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We report an optical fiber experiment in which we investigate the interaction between an individual
soliton and a dense soliton gas. We evidence a refraction phenomenon where the tracer soliton
experiences an effective velocity change due to its interaction with the optical soliton gas. This
interaction results in a significant spatial shift that is measured and compared with theoretical
predictions obtained via the inverse scattering transform (IST) theory. The effective velocity change
associated with the refraction phenomenon is found to be in good quantitative agreement with the
results of the spectral kinetic theory of soliton gas. Our results validate the collision rate ansatz
that plays a fundamental role in the kinetic theory of soliton gas and also is at heart of generalized
hydrodynamics of many-body integrable systems.

Solitons are localized nonlinear wave structures that
owe their existence to an exact balance between the
wave’s nonlinearity and the medium’s dispersion. Soli-
tons have been observed in a great variety of physical
systems including optics [1], matter waves [2, 3], fluids
[4, 5], metamaterials [6], biophysics [7]. Solitons play
a fundamental role in nonlinear physics due to the re-
markable property of retaining their shape, amplitude
and velocity upon interactions with other solitons.

The interaction between solitons is a complex nonlin-
ear process that can be understood within the frame-
work of the celebrated inverse scattering transform (IST)
developed to solve integrable nonlinear partial differen-
tial equations like the Korteweg-de Vries (KdV) equa-
tion or the one-dimensional nonlinear Schrödinger equa-
tion (1D-NLSE) [8–12]. Considered on sufficiently large
spatiotemporal scales solitons behave as quasi-particles
experiencing short-range pairwise elastic interactions ac-
companied by well-defined phase/position shifts. The
process of elastic collision between two solitons occurs
without energy exchange between them and has been
studied experimentally in great detail in many physical
systems [2, 13–21].

Recently, the interaction between an individual
(tracer) soliton and a large-scale coherent nonlinear
structure such as rarefaction and dispersive shock wave
has been studied both theoretically and experimentally
[22–28]. The trajectory of the tracer soliton within these
macroscopic nonlinear structures is directed by the struc-
ture’s mean field, which results either in the trapping of
the soliton inside or its transmission (tunneling) through
the large-scale nonlinear wave.

In this Letter, we present an optical fiber experiment
where we examine the interaction between a tracer soli-
ton and a dense soliton gas (SG)—a large ensemble of
solitons that exhibits coherence on the microscopic (“dis-
persive”) scale but is incoherent on the macroscopic (“hy-
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drodynamic”) scale. Thus, in contrast to the fully coher-
ent configurations examined in the previous experimental
work [22], the soliton now interacts with a random non-
linear wave.

SGs have been recently realized in optical and in wa-
ter wave experiments [29–31]. Nowadays, hydrodynamics
and statistics of SGs is an active research area in statisti-
cal mechanics [32], mathematical physics [33], nonlinear
physics [34–36], and constitutes a new chapter of turbu-
lence theory, termed integrable turbulence [37].

In our experiment we observe that the nonlinear in-
teraction between a tracer soliton and a finite portion of
a dense SG results in the refraction phenomenon similar
at a qualitative level to what is observed in ray optics
at the interface between two media having different re-
fractive indexes. Unlike the classical refraction of light
rays, the observed phenomenon is inherently nonlinear.
We measure the macroscopic space shift associated with
the solitonic refraction and show that it is quantitatively
well described by the IST theory [38–40]. Specifically, we
compare the experimentally observed macroscopic posi-
tion shift ∆x acquired by the tracer soliton over a large
propagation distance with the “first-principle” IST pre-
dictions based on the accumulation of the individual po-
sition shifts in pairwise interactions with solitons com-
prising the SG [41],

∆x =
∑
j

∆(λp, λj) . (1)

Here λp is the IST spectral parameter of the tracer soliton
and ∆(λp, λj) is the position shift of the tracer soliton
due to its interaction with the soliton with the spectral
parameter λj within the SG.

