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Abstract. In the context of the full line Schrodinger equation, we revisit the
binary Darboux transformation (double commutation method) which inserts
or removes any number of positive eigenvalues embedded into the absolutely
continuous spectrum without altering the rest of scattering data. We then show
that embedded eigenvalues produce an additional explicit term in the KdV so-
lution. This term looks similar to multi-soliton solution and describes waves
traveling in the direction opposite to solitons. It also resembles the known
formula for (singular) multi-positon solutions but remains bounded, which an-
swers in the affi rmative Matveev’s question about existence of bounded posi-
tons.

1. Introduction

We are concerned with the inverse scattering problem for the full line Schrodinger
operator Lq = −∂2x + q (x) in the presence of embedded eigenvalues (i.e. positive
eigenvalues in the continuous spectrum) and understanding how such eigenvalues
affect solutions to the initial value problem for the Korteweg-de Vries (KdV) equa-
tion

∂tu− 6u∂xu+ ∂3xu = 0, −∞ < x <∞, t ≥ 0,
u (x, 0) = q (x) .

(1.1)

If q (x) = O
(
|x|−2−ε

)
as x→ ±∞ (short-range) then the classical inverse scattering

transform (IST) yields essentially all the information about the solution one could

ask for. However, if q (x) = O
(
|x|−2

)
then the classical IST is no longer well-

defined in general as the standard scattering data no longer define the potential

uniquely [1]. Note that if q (x) = O
(
|x|−2−ε

)
at +∞ but quite arbitrary at −∞

then a "right sided" IST still works1 allowing to study KdV solutions with such
initial data (see our recent [19] and the literature cited therein). As it was shown by
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Naboko [26] slower than q (x) = O
(
|x|−1

)
may produce dense singular spectrum

filling (0,∞) leaving any hope that a suitable IST can include such a situation.
The main concern of our note is to develop the IST for those cases of Wigner-von
Neumann type of initial data

q (x) = (A/x) sin 2ωx+O
(
x−2

)
, |x| → ∞, (1.2)

that produce only finitely many embedded bound states ( and no other positive
singular spectrum). It is important that Wigner-von Neumann potentials are in L2

and due to the seminal Bourgain’s result [4] (1.1) remains well-posed.
In our recent work [28] we use L2 well-posedness to treat a specific case of Wigner-

von Neumann type of initial data that gives a hint for how IST may be extended
shading some light on Vladimir Matveev’s proposal [9]: "A very interesting unsolved
problem is to study the large time behavior of the solutions to the KdV equation
corresponding to the smooth initial data like cx−1 sin 2kx, c ∈ R", "The related
inverse scattering problem is not yet solved and the study of the related large times
evolution is a very challenging problem".
We recall that Wigner-von Neumann potentials were introduced as examples of

quantum mechanical potentials that produce embedded eigenvalues (i.e. embedded
into continuous spectrum). In the present paper, we concentrate on understanding
the general effect of embedded eigenvalues on inverse scattering problem and KdV
solutions. We show that to restore well-posedness of IST the classical scattering
data need to be supplemented with embedded bound state data which are similar to
that of negative bound states but come from a different type of singularity, embed-
ded real poles of Jost solutions (also known as resonances or spectral singularities).
The main new feature is an (explicit) extra term in the KdV solution that accounts
for embedded eigenvalues and resembles the well-known multisoliton solution [23]
(see also [29]). In the literature (see e.g. [25]) such solutions are commonly referred
to as positon (since they correspond to positive eigenvalues) but only singular (dou-
ble pole) positons are currently known. In fact, Matveev has repeatedly asked [25]
if bounded (non-singular) positons exist. We offer an explicit construction of such
solutions which should yield precise description of how positons interact with each
other, as well as with solitons and the background. Our analysis is based on the
binary Darboux transformation (see e.g. [20, 24]), also known as the double commu-
tation method (see e.g. [8, 15]), but we rely on the new approach to it put forward
in our recent [29] which is particularly well-suited to the IST setting. We refer
the reader to Section 3 for more discussions, historical comments, and literature
accounts.
We emphasize that we deal with a new type of coherent KdV structure associated

with initial data that support zero transmission at positive energies2. Such a point
gives rise to a spectral singularity which order determines main features of the KdV
solution. In our recent paper [17] we show that if its order is less than 1/2 then, in
fact, there are no interesting features to report on. In the context of Wigner-von
Neumann initial data (1.2) it is the case when the ratio γ := |A| /4ω < 1/2. In this
paper we consider order 1 spectral singularities. Such singularities are generated, for
example, by (1.2) with γ = 1. (Recall that such singularities are also referred to as
resonances.) We are still far from the complete solution of Matveev’s problem. But
we now have a tool to turn an order one singularity into an embedded eigenvalue and

2At such points the reflection coeffi cient is unimodular (full reflection).
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show that the new initial profile does generate a new distinct feature, a (bounded)
positon. On the other hand, it is well-known that an embedded eigenvalue (bound
state) is the result of a very complicated process of coherent reflections causing its
instability (see e.g. [3]). For this reason there is unfortunately no easy (if any)
way to tell initially a resonances from an embedded eigenvalue. However, under
the KdV flow, over time, an embedded eigenvalue reveals itself (as a soliton does).
The quantitative analysis of this phenomenon is very nontrivial and still work in
progress.
Through the paper, we make the following notational agreement. The bar de-

notes the complex conjugate. Matrices (including rows and columns) are denoted
by boldface letters. For instance, x = (xn) is the row with entries xn. Prime
stands for the x-derivative and W (f, g) = fg′ − f ′g is the Wronskian. We write
f (x) ∼ g (x) , x → x0 (finite or infinite) if f (x) − g (x) → 0, x → x0. The only
function space we need is the standard Lp (S) with p = 1, 2 with the convention
Lp := Lp (R), Lp (±∞) = Lp (a,±∞) with any finite a. If f (z) is analytic in some
domainD of the complex plane, we call a boundary point z0 an embedded simple pole
if z0 is a non-isolated singularity and (z − z0) f (z) tends to a finite limit c 6= 0 as
z → z0 non-tangentially. We then denote c = Resz0 f . Continuity at a point means
continuity in some neighborhood of the point. Finally, Im f (z0) = (Im f) (z0) and
the same agreement of course applies to the real part Re.
The paper is organized as follows. In Section 2 we fix our terminology and

introduce our main ingredients. In Section 3 we state and prove the theorem on
embedding eigenvalues into continuous spectrum and discuss how it addresses some
open problems. In Section 4 we give our theorem on paring embedded bound states.
In the final section 5 we work out an explicit example illustrating our main results.

2. Our framework and main ingredients

In this section we briefly review the necessary material and introduce our main
ingredients. Let

Lq = −∂2x + q (x) (2.1)

denote the full line Schrodinger operator with a real potential q (x). That is, we
assume that Lq can be defined as a selfadjoint operator on L2. We agree to retain
the same notation Lq for a differential expression defined by (2.1). Occasionally we
also consider half-line versions of Lq. Through the rest of the paper we assume the
following basic conditions:

Hypothesis 2.1. q is a real locally integrable function on R subject to
(1) the operator Lq is semibounded below;
(2) the equation Lqu = k2u has a solution ψ (x, k) subject for a.e. Im k = 0 to

ψ(x, k) ∼ eikx, ψ′(x, k) ∼ ikeikx, x→ +∞. (right Jost solution) (2.2)

Hypothesis 2.1 covers a large class of step-type potentials, i.e. potentials decaying
(but not necessarily short-range) at +∞ but essentially arbitrary at −∞. In our
[18, 19] we develop the IST for the KdV equation assuming a short range decay at
+∞ in place of condition (2). (See also Subsections 2.1 and 2.2.)

2.1. Weyl solution. Since some of the material of this subsection is not quite
mainstream in the integrable systems community, for the reader’s convenience we
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go over some basics of Titchmarsh-Weyl theory. We follow a modern exposition of
this theory given in [31, Chapter 9] adapting it to our setting.

