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This paper gives, in the limit of large Froude number, a closed-form, analytical solution
for steady, two-dimensional, inviscid, free-surface attached flow over a submerged planar
hydrofoil for arbitrary angles of attack and depths of submergence. The doubly connected
flow domain is conformally mapped to a concentric annulus in an auxiliary plane.
The complex flow potential and its derivative, the complex velocity, are obtained in
the auxiliary plane by considering their form at known special points in the flow and
the required conformal mapping is determined by explicit integration. The four real
solution parameters are determined as the simultaneous roots of four real nonlinear
algebraic equations arising from the flow normalisation. The explicit form allows accurate
evaluation of various flow quantities including the lift on the foil and these are related to
the large Froude number results in recent numerical solutions.

1. Introduction

Molland & Turnock (2022, Chapt. 4) define a hydrofoil as a lifting surface that operates
in water. They note that the recent adoption of high-performance materials like carbon-
fibre composites has led to new applications in hydrofoil-supported commercial craft,
hydrofoil-supported yachts, yacht keels and hydroplanes and observe that while the
performance of deeply submerged foils is similar to that of lifting surfaces in unbounded
domains, the performance of near-surface hydrofoils is determined primarily by their
distance below the surface and the Froude number of the flow - the ratio of the foil speed
to a typical surface wave speed. At moderate Froude number surface wave generation
determines the drag on a foil. Semenov & Wu (2020, SW20 herein) give a comprehensive
description of past investigations into wave generation by steadily advancing, submerged
bodies before presenting a reduction of the full nonlinear problem for irrotational, non-
separated, two-dimensional flow past an arbitrary body to an integral equation which
they solve numerically at a selection of Froude numbers and depths of submergence both
for flow past a thin hydrofoil and past a submerged cylinder with and without gravity.

Analytical treatments have either restricted attention to depths of submergence suffi-
ciently large for the amplitude of any forced free-surface waves to be sufficiently small
that the surface boundary condition can be expanded in wave amplitude or to flows
where the Froude number is sufficiently large that gravity can be neglected at leading
order. This latter limit is considered here for the irrotational, two-dimensional flow past
a flat-plate foil. Gurevitch (1965, §34) summarises theoretical work on this problem and
notes that he is unaware of any complete solution. Analytical progress to that date had
been made by assuming that a cavitation zone extended from the foil to downstream
infinity so rendering the flow domain singly connected and susceptible to treatment by a
hodograph method. The present work gives closed-form analytical solutions for attached
flow for arbitrary depths of submergence and angles of attack.
Section 2 formulates the problem. Section 3 obtains the solution using a method related
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Figure 1. Sketch of the flow domain, D, for a free-surface flow past a submerged hydrofoil. ∂D0

denotes the free surface (in blue) while ∂D1 denotes the hydrofoil (red). z1 = 0 and z2 = eiα

denote, respectively, the leading and trailing edges of the hydrofoil so −α gives the angle of
attack. z3 denotes a stagnation point - this lies on the leading face of the hydrofoil.

to that of Michell (1890) and Joukovskii (1890). The doubly connected flow domain,
in the complex z-plane, is conformally mapped, by a mapping to be determined, to a
concentric annulus in an auxiliary complex ζ-plane. The complex flow potential w(z)
and its derivative w′(z) are obtained in terms of ζ by considering their form at known
points in the flow, as in Chaplygin’s method of special points Gurevitch (1965, §5). The
required conformal mapping is then determined here by explicit integration. Crowdy &
Green (2011), Crowdy et al. (2013) and subsequent co-workers use this method to discuss
hollow vortices and SW20 use a similar procedure to obtain their integral equation.
Section 4 shows that in this limit, due to the absence of surface waves and separation,
the drag on the foil vanishes and obtains the lift as a function of the angle of attack
and depth of submergence. Section 5 gives the form of the solution in the limiting cases
of horizontal and near-vertical foils. Section 6 describes surface profiles, flow patterns
and force predictions, comparing them with the computations at large Froude number
in SW20 where relevant. A reader who is mainly interested in the properties of the flow
solutions obtained could initially omit the analytical details of §2 to §5 and begin at
§6. Section 7 summarises the minimum numerical computation required to obtain the
lift coefficient and reproduce the examples presented in §6 and then briefly discusses the
results.

2. Problem formulation

We consider the planar, steady, free-surface flow of a fluid of infinite depth past a
submerged hydrofoil, which we model as a straight line segment of finite length. We
assume the fluid to be inviscid and incompressible, and the flow to be irrotational. We
also assume an infinite Froude number, i.e., we ignore the effect of gravity on the free
surface. We consider the flow domain to lie in a complex z-plane, where z = x+ iy. We
denote this domain by D. We denote the free surface of D by ∂D0, and the boundary of
the hydrofoil by ∂D1. An example is sketched in figure 1. We represent the velocity field
of the flow by the vector (u(x, y), v(x, y)). We assume that at infinity, the flow is uniform
and in the positive x-direction, i.e., to leading order, (u(x, y), v(x, y)) ∼ (U, 0), for some
real constant U > 0. The shape of ∂D0 is unknown a priori but will be determined as
part of our solution.
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Without loss of generality, we may normalise the hydrofoil to be of unit length, and
fix its leading endpoint to be at the origin. We denote this endpoint by z1. We denote
the trailing endpoint of the foil by z2. Then z2 = eiα (so the angle of attack is −α),
where we consider α over the range (−π/2, π/2). The case of a horizontal hydrofoil - i.e.,
α = 0 - is trivial (the hydrofoil does not disturb the flow past it), and thus we henceforth
ignore it (although we will retrieve it later as a limiting case of our results - see §5.1).
We will also not consider a vertical hydrofoil, i.e., α = ±π/2; this is because our analysis
relies on there being a trailing endpoint (we will be imposing the Kutta condition there).
(However, we will present the limits of our results as α → ±π/2 - see §5.2.) For the
example sketched in figure 1, −π/2 < α < 0, so the hydrofoil slopes downwards from its
leading endpoint to its trailing endpoint.
We can define a complex potential, w(z) = ϕ(x, y) + iψ(x, y), for the flow, where

ϕ(x, y) and ψ(x, y) are the associated velocity potential and streamfunction, respectively.
w(z) possesses the following properties. It is analytic in the interior of D, and w′(z) =
u(x, y) − iv(x, y) gives the complex velocity, where here and throughout this paper we
use ′ to indicate the derivative of a function of one variable. It follows from our above
assumption of uniform flow at infinity that, to leading order,

w(z) ∼ Uz as |z| → ∞ (in D). (2.1)

Next, since ∂D0 and ∂D1 are both streamlines of the flow (of course, strictly speaking,
∂D1 is just part of the streamline that lies along it), Im{w(z)} must be constant along
them, i.e.,

Im{w(z)} = ψj for z ∈ ∂Dj , j = 0, 1, (2.2)

for some constants ψ0 and ψ1. For the same reason, one may deduce that

Im{eiαw′(z)} = 0 for z ∈ ∂D1. (2.3)

Furthermore, it follows from Bernoulli’s equation and our assumption of an infinite
Froude number, that

|w′(z)| = U for z ∈ ∂D0. (2.4)

In addition, one may deduce that for z local to the leading endpoint, z1 (= 0), of the
hydrofoil, to leading order,

w′(z) ∼ Az−1/2, (2.5)

for some constant A. Thus, the velocity field is singular at z1. To ensure that the velocity
field is bounded at the trailing endpoint, z2, we impose the Kutta condition there, thus
assuming a certain circulation Γ , say, around the hydrofoil so∮

C
dw(z) = Γ, (2.6)

where C is a simple closed contour that surrounds the hydrofoil, and we integrate around
C in the anticlockwise direction. Finally, one may also deduce that there must be a
stagnation point of the flow at some point z3 on the leading face of the hydrofoil. More
specifically, one may deduce that for z local to z3, to leading order,

w′(z) ∼ B(z − z3), (2.7)

for some constant B. We assume this to be the only stagnation point of the flow. z3
will not coincide with the leading endpoint z1 except in the case when the hydrofoil is
horizontal which (as stated above) we will ignore.
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Figure 2. Sketch of the pre-image domain, Dζ , for our conformal parameterisation of the flow
domain D as in figure 1. D is the image of Dζ under a conformal map, z(ζ).