Additionally, following the approach prescribed by the
spectral kinetic theory of SGs [42–44], we measure the ef-
fective velocity of the tracer soliton propagating through
the SG. From the physical perspective, the effective ad-
justment of the soliton velocity due to the interaction
with SG is described by the the collision rate ansatz
(CRA) that extrapolates the properties of two-soliton in-
teractions to dense macroscopic ensembles of solitons, in
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FIG. 1. (a) Schematic representation of the experimental setup. (b) Measured decay (blue points) of the optical power in the
recirculating fiber loop. The red line represents an exponential fit of the experimental points, giving a power decay rate of
∼ 0.0027 dB/km. (c) Typical space-time diagram showing the refraction phenomenon due to the interaction between a tracer
soliton and an optical SG forming a bound state. The tracer soliton has a duration of ∼ 58 ps. It is shifted by ∼ 280 ps due
to its interaction with the optical SG that has a duration of ∼ 2 ns. The secondary (right) vertical axis shows the normalized
evolution time defined as t = γP0z/2 = z/(2LNL), (LNL ∼ 26.5 km).

which solitons never separate to exhibit individual short-
range interactions. We compare quantitatively the ex-
perimental and theoretical values of the effective velocity
of the tracer soliton interacting with the dense SG. This
comparison represents a crucial step in the physical val-
idation of the CRA and ultimately, the kinetic theory of
SGs as will be explained below.

Our experimental setup is schematically shown in Fig.
1(a). It consists of a recirculating fiber loop already used
in ref. [45–47] for some experimental investigations of
the nonlinear stage of modulational instability of a plane
wave. The recirculating fiber loop is made up of ∼ 8 km
of single mode fiber (SMF) closed on itself by a 90/10
fiber coupler. The coupler is arranged in such a way
that 90% of the intracavity power is recirculated. The
optical signal (a tracer soliton plus a SG) circulates in
the clockwise direction. At each round trip, 10% of the
circulating power is extracted and directed toward a pho-
todetector (PD) coupled to a sampling oscilloscope (160
Gsa/s) leading to an overall 32 GHz detection bandwidth.
Experimental data are subsequently processed numeri-
cally to construct single-shot space-time diagrams show-
ing the wavefield dynamics. The losses accumulated over
one circulation in the fiber loop are partially compen-
sated using a counter-propagating Raman pump coupled
in and out of the loop via wavelength division multi-
plexers (WDMs). As shown in Fig. 1(b), this reduces
the effective power decay rate of the circulating field to
αeff ∼ 6.2×10−4 km−1 or equivalently ∼ 0.0027 dB/km.

The optical signal propagating inside the fiber loop is
composed by a pulse with a duration of ∼ 58 ps followed
by an optical SG initially in the form of a “long” square
pulse perturbed by some optical noise, see Fig. 1(a)(c)

together with Supplementary material for details about
the generation of light signals. The short pulse is initially
well separated from the square pulse that evolves into a
fully randomized bound state SG [29, 48–50]. The short
pulse and the optical SG have slightly different group
velocities, resulting in collisions/interactions between the
SG and pulse starting from propagation distances of ∼
350 − 400 km. In practice, the group-velocity difference
δvg between the pulse and the optical SG is realized by
using two laser fields with wavelengths that are slightly
detuned by δλ ' 0.125 nm, resulting in [δvg]

−1 ' −2.16
ps/km (see Supplementary material).

The refraction effect evidenced in Fig. 1(c) is associ-
ated with a significant shift (∼ 280 ps) of the position of
the soliton at the spatial coordinate (z ∼ 1200 km) from
which its emerges from the SG. The inset in Fig. 1(c)
clearly shows that the velocity of the tracer soliton has
slightly changed after is has been transmitted through
the SG. This velocity change arises from the fact that
the observed dynamics is not perfectly integrable due to
the presence of small dissipation in the experiment.

The optical signal circulating in the fiber loop is not
only composed of one pulse and one SG but of a peri-
odic train of 29 short pulses, each pulse being followed
by “its own SG”, see Supplementary material showing
the whole experimental pattern recorded in single shot.
The short pulses are all designed to be identical but in
practice, their peak power is Pp = 39.2 ± 5.54 mW and
their duration is ∆T = 58 ± 16 ps (FWHM). The SGs
have the initial form of square boxes with a mean power
PSG = 19.2 ± 1.6 mW. Their duration increases mono-
tonically from ∼ 200 ps to ∼ 2000 ps in 29 steps. Using
this strategy, we capture in one single shot the space-time
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FIG. 2. (a)–(d): Selected set of 4 space-time diagrams among the 29 available in one single experiment. The shift experienced
by the tracer soliton grows with the initial size (duration) of the optical SGs. (e)–(h): Time evolution of the optical power at
selected positions (indicated by the horizontal white dashed lines in the top row) where tracer solitons interact with the SGs.

evolution of a set of 29 experiments where we observe the
interaction between a pulse and optical SGs with increas-
ing extents.