Definition 2.2 (Weyl solution). A real locally integrable potential q (x) is said to
be Weyl limit point at ±∞ if the Schrödinger equation

Lqu = −u′′ + q (x)u = λu, x ∈ R, (2.3)

has a unique (up to a multiplicative constant) solution that is in L2(±∞) for each
λ ∈ C+. Solutions Ψ±(x, λ) are called the right/left Weyl solution respectively.

The concept of a Weyl solution is fundamental to the spectral theory of Schrodinger
(Sturm-Liouville) operators in dimension one due to the fact that its uniqueness is
equivalent to the selfadjointness of Lq on L2 (a,±∞) with a Dirichlet (or any other
selfadjoint) boundary condition at x = a± 0, a is any finite number.
There is no criterion for the limit point case in terms of q but there are convenient

suffi cient conditions which are typically satisfied in realistic situations. For instance,
if q is essentially bounded below,

sup
a∈R

∫ a+1

a

max {−q (x) , 0}dx <∞,

then it is in the limit point case at both ±∞. Thus, Lq with such q is selfadjoint
on L2. In fact, if the quadratic form 〈Lqf, f〉 ≥ c ‖f‖2 with some finite c for any
f from a dense subset of L2 then Lq is selfadjoint and its spectrum SpecLq is
bounded below by c. Hence Lq is also in the limit point case at both ±∞ . Thus,
the condition 1 of Hypothesis 2.1 implies that q is limit point at both ±∞. Also,
if q obeys the condition 2 of Hypothesis 2.1 then the right Weyl solution Ψ+ (x, λ)
can be chosen to satisfy Ψ+

(
x, k2

)
= ψ (x, k), where ψ is the right Jost solution

(2.2). Note that Ψ+ (x, λ) is a function of energy λ whereas ψ (x, k) is a function
of momentum k (λ = k2).
In this connection we emphasize that the Weyl solution is a family of solutions

different by a multiple α (λ). The logarithmic derivative though

m± (λ, a) = ±
Ψ′± (a± 0, λ)

Ψ± (a± 0, λ)
, λ ∈ C+, (2.4)

is clearly independent of the choice ofΨ±, and is known as the right/left Titchmarsh-
Weyl m-function (or just m-function for short).
It should be quite apparent that without loss of generality we can discuss only

the right half-line case. Unless otherwise stated for the rest of the subsection we
conveniently abbreviate

Ψ = Ψ+, m (λ) = m+ (λ, 0) .

The function m (λ) is analytic mapping C+ to C+ (a Herglotz function) and
hence admits the Herglotz representation

m (λ) = c+

∫
R

(
1

s− λ −
s

1 + s2

)
dµ (s) , c ∈ R,

with some positive measure µ subject to
∫
R

dµ (s)

1 + s2
< ∞. It is a fundamental fact

of Titchmarsh-Weyl theory that µ coincides with the spectral measure of LDq , the
Schrodinger operator on L2 (R+) with a Dirichlet boundary condition u (+0) = 0.
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Note that E is an eigenvalue of LDq iff m (E + iε) has a pole type singularity as
ε→ +0.
The m-function m introduced by (3) is also known as Dirichlet or principal.

However we will also need the Neumann m-function m0 defined by

m0 (λ) = −Ψ (0, λ) /Ψ′ (0, λ) = −1/m (λ) . (2.5)

It is a Heglotz function and its representing measure is the spectral measure of
LNq , the Schrodinger operator on L2 (R+) with a Neumann boundary condition
u′ (+0) = 0. If we normalize Ψ to satisfy

Ψ (x, λ) = c (x, λ) +m0 (λ) s (x, λ) , (2.6)

where c (x, λ) , s (x, λ) are solutions of Lqu = λu on R+ satisfying

c (0, λ) = 1, c′ (0, λ) = 0; s (0, λ) = 0, s′ (0, λ) = 1,

then (see e.g. [31, Lemma 9.14]) for λ ∈ C+∫ ∞
0

|Ψ (x, λ)|2 dx =
Imm0 (λ)

Imλ
. (2.7)

We now have all ingredients to prove the following important statement.

Lemma 2.3. Let Lq be selfadjoint on L2 and Ψ (x, λ) a right Weyl solution. If E
is a real number such that:

(1) E > inf SpecLq;
(2) equation Lqu = Eu has a real solution uE (x) square integrable at +∞;
(3) limε→+0 Ψ (x,E + iε) =: Ψ (x,E + i0) exists and finite;

then uE (x) and Ψ (x,E + i0) are linearly dependent.

Proof. Condition 1 implies that uE (x) has at least one zero (the Sturm comparison
theorem). Without loss of generality we assume that it is 0. That is uE (0) = 0.
Due to Condition 2, uE ∈ L2 (R+) and hence E is an eigenvalue of LDq on L2 (R+).
This means that the Dirichlet m-function m (E + iε) has a pole type singularity
as ε→ +0 and hence, due to (2.5), the Neumann m-function m0 (E + iε) vanishes
linearly as ε → +0. Let Ψ0 denote the Weyl solution subject to (2.6). It follows
from (2.7) that ∫ ∞

0

|Ψ0 (x,E + iε)|2 dx =
Imm0 (E + iε)

ε
.

Therefore, we must have∫ ∞
0

|Ψ (x,E + iε)|2 dx ∼ C > 0, ε→ +0. (2.8)

But since c (x, λ) , s (x, λ) are entire functions in λ andm0 (λ) has (nontangentional)
boundary values a.e. on R, it follows from (2.6) that boundary values of Ψ0 are
well-defined and

Ψ0 (x,E + i0) = c (x,E + i0) +m0 (E + i0) s (x,E + i0)

= c (x,E) .

By the Fatou lemma we conclude that∫ ∞
0

|Ψ0 (x,E + i0)|2 dx =

∫ ∞
0

|c (x,E)|2 dx ≤ C.
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ThusΨ0 (x,E + i0) ∈ L2 (R+). By the well-known (and easily verifiable) Wronskian
identity:

W ′ (fλ, fµ) = (λ− µ) fλfµ, (2.9)

where fλ denotes a solution to Lqu = λu, one has

W (Ψ0 (x,E + iε) , uE (x)) =−iε

∫ ∞
x

Ψ0 (s, E + iε)uE (s) ds. (2.10)

By taking in (2.10) ε→ +0, one immediately concludes from that that

W (Ψ0 (x,E + i0) , uE (x)) = 0

if we show that the integral in (2.10) stays bounded. The latter follows from

lim
ε→+0

∣∣∣∣∫ ∞
x

Ψ0 (s, E + iε)uE (s) ds

∣∣∣∣2
≤ lim
ε→+0

∫ ∞
x

|Ψ0 (s, E + iε)|2 ds ·
∫ ∞
x

uE (s)
2

ds

≤ lim
ε→+0

∫ ∞
0

|Ψ0 (s, E + iε)|2 ds ·
∫ ∞
0

uE (s)
2

ds

<∞.

It remains to notice that, as Weyl solutions, Ψ and Ψ0 differ by a multiple α (λ).
That is, Ψ (x, λ) = α (λ) Ψ0 (x, λ) for any x and hence

α (λ) = Ψ (0, λ) /Ψ0 (0, λ) = Ψ (0, λ) ,

as by (2.6) Ψ0 (0, λ) = 1. Since, by Condition 3, Ψ0 (x,E + i0) is well-defined, so is
α (E + i0). Thus

W (Ψ (x,E + i0) , uE (x)) = α (E + i0)W (Ψ0 (x,E + i0) , uE (x)) = 0,

which concludes the proof. �

In what follows E is a priori embedded into continuous spectrum and hence
Condition 1 will be satisfied.

2.2. Reflection coeffi cient [18]. From now on, we assume Hypothesis 2.1 which
lets us take the right Jost solution ψ (x, k) defined by (2.2) as the right Weyl solution
Ψ+

(
x, k2

)
suitable for us. Namely, we set

Ψ+

(
x, k2

)
= ψ+ (x, k) = ψ (x, k) .

