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The concept of soliton gas was introduced in 1971 by V. Zakharov as an infinite collection of weakly
interacting solitons in the framework of Korteweg-de Vries (KdV) equation. In this theoretical con-
struction of a diluted soliton gas, solitons with random parameters are almost non-overlapping. More
recently, the concept has been extended to dense gases in which solitons strongly and continuously
interact. The notion of soliton gas is inherently associated with integrable wave systems described
by nonlinear partial differential equations like the KdV equation or the one-dimensional nonlinear
Schrödinger equation that can be solved using the inverse scattering transform. Over the last few
years, the field of soliton gases has received a rapidly growing interest from both the theoretical
and experimental points of view. In particular, it has been realized that the soliton gas dynamics
underlies some fundamental nonlinear wave phenomena such as spontaneous modulation instability
and the formation of rogue waves. The recently discovered deep connections of soliton gas theory
with generalized hydrodynamics have broadened the field and opened new fundamental questions
related to the soliton gas statistics and thermodynamics. We review the main recent theoretical and
experimental results in the field of soliton gas. The key conceptual tools of the field, such as the
inverse scattering transform, the thermodynamic limit of finite-gap potentials and the Generalized
Gibbs Ensembles are introduced and various open questions and future challenges are discussed.
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I. INTRODUCTION

Random nonlinear waves in dispersive media have been
the subject of intense research in nonlinear physics for
more than half a century, most notably in the contexts of
water wave dynamics and nonlinear optics. A significant
portion of the work in this area has been centred around
wave turbulence—the theory of out of equilibrium ran-
dom weakly nonlinear dispersive waves in non-integrable
systems [1, 2]. One of the most important results of the
wave turbulence theory is the analytical determination in
[3] of the power-law Fourier spectra analogous to the Kol-
mogorov spectra describing energy flux through scales in
dissipative hydrodynamic turbulence.

More recently, a new theme in turbulence theory has
emerged in connection with the dynamics of strongly
nonlinear random waves described by integrable systems
such as the Korteweg-de Vries (KdV) and 1D nonlinear
Schrödinger (NLS) equations. This kind of random wave
motion in nonlinear conservative systems, dubbed inte-
grable turbulence [4], has attracted significant attention
from both fundamental and applied perspectives. The in-
terest in integrable turbulence is motivated by the inher-
ent randomness of many real-life systems (due to random
initial and boundary conditions or to complex interaction
mechanisms) even though the underlying physical mod-
els may be amenable to the well-established mathemat-
ical techniques of integrable systems theory such as the
inverse scattering transform or finite-gap theory [5, 6].

The integrable turbulence framework is particularly
pertinent to the description of modulationally unstable
systems which can exhibit highly complex nonlinear be-
haviours that can be adequately described in terms of the
turbulence theory concepts such as probability distribu-
tion functions, ensemble averages, Fourier spectra etc.
[7–12]. We stress that the term ‘turbulence’ in this con-
text is understood as complex spatiotemporal dynamics
that require probabilistic description and are not related
to the energy cascades through scales, the prime feature
of strong hydrodynamic and weak wave turbulence.

Along with the fundamental, conceptual significance,
the physical relevance of integrable turbulence is sup-
ported by recent laboratory experiments [12–18] and ob-
servations of natural wave phenomena, e.g. in ocean
waves [19, 20].

The main tool for the analysis of integrable nonlinear
dispersive partial differential equations (PDEs) is the In-
verse Scattering Transform (IST) [21] which is based on
the reformulation of a nonlinear PDE as a compatibility
condition of two linear problems (the so-called Lax pair):
a stationary spectral (scattering) problem and an evolu-
tion problem—for the same auxiliary function. Within
the classical IST setting, formulated for the wave fields
decaying sufficiently rapidly as |x| → ∞ the scattering
spectrum consists of two components: discrete and con-
tinuous, corresponding to two contrasting types of the
wave motion: solitary waves (solitons) and dispersive ra-
diation respectively. Importantly, integrable evolution

preserves the IST spectrum in time.

Localized nonlinear solitary waves, termed solitons
in the context of integrable systems, are a ubiquitous
and fundamental feature of nonlinear dispersive wave
propagation. They exhibit particle-like properties such
as elastic, pairwise interactions accompanied by certain
phase/position shifts [22] and have been extensively stud-
ied both theoretically [5, 23, 24] and experimentally [25].
The particle-like properties of solitons suggest some nat-
ural questions pertaining to the realm of statistical me-
chanics, e.g. one can consider a soliton gas as an in-
finite ensemble of interacting solitons characterised by
random amplitude and phase distributions. Then, given
the properties of the elementary, ‘microscopic’, soliton
interactions the next natural step is the determination of
the emergent, out of equilibrium macroscopic dynamics
(i.e. hydrodynamics or kinetics) of a soliton gas.

Due to the presence of an infinite number of conserved
quantities, integrable systems do not reach the thermo-
dynamic equilibrium state characterized by the so-called
Rayleigh-Jeans distribution of the modes (equipartition
of energy). Consequently, the properties of soliton gases
will be very different compared to the properties of classi-
cal gases whose particle interactions are non-elastic. Ad-
ditionally, the particle-wave duality of solitons implies
that hydrodynamic description of a soliton gas should be
complemented by the characterisation of the associated
nonlinear turbulent wave field in terms of the probabil-
ity density function, power spectrum, correlations etc.
It has transpired recently that soliton gas dynamics are
instrumental in the understanding of a number of impor-
tant statistical nonlinear wave phenomena such as spon-
taneous modulational instability and the rogue wave for-
mation in one-dimensional wave propagation [26].

One can distinguish two basic mechanisms of the ‘spon-
taneous’, uncontrollable generation of a soliton gas. One
mechanism involves the process of soliton fission, where
statistical soliton ensembles emerge as the asymptotic
outcome of long-time evolution of the so-called ‘par-
tially coherent waves’, which can be viewed as collec-
tions of randomly distributed broad pulses, see Fig. 1
and Refs. [12, 13, 15]. Alternatively, soliton ensembles
can be initially generated from a non-random (e.g. pe-
riodic) signal and then undergo effective randomization
due to elastic reflections from the boundaries and sub-
sequent multiple collisions, see [16] for the example of
the soliton gas generation in a shallow-water wave tank.
The second mechanism of the soliton gas generation is
related to the already mentioned phenomenon of mod-
ulational instability, where the basic coherent nonlinear
mode of an unstable system—the plane wave—is sub-
jected to a random perturbation (a noise), resulting in
the development of large-amplitude small-scale fluctua-
tions of the wave field and the establishment at t → ∞
of a stationary integrable turbulence [7]. It was shown in
[26] that for the wave systems described by the focusing
nonlinear Schrödinger (fNLS) equation such integrable
turbulence exhibits the properties of a dense bound-state
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(non-propagating) soliton gas.
Soliton gas can also be synthesized in a controllable

manner directly, e.g. by programming a water tank wave-
maker according to the IST-prescribed random multi-
soliton solution of the relevant integrable equation, see
[17].
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FIG. 1. Emergence of soliton gas in the long-time evolution of
a partially coherent wave ψ(x, t) in the focusing NLS equation
(equation (6) with σ = 1). (a) Intensity |ψ(x, t = 50)|2 (b)
Spatiotemporal dynamics|ψ(x, t)|2 (c) Intensity |ψ(x, t = 0)|2
(initial condition)

The theoretical concept of soliton gas was introduced
by V.E. Zakharov in 1971 [27], where an approximate
kinetic equation for KdV solitons was constructed by
evaluating the effective adjustment to the soliton’s ve-
locity in a rarefied gas due to the infrequent interactions
(collisions) between individual solitons, accompanied by
the well-defined phase shifts. The central object in the
soliton gas theory is the density of states (DOS)— the
function describing the distribution of solitons with re-
spect to the spectral parameter and the positions of the
soliton’s centres. When soliton gas is uniform (i.e. in
an equilibrium state) the DOS is stationary and space-
independent. In a non-uniform (non-equilibrium) gas the
spatiotemporal evolution of the DOS on a large (Eule-
rian) scale is described by a continuity equation following
from the isospectrality of integrable dynamics.