Fig. 2 shows a selection of four experiments from the
set of 29 experiments available. Whatever the initial
extent of the optical SG, the solitonic refraction phe-
nomenon is observed. The insets in Fig. 2(a)–(d) show
that the time shift experienced by the soliton increases
with the duration of the optical SG. Fig. 2(e)–(h) show
the time signal measured at some selected propagation
distances, when the tracer solitons interact with the SGs.
Fig. 2(g)(h) show that the tracer soliton may reach a
peak power ∼ 3 times greater than its initial peak power
(∼ 39 mW) due to its interaction with the SG.

Now we compare the shift measured in the experiment
with numerical simulations and the results from the IST
theory. As show in ref. [45–47], dynamical features ob-
served in our recirculating fiber loop can be quantita-
tively well described by the following 1D-NLSE with a
small linear damping:

i
∂A

∂z
=
β2

2

∂2A

∂T 2
− γ|A|2ψ − iαeff

2
A. (2)

A(z, T ) represents the complex envelope of the electric
field that slowly varies in physical space z and time T .
The Kerr coefficient of the fiber is γ = 1.3 W−1km−1.
The group velocity dispersion coefficient is β2 = −22 ps2

km−1.
For a straightforward comparison with the IST theory,

we use the following dimensionless form of the focusing
1D-NLSE

iψt + ψxx + 2|ψ|2ψ + iεψ = 0 (3)

which is obtained from Eq. (2) using the following trans-

formations: ψ = A/
√
P0, x = T

√
γP0/|β2|, t = γP0z/2,

ε = αeff/(γP0). The value P0 = 29 mW has been mea-
sured in an annex calibration experiment, see Supple-
mental material. Using the canonical expression of the
1D-NLSE given by Eq. (3), the maximum evolution time

in normalized units is as large as ∼ 30 (see secondary evo-
lution axis in Fig. 1(c)), which corresponds to a propaga-
tion over 60 nonlinear lengths with the nonlinear length
being defined as LNL = 1/(γP0) ' 26.5 km.

The initial condition chosen for approximating the ex-
perimental field reads

ψ(x, t = 0) = ψp(x) + ψSG(x− x0) e−ivx/2 (4)

where ψp(x) describes the short pulse and ψSG(x)
describes the SG that has a group velocity v =
2|δvg|−1/(|β2|γP0)1/2 ' 4.74 with respect to the short
pulse in the (x, t) plane.

In the IST theory of the integrable focusing 1D-NLSE
(with ε ≡ 0), the short pulse (resp. the SG) is char-
acterized by an area (or L1-norm) defined as AP =∫
|ψp(x)|dx (resp. ASG =

∫
|ψSG(x)|dx) that determines

the number of discrete eigenstates (or solitonic modes)
that are embedded in the pulse (resp. the SG) [12]. In
the experiment AP and ASG are measured with good ac-
curacy. However the phase of the complex fields ψP (x)
and ψSG(x) is not measured, which means that the dis-
crete IST eigenvalues associated with the pulse and the
SG cannot be measured. However, the discrete eigenval-
ues can be estimated using some reasonable assumptions
about the analytical expressions for ψP (x) and ψSG(x).

For each of the 29 experiments realized in a single shot,
we compute the complex discrete eigenvalue λp = iηp
(and c.c.) (i2 = −1, ηp > 0) associated with the
short pulse by assuming that it can be approximated by
ψp(x) = a exp

(
−x2/(2w2)

)
, where the parameters a and

w are determined using a best fit procedure constrained
by the fact that the integral

∫
|ψP (x)|dx must be equal

to the area AP measured in the experiment. Applying
the same procedure for the SG, we compute an ensem-
ble of N discrete eigenvalues λj = iηj − v/4 (and c.c.)
(j = 1, .., N, ηj > 0) by assuming that the initial box
can be approximated by ψSG(x) = b exp