3. A conformal parameterisation

We shall seek D (which is a doubly connected domain) as the image of a concentric
annulus, Dζ , in a complex ζ-plane, under a one-to-one conformal map, which we denote
by z(ζ). Such a parameterisation is known to exist by Koebe’s extension of Riemann’s
mapping theorem (e.g., see Goluzin 1969). Without loss of generality, we may take Dζ to
be the annular domain that is bounded by the circles C0 and C1, which are both centred
on the origin and of radius 1 and q, respectively, for some q with 0 < q < 1, and assume
that ∂Dj is the image under z(ζ) of Cj , for j = 0, 1. Furthermore, we may assume that
the point at infinity in the z-plane is the image of ζ = −i, and, more specifically, that
for ζ local to −i, to leading order,

z(ζ) ∼ a

ζ + i
, (3.1)

for some real constant a > 0. Finally, for j = 1, 2, 3, we denote the pre-image of zj by
ζj , which lies on C1. For a given hydrofoil, having made the assumptions on z(ζ) that
are listed above, we are not at liberty to choose ζj , j = 1, 2, 3; instead we must solve for
these, as explained below. One may deduce (on purely geometrical grounds) that z′(ζ)
has simple zeros at both ζ = ζ1 and ζ2. An example is sketched in figure 2. Here ζ3 lies on
the section of C1 that is traversed in passing from ζ1 to ζ2 in the anticlockwise direction,
which is the case for a hydrofoil that slopes downwards from its leading endpoint to its
trailing endpoint. However, our subsequent analysis makes no assumption on the ordering
of ζ1, ζ2 and ζ3 around C1.
Now, in terms of ζ, we have

w(z) =W (ζ), w′(z) = Ω(ζ), (3.2)

for some functionsW , the complex potential in Dζ , and Ω, the complex velocity mapped
to Dζ . We construct below formulae (in terms of ζ) for W (ζ), Ω(ζ) and then make use
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of the fact that (Joukovskii 1890; Michell 1890)

z′(ζ) =
dW/dζ

dw/dz
=
W ′(ζ)

Ω(ζ)
, (3.3)

to construct a formula for z(ζ). A similar construction is used to obtain the hollow
vortex solutions in Crowdy & Green (2011) and Crowdy et al. (2013) where, however,
the integration (3.3) is performed numerically, in contrast to the analytical result below.

3.1. Some special functions

We shall perform our construction in terms of certain special functions, labelled here
as P (ζ, q), K(ζ, q) and L(ζ, q). We define these and state their relevant properties in this
section. We refer the reader to Crowdy (2020) for further discussion of these functions,
including their connection to more traditionally used elliptic functions (as used, for
example, in Gurevitch 1965; Semenov & Wu 2020). The advantage of the functions that
we use here is that their singularity and periodicity structures present themselves clearly,
although it should be possible to derive similar properties for elliptic functions.

To begin, we define the transformation θn(ζ) = q2nζ for all n ∈ Z (note that θ0(ζ) = ζ
is the identity transformation), and the set Θ = {θn(ζ)|n ∈ Z}. Next, we introduce D−1

ζ

to denote the reflection ofDζ in C0, where by reflection in C0 we mean the transformation
ζ 7→ 1/ζ. D−1

ζ is the annular domain bounded by the circles C0 and C−1, where the latter
denotes the reflection of C1 in C0 and is centred on the origin and of radius 1/q (see
figure 3). We define F to be the region that consists of the union of Dζ and D−1

ζ , where
we use the “overline” notation with respect to a domain to denote the domain’s closure,
i.e.,

F = {ζ : q ⩽ |ζ| < q−1}, (3.4)

so F does not contain C−1. The images of F under all elements of Θ are mutually disjoint
and cover the whole of the ζ-plane, except for the origin and the point at infinity. Θ is
in fact an example of a Schottky group (Ford 1972; Crowdy 2020). F is referred to as a
fundamental region of Θ. (The fundamental region of a Schottky group is not unique.)

Now, the function P (ζ, q) is defined for all complex ζ and (real) q with 0 < q < 1, by

P (ζ, q) = (1− ζ)

∞∏
n=1

(
1− q2nζ

) (
1− q2nζ−1

)
. (3.5)

P (ζ, q) is, up to a normalisation, the Schottky–Klein prime function associated with Θ.
One can check that P (ζ, q) is analytic everywhere in F , and is non-zero in F except for
a simple zero at ζ = 1. Furthermore, one can deduce directly from (3.5) that:

P (q2ζ, q) = −ζ−1P (ζ, q), P (ζ−1, q) = −ζ−1P (ζ, q). (3.6a, b)

Relation (3.6a) can be used to continue P (ζ, q) to points ζ outside of F . In particular,
one can deduce from (3.6a), and the properties of P (ζ, q) for ζ ∈ F noted above, that
P (ζ, q) is analytic everywhere in the ζ-plane except for essential singularities at the origin
and the point at infinity, and that it has simple zeros at ζ = q2n for all n ∈ Z. Of course,
one could also deduce these properties directly from (3.5).

Next, the function K(ζ, q) is defined by

K(ζ, q) = ζ
d

dζ
logP (ζ, q). (3.7)
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Figure 3. The annuli appearing in the analysis.D−1
ζ (light grey) is the reflection of the pre-image

domain Dζ (turquoise) of figure 2 in the unit circle C0 (dotted blue). The union of Dζ and D−1
ζ

forms the fundamental region F of (3.4) for the group Θ. The union of F and the reflection of

F (dark grey) in the circle C1 (dotted red) forms the fundamental region F̂ of (3.13) for the

group Θ̂. The complex velocity W ′(ζ) has double poles (blue crosses) at ζ = −i and −iq2, and

simple zeros (blue circles) at ζ = ζ2, −ζ2, 1/ζ2 and −1/ζ2. The mapped complex velocity Ω(ζ)
has simple poles (red crosses) at ζ = ζ1 and −1/ζ2 (coinciding with a zero of W ′(ζ)), and simple

zeros (red discs) at ζ = 1/ζ1 and −ζ2 (also coinciding with a zero of W ′(ζ)).