We choose the left Weyl solution Ψ−
(
x, k2

)
, denote it by ϕ (x, k), to satisfy

ϕ(x, k) = ψ(x, k) +R(k)ψ(x, k), (basic scattering relation) (2.11)

for a.e. real k with some R (k) called the (right) reflection coeffi cient. Equation
(2.11) is explained below. Thus

Ψ−
(
x, k2

)
= ϕ (x, k)

where ϕ is subject to (2.11).
Note that condition (2) of Hypothesis 2.1 assumes some decay at +∞ and implies

two important facts:
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(1) As it immediately follows from (2.2),

W (ψ(x, k), ψ (x, k)) = 2ik (2.12)

and hence the pair {ψ,ψ} forms a fundamental set for (2.3). This means
that (2.11) is nothing but an elementary fact saying that any solution is a
linear combination of fundamental solutions.

(2) It follows form (2.11) that

R (k) = −W (ϕ (x, k) , ψ (x, k))

W (ϕ (x, k) , ψ (x, k))
(2.13)

is well-defined for a.e. real k and R (−k) = R (k), |R (k)| ≤ 1.

2.3. Diagonal Green’s function [31]. If q ∈ L1 (+∞) then the Jost solution
exists for any k 6= 0. Slower decay may give rise to real singularities of ψ(x, k). The
adequate object to deal with such singularities is the diagonal Green’s function of
Lq defined as

g
(
k2, x

)
=

ψ+ (x, k)ψ− (x, k)

W (ψ+ (x, k) , ψ− (x, k))
= −ϕ (x, k)ψ (x, k)

2ik
, (2.14)

the last equation being due to (2.12). The importance of g is due to

(1) it is analytic in k2 from C+ to C+;
(2) its poles (necessarily real), both isolated and embedded, are eigenvalues of

Lq;
(3) the potential q (x) can be found from

g
(
−κ2, x

)
∼ 1− q (x) /2κ2, κ→ +∞. (2.15)

2.4. Norming constants. Recall that if (2.3) also has a left Jost solution ψ− (x, k)
(i.e., subject to ψ− (x, k) ∼ e−ikx) then ϕ (x, k) = T (k)ψ− (x, k) where T (k) is
called the transmission coeffi cient. It follows from (2.11) that T (k) = 2ik/W (ψ−, ψ)
meaning that T (k) is meromorphic in C+ with simple poles (if any) {iκn} , κn > 0,
and k2 = −κ2n are the isolated poles of g

(
k2, x

)
, i.e. negative bound states of Lq.

Since R (k) in general is only defined on the real line, one needs to include pole
information in the set of scattering data. It can be done via the relation

Res
k=iκn

ϕ (x, k) = ic2nψ (x, iκn) , (isolated pole condition) (2.16)

where positive c2n, called the (right) norming constant of bound state −κ2n, must
be specified.
As was discussed, slower decay of q at +∞ may give rise to resonances (also

known as spectral singularities), i.e. real points ±ωn where ψ (x, k), the other
factor in (2.14), shows a blow up behavior. To the best of own knowledge only
Wigner-von Neumann resonances are relatively well-understood [21]. In general
ψ (x, k) may blow up to any order. We however restrict our attention to the case

ψ (x, k) = O
(

(k − ωn)
−1
)
, k → ωn, i.e. ωn is an embedded simple pole3. Since

g
(
k2, x

)
may only have a simple embedded pole, ϕ (x, ωn) is then well-defined.

If ϕ (x, ωn) 6= 0 then ω2n is an embedded bound state. As we show in [28], the

3The case of arbitrary order singularities is technically more diffi cult and is still work in
progress.
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reflection coeffi cient R (k) alone can not tell if a resonance is a bound state or not.
Therefore an extra condition is required. Using (2.16) as a pattern to follow, we set

Res
k=ωn

ψ (x, k) =
iα2n

R (ωn)
ϕ (x, ωn) (embedded pole condition) (2.17)

with some α2n > 0 which we call the norming constant of embedded bound state
ω2n. The reason for putting an extra R (ωn) will be clear later. We shall see that
(2.17) indeed works.

2.5. Gauge transformation. This is our last (but not least) ingredient.

Lemma 2.4 (on gauge transformation). If ϕ (x, k) and ψ (x, k) are related by (2.11)
then so are

ϕ̃ (x, k) = ϕ (x, k) +
∑
n

an (x)W (ϕ (x, k) , fn (x, k))

ψ̃ (x, k) = ψ (x, k) +
∑
n

an (x)W (ψ (x, k) , fn (x, k))
(2.18)

for any real an (x) and fn (x, k) real for real k.

The proof is by a direct consequence of the bi-linearity of the Wronskian and
completely trivial. We will apply this lemma with a very specific choice of fn (x, k).
The name ’gauge’(but not the transformation) is taken from the recent [2] where
such transformations are crucially used in the context of matrix Riemann-Hilbert
problem associated with the focusing NLS. We however learned about them from
the recent [16] where it is used in a way similar to [2] but in the mKdV setting.
Note that the form (2.18) is very different from those of [2, 16].

3. Inserting embedded eigenvalues

In this section we state, prove, and discuss the following

Theorem 3.1 (turning resonances into embedded eigenvalues). Assume Hypothesis
2.1 and suppose that
1. (Resonance condition) for ω2n > 0, 1 ≤ n ≤ N <∞, Lqu = ω2nu has a unique

(up to a scalar multiple) L2 (−∞) solution;
2. (Continuity condition) the (right) Jost solution ψ (x, k) and the (right) reflec-

tion R (k) coeffi cient are continuous at each k = ωn.
Let

A = (αn) =
(
α1 α2 ... αN

)
be a row-vector of arbitrary real nonzero numbers (norming constants) and4

Φ (x) := (φn (x)) , φn (x) := 2 Re
[
R (ωn)

1/2
ψ (x, ωn)

]
. (3.1)

Then
• φn (x) ∈ L2 (−∞) (hence Φ (x) ∈ L2 (−∞)) and therefore
• the (square) matrix G+ (x) given by

G+ (x) := A

[∫ x

−∞
Φ (s)

T
Φ (s) ds

]
AT (the Gram matrix) (3.2)

is well-defined and (clearly) positive semi-definite;

4Where the root is chosen with a cut along (−∞, 0)
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• the potential
q+N (x) = q (x)− 2∂2x log det (I + G+ (x)) , (3.3)

supports embedded bound states (eigenvalues) at ω2n (1 ≤ n ≤ N);
• the associated (orthogonal in L2) eigenfunctions (yn (x)) can be (uniquely)
found from the linear system

y (I + G+ (x)) = −ATΦ (x) ,y := (yn) . (3.4)

Before proceeding with the proof, note that the class of potentials satisfying the
conditions of Theorem 3.1 is quite large. Indeed, as was discussed above, Hypothesis
2.1 requires only mild decay at +∞ and general behavior at −∞. Condition 1 is
readily satisfied if on the left half line q (x) behaves as a sum of N Wigner-von
Neumann type potentials (1.2) with all γ’s greater than 1/2. This is a classical fact
known since at least the earlier 50s (see, e.g. [8]). Condition 2 is a bit more subtle.
In section 5 we give specific examples with γ = 1 that produce analyticity (not
just continuity) in condition 2. These examples and some considerations of [21]
suggest a broad class of (long-range) potentials that guarantees condition 2 (work
in progress).