(
−x2n/(2L2n)

)
where the real parameters b, x0, L and the integer pa-
rameter n are determined using a best fit procedure con-
strained by the fact that the integral

∫
|ψSG(x)|dx must
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FIG. 3. Comparison between experimental results and theoretical results from the IST theory and the kinetic theory of SG. (a)
Shifts measured in the experiment (blue crosses), in numerical simulations of Eq. (3) (empty circles) and using Eq. (5) (filled
circles). (b) Space-time diagram showing the interaction between the tracer soliton and the dense SG composed of 24 solitons
in the reference frame moving at the group velocity of the SG. The dashed-dotted white line follows the trajectory of the tracer
soliton inside the SG while the dotted white line follows the trajectory of tracer soliton before it interacts with the SG.

be equal to the area ASG measured in each of the 29
experiments.

Fig. 3(a) compares the space shift ∆x measured in the
experiment with the IST formula (1) which assumes the
form

∆x =
1

ηp

N∑
j=1

ln

∣∣∣∣ iηp + iηj + v/4

iηp − iηj + v/4

∣∣∣∣ (5)

on using the well-known expression for the elementary

position shift ∆(λp, λj) = (1/Imλp) ln |λp−λ∗
j

λp−λj
| in the 1D-

NLSE two-soliton interaction [41]. Importantly, the spa-
tial shift arising from the interaction between the tracer
soliton and the radiative modes composing the box is
neglected in Eq. (5) [38–40].

As shown in Fig. 3(a), a good quantitative agreement
is obtained between experiment (blue crosses) and Eq.
(5) (filled circles). This agreement is slightly improved
in numerical simulations of Eq. (3) (empty circles) be-
cause these simulations incorporate the correction to spa-
tial shift due to the presence of radiative modes in the
square boxes. Note that the spatial shift ∆x is defined
in the IST theory as an asymptotic quantity determined
at infinite evolution time when the interaction between
the tracer soliton and other solitons is negligible. In the
experiment, the presence of small dissipation breaks the
integrability condition inherent in the IST theory and the
spatial shift must be measured at finite evolution time.
We have measured the spatial shift at the point where the
tracer soliton emerges from the SG, see Supplementary
material. Despite this limitation, our results show that
the shift described by Eq. (5) is robust to the presence
of small perturbative effects.

Along with the macroscopic spatial shift the nonlinear
interaction between the tracer soliton and the SG results
in a discernible change in the soliton propagation veloc-
ity. From the perspective of the SG kinetic theory [42–44]
the effective velocity s(λp) of a tracer soliton propagating

through a SG is given by the equation of state:

s(λp) = s0(λp)+

∫
Γ

∆(λp, ζ)f(ζ)[s(λp)−s(ζ)]dξdµ . (6)

Here s0(λp) = −4Reλp is the velocity of the non-
interacting (free) tracer soliton and f(ζ) is the den-
sity of states (DOS) of the SG—the distribution func-
tion of solitons with respect to the spectral parameter
ζ = ξ + iµ ∈ Γ ⊂ C [31, 42–44, 48]. The equation of
state is a direct consequence of the so-called CRA, a fun-
damental principle that provides the link between micro-
and macroscopic properties of SGs [44]. It is also at heart
of generalized hydrodynamics—the hydrodynamic theory
of many-body quantum and classical integrable systems
[51, 52], whose intimate connection with kinetic theory
of soliton gases has been recently established [32]. While
the validity of the CRA has been mathematically proven
for KdV and 1D-NLSE SGs via the asymptotic (thermo-
dynamic) limit of multiphase nonlinear wave solutions
[43, 53], its experimental verification is lacking. Such a
verification is crucial for the justification of the physical
validity of the kinetic theory of soliton gases.

