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Abstract

Jupiter’s weather layer exhibits long-term and quasi-periodic cycles of meteorological activity that can
completely change the appearance of its belts and zones. There are cycles with intervals from 4 to 9 years,
dependent on the latitude, which were detected in 5µm radiation, which provides a window into the cloud-
forming regions of the troposphere; however, the origin of these cycles has been a mystery. Here we propose
that magnetic torsional oscillations/waves arising from the dynamo region could modulate the heat transport
and hence be ultimately responsible for the variability of the tropospheric banding. These axisymmetric waves
are magnetohydrodynamic waves influenced by the rapid rotation, which have been detected in Earth’s core,
and have been recently suggested to exist in Jupiter by the observation of magnetic secular variations by
Juno. Using the magnetic field model JRM33, together with the density distribution model, we compute the
expected speed of these waves. For the waves excited by variations in the zonal jet flows, their wavelength can
be estimated from the width of the alternating jets, yielding waves with a half period of 3.2-4.7 years in 14-
23◦N, consistent with the intervals with the cycles of variability of Jupiter’s North Equatorial Belt and North
Temperate Belt identified in the visible and infrared observations. The nature of these waves, including the wave
speed and the wavelength, is revealed by a data-driven technique, dynamic mode decomposition, applied to
the spatio-temporal data for 5µm emission. Our results imply that exploration of these magnetohydrodynamic
waves may provide a new window to the origins of quasi-periodic patterns in Jupiter’s tropospheric clouds and
to the internal dynamics and the dynamo of Jupiter.

Main text

Significant variability has been seen in Jupiter’s cloud deck for over 100 years[1], [2] with colour changes,
brightening events, and upheavals owing to outbreaks of convective plumes[3], [4]. These upheavals occur on the
jet streams and have significant consequences for the temperature, composition, and cloud distributions observed
in Jupiter’s belts and zones, where belts (zones) refer to latitudinal bands that are cyclonic (anticyclonic) and
dark (bright) at visible wavelengths. This variability can also be detected by infrared observations at 5µm[5], [6].
At this wavelength, Jupiter’s infrared emission from the 1-7 bar region is modulated by overlying aerosol opacity,
both from condensed clouds and aerosols[7], [8]. Belts are typically bright, being free from clouds, whereas zones
are typically dark and cloudy.

Records of infrared observations at the 5µm atmospheric window now cover more than three Jovian years
(35.6 Earth years) at the low-mid latitudes[2]. These observations sense the cloud-free atmosphere down to the
7 bar level, but the changes in the radiance are likely associated with opacity variations in the NH3 ice clouds
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and/or the solid NH4SH forming region at the 1-2 bar level[9]. The zonally averaged brightness shows cyclic
changes with periods in the range 4-9 years[10], [11] . The periods identified, and their corresponding latitude
bands, are shown in the first two columns of Table 1. These periods are similar to that of the quasi-quadrennial
oscillation, seen in the equatorial stratospheric temperature. This variation is believed to have a similar origin
to that of the quasi-biennial oscillation in the Earth’s atmosphere, which is generally thought to be forced by
upward propagating gravity waves driven by convection. However, the periods seen in the 5µm wavelength
originate from much deeper than the Jovian stratosphere, and are also seen in the mid-latitudes, not just in the
equatorial region. The origins of the periodic variations are not well known, and have been thought to be the
result of either top-down control (e.g., related to oscillations in the stratosphere) or bottom-up control as a result
of convective processes in the troposphere[2], [11]. No theoretical models have accounted for the observed period
between upheavals.

Torsional oscillation speed in the interior

We here propose that torsional oscillations give rise to a shear that disrupts the slow convective flows in the deep
interior that carry the heat flux towards the visible troposphere. The torsional waves themselves can only exist in
the electrically conducting region of Jupiter, which may effectively span up to ∼96% of the planet’s radius (details
below), so they are excluded from the equatorial region, ∼16◦N/S, all latitudes being planetocentric. However,
if they disrupt the radial heat flux at depth, they could be responsible for changes in the emerging heat flux
even at low latitudes. This raises the possibility that the periods observed in the 5µm signal[11] are the result of
disturbances triggered by torsional oscillations of the magnetic field deep in Jupiter’s interior[12], [13]. In a rapidly
rotating body like Jupiter, fluid disturbances that bend the lines of planetary vorticity parallel to the rotation
axis have periods of days rather than years, but torsional oscillations correspond to rotational fluid motions in the
longitudinal φ direction in which the velocity is constant on coaxial cylinders. These motions can have periods of
years rather than days, the period being determined by the magnetic coupling between neighbouring cylinders.
Torsional oscillations are illustrated in Figure 1. We use two coordinate systems, spherical polars (r, θ, φ) with θ
being the co-latitude, and cylindrical polars (s, φ, z) where the z coordinate is parallel to the rotation axis. For
simplicity we consider a spherical planet, ignoring the small errors that will occur because of Jupiter’s oblateness.
A cylinder of radius s cuts the surface at latitude θ∗ given by cos(θ∗) = sin(θ) = s/RJ, which provides a simple
correspondence between each latitude (north or south) and a particular s-value. Torsional waves propagate in
both the positive and negative s-directions with Alfvén speed UA = (〈B2

s 〉/µ0〈ρ〉)1/2 at each s locally (where Bs,
ρ, and µ0 are the s-component of the magnetic field, the density, and the magnetic permeability; 〈f〉 denotes the
z- and φ- mean of any arbitrary function f), so that both travelling and standing waves are possible, depending
on how the waves are forced (Methods).

Figure 1a shows the magnetic field lines outside the cylinder with s = 0.85RJ. The radius r = 0.85RJ may
be regarded as an interface to the dynamo, and the colour of each line gives the local value of Bs. The field
is constructed from the Gauss coefficients tabulated in the Juno data JRM33 magnetic field model[14] . The
field is assumed to be potential for Fig. 1a, i.e. electrical currents there are negligible (Methods). Using a
realistic density profile[15], the wave speed UA as a function of s is calculated. The profile is demonstrated in
Supplementary Figure 1, and the selected values of s and the corresponding UA are listed in columns 3 and 4
of Table 1. Whilst the recent magnetic model[14] suggested a dynamo top located at r = 0.81RJ, simulations[16]

found that dynamo generated currents start to affect the magnetic field significantly inside r = 0.9RJ, so that
outside r = 0.9RJ the torsional wave speed can be computed fairly reliably from a current-free approach. Inside
r = 0.9RJ, the waves still exist but their wave speed becomes progressively more uncertain as the depth increases.
The potential field rises rapidly below r = 0.9RJ, but simulations suggest that the dynamo generated field rises
more slowly, so the wave speed computed from the potential field at 0.85RJ is likely to be somewhat faster than
the true wave speed. Figure 1b illustrates the oscillation of zonal velocity, 〈u′φ〉, that gives rise to the torsional
waves, and Figure 1c shows how the Lorentz force from the perturbed magnetic field provides the restoring force
that creates the waves.