In a rarefied gas solitons are treated as isolated point-
like quasi-particles. In contrast, in a dense soliton gas
the solitons exhibit significant overlap and, as a result,
are continuously involved in a strong nonlinear interac-
tion with each other. It is clear that, in a dense gas the
particle interpretation of individual solitons becomes less
transparent and the wave aspect of the collective soliton
dynamics comes to the fore. Indeed, a consistent gener-

alization of Zakharov’s kinetic equation for KdV solitons
to the case of a dense soliton gas has been achieved in
[28] in the framework of the nonlinear wave modulation
(Whitham) theory [29]. It was proposed in [28] that the
KdV soliton gas can be modelled by the thermodynamic
type solitonic limit of the multiphase, finite-gap KdV so-
lutions and their modulations [30] (these solutions rep-
resent nontrivial generalization of solitons in problems
with periodic boundary conditions). The resulting spec-
tral kinetic equation has the form of a nonlinear integro-
differential equation consisting of the continuity equation
for the DOS (equation (13)) and the linear integral equa-
tion of state (16) relating the effective, average velocity of
the ‘tracer’ soliton in the gas with its DOS. The structure
of the kinetic equation derived in [28] has motivated a
fundamental conjecture that generally, in a dense gas the
net effect of soliton interactions can be formally evaluated
using the same phase-shift argument that was used in the
original rarefied gas theory [27]. This conjecture, termed
collision rate ansatz, has enabled an effective phenomeno-
logical theory of a dense soliton gas for the focusing fNLS
equation [31] and more recently, for the defocusing NLS
and integrable shallow water waves equations supporting
bidirectional soliton propagation [32]. The phenomeno-
logical soliton gas theory for the fNLS equation proposed
in [31] has been rigorously confirmed and substantially
extended in [33] within the framework of the thermody-
namic limit of spectral finite-gap solutions of the fNLS
equation and their modulations. This latter work has re-
vealed a number of new soliton gas phenomena due to a
very different structure of the spectral phase space of the
fNLS equation compared to the KdV equation. In par-
ticular, the generalization of soliton gas, termed breather
gas, was introduced by considering a special family of
fNLS solitonic solutions on a non-zero unstable back-
ground. Another peculiar type of soliton gas termed in
[33] soliton condensate can be viewed as the densest pos-
sible ensemble of solitons constrained by a given spectral
domain. Properties of soliton condensates for the KdV
equation and their relation to the fundamental coherent
structures in dispersive hydrodynamics such as rarefac-
tion and dispersive shock waves were investigated in [34].

Apart from the above line of research on soliton gases
inspired by the Zakharov 1971 work and summarized
in the recent review [35] there have been many other
developments—theoretical, numerical and experimental
—exploring various aspects of soliton gas/soliton tur-
bulence dynamics in both integrable and nonintegrable
classical wave systems (see e.g. [36–43]). In particular,
recent numerical results [44, 45] suggest that the soliton
gas theory could be instrumental for the development of
the statistical description of the of rogue wave forma-
tion. Additionally, soliton gases have been recently at-
tracting a growing interest from the mathematical com-
munity. Various nontrivial mathematical properties of
the kinetic equation for soliton gas were studied in [46–
49]. Beyond the kinetic, Euler scale, description, recent
rigorous studies [50, 51] were devoted to the construc-
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tion of asymptotic solutions of the KdV and modified
KdV equations respectively, describing realizations of a
special class soliton gases within the framework of prim-
itive potentials [52], via the consideration of N -soliton
solutions in the limit N →∞,

Finally we mention recent major developments in
a closely related area of generalized hydrodynamics
(GHD)(see [53–55] and references therein), where the
equations analogous to those arising in the spectral ki-
netic theory of soliton gas became pivotal for the under-
standing of large-scale, emergent hydrodynamic proper-
ties of integrable quantum and classical many-body sys-
tems. The relation between spectral theory of soliton gas
and the GHD has been recently established in [56] which
enabled the formulation of the thermodynamics (free en-
ergy, entropy, temperature) of the KdV soliton gas.

The goal of this Perspective article is to present the
state of the art in the modern theoretical and experi-
mental soliton gas research, highlighting the connections
with other areas of nonlinear physics and mathematics
and outlining the avenues for future investigations.

The structure of the article is as follows. In Section II
we introduce the concept of soliton gas, from rarefied
to dense, and present a straightforward phenomenologi-
cal approach to the construction of the spectral kinetic
equation for integrable systems with known two-soliton
interactions. In Section III we proceed with outlining the
results of rigorous spectral theory of soliton gas based
on the thermodynamic limit of finite-gap potentials and
their modulations for the KdV and fNLS equations. In
Section IV, we summarize the basic concept of IST and
the recent progress allowing the numerical computation
of N -soliton solutions with N large. In Section V, we
review the experimental results on soliton gases. In Sec-
tion VI, we show how soliton gas theory can be used to
understand and predict integrable turbulence phenom-
ena. In Section VII we review the key results of GHD
and their links with SG. Finally, in Section VIII, we re-
view fundamental open questions and perspectives of this
field of research.

II. THE CONCEPT OF SOLITON GAS

A. Solitons in integrable systems

We first outline the basic properties of solitons using
the KdV equation as a prototypical example. We con-
sider the KdV equation in the form

ut + 6uuux + uxxx = 0 . (1)

Equation (1) belongs to the class of completely inte-
grable equations and, for a broad class of initial condi-
tions, its integrability is realised via the inverse scattering
transform (IST) method [21] sometimes called Nonlinear
Fourier Transform. The inverse scattering theory asso-
ciates a single soliton solution of the KdV equation with a

point of discrete spectrum λ = λ1 < 0 of the Schrödinger
operator

L = −∂2
xx − u(x, t) . (2)

Assuming u → 0 as x → ±∞, the KdV soliton solution
corresponding to an eigenvalue λ1 = −η2

1 , η1 > 0, is given
by

us(x, t; η1, x
0
1) = 2η2

1sech2[η1(x− 4η2
1t− x0

1)], (3)

where 2η2
1 is the soliton amplitude, 4η2

1 its speed, and x0
1

its initial position or “phase”. Note that soliton has finite
width ∼ 1/η1, which affects the notion of the interaction
range, particularly for small-amplitude solitons. In what
follows we will be referring to η as a spectral parame-
ter with the understanding that η =

√
−λ. Along with

the simplest single-soliton solution (3), the KdV equation
supports N -soliton solutions uN (x, t) characterised by N
discrete spectral parameters 0 < ηN < ηN−1 < · · · < η1

and the set of the so-called norming constants that could
be interpreted in terms of the initial positions of solitons
— the analogs of {x0

i |i = 1, . . . , N} in (3) (note that
the actual position of a soliton within the N -soliton so-
lution depends nontrivially on all norming constants).
Thus, N -soliton solution can be viewed as a nonlin-
ear superposition of N single-soliton solutions, the no-
tion supported by the asymptotic behavior at t → ±∞,
when uN (x, t) assumes the form of rank-ordered soliton

trains, uN (x, t) −−−−→
t→±∞

∑N
i us(x, t; ηi, x

±
i ), with appro-

priately chosen phases x±i depending on the configuration
at t = 0, see [5, 23, 57].

It should be stressed that general solutions to the KdV
equation exhibit, along with solitons, a dispersive radi-
ation component corresponding to the continuous spec-
trum of the Schrödinger operator (2). However, the soli-
ton gas construction considered here involves only dis-
crete spectrum.

The integrable structure of the KdV equation has pro-
found implications for the dynamics of soliton interac-
tions.

1. The KdV evolution preserves the IST spectrum,
∂tηj = 0, implying that soliton collisions are ‘elas-
tic’ i.e. solitons remain unchainged (retaining the
amplitude, speed and the waveform (3)) upon in-
teractions. In other words, the solution exhibiting
N solitons at t→ −∞ will exhibit exactly the same
N solitons (modulo their positions) at t→ +∞;

2. The collision of two solitons with spectral parame-
ters ηi and ηj , i 6= j results in the asymptotic shifts
of their positions at t→ +∞ relative to the respec-
tive free propagation trajectories from t → −∞.
These position shifts correspond to the phase shifts
of the discrete spectrum norming constants and are
given by

∆ij ≡ ∆(ηi, ηj) =
sgn(ηi − ηj)

ηi
log

∣∣∣∣ηi + ηj
ηi − ηj

∣∣∣∣ , (4)
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so that the taller soliton acquires shift forward and
the smaller one – shift backwards.

3. Solitons interact pairwise so that the resulting
phase shift ∆i of a given soliton with spectral pa-
rameter ηi after its interaction withM solitons with
parameters ηj , j 6= i, is equal to the sum of the in-
dividual phase shifts,

∆i =

M∑
j=1,j 6=i

∆ij . (5)

Thus the interaction of N solitons can be factor-
ized, with respect to the phase shifts, into super-
position of 2-soliton interactions, i.e. multi-particle
effects are absent.

