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Model-corrected learned primal-dual models for
fast limited-view photoacoustic tomography
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Abstract—Learned iterative reconstructions hold great promise
to accelerate tomographic imaging with empirical robustness to
model perturbations. Nevertheless, an adoption for photoacoustic
tomography is hindered by the need to repeatedly evaluate the
computational expensive forward model. Computational feasi-
bility can be obtained by the use of fast approximate models,
but a need to compensate model errors arises. In this work
we advance the methodological and theoretical basis for model
corrections in learned image reconstructions by embedding the
model correction in a learned primal-dual framework. Here,
the model correction is jointly learned in data space coupled
with a learned updating operator in image space within an
unrolled end-to-end learned iterative reconstruction approach.
The proposed formulation allows an extension to a primal-
dual deep equilibrium model providing fixed-point convergence
as well as reduced memory requirements for training. We
provide theoretical and empirical insights into the proposed
models with numerical validation in a realistic 2D limited-view
setting. The model-corrected learned primal-dual methods show
excellent reconstruction quality with fast inference times and
thus providing a methodological basis for real-time capable and
scalable iterative reconstructions in photoacoustic tomography.

Index Terms—Learned image reconstruction, inverse prob-
lems, photoacoustic tomography, model correction, primal-dual
methods, limited-view.

I. INTRODUCTION

LEARNED iterative reconstructions are highly popular due
to their capabilities to combine model information and

learned components to achieve state-of-the-art results with
robustness to model perturbations [1]–[4]. In particular, so-
called end-to-end approaches that unroll an iterative scheme
for a fixed number of iterations and train all iterates jointly
provide superior reconstruction quality in many applications.
Nevertheless, applicability of such end-to-end approaches is
largely limited to two-dimensional scenarios with small image
sizes where training and evaluation is feasible. For high reso-
lution imaging, or even three-dimensional data, we encounter
several key difficulties. First of all, memory demands increase
linearly with number of unrolled iterates and secondly, com-
putationally expensive evaluations of the model equations can
severely limit reasonable training times. This is especially
so in photoacoustic tomography, where the forward model
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is given by an acoustic wave equation. Additionally, many
photoacoustic measurement configurations employ a limited-
view geometry making the inverse problem severely ill-posed,
necessitating advanced reconstruction approaches and strong
priors in the reconstruction process.

One such class of suitable advanced reconstruction meth-
ods consists of primal-dual approaches that have been very
successful in classic model-based imaging scenarios [5], [6]
and in particular its learned version still provides state-of-the-
art results [7]. The combination of a learned update in image
(primal) and data (dual) space is particularly powerful, but also
necessitates a joint training in an end-to-end fashion leading
back to the main limitations of adaption to high dimensions. In
particular, the memory demand is even further increased due
to the inclusion of an updating network in the measurement
space.

There have been several recent advances to overcome these
computational limitations in different settings, roughly follow-
ing two paradigms:

(i) Uncoupling of network training from the operator evalu-
ation.

(ii) Methodological improvements in the learned iterative
approach to negate impact of high computational demand.

In the first category are so-called plug-and-play approaches,
where a denoiser is learned offline and subsequently used in an
iterative scheme such as ADMM or proximal gradient descent,
replacing the proximal operator by the learned denoiser [4],
[8]–[11]. Another alternative is a greedy training that requires
iterative wise optimality instead of training the unrolled it-
erates end-to-end [12], [13], enabling an application to 3D
limited-view photoacoustic tomography [12]. Unfortunately,
the joint nature of learned-primal dual methods prohibits to
adapt a greedy training strategy.

The second category is more varied, as approaches may
tackle only a specific subproblem. For instance, an approxi-
mate model has been used in [14]–[16] to speed-up training
and deployment of the models. Deep equilibrium (DEQ) mod-
els [17], [18], aim to reduce memory consumption by refor-
mulating the unrolled algorithm to a fixed-point iteration and
differentiating only with respect to the fixed-point equation,
allowing for constant memory consumption independent of the
amount of iterates. Another work [19] aimed to reduce both
memory consumption and operator evaluations by formulating
the unrolled algorithm as a multiscale approach, reducing the
computational cost of forward operator and memory consump-
tion on the lower scales. Finally, invertible neural networks can
be used [20]–[22], eliminating the need to store intermediate
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states for backpropagation, but the need to evaluate the forward
operator remains in an unrolled algorithm.

In addition to the above computational advances, there are
recently increased efforts to provide theoretical results for
learned image reconstructions [3], [10], [23], [24], for instance
in the form of convergence results for unrolling approaches.
One such convergence guarantee is given for DEQ models
to a fixed point by requiring the updating operator to be a
contraction [17], [18]. Stronger notions of convergence can
be satisfied, but generally require more restrictive constraints
on the learned components, often reducing expressivity and
performance of the networks. We refer to [3] for an overview
of provably convergent approaches for learned image recon-
struction.

Motivated by the above developments, this work aims
to formulate a model-corrected learned primal-dual model,
that can be trained end-to-end for high resolutions using
fast approximate forward operators. Additionally, we provide
theoretical insights and conditions on fixed-point convergence
in a deep equilibrium formulation. To achieve this, we start
with the classic model-based primal-dual hybrid gradient [5]
and replace the expensive forward and adjoint operators with
a fast, but approximate version [14]. The introduced errors are
corrected with an operator correction in dual space, motivated
by [15], and a learned updating operator in primal space. The
resulting algorithm is called a model-corrected learned primal-
dual (MC-PD). We then proceed to formulate the model-
corrected learned primal-dual as a deep equilibrium model
(PD-DEQ) and analyze conditions on parameters and networks
to provide a contraction on the primal variable. Our main
results state that fixed-point convergence can be achieved
under a sufficient decrease assumption on the dual variable.

The developed methods are evaluated extensively for a 2D
limited-view scenario. We compare our methods to a post-
processing approach with U-Net and a version of the proposed
MC-PD that does not use weight-sharing and hence is close
to the original learned primal-dual. We evaluate scalability
in terms of memory consumption and evaluation times to
larger image sizes. Our results show that MC-PD provides
the same excellent performance with weight-sharing as well
as without. The DEQ models do not perform as well as
the MC-PD with a drop in PSNR and SSIM, but providing
good qualitative results. Additionally, we discuss challenges
when training the DEQ models in the considered limited-
view setting and computationally verify the contraction of
the updating network. Finally, we will provide codes and
implementation of our models.