A notable feature of Jupiter’s magnetic field is the ‘great blue spot’ region located near the equator around
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longitude 90◦W[17]. The field here is strong and nearly radially inward, so there is a particularly high value of
B2
s , making a major contribution to 〈B2

s 〉. The colour scale on Fig. 1a is nonlinear so that the other field lines
are not too faint. If the magnetic field were exactly dipolar, the field in the region outside s = 0.85RJ would
predominantly be in the z direction, and the wave speed would be much less than it actually is.

In the outer regions of the planet the electrical conductivity starts to fall dramatically as the pressure is
insufficient to create metallic hydrogen. Torsional waves, which rely on induced currents, therefore become
strongly damped. Using the H/He model conductivities[15], we estimate the depth at which critical damping
occurs to be 0.94RJ, though it is possible that it could be somewhat further out, say 0.96RJ where the coaxial
cylinders intersect the surface at latitudes ±16◦, if heavier elements enhance the electrical conductivity. Torsional
waves further out than this would be heavily damped, so when calculating the speed (〈B2

s 〉/µ0〈ρ〉)1/2, we only
integrate the field out to r = 0.96RJ ≡ rdiff (Methods). If the mechanism by which torsional waves affect the
5µm radiation was local, i.e. it was only cylindrical fluctuations extending to the surface, we would not expect
to see any activity outside the ±16◦ region. However, deep torsional waves may modulate the heat flux coming
out of Jupiter at a depth of ∼3500 km below the surface, 0.95RJ, where there is sufficient electrical conductivity,
and then it could be possible for this modulated flux to reach the surface even in the equatorial regions. The
global nature of the 5µm variability[11] suggests that a deep origin is plausible.

Torsional oscillation period at varying latitudes

To convert the wave speeds into temporal periods we need to know the wavelength in the latitudinal direction,
which can then be converted into a wavelength in the s-direction and a local wavenumber k. Then we can
calculate the frequency, ωTW = UAk, and the period, T = 2π/ωTW, at the given latitudes. The spatial scale
is determined by the excitation mechanism. We suspect torsional waves in a gas giant will predominantly
be forced by fluctuations in the Reynolds stress, primarily due to the prominent zonal flows[13](Methods and
Supplementary Figures 2a-e), in contrast to torsional waves in the Earth’s core, which are most likely driven by
magnetic stresses[18]. While the latitudes of the extrema of the zonal flows, of the order of 100 m/sec, are fairly
constant in time, their magnitude varies by around 10 m/sec[19], [20]. It is now believed that the time-averaged
zonal winds extend down to a few thousands of kilometres depth, reaching only a small value at that depth[21], [22].
This steady component of the zonal flow varies in the z-direction, likely in balance with temperature fluctuations
(thermal wind balance[21]), a balance set up over a very long time-scale. Decadal timescale torsional oscillations
are too fast to set up a thermal wind, so we expect them to be geostrophic (z-independent) outside of stably
stratified regions, as shown in Fig. 1. At still greater depth, Juno-detected magnetic secular variation suggests a
velocity of 4 cm/sec at a depth of 3500 km, ∼0.95RJ

[23], [14]. However, some of this 4 cm/sec might be accounted
for by errors in the system III rotation rate, so that the true velocity could be as little as 1 cm/sec[24]. There is
also some evidence that this flow is not steady, but is decreasing on a decadal timescale, which if confirmed would
suggest the presence of torsional oscillations in the secular variation data[24]. There are however still uncertainties
on the exact depth at which this velocity is measured.

We therefore suppose the spacing of the jets represents the spatial scale of the driving term of the oscillations.
The mean latitudes and the jet speeds have been given[19], and we use their OPAL2016 dataset to construct
Table 2. Since the 5µm observations[11] extend reliably between latitude ±40◦, the extrema of the zonal wind
speeds, together with the eastward jet speed (− denotes westward) are shown, and the corresponding values of
s/RJ are listed. We then take the gap between two neighbouring peak latitudes, extending in z down to a top of
the conductive region, as an estimate of a half wavelength π/k in s (Methods). An alternative method is to use
the Lomb-Scargle technique applied to the zonal velocity data as a function of s. Reassuringly, between latitudes
±40◦ we find a dominant maximum wavenumber of 13.0 in the north and 12.8 in the south, very similar in both
hemispheres (Supplementary Figure 3). This agrees with the wavenumbers predicted by the extrema method in
Table 2.

In Table 1, the periods found in the 5µm data[11] are shown with the corresponding s/RJ values. The fourth
column gives the Alfvén speed at these s-values; the fifth column gives the wavenumber based on the value in
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Table 2 closest to the given latitude range. Then the half period, T/2 = π/UAk, is listed in the final column.
We give the half period based on the locally evaluated wavenumber, but also give in brackets the one based on
the more global Lomb-Scargle approach. We marginally prefer the local wavenumber, as the larger gap between
the jets at latitudes 21◦N and 28◦N (also 24◦S and 29◦S), leading to the lower k there, does seem to be a robust
feature.

Torsional waves can only exist in an electrically conducting medium. Whilst the estimates of electrical
conductivity[15] suggest that at equatorial latitudes between ±16◦ the currents are negligible there, the updated
inference from gravity and magnetic Juno measurements[22] indicated a transition at ∼ 0.972RJ, corresponding
to ∼ ±13.5◦. We thus put a superscript ∗ in the fourth and sixth columns of Table 1 where no torsional waves
are, or could be, expected. The half period is found to be 4.6-4.7 years at the NTB (21-23◦ N), close to the
4.8 year period seen in the 5µm data. This is perhaps the most reliable of the computed torsional wave half
periods, since the torsional wave cylinders at this latitude are deep enough that diffusion is only playing a minor
role, and yet far enough out for us to be confident that the potential field is a reasonable approximation to the
true field. The NTB disturbances are seen to break out at the same time in multiple disconnected regions at
different longitudes[10], [11]. This is natural if they are triggered by a torsional wave, but hard to explain if they
are triggered only by local convection. The half periods in the NTZ and the STB are less than half the observed
periods, but that could well be because the potential field approximation is not very good at depths below 0.9RJ.
Indeed, as the magnetic coupling at r = 0.9RJ is so strongly influenced by the ‘great blue spot’, if the magnetic
field lines associated with this feature spread out at depth as seems likely, they will no longer be primarily in the
s-direction. This would reduce the magnetic coupling and hence lengthen the torsional wave period. The NEB
half period does agree reasonably well with the observed period. This may be because the electrical conductivity
falls off slightly less rapidly with height than current models suggest, or because the heat flux modulations there
are coming from depth and so the half period in the equatorial regions comes from torsional oscillations at a
smaller s-value than the nominal value in Table 1. Overall, the agreement between the observed and theoretically
computed periods is remarkably good, especially where we would expect there to be good agreement.

