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Abstract. Using the Darboux transformation for the Korteweg-de Vries equation,
we construct and analyze exact solutions describing the interaction of a solitary wave
and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these
wave patterns are referred to as breathers. Both elevation (bright) and depression
(dark) breather solutions are obtained. The nonlinear dispersion relations demon-
strate that the bright (dark) breathers propagate faster (slower) than the background
cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the
cnoidal wave. In the small amplitude regime, the dark breathers are accurately ap-
proximated by dark soliton solutions of the nonlinear Schrödinger equation. These
results provide insight into recent experiments on soliton-dispersive shock wave inter-
actions and soliton gases.

1. Introduction

The localized and periodic traveling wave solutions of the Korteweg-de Vries (KdV)
equation are so ubiquitous and fundamental to nonlinear science that their names,
“soliton” and “cnoidal wave,” have achieved a much broader usage, representing local-
ized and periodically extended traveling wave solutions across a wide range of nonlinear
evolutionary equations. Consequently, it is natural and important to consider their in-
teractions. While the traditional notion of linear superposition cannot be used, the
complete integrability of the KdV equation implies a nonlinear superposition princi-
ple. For example, soliton interactions can be described by exact N -soliton solutions,
which can be constructed by successive Darboux transformations [1]. By utilizing solu-
tions of the spectral problem for the stationary Schrödinger equation and the temporal
evolution equation whose compatibility is equivalent to solving the KdV equation,
the Darboux transformation achieves a nonlinear superposition principle by effectively
“adding” one soliton to the base solution. In the spectral problem, the soliton appears
as an additional eigenvalue that is added to the spectrum of the base solution.

Compared to soliton interactions, soliton-cnoidal wave interactions have not been
explored in as much detail. The purpose of this paper is to apply the Darboux trans-
formation to the cnoidal wave solution of the KdV equation in order to obtain the
nonlinear superposition of a single soliton and a cnoidal wave. These exact solutions,
expressed in terms of Jacobi theta functions and elliptic integrals, represent the inter-
actions of a soliton and a cnoidal wave.
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The motivation for this study comes from recent experiments and analysis of the
interaction of solitons and dispersive shock waves (DSWs) [2, 3, 4]. The DSWs can be
viewed as modulated cnoidal waves [5, 6] so that soliton-DSW interaction is analogous
to soliton-cnoidal wave interaction. Two different types of soliton-DSW interaction
dynamics were observed in [2]. When a soliton completely passes through a DSW, the
nature of the interaction gives rise to an elevation (bright) nonlinear wavepacket. When
a soliton becomes embedded or trapped within a DSW, the trapped soliton resembles
a depression (dark) nonlinear wavepacket. Similar transmission and trapping scenarios
were analyzed for solitons interacting with rarefaction waves [7, 8].

Breathers are localized, unsteady solutions that exhibit two distinct time scales or
velocities; one associated with propagation and the other with internal oscillations.
A canonical model equation that admits breather solutions is the focusing modified
Korteweg-de Vries (mKdV) equation. These solutions can be interpreted as bound
states of two soliton solutions [9, 10]. It is in a similar spirit that we regard as a breather,
the soliton-cnoidal wave interactions considered here. Such wavepacket solutions are
propagating, nonlinear solutions with internal oscillations.

Among our main results, we find two distinct varieties of exact solutions of the KdV
equation, corresponding to elevation (bright) or depression (dark) breathers interact-
ing with the cnoidal wave background. These breathers are topological because they
impart a phase shift to the cnoidal wave. We show that bright breathers propagate
faster than the cnoidal wave, whereas dark breathers move slower. Furthermore, bright
breathers of sufficiently small amplitude exhibit a positive phase shift, whereas bright
breathers of sufficiently large amplitude exhibit a negative phase shift. On the other
hand, dark breathers with the strongest localization have a negative phase shift. Small
amplitude dark breathers can exhibit either a negative or positive phase shift. Each
breather solution is characterized by its position and a spectral parameter, determin-
ing a nonlinear dispersion relation, which uniquely relates the breather velocity to the
breather phase shift.

Exact solutions representing soliton-cnoidal wave interactions have previously been
constructed using other solution methods. The first result was developed in [11] within
the context of the stability analysis of a cnoidal wave of the KdV equation. The authors
used the Marchenko equation of the inverse scattering transform and obtained exact
solutions for “dislocations” of the cnoidal wave. More special solutions for soliton-
cnoidal wave interactions were obtained in [12] by using the nonlocal symmetries of
the KdV equation. These solutions are expressed in a closed form as integrals of
Jacobi elliptic functions, but they do not represent the most general exact solutions
for soliton-cnoidal wave interactions.

Quasi-periodic (finite-gap) solutions and solitons on a quasi-periodic background
have been obtained as exact solutions of the KdV equation by using algebro-geometric
methods [13, 14]. In the limit of a single gap, such solutions describe interactions of
solitons with a cnoidal wave. By using the degeneration of hyperelliptic curves and
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Sato Grassmannian theory, mixing between solitons and quasi-periodic solutions was
obtained recently in [15] based on [16], not only for the KdV equation but also for the
KP hierarchy of integrable equations. Finally, in a very recent preprint [17], inspired
by recent works on soliton gases [18, 19], the degeneration of quasi-periodic solutions
was used to construct multisoliton-cnoidal wave interaction solutions.

Compared to previous work, which primarily involve Weierstrass functions with com-
plex translation parameters, we give explicit solutions in terms of Jacobi elliptic func-
tions with real-valued parameters. This approach allows us to clarify the nature of
soliton-cnoidal wave interactions, plot their corresponding properties, and analyze the
exact solutions in various limiting regimes. We also demonstrate that the Darboux
transformation provides a more straightforward method for obtaining these compli-
cated interaction solutions compared to the degeneration methods used in [15, 17].

The paper is organized as follows. The main results are formulated in Section 2
and illustrated graphically. In Section 3, we introduce the normalized cnoidal wave
solution with one parameter. Symmetries of the KdV equation are then introduced
that can be used to generate the more general family of cnoidal waves with four ar-
bitrary parameters. Eigenfunctions of the stationary Schrödinger equation with the
normalized cnoidal wave potential are reviewed in Section 4. The time evolution of
the eigenfunctions is obtained in Section 5. In Section 6, the Darboux transformation
is used to generate breather solutions to the KdV equation. Properties of bright and
dark breathers are explored in Sections 7 and 8, respectively. The paper concludes
with Section 9.

2. Main results

We take the Korteweg–de Vries (KdV) equation in the normalized form

ut + 6uux + uxxx = 0, (1)

where t is the evolution time, x is the spatial coordinate for wave propagation, and u
is the fluid velocity. As is well-known [20], every smooth solution u(x, t) of the KdV
equation (1) is the compatibility condition of the stationary Schrödinger equation

(−∂2
x − u)v = λv (2)

and the time evolution problem

vt = (4λ− 2u)vx + uxv, (3)

where λ is the (x, t)-independent spectral parameter.
The normalized traveling cnoidal wave of the KdV equation (1) is given by

u(x, t) = φ0(x− c0t), φ0(x) := 2k2cn2(x, k), c0 := 4(2k2 − 1), (4)

where cn(x, k) is the Jacobi elliptic function, and k ∈ (0, 1) is the elliptic modulus.
Table 1 collects together elliptic integrals and Jacobi elliptic functions used in our
work, see [21, 22, 23].
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The main result of this work is the derivation and analysis of two solution families of
the KdV equation (1) parametrized by λ and x0 ∈ R, where λ belongs to (−∞,−k2)
for the first family and (1−2k2, 1−k2) for the second family. Both the solution families
can be expressed in the form

u(x, t) = 2

[
k2 − 1 +

E(k)

K(k)

]
+ 2∂2

x log τ(x, t), (5)

where the τ -function for the first family is given by

τ(x, t) := Θ(x− c0t+ αb)e
κb(x−cbt+x0) + Θ(x− c0t− αb)e−κb(x−cbt+x0) (6)

with uniquely defined κb > 0, cb > c0 and αb ∈ (0, K(k)) and the τ -function for the
second family is given by

τ(x, t) := Θ(x− c0t+ αd)e
−κd(x−cdt+x0) + Θ(x− c0t− αd)eκd(x−cdt+x0) (7)

with uniquely defined κd > 0, cd < c0, and αd ∈ (0, K(k)).
Figure 1 depicts the spatiotemporal evolution of a solution u(x, t) given by (5) and

(6). This solution represents a bright breather on a cnoidal wave background (hereafter
referred to as a bright breather) with speed cb > c0 and inverse width κb, where c0 is
the speed of the background cnoidal wave. As a result of the bright soliton, the cnoidal
wave background is spatially shifted by 2αb.