This paper is structured as follows. In sec. II we introduce
the main concepts in photoacoustic tomography and the vari-
ational formulation to reconstruction. We then review learned
reconstruction approaches and introduce the fast approximate
operators used in this study. In sec. III we introduce the
model-corrected learned primal-dual and its deep equilibrium
formulation. We provide some theoretical insights to proposed
models and then proceed to derive conditions on the contrac-
tion property. Sec. IV discusses computational aspects and
data simulation. We present the results in sec. V and discuss
performance and challenges of the proposed models. Finally,

sec. VI provides final conclusions.

II. PHOTOACOUSTIC TOMOGRAPHY AND PRIOR WORK

In photoacoustic tomography (PAT) a short pulse of near-
infrared light is absorbed by chromophores in biological tissue
[25], [26]. For a sufficiently short pulse, this will result in a
spatially-varying pressure increase x inside the tissue, which
initiates an ultrasound (US) pulse (photoacoustic effect), that
propagates to the tissue surface. In this work we only consider
the latter acoustic problem of photoacoustic tomography. That
is, the forward model of acoustic propagation is modeled by
an initial value problem for the acoustic wave equation [27],
[28]

(∂tt − c2∆)p(x, t) = 0, p(x, t0) = x(x), ∂tp(x, t0) = 0,
(1)

with x ∈ R2 and t0 = 0 denotes the initial time. We measure
the pressure field on the boundary of the computational domain
Ω for a finite time window. The measured data can then be
modeled by a linear operator M acting on the pressure field
p(x, t):

y = M p|∂Ω×(0,T ). (2)

The acoustic propagation (1) and the measurement operator
(2) define the linear forward model

Ax = y (3)

from initial pressure x ∈ X to the measured time series y ∈ Y .
This represents the ideal accurate forward model and can be
simulated, e.g., by a pseudo-spectral time-stepping model as
outlined in [29], [30].

If the measured data is sparse or the detection geometry is
limited to only a part of the boundary the inverse problem
becomes severely ill-posed [31], such as in the limited-view
scenario considered here, see Figure 1 for an illustration of
the measurement setup. This necessitates regularization and
advanced priors to compensate for the lost information, which
can be formulated in a variational setting [32]–[34]. That
is, given measured data y we obtain a reconstruction as the
minimizer of

J(x) = ‖Ax− y‖22 + λR(x), (4)

where the first term measures the data-fit and the second term
regularizes the problem and incorporates a priori knowledge
one might have about the target, λ > 0 balances the influence
of both terms. Solutions of eq. (4) can then be computed itera-
tively by a suitable optimization algorithm. For instance, using
a proximal gradient scheme that allows for non-differentiable
R(x): given an initial reconstruction x0 one can iteratively
minimize eq. (4) by the updating equation

xk+1 = proxR,λγk (xk − γkA∗(Axk − y)) , (5)

with suitable step-length γk > 0. The proximal operator
projects iterates to solutions admissible by the regularisation
term R, by solving a corresponding denoising problem

proxR,α(x) = arg min
u

{
R(u) +

1

2α
‖u− x‖22

}
. (6)
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Fig. 1. Measurement setup and illustration of the fast models. The phantom (left) left is measured from a one-sided sensor on the top (red line). The ideal
measurement is shown in the middle top. The fast approximate forward map is shown in the bottom and contains clear aliasing artifacts. Applying the inverse
mapping provides reconstructions with strong limited-view artifacts. One can see on the bottom right, that the obtained reconstruction from the approximate
model is smoother compared to the top.

Alternatively, utilizing the dual space we can formulate a min-
max optimization problem in primal and dual space. This leads
to the highly successful primal-dual hybrid gradient (PDHG)
method, [5]. Here, the update equations for the primal variable
x ∈ X and dual variable q ∈ Y to solve (4) are

qk+1 =
qk + σ(Ax̃k − y)

1 + σ
, (7)

xk+1 = proxR,λτ (xk − τA∗qk+1) , (8)

x̃k+1 = xk+1 + α(xk+1 − xk), (9)

where σ, τ > 0 and θ ∈ [0, 1]. Given the operator norm of
the forward operator L := ‖A‖ = ‖A‖X→Y convergence to a
saddle point for (q, x) is shown when στL2 < 1 and θ = 1
[5]. Let us point out, that eq. (7) corresponds to the proximal
operator for the dual space, i.e., the least-squares data fidelity
term in eq. (4). In the following we will base our method on
the formulation in eqns. (7) and (8).

A. Learned model-based approaches to reconstruction

Learned reconstruction methods are increasingly popular
in medical imaging, as they offer the possibility to combine
strong data driven prior information with hand-crafted model
components [1], while also providing a considerable speed-up
of reconstruction times.

Most successful in terms of image quality and robustness
are so-called model-based techniques that combine data-driven
components with model components. That means, forward
and adjoint operator are used within the network architectures
[7], [12], [35], [36]. A prominent class are unrolled iterative
methods that follow eq. (5) and, e.g., reformulate the updating
equations to

xk+1 = Gθk (xk − λkA∗(Axk − y)) . (10)

That is, the proximal operator is replaced by a learned updating
network Gθk with parameters θ, where the network weights
are learned from supervised training data. Note, that in the
above formulation the network weights are allowed to change
in each iteration. We can also use weight-sharing and fix the
parameters θ globally for all updates. Having a fixed updating
operator allows for a more accessible analysis of the iterative
reconstruction by constraining the network (weights), or the
architecture of the updating operator [3].

A related approach are so-called plug-and-play methods
[4] that use a separately learned denoiser Gθ, which is
subsequently used in the iterative process. Note, also here the
denoiser is fixed for all iterates. The nature of the network Gθ
to act as a denoiser primarily limits this approach to inverse
problems of denoising type, in contrast to the limited-view
problem we encounter here. Nevertheless, recent advances
show that if Gθ is given by a generative network one can
obtain high-quality reconstructions and uncertainty maps in a
related sampling framework [37].

Similarly to the classic model-based reconstruction in eqs.
(5)-(8) we can extend the learned iterative approaches into
a learned primal-dual method [7] by replacing the proximal
operators in primal and dual space with learned operators. The
learned updates are then given in a general form as

qk+1 = Fφk (qk, Axk, y)

xk+1 = Gθk (xk, A
∗qk+1) .

The learned primal-dual scheme has shown superior perfor-
mance for X-ray CT, but training is necessary to be performed
in an end-to-end manner for all iterates jointly, due to the
coupling of primal and dual updates, which can pose a major
computational challenge. Some advances have been made by
using invertible networks [38], [39] to reduce memory costs.