Proof. We start with constructing a suitable pair ϕ (x, k) , ψ (x, k) of Weyl solutions
for the original potential q at ∓∞ respectively. The candidate for ψ (x, k) is obvious,
the right Jost solution. As in subsection 2.2 we define the Weyl solution at −∞ by
(2.11). It follows from (2.13) and (2.4) that for any x

|R (k)| =
∣∣∣∣∣m−

(
k2, x

)
+m+ (k2, x)

m− (k2, x) +m+ (k2, x)

∣∣∣∣∣ .
Using the same arguments as in the proof of Lemma 2.3, from condition 1 we
conclude that for each k2 = ω2n there is a point x = an such that m−

(
k2, an

)
has

an embedded simple pole at ω2n. This immediately implies that |R (ωn)| = 1. In
other words, a plane wave coming from −∞ with energy ω2n is completely reflected
from q. Due to condition 2, it follows from (2.11) that

R (ωn)
−1/2

ϕ(x, ωn) = R (ωn)
1/2

ψ (x, ωn) +R (ωn)
1/2

ψ (x, ωn)

= 2 ReR (ωn)
1/2

ψ (x, ωn) ,

where the root is chosen with the argument in (−π, π]. Since R (ωn)
−1/2

ϕ(x, k)
is a Weyl solution that has a finite boundary value at ωn, by Lemma 2.3, from
condition 1 we conclude that

φn (x) = R (ωn)
−1/2

ϕ(x, ωn) = 2 ReR (ωn)
1/2

ψ (x, ωn) (3.5)

is a real L2 (−∞) solution of Lqu = ω2nu and the first bullet item is proven. Since
ψ (x, ωn) ∼ eiωnx at +∞, (3.5) also yields

φn (x) ∼ 2 cos

(
ωnx+

1

2
argR (ωn)

)
, x→ +∞. (3.6)

We are ready now to present our candidates for a new pair ϕ+N (x, k), ψ+N (x, k)
which is a suitable gauge transformation of ϕ (x, k), ψ (x, k). Taking in (2.18)

an (x) = αnyn (x) , fn (x, k) =
φn (x)

k2 − ω2n
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with some real (yn) to be determined, we have

ϕ+N (x, k) = ϕ (x, k) +

N∑
m=1

αmym (x)
W (ϕ (x, k) , φm (x))

k2 − ω2m
, (3.7)

ψ+N (x, k) = ψ (x, k) +

N∑
m=1

αmym (x)
W (ψ (x, k) , φm (x))

k2 − ω2m
. (3.8)

Consider ϕ+N first. Since ϕ, φn ∈ L2 (−∞) (ϕ is a Weyl solution at −∞), it
follows from (2.9) that

W (ϕ (x, k) , φn (x))

k2 − ω2n
=

∫ x

−∞
ϕ (s, k)φn (s) ds, Im k > 0. (3.9)

By Lemma 2.3 and (3.5) for any m,n one has

W (ϕ (x, k) , φn (x))

k2 − ω2m

∣∣∣∣
k=ωn

= R (ωn)
1/2
∫ x

−∞
φn (s)φm (s) ds.

Thus ϕ+N is continuous at each ωn and it follows from (3.7) that

ϕ+N (x, ωn) = R (ωn)
1/2

{
φn (x) +

N∑
m=1

αmym (x)

∫ x

−∞
φn (s)φm (s) ds

}
. (3.10)

Turn to ψ+N now. One can see that it has an embedded simple pole at each ωn.
Let us compute its residue. Since ψ is Jost at +∞, it follows from (2.11) that

W (ψ (x, k) , ϕ (x, k)) = W (ψ (x, k) , ψ(x, k)) = −2ik (3.11)

and therefore by (3.5)

W (ψ (x, ωn) , φn (x)) = R (ωn)
−1/2

W (ψ (x, ωn) , ϕ (x, ωn)) = −2iωnR (ωn)
−1/2

.

Thus, from (3.8) one obtains

Res
k=ωn

ψ+N (x, k) = αnyn (x)
W (ψ (x, ωn) , φn (x))

2ωn

= −iαnR (ωn)
−1/2

yn (x) . (3.12)

We choose now (yn) to satisfy our embedded pole condition (2.17):

Res
k=ωn

ψ+N (x, k) =
iα2n

R (ωn)
ϕ+N (x, ωn) . (3.13)

Substituting (3.12) and (3.10) in (3.13) we have

− iαnR (ωn)
−1/2

yn

=
iα2n

R (ωn)
R (ωn)

1/2

(
φn (x) +

N∑
m=1

αmym

∫ x

−∞
φm (s)φn (s) ds

)
.

R (ωn) drops out5 and we immediately arrive at the linear system

yn (x) +

N∑
m=1

ym (x)

∫ x

−∞
αmφm (s) αnφn (s) ds = −αnφn (x) (3.14)

5This was the reason for putting it in (2.17).



KDV EQUATION 11

in yn. In matrix form this system coincides with (3.4) which is nonsingular. Indeed,

G+ (x) =

(∫ x

−∞
(αmφm (s)) (αnφn (s)) ds

)
=

(
αm

[∫ x

−∞
φm (s)φn (s) ds

]
αn

)
= A

[∫ x

−∞
Φ (s)

T
Φ (s) ds

]
AT =

∫ x

−∞

[
Φ (s) AT

]T [
Φ (s) AT

]
ds.

Therefore, I+G+ (x) is positive definite and the system (3.14) has a unique solution
(yn) for any real αn and x. Its main feature is that yn ∈ L2 (R). Indeed, since
φn ∈ L2 (−∞) we conclude ‖G+ (x)‖ = o (1), x→ −∞, and yn (x) ∼ −αnφn (x) ∈
L2 (−∞). To show that yn ∈ L2 (+∞) we observe first that (3.6) implies that for
each entry ofG+ (x) we have gnn (x) = O (x), gmn (x) = O (1), m 6= n, as x→ +∞.
Therefore,

∥∥∥(I +G+ (x))
−1
∥∥∥ = O

(
x−1

)
, as x → +∞, and so yn (x) = O (1/x) ∈

L2 (+∞).
Show now that ϕ+N (x, k) ∈ L2 (−∞) , ψ+N (x, k) ∈ L2 (+∞) for Im k > 0.

Substituting (3.9) into (3.7) yields

ϕ+N (x, k) = ϕ (x, k) +

N∑
n=1

αnyn (x)

∫ x

−∞
ϕ (s, k)φn (s) ds.

Since ϕ (x, k) is (as a left Weyl solution) in L2 (−∞) for Im k > 0, and (as is already
proven) yn ∈ L2, and φn ∈ L2 (−∞), one concludes that ϕ+N (x, k) ∈ L2 (−∞) for
Im k > 0.
Turn to ψ+N (x, k). Since ψ (x, k) is Jost at +∞ and due to (3.6), one has

W (ψ (x, k) , φn (x)) = O (1), x→ +∞, Im k ≥ 0. Therefore, (3.8) and (3.7) imply

ψ+N (x, k) = ψ (x, k) +O (1/x) , Im k ≥ 0, x→ +∞, (3.15)

which proves that ψ+N (x, k) behaves like a Jost solution at+∞ and hence ψ+N (x, k) ∈
L2 (+∞) for Im k > 0. By Lemma 2.4

ϕ+N (x, k) = ψ+N (x, k) +R (k)ψ+N (x, k)

holds for a.e. Im k = 0, which together with (3.15) yields

W (ϕ+N (x, k) , ψ+N (x, k)) = W (ψ+N (x, k), ψ+N (x, k)) (3.16)

= lim
x→+∞

W (ψ+N (x, k), ψ+N (x, k)) = 2ik.