It follows from (3.5) that

K(ζ, q) =
1

ζ − 1
+ 1 +

∞∑
n=1

q2n
(

1

ζ − q2n
− 1

ζ−1 − q2n

)
. (3.8)

One may check that K(ζ, q) is analytic everywhere in F except for a simple pole at ζ = 1
with residue 1. Also, it follows from (3.6) that

K(q2ζ, q) = K(ζ, q)− 1, K(ζ−1, q) = 1−K(ζ, q). (3.9a, b)

Finally, the function L(ζ, q) is defined by

L(ζ, q) = ζ
d

dζ
K(ζ, q). (3.10)

It follows from (3.8) that

L(ζ, q) =
−1

(ζ − 1)2
− 1

ζ − 1
− ζ

∞∑
n=1

q2n
(

1

(ζ − q2n)2
+

1

(1− q2nζ)2

)
. (3.11)

One may check that L(ζ, q) is analytic everywhere in F except for a double pole at ζ = 1
with residue −1. Also, it follows from (3.9) that

L(q2ζ, q) = L(ζ, q), L(ζ−1, q) = L(ζ, q). (3.12a, b)

In addition to the above, we will also make use of the functions P (ζ, q2), K(ζ, q2) and
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L(ζ, q2). Of course, with 0 < q < 1, we also have 0 < q2 < 1, and so P (ζ, q2) is defined by
(3.5) simply with q replaced by q2. P (ζ, q2) is (up to a normalisation) the Schottky–Klein
prime function associated with Θ̂ = {θ2n(ζ)|n ∈ Z}, which is a subgroup of Θ and itself
a Schottky group (Vasconcelos et al. 2015). A fundamental region of Θ̂ is

F̂ = {ζ : q3 < |ζ| ⩽ q−1}, (3.13)

i.e., the region that consists of the union of F and the reflection of F in the circle C1,
where reflection in C1 is given by ζ 7→ q2/ζ (see figure 3).
It follows directly from (3.5) that

P (ζ, q) = P (ζ, q2)P (q2ζ, q2), (3.14)

and hence from (3.7) and (3.10) that

K(ζ, q) = K(ζ, q2) +K(q2ζ, q2), L(ζ, q) = L(ζ, q2) + L(q2ζ, q2). (3.15a, b).

3.2. Constructing the complex potential W (ζ) = w(z)

The construction of W (ζ) is straightforward as it is simply the complex potential for
flow in the annulus Dζ , driven by a dipole at −i and having circulation Γ around C1

with stagnation points at ζ2 and ζ3. Since both Dζ and the dipole flow are right-left
symmetric, ζ3 = −ζ2, as shown in §3.2.1 below. Figure 4(a) shows contours of Im{W (ζ)}
- i.e., flow streamlines - in Dζ for a typical solution.
It follows from the properties of w(z) and z(ζ) noted above, thatW (ζ) must be analytic

for all ζ ∈ Dζ except that (as follows from (2.1) and (3.1)), for ζ local to −i, to leading
order

W (ζ) ∼ Ua

ζ + i
. (3.16)

Also, it follows from (2.2) that

Im{W (ζ)} = ψj for ζ ∈ Cj , j = 0, 1. (3.17)

Furthermore, it follows from (2.6) that∮
Ĉ
dW (ζ) = Γ, (3.18)

where we can take Ĉ to be a circle centred on the origin, of some radius q̂, where q < q̂ < 1
(so that Ĉ lies in the interior of Dζ), and we integrate around Ĉ in the anticlockwise
direction. Recall that Γ is still to be determined. We propose that

W (ζ) = UaiK (iζ, q)− iΓ

2π
log ζ. (3.19)

One can verify that W (ζ) as stated by (3.19) possesses the properties stated above as
follows. First, it follows from the properties of K(ζ, q), that W (ζ) as given by (3.19) is
analytic for all ζ ∈ Dζ except for a simple pole with residue Ua at ζ = −i, as required
by (3.16). It is also evident that this form for W (ζ) satisfies (3.18). Finally, to check the
boundary conditions (3.17), it is helpful to first note that

Re{K(iζ, q)} =
1

2
(K(iζ, q) +K(1/(iζ), q)) =

1

2
for ζ ∈ C0, (3.20)

where the first equality follows from the fact that for ζ ∈ C0, ζ = 1/ζ, and the second
follows from (3.9b). Similarly,

Re{K(iζ, q)} =
1

2

(
K(iζ, q) +K(q2/(iζ), q)

)
= 0 for ζ ∈ C1, (3.21)
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Figure 4. Illustrations of the solution components for a typical solution (namely, that which
is illustrated in figure 6(b) below). Here α = −π/4 and yc = 0.3 (see (3.51)). (a) Contours
of Im{W (ζ)} as given by (3.19), giving the flow streamlines in the pre-image domain Dζ

with a dipole at ζ = −i (which corresponds to the point at infinity in D), stagnation points

symmetrically at ζ = ζ2 (the trailing edge in D) and −ζ2 (on the leading face in D), and
tangential flow along C0 (the free surface in D) and C1 (the foil). (b) Isotachs, contours of
|Ω(ζ)| as given by (3.34), the flow speed mapped to the pre-image domain Dζ , with infinite

speed at ζ1 (the leading edge in D), a single stagnation point at ζ = −ζ2 (on the leading face
in D), and constant speed along C0 (the free surface in D), with no stagnation point at ζ = ζ2
(the trailing edge in D) where the speed is finite.

where now the first equality follows from the fact that for ζ ∈ C1, ζ = q2/ζ, and the
second follows by using both of (3.9). Then, one may deduce that (3.17) holds (with
ψ0 = Ua/2 and ψ1 = −(Γ/(2π)) ln q). This completes our verification of (3.19). Similar
arguments to those below for Ω(ζ) show that W (ζ) is unique.
Differentiating (3.19) gives

W ′(ζ) =
1

ζ

(
UaiL(iζ, q)− iΓ

2π

)
. (3.22)

Now, in order to impose the Kutta condition at the trailing endpoint, z2, of the hydrofoil,
we must choose Γ such that W ′(ζ2) = 0, giving

Γ = 2πUaL(iζ2, q). (3.23)

(Note it follows from (3.24) that L(iζ2, q) is real.)

3.2.1. Properties of W ′(ζ), the complex velocity in Dζ

We now note some properties of W ′(ζ) that will be useful later. First, W ′(−ζ2) = 0.
This follows from (3.22) using the fact that W ′(ζ2) = 0 and

L(−iζ2, q) = L(q2/(iζ2), q) = L(iζ2, q), (3.24)

where the second equality follows by using both of (3.12). We will henceforth assume
that −ζ2 ̸= ζ2, or equivalently, that ζ2 ̸= ±iq (although, in §5.2, we will consider the
limit of our results as ζ2 → ±iq, whilst ζ1 → ∓iq, respectively). We now claim that the
zeros of W ′(ζ) at ζ = ζ2 and −ζ2 are the only zeros of W ′(ζ) in F , and are simple zeros.
To demonstrate this, note that it follows from (3.22) and (3.12a) that

W ′(q2ζ) =
1

q2
W ′(ζ). (3.25)
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Thus,

d logW ′(q2ζ) = d logW ′(ζ). (3.26)

It then follows from (3.26) and an application of the Argument Principle (Ahlfors 1979,
§5.2), that W ′(ζ) has the same number of poles as zeros in F , where these are both
counted according to their multiplicities. (ζ2 and −ζ2 lie on the boundary of F , but by
standard arguments one can adapt the Argument Principle to take account of this.) But
it follows from (3.22) and the properties of L(ζ, q) thatW ′(ζ) has a double pole at ζ = −i
and no other singularities in F . Thus, as claimed, the zeros of W ′(ζ) at ζ = ζ2 and −ζ2
must be the only zeros of W ′(ζ) in F , and must be simple zeros. It also then follows that

ζ3 = −ζ2. (3.27)

Finally, one may also deduce that W ′(ζ) is analytic for all ζ ∈ F̂ except for double
poles at ζ = −i and −iq2, and that the only zeros of W ′(ζ) in F̂ are simple zeros at
ζ = ζ2,−ζ2, 1/ζ2 and −1/ζ2 - see figure 3. (W ′(ζ) also has zeros at ζ = q2ζ2 and −q2ζ2,
but both of these points have modulus q3 and so are not contained in F̂ .)