Figure 1. Bright breather on a cnoidal wave with k = 0.8 for λ = −1.2
and x0 = 0.

Figure 2 shows the spatiotemporal evolution of a solution u(x, t) given by (5) and
(7). This solution is a dark breather on a cnoidal wave background (hereafter referred
to as a dark breather), where the breather core exhibits the inverse spatial width κd
and speed cd < c0. The dark breather gives rise to the spatial shift −2αd of the cnoidal
background.
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Figure 2. Dark breather on a cnoidal wave with k = 0.7 for λ = 0.265
and x0 = 0.

Using properties of Jacobi elliptic functions, we obtain explicit expressions for the
parameters of the τ -functions (6) and (7) and their dependence on the parameter λ
that characterizes the dynamical properties of bright and dark breathers. Although
the analytical expressions (5) with either (6) or (7) are not novel and can be found in
equivalent forms in [11, 15, 17], it is the first time to the best of our knowledge that
the dynamical properties of bright and dark breathers have been explicitly investigated
for the KdV equation (1). We also obtain asymptotic expressions for bright and dark
breathers in the limits when λ approaches the band edges or when the elliptic modulus
k approaches the end points 0 and 1.

3. Traveling cnoidal wave

A traveling wave solution u(x, t) = φ(x − ct) to the KdV equation (1) satisfies the
second-order differential equation after integration in x:

φ′′ + 3φ2 − cφ = b, (8)

where b ∈ R is the integration constant and the single variable x stands for x− ct. The
second-order equation (8) is integrable with the first-order invariant

(φ′)2 + 2φ3 − cφ2 − 2bφ = d, (9)

where d ∈ R is another integration constant. The following proposition summarizes
the existence of periodic solutions to system (8) and (9).

Proposition 1. There exists a family of periodic solutions to system (8) and (9) for
every (b, c, d) satisfying c2 + 12b > 0 and d ∈ (U(φ+), U(φ−)), where U(φ) := 2φ3 −
cφ2 − 2bφ and φ± are critical points of U given by φ± = (c±

√
c2 + 12b)/6.
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Proof. If c2 + 12b > 0, the mapping φ 7→ U(φ) has two critical points φ±. Since
U ′(φ±) = 6φ2

± − 2cφ± − 2b = 0 and U ′′(φ±) = 12φ± − 2c = ±2
√
c2 + 12b, φ+ is the

minimum of U and φ− is the maximum of U . If d = U(φ+), the only bounded solution
of system (8) and (9) is a constant solution corresponding to the center point (φ+, 0).
If d = U(φ−), the only bounded solution of system (8) and (9) is a homoclinic orbit
from the saddle point (φ−, 0) which surrounds the center point (φ+, 0). The family of
periodic orbits exists in a punctured neighbourhood around the center point enclosed
by the homoclinic orbit, for d ∈ (U(φ+), U(φ−)).

If c2 + 12b ≤ 0, the mapping φ 7→ U(φ) is monotonically increasing. There exist no
bounded solutions of system (8) and (9) with the exception of the constant solution
φ = c/6 in the marginal case c2 + 12b = 0. �

It follows from Proposition 1 that the most general periodic traveling wave solution
has three parameters (b, c, d), up to translations, that are defined in a subset of R3 for
which c2 + 12b > 0 and d ∈ (U(φ+), U(φ−)). For each (b, c, d) in this subset of R3,
the translational parameter x0 ∈ R generates the family of solutions φ(x + x0) due to
translation symmetry.

Two of the three parameters of the periodic solution family can be chosen arbitrarily
due to the following two symmetries of the KdV equation (1):

• Scaling transformation: if u(x, t) is a solution, so is α2u(αx, α3t), α > 0.
• Galilean transformation: if u(x, t) is a solution, so is β + u(x− 6βt, t), β ∈ R.

Due to these symmetries, if φ0 is a periodic solution to system (8) and (9) with (b, c, d) =
(b0, c0, d0), then β + α2φ0(αx) is also a periodic solution to system (8) and (9) with

(b, c, d) = (−3β2 − α2βc0 + α4b0, 6β + α2c0, 2β
3 + α2β2c0 − 2βα4b0 + α6d0),

where α > 0 and β ∈ R are arbitrary parameters. Thus, without loss of general-
ity, we can consider the normalized, 1-parameter family of periodic traveling waves
φ0(x) = 2k2cn2(x, k) for which the values of (b0, c0, d0) are determined in the following
proposition.

Proposition 2. The normalized cnoidal wave φ0(x) = 2k2cn2(x, k) is a periodic solu-
tion of system (8) and (9) with

b0 := 4k2(1− k2), c0 := 4(2k2 − 1), d0 = 0,

where k ∈ (0, 1) is an arbitrary parameter.

Proof. Since min
x∈R

φ0(x) = 0, it follows from (9) that d0 = U(0) = 0. On the other hand,

by using the following fundamental relations between Jacobi elliptic functions

sn2(x, k) + cn2(x, k) = 1, dn2(x, k) + k2sn2(x, k) = 1 (10)
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and their derivatives

d

dx

 sn(x, k)
cn(x, k)
dn(x, k)

 =

 cn(x, k)dn(x, k)
−sn(x, k)dn(x, k)
−k2sn(x, k)cn(x, k)

 , (11)

we obtain from (9) with d0 = 0 that b0 = 4k2(1− k2) and c0 = 4(2k2 − 1). �

4. Lamé equation as the spectral problem

The spectral problem (2) with the normalized cnoidal wave (4) is known as the Lamé
equation [24, p.395]. It can be written in the form

v′′(x)− 2k2sn2(x, k)v(x) + ηv(x) = 0, η := λ+ 2k2, (12)

where the single variable x stands for x − c0t. By using (10) and (11), we obtain
the following three particular solutions v = v1,2,3(x) of the Lamé equation (12) with
λ = λ1,2,3(k):

λ1(k) := −k2, v1(x) := dn(x, k),

λ2(k) := 1− 2k2, v2(x) := cn(x, k),

λ3(k) := 1− k2, v3(x) := sn(x, k),

which correspond to the three remarkable values of η: η1 = k2, η2 = 1, and η3 = 1+k2.
For k ∈ (0, 1), the three eigenvalues are sorted as λ1(k) < λ2(k) < λ3(k).

Figure 3. Floquet spectrum of the Lamé equation (12) for different
values of k ∈ (0, 1).

Figure 3 shows the Floquet spectrum of the Lamé equation (12), which corresponds
to the admissible values of λ for which v ∈ L∞(R). The bands are shaded and the
band edges shown by the bold solid curves corresponding to λ = λ1,2,3(k) for k ∈ (0, 1).
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The cnoidal wave is the periodic potential with a single finite gap (the so-called one-
zone potential) [25] so that the Floquet spectrum consists of the single finite band
[λ1(k), λ2(k)] and the semi-infinite band [λ3(k),∞).