Nevertheless, in photoacoustic tomography the application
of learned model-based techniques has been very limited [12],
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[14], [40], even if their performance is shown to be quanti-
tatively and qualitatively superior [41]. This is primarily due
to the extensive computational cost of evaluating the forward
model, which limits reconstruction speeds and often makes
training prohibitive. Thus, the majority of learned approaches
in PAT consider either one or two-step approaches, that is a
direct mapping from data to reconstruction is learned or a
post-processing network after an initial reconstruction is ob-
tained, respectively. We refer to [42]–[44] for a comprehensive
overview of learning based reconstruction methods for PAT.

As previously discussed, a possibility to overcome the
limitations of the expensive forward model in the training
procedure for PAT has been proposed in [12], by training the
update operators in a greedy approach only requiring iterate
wise optimality. The use of faster approximate models for
planar (or linear) sensors [45], [46] further speeds up training
and deployment times [12]. An alternative route considers
to learn the forward model entirely, for instance by Fourier
Neural Operators [47], [48] to embed these into an efficient
iterative reconstruction algorithm.

B. A fast approximate forward and inverse model

Recent studies have investigated the effect of using ap-
proximate or imperfect operators in the reconstruction [49]–
[51] and the possibility to improve results with a learned
correction [15], [16]. Most importantly, it is shown that under a
suitable learned correction, one can accurately solve the classic
variational problem. We will first discuss the approximate
model here and then introduce the learned reconstruction later
in sec. III.

A fast forward and backward model is needed to enable
feasible training of a learned iterative reconstruction. Here we
will use an analytical approximation based on the Fast Fourier
Transform (FFT), that is applicable for line and planar sensors
[45], [46]. We note, that an FFT based algorithm also exists for
circular domains [52] and thus our method extends naturally.
We shortly review our approximate model as previously used
in [14].

The approximate model exploits the fact that the measure-
ment points lie on a line in 2D at x2 = 0 (or plane in 3D),
and assuming constant sound-speed c. In two dimensions the
pressure on the sensor can be related to x by [45], [46]:

p(x1, t) =
1

c2
Fk1 {Cω {B(k1, ω)x̃(k1, ω)}} , (11)

where x̃(k1, ω) is obtained from x̂(k) via the dispersion
relation (ω/c)2 = k2

1 + k2
2 and x̂(k) = Fx{x(x)} is the 2D

Fourier transform of x(x). Cω is a cosine transform from ω to
t, and Fk1 is the 1D inverse Fourier Transform on the detector
line. Finally, the weighting factor

B(k1, ω) = ω/

(
sgn(ω)

√
(ω/c)2 − k2

1

)
, (12)

contains an integrable singularity which means that if (11)
is evaluated by discretization on a rectangular grid to enable
the application of the FFT for efficient calculations, then
aliasing in the measured data p(x1, t) results. Consequently,
evaluating (11) using FFT leads to a fast but approximate

forward model. One could control the strength of aliasing
artifacts by thresholding certain incident angles as in [14], but
this leads to a loss of signal strength. Thus, here we will not
use a thresholding and deal with the aliasing by the learned
model correction.

The relation in (11) then defines the approximate forward
model Ã : X → Y for this study. Similarly, we can invert
eq. (11) to obtain a mapping from measured time-series to
initial pressure as inverse mapping or reconstruction operator
A† : Y → X . This leads to two mappings between image X
and data Y space:

Ãx = ỹ, A†y = x̃. (13)

We note, that the fast inverse mapping does not introduce any
aliasing, but information is naturally limited by the information
present from the limited-view geometry, see Figure 1 for
an illustration. In the following we will use the above fast
mappings in the learned reconstruction.

Additionally, we have implemented the mappings in eq. (13)
with PyTorch to enable flexible deployment in the training
of the unrolled algorithms. This way, we have full GPU
and automatic differentiation support of the models, enabling
efficient training and evaluation. As part of this study, we
will make our implementation of the models available to
researchers.

III. MODEL CORRECTED PRIMAL-DUAL AND DEEP
EQUILIBRIUM MODELS

We can now combine the above pieces to formulate a
learned iterative scheme starting from the classic PDHG for-
mulation (7) and (8). We will first include the model correction
term for the forward operator and include a learnable update
operator in the primal space. Additionally, our formulation
allows to formulate the proposed algorithm as a deep equilib-
rium model.

A. Model corrected learned primal dual

The plug-and-play framework suggests to substitute the
proximal operator in eq. (5) with a learned network. This
is known to work well, if restricted to the primal space.
The same approach is usually not applied to learning the
proximal operator for the dual space, as we can not simply
learn a denoising network in the dual space. Additionally, the
proximal operator in dual space has a clear connection to the
data-fidelity term and the noise model. Thus, for our method
we will keep the explicit form of the proximal in dual space
as given by eq. (7) and only replace the proximal operator for
the primal update in image space with a network Gθ.

We replace the accurate but expensive model A with a fast
approximate version Ã, which would lead to errors in the data
and hence the dual update. As solution, we propose to learn
a correction of the forward operator by a network Fφ. Instead
of using the (expensive) adjoint in the primal space, we will
make use of the fast inverse mapping A†. Together, the update
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steps with the model correction and learned proximal operator
are then given by

qk+1 =
qk + σ(Fφ(Ãxk)− y)

1 + σ
(14)

xk+1 = Gθ
(
xk − τA†qk+1

)
. (15)

Note, that we use weight sharing of the network parameters
θ, φ for all iterates, and we set a maximum number of
iterations K > 0. We refer to this unconstrained version as
model-corrected learned primal-dual (MC-PD) as outlined in
Algorithm 1.

Algorithm 1 Model-Corrected Primal-Dual (MC-PD)

1: Given y, Ã, A†

2: Set σ, τ,K
3: x0 ← A†y
4: q0 ← 0
5: k ← 0
6: for 0 < k ≤ K − 1 do
7: qk+1 ← qk+σ(Fφ(Ãxk)−y)

1+σ

8: xk+1 ← Gθ
(
xk − τA†qk+1

)
9: end for

B. A Primal-dual deep equilibrium model
In recent years convergent learned image reconstruction

methods have gained considerable interest. Instead of simply
training the learned reconstruction in a supervised method,
we can constrain weights to obtain theoretical guarantees on
the behavior of the unrolled iterates. One such option is to
require that the learned iterates converge to a fixed point, this
is the underlying paradigm of deep equilibrium models. In
its simplest form, we can ensure that the learned proximal
gradient in eq. (10) satisfies a fixed-point equation, that is

x∗ = G(x∗; y) = Gθ(x
∗ − λA∗(Ax∗ − y)). (16)

First we note, that weights are shared between iterates and
no maximum number of iterations is assumed, but rather a
convergence in the limit is considered by ensuring, e.g, that
the updates are a contraction. In deep equilibrium models
the forward solver applies a fixed-point iteration, either a
vanilla version or more advanced choices such as Anderson
acceleration, see [17] for details and an extension to inverse
problems in [18]. Training is then performed by differentiating
the fixed-point formulation, eliminating the need to perform
backpropagation through all iterates and hence reducing mem-
ory consumption.