It is important to stress that the collision phase shifts
are the far-field effects. Mathematically they are the
artefacts of the asymptotic representation of the exact
two-soliton solution of the KdV equation as a sum of two
individual solitons: u2(x, t; η1, η2) ' us(x + ∆12, t; η1) +
us(x+ ∆21, t; η2), which is only valid if solitons are suffi-
ciently separated (the long-time asymptotics). The inter-
action of solitons is a complex nonlinear process [58] and
the resulting wave field u(x, t) in the interaction region
cannot be represented as a superposition of the phase-
shifted one-soliton solutions. We note that the above
properties of soliton collisions (the preservation of soli-
ton parameters and pairwise phase/position shifts) are
not exclusive to KdV but are generic features of other
integrable systems supporting soliton propagation.

For the NLS equation

iψt + ψxx + 2σ|ψ|2ψ = 0, ψ ∈ C, (6)

in the focusing regime, σ = +1, the single-soliton solution
is characterised by a discrete complex eigenvalue λ1 =
a+ib and c.c., of the linear scattering operator called the
Zakharov-Shabat operator [59], the fNLS analogue of the
Schrödinger operator (2). The fNLS soliton is given by

ψs(x, t) = 2b
e−2i[ax+2(a2−b2)t]+iφ0

cosh[2b(x+ 4at− x0)]
, (7)

where x0 is the initial position of the soliton and φ0 is the
initial phase. One can see that the fNLS soliton repre-
sents a localised wavepacket with the envelope propagat-
ing with the group velocity cg = −4a = −4Reλ1 and the
carrier wave having the phase velocity cp = 2(b2−a2)/a =
−2Re(λ2

1)/Reλ1. In contrast with KdV equation, the
amplitude and velocity of the fNLS soliton are two inde-
pendent parameters.

Similar to other integrable models, the solitons of the
fNLS equation interact pairwise and experience both
position and (genuine) phase shifts upon the interac-
tion. Unlike the KdV equation the fNLS solitons are
bi-directional but the position shifts in the overtaking

and head-on soliton collisions are given by the same ex-
pression,

∆(λ, µ) =
sgn[Re(µ− λ)]

Imλ
ln

∣∣∣∣µ− λ∗µ− λ

∣∣∣∣ . (8)

In some other bidirectional integrable systems such as
the Kaup-Boussinesq equations describing shallow water
waves and the resonant NLS equation having applications
in magnetohydrodynamics of cold collisionless plasma the
soliton collisions are anisotropic, i.e. the head-on and
overtaking position shifts are described by different ex-
pressions, see [32].

B. Rarefied soliton gas

Following the historical paper of Zakharov [27] we first
introduce soliton gas phenomenologically, as an infinite
random ensemble of KdV solitons distributed on R with
some non-zero spatial density α. For α � 1 (rarefied
gas) one can approximate such a soliton gas by an infinite
superposition of the single-soliton solutions (3),

u(x, t) ≈
∞∑
i=1

2η2
i sech2[ηi(x− 4η2

i t− x0
i )] (9)

with certain distribution of the solitonic spectral param-
eters ηj ∈ Γ ⊂ R+, and random initial phases x0

j ∈ R
distributed according to Poisson with density parameter
α. We will be initially assuming that Γ is a fixed, simply-
connected interval (in which case without loss generality
one can set Γ = [0, 1] but we shall keep general notation
in the anticipation of future generalizations).

Due to the small spatial density, most of the individ-
ual solitons in a rarefied gas (9) overlap only in the re-
gions of their exponential tails, except for the rare events
of soliton collisions and neglecting the effects related to
the possible presence of small-amplitude, wide solitons.
Thus, each realization of the random process (9) satisfies
the KdV equation (1) almost everywhere on R.

Within the above phenomenological construction we
introduce the density of states (DOS) f(η;x, t) ≥ 0 such
that f(η0;x0, t0)dηdx is the number of solitons found at
t = t0 in the element [η0, η0 + dη] × [x0, x0 + dx] of the
spectral phase space S = Γ × R. It is assumed that the
interval [x0, x0 + dx] contains a large number of solitons.
For an equilibrium (spatially homogeneous, or uniform)
soliton gas the DOS does not depend on space and time,
f(η;x, t) ≡ f(η). The total spatial density of the soliton
gas is computed as

α =

∫
Γ

f(η)dη . (10)

In a rarefied gas α� 1 and the total spatial shift of a
soliton with spectral parameter η ≡ η1 (we shall call it
η1-soliton) acquired over the time interval dt, due to the
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FIG. 2. (adapted from [60]) Comparison for the propagation
of a free soliton with the spectral parameter η = η1 in a void
(black dashed line) with the propagation of the trial soliton
with the same spectral parameter η1 (red solid line) through
a rarefied soliton gas with the DOS supported on a narrow
spectral interval around η0 < η1. One can see that the trial
soliton propagates faster in the gas due to the interactions
with smaller solitons. Reproduced with permission.

interactions with ‘µ-solitons’ having spectral parameters
µ ∈ Γ, µ 6= η, is approximately evaluated as

∆1 ≈
∫

Γ

[∆(η1, µ)|s0(η1)− s0(µ)|f(µ)dµ]dt, (11)

where s0(η) is the speed of an isolated, non-interacting,
soliton (it is assumed that in a rarefied gas the collision
rate is at leading order defined by the free soliton veloc-
ities). For the KdV equation s0(η) = 4η2 and ∆(η, µ) is
given by equation (4). This simple argument was used
in [27] to derive the expression for the effective (mean)
velocity s(η) of a ‘trial’ soliton in a spatially uniform
(equilibrium) KdV soliton gas:

s(η) ≈ 4η2 +
1

η

∫
Γ

log

∣∣∣∣η + µ

η − µ

∣∣∣∣ f(µ)[4η2 − 4µ2]dµ . (12)

See Fig. 2 for the numerical simulations illustrating the
effect of soliton interactions on the effective velocity of a
trial soliton propagating through a soliton gas.

For a weakly non-homogeneous (out of equilibrium)
gas we have f(η)→ f(η;x, t), s(η)→ s(η;x, t), where the
(x, t)-variations of f and s occur on macroscopic, Euler,
scales, much larger than the typical scales associated with
variations of the wave field u(x, t) in individual solitons.

Now, isospectrality of the KdV evolution within the
IST framework implies the continuity equation for the
phase space density (the DOS),

∂tf + ∂x(sf) = 0, (13)

which, together with (12), provides the spectral hydrody-
namic/kinetic description of a rarefied KdV soliton gas.

C. Dense soliton gas

If the KdV soliton gas is sufficiently dense, the sim-
ple heuristic construction of the previous section based
on the assumption of short-range interactions between

-50 0 50
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FIG. 3. Rarefied (left) vs dense (right) KdV soliton gases with

the same spectral density φ(η) = η/
√

1− η2 but different
spatial densities: α ' 0.1 (left) and α ' 0.3 (right).

solitons becomes, strictly speaking, invalid as solitons in
such a gas strongly overlap and hence, are involved in a
continual nonlinear interaction so that the correspond-
ing KdV solution can nowhere be represented as a linear
superposition of individual solitons as in (9), cf. Fig. 3
(b). In particular, the approximation (11) for the total
phase shift based on the free soliton velocities ceases to
be valid.

A general (dense or rarefied) KdV soliton gas at equi-
librium can be defined as a non-decaying random solution
of the KdV equation whose realizations can be approxi-
mated, on any sufficiently large interval [x0 − L/2, x0 +
L/2], by an appropriate N -soliton solution with N ∼
L� 1 so that: (i) the gas has finite spatial density α fol-
lowing the thermodynamic limit (L,N →∞, N/L→ α);
(ii) the soliton spectral parameters ηi, j = 1, 2, . . . , N , are
distributed on some finite interval Γ ∈ R+ with density
φ(η) > 0 defined for N →∞ via

ηj+1 − ηj ∼
1

φ(ηj)N
,

∫
Γ

φ(η)dη = 1, (14)

so that φ(η) does not depend on the chosen realization
of soliton gas and on the reference point x0. The set of
discrete spectral parameters {ηi} in N -soliton solutions
is complemented by the associated set of norming con-
stants, whose phases can be interpreted for diluted gases
in terms of the spatial locations of individual solitons
within the N -soliton solution, see [5, 23, 57]. Random-
ness enters this soliton gas construction in two ways: (i)
spectral—via interpreting φ(η)dη as a probability mea-
sure on Γ; (ii) spatial—by assuming that the phases of
the norming constants are random values uniformly dis-
tributed on some fixed interval. The above definition of
soliton gas as the thermodynamic limit of N -soliton solu-
tions, while lacking full mathematical rigour, is physically
intuitive and sufficient for the majority of practical (nu-
merical or experimental) considerations, where one in-
evitably deals with finite numbers of solitons. It can also
be readily generalized to other integrable equations (see
Section IV for the implementation of this construction in
the context of the fNLS equation).
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FIG. 4. Schematic illustrating the N -soliton approximation
of the ‘windowed’ portion UL(x) of a KdV soliton gas at some
t = t∗ (upper row) and its evolution into the ordered soliton
train at t = τ � t∗ (lower plot).