As is well-known (see [24, p. 395]), the two linearly independent solutions of the
Lamé equation (12) for λ 6= λ1,2,3(k) are given by the functions

v±(x) =
H(x± α)

Θ(x)
e∓xZ(α), (13)

where α ∈ C is found from λ ∈ R by using the characteristic equation η = k2+dn2(α, k)

and the Jacobi zeta function is Z(α) := Θ′(α)
Θ(α)

= Z(ϕα, k) with ϕα = am(α, k) [21,

144.01], see Table 1. Since η = λ + 2k2, the characteristic equation can be written in
the form

λ = 1− 2k2 + k2cn2(α, k). (14)

The following proposition clarifies how α is defined from the characteristic equation
(14) when λ is decreased from λ3(k) to −∞. Figure 4 illustrates the path of α in the
complex plane.

Figure 4. Left: Floquet spectrum with orange, blue, and green dots
corresponding to λ3(k), λ2(k), and λ1(k), respectively, for a fixed value
of k ∈ (0, 1). Right: The complex plane for the parameter α indicating
the path of α corresponding to the path of λ in (14).

Proposition 3. Fix k ∈ (0, 1). We have

• α = F (ϕα, k) ∈ [0, K(k)] for λ ∈ [λ2(k), λ3(k)], where ϕα ∈ [0, π
2
] is given by

sinϕα =

√
1− k2 − λ

k
. (15)
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• α = K(k) + iβ with β = F (ϕβ, k
′) ∈ [0, K ′(k)] for λ ∈ [λ1(k), λ2(k)], where

ϕβ ∈ [0, π
2
] is given by

sinϕβ =

√
1− 2k2 − λ√

(1− k2)(1− k2 − λ)
. (16)

• α = K(k) + iK ′(k) + γ with γ = F (ϕγ, k) ∈ [0, K(k)) for λ ∈ (−∞, λ1(k)],
where ϕγ ∈ [0, π

2
) is given by

sinϕγ =

√
−k2 − λ√

1− 2k2 − λ
, (17)

where k′ =
√

1− k2 and K ′(k) = K(k′).

Proof. When λ ∈ [λ2(k), λ3(k)], it follows from (14) that cn2(α, k) ∈ [0, 1] and hence
α ∈ [0, K(k)] modK(k). Solving (14) for sinϕα = sn(α, k) using (10) yields (15). As
λ is decreased from λ3(k) to λ2(k), ϕα is monotonically increasing from 0 to π/2 and
so α = F (ϕα, k) monotonically increases from 0 to K(k). See the orange and blue dots
in Figure 4.

When λ ∈ [λ1(k), λ2(k)], we use the special relations (see [22, 8.151 and 8.153]),

cn(K(k) + iβ, k) = −k′ sn(iβ, k)

dn(iβ, k)
= −ik′ sn(β, k′)

dn(β, k′)
,

where k′ :=
√

1− k2. The characteristic equation (14) is rewritten in the form

sn2(β, k′) =
1− 2k2 − λ

(1− k2)(1− k2 − λ)
,

from which it follows that sn2(β, k′) ∈ [0, 1] and hence β ∈ [0, K(k′)] modK(k′).
Setting sinϕβ = sn(β, k′) yields (16). When λ is decreased from λ2(k) to λ1(k), then
ϕβ is monotone increasing and so is F (ϕβ, k

′). Hence, β increases from 0 to K ′(k). See
blue and green dots on Figure 4.

When λ ∈ (−∞, λ1(k)], we use the special relations (see [22, 8.151]),

cn(K(k) + iK ′(k) + γ) = − ik′

kcn(γ, k)
,

and rewrite the characteristic equation (14) in the form

cn2(γ, k) =
1− k2

1− 2k2 − λ
.

from which it follows that cn2(γ, k) ∈ [0, 1] and hence γ ∈ [0, K(k)) modK(k). Setting
sinϕγ = sn(γ, k) and using (10) yield (17). When λ is decreased from λ1(k) to −∞,
then ϕγ is monotone increasing and so is F (ϕγ, k). Hence, γ increases from 0 to K(k).
See the green and black dots in Figure 4. �
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5. Time evolution of the eigenfunctions

Let u(x, t) = φ0(x − c0t) be the normalized cnoidal wave (4) and v(x, t) = v±(x, t)
be solutions of the system (2) and (3) such that v±(x, 0) = v±(x) is given by (13). The
time dependence of v±(x, t) can be found by separation of variables:

v±(x, t) =
H(x− c0t± α)

Θ(x− c0t)
e∓(x−c0t)Z(α)∓tω(α), (18)

where ω(α) is to be found. After substituting (18) into (3) and dividing by v±(x, t),
we obtain

ω(α) = (c0 + 4λ− 2φ0(x))

[
Z(α)± Z(x)∓ H ′(x± α)

H(x± α)

]
∓ φ′0(x), (19)

where x stands again for x − ct. Equation (19) holds for every x ∈ R due to the
compatibility of the system (2) and (3). Hence, we obtain ω(α) by substituting c0 =
4(2k2 − 1) and evaluating (19) at x = 0:

ω(α) = 4(λ+ k2 − 1)

[
Θ′(α)

Θ(α)
− H ′(α)

H(α)

]
, (20)

where we have used the parity properties [22, 8.192]:

H(−x) = −H(x) and Θ(−x) = Θ(x).

The following proposition ensures that ω(α) is real when λ is taken either in the semi-
infinite gap (−∞, λ1(k)) or in the finite gap (λ2(k), λ3(k)).

Proposition 4. Fix k ∈ (0, 1). Then, ω(α) ∈ R if λ ∈ (−∞, λ1(k)) ∪ (λ2(k), λ3(k))
and ω(α) ∈ iR if λ ∈ [λ1(k), λ2(k)].

Proof. We recall the logarithmic derivatives of the Jacobi theta functions [22, 8.199(3)]:

H ′(x)

H(x)
=

π

2K(k)

cot

(
πx

2K(k)

)
+ 4 sin

(
πx

K(k)

) ∞∑
n=1

q2n

1− 2q2n cos
(

πx
K(k)

)
+ q4n

 ,
H ′1(x)

H1(x)
= − π

2K(k)

tan

(
πx

2K(k)

)
+ 4 sin

(
πx

K(k)

) ∞∑
n=1

q2n

1 + 2q2n cos
(

πx
K(k)

)
+ q4n

 ,
Θ′1(x)

Θ1(x)
= − 2π

K(k)
sin

(
πx

K(k)

) ∞∑
n=1

q2n−1

1 + 2q2n cos
(

πx
K(k)

)
+ q4n−2

,

Θ′(x)

Θ(x)
=

2π

K(k)
sin

(
πx

K(k)

) ∞∑
n=1

q2n−1

1− 2q2n cos
(

πx
K(k)

)
+ q4n−2

,

where q := e−
πK′(k)
K(k) is the Jacobi nome, see Table 1.
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If λ ∈ [λ2(k), λ3(k)], then α = F (ϕα, k) ∈ [0, K(k)] by Proposition 3 and (20) returns
real ω(α), where both logarithmic derivatives of the Jacobi theta functions are positive.