Applied to the configuration of our experiment and
written in the reference frame associated with the SG
(so that s0(λp) = v, s(ζ) ≡ 0, ζ = iµ ∈ Γ = [0, ib],
λp = iηp − v/4) the equation of state (6) yields for the
tracer soliton velocity:

s(ηp) =
v

1− 1
ηp

∫ b
0

ln
∣∣∣ iηp+iµ+v/4
iηp−iµ+v/4

∣∣∣ f(µ)dµ
(7)

As discussed in ref. [48], nonlinear wavefields in a dense
SG evolving from the box initial data has the DOS given

by f(µ) = µ/(π
√
b2 − µ2), µ ∈ [0, b). For such DOS the

integral in (7) can be evaluated explicitly to give [43]

s(ηp) =
vηp

Im
√
b2 − η2

p + v2

16 + i
ηpv
2

(8)
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Considering the SG of largest extension (ASG = 76,
b = 0.634) interacting with the pulse having spectral pa-
rameters ηp = 0.617 and v = 4.74 (see Fig. 1(c)), Eq.
(8) predicts that the velocity of the tracer soliton in the
interaction region is s(ηp) = 5.26, which represents a
relative velocity change (s(ηp)− v)/v of ∼ 11%. This ve-
locity change is illustrated in Fig. 3(b) where the dotted
line with the largest slope 1/v ' 0.211 is parallel to the
trajectory of the free tracer soliton while the dashed line
with the smallest slope 1/s(ηp) ' 0.19 is parallel to the
trajectory followed by the tracer soliton inside the SG.

In conclusion, we reported an experiment allowing one
to investigate the interaction between a soliton and an op-
tical SG. The observables of this interaction—the macro-
scopic spatial shift of the tracer soliton and its effective
velocity—are favorably compared with the theoretical
predictions of the IST theory and of the kinetic theory
of SG. These comparisons provide an important step to-
wards the physical validation of the fundamental theo-
retical principles behind the spectral theory of SGs.
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I. DETAILED DESCRIPTION OF THE EXPERIMENTAL SETUP

FIG. S4. Schematic representation of the experimental setup. The light signals are shaped using two intensity modulators
(EOM) driven independently by the two synchronized channels of an arbitrary waveform generator (AWG) having a bandwidth
of 25 GHz. The optical signals are amplified to Watt-level using Erbium-doped fiber amplifiers (EDFAs) before being combined
via a 50/50 fiber coupler and injected inside the recirculating fiber loop. Light detection is made using a fast photodiode (PD)
coupled to a fast oscilloscope (OSC) having a bandwidth of 65 GHz and a sampling frequency of 160 GSa/s.

Fig. S4 shows a detailed representation of our experimental setup, including some technical details about the
generation of the optical signals that are not described in the Letter. The light source used for generation of the short
light pulses is a single-frequency continuous-wave (CW) laser diode (APEX-AP3350A) centered at λ0 = 1550 nm
which delivers an optical power of a few mW. The short pulses are produced by using a 20-GHz intensity modulator
(iXblue MX-LN-20) connected to an arbitrary waveform generator (AWG) having a bandwidth of 25 GHz.
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The optical soliton gases (SGs) are made using another intensity-modulated laser at the wavelength λ0 + δλ with
δλ = 0.125 nm. The SGs have the initial form of flat-top pulses with durations that increase monotonically from
∼ 200 ps to ∼ 2000 ps in 29 steps. These flat-top pulses are produced using an intensity modulator connected
to the second channel of the AWG. This second channel is synchronized with the first channel of the AWG. The
initial delay between the short pulses and the flat-top pulses (the optical SGs) can be adjusted with a resolution of
20 ps by controlling the shapes and delays of the electrical signals delivered by the each of the two channels of the AWG.

In our experiment the short pulse and the optical SG have slightly different group velocities because the wavelength
of the laser that this used to generate the optical SG is detuned by δλ from the wavelength of the laser used
to generate to short pulses. The group velocity difference δvg between the short pulse and the SG is given by
[δvg]

−1 ' (2πc/λ2
0)β2 δλ ' −2.16 ps/km where c represent the velocity of light in vacuum. The group velocity

dispersion coefficient of the fiber is β2 = −22 ps2 km−1 at the wavelength λ0 = 1550 nm.

The short pulses and flat-top pulses are amplified at the Watt-level by using Erbium-doped fiber amplifiers
(EDFAs). Importantly the amplified spontaneous emission (ASE) of the EDFA amplifying the power of the flat-top
pulses adds some optical noise, which explains that the generated square pulses evolve into fully randomized SGs
inside the recirculating fiber loop.

The light signals at the output of the EDFA are combined using a 50/50 fused fiber coupler connected to an
acousto-optic modulator (AOM). The AOM plays the role of an optical gate that is open during ∼ 500 ns for the
injection of the light signal into the fiber loop and closed over much longer times (typically ∼ 5 ms), when the signal
circulates inside the fiber loop.