Impacts of oscillations on the cloud-level convection

We note that the half period is of interest because an interval identified in the brightness data is likely to
depend on the square of the oscillating quantities just as the 11-year solar activity cycle arises from the 22-year
magnetic oscillation. Since we do not yet know the mechanism by which the oscillation causes the brightness
fluctuations this is not altogether certain, and it is possible to imagine mechanisms that could produce a full
period cycle. Our mechanism of disruption of convection by the torsional wave shear would produce a half-period
cycle. The brightness fluctuations likely reflect changes in the convection, which could be affected by the large
scale fluctuations in the zonal flow created by the torsional waves.

The effect of shear flow on convection has been examined[25]. It was found that the large scales of convection,
which carry a significant amount of the heat, are disrupted by the shear flow velocity when its magnitude
is comparable to the upwelling velocity of the convection. We do not know if this extends to convection in
Jupiter. However, we apply this simple physical picture to explore when a torsional oscillation of order 1-10
cm/sec, consistent with numerical simulations[13] and the secular variation data[24], can significantly affect the
convective heat flux. A number of ways of estimating the convective velocity in a rotating system have been
proposed (Methods and Supplementary Table 1). All give a rapid drop in the velocity with depth, because
lower velocities there carry the same heat flux as the density is higher. One formula[26] gives 7 cm/sec at
400 km depth and 0.6 cm/sec at 2500 km depth. The Coriolis-Inertia-Archimedean theory[27] gives slightly larger
velocities, 20 cm/sec at depth 400 km and 4 cm/sec at 2500 km. These differences reflect the uncertainty, owing
to our limited understanding of rotating convection. Nevertheless, it seems likely that torsional oscillations of
amplitude 1-10 cm/sec, could affect the heat transport at depth, but not near the surface. However, a periodic
blockage at depth could well lead to a modulation of the surface heat flux at the 5% level. This could trigger
convective storms in the weather layer; this process needs to be examined in tropospheric cloud models[28], [29].
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A further complication is the possible existence of stably stratified regions in Jupiter’s interior[30], [31] . If
the buoyancy frequency is comparable with the rotation rate, as is generally believed for planets, then torsional
oscillations are no longer z-independent as indicated in Figure 1, because the amplitude can vary in the stable
region (Methods). If there is a stable layer near the equatorial region of the torsional oscillations, the signal in
the two hemispheres could be different, possibly of the opposite phase (Supplementary Figs. 2f-h). There is some
evidence that the signal is generally weaker in the southern hemisphere, and is out of phase near latitudes 16◦,
22◦, and 33◦ in infrared observations[11], [32]. The location of stably stratified zones is uncertain, but a zone out to
0.93RJ has been suggested[30]. If the torsional oscillation cylinder has a large region in the stable layer it might
make small changes to the period, adding an uncertainty to the expected periods at the higher latitudes.

Brightness global map in the oscillation period range

Based on the expected wave speed, wavenumbers and periods, we investigate spatiotemporal structures in the
5µm data[11]. These might correspond to travelling or standing waves in the s-direction: both are possible for
torsional waves. The global nature of the radiance signal is now filtered in terms of DMD, dynamic mode
decomposition[33], [34], [35], [36] (Methods). Figures 2a and b display the dispersion and spectrum properties,
respectively, of the resulting DMD modes. Shaded regions indicate the wave frequency range, ωTW = UAk,
predicted above. The spectrum is dominated by modes that have low frequencies and high quality factors.
The wave window admits five modes, two of which are in the torsional oscillation frequency band, one with
half period ∼6.5 years (referred to as Mode 1 hereafter; highlighted in red in the figures) and the other with
half period ∼3.1 years (Mode 2; in blue), although the exact values vary by up to 4% dependent on the chosen
latitudinal/temporal ranges (Supplementary Table 2). Their latitudinal structures are exhibited in Figure 2c:
we shall discuss details below. The reconstructed spatiotemporal structure takes the form of a travelling wave
for Mode 1, but Mode 2 is more like a standing wave (Figures 3a-d). The superposition of the two Modes is
depicted in Figs. 3e-f to reveal the wave nature migrating in s. In the figures, dotted curves indicate arbitrary
phase/ray paths of the predicted waves for guidance. Their slopes, UA, appear to account for the brightness
pattern, particularly in the northern hemisphere. Also, the retrieved spatiotemporal structure contains the bright
points at mid latitudes in 2015-2017, as noticeable in the original dataset (Supplementary Fig. 4), indicating
those events were linked to the torsional wave. This further suggests an equivalent event may occur in 2028-2030.

The signal’s relation to the surface zonal wind structure, which we assumed for the period prediction, is
examined in terms of the latitudinal structure. In Figure 2c we demonstrate the normalised profile Mode 1,
Mode 2, and their superposition. Here the jet-based belts and zones (Table 2) are indicated by shaded and white
regions, respectively. Each Mode shows the peak at 3-12◦S, but also local ones at mid latitudes, such as 31◦N for
both Modes and 14◦N for Mode 2: the former approximately matches the northern edge of the NTZ while the
latter matches the northern edge of the NEB. The superposed signal in the black curve reveals the jet positions
better. Its peaks are found at latitudes including 31◦N, 28◦N, 14◦N, 18◦S, 28◦S, and 33◦S, and are indicated by
triangles in the figure, showing a good correspondence with jets. Their values are compared in Supplementary
Table 3. We conclude that the signal extracted from the brightness certainly illustrates wave-related lengthscales
as expected.

Discussion

Despite the striking agreements shown above, we highlight current uncertainties in the emission data. First, the
dataset was constructed from different instruments spanning several decades, so the quality of the sets of infrared
images cannot be compared straightforwardly, but a technique like DMD can be beneficial. The above analysis
was capable of extracting signals with periods of several years existing in a limited timeseries, using only the
images which were taken with modern, high-quality instruments. Secondly, there is potential bias because the
5µm imaging data cannot provide certainty over the vertical location of the aerosol thinning: it could be in the
deeper clouds near 4 bars, or in the aerosols in the upper troposphere. This could be rectified via spectroscopy
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over a broad wavelength range to determine exactly where the changes are occurring. This would allow further
investigation of the hypothesis by means of dynamical simulations.