3.3. Constructing the mapped complex velocity Ω(ζ) = w′(z)

It follows from the properties of w′(z) and z(ζ) stated above, that Ω(ζ) must be
analytic for all ζ ∈ Dζ except for a simple pole at ζ = ζ1 (as follows from (2.5) and the
fact that z′(ζ) has a simple zero at ζ1). Furthermore, Ω(ζ) must be non-zero for all ζ in
the closure of Dζ except for a simple zero at ζ = −ζ2 (as follows from (2.7), recalling
(3.27)). Note Ω(ζ) is non-zero at ζ = ζ2 - i.e., w′(z) is non-zero at the trailing endpoint,
z2, of the hydrofoil - because W ′(ζ) and z′(ζ) both have simple zeros at ζ = ζ2 (and
Ω(ζ) =W ′(ζ)/z′(ζ)). In addition, it follows from (2.3) and (2.4) that

|Ω(ζ)| = U for ζ ∈ C0, Im
{
eiαΩ(ζ)

}
= 0 for ζ ∈ C1, (3.28a, b),

and from (2.1) that

Ω(−i) = U. (3.29)

Figure 4(b) illustrates the mapped flow speed |Ω(ζ)| in Dζ for a typical solution.
It follows from (3.28a) that for ζ ∈ C0, since ζ = 1/ζ,

Ω(ζ) =
U2

Ω(1/ζ)
, (3.30)

where we define Ω(ζ) = Ω(ζ). However, it follows from the properties of Ω(ζ) that
1/Ω(1/ζ) is analytic for all ζ ∈ D−1

ζ except for a simple pole at ζ = −1/ζ2, and also

non-zero for all ζ in the closure of D−1
ζ except for a simple zero at ζ = 1/ζ1. It then

follows by analytic continuation that (3.30) must in fact hold for all ζ in the closure of
F , and that Ω(ζ) is analytic for all ζ ∈ F except for simple poles at ζ = ζ1 and −1/ζ2.
Furthermore, the only zeros of Ω(ζ) in F are simple zeros at ζ = −ζ2 and 1/ζ1.
Next, one may deduce from (3.28b) that for ζ ∈ C1, since ζ = q2/ζ,

Ω(ζ) = e−2iαΩ(q2/ζ). (3.31)

Then, by similar arguments to those just stated after (3.30), it follows that (3.31) must
in fact hold for all ζ in the closure of F̂ . But furthermore, one may deduce that Ω(ζ) is
analytic for all ζ ∈ F̂ except for simple poles at ζ = ζ1 and −1/ζ2, and that the only
zeros of Ω(ζ) in F̂ are simple zeros at ζ = −ζ2 and 1/ζ1 - see figure 3.
Now note that, by repeated analytic continuation, one may show that (3.30) and (3.31)
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in fact hold for all ζ, except at 0 and infinity. Combining these two relations gives

Ω(q2ζ) =
e−2iαU2

Ω(ζ)
, (3.32)

and hence

Ω(q4ζ) = Ω(ζ), (3.33)

from which one may deduce that Ω(ζ) is automorphic with respect to the group Θ̂. The
property (3.33), together with the properties of Ω(ζ) for ζ in the fundamental region F̂
of Θ̂ that are stated just after (3.31), along with the normalisation (3.29), are enough to
identify Ω(ζ) uniquely. To check this, consider the ratio of Ω(ζ) and any other function
that has these properties. This ratio must be analytic everywhere in F̂ (all poles of the
numerator are cancelled by the same poles of the denominator; likewise all zeros of the
denominator are cancelled by the same zeros of the numerator), and also automorphic
with respect to Θ̂. It then follows from the extended form of Liouville’s Theorem for
automorphic functions (e.g., see Ford 1972), that this ratio must equal a constant. But
it follows from the normalisation on Ω(ζ) that is imposed by (3.29), that this constant
must equal 1. We thus seek to construct a function with these properties. One could
construct this as a ratio of products of P functions. However, it will be more convenient
later - in particular, we will wish to differentiate Ω(ζ) (with respect to ζ) - to instead
construct it as a sum of the form

Ω(ζ) = α1K(ζ/ζ1, q
2) + α2K(−ζ2ζ, q2) + α0, (3.34)

for some (unique) constants α0, α1 and α2, which we will determine in due course. We
highlight the fact that the second argument of the K functions that appear in (3.34) is
q2, not q.

One may verify (3.34) as follows. First, one may check from the properties of K(ζ, q),
that for all values of α0, α1 and α2, the function on the right-hand side of (3.34) is
analytic for all ζ ∈ F̂ except for simple poles at ζ = ζ1 and −1/ζ2, as required. However,
in order for it to satisfy (3.33), it follows from (3.9a) that

α1 + α2 = 0. (3.35)

Next, in order that Ω(−ζ2) = 0, it follows - using the fact that K(q2, q2) = 0 (which one
may deduce by using both of (3.9) to show that K(q2, q2) = −K(q2, q2)) - that also

α1K(−ζ2/ζ1, q2) + α0 = 0. (3.36)

Note that we will assume that ζ1 ̸= −ζ2, as otherwise K(−ζ2/ζ1, q2) is unbounded and
- as will be shown in §5.1 - the hydrofoil is horizontal.
Next, one could also write down a relation between α0, α1 and α2 by imposing on

(3.34) the condition that Ω(1/ζ1) = 0. However, one can show that this relation can be
retrieved from (3.35) and (3.36) (using the fact that Re{K(ζ, q2)} = 1/2 for all ζ ∈ C0 -
cf. (3.20)). Finally, then, it follows from (3.29) that

α1K(−i/ζ1, q
2) + α2K(iζ2, q

2) + α0 = U. (3.37)

Combining (3.35)–(3.37), and also making use of (3.9b), one arrives at

α1 =
−U

K(iζ1, q2) +K(iζ2, q2)−K(−ζ1/ζ2, q2)
, α2 = −α1, α0 = −K(−ζ2/ζ1, q2)α1.

(3.38a, b, c)
This also completes our check on (3.34).
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3.4. Completing the solution: constructing the mapping z(ζ)

We now introduce the function

H(ζ) = ζz′(ζ). (3.39)

H(ζ) may be determined as follows. First, it follows from (3.3) that

H(ζ) = ζ
W ′(ζ)

Ω(ζ)
. (3.40)

Then, it follows from (3.25) and (3.33) that

H(q4ζ) = H(ζ). (3.41)

Hence H(ζ) is automorphic with respect to Θ̂. Furthermore, one can check from the
properties of W ′(ζ) and Ω(ζ) identified in sections 3.2 and 3.3, that H(ζ) is analytic
everywhere in F̂ except for a simple pole at ζ = 1/ζ1 and double poles at ζ = −i
and −iq2. These properties of H(ζ), along with its residues at the aforementioned poles
and the coefficients of (ζ + i)−2 and (ζ + iq2)−2 in the Laurent series expansions of it
about ζ = −i and −iq2, respectively, identify H(ζ) uniquely, up to an additive constant.
This follows by arguments similar to those that we have already applied to Ω(ζ) (see
the paragraph just after (3.33)), although one should now consider the difference of H(ζ)
and any other function with these properties; this difference must be analytic everywhere
in F̂ and automorphic with respect to Θ̂, and so must equal a constant. It then follows
from the properties of K(ζ, q) and L(ζ, q) that we can write

H(ζ) = β1K(ζ1ζ, q
2) + β2K(iζ, q2) + β3K(iq2ζ, q2)

+ β4L(iζ, q
2) + β5L(iq

2ζ, q2) + β0, (3.42)

for some unique constants β0, . . . , β5. We determine these constants in Appendix A.
Now note that, evidently, as follows from (3.39), dividing the right-hand side of (3.42)

by ζ provides an expression for z′(ζ). Recalling (3.7) and (3.10), it is straightforward to
integrate this expression to find

z(ζ) = β1 logP (ζ1ζ, q
2) + β2 logP (iζ, q

2) + β3 logP (iq
2ζ, q2)