The recirculating fiber loop is made of ∼ 8 km of single mode fiber (SMF) closed on itself by a 90/10 fiber
coupler. The SMF has been manufactured by Draka-Prysmian. It has a measured second-order dispersion coeffi-
cient β2 = −22 ps2 km−1 and an estimated Kerr coefficient γ = 1.3 km−1 W−1 at the working wavelength of 1550 nm.

The 90/10 coupler is arranged in such a way that 90% of the intracavity power is recirculated. The optical
signal circulates in the counter-clockwise direction. At each round trip, 10% of the circulating power is extracted
and directed toward a photodetector (PD) coupled to a sampling oscilloscope (160 Gsa/s) leading to an overall 32
GHz detection bandwidth. Experimental data consist in a succession of sequences (one per round trip) that are
subsequently processed numerically to construct single-shot space-time diagrams showing the wavefield dynamics.

The losses accumulated over one circulation in the fiber loop are partially compensated using a counter-propagating
Raman pump at 1450 nm coupled in and out of the loop via wavelength division multiplexers (WDMs). The pump
laser at 1450 nm is a commercial Raman fiber laser delivering an output beam having a power of several Watt. In
our experiments, this optical power is attenuated to typically ≈ 200 mW by using a 90/10 fiber coupler (not shown
in Fig. S4). The mean optical power decay rate of the field circulating in the loop is αeff ∼ 6.2 × 10−4 km−1 or
equivalently ∼ 0.0027 dB/km.

II. CIRCULATING OPTICAL SIGNAL AND OPTICAL POWER CALIBRATION

In this Section, we show and describe the characteristics of the entire optical signal that circulates inside the fiber
loop.

Fig. S5(a) shows the space-time evolution of the entire signal circulating inside the loop. It has a duration of
∼ 400 ns and it propagates over a distance of ∼ 1500 km (the propagation time in one experiment is around 5 ms).
As described in the Letter, the optical signal is composed of an ensemble of 29 short pulses, each of them being fol-
lowed by its own SG that has the initial shape of a flat-top pulse perturbated by some optical noise (see Fig. S5(b)–(e)).

In Fig. S5(a), the time interval devoted to experiments where solitons interact with SGs ranges between t ' 60 ns
and t ' 340 ns. Between these two times, the duration of the SGs increases monotonically from ∼ 200 ps to ∼ 2000
ps (right part of Fig. S5 around t = 330 ns) in 29 steps. Using this strategy, we capture in one single shot the
space-time evolution of a set of 29 experiments where we observe the interaction between 29 pulses and 29 associated
SGs of increasing extents.
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FIG. S5. (a) Global space-time pattern recorded at the output of the recirculating fiber loop in a single shot. The region where
29 solitons interact with 29 optical SGs is between t ' 60 ns and t ' 340 ns. (b)–(e) Zoomed view on four selected experiments
where solitons are refracted by SGs of various extensions. (f) Space-time evolution of a broad pulse of constant power initially
pertubated by some optical noise. This space-time pattern is typical from evolution observed in the so-called nonlinear stage
of MI. The optical signal measured at z = 96 km and shown in (f) is used to determine the mean power of the broad pulse.
This measurement is used to calibrate the optical power circulating in the fiber loop.

In addition to the broad space-time region where solitons interact with SGs, the optical signal propagating inside
the fiber loop has also been designed to incorporate some other regions that permit to measure the optical power
circulating inside the fiber loop with a good accuracy. The region in Fig. S5(a) that is surrounded by an orange
rectangle is the region of propagation of a very broad (∼ 10 ns) flat top pulse perturbated by some small optical noise.
As clearly shown in Fig. S5(f), the flat-top part of the pulse behaves as a plane wave that is destabilized by the small
optical noise through the process of modulation instability (MI), as already shown and extensively discussed in ref. [46].