A remaining question is how exactly the torsional wave couples with the weather layer dynamics to generate
the radiance variability. Deep dynamo simulations[13] demonstrated that waves in the interior could transmit
towards the surface to modulate dynamical variables at many latitudes, and affect thermal properties near the
equator. The tropospheric convection by itself may yield a quasi-periodic or intermittent cloud cycle at each
site[29], but disturbances from below could further enforce such cycles in moist convection, through generating
abrupt plumes; we here discussed how the shear associated with a torsional oscillation could affect the convection.
Whilst the ‘shallow’ and ‘deep’ models tend to be explored individually, our findings push forward the need for
further the study of the coupling between the gas giant’s atmospheric dynamics and the internal dynamics, which
is quite distinct from the dynamical meteorology of the Earth.

The cloud-top zonal wind has been seen to vary on timescales of 6-14 years with magnitude smaller than 10%
of the ∼150 m/sec stable jets[19], [20]. The velocity measurement was based on horizontal correlations in multiple
images at visible wavelength. Those snapshots since late 2008 were used to derive the velocity profile in 9 different
epochs and to find its variation, significantly at 21◦N (NTB) and 8.8-13◦S (SEB)[20]. The amplitude of the deep
torsional wave is too small to be detected currently in comparison with the violent convection and zonal flow near
the surface. It is only deep down, where the convection is relatively slow and the zonal flows are expected to be
much steadier, that the torsional oscillation can have a significant dynamical influence by modulating the heat
transport. Currently the 5µm measurement as discussed in this study achieved a much larger set of data, more
than 23000 snapshots during the same epochs. This enabled us to analyse the time-varying component more
precisely. Future updates of the cloud-top zonal wind will help to test these findings derived from the infrared
observations.

The axisymmetric magnetic waves may trigger fluctuations near the surface, but they could also lead to
variations in the planet’s rotation rate and its magnetic secular variation[13] as they do for the Earth[37]. The
rotation rate is determined from the periodic radio emission of the gas giant (the System III). It has been
suggested that some significant variations have already been detected[38]. The variation of the intrinsic magnetic
field is going to be better resolved by Juno magnetometer measurements[24]. Given a steady field magnitude
|B| ∼ 3 mT, a flow fluctuation |u′| ∼ 1 cm/sec, a typical lengthscale D ∼ 0.2RJ, and a wave period T ∼
10 years, then a magnetic fluctuation near the conductive region is found to be |B| |u′|T/2πD ∼ 0.1 mT and a
secular variation as |B| |u′|/D ∼ 0.07 mT/yr, comparable with the observed variation[24]. We note that, when
there are layerings in the density[17], [31], magnetic signatures can be significantly weaker near the equator and be
equatorially asymmetric. The presence of a stratified layer prevents torsional oscillations, excited near the surface
in one hemisphere, spreading over z in the interior (Supplementary Fig. 2). This is likely compatible with the
current observation, albeit it has not excluded the possibility of rapid variations other than those measured[24].

An important consequence of wave exploration is the possibility of seismology in gaseous planets. Analogous
to the successful technique of helioseismology, advances in dioseismology have been made to determine the
structures and properties of acoustic waves therein[39]; however, the rapid rotation hinders a simple translation
of helioseismological techniques. Other wave classes have been proposed to probe the existence of a solid core[40],
which may well be diluted[41], [42], and of the stratified layers as characterised by internal gravity waves[43]. Our
magnetohydrodynamic waves are capable of scanning the strongly electrically conducting region, and hence may
put similar constraints on the magnetic field within the deep interior. Jupiter’s conducting region is thought
to occupy the major part of its volume, and to generate the strongest planetary magnetic field in our Solar
System. Observations of magnetic waves could provide us with strong constraints on the internal structure, the
mechanisms of formation of the planet, and how the dynamo generates Jupiter’s magnetic field.
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Methods

Torsional wave/oscillation equation : Dissipationless torsional waves for electrically-conducting, anelastic
fluids are given by the second-order differential equation for the fluctuating part of the zonal velocity,
u′φ(s, φ, z, t) with t being time:

∂2

∂t2

〈u′φ〉
s
− 1

s3h〈ρ〉
∂

∂s

(
s3h〈ρ〉U2

A

∂

∂s

〈u′φ〉
s

)
=

∂

∂t

FR + FLD

s〈ρ〉
(1)

[12], [44], [13]. Here f and 〈f〉 denote the φ-average (i.e. the axisymmetric part) and the z-average from z+

to z−, respectively, for an arbitrary function f . Also h = z+ − z− is the height of the cylinder of radius

s along the z axis: in this study we suppose z± = ±
√
R2

J − s2 with RJ being the mean radius of Jupiter,

RJ = 69894 km[15]. The Reynolds force FR is defined by

FR = − 1

s2h

∂

∂s
s2h 〈ρ usuφ〉 −

1

h

[s
z
ρ usuφ + ρ uzuφ

]z+
z−

, (2)

whilst FLD denotes the Lorentz force, excluding the restoring part for the wave. Eq. (1) is reduced to a
wave equation when the right-hand side of the equation is omitted. Each term on the right-hand side may
act as a forcing on the torsional wave. In Jupiter’s non-conducting envelope, zonal flows uφ are known to
be significant so that the FR term provides the main driving[13].

Calculation of UA : We require the calculation of the Alfvén speed UA = (〈B2
s 〉/µ0〈ρ〉)1/2. The density profile

is taken from the model of French et al.[15] , which was derived from gravity measurements and which
should be sufficiently accurate for our purposes. We then compute the cylindrically averaged density 〈ρ(s)〉
using their Table 1[15], which is given up to the radius rmax = 0.994RJ. So we take the z-average over
−zmax < z < zmax where zmax =

√
r2

max − s2, the density further out being negligible.

The field model JRM33 of Connerney et al.[14], as well as the early one JRM09[45], gives the Gauss coefficients
of the magnetic potential V , where B = −∇V and

V (r, θ, φ) = req

∞∑
n=1

n∑
m=0

(req

r

)n+1
Pmn (cos θ)[gmn cosmφ+ hmn sinmφ] . (3)

Here req = 71492 km is the equatorial radius of Jupiter. The Gauss coefficients gmn and hmn refer to Schmidt
normalised spherical harmonics Pmn . The field component Bs is given in spherical polar coordinates (r, θ, φ),
where z = r cos θ and s = r sin θ, by

Bs = −∂V
∂s

= − sin θ
∂V

∂r
− cos θ

r

∂V

∂θ
. (4)

Using (3) and the recurrence relation for the Schmidt normalised derivative,

(1− x2)
d

dx
Pmn (x) = (n+ 1)xPmn (x)−

(
(n+ 1)2 −m2

)1/2
Pmn+1(x) , (5)

where x = cos θ, we can rewrite (4) as

Bs =
∞∑
n=1

n∑
m=0

(req

r

)n+2
[gmn cosmφ+ hmn sinmφ]

(
n+ 1

sin θ
Pmn (x)− cos θ

sin θ
[(n+ 1)2 −m2]1/2Pmn+1(x)

)
. (6)

We compute this using the coefficients up to degree n = 18 listed in the Supporting Information Table S1
of Connerney et al.[14]. The Schmidt normalised associated Legendre function is evaluated by the Matlab
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function ‘legendre’ with the option ‘sch’. Outside r = rdiff = 0.96RJ magnetic diffusion will greatly reduce
the magnetic restoring force, so to take diffusion into account in a simple way, we integrate B2

s (s, φ, z) only

over φ and −zdiff < z < zdiff where zdiff =
√
r2

diff − s2, thus omitting the restoring force where diffusion

dominates, but we divide by the full cylinder area 4πszmax to obtain 〈B2
s 〉/µ0 where µ0 = 4π×10−7 H m−1.

