killing dynamos, and the importance of the initial

hydrodynamic state. The numerical code developed for this project is also available.

I. INTRODUCTION

In an electrically conducting fluid, the coupling between the velocity field and magnetic field

can lead to a self-sustaining magnetic field. This phenomena is termed dynamo action, and is

an important physical process underpinning the behaviour of many astrophysical flows [1]. The

Lagrangian properties of dynamo flows have been conjectured to play a key role in the kinematic

and dynamic properties of dynamo action; certainly this is the case in the kinematic regime

at asymptotically high magnetic Reynolds number (Rm) — the so-called fast dynamo problem.

Dynamical systems theory applied to fast dynamo action demonstrates that the topological entropy

of the flow bounds the asymptotic growth-rate of the dynamo [2]; see also [3]. This rules out

the possibility of fast dynamo action for integrable flows and shows that chaotic particle paths are

required for a flow to be a fast dynamo.

These results have led to a sustained interest in the Lagrangian properties of saturated dynamo

flows. It is an interesting question as to what can be determined about the mechanism for dynamo

saturation from a consideration of the Lagrangian statistics. Since growth of a magnetic field relies

on stretching overcoming the dissipative action of magnetic diffusion, it could be that dynamos

saturate (and become statisticallymarginal) in the nonlinear regime by either reducing the stretching

(which would be manifested as a suppression of the chaos in the high Rm limit), enhancing the
∗ Corresponding Author: c.s.skene@leeds.ac.uk
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diffusion or a combination of the two. How the magnetic field might act so as to reduce the

stretching is undetermined. It might be that the field acts so as to reduce the amplitude of dynamo

flow back to the marginal state — i.e. the flow amplitude might be reduced so that Rm ≈ Rm,c

for dynamo action. This drastic intervention of the flow seems unlikely at high Rm (as argued in

Cattaneo and Tobias [4]). More likely is that the field acts to reduce the amplitude of the flow

somewhat, but also suppresses its stretching properties in a subtle manner [5].

This suppression of chaos was shown to be important in a simplified 2.5 dimensional dynamo—

here a 2.5-dimensional flow is one that has all three components of the velocity but each component

only depends on two spatial coordinates. In order to maintain two-dimensionality in the nonlinear

regime, the Lorentz force was projected back onto the z-invariant velocity [5]. However firm

conclusions for models that include the full Lorentz force in three-dimensions are much more

difficult to draw. A variety of investigations have been carried out on the Lagrangian properties

of saturated dynamo states, for a variety of driving mechanisms; not all of these have included a

description of the stretching as measured by the Lyapunov exponents.

Zienicke et al. [6] considered a forcing based on the steady ABC flow at moderate scale. This

flow, with standard parameters is known to be weakly chaotic; however at high Re this flow goes

unstable to a flow with a range of spatial scales and complicated time dependence. At moderate

Reynolds number (Re) and Rm they found that the growth of a large-scale field can excite velocity

modes that can lead to the mean Lyapunov exponents of the saturated state being much larger than

that of the kinematic flow, as the flow has many more excited modes in the nonlinear state.

Rempel et al. [7] considered the Lagrangian properties of the velocity field of a helical MHD

dynamo, with moderate scale, steady forcing. In addition to computing the Lagrangian coherent

structures (LCS), they also calculated the statistics of the finite-time Lyapunov exponents (FTLEs)

and showed that these decay as a linear function of magnetic energy of the saturated dynamo.

Homann et al. [8] considered dynamo action in a forced Taylor–Green system and analysed the

statistical properties of both the velocity and magnetic fields in Eulerian and Lagrangian frame-

works. They found that these statistics are changed between the kinematic and saturated regimes,

with the saturated trajectories aligning more with the mean magnetic field and the probability den-

sity functions (PDFs) of the magnetic field changing to quasi-Gaussian. Moreover they observed a

dramatic increase of the correlation time of the velocity and magnetic fields in the saturated regime.

However, for this flow, the stretching properties as given by the FTLEs remained unmeasured.

Of particular relevance to our study is that of Brummell et al. [9], who consider an ABC-flow

with an added harmonic time dependence which oscillates the ABC flow along the line x = y = z.
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By introducing this time-dependence the chaotic nature of the original ABC flow is enhanced, with

the time-dependent flow showing decreased areas of integrability. The degree of chaos induced in

the flow depends on the frequency of the oscillation of the imposed flow (or forcing) [see also 10].