If λ ∈ [λ1(k), λ2(k)], then α = K(k) + iβ with β = F (ϕβ, k
′) ∈ [0, K ′(k)] by Propo-

sition 3. The half-period translations [22, 8.183] yield

H(K(k) + iβ) = H1(iβ),

Θ(K(k) + iβ) = Θ1(iβ),

so that the logarthmic derivatives in (20) are purely imaginary and ω(K(k)+ iβ) ∈ iR.
If λ ∈ (−∞, λ1(k)], then α = K(k) + iK ′(k) + γ with γ = F (ϕγ, k) ∈ [0, K(k)) by

Proposition 3. The half-period translations [22, 8.183] yield

H(K(k) + iK ′(k) + γ) = e
πK′(k)
4K(k) e−

iπγ
2K(k) Θ1(γ),

Θ(K(k) + iK ′(k) + γ) = e
πK′(k)
4K(k) e−

iπγ
2K(k)H1(γ),

The purely imaginary part of the logarithmic derivatives cancels in (20) after the
transformation and we obtain the real quantity

ω(K(k) + iK ′(k) + γ) = 4(λ+ k2 − 1)

[
H ′1(γ)

H1(γ)
− Θ′1(γ)

Θ1(γ)

]
, (21)

where both logarithmic derivatives are negative. �

6. New solutions via the Darboux transformation

We use the standard tool of the one-fold Darboux transformation for the KdV equa-
tion [1]. If we fix a value of λ = λ0 and obtain a solution v = v0(x, t) of the linear
equations (2) and (3) associated with the potential u = φ0(x−c0t) of the KdV equation
(1), a new solution of the same KdV equation (1) is given by

û(x, t) = φ0(x− c0t) + 2∂2
x log v0(x, t). (22)

The new solution û(x, t) is real and non-singular if and only if v0(x, t) 6= 0 everywhere
in the (x, t) plane. This is true for λ0 ∈ (−∞, λ1(k)), which is below the Floquet
spectrum (Figure 3), because Sturm’s nodal theorem implies that v±(x, t), given by
(18), are sign-definite in x for every t ∈ R. However, if λ0 ∈ (λ2(k), λ3(k)) is in the
finite gap, Sturm’s nodal theorem implies that v±(x, t) have exactly one zero on the
fundamental period of φ0 for every t ∈ R. We will show that this technical obstacle
can be overcome with the translation of the new solution û(x, t) with respect to a
half-period in the complex plane of x.

The following proposition gives an important relation between the Jacobi cnoidal
function and the Jacobi theta function.

Proposition 5. For every k ∈ (0, 1), we have

k2cn2(x, k) = k2 − 1 +
E(k)

K(k)
+ ∂2

x log Θ(x). (23)
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Proof. From [23, 6.6.9] we have that

P

(
x√

e1 − e3

)
= c1 − ∂2

z log θ1

(
πx

2K(k)

)
, (24)

where c1 is a specific constant to be determined and P (z) is Weierstrass’ elliptic function
that satisfies

[P ′(z)]2 = 4(P (z)− e1)(P (z)− e2)(P (z)− e3),

with three turning points e3 < e2 < e1 such that e1 + e2 + e3 = 0. As is well known
(see [22, 8.169]), P (z) is related to the Jacobi elliptic functions by

P

(
x√

e1 − e3

)
= e3 +

e1 − e3

sn2(x, k)

= e3 + (e1 − e3)k2sn2(x+ iK ′(k), k)

= e3 + (e2 − e3)sn2(x+ iK ′(k), k)

= e2 − (e2 − e3)cn2(x+ iK ′(k), k),

where we have used the property ksn(x+iK ′(k), k) = sn(x, k) [22, 8.151], the definition

k2 =
e2 − e3

e1 − e3

,

and the first relation in (10). Thus, we obtain, due to the relation (24) that

k2cn2(x, k) =
e2 − P

(
x−iK′(k)√
e1−e3

)
e1 − e3

=
e2 − c1

e1 − e3

+ ∂2
x log θ1

(
π(x− iK ′(k))

2K(k)

)
=
e2 − c1

e1 − e3

+ ∂2
x log θ4

(
πx

2K(k)

)
=
e2 − c1

e1 − e3

+ ∂2
x log Θ(x),

(25)

where we have used the half-period translation [22, 8.183]:

θ1

(
u− iπK ′(k)

2K(k)

)
= −ie

πK′(k)
4K(k) eiuθ4(u)

and ∂2
x log ec2+c3x = 0 for every c2, c3 ∈ C. To find the specific constant e2−c1

e1−e3 , we

evaluate the relation (25) at x = 0:

e2 − c0

e1 − e3

= k2 − Θ′′(0)

Θ(0)

= k2 − 1 +
E(k)

K(k)
,
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where we have used [22, 8.196]. This yields (23). �

The following two theorems present the construction of bright and dark breathers in
the form (5) with either (6) or (7). These two theorems contribute to the main result
of this work.

Theorem 1. There exists an exact solution to the KdV equation (1) in the form (5)
with (6), where x0 ∈ R is arbitrary and where αb ∈ (0, K(k)), κb > 0, and cb > c0 are
uniquely defined from λ ∈ (−∞, λ1(k)) by

αb = F (ϕγ, k), (26)

κb =

√
1− λ− k2

√
−λ− k2

√
1− 2k2 − λ

− Z(ϕγ, k), (27)

cb = c0 +
4
√

1− λ− 2k2
√

1− λ− k2
√
−λ− k2

κb
, (28)

with ϕγ ∈ (0, π
2
) being found from

sinϕγ =

√
−λ− k2

√
1− 2k2 − λ

. (29)

Proof. Consider a linear combination of the two solutions to the linear system (2) and
(3) in the form (18) with α = K(k) + iK ′(k) + γ and γ = F (ϕγ, k) ∈ (0, K(k)):

v0(x, t) = c+
H(x− c0t+ α)

Θ(x− c0t)
e−(x−c0t)Z(α)−ω(α)t + c−

H(x− c0t− α)

Θ(x− c0t)
e+(x−c0t)Z(α)+ω(α)t,

(30)
where (c+, c−) are arbitary constants. By using the half-period translations of the
Jacobi theta functions [22, 8.183], we obtain for α = K(k) + iK ′(k) + γ:

H(x+ α) = e
πK′(k)
4K(k)

− iπ(x+γ)
2K(k) Θ(x+K(k) + γ),

H(x− α) = −e
πK′(k)
4K(k)

+
iπ(x−γ)
2K(k) Θ(x+K(k)− γ),

and

Z(α) =
H ′1(γ)

H1(γ)
− iπ

2K(k)
.

Substituting these expressions into (30) cancels the x-dependent complex phases. An-
ticipating (22), we set

c+ = ce
−(K(k)+x0)

H′1(γ)
H1(γ) , c− = −ce(K(k)+x0)

H′1(γ)
H1(γ)

with arbitrary parameters c, x0 ∈ R, from which the constant c cancels out due to the
second logarithmic derivative. Using c± in (30), inserting v0 into (22), and simplifying
with the help of (23), we obtain a new solution in the final form u(x, t) := û(x−K(k), t),
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where u(x, t) is given by (5) with τ(x, t) given by (6) with the following parameters:

αb := γ ∈ (0, K(k)), κb := −H′1(γ)

H1(γ)
> 0, and

cb := c0 − ω(K(k) + iK ′(k) + γ)
H1(γ)

H ′1(γ)

= 4(k2 − λ) + 4(λ+ k2 − 1)
Θ′1(γ)H1(γ)

Θ1(γ)H ′1(γ)
,

where we have used (21). By using the following identities [21, 1053.02]

H ′1(γ)

H1(γ)
= −sn(γ, k)dn(γ, k)

cn(γ, k)
+ Z(γ),

Θ′1(γ)

Θ1(γ)
= −k

2sn(γ, k)cn(γ, k)

dn(γ, k)
+ Z(γ),

and the relation formulas Z(γ) = Z(ϕγ, k),

sn(γ, k) = sin(ϕγ) =

√
−λ− k2

√
1− 2k2 − λ

, cn(γ, k) = cos(ϕγ) =

√
1− k2

√
1− 2k2 − λ

,

and

dn(γ, k) =

√
1− k2

√
1− λ− k2

√
1− 2k2 − λ

,

we express the parameters αb, κb, and cb in terms of incomplete elliptic integrals in
(26), (27), and (28). Since κb > 0, it follows that cb > c0. �

Remark 1. The solution u(x, t) obtained in the proof of Theorem 1 is the half-period
translation along the real axis of the solution û(x, t) defined by (22).