In Supplementary Figure 1, the wave speed UA is computed using both the new JRM33 model[14] and the
older JRM09[45] model, which was based on the measurements during the early 9 orbits in 2016-17; cf. 33
orbits until April 2021 for JRM33. Since the JRM09 model only goes up to n = 10 while JRM33 goes up to
n = 18, we show the results from JRM33 using both the full n = 18 and JRM33 truncated at n = 10. The
n = 10 JRM09 and JRM33 models (blue and black curves) are similar, despite the differing measurement
intervals, but using the full n = 18 harmonics increases the wave speed, particularly at smaller radii. The
speeds and the corresponding wave periods at the selected latitudinal regions are depicted in Supplementary
Table 4 to be compared with Table 1. The period predictions with the high resolution JRM33 model fit
best with the intervals identified in the infrared observation. We hence present this case in the main text,
Table 1, and all other figures presented in the manuscript.

Here the Lundquist number, representing the ratio of the wave speed to the diffusive one, is calculated
as (B2

s/µ0ρ)1/2D/η at z = 0 (where η and D are the magnetic diffusivity[15] and a typical lengthscale,
respectively) to show its abrupt change with radius, varying from the order of 106 to 101 (Supplementary
Fig. 1b).

Calculation of k : We calculate the wavenumber k at a given cylindrical radius s in the following two ways.

The first method relies on the gap widths of the jets visible at the gas giant’s surface. We calculate the
planetocentric latitudes of the jets’ extrema using the dataset Outer Planetary Atmosphere Legacy (OPAL)
2016 in Tollefson et al.[19], convert them into the cylindrical coordinates, and take the interjet spacings
as a half wavelength k/2. We choose two neighbouring jets so that their planetocentric latitudes bound
the region of interest in Table 1. For example, the gap between the ∼ 21◦N jet and the ∼ 29◦N jet is
assumed to give the local wavelength for the Table 1 region of interest in the NTB, 21-23◦N: similarly, the
gap between the ∼ 6.3◦S and ∼ 17◦S jets is used for the region in the SEB, 12-15◦S.

The alternative approach is to perform a Lomb-Scargle analysis of the jet speed profile OPAL 2016, using
only the data between ±40◦ in each hemisphere. The Lomb-Scargle periodogram fits an irregularly sampled
data series onto a sinusoidal function for a given frequency by least squares[46]. We use the Matlab function
‘plomb’ with the option ‘normalized’ and a wavenumber spacing of 0.1 to seek peaks located in the relevant
wavenumber windows: 5 ≤ kRJ/2π ≤ 20 for both the northern and southern jets. The spatial spectra
are displayed in Supplementary Fig. 3 and have a single dominant peak which matches well with our
expectations from the first method. The other datasets given by[19] give a similar dominant peak, so this
approach appears to be robust. We don’t use the lesser peaks in Supplementary Fig. 3 as these are not
robust between the different datasets.

Forward simulations of torsional oscillations excited by zonal wind variation : To examine how the
near-surface zonal flow forces the deep oscillations and what their magnetic signature looks like, we consider
a linearised, anelastic magnetohydrodynamic model.

We take Cartesian coordinates with x aligned with the cylindrical s coordinate, y eastward (in the φ
direction) and z parallel to the rotation axis Ω. For simplicity all variables are assumed independent of y,
such that momentum ρu = ∇ × ψ(x, z, t)êy, magnetic field B = B0êx + ∇ × A(x, z, t)êy + By(x, z, t)êy,
and entropy S0(z)+S(x, z, t). Here B0 is constant and ˆ denotes a unit vector. Given a zonal flow forcing
f(x, z, t), we investigate the time evolution of the y-components of the velocity

∂uy
∂t

= −2Ωux +
B0

µ0ρ

∂By
∂x

+
µ

ρ

(
∂2uy
∂x2

+
∂2uy
∂z2

)
+ f(x, z, t), (7)
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with µ being the dynamic viscosity, assumed constant, of the vorticity

∂ωy
∂t

= 2Ω
∂uy
∂z

+
B0

µ0ρ

∂jy
∂x
− gz
cp

∂S

∂x
+
µ

ρ

∂2ωy
∂x2

+
∂

∂z

µ

ρ

∂ωy
∂z

, (8)

with cp being the specific heat at constant pressure, of the magnetic field

∂By
∂t

= B0
∂uy
∂x

+ η
∂2By
∂x2

+
∂

∂z
η
∂By
∂z

, (9)

with η = 1/µ0σ and σ being the magnetic diffusivity and the electrical conductivity, and of the electric
current

∂jy
∂t

=
B0

µ0

(
∂ωy
∂x

+
∂

∂z

1

ρ2

dρ

dz

∂ψ

∂x

)
+ η

∂2jy
∂x2

+
∂2

∂z2
ηjy , (10)

and the entropy
∂S

∂t
= −1

ρ

dS0

dz

∂ψ

∂x
+ κs

(
∂2S

∂x2
+
∂2S

∂z2

)
, (11)

with κs being the entropy diffusion coefficient, assumed constant. Here the vorticity and the current are
given with the streamfunction and potential, respectively, as

ωy = −1

ρ

∂2ψ

∂x2
− ∂

∂z

1

ρ

∂ψ

∂z
and jy = − 1

µ0

(
∂2A

∂x2
+
∂2A

∂z2

)
. (12)

Of particular interest is the evolution of a mode exp ikxx with zonal flow uy being modulated near the
surface in the northern hemisphere. We then suppose the forcing given as f = (exp ikxx exp iω0t)(0.5 +
0.5 tanh z/H) where ω0 is a forcing frequency: the z-profile is demonstrated in Supplementary Figure 2a.
The density profile ρ is assumed to be a polytropic reference state of index 1, and the conductivity σ
to represent a transition between the molecular and metallic envelopes (Supplementary Figs. 2b-c). A
stably stratified layer can be modelled with a given entropy profile, for which we suppose the gradient
dS0/dz ∝ (z/z0)(0.5 + 0.5 tanh (z2

0 − z2)/z2
0). The gravity profile gz ∝ z/z0 is assumed for the buoyancy

term (Supplementary Fig. 2f). We scale length so that wavenumber kx should become unity, together with
the radius RJ, so a unit length of ∼ 1100km. We then suppose a column running at latitude ∼ 21◦, from
−25000 km to +25000 km in z: our dimensionless z may range from −20 to +20. Time is scaled so that
the torsional wave frequency kxUA should be unity, yielding that our time unit here is ∼1.5 years. The
location and strength of the stratified layer are very uncertain; adopting the model of [31] we suppose the
depth of 3500 km in the latitude 21◦-cylinder, corresponding to z0 ∼ 10, and the buoyancy frequency of
∼ 1.5|Ω|. We solve the 1d forward problems by using the Matlab function pdepe with 181 gridpoints in z.