+ β4K(iζ, q2) + β5K(iq2ζ, q2) + c, (3.43)

where c is an additional constant. One might expect to see the term β0 log ζ on the right-
hand side of (3.43). However, we can omit this for the following reason. Of course, our
map z(ζ) must be single-valued in Dζ ; one can check that the form on the right-hand
side of (3.43) is indeed so, as follows. First note that it is straightforward to rewrite (3.5)
as

P (ζ, q) = κ(q)(ζ − 1)

∞∏
n=1

(
ζ−1(ζ − q2n)(ζ − q−2n)

)
, (3.44)

where κ(q) is independent of ζ (in fact, κ(q) = −
∏∞

n=1(−q2n)). Then it is evident that
the change in logP (ζ, q) after ζ completes a circuit around a circle that is centred on the
origin and of radius ρ, say, in the anticlockwise direction, is equal to 0 if q2 < ρ < 1 (since
for each n ⩾ 1, the change due to the logarithmic singularity at ζ = q2n is cancelled by
that due to a logarithmic singularity of opposite strength at the origin), but equal to 2πi if
1 < ρ < q−2, etc. For ζ ∈ Dζ , we have q < |ζ| < 1, and hence q4 < |ζ1ζ|, |iζ|, |iq2ζ| < 1. It
then follows that the terms logP (ζ1ζ, q

2), logP (iζ, q2) and logP (iq2ζ, q2) which appear
in (3.43) are all single-valued in Dζ . And K(iζ, q2) and K(iq2ζ, q2) are also both single-
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valued in Dζ . However, β0 log ζ is not single-valued in Dζ . Hence

β0 = 0, (3.45)

so the integrated form for our map z(ζ) is given by (3.43) and is single-valued in Dζ .
Condition (3.45) places a constraint on our mapping parameters, as we discuss further
in the next section.

3.5. Specifying parameter values

Our parameterisation depends on the following parameters: q, arg{ζ1}, arg{ζ2}, a
(which, recall, is real and positive), and c (which is complex). Trivially, for any values of
q, arg{ζ1} and arg{ζ2}, we can fix c and a to ensure that z1 = 0 and the length of the
hydrofoil is 1; more specifically, it follows from (3.43) that we should take

c = −
(
β1 logP (q

2, q2) + β2 logP (iζ1, q
2) + β3 logP (iq

2ζ1, q
2)

+ β4K(iζ1, q
2) + β5K(iq2ζ1, q

2)
)

(3.46)

with

a =
∣∣∣β̂1 logP (ζ1ζ2, q2) + β̂2 logP (iζ2, q

2) + β̂3 logP (iq
2ζ2, q

2)

+ β̂4K(iζ2, q
2) + β̂5K(iq2ζ2, q

2) + ĉ
∣∣∣−1

, (3.47)

where here we use β̂j to denote βj/a for j = 1, . . . , 5, and ĉ to denote c/a (it is evident
that one may factor out a from our expressions (A 11), (A 7), (A 9), (A 1) and (A 5)
for β1, . . . , β5, and hence also from our expression (3.46) for c). Next, in order to fix
arg{z2} = α, one could use the condition that one obtains by simply setting ζ = ζ2
on the right-hand side of (3.43) and then requiring that the argument of this equals α.
However, a simpler condition is given by (3.49) below. One may deduce this by noting
that it follows from (3.31) and (3.34) (along with both of (3.9)) that

α1

α1
= −e2iα, (3.48)

and hence from (3.38a) (and both of (3.9) again), that

K(iζ1, q
2) +K(iζ2, q

2)−K(−ζ1/ζ2, q2)
K(iq2ζ1, q2) +K(iq2ζ2, q2) +K(−ζ2/ζ1, q2)

= e2iα. (3.49)

Finally, in addition to the above, we must also impose the single-valuedness condition
(3.45) with β0 as given by (A 12), which one can show is equivalent to

L(iζ1, q
2)+e2iαL(iq2ζ1, q

2)−
(
L(iζ1, q

2)− L(iζ2, q
2)
) (
K(iζ1, q

2)− e2iαK(iq2ζ1, q
2)
)

K(iζ1, q2) +K(iζ2, q2)−K(−ζ1/ζ2, q2)
= 0.

(3.50)
(3.49) and (3.50) fix two of the remaining three parameters arg{ζ1}, arg{ζ2} and q. This
leaves one remaining free parameter. As is borne out by the examples presented in §6,
one could interpret this remaining parameter as corresponding in some sense to the depth
of the hydrofoil below the free surface. As a measure of this depth, we will adopt the
following. Recall that we fix the leading and trailing endpoints of the hydrofoil to be
at the origin and eiα, respectively. We now seek some convenient reference level for the
y-coordinate of points on the free surface. As we show next in §3.6, in general, y does
not tend to a constant along the free surface as |x| → ∞. However (as is the case for the
examples that we present in §6) it appears that there is a single (finite) point, say zc, on
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the free surface at which dy/dx = 0; there is a peak of the free surface at zc when the
leading endpoint of the hydrofoil is above its trailing endpoint - i.e., when α < 0 - and a
trough at zc when α > 0. Fixing Im{zc} = yc, say, then essentially fixes the depth of the
hydrofoil. This places the following additional condition on our mapping parameters. Of
course, zc = z(ζc) for some ζc on C0 at which Im{dz(ζ)/dθ} = 0, where here we use θ to
denote the angular polar coordinate of ζ. Hence (recalling (3.39)), one may deduce that

Im{z(ζc)} = yc (3.51)

and

Re{H(ζc)} = 0. (3.52)

3.6. Limit as |x| → ∞
To conclude this section, we determine the limiting shape of the free surface as |x| → ∞.

To do so, we consider the limit of z(ζ) as given by (3.43) as ζ → −i along C0. Equivalently,
we may take ζ = ei((−π/2)+ϵ) and consider the limit of z(ζ) as ϵ→ 0±. In this limit, the
only terms in (3.43) that become singular are logP (iζ, q2) and K(iζ, q2); recalling (3.5)
and (3.8) (and using series expansions for exp and log), one finds that,

logP (iζ, q2) ∼ ln |ϵ|+O(1), K(iζ, q2) ∼ ∓i

|ϵ|
+O(1). (3.53)

Hence, recalling (A 1), it follows from (3.43) that in this limit, assuming that β2 and a
are of the order of 1,

z(ζ) ∼ β2 ln |ϵ| ±
a

|ϵ|
+O(1). (3.54)

But, as shown in Appendix A (see its final paragraph), β2 is purely imaginary. It then
follows from (3.54) that as |x| → ∞, the free surface tends to the curve given by

y(x) = −Im{β2} ln |x|. (3.55)

Thus the y-coordinate of points on the free surface tends to infinity as |x| → ∞. SW20
observe the same limiting behaviour for the free surface for flow past a submerged circular
cylinder without gravity - see their equation (3.8). The sole exception to this appears to
be for α < 0 in the limit when the depth of the hydrofoil below the free surface tends to
zero, as in figure 5 below. Equally, (4.9) and (4.10) show that the lift coefficient CL is
simply a multiple of Im{β2} and figure 7(a) shows that CL → 0 as yc → 0 for α = −π/4.