Remark 2. Since κb > 0, it follows from (5), (6), and (23) that

u(x, t)→ 2k2cn2(x− c0t± αb, k) as x− cbt→ ±∞.

A suitably normalized phase shift of the background cnoidal wave can be written in the
form:

∆b :=
2παb
K(k)

=
2πF (ϕγ, k)

K(k)
∈ (0, 2π).

When ∆b ∈ (0, π], the normalized phase shift is positive. When ∆b ∈ (π, 2π), the
normalized phase shift is considered to be negative by a period translation to ∆b− 2π ∈
(−π, 0).

Theorem 2. There exists an exact solution to the KdV equation (1) in the form (5)
with (7), where x0 ∈ R is arbitrary and where αd ∈ (0, K(k)), κd > 0, and cd < c0 are
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uniquely defined from λ ∈ (λ2(k), λ3(k)) by

αd = F (ϕα, k), (31)

κd = Z(ϕα, k), (32)

cd = c0 −
4
√

(k2 + λ)(λ− 1 + 2k2)(1− k2 − λ)

κd
, (33)

with ϕα ∈ (0, π
2
) being found from

sinϕα =

√
1− k2 − λ

k
. (34)

Proof. When λ ∈ (λ2(k), λ3(k)), α = F (ϕα, k) ∈ (0, K(k)), ω(α) and Z(α) = Z(ϕα, k)
are real by Propositions 3 and 4. However, the functions H(x±α) change sign so that
we should express them in terms of the functions Θ(x ± α) after complex translation
of phases. This is achieved by the half-period translations [22, 8.183]:

H(x+ α) = ie−
πK′(k)
4K(k)

− iπ(x+α)
2K(k) Θ(x+ α− iK ′(k)),

H(x− α) = ie−
πK′(k)
4K(k)

− iπ(x−α)
2K(k) Θ(x− α− iK ′(k)).

The x-dependent complex phase is now a multiplier in the linear superposition (30)
which vanishes in the result due to the second logarithmic derivative. By using (22)
and (23), we set

c+ = ce−(x0−iK′(k))Z(α)+ iπα
2K(k) , c− = ce(x0−iK′(k))Z(α)− iπα

2K(k) ,

and obtain a new solution in the final form u(x, t) := û(x + iK ′(k), t) with the same
u(x, t) as in (5) and with τ(x, t) given by (7) with the following parameters: αd := α ∈
(0, K(k)), κb := Z(α) > 0, and

cd = c0 −
ω(α)

Z(α)

= 4(k2 − λ) + 4(λ+ k2 − 1)
Θ(α)H ′(α)

Θ′(α)H(α)
,

where we have used (20). Using the following identities [21, 1053.02]

H ′(α)

H(α)
=

cn(α, k)dn(α, k)

sn(α, k)
+ Z(α),

Θ′(α)

Θ(α)
= Z(α),

and the relations Z(α) = Z(ϕα, k),

sn(α, k) = sin(ϕα) =

√
1− λ− k2

k
, cn(α, k) = cos(ϕα) =

√
λ− 1 + 2k2

k
,
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and dn(α, k) = λ+k2, we express the parameters αd, κd, and cd in terms of incomplete
elliptic integrals as (31), (32), and (33). Since κd > 0, we have cd < c0. �

Remark 3. The solution u(x, t) obtained in the proof of Theorem 2 is the half-period
translation along the imaginary axis of the solution û(x, t) defined by (22).

Remark 4. Since Z(ϕα, k) > 0, it follows from (5), (7), and (23) that

u(x, t)→ 2k2cn2(x− c0t∓ αd, k) as x− cdt→ ±∞.
A suitably normalized phase shift of the background cnoidal wave can be written in the
form:

∆d = − 2παd
K(k)

= −πF (ϕα, k)

K(k)
∈ (−2π, 0). (35)

When ∆d ∈ (−π, 0), the normalized phase shift is negative. When ∆d ∈ (−2π,−π], the
normalized phase shift is considered to be positive by translation to 2π + ∆d ∈ (0, π].

7. Properties of the bright breather

Figure 5 plots ∆b, κb, and cb for a bright breather as a function of the parameter
λ, see Theorem 1 and Remark 2. The phase shift ∆b, the inverse width κb, and the
breather speed cb decrease monotonically as λ increases from −∞ towards the band
edge λ1(k), shown by the vertical dashed line. Since c0 = 1.12 for k = 0.8, we confirm
that cb > c0, which can also be observed in Figure 1.

Figure 5. Normalized phase shift ∆b (left), inverse width κb (middle),
and breather speed cb (right) versus λ in (−∞, λ1(k)) for k = 0.8. The
band edge λ1(k) = −k2 is shown by the vertical dashed line.

Figure 6 characterizes the family of bright breathers by plotting cb−c0 and κb versus
∆b for three values of k. Profiles of representative breather solutions shown in Figure 6
confirm why we call them bright breathers. Bright breathers are more localized, have
larger amplitudes, and move faster for larger values of ∆b (smaller values of λ). For
sufficiently large amplitude, ∆b exceeds π and the breather exhibits a negative phase
shift ∆b − 2π ∈ (−π, 0) (cf. Remark 2). In contrast, for sufficiently small-amplitude
breathers, ∆b ∈ (0, π) and the phase shift is positive.
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Figure 6. Left top (bottom): dependence of cb − c0 (κb) versus ∆b for
several values of k. Right: representative bright breather solutions. Rep-
resentative solutions are marked on the left panel with a unique colored
symbol.

7.1. Asymptotic limits λ→ −∞ and λ→ λ1(k).

It follows from (29) that

ϕγ =


π

2
−
√

1− k2√
|λ|

+O(
√
|λ|−3) as λ→ −∞,√

|λ| − k2

√
1− k2

+O(
√

(|λ| − k2)3) as λ→ λ1(k).

We also use the following asymptotic expansions of the elliptic integrals:

F (ϕ, k) = ϕ+O(ϕ3), E(ϕ, k) = ϕ+O(ϕ3), as ϕ→ 0

and

F (ϕ, k) = K(k) +O(1
2
π − ϕ), E(ϕ, k) = E(k) +O(1

2
π − ϕ), as ϕ→ π

2

The itemized list below summarizes the asymptotic results, where we use the asymp-
totic equivalence for the leading-order terms and neglect writing the remainder terms.
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• The asymptotic values of the normalized phase shift ∆b are

∆b ∼


2π − 2π√

|λ|K(k)
as λ→ −∞,

2π
√
|λ| − k2

√
1− k2K(k)

as λ→ λ1(k).

Since ∂ϕF (ϕ, k) = (1 − k2 sin2 ϕ)−1/2 > 0 and ∂λϕγ < 0, the normalized phase
shift ∆b is a monotonically decreasing function of λ from 2π to 0. This proves
that the map λ 7→ ∆b(λ) is one-to-one and onto from (−∞, λ1) to (0, 2π).

• The asymptotic values for the inverse width κb are

κb ∼


√
|λ| as λ→ −∞,√
|λ| − k2

1− k2

E(k)

K(k)
as λ→ λ1(k).

The derivative is given by

∂λκb = − sinϕγ

2
√

1− λ− k2

+

(
√

1− λ− k2 cosϕγ −
√

1− k2 sin2 ϕγ +
E(k)

K(k)
√

1− k2 sin2 ϕγ

)
∂λϕγ.

Since the terms in parentheses are positive and ∂λϕγ < 0, we have ∂λκb < 0 so
that κb is a monotonically decreasing function of λ.