Assume for the time being that ϕ+N (x, k) , ψ+N (x, k) also solve the Schrodinger
equation with some potential q+N (x). Thus, we have constructed an ansatz ϕ+N (x, k) ,
ψ+N (x, k) with desirable properties: ϕ+N (x, k) is a left Weyl solution and ψ (x, k)
is a right Weyl solution (i.e. for Im k > 0 ϕ+N (x, k) ∈ L2 (−∞), ψ+N (x, k) ∈
L2 (+∞)) and therefore (see e.g. [31])

g+N
(
k2, x

)
= − ϕ+N (x, k)ψ+N (x, k)

W (ϕ+N (x, k) , ψ+N (x, k))

= −ϕ+N (x, k)ψ+N (x, k)

2ik
(by (3.16)).

is the diagonal Green’s function associated with q+N (x). Since by the construction
ψ+N (x, k) has an embedded simple pole at each k2 = ω2n (but ϕ+N does not
identically vanish there) we conclude that g

(
k2, x

)
also has embedded simple poles

at k2 = ω2n and thus all ω
2
n are embedded eigenvalues of q+N (x) which is, in
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turn, can be computed from (2.15). There is a simpler alternative way to compute
q+N (x) based on

ψ(x, k) v eikx
(

1− 1

2ik

∫ ∞
x

q (s) ds

)
, k →∞, Im k ≥ 0. (3.17)

Since
W (ψ, φn) ∼ eikx (φ′n − ikφn) , k →∞,

we have: as k →∞

e−ikx (ψ+N − ψ) (x, k) ∼ −
∑
n

αnyn (x)φn (x)
ik

k2 − ω2n

∼ 1

ik

∑
n

yn (x) (αnφn (x)) =
1

ik
y (x)φ (x)

T

= − 1

ik
φ (x) (I + G+ (x))

−1
φ (x)

T
,

where y := (yn), φ := (αnφn). But by Jacobi’s formula on differentiation of
determinants, we have (suppressing x)

φ (I + G+)
−1
φT = φ

adj (I + G+)

det (I + G+)
φT

=
∑
m,n

(adj (I + G+))mn
det (I + G+)

φmφn =
∑
m,n

(adj (I + G+))mn
det (I + G+)

g′mn

= tr

{
(I + G+)

′ adj (I + G+)

det (I + G+)

}
=

(det (I + G+))
′

det (I + G+)

= (log det (I + G+))
′
,

(where as before gmn stands for the (m,n) entry of G+) and thus

e−ikx (ψ+N − ψ) (x, k) ∼ − 1

ik
∂x log det (I + G+ (x)) .

By (3.17),

e−ikx (ψ+N − ψ) (x, k) ∼ − 1

2ik

∫ ∞
x

(q+N − q) (s) ds, k →∞,

and hence
q+N (x)− q (x) = −2∂2x log det (I + G+ (x))

and (3.3) follows. By a direct verification (routinely performed for Darboux trans-
formations), functions ϕ+N (x, k) , ψ+N (x, k) indeed solve the Schrodinger equation
with the potential q+N . (See also the proof of Corollary 3.5).
As we have shown, yn (x) ∈ L2 (R) is, due to (3.12), proportional to Resk=ωn ψ+N ,

which, in turn, solves −u′′ + q+N (x)u = ω2nu and we conclude that yn (x) is an
eigenfunction of Lq+N . This concludes the proof. �
Following the standard terminology [24], the transformation (ϕ,ψ)→ (ϕ+N , ψ+N )

constructed in the proof of Theorem 3.1 is directly related, as was mentioned in In-
troduction, to the binary Darboux transformation (double commutation method).
As the very name (given by Deift [6] in 1978) suggests, the method rests on applying
twice a commutation formula from operator theory. Note that basic formulas which
the double commutation produces had been known to Gelfand and Levitan [10] al-
ready in 1951 in the context of their ground breaking study of the inverse spectral
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problem for Sturm-Liouville operators (although no commutation arguments were
used). The full treatment of the double commutation method is given by Gesztesy
et al [11]-[15] in the 1990s (see also the extensive literature cited therein). The dou-
ble commutation method was introduced to study the effect of inserting/removing
eigenvalues in spectral gaps on spectral properties of the underlying 1D Schrodinger
operators while the binary Darboux transformation has been primarily a tool to
produce explicit solutions. This is likely a reason why we could not find the liter-
ature where the two would be linked6. The double commutation method can also
be applied to inserting/removing bound states into absolutely continuous spectra.
In fact, in the half-line case it was first done (well before the term was coined) by
Gelfand and Levitan [22, Section 6.6] and revisited in [8, Section 4] from the double
commutation point of view. The formula derived in [8, Section 4] for the half-line
case coincides with (3.3) for N = 1 but no formula for N > 1 is given. In [15] it is
mentioned that the approach of [15] can yield such a formula in the full line case but
to the best of our knowledge it has not been explicitly done. We emphasize how-
ever that our approach is unrelated to double commutation arguments and instead
stems from the Riemann-Hilbert problem approach to the Darboux transformation
put recently forward in [29]. The latter comes directly from inverse scattering and
that is why it is much more suited for the IST (see Corollary 3.2 below).
Theorem 3.1 has some important corollaries.

Corollary 3.2. Assume that q (x) in Theorem 3.1 is short-range at +∞7 and
has the scattering data S (q) =

{
R (k) ,

(
−κ2n, c2n

)}
. Then S (q+N ) = S (q) ∪{(

ω2n, α
2
n

)
, 1 ≤ n ≤ N

}
is the scattering data for q+N .

Proof. We only need to show that our binary Dabroux transformation preserves
the discrete spectrum data

(
−κ2n, c2n

)
. To this end it suffi ces to show that

Res
iκn

ϕ+N (x, k) = ic2nψ+N (x, iκn) . (3.18)

Indeed, since Resiκn ϕ (x, k) =ic2nψ (x, iκn) it immediately follows from (3.7) and
(3.8) that

Res
iκn

ϕ+N (x, k) = Res
iκn

ϕ (x, k) +
N∑
m=1

αmym (x)
W (Resiκn ϕ (x, k) , φm (x))

k2 − ω2m

= ic2n

{
ψ (x, iκn) +

N∑
m=1

αmym (x)
W (ψ (x, iκn) , φm (x))

k2 − ω2m

}
= ic2nψ+N (x, iκn) .

�

Rowan Killip asked the author if embedded bound states require norming con-
stants. Corollary 3.2 answers his question in the affi rmative:

(
α2n
)
play the role of

norming constants of embedded bound states.

6E.g. the book [20] pays much of attention to binary Darboux transformations but double com-
mutation is not mentioned. The recent [30] briefly mentiones [20] and [15] but without discussing
connections.

7That is xq (x) ∈ L1 (+∞) .
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Remark 3.3. In particular, for one embedded eigenvalue ω2 we have

q+1 (x) = q (x)− 2∂2x log

(
1 + α2

∫ x

−∞
φ (s)

2
ds

)
, (3.19)

φ (s) = 2 Re
[
R (ω)

1/2
ψ (s, ω)

]
.

In this case ‖y‖ = 1. To get to q+N (x) we can break our binary Darboux transfor-
mation into the chain of iterated transformations ψ+(n−1) (x, k) → ψ+n (x, k),1 ≤
n ≤ N , resulting in building q+N (x) by the simple recurrence formula

q+n (x) = q+(n−1) (x) (3.20)

− 2∂2x log

(
1 + 4α2n

∫ x

−∞
Re2

[
R (ωn)

1/2
ψ+(n−1) (s, ωn)

]
ds

)
,

each step being easy to control.

Remark 3.4. It follows from (3.5) and (3.6) that q (x)− q+N (x) is continuous, in
L1 (−∞) and O (1/x) , x→ +∞. I.e., as expected q+N (x) is no longer short-range
at +∞ even if q (x) is. More specifically, the discrepancy is

q (x)− q+N (x) ∼
N∑
n=1

An
x

sin (2ωnx+ δn) , x→ +∞, (3.21)

with some An, δn. Due to (3.20), it suffi ces to demonstrate (3.21) for N = 1. It
follows from (3.6) that

τ (x) := 1 + 4α2
∫ x

−∞
Re2

[
R (ω)

1/2
ψ (s, ω)

]
ds

= 1 + 4α2
∫ x

−∞
φ (s)

2
ds = O (x) , x→ +∞,

which, due to (3.19) and (3.6), implies that

q (x)− q+1 (x) = 2∂2x log τ (x) = τ ′′ (x) /τ (x)− [τ ′ (x) /τ (x)]
2

= 8α2φ (x)φ′ (x) /τ (x)−
[
4α2φ (x)

2
/τ (x)

]2
∼ A

x
sin (2ωx+ argR (ω)) , x→ +∞,

with some constant A. These elementary arguments do not readily yield the coef-
ficients in (3.21) though. As in the case of negative bound states (solitons) totally
different arguments are needed to evaluate the coeffi cients (work in progress).