4. The force on the hydrofoil

We denote the (vector) force that is exerted by the fluid on the hydrofoil by F , and
the components of this force in the x- and y-directions by Fx and Fy, respectively. From
Blasius’s Theorem, we have

Fx − iFy =
iρ

2

∮
C
(w′(z))

2
dz, (4.1)

where, as in (2.6), C is a simple closed contour that surrounds the hydrofoil, and we
integrate around C in the anticlockwise direction, and ρ is the density of the fluid. Using
(3.3), we can write the integral in (4.1) in terms of ζ as

Fx − iFy =
iρ

2

∮
Ĉ
W ′(ζ)Ω(ζ)dζ, (4.2)
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where we can take Ĉ to be as in (3.18), and we integrate around it in the anticlockwise
direction. We can in fact compute the integral in (4.2) analytically, as follows.
First, let us introduce the function

η(ζ) = ζW ′(ζ)Ω(ζ). (4.3)

One may determine η(ζ) by following an approach similar to that which we used to
determine the function H(ζ) in §3.4 (and Ω(ζ) previously). First, it follows from (3.25)
and (3.33) that

η(q4ζ) = η(ζ), (4.4)

and so η(ζ) is automorphic with respect to Θ̂. Next, one can check from the properties of
W ′(ζ) and Ω(ζ), that η(ζ) is analytic everywhere in F̂ except for a simple pole at ζ = ζ1
and double poles at ζ = −i and −iq2. It then follows that we can write

η(ζ) = γ1K(ζ/ζ1, q
2)+γ2K(iζ, q2)+γ3K(iq2ζ, q2)+γ4L(iζ, q

2)+γ5L(iq
2ζ, q2)+γ0, (4.5)

for some unique constants γ0, . . . , γ5. Before attempting to determine these, note that,
evidently, we can write (4.2) as

Fx − iFy =
iρ

2

∮
Ĉ

η(ζ)

ζ
dζ. (4.6)

But then, by arguments similar to those that we used when integrating H(ζ)/ζ (with
H(ζ) given by (3.42)) in §3.4 (in particular, see text between (3.43) and (3.45)), one
can compute the integral of η(ζ)/ζ that appears in (4.6) (with η(ζ) given by (4.5))
analytically; one finds simply that∮

Ĉ

η(ζ)

ζ
dζ = 2πi(γ0 + γ1). (4.7)

Thus, in order to determine F , it remains only to determine the sum γ0 + γ1. We do so
in Appendix B - see in particular (B 3) - showing that it is simply a multiple of β2. It
then follows from (4.6), (4.7) and (B 3) that

Fx − iFy = −πρU2β2. (4.8)

Appendix A shows β2 to be purely imaginary. It then follows from (4.8) that F has only
a vertical component (i.e., Fx = 0), given by

Fy = πρU2Im{β2}. (4.9)

The lift coefficient, CL, for a two-dimensional lifting surface is defined as the force (per
unit width in the spanwise direction) in the direction perpendicular to the oncoming flow
at infinity, scaled on 1

2ρU
2ℓ where ℓ is the length of the chord of the lifting surface. Here

the normalisation gives ℓ = 1 and so

CL = 2Fy/ρU
2, (4.10)

with Fy given by (4.9) (and β2 by (A7)). Section 6 discusses the behaviour of CL as a
function of α and yc.

5. Limiting cases

5.1. A horizontal hydrofoil

In deriving our parameterisation, we have assumed that ζ1 ̸= −ζ2 (see just after (3.36)),
i.e., that ζ1 and ζ2 are not reflections of one another in the imaginary ζ-axis. However, let
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us now consider the limit of our results as −ζ1/ζ2 → 1. First, in this limit, it is evident
from (3.38a,b) and (3.37) that (since K(−ζ1/ζ2, q2) becomes unbounded) α1 = α2 = 0
and α0 = U , and hence, as follows from (3.34), Ω(ζ) = U for all ζ. Thus w′(z) = U for
all z. It follows that in this case the hydrofoil must be horizontal. Indeed, it follows that
in this case our expressions for the constants β1, . . . , β5 - see Appendix A - reduce to

β1 = β2 = β3 = 0, β4 = β5 = ai, (5.1)

and hence our expression (3.43) for z(ζ) reduces to

z(ζ) = aiK(iζ, q) + c, (5.2)

where we have made use of (3.15a). And one can check by using the properties of K(ζ, q),
that z(ζ) as given by (5.2) maps C1 onto a horizontal line segment of finite length.
Furthermore, one can also check that it maps C0 onto a horizontal line that extends to
infinity in both directions - this is the free surface in this case. We also mention that, in
this case, it follows from (5.1) (and (3.15b)) that β0 - as given by (A 12) - reduces to

β0 = −aiL(iζ1, q). (5.3)

And since z′(ζ1) = 0, it follows from (5.2) (and (3.10)) that L(iζ1, q) = 0, and hence from
(5.3) that β0 = 0. Thus in this case, the single-valuedness condition (3.45) is satisfied
automatically. For a similar reason, it follows from (3.23) that the circulation, Γ , around
the hydrofoil in this case is also 0. Furthermore, it follows from (4.9) (and the fact that
now β2 = 0) that in this case, the fluid exerts no force on the hydrofoil.

5.2. Near-vertical hydrofoils

We have also thus far assumed that −ζ2 ̸= ζ2, or equivalently, that ζ2 ̸= ±iq (see just
after (3.24)). Let us now consider the limits of our results as ζ2 → ±iq whilst ζ1 → ∓iq,
respectively. First, in both of these limits, it is evident from (3.38a) that α1 must be real
and hence, as follows from (3.48), that α must tend to either of ±π/2. On geometrical
grounds, one may deduce that α → ±π/2 as ζ2 → ±iq, respectively. Indeed, it then
follows from (A1), (A 5), (A 9), (A 11) and the fact (already stated) that β2 is purely
imaginary, that in both of these limits, β1, β3, β4 and β5 are also all purely imaginary,
and

β3 = β2, β5 = −β4. (5.4)

One can then check by using the properties of P (ζ, q) and K(ζ, q), that z(ζ) as given
by (3.43) maps C1 onto a vertical line segment of finite length. We also mention that,
in this case, it follows (using the facts that K(±q, q2) = −K(±q3, q2) and L(±q, q2) =
L(±q3, q2), which follow from (3.9) and (3.12), respectively), that β0 (as given by (A 12))
is automatically equal to 0, and so the single-valuedness condition (3.45) is satisfied
automatically.

6. Flow properties

We have evaluated the solution obtained above using our parameterisation, for a
hydrofoil of unit length with leading edge z1 at the origin and trailing edge z2 at eiα

for some α, giving an angle of attack of −α. It is sufficient for a valid solution to
fix two of arg{ζ1}, arg{ζ2} and q and then solve the single equation (3.50), with α
defined by (3.49), for the third. To obtain a normalised solution, however, we fixed α
and yc (the depth of submergence of the leading edge), set U and ρ to unity, and solved
(3.49)–(3.52) simultaneously for the four real numbers arg{ζ1}, arg{ζ2}, q and arg{ζc}
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Figure 5. Free surface profiles (blue) for flow past a hydrofoil (red) for various angles of attack,
−α, and leading-edge submergence, yc. (a) α = −π/4, yc = 0.01, 0.05 and 0.1, 0.2, 0.3, . . . .
(b) α = π/3, yc = 0.28, 0.8 and 1.2, 1.4, 1.6, . . .. Lengths here and in subsequent figures are
normalised on the length of the foil.

using a multi-dimensional Newton-type iterative method. All computations were carried
out in MATLAB. The functions P (ζ, q), K(ζ, q) and L(ζ, q) were evaluated from finite
truncations of the infinite product in (3.5) and the infinite series in (3.8) and (3.11),
respectively. For the largest values of q used (of the order of 0.95) 150 terms gave 16
decimal-place accuracy while for the smallest values of q three terms were sufficient. The
computations were so rapid that no optimisation was necessary and all computations
were performed with 200 terms. The routine fsolve was used for the Newton-type root
finding. Once the parameters for a given plate orientation are determined the value of any
quantity follows simply by evaluating an explicit formula. Results can thus be obtained
and plotted at machine precision as, for example, in figure 6(e) below.
Figure 5 shows free surface profiles for flow past a hydrofoil at angles of α = −π/4 and