1. Density of states

The phenomenological definition of the DOS f(η) in-
troduced in Section II B for rarefied soliton gas can be
meaningfully interpreted in the context of a dense gas
where solitons strongly interact and cannot be identified
as individual localized wave structures. Consider a typi-
cal realization of a uniform soliton gas at some t = t∗ for
x ∈ [x0 − L/2, x0 + L/2], L � 1. We now impose zero
boundary conditions for x /∈ [x0 − L/2, x0 + L/2], and
consider UL(x) = χ[x0−L/2,x0+L/2]u(x, t∗), where χ[a,b] is
the indicator function. Replacing UL by the approximat-
ing N -soliton solution uN with N � 1 [61] one deter-
mines the density φ(η) of the discrete spectrum points
ηj ∈ Γ, j = 1, . . . , N (14) and the spatial density of the
gas α ∼ N/L. One simple way to realize this construc-
tion practically is to use UL(x) as the initial condition for
KdV and evolve it in time, see Fig. 4. One then infers
φ(η), Γ and α from the analysis of the distribution of
soliton amplitudes ai = 2η2

i in the resulting soliton train
at sufficiently large t.

We introduce the partial DOS fL(η) = κφ(η), where
the coefficient κ is determined from the normalization∫ x0+L/2

x0−L/2
∫

Γ
fL(η)dηdx = N , consistent with the DOS

definition in Section II B. Then the limit lim
L→∞

fL(η) ≡
feff(η) can be viewed as the effective DOS of a dense soli-
ton gas. Using (10) and (14) we find the normalization
constant κ = α so that

feff(η) = αφ(η) . (15)

Shown in Fig 3 are realizations of two soliton gases with
the same φ(η) and different α’s. We note that the crite-
rion α � 1 for rarefied gas is understood in the formal,
asymptotic sense since the actual, numerical, value of α
depends on the definition of the (mesoscopic) unit inter-

val of x.
As we shall see in Section III, in a more general soliton

gas setting based on finite-gap theory one has κ ≡ κ(η),
which is interpreted as the ‘scaled spectral wavenumber’
responsible for the spatial density of solitons with a given
spectral parameter. However, the above phenomenolog-
ical setting with κ constant is a useful approximation
that is particularly relevant to the numerical realization
of soliton gases (see [26, 34] and Section IV) and identify-
ing their connection with GHD (see [56] and Section VII).

2. Kinetic equation

For a weakly non-uniform gas we assume scale separa-
tion, where the gas is considered to be at local equilib-
rium over intermediate, mesoscopic, scale involving suffi-
ciently large numbers of solitons, while appreciable (x, t)-
variations of the DOS occur on a larger, macroscopic, Eu-
ler, scale. We note that this scale separation is at heart of
GHD, where the mesoscopic scale is associated with the
notion of ‘fluid cells’, where the entropy is locally max-
imized with respect to the infinite number of conserved
quantities [53, 55], see Section VII.

The generalization of Zakharov’s kinetic equation to
the case of a dense gas was derived in [28] (see Section
III B below). It involves the same continuity equation
(13) for the DOS but the approximate expression (12)
for the tracer velocity is replaced by the exact integral
equation of state:

s(η) = 4η2 +
1

η

∫
Γ

ln

∣∣∣∣η + µ

η − µ

∣∣∣∣ f(µ)[s(η)− s(µ)]dµ , (16)

where we have dropped for brevity the (x, t)-dependence
for f(η) and s(η).

In simple terms (16) represents an extrapolation of the
rarefied gas properties to a dense gas, realised by replac-
ing s0(η) → s(η) in the collision rate expression (11).
This observation has led in [31] to the phenomenolog-
ical prescription for the construction of the soliton gas
equation of state involving the free soliton velocity s0(η)
and the phase shift expression ∆(η, µ) = sgn[(s0(η) −
s0(µ)]G(η, µ), specific to each integrable system:

s(η) = s0(η) +

∫
Γ

G(η, µ)f(µ)[s(η)− s(µ)]dµ . (17)

In the fNLS case, the solitonic spectrum {λj} in the
associated linear (Zakharov-Shabat) scattering problem
is complex (see Section IV A below) so that the DOS
f(λ) is generally supported on some compact Schwarz
symmetric 2D set Λ ⊂ C so it is sufficient to consider only
the upper half plane part Λ+ (here Schwarz symmetry
means that if λ ∈ C is a point of the spectrum then so is
the c.c. point λ∗). Then, using s0(λ) = −4Reλ for the
free-soliton velocity and the expression (8) for the two-
soliton scattering shift, the kinetic equation for the fNLS
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soliton gas assumes the form [31]

ft + (fs)x = 0,

s(λ;x, t) = −4Reλ+

1

Imλ

∫∫
Λ+

ln

∣∣∣∣µ− λ∗µ− λ

∣∣∣∣ [s(λ;x, t)− s(µ;x, t)]f(µ;x, t)dξdζ,

(18)

where µ = ξ + iζ and Λ+ ⊂ C+ \ iR+.
The special case when all discrete spectrum points are

located on the imaginary axis, Λ+ ⊂ iR+, corresponds
to non-propagating multisoliton solutions called bound
states [59]. This case requires a separate consideration.
since for the corresponding bound state soliton gas Reλ =
0 the equation of state in (18) immediately yields s(λ) =
0 resulting in the equilibrium DOS, ft = 0.

3. Conserved quantities

One of the fundamental properties of integrable dy-
namics is the availability of an infinite set of conservation
laws

∂tPn + ∂xQn = 0, n = 1, 2, . . . , (19)

where the Pn and Qn are functions of the field variable u
and its derivatives. For the KdV equation, of particular
interest are the first three conserved densities:

P1 = u, P2 = u2, P3 =
u2
x

2
− u3 , (20)

typically associated with the “mass”, “momentum” and
“energy” conservation. Their counterparts for the fNLS
equation (equation (10) with σ = +1) have the form [59]

P1 = |ψ|2, P2 = Im(ψxψ
∗), P3 = |ψ|4 − |ψx|2. (21)

For non-equilibrium soliton gas dynamics conservation
equations (19) are replaced by their averaged analogs:

∂t〈Pn[u]〉+ ∂x〈Qn[u]〉 = 0, n = 1, 2, . . . , (22)

where 〈·〉 denotes ensemble averaging, and the x, t-
variations in (19) occur on much larger scales than in
(19).

In contrast with the discrete set of conservation
laws (19) for the original equation, kinetic equa-
tion (13) possesses a continuum of conserved quanti-
ties. Indeed, (13) implies that for any h(η) 6= 0,∫

Γ
h(η)f(η;x, t)dη is a density of the conserved quantity

with
∫

Γ
h(η)f(η;x, t)s(η;x, t)dη being the corresponding

flux density. For the KdV equation, the densities of the
special “Kruskal” series (22) are given by [28, 62]

〈Pn[u]〉 = Cn

∫
Γ

η2n−1f(η)dη, , n = 1, 2, . . . , (23)

where the coefficients Cn depend on the normalization of
the conserved densities. For the physical densities (20)
we have

C1 = 4, C2 = 16/3, C3 = 32/5. (24)

Expressions (23), (24) are readily obtained by consider-
ing a large portion of a homogeneous soliton gas: uL =
χ[0,L]u(x, t) with L� α−1 at some arbitrary t = t∗. As-
suming ergodicity one can replace the ensemble average

〈Pn〉 by the spatial average L−1
∫ x0+L

x0
Pn[uL]dx which

is a conserved quantity and can be evaluated over the
long-time asymptotic solution: uL ∼

∑
i us(x, t; ηi) as

t→∞.
A fundamental restriction imposed on the DOS f(η)

follows from non-negativity of the variance A =√
〈u2〉 − 〈u〉2 > 0, or equivalently, recalling (23), (24)∫

Γ

η3f(η) dη − 3

(∫
Γ

ηf(η) dη

)2

> 0 . (25)

For the fNLS equation the averaged conserved densities
can also be expressed in terms of moments of the DOS
as [63]

〈Pn[ψ]〉 = Cn

∫∫
Λ+

Im(λn)f(λ)dξdζ, n = 1, 2, . . . (26)

where λ = ξ + iζ and the coefficients Cn for the physical
conserved quantities (21) are

C1 = 4, C2 = −4, C3 = 16/3. (27)