Corollary 3.5 (bounded positons). Assume the conditions of Corollary 3.2. If
q (x, t) solves KdV with data S (q) then

q+N (x, t) = q (x, t)− 2∂2x log det (I + G+ (x, t)) , (3.22)

where G+ (x, t) is obtained from (3.2) by replacing φn (x) with

φn (x, t) = 2 Re
[
R (ωn)

1/2
e4iω

3
ntψ (x, t, ωn)

]
,

solves KdV with data S (q+N ). Moreover, embedded bound states
(
ω2n
)
are preserved

under the KdV flow.
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Proof. Well-posedness of KdV under conditions of Corollary 3.2 is proven in [19],
the time evolution of the scattering data S (q) being the same as in the short-range
case. For this reason, the main part of the proof goes along the same lines with
that of Theorem 3.1. In particular, the embedded poles of ψ+N (x, t, k) by the very
construction remain ω2n and hence the time evolved diagonal Green’s function has
embedded poles at ω2n. One then concludes that embedded bound states

(
ω2n
)
are

indeed preserved under the KdV flow. The only extra step required is to verify that
ψ+N (x, t, k) solves the temporal part of the Lax pair equation. Such computations
are performed in the literature for Darboux dressing. One can however check it
independently. The simplest way to do it is, as always, to break our binary Darboux
transformation into a chain of iterated transformations (3.20) that, adjusted for the
time evolution, reads

q+n (x, t) = q+(n−1) (x, t)

− 2∂2x log

(
1 + 4α2n

∫ x

−∞
Re2

[
R (ωn)

1/2
e4iω

3
ntψ+(n−1) (s, t, ωn)

]
ds

)
.

�

In the KdV context, Matveev posed in [25] the following question: "The in-
teresting question whether nonsingular positon solutions exists in the continuous
integrable models remains open as yet." Corollary 3.5 answers his question in the
affi rmative (for one positon it was answer in our recent [28]). Matveev also con-
jectured that there may exist bounded positon solutions with a trivial scattering
matrix (i.e. R (k) = 0 and T (k) = 1). Apparently Theorem 3.1 does not allow us
to construct such solutions with a zero reflection coeffi cient.
Dmitry Pelinovsky asked the author "1) if the embedded eigenvalue disappears

in the time evolution for t > 0 and 2) if there is any impact of the embedded eigen-
values in the time evolution of KdV, e.g. propagation of an "embedded soliton" in
the direction of linear dispersive waves?" One concludes from Corollary 3.5 that 1)
the embedded eigenvalue does not disappear over time and 2) the effect of "embed-
ded soliton" is manifested in the second log-derivative term of (3.22) which says
that propagation of the ensemble of positons is determined by 4ω3nt+ωnx which is
indeed in the direction of linear dispersive waves. Furthermore, we can show that
there is a direct analog of (3.22) for (regular) solitons if we replace G+ (x, t) with
the matrix (

cmcne8(κ
3
m+κ

3
n)t
∫ ∞
x

ψ (s, t; iκm)ψ (s, t; iκn) ds

)
.

Here, as before,
(
−κ2n

)
are negative bound states and

(
c2n
)
are associated norming

constants. Thus both formulas are similar in nature and it is reasonable to expect
that each soliton property has its positon counterpart. The main difference between
the two is in-built in the profoundly different behavior of ψ (x, t; iκn) and ψ (x, t, ωn):
the former has finitely many zeros (n to be precise) while the latter has infinitely
many zeros for any n.
Pelinovsky also asked "Does the "embedded solitons" disperse away in the time

evolution?" Addressing this question amounts to understanding the behavior of
ψ (x, t, ωn) in the asymptotic regime around the "positon characteristic" x = −12ω2nt
as t→∞ (see our [28] for more detail). The main challenge is that |R (ωn)| = 1 and
the powerful nonlinear steepest descend method due to Deift-Zhou needs a serious
modification, which to the best of our knowledge is only available in the case when
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|R (0)| = 1 but less than 1 otherwise [7]. Note that in the NLS context and by
totally different from [7] methods a treatment of the case |R (ω)| = 1 was recently
offered by Budylin [5]. A KdV adaptation of his techniques should yield the answer
to the question if embedded solitons (bounded positons) will disperse away or not
(i.e. present a KdV breather).

Remark 3.6. Embedded bound states may not be created on a short-range back-
ground. Indeed we must have at least one real point ω 6= 0 where |R (ω)| = 1.

Remark 3.7. If q also has a Jost solution at −∞ for a.e. Im k = 0 then the
transmission coeffi cient T (k) is well-defined. It can be easily shown that

T+N (k) = T (k) .

I.e., our binary Darboux transformation preserve both R and T . It follows from the
conservation laws then that∫ ∞

−∞
q+N (x, t) dx =

∫ ∞
−∞

q (x, t) dx,∫ ∞
−∞

q+N (x, t)
2

dx =

∫ ∞
−∞

q (x, t)
2

dx.

4. Removing embedded bound states

In this section we show that we can as well remove (or rather pare) embedded
bound states.

Theorem 4.1 (paring embedded eigenvalues). Assume Hypothesis 2.1. Let D be
the set of embedded bound states of Lq and D0 =

{
ω2n, 1 ≤ n ≤ N <∞

}
be its

subset such that ω2n are simple and R (k) defined by (2.13) and (k − ωn)ψ (x, k) are
functions continuous in Im k = 0 at ωn. If {φn, 1 ≤ n ≤ N} is an orthonormal set
of real eigenfunction then the set of embedded eigenvalues of the potential

q−N (x) = q (x)− 2∂2x log det (I−G− (x)) ,

where G− is the Gram matrix defined by

G− :=

(∫ x

−∞
φn (s)φm (s) ds

)
,

coincides with D�D0.

Proof. Our arguments go along the same lines with those in the proof of Theorem
3.1. Consider

ϕ−N (x, k) := ϕ (x, k) +

N∑
n=1

yn (x)
W (ϕ (x, k) , φn (x))

k2 − ω2n
,

ψ−N (x, k) := ψ (x, k) +

N∑
n=1

yn (x)
W (ψ (x, k) , φn (x))

k2 − ω2n
,

where ϕ,ψ are some Weyl solutions at ∓∞ and yn are real functions to be deter-
mined. By the Wronskian identity (2.9) (Im k > 0)

ϕ−N (x, k) := ϕ (x, k) +

N∑
n=1

yn (x)

∫ x

−∞
ϕ (s, k)φn (s) ds, (4.1)
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ψ−N (x, k) := ψ (x, k)−
N∑
n=1

yn (x)

∫ ∞
x

ψ (s, k)φn (s) ds. (4.2)

As before, ψ (x, k) is chosen to be a Jost solution at +∞ and

ϕ (x, k) = ψ (x, k) +R (k)ψ (x, k) (4.3)

defines a Weyl solution at −∞ for a.e. Im k = 0. Since ω2n is a bound state of Lq
we conclude that the product ϕ (x, k)ψ (x, k) has an embedded simple pole at ωn.
On the other hand, since ψ (x, k) also has a embedded simple pole at ωn, it follows
from (4.3) and continuity that ϕ (x, k + i0) must be well defined at ωn and different
from zero. Since ω2n is a simple eigenvalue, by Lemma 2.3 ϕ (x, ωn + i0) and φn are
linearly dependent and thus ϕ−N (x, k) is well-defined at ωn.
Turn to ψ−N . From (4.2) one has

Res
ωn

ψ−N (x, k) := ψn (x)−
N∑
m=1

ym (x)

∫ ∞
x

ψn (s)φn (s) ds,

where
ψn (x) := Res

k=ωn
ψ (x, k) ,

is also an L2 eigenfunction associated with ω2n. Since we want ψ−N (x, k) to be
regular at ωn, it follows that

N∑
m=1

ym (x)

∫ ∞
x

ψn (s)φm (s) ds = ψn (x) .