This is confirmed by considering the FTLEs of the flow. It is shown that this added chaos

aids kinematic dynamo action, with the time-dependent ABC flow showing stronger growth rates,

as well as behaving as a ‘quick’ dynamo. Their study also considers the non-linear regime by

performing simulations of the coupled Navier–Stokes and induction equations, where the ABC

flow is initially sustained by a body forcing. Although in all cases the flow is a kinematic dynamo,

for some frequencies of the oscillations the dynamo is not sustained in the non-linear regime,

and decays until only a turbulent hydrodynamic stated termed U1 is left. Note that this secondary

hydrodynamic state can also be reached through hydrodynamic instability of the original ABC-flow.

Our current study builds upon the work of Brummell et al. [9] through calculating the FTLEs

of the flow in both the non-linear regime where the Lorentz force is saturating the dynamo, and

also for the flow U1. This involves solving the coupled Navier–Stokes and induction equations

together with tracking Lagrangian particles. By calculating the FTLEs in these two flow regimes

we hope to further elucidate the dynamics responsible for dynamo-saturation, as well as to explain

why some dynamos are unable to sustain themselves in the non-linear regime.

As well as calculating the FTLEs, we also consider the Floquet stability [11] of the time-

dependent ABC-flow to both hydrodynamic and magnetic perturbations. In this manner, all the

unstable directions of the original flow together with their growth rates can be systematically

captured. The paper proceeds as follows; §II outlines the mathematical and numerical setup, con-

taining the details of the governing equations, Floquet stability analysis, and finite-time Lyapunov

exponents. The results are then presented in §III, with conclusions subsequently being offered in

§IV.
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II. MATHEMATICAL AND NUMERICAL SETUP

A. Formulation: Governing equations and Numerical Methods

The system is governed by the magnetic induction and Navier–Stokes equations, which in

non-dimensional form are

(∂t − R−1
m ∇

2)B = ∇ × (U × B), (1)

(∂t − Re−1∇2)U + U · ∇U = −∇p + J × B + F, (2)

∇ · U = ∇ · B = 0. (3)

The non-dimensional variables are the fluid velocity U , magnetic field B, pressure p, and electric

current J = ∇×B. By non-dimensionalising time with respect to a typical turnover time of the flow

(U) and space with respect to the lengthscale of the domain (L), the non-dimensional parameters of

Reynolds number Re = UL/ν and magnetic Reynolds number Rm = UL/η have been introduced.

Moreover in this non-dimensionalisation the field is measured in units of the Alfvén speed. The

domain is taken to be (x, y, z) ∈ [0, 2π]3 with periodic boundary conditions. Following Brummell

et al. [9], the external (Re-dependent) forcing term F is chosen such that in the absence of magnetic

field there exists an order unity solution for the velocity field U0 given by

U0 = (sin(z + ε sin(Ωt)) + cos(y + ε sin(Ωt)),

sin(x + ε sin(Ωt)) + cos(z + ε sin(Ωt)),

sin(y + ε sin(Ωt)) + cos(x + ε sin(Ωt))). (4)

For ε = 0 this flow corresponds to an ABC flow with A = B = C = 1. However, by varying ε , the

flow is allowed to ‘wobble’ around the ABC state with amplitude ε and angular frequency Ω. The

initial kinetic energy density is displayed in figure 1, showing that it has large scale structures. For

low Re this flow is hydrodynamically stable.

To solve this system numerically we first replace the magnetic induction equation for B with

an equation for the magnetic vector potential A defined such that B = ∇ × A and with A taken to

satisfy the Coulomb gauge condition ∇ · A = 0. The resulting system is solved numerically using

spectral methods via the open-source PDE solver Dedalus [12]. A resolution of 96 × 96 × 96 is

used for all dynamo calculations when particles are not being tracked (see the next section), to

ensure that the resolution is high enough to prevent spurious dynamo solutions [13]. Two-thirds

dealiasing is used to treat all non-linear terms.
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FIG. 1: Contour plot of the initial kinetic energy density connected with U0.