III. SPECTRAL THEORY OF SOLITON GAS

A. General framework

The phenomenological kinetic theory of soliton gas de-
scribed in the previous section is essentially based on
the interpretation of solitons as quasi-particles experi-
encing short-range pairwise interactions accompanied by
the well-defined phase/position shifts. As was already
stressed, although this theoretical framework is justifi-
able in the case of rarefied gas, it is less satisfactory for
a dense gas where solitons experience significant overlap
and continual nonlinear interactions so that they could
become indistinguishable as separate entities. This sug-
gests that a more consistent theoretical approach involv-
ing the wave aspect of the soliton’s “dual identity” is
necessary. In this section we outline a general mathe-
matical framework for the spectral theory of soliton gas
based on the thermodynamic limit of nonlinear multi-
phase solutions of integrable equations. This approach
has been first developed in [28] for KdV equation and
more recently applied to the description of fNLS soliton
and breather gases [33].
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With the KdV equation as the simplest prototypical
example in mind we consider the family of multiphase
solutions of the form

u(x, t) = FN (θ1, . . . , θN ), θj = kjx− ωjt+ θ0
j , (28)

where kj and ωj , j = 1, . . . , N are the wavenumbers and
frequencies (generally incommensurable), and the func-
tion FN is 2π-periodic with respect to each phase com-
ponent θj ∈ [−π, π), θ0

j being initial phases. (In the
context of the NLS equation (6) the representation (28)
is valid for |ψ|). We stress that the existence of multi-
phase quasiperiodic solutions (28) to a nonlinear disper-
sive equation is a unique property of integrable systems.
Such solutions are typically expressed in terms of Rie-
mann theta-functions, see e.g. [6] but we won’t be using
their specific form here.

It has been discovered in 1970-s that multiphase so-
lutions to integrable equations have remarkable spectral
properties defined within the (quasi-)periodic analogue
of IST called the finite-gap theory, see [5, 6]. The funda-
mental result of the finite gap theory is that the IST spec-
trum SN of the N -phase solution (28) lies in the union of
N + 1 disjoint bands γj = [λ2j−1, λ2j ], j = 1, . . . , N + 1,

λ ∈ SN ≡ ∪N+1
i=1 γi, γi ∩ γj = ∅, i 6= j (29)

separated byN finite gaps cj = (λ2j , λ2j+1). The number
of spectral gaps N is called the genus.

For the preliminary discussion of this section it is con-
venient to assume that the spectrum SN is real-valued.
This is the case for the (unidirectional) KdV equation
and (bidirectional) defocusing NLS equation (equation
(6) with σ = −1). The case of complex band spec-
trum, SN ⊂ C, arises for the fNLS equation, and this
case will be considered separately in Section III C. We
also note that one of the spectral bands could be semi-
infinite (as is the case for the KdV equation), then
γN+1 = [λ2N+1,+∞). Thus the spectrum of a finite-
gap solution (also called finite-gap potential) is fully
parametrised by the state vector λ = (λ1, λ2, . . . , λD),
where D = 2N + 1 or D = 2N + 2 depending on the
presence or absence of the semi-infinite band.

One of the important outcomes of the finite-gap the-
ory are the nonlinear dispersion relations (NDRs) link-
ing the physical parameters of the multiphase solution
(28) such as the wavenumbers, the frequencies and the
mean with the components of the D-dimensional spec-
tral state vector λ. In particular, for the N -component
wavenumber and frequency vectors k = (k1, . . . , kN ) and
ω = (ω1, . . . , ωN ) in (28) the NDRs can be represented
as

kj = Kj(λ), ωj = Ωj(λ), j = 1, . . . , N, (30)

where Kj(λ), Ωj(λ) are typically expressed in terms of
complete hyperelliptic integrals, see e.g. [6, 30, 33].

By manipulating the endpoints of spectral bands λj
one can modify the waveform of the solution (28). In

particular, by collapsing all spectral bands into double
points, λ2j−1, λ2j → λj∗, j = 1, . . . , N , the N -gap solu-
tion transforms into N -soliton solution with the discrete
spectrum eigenvalues λj∗ [5] (for the KdV equation λj∗ =
−η2

j , see Section II A). This solitonic transition corre-

sponds to the limit kj , ωj → 0, (ωj/kj)→ s0(λj∗) = O(1),
where s0(λ) is the velocity of a free soliton correspond-

ing to the discrete spectral eigenvalue λj∗. (We note that
any linear combination of wavenumbers with integer co-
efficients is also a wavenumber, so by {kj}Nj=1 we always
assume a particular, “fundamental”, set of the wavenum-
bers that vanish in the solitonic limit). Thus, finite-gap
potentials represent periodic or quasiperiodic generaliza-
tions of multisoliton solutions. Importantly, finite-gap
potentials, unlike N -soliton solutions, are non-decaying
functions with nonzero mean, which makes them natural
building blocks for the construction of equilibrium, spa-
tially uniform, soliton gases. Another advantage of using
finite-gap solutions for the soliton gas construction is the
presence of a natural probability measure—the uniform
measure on the N -dimensional phase torus TN of (28),
i.e. each phase θ0

j ∈ [−π, π) is assumed to be a random
value uniformly distributed on the period. Assuming in-
commensurability of the wavenumbers kj and frequencies
ωj this measure gives rise to the ergodic random process
with realizations defined by (28).

The dynamics of weakly non-uniform finite-gap poten-
tials are described by the Whitham modulation theory
[29, 30, 64], which prescribes slow evolution of the spec-
trum, λj(x, t), on the spatiotemporal scales much larger
than those associated with ‘rapid’ variations of the wave
(28) itself. The modulation system inherently includes
wave conservation equations

∂tkj + ∂xωj = 0, j = 1, . . . , N, (31)

where kj(λ) and ωj(λ) are given by the NDRs (30).
We now define equilibrium soliton gas via the thermo-

dynamic limit of finite-gap potentials [33]. Namely, we
consider a sequence of finite-gap potentials (28) such that

N →∞ : k1, . . . , kN → 0,

N∑
j=1

kj → 2πα = O(1),

(32)
with a similar behaviour for the frequency components ωj
so that ωj/kj = O(1). The limit (32) suggests the follow-
ing asymptotic scaling for the fundamental wavenumbers
and frequencies as N →∞:

N →∞ : kj ∼ ωj ∼ N−1. (33)

It can be shown quite generally that under the limit
(32) the uniform distribution for the initial phases θ0

j ∈
[−π, π), j = 1, . . . , N transforms to the Poisson distribu-
tion with the density parameter α on R for the ‘position
phases’ l0j ≡ θ0

j/kj [35]. We associate the limiting random
process limN→∞ FN (θ) satisfying (32) with soliton gas.
By construction this process is ergodic. As we shall see,
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the above definition is consistent with the phenomeno-
logical construction of soliton gas in Section II C.

As we show in the next section, the thermodynamic
limit (32) is achieved by imposing a special band-gap
distribution (scaling) for the spectrum SN for N � 1.
Generally the spectral bands are required to be exponen-
tially narrow compared to the gaps although the super-
exponential and sub-exponential scalings are also possi-
ble and these corresponds to the noninteracting (ideal)
soliton gas and soliton condensate respectively. In all
cases we shall call the corresponding limit as N →∞ of
a function F (λ) defined on SN the thermodynamic limit
of G.

The density of states f(λ) is then defined via the ther-
modynamic limit of the partial sum

1

2π

M≤N∑
j=1

kj →
λ∫

λmin

f(λ′)dλ′, (34)

where λ is a continuous spectral variable interpolating
the discrete positions λ∗j of the band centres; as a matter

of fact
∫ λmax

λmin
f(λ′)dλ′ = α, cf. (10).

Similarly, we have

1

2π

M≤N∑
j=1

ωj →
λ∫

λmin

v(λ′)dλ′, (35)

where v(λ) is the spectral flux density; then s(λ) =
v(λ)/f(λ) has the meaning of the soliton gas transport
velocity that can also be interpreted as an average tracer
soliton velocity in the gas.

Applying the thermodynamic limit (34), (35) to the
NDRs (30) for finite-gap solutions one obtains the NDRs
for an equilibrium soliton gas and hence, the equation
of state s(λ) = F [f(λ)], which typically has the form of
a linear integral equation (17). Further, assuming f ≡
f(λ;x, t), s ≡ s(λ;x, t) and applying the thermodynamic
limit to the modulation equations (31), we obtain the
continuity equation (13) for DOS in a non-equilibrium
gas.

B. Korteweg-de Vries equation

We now present the results of the application of the
above general spectral construction to the KdV equation
(1) following Refs. [28, 35] The key input ingredient of
the theory are the discrete NDRs (30) for finite-gap po-
tentials. The specific expressions for the KdV NDRs can
be found elsewhere (see e.g. [28, 30, 35]), here we only
discuss their thermodynamic limit as N →∞.