Since ω2n is a simple eigenvalue, ψn is proportional to φn and we arrive at the linear
system

N∑
m=1

ym (x)

∫ ∞
x

φm (s)φn (s) ds = φn (x) (4.4)

in (yn). Its matrix(∫ ∞
x

φm (s)φn (s) ds

)
= I−

(∫ x

−∞
φm (s)φn (s) ds

)
is Gram (in fact, positive definite) and hence the system has a unique solution for
any finite x. Thus we have constructed two solutions ϕ−N (x, k), ψ−N (x, k) which
are Weyl at ∓∞ respectively and are regular at ωn and hence so is the diagonal
Green’s function. Therefore, ω2n is no longer an embedded bound state. �

Remark 4.2. As is well-known, embedded bound states are unstable and may turn
into resonances under an arbitrarily small perturbation [3]. Theorem 4.1 offers an
explicit perturbation that purges only targeted embedded bound states.

5. Explicit examples

In this section we work out an explicit example that clearly demonstrates how
Theorems 3.1 and 4.1 apply shading, at the same time, some light on the nature
of the conditions. We only consider the case of a single resonance ω. Without loss
of generality, we can set ω = 1. Our example is based on a construction from our
[28]. Let

q0 (x) = −2∂2x log τ (x) , (5.1)
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where (called the Hirota tau-function)

τ (x) = 1 + 2ρ

∫ |x|
0

sin2 s ds = 1 + ρx− (ρ/2) sin 2x (5.2)

with some ρ > 0, and consider

q (x) =

{
q0 (x) , x < 0

0, x ≥ 0
. (5.3)

One can easily see that q (x) is continuous (but not continuously differentiable) and

q (x) ∼ −4 sin 2x

x
, x→ −∞. (5.4)

Thus, q (x) is not short-range at −∞ but in L2 and it is certainly subject to
Hypothesis 2.1. The main feature of q (x) is that Lq admits explicit spectral and
scattering theories. In particular, for the transmission T and right/left reflection
R,L coeffi cients we have [28]

T (k) =
P (k)

P (k) + iρ
, R (k) =

−iρ

P (k) + iρ
= L (k) , (5.5)

where P (k) := k3 − k. The right Jost solution (recalling our agreement to drop +
sing) is apparently

ψ (x, k) = eikx, x ≥ 0. (5.6)

For the left Jost solution we have [28]

ψ− (x, k) = e−ikx −
(

e−i(k+1)x

k + 1
− e−i(k−1)x

k − 1

)
ρ sinx

τ (x)
, x < 0, (5.7)

where τ (x) is given by (5.2). Apparently, ψ (x, k) and R (k) are analytic at k = 1
and hence condition 2 of Theorem 3.1 is satisfied. Since (k − 1)ψ− (x, k) is also a
solution, we immediately conclude from (5.7) that

ϕ0 (x) =
sinx

τ (x)
=

sinx

1 + 2ρ
∫ |x|
0

sin2 s ds
, x < 0, (5.8)

is clearly an L2 (−∞) solution and therefore condition 1 of Theorem 3.1 is also
satisfied. Thus, Theorem 3.1 applies to our q (x). We do not need to know ϕ0 (x)
for x ≥ 0 yet (will be explicitly found later) but it is clear already that +1 is
not a positive eigenvalue since a linear combination of plane waves e±ix is never
in L2 (+∞). Thus +1 is a resonance of Lq. This should also explain why we call
condition 1 in Theorem 3.1 resonance.
Observe that ϕ0 (0) = 0 and hence +1 is a positive bound state of LDq on L2 (R−)

with a Dirichlet condition at 0.
Let us now apply Theorem 3.1 to our q (x). Equation (3.19) reads

q+1 (x) = q (x)− 2∂2x log

(
1 + α2

∫ x

−∞
φ (s)

2
ds

)
, (5.9)

where φ (s) = −Re
[
R (1)

1/2
ψ (s, 1)

]
. Note that we chose minus sign for conve-

nience. Evaluate

φ (s) = − lim Re
[
R (k)

1/2
ψ (s, k)

]
, k → 1, Im k = 0.
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It follows from (5.6) and (5.5) that for s ≥ 0

φ (s) = −Re
(
ieis
)

= sin s, s ≥ 0. (5.10)

The case s < 0 needs some work as we do not know ψ (s, k) on R− yet. We compute
it from the left basic scattering relation (cf. (2.11))

T (k)ψ (s, k) = ψ− (s, k) + L (k)ψ− (s, k) , Im k = 0.

It follows from (5.5) that L (k) = T (k)− 1 and hence

ψ (s, k) =
1

T (k)

[
ψ− (s, k) + (T (k)− 1)ψ− (s, k)

]
= ψ− (s, k) +

ψ− (s, k)− ψ− (s, k)

T (k)

= ψ− (s, k) +
P (k) + iρ

P (k)

[
ψ− (s, k)− ψ− (s, k)

]
.

Thus

ψ (s, k) = ψ− (s, k) +
2ρ

P (k)
Imψ− (s, k) , s < 0. (5.11)

Observe that it is not clear why (5.11) is regular at k = 1 where P (k) vanishes (but
the general theory says that it is the case). It is an amusing exercise to demonstrate
it directly. Since we only need the real part of it our computation will be easy:

Re
[
R (1)

1/2
ψ (s, 1)

]
(5.12)

= lim
k→1

Re
[
R (k)

1/2
ψ− (s, k)

]
+ 2ρ lim

k→1

ReR (k)
1/2

P (k)
lim
k→1

Imψ− (s, 1) .

Evaluate each of these limits separately. We start with the observation that as
k → 1

R (k) = −1− i

ρ
P (k) ∼ −1− 2i

ρ
(k − 1) ,

and hence along the real line

ReR (k)
1/2 ∼ cos

(
π

2
− k − 1

ρ

)
= sin

k − 1

ρ
, k → 1.

We now immediately see that

lim
k→1

ReR (k)
1/2

P (k)
=

1

ρ
. (5.13)

It follows from (5.7) and (5.8) that for s < 0

ψ− (s, k) = e−iks − ρ
(

e−i(k+1)s

k + 1
− e−i(k−1)s

k − 1

)
ϕ0 (s)

and we then have

Imψ− (s, 1) = − sin s− ρ

2
(2s− sin 2s)ϕ0 (s) ((5.8) and (5.2))

= − sin s− ρ

2
(2s− sin 2s)

sin s

1− ρs+ (ρ/2) sin 2s

= − sin s

1− ρs+ (ρ/2) sin 2s
= −ϕ0 (s) , s < 0.



20 ALEXEI RYBKIN

Thus Imψ− (s, 1) is continuous at k = 1 and

Imψ− (s, 1) = −ϕ0 (s) , s < 0, (5.14)

which also implies that for the first limit on the right hand side of (5.12) one must
have

lim
k→1

Re
[
R (k)

1/2
ψ− (s, k)

]
= 0. (5.15)

Substituting (5.13)-(5.15) into (5.12), we arrive at

Re
[
R (1)

1/2
ψ (s, 1)

]
= −ϕ0 (s) , s < 0. (5.16)

Combining (5.10) with (5.16) we finally have

φ (s) = −2 Re
[
R (1)

1/2
ψ (s, 1)

]
= 2

{
ϕ0 (s) , s < 0
sin s, s ≥ 0

.

Thus, φ is a solution that square integrable at −∞ and proportional to the sine
function on R+. We are now able to find q+1 (x) explicitly by (5.9). Indeed, for
x < 0

I (x) :=

∫ x

−∞
φ (s)

2
ds = 4

∫ x

−∞
ϕ0 (s)

2
ds (5.17)

=

∫ x

−∞

4 sin2 s ds(
1 + 2ρ

∫ −s
0

sin2 t dt
) = −2

ρ

∫ x

−∞

dτ (s)

τ (s)
2 =

2

ρ

1

τ (x)
.

Note that, in particular, ∫ 0

−∞
φ (s)

2
ds =

2

ρ
.

For x ≥ 0

I (x) =

∫ 0

−∞
φ (s)

2
ds+ 4

∫ x

0

sin2 s ds (5.18)

=
2

ρ

(
1 + 2ρ

∫ x

0

sin2 s ds

)
=

2

ρ
τ (x) .