B. Floquet stability analysis

The hydrodynamic state q0 = (B,U, p)T = (0,U0, P0)
T , (with P0 found through rearrangement

of the momentum equation) is an exact periodic solution to equations (1)-(3). Therefore, the

stability of the periodic solution q0 to perturbations can be found via a Floquet stability analysis

[11] (though traditionally the stability of such flows to dynamo action has usually been found by

timestepping). To this end, we first rewrite equations (1)-(3) in the more general form

M
∂q

∂t
= N(q, F), (5)

where the matrix M ensures there is no time-derivative term in the continuity equation, and the

operatorN represents the right hand side of the equations. We then linearise these equations about

q0 to give the linearised equations

M
∂q′

∂t
= A(t)q′, (6)

where

A(t) =
∂N
∂q

����
q=q0(t)

. (7)

As equation (6) is linear, the solution at any time t can be obtained from an initial condition at

time t0 using the state-transition matrix Ψ(t, t0), via q′(t) = Ψ(t, t0)q′(t0). The matrix Ψ(t0 + T, t0)

that propagates a state forward by one period T is known as the monodromy matrix. By taking the

eigenvalue decomposition of this matrix, i.e. by solvingΨ(t0 +T, t0)qi(t0) = µiqi(t0), we can write
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any perturbation in terms of the decomposition as

q′ =
∑

i

qi exp(tλi), (8)

where λi = log(µi)/T . The stability of the flow can then be determined from the Floquet multipliers

µi, with the flow stable if |µi | < 1 and unstable if |µi | > 1.

Our linearised equations (6) can be written as

(∂t − Re−1∇2)U′ + U0 · ∇U
′ + U′ · ∇U0 = −∇p′, (9)

∇ · U′ = 0, (10)

(∂t − R−1
m ∇

2)B′ = ∇ × (U0 × B′), (11)

∇ · B′ = 0. (12)

This shows that equation (6) can be decoupled into two Floquet stability analyses; one for the

hydrodynamic stability obtained through solving (9) and (10), and another for the stability of the

magnetic field through solving (11) and (12). In other words, the hydrodynamic stability of the

U0 flow is independent from the stability of the magnetic field. Hence we should expect that, in

the kinematic regime, perturbations to the velocity and magnetic fields will grow independently

of each other in accordance with their Floquet multipliers. It is important to note that, this is the

case only for a hydrodynamic basic state; decoupling would not occur for the Floquet stability of

an MHD basic state. Although Floquet analysis around a periodic MHD state is also possible, and

would be relevant to the instability of saturated dynamo solutions to long wavelength instabilities,

this is beyond the scope of our current study.

Numerically we solve the hydrodynamic and magnetic stability problems separately following

the method discussed by Barkley and Henderson [14]. For the hydrodynamic stability problem

we let the state transition matrix for the linear problem given by (9) and (10) be denoted by ΨU .

The action of ΨU (T) on a vector a is then provided in a matrix-free manner by solving equations

(9) and (10) with initial condition U′ = a over one period T = 2π/Ω. The eigenvalues of ΨU (T)

can then be found from this matrix-free operation using an eigenvalue solver, yielding the Floquet

multipliers and modes. The magnetic stability problem is solved using the same procedure with

equations (11) and (12).

C. Finite-time Lyapunov exponents

As noted in the introduction, information about the degree of stretching in the flow can be gained

by calculating the distribution of finite-time Lyapunov exponents (FTLEs) In order to calculate
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these, we follow the algorithm of Soward [15] (see also [16]) and consider tracking a set of particles

that are passively advected by the fluid. Taking N particles with positions {pi}
N−1
i=0 we track the

particles by solving
d
dt

pi = U(p). (13)

Letting S denote the fluid velocity gradient tensor with S(p) = ∇x=pU , we also solve
d
dt
D = S(p)D, (14)

for each particle path starting with D = diag(2−1/2, 2−1/2, 0). For each time t we form the matrix

C(t) = D(t)TD(t). (15)

The FTLE connected to the position x0 is then the slope of l(t; x0) = log(
∑

i, j Ci, j(t)/2)/2 where

C arises from a particle whose initial position is x0. The slope of the line is found using linear

regression.

When calculating the FTLEs we solve the governing equations as described in the previous

section, tracking the particles using a particle tracking code for Dedalus developed for this study.