First we recall that the N -soliton limit of an N -gap so-
lution is achieved by collapsing all the finite bands γj in
the spectral set SN (29) into double points corresponding
to the soliton discrete spectral values. It was proposed in
[28] that the special infinite-soliton limit of the spectral

N -gap KdV solutions, termed the thermodynamic limit,
provides spectral description the KdV soliton gas. The
thermodynamic limit is achieved by assuming a special
band-gap distribution (scaling) of the spectral set SN for
N � 1 on the fixed interval [λ1, λ2N+1] (e.g. [−1, 0]).
Specifically, we require the spectral bands γj to be ex-
ponentially narrow compared to the gaps cj so that for
N → ∞ the spectral set SN is asymptotically charac-
terized by two continuous positive functions: the density
φ(η) of the lattice points ηj ∈ Γ ⊂ R+ defining the band
centers via −η2

j = (λ2j + λ2j−1)/2, and the logarithmic
bandwidth distribution τ(η) defined for N →∞ by

ηj − ηj+1 ∼
1

Nφ(ηj)
, τ(ηj) ∼ −

1

N
ln(λ2j − λ2j−1).

(36)
Additionally, invoking the asymptotic behaviors (33) we
introduce the interpolating functions κ(η), ν(η) for the
scaled wavenumbers and frequencies

kj ∼
κ(ηj)

N
, ωj ∼

ν(ηj)

N
. (37)

Then the definitions (34) and (35) of the DOS and the
spectral flux density imply

f(η) =
1

2π
κ(η)φ(η), v(η) =

1

2π
ν(η)φ(η), (38)

where we have used a more convenient in the KdV con-
text spectral variable η instead of λ = −η2. Now, con-
sidering the KdV finite-gap NDRs (30) subject to the
thermodynamic scaling (36) , (37) and letting N → ∞,
yields the integral equations [28, 35]:∫

Γ

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣ f(µ)dµ+ f(η)σ(η) = η,∫
Γ

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣ v(µ)dµ+ v(η)σ(η) = 4η3

(39)

for all η ∈ Γ (if Γ is a fixed, simply-connected compact
interval one can set Γ = [0, 1] without loss of general-
ity). Here the spectral scaling function σ : Γ → [0,∞)
is a continuous non-negative function that encodes the
Lax spectrum of the soliton gas via σ(η) = τ(η)/φ(η).
Equations (39) are the KdV soliton gas NDRs.

Eliminating σ(η) > 0 from the NDRs (39) yields the
equation of state (16) for the KdV soliton gas. Next, for
a non-homogeneous soliton gas f(η) ≡ f(η;x, t), v(η) ≡
v(η;x, t), and the application of the thermodynamic limit
to the modulation equations (31) yields the continuity
equation (13) for the DOS. Indeed, (31) imply 1

2π

M≤N∑
j=1

kj


t

+

 1

2π

M≤N∑
j=1

ωj


x

= 0. (40)

for M = 1, . . . , N . Applying the thermodynamic limit
(34), (35) to (40) we obtain the kinetic equation ft +
(fs)x = 0 as required.
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Thus, the spectral kinetic equation (13), (16) for soli-
ton gas represents the thermodynamic limit of the KdV-
Whitham modulation system [28]. We note that condi-
tion σ > 0 used in the derivation of the equation of state

(16) implies the restriction η−1
∫

Γ
ln
∣∣∣µ+η
µ−η

∣∣∣ f(µ)dµ < 1

on the admissible DOS f(η), complementing the earlier
formulated restriction (25). The limiting case σ = 0 cor-
responds to the special soliton gas termed soliton con-
densate, see Section III D below.

C. Focusing nonlinear Schrödinger equation

The spectral theory of soliton gas for the fNLS equa-
tion was developed in [33]. It follows the same general
framework of the thermodynamic limit of finite-gap po-
tentials outlined in Section III A resulting in the kinetic
equation (18) for the dense gas of fundamental fNLS soli-
tons. However, due to the fact that the finite-gap spec-
tral set for the fNLS equation lies in the complex plane,
λ ∈ C, the spectral theory of fNLS soliton gas admits a
much broader range of scenarios than the KdV theory.
In particular, it covers the case of breather gases, includ-
ing infinite random ensembles of interacting Akhmediev,
Kuznetsov-Ma and Peregrine breathers [65]. Another
highly nontrivial object is the gas of bound state fNLS
solitons (bound states are N -soliton solutions with all
discrete spectral parameters λj , j = 1, . . . , N having the
same, possibly zero, real part [59]). The latter was shown
in [26] to represent an accurate model for the nonlinear
stage of the development of spontaneous (noise induced)
modulation instability, see Section VI B.

The soliton gas theory for the fNLS equation is more
technically involved than in the KdV case. Here we only
present the NDRs for the fNLS soliton gas, a counterpart
of the KdV NDRs (39):∫

Γ+

ln

∣∣∣∣µ− λ̄µ− λ

∣∣∣∣ f(µ)|dµ|+ σ(λ)f(λ) = Imλ,∫
Γ+

ln

∣∣∣∣µ− λ̄µ− λ

∣∣∣∣ v(µ)|dµ|+ σ(λ)v(λ) = −4ImλReλ,

(41)

where Γ+ is the upper part of the 1D Schwarz-symmetric
curve Γ ⊂ C — the spectral support of the DOS f(λ)
(in the general 2D case the integration with respect to
arc length of Γ+ in (41) is replaced by the integration
over a 2D compact domain Λ+ ⊂ C+:

∫
Γ+

. . . |dµ| →∫∫
Λ+

. . . dξdζ , where µ = ξ + iζ).

Eliminating the spectral scaling function σ(λ) from the
NDRs (41) we obtain the equation of state in the kinetic
equation (18). The continuity equation in (18) is derived
via the thermodynamic limit of the modulation equations
(31), similar to the KdV case. See Ref. [33] for details.

Concluding this Section, we note that the requirement
for the spectral support Γ+ (or Λ+) to be a compact set

is purely technical and can be dropped so that the inte-
grals in the NDRs and the equation of state can be taken
over semi-infinite spectral domains: the only important
requirement is the sufficiently fast decay of the DOS en-
suring the existence of the integrals. The same is true for
the KdV SG equations.

D. Polychromatic soliton gases and soliton
condensates

Integration of the spectral kinetic equation (13), (17)
for soliton gas in any generality represents a challeng-
ing mathematical problem. One can, however, consider
some physically interesting particular cases that admit
effective analytical treatment. The most obvious one is
the case of spectrally polychromatic gases studied in [46].
The DOS of a polychromatic soliton gas represents a
linear combination of the ‘monochromatic’ components
in the form of Dirac delta-functions centered at distinct
spectral points ζj ∈ Γ (note that Γ can be real or complex
domain, depending on the original dispersive equation)

f(λ;x, t) =

M∑
j=1

wj(x, t)δ(λ− ζj), (42)

where wj(x, t) > 0 are the components’ weights, and
{ζj}Mj=1 ⊂ Γ, (ζj 6= ζk ⇐⇒ j 6= k). Substitution of
(42) into the kinetic equation (13), (17) reduces it to a
system of hyperbolic hydrodynamic conservation laws

(wi)t + (wisi)x = 0, i = 1, . . . ,M , (43)

where the component densities wi(x, t) and the transport
velocities sj(x, t) ≡ s(ζj , x, t) are related algebraically:

sj = s0j +

M∑
m=1,m6=j

Gjmwm(sj − sm), j = 1, 2, . . .M.

(44)
Here we used the notation s0j ≡ s0(ζj), Gjm ≡
G(ζj , ζm), j 6= m. One should also mention an impor-

tant restriction
M∑

m=1,m6=j
Gjmwm < 1 equivalent to the

condition of positivity of the spectral scaling function σ
in the thermodynamic limit construction.

We note that the delta-function representation (42) is
a mathematical idealisation, which has a formal sense in
the context of the integral equation of state (17), but can-
not be applied to the original dispersion relations where
it appears in both the integral and the secular terms (cf.
(39) for the KdV equation). In a physically realistic de-
scription the delta-functions in (42) should be replaced by
some narrow distributions around the spectral points ζj ,
i.e. we first take the thermodynamic limit N → ∞ and
then allow the distributions to become sharply peaked.

For M = 2 system (44) can be solved to give explicit
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expressions for s1,2(w1, w2):

s1 = s01 +
G12w2(s01 − s02)

1− (G12w2 +G21w1)
,

s2 = s02 −
G21w1(s01 − s02)

1− (G12w2 +G21w1)
.