The observed evolution of the nonlinear stage of MI can be used to advantage to measure the optical power
circulating inside the fiber loop. Fig. S5(h) shows the time signal recorded after a propagation distance of
z = 96 km, at a point where large coherent structures can be observed after the initial destabilization of the plane
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wave. The number of coherent structures observed on a given time span is directly dependent on the period TMI

associated with the process of MI. In Fig. S5(h), we record a total of 58 coherent structures over a time span
of 6.05 ns, which means that the period associated with the MI process is TMI = 104.3 ps. Therefore the mean
power P0 of the plane wave in the measurement region is given by P0 = (2π/TMI)

2|β2|/(2γ) = 29 mW [46]. This
value is used for calibration and permits to convert the voltage measured by the fast photodiode into an optical power.
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FIG. S6. (a) Experimental space-time diagram showing the positions of the points Pi(xi, ti) (i = 0, 1, 2) that are measured in
order to determine the space shift (∆x) due to the refraction phenomenon. (b) Zoomed view of (a) showing the measured shift
∆x.

III. MEASUREMENT OF THE SPACE SHIFT IN EXPERIMENTS

In this section we describe how the space shift associated with the refraction of the soliton by the SGs has been
measured in the experiment.

In a first step, the space-time diagrams recorded in the experiment are converted to dimensionless units using
mathematical transformations given in the Letter, see Eq. (3). In a second step, the position (xi, ti) of the soliton is
measured at three different times (i = 0, 1, 2). The first measurement point is the point P0(x0, t0) in Fig. 3(a) that
corresponds to the smallest time at which the soliton position can be measured. The second measurement point is
the point P1(x1, t1) in Fig. S6(a) that corresponds to the soliton position just before it is refracted in the SG. The
third measurement point is the point P2(x2, t2) in Fig. 3(a) that corresponds to the soliton position just after it
emerges from the SG.

The position shift ∆x computed from simple trigonometric considerations is given by

∆x = x2 − x0 − t2 tan(α) (S1)

with tan(α) = x1−x0

t1−t0 .

IV. EXPERIMENTAL MEASUREMENT OF THE PULSE AREAS AND NUMERICAL
CALCULATION OF THE ASSOCIATED DISCRETE IST SPECTRA

Fig. S7 shows a typical signal that is recorded in the experiment after a propagation over one round-trip (z = 8
km). In the example shown in Fig. S7, the signal is plotted in dimensionless units. It consists of one pulse located
near one of the SGs of largest extension. The signal plotted with a gray line is the raw signal recorded by the fast
photodiode. The fast oscillations at a frequency of ∼ 15 GHz that are detected on the top of the square pulse are due
to the beating between the laser used to produce the short pulses and the laser used to produce the square pulses
(the optical SGs).
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The extinction ratio of the EOMs (see Fig. S4) is of 20 dB. This means that residual light carrying a power that is
∼ 1% smaller than the power of the modulated signals propagate with the square and pulsed signals produced by the
modulators. This produces a spectacular beating pattern on the top of the square pulses which represents however
an observation artifact. In particular, the observed beating signal has no influence on the solitonic content of the pulses.

In order to measure the area of the square pulses, the beating signal is suppressed by using a filter that smooth
the unwanted oscillation at ∼ 15 GHz. This gives the signal plotted with the black line in Fig. S7. The area ASG
under the black line defined by ASG =

∫
|ψ(x)|dx is then easily computed. As described in the Letter, this signal in

black line is then fitted by the function ψSG(x) = b exp
(
−x2n/(2L2n)

)
where the real parameters b, x0, L and the

integer parameter n are determined under the constraint that the integral
∫
|ψSG(x)|dx must be equal to the area

ASG that has been measured for the experimental signal.

The same procedure is used for the short pulse except that the filtering stage is not applied. The measured profile
is fitted by ψp(x) = a exp

(
−x2/(2w2)

)
, where the parameters a and w are determined under the constraint that the

integral
∫
|ψP (x)|dx must be equal to the area AP =

∫
|ψ(x)|dx measured for the short pulse in the experiment.

Once the parameters characterizing the experimental pulses ((a,w) and (b, L, n)) are determined, their discrete IST
spectra are computed numerically using the Fourier collocation method described in ref. [12].
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FIG. S7. Raw signal recorded in the experiment (gray line) plotted in dimensionless units. The black line represents the raw
signal that has been smoothed to remove unwanted oscillations due to the beating between the two laser fields. The red line
represents the functions ψp(x) and ψSG(x) that are fitted from the experimental data.
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