For what follows, we will concentrate on the calculation of FTLEs on the plane z = 0, i.e. the

initial particle positions are taken to be equispaced (xi, yi, 0), with the x − y plane consisting of

128× 128 particles, and a time horizon of T = 30 matching that of Brummell et al. [9]. Due to the

increased numerical burden of tracking the particles, the resolution is decreased to 64 × 64 × 64

when calculating the FTLEs. However, the initial condition for tracking the particles always

comes from the higher resolution results. This, coupled with the fact that the time horizon for

the FTLE calculations is small, means that we stay close enough to the high resolution solution

whilst keeping the computation feasible. The numerical code for particle tracking in Dedalus v2

and FTLE calculation has been made available as part of the companion code for this paper [17].

D. Passive vector field evolution

A less rigorous, though still informative method for calculating the stretching properties of a

flow is to calculate the response of a passive vector field to the flow. Following Cattaneo and

Tobias [4] we will also consider the evolution of a passive vector field which satisfies the induction

equation but does not couple with the velocity field via a Lorentz force. To this end, we solve

equations (1)-(3) together with

(∂t − R−1
m ∇

2)Z = ∇ × (U × Z), (16)

∇ · Z = 0. (17)
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By tracking Z we are able to see how a magnetic field would behave for the velocity field stemming

from a non-linearly saturated dynamo. While it seems that Z , which solves the same equation as

B, must follow the same trajectory as B, this is in fact only true if the initial condition for Z is the

same as that of B. The reason for this is that there is no Z-based Lorentz force, meaning that U is

independent of Z and that the evolution of Z is completely linear. As no particles are being tracked

in this case, the resolution is again set at 96 × 96 × 96. The aim here is to determine how well one

can understand the chaotic properties of the flow using this proxy method, which is simpler (and

less expensive) computationally than calculating the FTLEs.

III. RESULTS

A. Floquet stability analysis

We begin our results by considering the stability of the periodic state U0, using the procedure

outlined in section II B. Again, we stress that around a purely hydrodynamic base-state the

hydrodynamic and magnetic stability problems decouple and may be considered separately. Figure

2 shows the Floquet exponents found for the two cases at two representative frequencies. For

Floquet exponents λ with Real(λ) > 0 there will be an exponential growth of the mode, indicating

instability. Hence, exponents above the line Real(λ) = 0 indicate unstable directions.

For Re = Rm = 100 the flow is, in general, more unstable to magnetic perturbations rather than

hydrodynamic perturbations, agreeing with the observations of Brummell et al. [9]. However, for

Ω = 0.5 this is not the case, and the flow is much more unstable to a hydrodynamic perturbation

with Imag(λ) = 0, which shows that it is a purely growing instability and has no oscillation

frequency associated with it. This is made clearer by considering the maximum growth rate for

each frequency, displayed in figure 3.

For verification of our Floquet approach, the results of Brummell et al. [9] are added to figure

3b. As we can see there is a good quantitative agreement, with our results bounded above by those

of Brummell et al. [9]. The reason for this can be attributed to the method used to obtain the

growth rates. Ours stem from a single modal structure, whereas those of Brummell et al. [9] are

obtained via linear regression of the magnetic energy obtained from a simulation, meaning that the

superposition of two or more growing modes can give rise to a higher magnetic energy growth rate.

Figure 3 also shows the results of the Floquet analysis at Rm = 120. As the maximum growth rate

does not change significantly, we can postulate that we are in a regime where the growth-rate has
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FIG. 2: Floquet exponents for ε = 1, Re = Rm = 100. The stability boundary is shown as a dotted

line in each figure.
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FIG. 3: Maximum growth rates for the hydrodynamic and magnetic stability problems.

saturated as a function of Rm; in this sense the time-dependent flows are acting as “quick" dynamos

[18]. This asymptotic behaviour is believed to set in at lower magnetic Reynolds numbers for

time-varying hydrodynamic states [9, 13], than for steady ABC-flow [19].
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FIG. 4: Kinetic and magnetic energies over time for ε = 1 and Re = Rm = 100

B. Non-linear evolution

Before considering the FTLEswe first summarise the flow behaviour of an initial state consisting

of a small magnetic field and the hydrodynamic state U0. Figure 4 shows the results for Re = Rm =

100. We see that for all frequencies there is an initial exponential growth of the magnetic field. This

is not surprising as the results of the Floquet analysis show that the flow is unstable to magnetic

perturbations. More interesting is the subsequent behaviour. For the considered frequencies

Ω ≤ 1.5 the magnetic energy saturates, showing that the Lorentz force acts to stabilise the growth

of the magnetic field. However, for higher frequencies the magnetic energy eventually decays.