Supplementary Figures 2d and e depict the evolution of the zonal flow perturbation U(z, t) and the magnetic
one B(z, t), respectively, when stably stratified layers are absent. Given the forcing of ω0 = 0.88 at t = 0,
the flow modulation instantly spreads from the northern surface, z = +20, to the southern hemisphere,
z < 0, and excites torsional oscillations of frequency ∼ 1 that are symmetric with respect to the equator,
z = 0 (figure d). This gives rise to an equatorially-symmetric variation in the magnetic component (figure
e).

A case in the presence of a stratified layer is illustrated in Supplementary Figs. 2g and h. The identical
forcing leads to torsional oscillations being excited in the northern hemisphere down to the stratified layer,
5 . z (figure g). This leads to a magnetic signal that is remarkable in the northern hemisphere but much
less clear for z . 2.5, i.e. around the equator and in the southern hemisphere. This demonstrates that the
deep magnetic oscillations may be excited from a near-surface wind modulation, regardless of the stably
stratified layer, but that the presence of the layer would naturally give an asymmetry in the magnetic
observation.
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Convective velocity estimates and the effect of shear : Estimates of the convective velocity as a function
of depth are based on scaling laws backed up by laboratory experiments. It is not possible to reproduce
conditions in planetary interiors conveniently, so there is considerable uncertainty in these results. Showman
et al.[26] suggested

UShow =

(
gαF

ρcpΩ

)1/2

, (13)

where g is local gravity, α is the coefficient of thermal expansion, F is the heat flux coming out of Jupiter
(∼ 5.4 Wm−2), ρ is the density, cp is the specific heat at constant pressure and Ω is the rotation rate.
Estimates of these thermodynamic quantities are available[15]. Rapidly rotating convection often takes the
form of tall thin columns aligned with the rotation axis, but (13) takes no account of this. The Coriolis-
Inertial-Archimedean (CIA) theory uses a three-term balance in the equation of motion (see e.g.[27]), taking
the width of the rolls as ` and their extent parallel to rotation as the pressure scale height H. ` is eliminated
in the theory to give

UCIA =

(
gαF

2ρcpΩ

)2/5

(2HΩ)1/5 . (14)

Supplementary Table 1 compares the estimates at different depths. The Showman et al. formula gives a
lower estimate for the velocity. In the CIA theory the roll width `, which is the Rhines length-scale, is
about 16 km, much smaller than the roll height H. The CIA regime is hard to reach in experiments, and
it is possible that turbulence limits the ratio H/`, so the best estimate below 1500 km depth probably lies
somewhere between the CIA and the Showman et al. formulae, a few cm/sec.

The shear velocity from the torsional oscillation is likely also a few cm/sec at maximum amplitude, as the
secular variation data is currently our most reliable guide, though further data from Juno will hopefully
increase its reliability. This shear occurs over an s-range of about 2700 km, the half-wavelength of the
torsional oscillation in the s-direction. Simulations such as Jin et al.[25] suggest that a shear of the same
magnitude as the convective velocity, the situation we have here, can significantly affect the heat flux. We
therefore consider it plausible that fluctuations of the order of 5% could be responsible for the 5µm signal.
There are, however, still important unknowns here. We know little about how shear affects rapidly rotating
convection, as opposed to non-rotating convection. There is also uncertainty about how a modulation of
the heat flux at a depth of 1000 km or deeper is transmitted to the surface.

Analysis and dynamic mode decomposition of brightness data : We reanalyse the zonally-averaged 5µm
brightness, L(θ, t), of Antuñano et al.[11], where θ and t are colatitude and time, respectively. We separate
L(θ, t) into the temporal mean at a specific latitude, L̃(θ), and the anomaly, L′(θ, t) = L(θ, t) − L̃(θ).
Here the unevenly sampled dataset is interpolated by cubic polynomials and smoothed by running averages
with a window size of 100 days, into bins of size ∆θ = 1◦ and ∆t = 1 day. The anomaly L′ is displayed
in Supplementary Figure 4. The latitudinal profiles are presented in terms of the normalised cylindrical
radius, s/RJ = sin θ, in each hemisphere separately, assuming that the sources of the 5µm thermal emission
and its variations are located at the 1-10 bar level, i.e. no smaller than 99.8% of the gas planet’s nominal
radius RJ. The figure confirms that the prominent events occur recurrently at low latitudes . 18◦ where
s/RJ & 0.95. A pair of events can be seen during 2015-2017 at 0.75 . s/RJ . 0.85, i.e. latitudes 30-40◦.
Convective processes within the troposphere alone would not account for the global outbreaks that span
large latitude ranges, and also large longitude ranges[11].

We now perform DMD of the brightness data. This method is often used to diagnose the fluid dy-
namics behind experimental data, by approximating the data as a superposition of modes of the form∑r

j=1 bjφj(θ) exp (λjt) where bj is real and λj and φj are complex. Here Im{λj}, Re{λj}, bj , and φj(θ)
denote the frequency, growth rate, amplitude, and latitudinal profile of the j-th DMD mode, respectively.
The technique has been utilised for a wide variety of application areas including neuroscience, epidemiology,
and traffic dynamics (e.g.,[36][47] and references therein). Here we shall apply the technique to observational
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data in astrophysics; previously magnetohydrodynamic oscillations and waves were distinguished in simu-
lation data, and compared well with the theoretically expected frequencies[48]. We implement the standard
DMD of shift-stacking brightness data L′: the methodology can be regarded as a Hankel DMD[47].