• The asymptotic values for the breather speed cb are

cb ∼


4|λ|

2− k2 − E(k)/K(k)
as λ→ −∞,

c0 + 4(1− k2)
K(k)

E(k)
as λ→ λ1(k).

The breather speed cb in (28) satisfies cb > c0. Based on the graphs in Fig. 5,
we conjecture that the breather velocity cb is a decreasing function of λ.

7.2. Asymptotic limits k → 0 and k → 1.

In the limit k → 0, the background cnoidal wave φ0(x) = 2k2cn(x; k) vanishes since
Θ(x)→ 1 as k → 0 whereas it follows from (27) and (28) that

κb →
√
|λ|, cb → 4|λ|,
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since Z(ϕγ, k)→ 0 and c0 → −4 as k → 0. The breather solution (5) with (6) recovers
the one-soliton solution

u(x, t)→ 2|λ| sech2
(√
|λ|(x− 4|λ|t+ x0)

)
, k → 0,

for every λ ∈ (−∞, 0).

In the limit k → 1, the background cnoidal wave φ0(x) = 2k2cn(x; k) transforms into
the normalized soliton φ0(x)→ 2 sech2(x) and we will show that the breather solution
(5) with (6) recovers the two-soliton solution. It follows from (27) and (28) that

κb →
√
|λ|, cb → 4|λ|,

since Z(ϕγ, k)→ 0 and c0 → 4 as k → 1. Furthermore, it follows from (29) that ϕγ → π
2

as k → 1 so that αb = F (ϕγ, k) → ∞ as k → 1. In order to regularize the solution,
we use the translation invariance of the KdV equation, the 2K(k)-periodicity of Θ,
and define the half-period translation of (6) with the transformation x → x − K(k),
x0 → x0 +K(k):

τ(x, t) = Θ(x−c0t+αb−K(k))eκb(x−cbt+x0) +Θ(x−c0t−αb+K(k))e−κb(x−cbt+x0). (36)

Recalling that αb = F (ϕγ, k), for each λ ∈ (−∞,−1), let us define the phase parameter
δb by evaluating the limit [26, eq. (2.14)]:

δb := lim
k→1

[K(k)− F (ϕγ, k)] =
1

2
log

(√
−λ+ 1√
−λ− 1

)
. (37)

It remains to deduce the asymptotic formula for Θ as k → 1. We show that

Θ(x) ∼
√
−2k′ log k′

π
cosh(x), as k → 1, (38)

by using the Poisson summation formula [27]:

Θ(x) =
∞∑

n=−∞

f(n) =
∞∑

n=−∞

f̂(n), (39)

where f̂(m) =
∫∞
−∞ f(n)e−2πinmdn. Since

Θ(x) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos

(
nπx

K(k)

)
, q := e−

πK(k′)
K(k) ,

where k′ =
√

1− k2, we obtain from (39) that

f(n) = qn
2

einπ(1+x/K(k)), f̂(n) =

√
K(k)

K(k′)
(q′)(n−1/2−x/2K(k))2 , (40)
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where q′ := e
−πK(k)

K(k′) . As k → 1, we have k′ → 0 and

K(k) = − log k′ + 2 log 2 +O((k′)2),
K(k′) = π

2
+ π

8
k′2 +O((k′)4),

q′ = 1
16
k′2 + 1

32
k′4 +O((k′)6).

These expansions simplify (40) to

f̂(n) =

√
−2 log k′

π

(
k′

4

) (2n−1)2

2

e(2n−1)x

(
1 +

x2 − 2 log 2

log k′
+ · · ·

)
, as k′ → 0,

for every fixed x ∈ R. Then, the rightmost summation in (39) yields the asymptotic

expansion Θ(x) = f̂(0) + f̂(1) + · · · in the form (38). Using it in (36), we obtain the
asymptotic expansion

τ(x, t) ∼
√
−2k′ log k′

π

[
cosh(ξ1 − δb)e

√
|λ|ξ2 + cosh(ξ1 + δb)e

−
√
|λ|ξ2
]
, (41)

where ξ1 = x− 4t and ξ2 = x− 4|λ|t+ x0 for every λ ∈ (−∞,−1).
Using (41) with (37) in (5), we obtain the two-soliton solution in the form:

u(x, t) = 2
e2δb(1−

√
|λ|)2 + e−2δb(1 +

√
|λ|)2 + 2 cosh(2

√
|λ|ξ2) + 2|λ| cosh(2ξ1)

[e
√
|λ|ξ2 cosh(ξ1 − δb) + e−

√
|λ|ξ2 cosh(ξ1 + δb)]2

.

The two-soliton solution exhibits the asymptotic behavior

u(x, t) ∼ 2 sech2 (ξ1 ∓ δb) + 2|λ| sech2
(√
|λ|ξ2 ± δb

)
, as t→ ±∞.

After the interaction, the slower soliton of amplitude 2 experiences the negative phase
shift −2δb, whereas the faster soliton of amplitude 2|λ| exhibits the positive phase shift

2δb/
√
|λ|.

8. Properties of the dark breather

Figure 7 plots ∆d, κd, and cd for dark breathers as a function of the parameter λ,
see Theorem 2 and Remark 4. The phase shift ∆d is monotonically increasing between
the band edges λ2(k) and λ3(k), shown by the vertical dashed lines. The inverse width
κd has a single maximum and vanishes at the band edges. The breather speed cd is
monotonically decreasing. Since c0 = −0.08 for k = 0.7, we confirm that cd < c0, which
is also clear from Figure 2.

Figure 8 characterizes the family of dark breathers by plotting cd− c0 and κd versus
∆d for three values of k. The profiles of breather solutions at t = 0 subject to the phase
shift x0 = 5 confirm why we refer to them as dark breathers. In contrast to the bright
breather case, dark breather solutions exhibit vanishing cnoidal wave modulations for
the extreme phase shifts ∆d → −2π and ∆d → 0, with the largest-amplitude breather
occurring at an intermediate phase shift, which we will later identify by examining the
inverse width κd.
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Figure 7. Normalized phase shift ∆d (left), inverse width κd (middle),
and soliton speed cd (right) versus λ in (λ2(k), λ3(k)) for k = 0.7. The
band edges λ2(k) = 1−2k2 and λ3(k) = 1−k2 are shown by the vertical
dashed lines.

Figure 8. Left top (bottom): dependence of cd − c0 (κd) versus ∆d for
several values of k. Right: representative dark breather solutions. Rep-
resentative solutions are marked on the left panel with a unique colored
symbol. The dotted curve on the left panel corresponds to points of
maximum κd with the greatest localization.
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8.1. Asymptotic limits λ→ λ2(k) and λ→ λ3(k).

It follows from (34) that

ϕα =


π

2
−
√
λ− λ2(k)

k
+O (λ− λ2) as λ→ λ2(k),√

λ3(k)− λ
k

+O (λ3 − λ) as λ→ λ3(k).

The itemized list below summarizes the asymptotic results, where we use the asymp-
totic equivalence for the leading-order terms and neglect writing the remainder terms.

• The asymptotic values of the normalized phase shift ∆d are

∆d =


−2π +

2π

K(k)

√
λ− λ2(k)

k2(1− k2)
as λ→ λ2(k),

− 2π

K(k)

√
λ3(k)− λ

k2
as λ→ λ3(k).

Since

∂λ∆d = − 2π

K(k)
∂ϕαF (ϕα, k)∂λϕα

with ∂ϕF (ϕ, k) > 0 and ∂λϕα < 0, the phase shift ∆d monotonically increases
from −2π at λ = λ2(k) to 0 at λ = λ3(k). This proves that the map λ 7→ ∆d(λ)
is one-to-one and onto from [λ2(k), λ3(k)] to [−2π, 0].