This means that the velocity field that results after deviation from its initial U0 form is stable to

magnetic perturbations. In this case, the magnetic energy eventually decays to negligible values

leaving a purely hydrodynamic state that can be reached from a hydrodynamic simulation via the

instability of the base-state to hydrodynamic perturbations. Following Brummell et al. [9] we call

this secondary state U1.

Repeating this procedure at the higher magnetic Reynolds number of Rm = 120 we obtain figure

5. In this case for all frequencies the dynamo saturates leading to a non-linear dynamo solution.

As the Floquet analysis revealed that there is so significant change in the stability properties of U0

for Rm = 120 the reason behind this saturation must either lie in the stability properties of U1 to
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FIG. 5: Kinetic and magnetic energies over time for ε = 1, Re = 100, and Rm = 120 starting from

U0.

magnetic perturbations, or in non-linear interactions between the magnetic field and velocity field

via the Lorentz force. Hence in order to investigate this we examine the stability properties of U1.

AsU1 is not an exact periodic solution of the governing equations, but is instead a quasi-periodic

state, we cannot use Floquet theory to determine the behaviour of a small magnetic field. Instead

we run a simulation starting from an initial state in the U1 attractor and seed it with a small

random magnetic field. The results of this for Rm = 100 and Rm = 120 are shown in figures

6 and 7, respectively. For Rm = 100 figure 6 shows that the frequencies at which the magnetic

energy eventually decays are the same frequencies at which U1 is stable to magnetic perturbations.

This means that if non-linear effects are unable to alter the velocity field, then the magnetic field

will eventually decay with no chance to grow again. For this reason, at Re = 100 where the

hydrodynamic state U0 is unstable, it is unclear whether these dynamos are ‘self-killing’ initially

through an unfavourable modification of the velocity field via the Lorentz force, or whether they

decay through the rise of the stableU1 hydrodynamic state. It is also worth noting that although the

other frequencies are unstable to magnetic perturbations, the growth rates are significantly reduced

than that obtained for U0, indicating that while U1 is still susceptible to kinematic dynamo action,

it is less efficient.

Turning our attention to Rm = 120, we see from figure 7 that all frequencies show a positive
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FIG. 6: Kinetic and magnetic energies over time for ε = 1 and Rm = 100 starting from U1.

growth rate. However, for Ω ≥ 2 this growth rate is extremely small, with Ω = 2.5 not rising

significantly on a long time-scale. Therefore, on short time scales the flow will appear neutral

to magnetic perturbations and we can expect that only a slight non-linear effect via the Lorentz

force will be needed in order to saturate the growth of magnetic energy. Again we note that for all

frequencies the growth rates for U1 are lower than that of U0.

C. Lagrangian statistics

Now that the non-linear evolution of a magnetic field has been described for a range of param-

eters, we turn our attention to understanding the growth and saturation of the magnetic field via

an examination of the Lagrangian statistics of the flow field. We first seek to verify the particle

tracking code with the work of Brummell et al. [9]. To this end, we set Re = 100, Rm = 100, ε = 1

and consider a range of values for Ω on the plane z = 0. For these parameters the flow field U

remains close to U0 despite the exponentially growing magnetic field due to the stability properties

of the hydrodynamic state (see section III A). This means that by calculating the FTLEs with a time

integration of 30 time-units, we stay within this kinematic regime and our results should match

those of Brummell et al. [9] for which the U0 flow is imposed.

Figure 8a shows the mean FTLEs calculated with our current approach, and with the results of
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FIG. 7: Kinetic and magnetic energies over time for ε = 1 and Rm = 120 starting from U1.

Brummell et al. [9]. We see that the calculated values show a good agreement, both verifying our

approach and showing that the results of Brummell et al. [9] hold in the presence of a small, but

non-zero, magnetic field. The weak field here has had very little impact on the degree of chaos in

the flow. As in [9] we see that there is a qualitative correspondence between the mean FTLEs and

the stability properties of U0. Indeed, larger values of the FTLE occur at frequencies for which the

magnetic growth rate (shown in figure 3b) are highest.

Having verified our particle tracking approach we now consider calculating the FTLEs for the

secondary hydrodynamic state U1. Figure 8b shows that the flow U1 is on average less chaotic than

U0 with the FTLEs for most frequencies decreasing. The exception to this is the lowest frequency

considered, Ω = 0.5. For this frequency the mean FTLE for U1 is significantly greater than for U0.