Our overall dataset has 141 gridpoints in latitude and 123 snapshots, sampled every 100 days. To focus
on some notable features (Supplementary Fig. 4) but also to make the data quality comparable, we here
examine the data at 81 gridpoints (= M) between ±40◦ and for 49 snapshots (= N) from March 2005 to
July 2018. They correspond to the eras of four modern instruments: MIRSI (January 2005 - April 2006),
NSFCam2 (April 2006 - October 2008), SpeX (July 2009 - August 2017), and TEXES (December 2014 -
July 2018). An overview of these instruments and measurements is given by[11]. Below we shall investigate
the influence of the chosen latitudinal/temporal window on the performance of DMD and resultant Modes.

As torsional waves may have the form of standing waves, we exploit delay coordinates to stack time shifted
copies of the data, following the standard DMD algorithm. For details of the methods we refer to[36] and[47].
The mean-extracted data, L′, is represented as a matrix X = [x1 ... xN ] ∈ RM×N (where xk ∈ RM with
k = 1, ..., N) and further set to form an augmented matrix, Xaug ∈ RM(d+1)×(N−d), given the number d of
delays used. Then singular value decomposition of Xaug,1 = [x1 ... xN−1] yields Xaug,1 = UΣV T, where
Σ is an rf × rf diagonal matrix with diagonal entries σj ≥ 0 ordered as σ1 ≥ σ2 ≥ ... with rank rf. With
r modes (out of rf) being kept, the eigenvalue problem of the optimal matrix A = UTXaug,2V Σ−1 (where
Xaug,2 = [x2 ... xN ]) is solved to give DMD eigenvalues µj and eigenfunctions Φ = [φ1 ... φj ... φr]. The
frequency and growth rate of each mode is determined as λj = lnµj/∆t. DMD of the mean-extracted data
must not yield zero eigenvalues, µj = 0: so, as guided by[47], we utilise this to validate the analysis and
select the parameter d. Another parameter is the choice of truncation r to form the optimal matrix A.

The amplitude may be computed from the initial data, x1, as bI = Φ†x12/
√

1 + d with † being the
pseudoinverse matrix, or from the coefficients of a proper orthogonal decomposition, ΣV T, as bP =
Φ−1(ΣV T)2/

√
1 + d[49]. The performance of the decomposition and power estimation is measured in terms

of errors between the observables, X, and the reconstructed data, Xrec: the mean absolute error, RMSE
= |X −Xrec|2F/NM [47].

Supplementary Table 2 summarises the performance for different sets of the chosen latitudinal ranges,
duration, coordinate delay d, and mode truncation r. Given the dataset betwen latitudes ±40◦ since
March 2005, the use of delay coordinate d = 1 confirms the absence of the spurious eigenvalue µj = 0 and
so the decomposition is valid: Supplementary Fig 5a shows all the µj for d = 1. In contrast a delay of d = 2
likely suffers from the issue. We therefore choose the minimal value, d = 1, for the analysis we present.
This yields the rank rf = 47, and so there are 47 DMD modes when the all singular values are retained.
Both amplitudes bI and bP lead to a small RMSE, implying that the data X is reasonably reconstructed
through the DMD. As the formula bP gives the lesser error, we adopt bP for the presented diagrams.

Next we examine the impact of the truncation r. The whole singular values σj for the case are shown
in Supplementary Fig. 5b. The figure shows a gap at j ∼ 40. Thresholds to retain 99% and 90% of the
cumulative energy imply a truncation at j = 39 (dotted vertical line) and 21 (dashed-dotted), respectively;
the optimal hard threshold for unknown, random noise[50], [36] gives j = 15 (dashed lines). Keeping 39
modes (corresponding to the 99% threshold) ensures the two Modes of half period Tj/2 = π/Imλj ∼6.5
years and ∼3.2 years, whilst their growth rates, Reλj , and so quality factors, Qj/2 = |Imλj/2Reλj |, vary.
We do not find either when retaining 21 modes only (the 90% threshold) or fewer modes. This suggests that
the current dataset requires a large number of modes to converge the eigenvalues. Since the computations
are quite cheap, we decided to retain the whole set of singular values in the current work.

Finally we check the sensitivity to the latitude-time window. When the temporal window is taken from
Nov 2003 (i.e. the number of snapshots N = 54), the same procedure gives the two Modes of half period
∼ 6.2 years and ∼ 3.1 years, which is within 4% error of the above case. The equivalent Modes are found
for a wider latitudinal window spanning over ±70◦ (M = 141). Interestingly we find them even when
the dataset is restricted to latitudes 16-40◦ (M = 50), where the equatorial region is excluded from the
analysis. Their quality factors may vary, however they are fairly high to ensure the wave feature. As
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a whole the spatiotemporal structure of the superposition does not significantly change from Figs. 3e-f.
We thus conclude the DMD successfully extracts the several-year signals hidden in the original brightness
dataset.

To characterise the spatial structure |φj(θ)|, as shown in Fig. 2c, we use the Matlab routine ’findpeaks’
with no options. This endorses its peaks and minima at latitudes. The results are listed in Supplementary
Table 3 and are compared to the jet latitudes. We here remark the spatial structures of Modes 1 and 2 two
and three minimal points, respectively, in either hemisphere. They could imply the number of nodes that
oscillations have, suggesting Mode 2 is a higher eigenmode by one degree than Mode 1. This is consistent
with their periods: Tj/2 for Mode 2 is approximately half of that for Mode 1. Previous theoretical work
has demonstrated that the frequencies of torsional oscillation eigenmodes are not integer multiples in the
presence of dissipation[51]. Interestingly the spatiotemporal structures seen in Figs. 3a-d resemble those
illustrated by the eigenmode calculations. Unveiling the identified wave patterns could provide us with
information about the diffusive transition layer.

Data availability

All data are publicly available: the Jupiter magnetic field model JRM33[14], the density distribution model[15], the
zonal wind profile OPAL2016[19], and the 5µm brightness data[11]. The images of the brightness and other files used
to generate the zonal timeseries are available at https://github.com/ArrateAntunano/IRTF_5micron_data.

Code availability

The codes used in this study are available upon request. The codes related to the DMD analysis are publicly
available[36], [49].
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Tables

Table 1: Comparison of Jupiter’s 5µm observation and torsional wave prediction, in planetocentric coordinates.
Values in the first two columns are taken from Table 4 in [11] for 5µm-brightness ground observations. The third
column lists the corresponding, normalised cylindrical radii s, provided that the radiation senses properties at
about Jupiter’s 1 bar level, RJ. The Alfvén speed, UA, listed in the fourth column is calculated from the magnetic
field model JRM33[14] and the H/He model density[15]. Since waves are heavily damped outside rdiff = 0.96RJ

the speed is denoted by ∗ for s > rdiff. The dimensionless wavenumber, kRJ/2π, in the fifth column is converted
from interjet spacings in planetocentric latitudes from the OPAL 2016 dataset[19]: see Table 2. The equivalent
numbers are also computed from the jet speed profile by the Lomb-Scargle periodogram (Supplementary Fig. 3)
and presented in parentheses. The last column lists the half period of the predicted torsional wave. A text file
containing the wave periods as a function of latitude is available in Supplementary Table 5.