In our case, we are given the two variables x, q for which
we would like to formulate the deep equilibrium model. That
means, we are now looking for a pair of fixed points z∗ =
(x∗, q∗) ∈ X×Y , such that the fixed-point equation is satisfied
with

(x∗, q∗) = PD(φ,θ)(x
∗, q∗; y), (17)

where the corresponding update equations for the mapping PD
are given by eq. (14) and eq. (15). In the following we will
first discuss the forward pass, followed by a discussion on the
computation of backpropagation.

1) Forward pass for the deep equlibrium formulation:
Here, we will be applying the Anderson accelerated fixed-point
method to both, primal and dual, variables. More precisely,
given the primal-dual update as above for iterate k:

(xk+1, qk+1) = PD(φ,θ)(xk, qk; y).

We denote with a superscript which update we compute, i.e.,
PDq and PDx, that is we get the formulation

qk+1 =

m−1∑
i=0

βiPDq
(φ,θ)(xk−i, qk−i; y), (18)

xk+1 =

m−1∑
i=0

αiPDx
(φ,θ)(xk−i, qk−i; y), (19)

with memory m ≥ 1,
∑
i αi = 1 and

∑
i βi = 1. The

parameter vectors α and β are computed by solving

min
α
‖Hα‖22, subject to

∑
i

αi = 1,

where the matrix H consists of the vectorized residuals

H =
[
PDx

(φ,θ) (xk, qk; y)− xk, · · · ,

PDx
(φ,θ)(xk−m+1, qk−m+1; y)− xk−m+1

]
,

and similarly we perform the same for β and the dual variable
q. The forward pass of the primal-dual deep equilibrium model
(PD-DEQ) is then given similarly as in Algorithm 1, except
that new iterates are computed by the Anderson accelerated
version in eqs. (18) and (19). Additionally, one could not only
consider a maximum number of iterations but also check if the
fixed-point iteration has converged, for instance, by setting a
limit on the relative residual of the primal variable

r =
‖PDx

(φ,θ)(xk+1, qk+1; y)− xk‖2
‖PDx

(φ,θ)(xk+1, qk+1; y)‖2
.

2) Backward pass: For training, even though we perform
the update on both variables, we only optimize the network
parameters with respect to a loss on the primal variable
x, where training data is easily available. That means, we
formulate the fixed-point equation in (17) only with respect
to x. We write for a fixed point x∗ under dual variable q and
measurement y, with a slight abuse of notation,

x∗ = PD(φ,θ)(x
∗; q, y). (20)

To simplify notation we denote the network variables as one
ζ = {φ, θ}. The networks are then trained supervised to
minimize the mean-squared error (MSE) with respect to the
groundtruth x by

`(ζ) = ‖PD(ζ)(x
∗; q, y)− x‖22 = ‖x∗ − x‖22.

The backward pass is computed by implicit differentiation of
the fixed-point equation (20). We denote the Jacobian at the
fixed point with respect to the parameters ζ by JPDx

∗ (ζ) and
the Jacobian with respect to x∗ by JPD(ζ)

(x∗), then we obtain
for the gradients the implicit equation

∇`(ζ) =
(
JPDx

∗ (ζ)
)T (

Id− JPD(ζ)
(x∗)

)−T (
x∗ − x

)
. (21)
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Note, that we do not need to compute the backwards pass
through all iterates and thus memory consumption is inde-
pendent of the number of unrolled iterates. Nevertheless, eq.
(21) requires a solver for the implicit equation, which can add
some computational overhead. We will consider here the full
formulation, but further reductions in the computation can be
obtained by considering approximations of JPD(ζ)

(x∗), most
notably a Jacobian free variant [53].

While our primary interest lies in the convergence of the
primal x it is now reasonable to ask what do we need to
assume on q. Let us discuss this in the following.

C. Convergence analysis

Here we will shortly examine some theoretical properties of
the proposed methods. We investigate how the model correc-
tion can be interpreted in the MC-PD formulation. Followed
by a discussion on the contraction and fixed-point properties
of the deep equilibrium model.

1) Functional convergence under forward correction: We
start by considering the analytic PDHG formulation in eqs.
(7)-(9) using the approximate operator Ã, its corresponding
adjoint Ã∗, and the proximal operator corresponding to some
regularization R. Given the operator norm L̃ = ‖Ã‖, we can
choose the hyperparameters as σ = τ < 1/L̃ and α ∈ [0, 1].
Then, applying PDHG will minimize the cost functional

‖Ãx− y‖22 + λR(x).

Minimizing the above functional with the approximate forward
operator instead of the correction does result in suboptimal
results as demonstrated in [15].

Consequently, let us now consider including the forward
operator correction in the dual update, i.e., we replace A
with Fφ(Ã) in eqn. (7), while using the correct adjoint in
the primal update (8). We denote the operator norm of the
correction Fφ by εφ = ‖Fφ‖. Then, under a perfect training
assumption on the adjoint we can recover convergence of
PDHG as summarized in the following result.

Proposition 1. Given corrected forward operator Fφ(Ã) with
norm εφL̃, accurate adjoint A∗ with norm L. Assume that for
k ≥ 0 we have(

Fφ(Ãxk), yk
)
Y

=
(
xk, A

∗yk
)
X
. (22)

Then for the choice τ < 1/L and σ < 1/(εφL̃) we recover the
iterations of PDHG in eqs. (7)-(9) for the accurate functional
(4).

Proof. The condition (22) requires that the forward correction
does satisfy the adjoint equation. By uniqueness of the adjoint
this is equivalent to a perfect training condition(

Fφ(Ãxk)−Axk, yk
)
Y

= 0 ∀k ≥ 0.

Thus, all iterates in (7)-(9) are identical to the accurate
operators. By the choice of hyper parameters σ and τ we have
that τσLL̃εφ < 1 and thus the the convergence condition of
the classic PDHG is satisfied.

The condition (22) could be used for training without the
need to access the accurate forward operator. That is one could
add an additional adjoint loss to the training

L(x;φ) = (Fφ(Ãx), h)Y − (x,A∗h)X for h ∈ Y. (23)

Clearly, a perfect training can not be achieved in practice. In
this case, it can be treated as a perturbation in the adjoint, or,
in fact, in the forward. We refer to [54], [55] for a discussion
on convergence under mismatched adjoints in primal-dual
algorithms.