One possible explanation for this can be obtained by examining the stability ofU0 to hydrodynamic

perturbations. There are two main reasons for suspecting this link. The first is that there is a

correspondence between the maximum growth rates of the kinetic energy (shown in figure 3a) and

the mean FTLEs of U1, where the maximum in both cases is found for Ω = 0.5 with relatively

flat behaviour for all other frequencies. The second is that there are more unstable directions for

Ω = 0.5 than for all other frequencies. Hence, it seems plausible that the increased propensity to

hydrodynamic instability for Ω = 0.5 could lead to a more chaotic flow.

14



0.5 1.0 1.5 2.0 2.5 3.0 4.0
Ω

0.15

0.20

0.25

0.30
m

ea
n

FT
L

E

Current
Brummell et. al. (2001)

(a) Mean FTLEs for U0 using an MHD code in

the kinematic regime with Rm = 100. Also

shown are the results of Brummell et al. [9] for

comparison.

0.5 1.0 1.5 2.0 2.52.5 3.0 4.0
Ω

0.1

0.2

0.3

0.4

0.5

m
ea

n
FT

L
E

U0

U1

(b) Mean FTLEs for U1 calculated with a purely

hydrodynamic simulation. The results for U0

are also shown.

FIG. 8: Mean FTLEs for U0 and U1 for a range of values of Ω and ε = 1 at Re = 100.

Before moving on to cases with a magnetic field present, we examine the structure of the FTLEs

on the plane z = 0 for our two hydrodynamic states. Given that we have just shown that the

FTLEs do not differ significantly from purely kinematic results in which the flow U0 is specified

we present results for U0, obtained from a code that fixes the velocity field, at a higher resolution

than is feasible for our other cases in figure 9. The figure shows that for all frequencies the flow is

quite chaotic with very few integrable patches (indicated by dark regions). We note that the ridges

present in these figures are related to Lagrangian coherent structures, and act as barriers through

which particle paths do not cross [20, 21].

The FTLEs forU1 are displayed in figure 10. It is immediately clear that the Lagrangian statistics

are quite different to that of U0. For low frequencies, in which the mean FTLEs increase or remain

similar, we see that the flow remains chaotic nearly everywhere. This is especially evident for

Ω = 0.5 which shows very little areas of integrability. However, for the frequencies where the

mean FTLEs decrease the areas of integrability are substantially larger, with thin ridges separating

them. These changes from U0 reflected in the structure, and mean, of the FTLEs shows that as for

U0 there is a clear link between the FTLEs and the magnetic energy growth rates for U1 (discussed

in III B).

It is important to note that, although the FTLE for Ω = 0.5 is higher for U1 than U0, the growth
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(a) Ω = 0.5 (b) Ω = 1.0 (c) Ω = 1.5

(d) Ω = 2.0 (e) Ω = 2.5 (f) Ω = 4.0

FIG. 9: FTLEs in the kinematic regime with ε = 1. A greyscale colour map is used, with a FTLE

of zero being black and the maximum FTLE being white. Movies of their evolution over one

period are available as supplementary material.

rate is smaller. This reminds us that care is needed when interpreting the FTLEs, and that formally

the link between the growth rate of a magnetic field and the FTLEs is obtained for Rm → ∞.

However, for U0 we see from our Floquet results that it may be a quick dynamo, setting into this

asymptotic fast dynamo behaviour at our current parameters. Therefore, the discrepancy for U1

suggests that we have simply not reached this asymptotic behaviour (if in fact it exists).

With the hydrodynamic behaviour discussed, let us turn our attention to cases in which a

magnetic field is present. For Rm = 100 section III B showed that, unlike for Rm = 120, not all

frequencies have a region in which a non-linear dynamo is sustained. Therefore, we calculate the

FTLEs starting from states at a few points in the region where the kinematic growth phase has

ended, but before the eventual decay of the magnetic field. For Rm = 120 a non-linear dynamo is

sustained at all frequencies, hence we start the FTLE calculation from a representative state in the

16



(a) Ω = 0.5 (b) Ω = 1.0 (c) Ω = 1.5

(d) Ω = 2.0 (e) Ω = 2.5 (f) Ω = 4.0

FIG. 10: FTLEs for U1 with Re = 100 and ε = 1. A greyscale colour map is used, with a FTLE of

zero being black and the maximum FTLE being white.

non-linear regime.