π/3, for different values of leading-edge submergence yc. Figure 6 gives further examples
including sub-surface streamlines (turquoise). For positive angles of attack (α < 0) the
free surface has a crest (at zc), while for negative angles of attack (α > 0) the surface has a
trough. These results are consistent with those for a submerged cylinder in zero gravity in
SW20. In terms of the mapping parameters, it appears that for all α, yc → ∞ corresponds
to q → 0, while yc decreases as q → 1. In particular, for α = −π/4, for yc = 0.01,
q = 0.9399 (to 4 d. p. - we report other values to the same accuracy), arg{ζ1} = 1.6885,
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Figure 6. Streamlines (turquoise) for free-surface flow past a hydrofoil for various angles of
attack, −α, and leading-edge submergence, yc. (a) α = −π/4, yc = 1.5. (b) α = −π/4, yc = 0.3.
(c) α = π/3, yc = 1.4. (d) α = π/3, yc = 0.28. (e) A detail of part (d) near the stagnation point.
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Figure 7. The lift coefficient CL as a function of the leading-edge submergence yc for the
angles of attack of figure 6 : (a) π/4, (α = −π/4); (b) −π/3 (α = π/3). The dashed line gives
the limiting value for yc → ∞ from (6.1).

arg{ζ2} = 4.7471 and arg{ζc} = 1.6537), while for yc = 1.5, q = 0.0735, arg{ζ1} =
2.4593, arg{ζ2} = 5.4119 and arg{ζc} = 1.7598.
For α = −π/4, in figure 5(a), it appears that solutions exist for all yc > 0. In the

limit as yc → 0 the free surface ‘shrinks’ onto the hydrofoil, extending horizontally from
the trailing edge to infinity in both directions. Figure 7(a) shows that CL is a positive,
monotonic increasing function of yc and thus, from (4.9) and (4.10), so too is Im{β2}.
The asymptotic form (3.55) then implies that any solution for the free surface for a given
yc will eventually, at sufficiently large |x|, cut the free surface of all solutions for larger
values of yc. This is particularly evident when yc = 0.01 and the free surface is close to
horizontal in the range shown.
For α = π/3, in figure 5(b), it appears that there exist solutions for all yc greater

than some lower bound slightly less than 0.28, at which the free surface develops a cusp
(at zc) with q = 0.9565, arg{ζ1} = 4.6982, arg{ζ2} = 4.8212 and arg{ζc} = 4.5894.
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Figure 8. (a) The lift coefficient CL as a function of the angle of attack −α for three depths h
of the midpoint of the hydrofoil. (b) The rate of change of CL with respect to angle of attack
−α at α = 0, as a function of h. The dashed line gives the infinite depth asymptote, CL = 2π,
from (6.1).

As in figure 5(a), the free surfaces of solutions for different values of yc intersect if the
corresponding values of CL differ, as they do in general. Figure 7(b) shows that CL is
no longer a monotonic function of yc and so there exist pairs of values of yc for which
the free surfaces of the corresponding solutions become parallel at sufficiently large |x|,
although they may intersect at finite x.

The free surface for α = −π/4 with yc = 0.01, and that for α = π/3 with yc = 0.28 do
not make contact with the hydrofoil. This shows more clearly in figure 6(e) which shows
a detail of figure 6(d) in the neighbourhood of the stagnation point. The free surface
almost coincides with the stagnation point streamline and then passes closely along the
rear of the upper surface of the foil.

Figure 7 quantifies the reduction in the lift coefficient with decreasing leading-edge
submergence yc at the fixed angles of attack π/4 (α = −π/4) and −π/3 (α = π/3). The
dashed lines give the values for a foil in unbounded flow,

CL = 2π sin(−α), (6.1)

to which the graphs asymptote as yc → ∞. For α = −π/4, it appears that CL → 0 as
yc → 0 (the smallest value of CL plotted here is for yc = 0.01).

Figure 8(a) shows the lift coefficient CL as a function of the angle of attack −α for
three values of the parameter h, defined as the depth of the midpoint of the foil below
the central extremum of the free surface, to coincide with the parameter h in SW20, and
related to the leading-edge submergence yc here through

h = yc − sin(α)/2. (6.2)

For positive angles of attack the lift decreases monotonically with h as expected. Perhaps
less expected, once the foil is closer to the surface than a distance of order the chord
length of the hydrofoil, the lift no longer increases monotonically with angle of attack:
for h = 0.6 and −α > 0.6 the lift decreases with increasing −α. As noted briefly in the
§7, the small |α| regime is the most likely to be observed in practice and here figure
8(a) shows that, for both positive and negative angles of attack, reducing submergence
reduces the magnitude of CL. This reduction is quantified in figure 8(b) which shows, as
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a function of the depth h,

dCL

d(−α)

∣∣∣∣∣
α=0

, (6.3)

the slope at the origin of the graphs in figure 8(a), giving the rate of change of CL

with angle of attack for zero angle of attack and showing this to decrease rapidly with
decreasing submergence at depths comparable to or smaller than the foil chord length.
The pressure coefficient at each point along the foil is defined as

Cp = 2(p− p∞)/ρU2 = 1− |w′(z)|2/U2, (6.4)

evaluated on the foil, where p is the local pressure, p∞ is the constant pressure at large
distances and the expression in terms of velocity follows from Bernoulli’s equation. Figure
9(a) shows Cp for a foil at angle of attack 5° and various depths of midpoint submergence,
h. At the stagnation point near the leading edge on the lower side of the foil Cp = 1
as expected and at the velocity singularity at the leading edge the pressure diverges to
negative infinity. As in the results for the NACA0012 hydrofoil at Froude number Fr = 2
(with Fr = U/

√
gℓ, for gravitational acceleration g) in figure 11 of SW20, the pressure

distribution on the lower side is practically invariant under changes in submergence. The
pressure along the upper side decreases rapidly to the far-field value, p∞, as the foil nears
the surface, leading to a rapid decrease in lift as in figure 7(a). The rounded leading edge
of the NACA0012 hydrofoil means that the pressure remains finite there.
Figure 9(b) shows the lift coefficient CL as a function of the submergence, comparing

the result here with those for the NACA0012 hydrofoil at Froude numbers Fr = 5, 10
in figure 12 of SW20 (which shows, in fact, CL/2 as in figure 4 of SW20)† obtained
by numerically integrating the Blasius formula (4.1). The analytical solution coincides
remarkably with the values for Fr = 5, particularly for submergences h < 0.6 and h > 3,
but deviating by less than 3.5% for 0.6 < h < 3. This accords with the results in
SW20 figure 6(a) for flow past a cylinder at Fr = 5 which show that surface waves are
absent at sufficiently large submergence (as they are for all Froude numbers, with the
flow approaching flow in an unbounded domain) but also that surface waves disappear
for sufficiently small submergence, being negligible at Fr = 5 for a submergence of 0.43ℓ
(for cylinder radius ℓ). The difference of the analytical results for Fr ≫ 1 from the results
for Fr = 10 in SW20 could be expected to be smaller than the difference from the results
for Fr = 5 but figure 9(b) shows this not to be so. The reason is unclear but is likely
to be due to the geometric differences between the flat plate and the NACA0012 foil.
The analytical formula seems nevertheless to capture the general behaviour of the SW20
solutions.