Note, that in the above adjoint loss (23) the accurate adjoint
is still needed though. Thus, we now consider the case, where
both forward and adjoint are replaced by their respective fast
operators. Then, the corresponding adjoint loss becomes

L(x;φ) = (Fφ(Ãx), h)Y − (x,A†h)X for h ∈ Y, (24)

where adjointness of the forward correction to the fast inverse
is enforced. Clearly, this does not minimize the accurate
functional, but rather the corresponding functional

‖Fφ(Ã)x− y‖22 + λR(x),

where closeness to the true model is governed by the closeness
of the fast inverse A† to the adjoint A∗. If convergence
with respect to the accurate functional is desired, an adjoint
correction is required [15].

2) fixed-point convergence for the deep equilibrium model:
Let us now replace the proximal operator with a learned
network Gθ and corresponding norm εθ. First we note, that
if we do not enforce any further conditions on Gθ, we can
not expect functional convergence anymore, but we can obtain
a fixed-point convergence [3]. We remind first, that training
of the PD-DEQ model is performed only with respect to the
primal variable x. Thus, we would like to verify two conditions
(i) Under which parameter choices and conditions on the

networks Fφ and Gθ do we obtain a contraction on the
primal variable?

(ii) Can we also ensure fixed-point convergence?
As we will see, both conditions are closely connected as
condition (ii) will require a contraction, but we will see that
a dependence on q will not provide fixed-point convergence
without further assumptions. To begin with, let us first combine
the update equations (14) and (15) by

xk+1 = Gθ

(
xk − τA†

(
qk + σ

(
Fφ(Ãxk)− y

))
/(1 + σ)

)
.

We can see here the dependence on qk in the updates. Let us
isolate the update for x by introducing the operator T : X →
X such that

TId(x) := (Id− T )(x) = x− τA†σFφ(Ãx)/(1 + σ). (25)

Thus, T is a scaled version of the normal operator A∗A. We
note, the above update rule on x (25) convergences to a fixed-
point if T is firmly nonexpansive, which implies that Id− T
is firmly nonexpansive [56]. To show firmly nonexpansiveness
we need an adjoint loss condition. Rather than assuming a
perfect fit, we consider an approximate adjoint loss condition,
such that

(Fφ(Ãx), h)Y ≤ (1 + ε)(x,A†h)X for h ∈ Y. (26)
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That means we only fulfill the adjoint condition with an ε > 0
error depending on the value of the right inner product. This
is a more realistic case, as we can not expect a perfect adjoint
fit. We note, that the assumption (26) requires (x,A†h)X to
be positive. However, since all samples x and relevant h are
positive we can assume this to hold. Now we can show the
firmly nonexpansiveness of T .

Theorem 1. The operator T : X → X defined in (25) is firmly
nonexpansive, under condition (26) with ε > 0, L† = ‖A†‖,
and σ, τ > 0 chosen such that

(1 + ε)
τσ

1 + σ
(L†)2 ≤ 1. (27)

Proof. We need to show that

‖T (x)− T (v)‖22 ≤ (T (x)− T (v), x− v)X , (28)

where T : X → X is given as in (25). We start by bounding
the left hand side of the above inequality, using linearity of
A† and ‖A†‖ = L†, we get∥∥∥ τσ

1 + σ
A†Fφ(Ãx)− τσ

1 + σ
A†Fφ(Ãv)

∥∥∥2

2

≤
∣∣∣ τσ

1 + σ

∣∣∣2∣∣∣L†∣∣∣2∥∥∥Fφ(Ãx)−A†Fφ(Ãv)
∥∥∥2

2

=
∣∣∣ τσL†
1 + σ

∣∣∣2(Fφ(Ãx)− Fφ(Ãv), Fφ(Ãx)− Fφ(Ãv)
)
X
.

We can now separate the inner product, using semi-linearity
and symmetry. Then we estimate each term using the approx-
imate adjoint condition in (26) and recombine, to obtain(

Fφ(Ãx)− Fφ(Ãv), Fφ(Ãx)− Fφ(Ãv)
)
X

≤ (1 + ε)
(
A†Fφ(Ãx)−A†Fφ(Ãv), x− v

)
X
.

Now under the condition (27) we get the required estimate.

We continue by examining the iterations of the learned
primal-dual updates and obtain a contraction for fixed k under
boundedness of the dual updates.

Theorem 2. Assume ‖qk−qk−1‖2 < Cq with k > 0 fixed and
‖Gθ‖ = εθ < 1. Under the assumptions in Theorem 1, there
exists a choice for τ > 0, such that the iteration for xk+1 is
contracting, i.e.,

‖xk+1 − xk‖2 < ‖xk − xk−1‖2.

Proof. We start by reformulating the update for xk+1 using
TId as

xk+1 = Gθ

(
TId(xk)− τ

(1 + σ)
A†(qk − σy)

)
.

With the above update rule, using the norm of the network
‖Gθ‖ = εθ and ‖A†‖ = L† we can obtain by triangle
inequality a first bound of iterates as

‖xk+1 − xk‖2 ≤

εθ

(∥∥TId(xk)− TId(xk−1)
∥∥

2
+

τL†

1 + σ

∥∥qk − qk−1

∥∥
2

)
.

(29)

Set 0 < δ = 1 − εθ < 1, with ‖qk − qk−1‖2 < Cq and since
‖xk − xk−1‖2 is finite, there exists τ > 0 small enough such
that

τL†

1 + σ
Cq < δ/2‖xk − xk−1‖2. (30)

We then obtain the final estimate for eq. (29), using firmly
nonexpansiveness of TId in the first term and (30) for the
second term, by

‖xk+1 − xk‖2 ≤ εθ(1 + δ/2)‖xk − xk−1‖2
< ‖xk − xk−1‖2,

since by assumption

εθ(1 + δ/2) < εθ + δ/2 = (1 + εθ)/2 < 1.

The above theorem only provides an iterate-wise conver-
gence under a uniform bound on the dual q. That means, if qk
is not converging τ may become arbitrarily small. We note,
that in practice we only consider finite iterates and hence a
uniform bound exists. For the limit case we could assume
that qk converges at least as fast as xk, then we can obtain a
uniform choice for τ > 0. For that, let us assume that both
variables have a 1/k convergence.

Corollary 1. Under the assumptions of Theorem 2, assume
additionally that both ‖qk − qk−1‖ = O(1/k) and ‖xk −
xk−1‖ = O(1/k). Then there exists a uniform τ > 0 for all
k > 0 such that the xk are contracting.

Proof. By assumption both sides of the estimate eq. (30) can
be divided by k (with possible additional constants on each
side). Then there exists a small enough τ > 0 that holds for
all k.