Figures 11a and 11b show the mean FTLE for Rm = 100 and Rm = 120, respectively. From

figure 11a we see that the mean FTLE does not depend strongly on the state at which the calculation

is started. The slight variations can therefore be mainly attributed to the natural slight variation

that can be expected when starting the FTLE calculation from a different point of the attractor.

For low frequencies the mean FTLE of the non-linear state is different from that of U1 (shown on

figure 11b). This indicates that the Lorentz force is large enough that is has significantly altered

the flow field form its U1 form. However, for higher frequencies the mean FTLEs are close to that

of U1 showing that no such flow modification is taking place, leading to the eventual decay of the

magnetic field.

For Rm = 120 we see from figure 11b a similar pattern to that obtained for Rm = 100. It is clear

that for Ω = 0.5 and Ω = 1.0 that the Lorentz force is significantly altering the flow field, leading
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(b) Mean FTLEs for the non-linear regime at

Rm = 120.

FIG. 11: Mean FTLEs for a range of frequencies with Re = 100 and ε = 1.

to lower FTLEs, and a less chaotic flow in the non-linear dynamo regime. However, for higher

frequencies there is an overall agreement for the mean FTLE in the non-linear regime, and for

the hydrodynamic state U1. As in these cases the flow remains a non-linear dynamo, despite not

significantly modifying the purely hydrodynamic flow, it is reasonable to suspect that the marginal

instability of U1 to magnetic perturbations (shown in section III B) is partially responsible for its

saturation. The FTLEs for Rm = 120 on the plane z = 0 are shown in figure 12. These FTLE

images support the findings of the mean FTLEs, namely that for Ω = 0.5 and Ω = 1.0 the flow is

less chaotic than U1 (see figure 10), but has no noticeable difference from U1 for other frequencies.

In order to provide clearer evidence for whether the magnetic field is altering the FTLEs we

can consider the probability density functions (PDFs) of the FTLEs. For this purpose we consider

two frequencies; Ω = 0.5, for which the mean FTLE is altered, and Ω = 2.5 which shows little

difference. For both frequencies a normal distribution is found to be a good fit, with the resulting

PDFs shown in figure 13. For Ω = 0.5, figure 13a shows that there us a clear difference in the

distribution of the FTLEs between U0 and U1, with the flow becoming more chaotic in U1 and

any integrable regions present for U0 disappearing. Importantly we see that the distribution for the

non-linear dynamo is between that of U0 and U1. Therefore, it is clear that the Lorentz force is

playing a major role in this case, preventing the emergence of a U1-type flow, and modifying the

velocity field to an overall less chaotic one (than U1 — though this is still more chaotic than U0).

Conversely, figure 13b shows seemingly identical distributions forU1 and the non-linear dynamo
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(a) Ω = 0.5 (b) Ω = 1.0 (c) Ω = 1.5

(d) Ω = 2.0 (e) Ω = 2.5 (f) Ω = 4.0

FIG. 12: FTLEs in the non-linear regime with Re = 100, Re = 120, and ε = 1. A greyscale colour

map is used, with a FTLE of zero being black and the maximum FTLE being white.
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(b) Ω = 2.5

FIG. 13: Probability density function of the FTLEs at Rm = 120.
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FIG. 14: The ratio of the mean FTLE of the non-linear dynamo for Rm = 120 to the mean FTLE

of the U1 state (R) vs the mean ME of the saturated solution.

regime. This supports the hypothesis that the Lorentz force is doing very little to modify the

velocity field for Ω = 2.5. The reason then for saturation of the dynamo can mainly be attributed

to the marginal (almost neutral) instability to magnetic perturbations properties of U1 at Ω = 2.5.

Therefore, even though the magnetic field must influence the velocity field to saturate, it need only

do so very weakly and on long time scales. Hence, the non-linear dynamo regime can have a

velocity field that remains close to U1. In general, figure 14 illustrates that the mean field strength

of the dynamo is anti-correlated with the agreement between the mean FTLEs of the non-linear

dynamo and the hydrodynamic state U1. This indicates that the frequencies at which the magnetic

field strength is lower (Ω ≥ 1.5) are the same as those for which the non-linear dynamo has the

same chaotic properties as U1.