• The asymptotic values of the inverse width κd are

κd =


(
E(k)

K(k)
− 1 + k2

)√
λ− λ2(k)

k2(1− k2)
as λ→ λ2(k),(

K(k)

E(k)
− 1

) √
λ3(k)− λ
k

as λ→ λ3(k).

The inverse width κd = Z(ϕα, k) exhibits a maximum when [21, eq. 141.25]

sinϕα =
1

k

√
1− E(k)

K(k)
⇐⇒ λ = λmax(k) :=

E(k)

K(k)
− k2.

The dark breather with this value of λ can be interpreted as the narrowest
(strongest) modulation of the cnoidal wave. Plotting the behavior of ∆max(k) :=
∆d at λ = λmax(k) as a function of k, we find that

−π < ∆max(k) < 0,
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with the lower limit reached as k → 0. The dotted curve in the left top panel
of Fig. 8 shows the graph of{

(∆max(k), cd(λmax(k)))− c0

∣∣ k ∈ (0, 1)
}
.

Consequently, the most localized dark breather exhibits a negative phase shift.
The phase shift is positive for λ near λ2(k) since 2π + ∆d ∈ (0, π) (cf. Remark
4) and is negative for λ near λ3(k) since ∆d ∈ (−π, 0).

• The asymptotic values of the breather speed cd are

cd =


c0 −

4k2(1− k2)

E(k)/K(k)− 1 + k2
as λ→ λ2(k),

c0 −
4k2

1− E(k)/K(k)
as λ→ λ3(k).

Based on the graphs in Fig. 7, we conjecture that the breather velocity cd is a
monotonically decreasing function of λ.

8.2. Asymptotic limit k → 1.

We show similarly to Section 7.2 that the dark breather recovers the two-soliton solu-
tion in the limit k → 1. The only difference from the degeration of the bright breather
is that the spectral parameter λ is now defined in (−1, 0) rather than in (−∞,−1). By
using (38) in (7), we obtain the asymptotic approximation

τ(x, t) ∼
√
−2k′ log k′

π

[
cosh(ξ1 +δd)e

−
√
|λ|ξ2 +cosh(ξ1−δd)e

√
|λ|ξ2
]
, as k → 1, (42)

where ξ1 = x− 4t and ξ2 = x− 4|λ|t+x0 for λ ∈ (−1, 0) and we have used κd →
√
|λ|,

cd → 4|λ|, and the corresponding limiting phase δd found from [26, eq. (2.7)]:

δd := lim
k→1

F (ϕα, k) =
1

2
log

(
1 +

√
|λ|

1−
√
|λ|

)
, λ ∈ (−1, 0). (43)

Inserting (42) and (43) into (5) results in the two-soliton solution

u(x, t) = 2
e2δd(1−

√
|λ|)2 + e−2δd(1 +

√
|λ|)2 + 2 cosh(2

√
|λ|ξ2) + 2|λ| cosh(2ξ1)

[e−
√
|λ|ξ2 cosh(ξ1 + δd) + e

√
|λ|ξ2 cosh(ξ1 − δd)]2

,

that exhibits the asymptotic behavior

u(x, t) ∼ 2 sech2 (ξ1 ± δd) + 2|λ| sech2
(√
|λ|ξ2 ∓ δd

)
, t→ ±∞.

After the interaction, the slower soliton of amplitude 2|λ| experiences the negative

phase shift −2δd/
√
|λ| whereas the faster soliton of amplitude 2 exhibits the positive

phase shift 2δd.
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8.3. Asymptotic limit k → 0.

We show that the dark breather as k → 0 can be approximated by a dark soliton
solution of the nonlinear Schrodinger (NLS) equation.

In the limit k → 0, the interval [λ2(k), λ3(k)] shrinks to the point λ = 1 and the
solution u(x, t) converges to the zero solution such that both the cnoidal wave and the
dark breather vanish. For small k, it is well-known (see, e.g., [28]) that the multiple
scales expansion

u(x, t) = 2Re

[
ε

√
`

6
A(ζ, τ)ei(`x−ωt)

+ ε2
`

6

(1

4
A(ζ, τ)2e2i(`x−ωt) − 1

2
|A(ζ, τ)|2

)
+O(ε3)

]
(44)

leads to the following NLS equation for the slowly varying amplitude A(ζ, τ):

iAτ −
1

2
Aζζ + |A|2A = 0, (45)

where 0 < ε � 1 is the amplitude parameter, ` > 0 is the carrier wavenumber,
ω = −`3 is the KdV linear dispersion relation, and ζ = ε√

6`
(x + 3`2t) and τ = ε2t are

slow variables. The NLS equation (45) admits the plane wave solution

A(ζ, τ) = ei(1+ v2

2
)τ+ivζ+iψ0 (46)

for any v, ψ0 ∈ R. To determine ` and ε, it is necessary to expand the cnoidal wave
background of the dark breather solution for small elliptic modulus 0 < k � 1:

u(x, t) = 2k2cn2(x− c0t)

= 2k2 cos2(x− c0t) +O(k4)

= k2 + k2 cos 2(x− c0t) +O(k4),

where c0 → −4 as k → 0. The background cnoidal wave’s wavenumber Q, frequency
Ω, and mean value φ expand as k → 0 in the form:

Q := π
K(k)

= 2− k2

2
+O(k4),

Ω := c0Q = −8 + 18k2 +O(k4),

φ := 1
2K(k)

∫ 2K(k)

0
φ0(x) dx = k2 +O(k4).

Comparing (44) with the asymptotic expansion for the background cnoidal wave, we

find ε = k2
√

3
2

and ` = 2 confirming that the limit k → 0 coincides with the NLS
approximation. Since the expansion (44) does not incorporate an O(ε) mean term, the
Galilean transformation of the KdV equation can be used in (44) and (46) to obtain

u(x, t)→ k2 + u(x− 6k2t, t) = k2 + k2 cos(Λx−Υt+ ψ0) +O(k4), (47)
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where
Λ = 2 + v

4
k2 +O(k4),

Υ = −8 + (12− 3v)k2 +O(k4).

The choice v = −2 asymptotically matches Λ and Υ in (47) with Q and Ω.
The NLS equation (45) admits two families of dark soliton solutions [29]

A(ζ, τ) =
(

cos β ± i sin β tanh
(

sin β(ζ − c±τ)
))
ei(−2ζ+3τ+ψ0), (48)

where ± corresponds to the fast (+) and slow (−) solution branches with velocities
c± = 2± cos β, phase shift parameter β ∈ [0, π/2], and arbitrary phase ψ0 ∈ R. Since

A(ζ, τ)→ ei(−2ζ+3τ+ψ0∓β) as ζ − c±τ → −∞

and

A(ζ, τ)→ ei(−2ζ+3τ+ψ0±β) as ζ − c±τ →∞,

the normalized phase shift is ∆± := ±2β for the fast (+) and slow (−) branch of
solutions. Applying the Galilean transformation u(x, t)→ k2+u(x−6k2t, t) to Eqs. (44)
and (48), the dark soliton velocity-phase shift relation c± is

c± = −12 +

(
12 + 3 sgn(∆±) cos

(∆±
2

))
k2, ∆+ ∈ (0, π], ∆− ∈ [−π, 0). (49)

From Eq. (48), the inverse width parameter κ± := sin βε√
12

is given by

κ± =
1

4
sin

(
|∆±|

2

)
k2. (50)

In order to compare the dispersion relation given by (49) and (50) with the dark
breather dispersion relation given by (32), (33), (35), we expand the spectral parameter
λ as λ = 1−k2(1+µ) with new scaled spectral parameter µ, ensuring a distinct breather
for each µ ∈ (0, 1) as k → 0. The small k expansion of the dark breather dispersion
relation (31), (32), (33), and (35) is given by

αd = arcsin(
√
µ) +O(k2),

κd = 1
2

√
µ(1− µ)k2 +O(k4),

cd = −12 + (9 + 6µ)k2 +O(k4),
∆d = −4 arcsin(

√
µ) +O(k2),

for µ ∈ [0, 1]. Substituting µ = sin2
(

∆d

4

)
yields

cd = −12 +
[
12− 3 cos

(
∆d

2

)]
k2 +O(k4),

κd = 1
4

sin
(
|∆d|

2

)
k2 +O(k4).