First of all, the above analysis reveals that it is advisable
to choose τ and σ conservatively small to ensure that the
iterations contract. As we will see, this is in fact important
to have stability in the DEQ formulation. Secondly, we would
like small norm of the residuals in the dual q and ideally fast
convergence. Third, it is interesting to note that in fact only
the dual network Gθ is required to be contractive, while the
model correction network Fφ is connected to the inverse A†

by the approximate adjoint error. In the experiments, we will
see that q does indeed converge fast and the residuals have
significantly smaller norm than for x. Thus, the experiments
confirm that we are able to recover a fixed-point iteration on
both primal and dual variables, even if the theory assumes
dependence on the contraction of q.

IV. PHOTOACOUSTIC DATA SIMULATION AND
COMPUTATIONAL ASPECTS

In this study we will evaluate the performance of the pro-
posed algorithms with a simulated two-dimensional scenario.
For this, we will first discuss the training data generation. We
will then continue to discuss some details on the implementa-
tion of forward and inverse models, followed by the employed
training procedures.
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A. Photoacoustic simulation in 2D and training data

For simulating training data we use k-wave, which is based
on a pseudo-spectral method, for accurate simulation of the
acoustic wave equation (1) in two dimensions. We consider
a rectangular computational domain of size 80 × 128 with
isotropic spatial pixel size of dx = 106µm. The photoacoustic
sensor is located at the top edge of the domain, see Figure
1 for an illustration. The sound speed is set to be constant
at 1500 m/s and temporal sampling rate at dt = 50 ns,
the measurement data is of dimension 160 × 128, with the
spacing dt × dx. We have added 1% Gaussian random noise
to the simulated measurements, which corresponds to a SNR
of roughly 18dB.

For training data generation we used the DRIVE: Digital
Retinal Images for Vessel Extraction1, consisting of retinal
photographs and segmentation masks for the training. We
have used 20 images and corresponding masks to create
phantoms of vessel structures. First, by converting the im-
ages to grayscale and normalization, then by multiplying the
mask with the images. Each resulting image has dimension
584 × 565, we have then extracted smaller patches of size
80× 128 from the images and only saved those with enough
features by checking the sum over all pixels, i.e., if greater
than 150. We have repeated the same procedure for each image
transposed for data augmentation, this resulted in a total of 893
images, we have further augmented this data set by flipping
the image vertically, since this will provide different limited
view artifacts. In total we obtained 1786 images with a split
into N = 1600 for training and 93 for validation and testing
each.

B. Implementing the fast models

For this study, we have implemented both models, fast
approximate forward Ã and the fast inverse A†, fully in
PyTorch, to allow for efficient evaluation. This also enables to
use automatic differentiation within the model-based learned
reconstructions. The implementation follows largely the de-
scription in sec. II-B using the inbuilt FFT with PyTorch.
For the mapping between image k-space, k = (k1, k2), and
measurement k-space, (k1, ω), we have implemented our own
grid interpolator within PyTorch, as no inbuilt functions were
available.

For efficient computation during training, all necessary
static variables and k-grids are pre-computed and passed to
the fast model. This follows a similar paradigm as in the k-
wave toolbox [29]. As part of this study we publish the fast
models and network codes. 2

C. Implementation and training of the model-corrected primal
dual models

The networks Fφ and Gθ for the proposed models are
both chosen as U-Nets, with 3 scales, i.e., 2 downsampling
layers, 64 channels in the first scale, followed by 128 and 256
in the next scales. We set a maximum of 10 iterations for

1https://drive.grand-challenge.org/
2Link will be added after revision

both algorithms, the Anderson acceleartion of PD-DEQ uses
a memory of m = 5. For the hyperparameters τ and σ we
have computed an approximate operator norm of L̃ ≈ 0.7 and
set τ = σ = 1/(10L̃). The overestimation by a factor 10 is
due to the presented theory and provided improved stability
in practice.

As mentioned earlier, we only train the networks with re-
spect to the primal variable. We are given ground-truth images
xi and corresponding measurements yi and the corresponding
reconstruction operator Rζ : Y → X (either MC-PD or PD-
DEQ) with parameters ζ = {φ, θ}. We then minimize the
`2-loss (MSE) to find the optimal set of parameters ζ∗ as

ζ∗ = arg min
ζ

N∑
i=1

‖Rθ(yi)− xi‖22. (31)

We only use 1 sample per training iteration due to memory
constraints and at each iteration the training sample is drawn
from the uniform distribution over all training pairs. We use
the Adam optimizer in PyTorch with a cosine decay on the
learning rate initialized by 2·10−4 and a total of 25000 training
iterations. Training of the MC-PD models took 100 minutes
and 180 minutes for the PD-DEQ models on a Nvidia Quadro
RTX 6000 with 24 GB memory.

For the training of the PD-DEQ model, we use automatic
differentiation at the fixed point formulation to compute the
gradients given by eq. (21). We note that solving eq. (21)
stably requires the network to be contractive. Thus, we have
tested to use spectral normalization to explicitly constrain
the Lipschitz constant of Gθ, but better results have been
obtained without, we refer to Section V-C2 for a discussion.
This suggests that the contraction is implicitly enforced by
the fixed-point formulation. Nevertheless, we remind that a
Lipschitz constraint is only needed for the update network
Gθ in primal space, while the dual network Fφ can be
unconstrained. We also point out that supervised training with
respect to the dual variable is not straight-forward as the ideal
reference should only be residual noise.

1) A combined hybrid approach: We will see that the PD-
DEQ model has some difficulties to achieve high values of
PSNR in the presented limited-view setting, despite providing
good image quality. Thus, we will additionally consider a
hybrid combination of both approaches, MC-PD and PD-
DEQ. That means we first perform a fixed amount of MC-PD
iterations, followed by PD-DEQ. The order is chosen such that
first MC-PD will help to alleviate the impact of the limited-
view setting, then the final PD-DEQ iterations provide the
fixed-point formulation for to the final reconstructions. Here,
we need to find a trade-off between the MC-PD performance
and the memory reduction provided by PD-DEQ, as we will
discuss later. We call this approach in the following PD-Hybrid

For the training objective, we train the network in an
alternating way, that is in each training iteration we first
evaluate MC-PD, denoted by RMC

ζ1
and minimize (31) for

sample i. Then given the output (xik, q
i
k) = RMC

ζ1
(yi) we

evaluate the PD-DEQ, denoted by R
DEQ
ζ2

, and minimize the
loss function only for the parameters of the PD-DEQ model,
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i.e.,
‖RDEQζ2

(xik, q
i
k, y

i)− xi‖22.

We will use 5 iterations of MC-PD followed by 5 iterations of
PD-DEQ. Training of the PD-Hybrid models takes about 160
minutes.