D. Passive kinematic dynamo

We conclude the results by examining the stability properties of a passive vector field, governed

by equation (16). By timestepping this passive dynamo in the flow-field of the non-linear dynamo

regime, we can see whether the flow field remains able to amplify a kinematic vector field despite

dynamo saturation. The evolution of Z starting from a small random initial condition is shown

in figure 15. From figure 15a we see that only Ω = 0.5 has a significantly positive growth,

with all other cases being only slightly positive or negative. This is further highlighted by the
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FIG. 15: Magnetic energy evolution and growth rates for a passive kinematic dynamo Z in the

non-linear regime for Rm = 120.

growth rates illustrated in 15b. From these results we can see that, as in [4], the flow field from a

saturated non-linear dynamo can remain a kinematic dynamo. The reason for this can be related

to the correspondence between the growth rates of figure 15b, and the mean FTLEs (figure 11b),

again highlighting the link between the FTLEs of a flow field, and the kinematic growth rate of a

magnetic field as conjectured by Cattaneo and Tobias [4]. Hence, calculating the evolution of a

passive vector field is a good proxy for a full Lagrangian calculation.

As for Ω = 0.5 the passive scalar dynamo is unstable, it shows that the form of the magnetic

field and its link the the velocity field is crucial in providing saturation in this case. In other

words, although kinematic growth is possible as suggested by the FTLEs, non-linear growth is

not due to the way in which the velocity and magnetic fields non-linearly interact. Hence it can

be thought that for non-linear regimes with more chaotic properties, non-linearity is crucial in

providing saturation, and the flow field must be significantly modified via the Lorentz force. For

the other frequencies the growth rate is smaller and we should not read too much into their exact

values. Indeed, the results of section III B show that very small growth rates for the magnetic field

are possible on a time-scale not considered for the passive dynamo. Instead, as the flow remains

close to U1, we should expect that the passive scalar dynamo, although eventually increasing as it

should for U1 (figure 7), can have local periods of stability as shown in figure 15b. These local
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areas of stability could result from a weak Lorentz force and are enough to saturate the flow.

IV. CONCLUSION

In this paper we have revisited the dynamo properties of a class of periodic (in space) oscillatory

dynamo flows, for a range of oscillation frequencies and fluids and magnetic Reynolds numbers.

We have calculated the stability of such flows, both to hydrodynamic and magnetic perturbations

using a Floquet analysis. Furthermore, we have examined the Lagrangian stretching properties

of the kinematic and saturated dynamo flows, using a particle tracking method that enables the

calculation (in the open source software Dedalus) of the finite-time Lyapunov exponents (FTLEs)

[17]. We find that, depending on the frequency of oscillation, the stretching in the saturated state

as measured by the average FTLE may increase or (more usually) decrease. The distribution of

FTLEs remains well-approximated by a normal distribution in the saturated regime though the

mean and variance of this distribution is modified by the presence of the magnetic field.

We further demonstrate that the calculation of the evolution of a passive vector field gives a very

good proxy for a full Lagrangian calculation, validating the approach taken by Cattaneo and Tobias

[4]. Interestingly Cattaneo and Tobias [4] found cases in both convecting systems and forced shell

models where the growth-rate of a passively stretched vector field for a saturated dynamo state

increased from that for the hydrodynamic velocity field. This was the case for a subset of the

forced models considered here — confirmed via calculation of the FTLEs. Hence it is not simple

to predict a priori whether the presence of a magnetic field in the saturated state will lead to the

diminution of chaos. It remains an interesting avenue for future investigation when the structure

of dynamo flows and the generated magnetic field does lead to a system with increased stretching

and chaos.

There are certainly systems where such an increase in chaos and turbulence is believed to be

significant. For example in “essentially nonlinear" dynamos, a finite amplitude magnetic field can

lead to the onset of turbulence and hence chaotic stretching. Such dynamos are often subcritical

and we conjecture that subcriticality may sometimes be associated with an increase of chaotic

stretching imparted by the change in stability provided by a finite amplitude magnetic field.

Finally, we note that the Floquet analysis we perform here about the hydrodynamic state is

particularly simple, as it separates into two independent classes of modes. The case of Floquet

analysis about a saturated MHD state is more complicated. This case is relevant to determining the

stability of saturated MHD states to long wavelength instabilities, and hence the important problem
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of the generation of large scale magnetic field from a fully saturated small-scale dynamo.
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