(51)
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By identifying certain values of the phase shift ∆d with the slow (−) and fast (+)
branches of the NLS dark soliton solution (48), as given by

∆− = ∆d, ∆d ∈ [−π, 0),

∆+ = 2π + ∆d, ∆d ∈ (−2π,−π],

we find that Eq. (51) coincides with Eqs. (49) and (50) up to and including the O(k2)
terms. The black soliton solution (48) with β = π/2 corresponds to the dark breather
of maximum localization in which ∆max(k) + 2π ∼ π as k → 0.

9. Conclusion

A comprehensive characterization of explicit solutions of the KdV equation, repre-
senting the nonlinear superposition of a soliton and cnoidal wave, has been obtained
using the Darboux transformation. These solutions are breathers, manifesting as non-
linear wavepackets propagating with constant velocity on a cnoidal, periodic, traveling
wave background, subject to a topological phase shift. Breathers of elevation type,
called bright breathers, are shown to propagate faster than the cnoidal background.
Depression-type breathers are called dark breathers and they move slower than the
cnoidal background. A key finding is that each breather on a fixed cnoidal wave back-
ground is uniquely determined by two distinct parameters: its initial position and a
spectral parameter. We prove that the spectral parameter is in one-to-one correspon-
dence with the normalized phase shift, which it imparts to the cnoidal background, in
the interval (−π, π].

Bright breathers with small, positive phase shifts correspond to small-scale ampli-
tude modulations of the cnoidal wave background, which result in the cnoidal wave
dominating the solution. Small, negative phase shifts correspond to bright breathers
with large-scale amplitude modulations of the cnoidal wave background where the soli-
ton component is dominant. As the phase shift is swept across the interval (−π, π], all
breather amplitudes are attained.

In contrast, dark breather amplitudes, being of depression type, are limited. Small
phase shifts, positive or negative, correspond to small modulations of the cnoidal wave
background. For each cnoidal wave background, we find a narrowest dark breather that
imparts a negative phase shift. When the amplitude of the cnoidal wave background is
small, dark breathers degenerate into dark soliton solutions of the NLS equation (45)
derived from the KdV equation (1).

When the period of the cnoidal wave background goes to infinity, both bright and
dark breather solutions are shown to degenerate into two-soliton solutions of the KdV
equation. In this sense, breathers can be viewed as a generalization of two-soliton
interactions. While such an interpretation is well-known for the sine-Gordon, focusing
NLS, and the focusing modified KdV equations where breathers can be interpreted as
bound states of two solitons [9], those breather solutions are localized. In contrast,
the topological KdV breathers with an extended, periodic background described here
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represent a different class of nonlinear wave interaction solutions. We expect that such
solutions exist for other integrable nonlinear evolutionary equations with a self-adjoint
scattering problem such as the defocusing NLS and defocusing modified KdV equations.

An important application of these breather solutions is to the problem of soliton-
dispersive shock wave (DSW) interaction [2]. Bright breathers were identified in [4] as
being associated with soliton-DSW transmission. Soliton-DSW trapping corresponds
to dark breathers embedding within the DSW. The spectral characterization of KdV
breathers obtained here can be used in the context of multi-phase Whitham modula-
tion theory [5] to describe the dynamics of breathers subject to large-scale amplitude
modulations [4]. In addition to soliton-DSW interaction, the bright breathers resemble
the propagation of a soliton through a special kind of deterministic soliton gas, con-
structed using Riemann-Hilbert methods from primitive potentials of the defocusing
modified KdV equation [18]. Similar deterministic soliton gases have been identified
as soliton condensates for the KdV equation [19] and provide further applications for
the breathers constructed here.
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(Birkhäuser/Springer, Cham, 2020), pp. 163–186.

[16] J. Bernatska, V. Enolski, and A. Nakayashiki, “Sato Grassmannian and degenerate sigma func-
tion”, Commun. Math. Phys. 374 (2020) 627–660

[17] M. Bertola, R. Jenkins, and A. Tovbis, “Partial degeneration of finite gap solutions to
the Korteweg–de Vries equation: soliton gas and scattering on elliptic background”, arXiv:
2210.01350 (2022)

[18] M. Girotti, T. Grava, R. Jenkins, K. McLaughlin, and A. Minakov, “Soliton v. the gas: Fredholm
determinants, analysis, and the rapid oscillations behind the kinetic equation,” arXiv:2205.02601
(2022).

[19] T. Congy, G. A. El, G. Roberti, and A. Tovbis, “Dispersive hydrodynamics of soliton condensates
for the Korteweg-de Vries equation,” arXiv:2208.04472 (2022)

[20] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg-
de Vries equation,” Phys. Rev. Lett. 19 1095—1097 (1967).

[21] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd
Edition (Springer-Verlag, Berlin, 1971).

[22] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press,
New York, 2007)

[23] D. F. Lawden, Elliptic Functions and Applications, Appl. Math. Sci. 80 (Springer, New York,
1989)

[24] E. L. Ince, Ordinary Differential Equations (Dover Publications, New York, 1956)
[25] B. Oblak, “ Orbital bifurcations and shoaling of cnoidal waves,” J. Math. Fluid Mech. 22 (2020)

29
[26] H. Van de Vel, “On the series expansion method for computing incomplete elliptic integrals of

the first and second kinds”, Math. Comp. 23 (1969) 61–69
[27] J. P. Boyd, “Theta functions, Gaussian series, and spatially periodic solutions of the Korteweg–de

Vries equation”, J. Math. Phys. 23 (1982) 375
[28] V. E. Zakharov and E. A. Kuznetsov, “Multi-scale expansions in the theory of systems integrable

by the inverse scattering transform,” Physica D 18 (1986) 455–463
[29] M. J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge

University Press, Cambridge, 2011)



KDV BREATHERS 29

F (ϕ, k) Elliptic integral of the first kind F (ϕ, k) :=

∫ ϕ

0

dα√
1− k2 sin2 α

E(ϕ, k) Elliptic integral of the second kind E(ϕ, k) :=

∫ ϕ

0

√
1− k2 sin2 αdα

K(k) Complete elliptic integral K(k) := F
(π

2
, k
)

E(k) Complete elliptic integral E(k) := E
(π

2
, k
)

Z(ϕ, k) Zeta function Z(ϕ, k) := E(ϕ, k)− E(k)

K(k)
F (ϕ, k)

sn(x, k) Jacobi elliptic function sn(x, k) = sinϕ

cn(x, k) Jacobi elliptic function cn(x, k) = cosϕ

dn(x, k) Jacobi elliptic function dn(x, k) =
√

1− k2 sin2 ϕ

H(x) θ1

(
πx

2K(k)

)
with θ1(u) = 2

∞∑
n=1

(−1)n−1q(n− 1
2

)2 sin(2n− 1)u

H1(x) θ2

(
πx

2K(k)

)
with θ2(u) = 2

∞∑
n=1

q(n− 1
2

)2 cos(2n− 1)u

Θ1(x) θ3

(
πx

2K(k)

)
with θ3(u) = 1 + 2

∞∑
n=1

qn
2

cos 2nu

Θ(x) θ4

(
πx

2K(k)

)
with θ4(u) = 1 + 2

∞∑
n=1

(−1)nqn
2

cos 2nu

q e−
πK′(k)
K(k) with K ′(k) = K(k′) and k′ =

√
1− k2

Table 1. Table of elliptic integrals and Jacobi elliptic functions.
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