D. Comparison methods

We will further compare the performance of both model-
corrected primal-dual models with two well-established meth-
ods. First we use a post-processing approach, where an initial
reconstruction is obtained with the inverse x0 = A†(y), then
a post-processing network is trained to remove noise and
limited-view artefacts, i.e.,

xrec = Gθ(x0) = Gθ(A
†(y)).

We will use here the same U-Net architecture for the network
Gθ as in the MC-PD and PD-DEQ models.

Secondly, we will compare our methods to a version of
MC-PD that does not use weight-sharing and thus is close
to the original learned primal dual (LPD) [7], we will also
refer to this model as LPD in the following. This network
clearly has the most expressive power as each iteration has its
own network weights in primal and dual space, and hence we
will consider this here as the state-of-the-art to compare our
method to. We note, that also here the networks are chosen
with the same U-Net architecture. Training of the U-Net takes
only 12 minutes and training the LPD takes 120 minutes.

V. RESULTS AND DISCUSSION

We will evaluate the proposed methods for their quantitative
and qualitative performance, but also the ability to provide
scalable and robust reconstructions. Followed by a discussion
on the DEQ models.

A. Results for 2D simulated data

We first evaluate the performance on the test data as
described in sec. IV-A, that is consistent with the training
data, i.e., in a resolution of 80 × 128 with 1% noise in the
measurements. For each algorithm we have trained 3 instances
and chose the one with the highest validation error to compute
the quantitative measures PSNR and SSIM on the test set of
N = 93 samples, see Table I for the obtained values.

TABLE I
QUANTITATIVE MEASURES (PSNR AND SSIM) FOR ALL CONSIDERED

METHODS ON THE TEST DATA (N = 93).

U-Net LPD MC-PD PD-DEQ Hybrid
PSNR 21.95 29.06 29.34 22.1 24.27
SSIM 0.943 0.991 0.991 0.959 0.974

There are two interesting observations that we can make.
First of all, LPD and MC-PD perform very similar even
though LPD does not use weight-sharing as the MC-PD
does. This is largely consistent with the literature, that the
weight-shared version performs similarly well as its coun-
terpart. Interestingly, in this instance MC-PD was able to

achieve even a slightly higher PSNR, but SSIM values are the
same. Secondly, we notice that the constrained version PD-
DEQ has a significant drop in PSNR. This is an unfortunate
result, especially when compared to U-Net we only see a
slight improvement. Nevertheless, we can observe a clear
improvement in SSIM over post-processing with U-Net. The
hybrid approach that combines MC-PD and PD-DEQ is able
to improve both quantitative values, but can not reach the
performance of the unconstrained version. This is in contrast to
previous literature, which largely report that DEQ models can
achieve nearly as good (or better) results as their unconstrained
versions [18]. We point out here, that in our case we are in a
severely ill-posed limited-view setting. Thus, we attribute this
drop in performance to the added complications of the limited-
view problem in PAT, as we will discuss further below.

Let us now examine the qualitative performance for one
sample from the test set shown in Figure 2. We can im-
mediately notice that the most striking differences are in
the recovered quantitative values of each method. None, of
the methods manages to recover the contrast very well in
the left upper vessel, LPD and MC-PD perform best in this
regard. The two constrained DEQ methods primarily show
a loss of contrast in the center, whereas U-net has a strong
overestimation as well as stark jumps in the contrast. In
terms of limited-view artefacts, which are primarily at the
bottom corners, all methods perform very well, only U-net
and PD-DEQ show some slight blurring in the lower vessels.
Generally, the visual appearance is remarkably good given
the limited-view setting. In particular with respect to vessel
shapes, the other three LPD, MC-PD, and PD-Hybrid perform
very similarly and provide overall visually good results.

B. Scalability

The primary motivation to use approximate models and
the DEQ formulation is to enable a scalable learned iterative
method, which means applicability to large image sizes and
short computation times to enable reasonable training times.
Consequently, we will examine next how the different algo-
rithms scale with respect to image size and computation times.

For this we have progressively increased the considered
image size from the initial 80 × 128 ≈ 104 pixels to
640 × 1024 ≈ 6 · 105 pixels, while keeping the network
architectures fixed. We note, that the measurement data for
the largest case is consequently of size 1280×1024. In Figure
3 we can see how the different methods scale on increasing
data size. First of all, we see that the memory consumption of
the PD-DEQ model and U-Net scale well with image size and
can be applied on the final image size. While MC-PD runs
out of memory already at a factor 3 of the initial image size.
PD-Hybrid can leverage the reduced consumption and scales
slightly better. We have omitted LPD here, as it would behave
similar to MC-PD. We note, that better scalability with respect
to memory consumption can be easily achieved by considering
smaller networks (especially fewer channels) and for MC-
PD and PD-Hybrid fewer iteration, wheres the DEQ memory
consumption only depends on network size and is iterate
independent. In terms of runtime, U-Net clearly outperforms
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Phantom U-Net
PSNR: 20.07 / SSIM: 0.946

LPD
PSNR: 26.23 / SSIM: 0.987

MC-PD
PSNR: 27.23 / SSIM: 0.991

PD-DEQ
PSNR: 21.64 / SSIM: 0.962

Hybrid
PSNR: 23.87 / SSIM: 0.979

Fig. 2. Obtained reconstructions for the considered methods on a sample from the test set with quantitative measures. All images are on the same color
scale. Measurements are taken on the top edge, with 1% Gaussian noise. The resolution of reconstructions is 80× 128.

all other methods as it only requires one reconstruction with
the fast inverse and one network evaluation. The iterative
approaches all perform similar, with a slight but not significant
overhead for the PD-DEQ model compared to PD-Hybrid and
MC-PD. Up to a factor 4, i.e., image size of 320 × 512, we
can achieve a runtime of less than 1 sec. for the PD-DEQ
model. Here, a further speed up can be easily achieved by
considering fewer unrolled iterations. We note that 1 second
for the forward pass translates to roughly 7 hours for the
training time with 25000 training iterates. Thus, even the
largest image size for PD-DEQ would have still acceptable
training times with ∼35 hours.

Finally, we examine how the models perform when applied
to larger image size than trained on. For this test we used the
full image size in the data generation and created samples of
size 160 × 512 for testing. The results are shown in Figure
4. We can see that the networks work well when applied to a
larger image size than trained on. While all iterative methods
provide good image quality consistent with the results on
the test set, we can see that U-Net post-processing creates
some residual artifacts in the empty areas. Similarly as in the
previous case, the constrained methods can not fully recover
the contrast in the high absorbing region and some limited-
view artifacts can be seen by slight blurred out features in the
bottom corners.