(45)

As was shown in [31] (see also [66]) the two-component
system (43), (45) is equivalent to the so-called Chaplygin
gas equations that occur in certain theories of cosmology
(see e.g. [67]), and to the Born-Infeld equations arising
in nonlinear electromagnetic field theory [68], [29].

It was shown in [46] that the system (43), (44) for any
M ∈ N possesses M Riemann invariants and belongs to
the special class of linearly degenerate, semi-Hamiltonian
systems of hydrodynamic type [69]. Linear degeneracy of
(43), (44) implies the absence of the wavebreaking and
shock formation for generic initial-value problems with
smooth Cauchy data [70]. On the other hand, it im-
plies that the solution to a Riemann (the evolution of
an initial discontinuity) problem for polychromatic soli-
ton gas will be given by a combination of differing con-
stant states wi = constj , separated by contact discon-
tinuities propagating with classical shock speeds found
from the Rankine-Hugoniot conditions for the conserva-
tion laws (43),(44). Such weak solutions were constructed
in Refs. [31, 32, 35, 60] for various soliton gases. More
general solutions are available via the hodograph trans-
form, see [46, 66].

Another special class of soliton gases is presented by
soliton condensates whose properties are dominated by
the collective effect of soliton interactions while the indi-
vidual soliton dynamics are completely suppressed. Soli-
ton condensates were first introduced in [33] for the fNLS
equation and then thoroughly studied in [34] for the KdV
equation. Spectrally, a soliton condensate is realized by
vanishing the spectral scaling function, σ(η)→ 0, in the
soliton gas NDRs (equations (39) for KdV or (41) for
fNLS). For the KdV case the condensate NDRs are then
given by [34]∫

Γ

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣ f(µ)dµ = η,

∫
Γ

ln

∣∣∣∣µ+ η

µ− η

∣∣∣∣ v(µ)dµ = 4η3.

(46)
For the simplest case Γ = [0, q] these are solved by

f(η) =
η

π
√
q2 − η2

, v(η) =
6η(2η2 − 1)

π
√
q2 − η2

. (47)

The counterpart fNLS solution of the NDRs (41) with
λ ∈ Γ+ = [0, iq] and σ = 0 is given by [33]

f(λ) =
−iλ

π
√
q2 + λ2

, v(λ) = 0 , (48)

—and describes the DOS f(λ) in the non-propagating,
bound state (s = v/f = 0) soliton condensate. By
choosing a different 1D support Γ+ ⊂ C+ one can con-
struct other types of fNLS soliton condensates. E.g. if

Γ+ = {ξ+iη | ξ2+η2 = 1, η > 0} (a cemi-circle) then the
correposnding condensate DOS f(λ) = Imλ

π [33]. Such a
‘circular’ soliton condensate propagates with the speed
s(λ) = −8Reλ—twice the speed of a free fNLS soliton.

Concluding this section, we mention an important gen-
eralization of the spectral theory of KdV soliton conden-
sates developed in [34] by assuming the spectral support
Γ in (46) to be a union of N + 1 finite disjoint intervals,
termed ‘s-bands’, Γ = [0, β1] ∪ [β2, β3] ∪ [β2j , β2j+1], j =
0, . . . N , with βj = βj(x, t). It was shown in [34] that
the kinetic equation (13), (16) then implies that the end-
points βj of the s-bands vary according to the genus N
KdV-Whitham equations [30], providing the connection
of non-equilibrium soliton gas with the fundamental ob-
jects of dispersive hydrodynamics such as rarefaction and
dispersive shock waves [71]. The fNLS counterpart of
the KdV theory of generalized soliton condensates is in
progress.

IV. IST APPROACHES TO SYNTHESIS AND
ANALYSIS OF SOLITON GAS

As shown in the previous Sections, the IST and finite-
gap theory lay the foundations for the theory of soliton
gas, demonstrating that soliton collisions are elastic and
providing exact relations for the shifts in soliton posi-
tions, ultimately leading to the kinetic equation. Here,
on the example of the fNLS equation, we discuss how the
IST method allows one to observe the wave field of soli-
ton gas in practice by generating such fields in numerical
simulations or experiments from known soliton parame-
ters. Also, we discuss the numerical techniques to solving
the (opposite) direct scattering problem and determining
the complete set of soliton parameters – eigenvalues and
norming constants – from numerically or experimentally
observed wave fields. Combined, the solutions of these
two problems form a complete recipe for the IST synthe-
sis and analysis of soliton gas.

For a rarefied soliton gas, the wave field can be con-
structed as an arithmetic sum of wave fields of single
solitons with eigenvalues and positions chosen in accor-
dance with the desired DOS. The dynamical and statis-
tical properties of such gases have been studied using the
weak interaction model, two-soliton interaction models
and direct numerical simulations [72–76]. Dense soliton
gas requires full consideration of the interaction of soli-
tons. In this Section, we describe an approach to the
construction of soliton gas wave field used in the recent
numerical and experimental studies [17, 26, 45, 77], which
is based on exact dense N -soliton solutions. Although
multi-soliton solutions are localized in space, for a large
number N of solitons, edge effects can be neglected and
the central part of the wave field can be considered as a
continuous section of soliton gas. By changing the soliton
norming constants, it is possible to influence the distri-
bution of solitons in the physical space, even though the
exact mathematical link between the norming constants
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and the soliton spatial density (or, more generally, the
DOS) is still missing.

Note that the explicit formulas for exact multi-soliton
solutions have been known for decades, see e.g. [5], how-
ever, their practical application was impossible due to
numerical errors in the form of extreme gradients that
appeared already starting from N ∼ 10 solitons. The
main source of these errors is the roundoff during a large
number of arithmetic operations with exponentially small
and large numbers. A solution to this problem has been
found only recently in [45] with a specific implementa-
tion of the dressing method combined with high-precision
arithmetic computations, making it possible to success-
fully generate wave fields containing hundreds of solitons.

As for the direct scattering procedure, there are sev-
eral well established methods for the computation of soli-
ton eigenvalues, see e.g. the Fourier collocation and Bof-
fetta–Osborne methods. In the present paper, we focus
on a highly challenging problem of the accurate identifi-
cation of soliton norming constants, which is hampered
by several types of numerical instabilities and has been
solved only very recently in [78, 79].

In this Section, we consider the fNLS equation in the
form,

iψt +
1

2
ψxx + |ψ|2ψ = 0, (49)

following the studies [26, 45, 78, 80, 81] on the applica-
tion of numerical IST and also other literature where the
coefficients used in Eq. (49) are conventional.

A. IST method formalism

The IST method is based on the correspondence be-
tween an integrable nonlinear PDE and a specific aux-
iliary system of two linear equations (Lax pair), which
consists of a stationary eigenvalue problem and an evo-
lutionary problem for the same auxiliary function. The
considered PDE is then obtained from the Lax pair as
a compatibility condition. Using this compatibility con-
dition, one can prove the fundamental property of the
auxiliary system that its eigenvalue spectrum does not
change with the evolution of wave field [5].

For the fNLS equation (49), the Lax pair is known as
the Zakharov–Shabat system [59] for a two-component
vector wave function Φ(x, λ) = (φ1, φ2)T,

Φx =

(
−iλ ψ
−ψ∗ iλ

)
Φ, (50a)

Φt =

(
−iλ2 + i

2 |ψ|2 λψ + i
2ψx

−λψ∗ + i
2ψ
∗
x iλ2 − i

2 |ψ|2
)

Φ, (50b)

where the superscript T stands for the matrix transpose
and λ = ξ + iη is a complex-valued spectral parameter.
The first equation (50a) is equivalent to the eigenvalue

problem for λ written via the Lax operator L̂ as

L̂Φ = λΦ, L̂ = i

(
1 0
0 −1

)
∂

∂x
− i
(

0 ψ
ψ∗ 0

)
. (51)

One can check that the fNLS equation, i.e., Eq. (6) with
σ = 1, can be obtained in the anti-diagonal elements of
the compatibility condition,

Φxt = Φtx. (52)

Note that, for the KdV equation (1), the equivalent
Lax operator represents the self-adjoint Schrödinger op-
erator (2), for which the spectral theory is well developed
in quantum mechanics, see e.g. [82]. For the fNLS equa-
tion, the Lax operator is not self-adjoint, meaning that
its eigenvalues can be located in the entire complex plane,
though it is sufficient to consider only the upper half of
it, η = Imλ ≥ 0. The latter follows from the fact that
for every solution Φ = (φ1, φ2)T of the Zakharov–Shabat
system, which corresponds to an eigenvalue λ, there ex-
ists a counterpart Φ̃ = (−φ∗2, φ∗1)T corresponding to the
complex-conjugate eigenvalue λ∗. Despite these differ-
ences, there are many similarities in the spectral theory
of the operator (51) and the Schrödinger operator, and
we encourage the reader to keep in mind this analogy,
according to which the wave field ψ of the fNLS equation
is considered as a potential, and the vector function Φ as
a wave function. In what follows, we will consider only a
rapidly decaying potentials ψ(x).