Substituting (5.17) and (5.18) into (5.9) yields

q+1 (x) = q (x)− 2∂2x log
(
1 + α2I (x)

)
= q (x)− 2∂2x log

(
1 +

2α2

ρ

{
1/τ (x) , x < 0
τ (x) , x ≥ 0

)
.

This formula can be simplified nicely if we recall what our seed potential q (x) is.
Indeed, from (5.1)-(5.3) we have for x < 0

q+1 (x) = −2∂2x log τ (x)− 2∂2x log

(
1 +

2α2

ρ
1/τ (x)

)
= −2∂2x log

(
1 +

ρ

2α2
τ (x)

)
and for x > 0

q+1 (x) = −2∂2x log (1 + 1/τ (x))

= −2∂2x log

(
1 +

2α2

ρ
τ (x)

)
,
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which can be conveniently put in one formula

q+1 (x) = −2∂2x log

(
1 +

( ρ

2α2

)±1
τ (x)

)
, ±x > 0, (5.19)

τ (x) = 1 + 2ρ

∫ |x|
0

sin2 sds.

By Theorem 3.1, the Schrodinger operator with the potential given by (5.19) has
an embedded eigenvalue +1.
There is a point in analyzing (5.19).

• One easily sees that

q+1 (x) ∼ −4
sin 2x

x
, |x| → ∞.

Thus, all q+1 share same large x asymptotics. Recall, that the seed potential
q has this asymptotic behavior only at −∞ and thus q+1 is long-range at
+∞ as well. This agrees, of course, with (3.21) with A = −4 and δ = 0.

• By Corollary 3.2, the family of potentials given by (5.19) share the same
scattering quantities (5.5) providing yet another example of the failure of
the classical inverse scattering in the long-range setting. Recall, that in the
short-range scattering |R (k)| < 1 for k 6= 0, which is clearly violated in our
example as R (±1) = −1.

• The function (5.19) is even if and only if ρ = 2α2. In this case,

qSym+1 (x) = −2∂2x log

(
1 + ρ

∫ |x|
0

sin2 sds

)
, (5.20)

which is the main example of an explicit Wigner-von Neumann type poten-
tial studied in [28] that has an embedded bound state +1. Note that there
is no value of α that produces odd q+1 (x).

• Turn now to the eigenfunction of +1. The system (3.4) simplifies to the
single equation (

1 + α2
∫ x

−∞
φ (s)

2
ds

)
y = αφ (x)

for the eigenfunction y:

y (x) =
αφ (x)

1 + α2
∫ x
−∞ φ (s)

2
ds
, (5.21)

which, as one can easily compute, has L2 norm 1. It is worth noticing that
as apposed to the right Jost solution ψ (x, k) corresponding to the seed
potential q (x), by (3.8) the transformed Jost solution

ψ+1 (x, k) (5.22)

= eikx

{
1 +

(
eix

k + 1
− e−ix

k − 1

)
α2φ (x)

1 + α2
∫ x
−∞ φ (s)

2
ds

}
, x ≥ 0,
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indeed has a simple poles at k = ±1, as expected. It follows from (3.12)
that8

α =

∥∥∥∥Res
k=1

ψ+1 (·, k)

∥∥∥∥ . (5.23)

Recall that for the right norming constant of a negative bound state −κ2
of a generic potential we have

c = ‖ψ (·, iκ)‖−1 .

Comparing this with (5.23) suggests a new definition for a right norming
constant of an embedded bound state (at least in the case of a single em-
bedded bound state).

• Let us now briefly discuss how Theorem 4.1, removing embedded bound
states, applies to our example. For simplicity, we consider qSym+1 (x) defined
by (5.20) that has an embedded bound state +1. Check the conditions of
Theorem 4.1. It follows from the general theory of Winger-von Neumann
type potentials (see e.g. [8]) that +1 is necessarily simple eigenvalue. In-
deed, for k = 1 the Schrodinger equation has only one decaying solution (the
other solution is increasing). It follows from (2.13) and (5.22) that R (k)
and (k − 1)ψ+1 (x, k) are both continuous (in fact, analytic) at k = ±1.
Therefore, 4.1 applies to our qSym+1 (x). Performing computation similar to
given above, one concludes that the transformed potential q−1 (x) indeed
coincides with q (x) given by (5.3).

• Finally, we turn to the time evolution q+1 (x, t) of q+1 (x) under the KdV
flow. Unfortunately, we no longer have an explicit formula and it is unrea-
sonable to expect one9. Equation (3.22) in our case reads

q+1 (x, t) = q (x, t)− ∂2x log

(
1 + α2

∫ x

−∞
φ (s, t)

2
ds

)
, (5.24)

φ (s, t) = 2 Im
[
e4itψ (s, t, 1)

]
.

Since q (x) is supported on R− and clearly bounded below, the results of
our [18, 19, 27] apply and we have

q (x, t) = −∂2x log det (I +H (x, t)) , (5.25)

where H (x, t) is a trace class singular integral operator (in fact, Hankel)
defined on the Hardy space H2 of the upper half plane by

H (x, t) f (k) = −
∫
R

Φx,t (s) f (s)

s+ k + i0

ds

4π2
, f ∈ H2,

where the entire function Φx,t is given by

Φx,t (s) :=

∫
Im z=b

R (z) ei(8z
3t+2zx)

z − s dz, R (z) =
−iρ

z (z2 − 1) + iρ
.

Here the line of integration Im z = b is chosen above the (only one) imag-
inary pole of R (z). The determinant in (5.25) is infinite for t > 0 and so

8Without loss of generality we can always assume that α > 0.
9Recall that for singular positons such a formula does exist [25]
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(5.25) is only explicit at t = 0, where it returns the initial profile (5.3). The
right Jost solution for q (x, t) can then be found by

ψ (x, t, k) = eikx
{

1− (I +H (x, t))
−1H (x, t) 1

}
,

where

H (x, t) 1 = −
∫
R

Φx,t (s)

s+ k + i0

ds

4π2
,

which is well-defined even and in H2 (though 1 is not in H2). This step
requires an inversion of the operator I + H (x, t), which does not come
with an explicit formula. The KdV solution q+1 (x, t) is then computed by
(5.24). For qSym+1 (x) a different derivation of (5.24) is obtained by different
means in our [28]. The first term in (5.24), is nothing but the classical
Dyson formula. It looks exactly like the one in the short-range case but of
course q (x, 0) = q (x) is not a short range potential at −∞. Thus q (x, t)
comes from data with the missing embedded eigenvalue. On the other other
hand, the second term in (5.24) takes into account the bound state +1. It
resembles the (singular) positon solution

qpos (x, t) = −2∂2x log {1 + x+ 12t− (1/2) sin 2 (x+ 4t)} . (5.26)

Such solutions seem to have appeared first in the late 70s earlier 80s but a
systematic approach was developed a decade later by V. Matveev (see his
2002 survey [25]). Equation (5.26) readily yields basic properties of one-
positon solutions considered in [25]. As a function of the spatial variable
qpos (x, t) has a double pole real singularity which oscillates in the 1/2
neighborhood of the moving point x = −12t− 1, and for a fixed t ≥ 0

qpos (x, t) ∼ −4
sin 2 (x+ 4t)

x
, x→ ±∞. (5.27)

Observe that

qpos (x, 0) = −2∂2x log (1 + x− (1/2) sin 2x)

coincides on R+ with our

qSym+1 (x) = −2∂2x log (1 + (ρ/2)x−− (ρ/4) sin 2x) ,

for ρ = 2. But, of course, qSym+1 (x) is bounded on R− while qpos (x, 0) is
not. Note also that the positon is somewhat similar to the soliton given by

qsol (x, t) = −2∂2x log cosh (x− 4t) (5.28)

but its double pole singularity moves in the opposite direction (i.e. to −∞)
three times as fast. We note that multi-positon as well as soliton-positon
solutions have been studied in great detail (see [25] the references cited
therein). We can also construct an explicit example of bounded multi-
positon solutions to demonstrate Theorem 3.1 for any N . We hope to do
this elsewhere.
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