Region(abbreviations)/latitude Interval Normalised Alfvén speed Wavenumber Half period
[yrs] cylindrical UA kRJ/2π T/2 = π/UAk

radius s/RJ [m/sec] [yrs]

North Temperate Zone(NTZ)/30-33◦N 8.5±0.5 0.839-0.866 0.0269-0.0319 13.6 (13.0) 2.6-3.0 (2.7-3.2)
North Temperate Belt(NTB)/21-23◦N 4.8±0.6 0.921-0.934 0.0233-0.0234 10.2 (13.0) 4.6-4.7 (3.6-3.7)
North Equatorial Belt(NEB)/14-18◦N 4.4±0.4 0.951-0.970 0.0161∗-0.0223 15.5 (13.0) 3.2-4.4∗ (3.8-5.3∗)
South Equatorial Belt(SEB)/12-14◦S 4.5±0.8 0.970-0.978 0.0111∗-0.0161∗ 13.3 (12.8) 5.2∗-7.5∗ (5.4∗-7.8∗)
South Equatorial Belt(SEB)/12-15◦S 8.2±0.5 0.966-0.978 0.0111∗-0.0182∗ 13.3 (12.8) 4.6∗-7.5∗ (4.7∗-7.8∗)
South South Temperate Belt/36-41◦S 7±0.4 0.755-0.809 0.0411-0.0782 11.2 (12.8) 1.3-2.4 (1.1-2.1)

Values that match the observation within error bars (the second column) are indicated in bold.
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Table 2: Extreme values of the zonal wind profile between planetocentric latitudes 40◦N to 40◦S taken from the
OPAL 2016 dataset[19]. The latitudes of the extrema, the wind speeds attained there, and the corresponding
s/RJ are shown. The wavenumber obtained by fitting a half wavelength between adjacent extrema is also shown.
The dominant wavenumber peak from a Lomb-Scargle analysis of the dataset between ±40◦ is shown in brackets.

Band name (abbreviations) Jet latitude Jet speed Normalised cylindrical Wavenumber
[m/sec] radius s/RJ kRJ/2π

38.8◦N 22.7 0.779
North North Temperate Zone (NNTZ) 35.5◦N −20.4 0.814 14.1

North North Temperate Belt (NNTB) 31.7◦N 34.4 0.851 13.6

North Temperate Zone (NTZ) 27.9◦N −33.2 0.884 15.1

North Temperate Belt (NTB) 21.1◦N 158 0.933 10.2

North Tropical Zone (NTrZ) 15.1◦N −19.5 0.965 15.5

North Equatorial Belt (NEB) 6.7◦N 97.4 0.993 18.1

(13.0)
6.3◦S 147 0.994

South Equatorial Belt (SEB) 17.0◦S −54.6 0.956 13.3

South Tropical Zone (STrZ) 23.6◦S 41.9 0.916 12.4

South Temperate Belt (STB) 29.0◦S −16.0 0.875 12.1

South Temperate Zone (STZ) 32.4◦S 46.7 0.844 16.3

South South Temperate Belt (SSTB) 35.5◦S −6.5 0.814 16.8

South South Temperate Zone (SSTZ) 39.7◦S 37.0 0.769 11.2

(12.8)
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Figure legends/captions

Figure 1: Torsional oscillation in Jupiter. (a) Jupiter’s equilibrium magnetic field lines outside the tangent
cylinder s = 0.85RJ. Blue field lines enter this tangent cylinder and red field lines leave the tangent cylinder at
the black dots. The tangent cylinder has height ±h = RJ(1− 0.852)1/2, and field lines passing through z = −h,
−h/2, 0, h/2 and h at s = 0.85RJ are shown. The colour scale shows Bs, the s-component of the magnetic
field B in mT. Note the strong negative Bs near the ‘great blue spot’ at longitude 90◦W close to the equator.
This spot greatly enhances the torsional wave speed. Magnetic field data is based on the model JRM33[14]. (b)
Schematic diagram of a torsional oscillation. The fluid speed is constant on coaxial cylinders, so u′φ is a function
of s and t only. The cylinders with s = 0.85RJ and s = 0.93RJ are shown, corresponding to latitudes θ∗ = 31.8◦

and 21.6◦. (c) Schematic diagram of the effect of a torsional oscillation on the equilibrium magnetic field in
the equatorial plane. The equilibrium field shown is outward in the radial direction, but it is distorted by the
cylindrical flow, which tries to move the field along with the flowing fluid, as shown. The magnetic field provides
a tension, as would a stretched string, and this provides a restoring force, as indicated by the red arrows, that
allows the cylinders to oscillate. If the field is not aligned with the s-direction, only the s-component of B
provides the restoring force.

Figure 2: (a) Spectrum and (b) dispersion diagram of DMD modes of Jupiter’s 5µm brightness[11] , L′(θ, t),
from March 2005 to July 2018 between latitudes ±40◦, for coordinate delay d = 1 and no truncation in singular
values. See details and their performance in Methods. The shaded regions indicate the wave frequency ranges,
ωTW = UAk, as given in Table 1; the dark grey highlights the range predicted for latitudes between ±24◦ (i.e.
rows 2-5 of Table 1). Red and blue asterisks indicate Modes 1 and 2, respectively, which are admitted in the
wave window. Mode 1 has half period, π/Imλj , of 6.5 years and quality factor, |Imλj/2Reλj |, of 5.8; Mode 2 has
half period of 3.1 years and quality factor of 23. (c) Normalised, latitudinal profiles of Mode 1 (red curve), Mode
2 (blue), and their superposition (black), i.e. |bMode1 φMode1(θ) + bMode2 φMode2(θ)|. Triangles mark local peaks
of the black curve, whose latitudes approximately match the jet ones. The jet latitudes and bands are indicated
in the shaded/white regions: for understanding their labels, see column 1 of Table 2.

Figure 3: Reconstructed spatiotemporal structures of the DMD Mode 1 (a-b), of the Mode 2 (c-d), and of their
superposition (e-f) to reveal the wave motion. Here the latitudinal profile is presented against the normalised
cylindrical radius, s/RJ, in the northern (a, c, and e) and southern (b, d, and f) hemispheres. In each panel the
jet latitudes and bands are presented on the right side: see column 1 of Table 2 for labels. Dotted curves indicate
phase/ray paths of the torsional waves. Their slope, the predicted wave speed UA, explains the travelling nature
of the infrared emission at s/RJ . 0.96, i.e. in latitudes & 16◦N/S.
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