C. Challenges in the limited-view setting

In our experiments we have observed that training the
DEQ models in the limited-view setting comes with some
challenges. First of all, as we can see in the results the
DEQ networks do not perform as well as their unconstrained

Fig. 3. Scalability tests for considered methods. The top shows memory
consumption and the bottom plot shows runtime of the forward pass.

counterparts. This can be in parts attributed to the fact that the
constrained networks are limited in their expressivity, similar
behavior can be observed for other constrained networks in
inverse problems, such as convexity constraints [57]. Further-
more, the limited-view setting causes the initial reconstruction
to have wrong contrast, due to a loss in energy from only
one-sided measurements. To counteract this, we have scaled
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Phantom

Phantom

Phantom U-Net
PSNR: 24.64 dB / SSIM: 0.945

U-Net
PSNR: 24.64 dB / SSIM: 0.945

U-Net
PSNR: 24.64 dB / SSIM: 0.945

MC-PD
PSNR: 27.75 dB / SSIM: 0.982

MC-PD
PSNR: 27.75 dB / SSIM: 0.982

MC-PD
PSNR: 27.75 dB / SSIM: 0.982

LPD
PSNR: 29.61 / SSIM: 0.988

LPD
PSNR: 29.61 / SSIM: 0.988

LPD
PSNR: 29.61 / SSIM: 0.988

PD-DEQ
PSNR: 25.28 dB / SSIM: 0.964

PD-DEQ
PSNR: 25.28 dB / SSIM: 0.964

PD-DEQ
PSNR: 25.28 dB / SSIM: 0.964

PD-Hybrid
PSNR: 26.94 / SSIM: 0.977

PD-Hybrid
PSNR: 26.94 / SSIM: 0.977

PD-Hybrid
PSNR: 26.94 / SSIM: 0.977

Fig. 4. Obtained reconstructions for the considered methods on larger test images of size 160× 512, shown with quantitative measures. All images are on
the same color scale. Measurements are taken on the top edge, with 1% Gaussian noise.

the input values (by factor 4) to have approximately the correct
contrast between in [0, 1]. Nevertheless, the areas close to the
detector are better resolved and have higher contrast than the
bottom area. We postulate, that the contractive nature of the
DEQ models is not ideally suited to correct in this scenario
for this shortcoming and hence we can generally see a loss
of contrast in the PD-DEQ and PD-Hybrid reconstructions
compared to MC-PD as well as U-Net. We believe this is
the main cause for the drop in PSNR.

1) Influence of algorithm parameters: The theory in Sec-
tion III-C predicts that small values of τ, σ are needed to
provide convergence. Indeed, we have observed that with too
large τ, σ > 1/(5L) the iterations are unstable and training

may not be successful. While too small values < 1/(20L)
will diminish the influence of the updates. Our experiments
have shown that between those values good stability of the
training and convergence is observed.

For the DEQ models, the number of iterations plays an
important role as well. Here a similar behavior has been
observed, too few iterates < 5 did not provide a sufficient
improvement, while too many iterates > 20 often failed to
converge and lead to unstable training. Thus, we have chosen
10 iterates for this study.

2) Spectral normalization: We have trained the primal
update networks Gθ with and without spectral normalization.
While spectral normalization stabilizes the training and larger
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Fig. 5. Convergence of the residuals in the PD-DEQ formulation compared
to a rate of 1/k. Networks are trained for 10 iterates and tested for 100.

values of τ, σ were possible to choose, we have also observed
that the training got more often stuck in bad local minima
during training. Without spectral normalization early iterates
may be unstable, but with small enough τ, σ we were able
to reliably train the networks and better performance was
observed for most training runs. As discussed in sec. IV-C,
even without spectral normalization it has been observed that
the training implicitly enforces the contractiveness and a stable
training is possible. Additionally, spectral normalization adds
a computational overhead. Consequently, we have performed
the final training and tests without spectral normalization.

3) Training without the model correction: An ablation
study for the DEQ models has been performed by training
without the model correction network Fφ, which is closer
to the original DEQ model. Unfortunately, we were not able
to obtain sufficiently satisfying results. While the instability
issues were exacerbated, the networks failed to find good
local minima. Smaller values for τ, σ < helped to stabilize
the training, but prevented good results. In our experiments
we have not been able to exceed a PSNR of 15 dB in the
validation set. This suggests that the model correction network
in the dual space is indeed necessary in this setting.

D. Convergence of the PD-DEQ model

We have numerically tested how the PD-DEQ model be-
haves when we continue to run the iterates after the maximum
of 10 training iterates has been hit. The theory would predict
that the iterates are contractive in the primal variable, while
the dual variable is uniformly bounded. This can be observed
in Figure 5 for the test example shown in Figure 2. The
residual in x does indeed contract with a rate of 1/k, while the
dual does not contract in the beginning, but has considerably
smaller relative norm, after the initial 10 iterations also the
dual variable contracts with a rate higher than 1/k as required
for the fixed-point convergence. Nevertheless, the best recon-
struction quality is obtained at the initial 10 iterations, while
after those a further loss of contrast occurs.

VI. CONCLUSIONS

This study aimed to formulate a joint model-correction
and learned iterative reconstruction that can be scaled to
larger image sizes. We have formulated a model-corrected
learned primal dual (MC-PD) and a corresponding deep equi-
librium formulation (PD-DEQ). MC-PD provides excellent
reconstruction quality, but requires higher memory demand
due to the linear growth of the computational graph with
number of iterates. PD-DEQ provides excellent scalability,
but with quantitatively worse results. Additionally, we have
proposed a PD-Hybrid method that balances both, improved
reconstruction quality under reduced memory requirements.
Further modifications on the hybrid approach are expected to
improve quantitative results.

Secondly, this study aimed to provide further methodolog-
ical and theoretical insights into learned iterative reconstruc-
tions and model corrections as well as the use of DEQ models
in a limited-view setting. While our PD-DEQ implementation
did not perform as well as the unconstrained version we also
observed that a DEQ model without the model correction
component could not be trained successfully at all. This
suggests the importance of including a model correction and
provides promising directions for future research.
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Multi-scale learned iterative reconstruction. IEEE transactions on
computational imaging, 6:843–856, 2020.

[20] Patrick Putzky, Dimitrios Karkalousos, Jonas Teuwen, Nikita Miriakov,
Bart Bakker, Matthan Caan, and Max Welling. i-rim applied to the
fastmri challenge. arXiv preprint arXiv:1910.08952, 2019.

[21] Jevgenija Rudzusika, Buda Bajic, Ozan Öktem, Carola-Bibiane
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