7. Discussion

We have presented an explicit solution for infinite-depth, irrotational, two-dimensional,
free-surface, attached flow past an inclined flat plate in the limit of large Froude number.
The flow patterns are described by two quantities, the angle of attack, −α, and the depth
of midpoint submergence, h, with the solution parameters determined as the simultaneous
roots of four real nonlinear algebraic equations arising from the flow normalisation. This
explicit form allows accurate evaluation of various flow quantities and these are related
to the large Froude number results of SW20 obtained by a numerical integral equation
method.

† Dr Y. A. Semenov, private communication
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Figure 9. (a) The pressure coefficient Cp for a foil at angle of attack 5° at selected depths,
h, of midpoint submergence as a function of distance, x̂, along the foil from the midpoint. The
upper curves correspond to the lower side of the foil and the lower curves to the upper side. (b)
The lift coefficient CL (yellow) as a function of the midpoint submergence h compared with the
values of CL in SW20 for flow past the NACA0012 hydrofoil at Froude numbers Fr = 5 (blue)
and Fr = 10 (red). The dashed line gives the infinite depth asymptote from (6.1).

The minimum computation required to obtain the lift coefficient and reproduce the
examples presented in §6 consists of choosing α and h and then solving simultaneously the
four equations (3.49)–(3.52) for the four real numbers arg{ζ1}, arg{ζ2}, q and arg{ζc},
implementing the functions P (ζ, q), K(ζ, q) and L(ζ, q) using the expressions (3.5), (3.8)
and (3.11). The values of β2 and hence CL are then given by (A 7), (4.9) and (4.10).
The most significant approximation here is the assumption of large Froude number. The

results in SW20 for flow past a cylinder at Fr = 5 show that surface waves are absent
at sufficiently large submergence and for sufficiently small submergence. The explicit
results here may thus be of relevance at moderate Froude numbers at some shallow
submergences. This is further borne out by the comparison in figure 9(b) of the lift
coefficient CL here and those in SW20 for Fr ⩾ 5. The general similarity across all
submergences suggests that at these Froude numbers the presence of surface waves has
little effect on lift, though, of course, introducing drag.
The Kutta condition for smoothly detaching flow introduces circulation into the

flow and consequently the free surface diverges logarithmically upwards or downwards,
depending on the sign of the circulation, at large distances. It could be expected that in
finite-depth flows the free surface would become flat over horizontal distances comparable
to the fluid depth and preliminary analysis, to be presented elsewhere, shows this to
indeed be the case. The methodology of Crowdy & Green (2011) allows the present
results to be extended also to flows periodic in the streamwise direction.

The solutions presented here are valid for arbitrary angles of attack and submergences
but are unlikely to be observed at large angles of attack when flows are likely to display
separation, cavitation or ventilation and three-dimensional and viscous effects as de-
scribed in review articles and texts including, for example, Acosta (1973), Faltinsen (2005)
and Molland & Turnock (2022). Within the context of the present model the solution
branch could bifurcate to give multiple solutions for the same external parameters as in
the vortex streets of Crowdy & Green (2011).

The authors are grateful to Dr Y. A. Semenov for providing the raw data from figure
12 of SW20, plotted in figure 9 here and to referees for helpful presentational suggestions.
ERJ would like to thank the Isaac Newton Institute for Mathematical Sciences for support
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Appendix A. Determining β0, . . . , β5
First, recalling (3.22) and (3.29), as well as (3.8) and (3.11), one finds by comparing the

coefficients of (ζ + i)−2 and (ζ + i)−1 in the Laurent series expansions of the right-hand
sides of (3.40) and (3.42) about ζ = −i, that

β4 = ai, (A 1)

and

β2 =
aΩ′(−i)

U
. (A 2)

Relation (A 1) is to be expected, given our assumption of (3.1).
Similarly, by comparing the Laurent series expansions of the right-hand sides of (3.40)

and (3.42) about ζ = −i/q2, one finds that

β5 =
Uai

Ω(−i/q2)
, (A 3)

and

β3 =
UaΩ′(−i/q2)

q2(Ω(−i/q2))2
. (A 4)

But it follows from (3.32) and (3.29) that Ω(−i/q2) = e−2iαU , and hence from (A3) that

β5 = aie2iα. (A 5)

Also, it follows from (3.34) and (3.38b), that

Ω′(ζ) =
α1

ζ

(
L(ζ/ζ1, q

2)− L(−ζ2ζ, q2)
)
. (A 6)

Then, using (A 6) and recalling (3.38a) (and also (3.12b)), it follows from (A2) that

β2 =
−ai

(
L(iζ1, q

2)− L(iζ2, q
2)
)

K(iζ1, q2) +K(iζ2, q2)−K(−ζ1/ζ2, q2)
. (A 7)

Next, by differentiating both sides of (3.32) and then setting ζ = −i/q2 in the resulting
equation, one can show that

Ω′(−i/q2)

(Ω(−i/q2))2
=

−q2e2iαΩ′(−i)

U2
. (A 8)

It then follows from (A4) and (A2) that

β3 = −e2iαβ2. (A 9)

Also, in order for H(ζ) as given by (3.42) to satisfy (3.41), it follows from (3.9a) and
(3.12a) that

β1 + β2 + β3 = 0. (A 10)

It then follows from (A10) and (A 9) that

β1 = (e2iα − 1)β2. (A 11)

Now, it follows from (3.40) and the properties ofW ′(ζ) andΩ(ζ), thatH(ζ) has a (simple)
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zero at ζ = ζ1. Then, setting ζ = ζ1 in (3.42) and using the fact that K(q2, q2) = 0 (see
just after (3.35)) as well as (A 1), (A 5) and (A 9), it follows that

β0 = −ai
(
L(iζ1, q

2) + e2iαL(iq2ζ1, q
2)
)
− β2

(
K(iζ1, q

2)− e2iαK(iq2ζ1, q
2)
)
. (A 12)

So, in summary, the coefficients β0, . . . , β5 are given by (A 12), (A 11), (A 7), (A 9), (A 1)
and (A 5), respectively.
Finally we make the following observation about β2 which we make use of in sections

3.6 and 4. By differentiating both sides of (3.30) with respect to ζ and then setting ζ = −i
in the resulting equation, and also recalling (3.29), one can show that Ω′(−i) = −Ω′(−i),
i.e., thatΩ′(−i) is purely imaginary. It then follows from (A2) that β2 is purely imaginary.

Appendix B. Determining the sum γ0 + γ1
First, we note that it follows from (4.3) and the properties of W ′(ζ) and Ω(ζ), that

η(ζ) has a (simple) zero at ζ = 1/ζ1. Then, setting ζ = 1/ζ1 in (4.5), and using the
fact that K(1/q2, q2) = 1 (which follows from the fact that K(q2, q2) = 0 - see just after
(3.35) - and (3.9a)), and recalling that 1/ζ1 = ζ1/q

2 as well as (3.9a) and (3.12a), it
follows that

γ0 + γ1 = −
(
γ2K(iq2ζ1, q

2) + γ3K(iζ1, q
2) + γ4L(iq

2ζ1, q
2) + γ5L(iζ1, q

2)
)
− γ2. (B 1)

Next, one can determine the constants γ2, . . . γ5 in a similar manner to how we determined
the constants β0, . . . β5 in Appendix A. That is, by comparing coefficients of the Laurent
series expansions of the right-hand sides of (4.3) and (4.5) about ζ = −i and ζ = −i/q2,
whilst also recalling (A 2), (A 4), (A 9) as well as the fact that Ω(−i/q2) = e−2iαU (see
just after (A 4)), one finds that

γ2 = −U2β2, γ3 = e−2iαU2β2, γ4 = U2ai, γ5 = U2aie−2iα. (B 2)

Then, substituting for γ2, . . . , γ5 in (B 1) with (B 2), and also recalling (A 12) and the
requirement (3.45), one finds that

γ0 + γ1 = U2β2. (B 3)
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