Similarly to quantum mechanics, the scattering prob-
lem (50a) for the wave function Φ can be introduced
with the following asymptotics at infinity (the so-called
“right” scattering problem, in contrast to the “left” scat-
tering problem, see e.g. [83]),

lim
x→−∞

{
Φ−

(
e−iλx

0

)}
= 0, (53)

lim
x→+∞

{
Φ−

(
a(λ) e−iλx

b(λ) eiλx

)}
= 0. (54)

These asymptotics represent a two-component gener-
alisation of the “right” scattering problem for the
Schrödinger operator. The scattering coefficients a(λ)
and b(λ) have the meaning that a wave (a e−iλx, 0)T

comes from the right side of the potential ψ(x) and then
splits into the transmitted wave (e−iλx, 0)T at x → −∞
and the reflected wave (0, b eiλx)T at x → +∞. Hence,
the quantity r = b/a represents the so-called reflection
coefficient. Note that the alternative choice of the asymp-
totics corresponding to the “left” scattering problem is
also common in the IST constructions, see e.g. [83].

The eigenvalue spectrum of the scattering problem
consists of the eigenvalues λ corresponding to bounded
solutions Φ of the Zakharov–Shabat system with asymp-
totics (53)-(54). Such solutions exist for real-valued spec-
tral parameter, λ = ξ ∈ R, and also for complex-valued
λ, η = Imλ > 0, if and only if a(λ) = 0. For rapidly de-
caying potentials ψ(x), the latter part of the eigenvalue
spectrum usually consists of a finite number of discrete
points λn, a(λn) = 0, n = 1, ..., N (discrete spectrum),
and the overall eigenvalue spectrum contains also the real
line λ = ξ ∈ R (continuous spectrum), see [5]. The full
set of the scattering data represents a combination of the
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discrete {λn, ρn} and continuous {r} spectra,{
λn | a(λn) = 0, Imλn > 0

}
,

ρn =
b(λn)

a′(λn)
, r(ξ) =

b(ξ)

a(ξ)
, (55)

where a′(λ) is complex derivative of a(λ) with respect to
λ, ρn are the so-called norming constants associated with
the eigenvalues λn, and r(ξ) is the reflection coefficient
defined at the real line ξ ∈ R. Most importantly, the
time evolution of the scattering data (55) is trivial,

∀n : λn = const, ρn(t) = ρn(0)e2iλ2
nt,

r(ξ, t) = r(ξ, 0)e2iξ2t, (56)

and the wave field ψ(x, t) can be recovered from it at
any moment of time with the IST by solving the integral
Gelfand-Levitan-Marchenko (GLM) equations [5]. How-
ever, in the general case, the latter procedure can only
be done numerically, asymptotically at large time, or in
the semi-classical approximation [84, 85].

Note that the function a(λ) is analytic in the upper
half of the λ-plane and has simple zeros at the eigenvalue
points, a(λn) = 0 (we do not consider the degenerate
case when an eigenvalue point represents a multiple zero),
see e.g. [5, 86]. Meanwhile, the analyticity is not always
the case for the function b(λ). However, in numerical
simulations or experiments, the wave field ψ(x) is always
confined to a finite region of space, i.e., it has compact
support, and in this case the function b(λ) is also analytic
in the upper half of the λ-plane [5, 86]. This property of
a(λ) and b(λ) is essential for algorithmic implementations
of the direct scattering transform discussed below.

In the physical space, the continuous spectrum with
non-zero reflection coefficient r(ξ) corresponds to nonlin-
ear dispersive waves, while the discrete eigenvalues λn
together with the norming constants ρn – to solitons.
In particular, the eigenvalues λn = ξn + iηn contain in-
formation about the soliton amplitudes, An = 2ηn, and
group velocities, Vn = −2ξn, while the soliton norming
constants – about their positions in space xIST

n ∈ R and
complex phases θIST

n ∈ [0, 2π). In a weakly nonlinear
case, the discrete spectrum disappears and the function
r(ξ) tends to a conventional Fourier spectrum of the wave
field ψ(x), so that the IST is often considered as a non-
linear analogue of the Fourier transform.

In the (opposite) reflectionless case r(ξ) = 0, the dis-
persive waves are absent and the IST procedure can be
performed analytically by solving the GLM equations,
leading to an exact N -soliton solution (N -SS) ψ(N)(x, t).
There is also an alternative procedure for the construc-
tion of N -SS called the dressing method [5, 87], also
known as the Darboux transformation [88, 89]. The
dressing method allows one to add solitons to the result-
ing solution recursively by one at a time using a special
algebraic construction [5, 87, 89]. The numerical imple-
mentation of this construction turns out to be much more

stable and resource-efficient than solving the GLM equa-
tions, making it possible to build multi-soliton wave fields
containing large number of solitons [45].

The dressing procedure starts from the trivial potential
of the fNLS equation, ψ(0)(x) = 0 for x ∈ R, and the
corresponding matrix solution of the Zakharov–Shabat
system (50),

Φ(0)(x, λ) =

(
e−iλx 0

0 eiλx

)
; (57)

here we fix time, t = 0, for definiteness. At the n-th step
of the recursive method, the n-soliton potential ψ(n)(x)
is constructed via the (n− 1)-soliton potential ψ(n−1)(x)

and the corresponding matrix solution Φ(n−1)(x, λ) as

ψ(n)(x) = ψ(n−1)(x) + 2i(λn − λ∗n)
q∗n1qn2

|qn|2
, (58)

where the vector qn = (qn1, qn2)T is determined by
Φ(n−1)(x, λ) and the scattering data of the n-th soliton
{λn, Cn},

qn(x) = [Φ(n−1)(x, λ∗n)]∗ ·
(

1
Cn

)
. (59)

Here Cn, n = 1, ..., N , are the soliton norming constants
in the dressing method formalism, see the discussion be-
low. The corresponding matrix solution Φ(n)(x, λ) of the
Zakharov–Shabat system is calculated via the so-called
dressing matrix σ(n)(x, λ),

Φ(n)(x, λ) = σ(n)(x, λ) ·Φ(n−1)(x, λ), (60)

σ
(n)
ml (x, λ) = δml +

λn − λ∗n
λ− λn

q∗nmqnl
|qn|2

, (61)

where m, l = 1, 2 and δml is the Kronecker delta. The
time dependency is recovered using the time-evolution of
the norming constants,

Cn(t) = Cn(0)e−2iλ2
nt, (62)

and repeating the dressing procedure at each time t.
The norming constants Cn are related to the IST norm-

ing constants ρn as follows [78, 90] (this equation is valid
for pure multi-soliton solutions only),

Cn(t) =
1

ρn(t)

N∏
k=1

(λn − λ∗k)×
N∏
j 6=n

1

λn − λj
, (63)

and can be parameterized in terms of soliton positions
xDM
n and phases θDM

n ,

Cn = − exp

[
2iλnx

DM
n + iθDM

n

]
. (64)

Note that the IST norming constants ρn have an alterna-
tive parameterization via IST positions xIST

n and phases
θIST
n , which coincide with the dressing method positions
xDM
n and phases θDM

n and also with the observed in the
physical space positions and phases only for the one-
soliton solution (7). In presence of other solitons or dis-
persive waves, all three types of positions and phases may
differ significantly from each other; see e.g. the discussion
in [80] and the references wherein.
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B. IST synthesis of soliton gas wave field

The discussed method for the numerical construction
of soliton gas wave field is based on the computation
of N -SS for a large number of solitons N using the
straightforward algorithmic implementation of the dress-
ing method. The high-precision arithmetics is applied
to accurately resolve operations with exponentially small
and large numbers coming from the elements of vectors
qn in Eqs. (57)-(61). The required number of digits grows
with N non-trivially and depends on specific choice of
the soliton eigenvalues and norming constants, but usu-
ally stays in the hundreds for N ' 100 and thousands
for N ' 1000; see [26, 45, 80] for detail. Note that,
while this inherent difficulty of the dressing method and
other schemes based on the IST theory cannot be en-
tirely avoided, the recently developed optimizations [91]
can substantially reduce the necessary number of digits.

For the fNLS equation, soliton gas is characterized
by the distribution of soliton eigenvalues (amplitudes
and velocities) and soliton norming constants (positions
and phases). Soliton eigenvalues are generally problem-
specific and cannot be easily changed without modifying
the context in which the soliton gas is studied. Soliton
phases can usually be chosen as random values uniformly
distributed over the interval [0, 2π); in this case, evolu-
tion over time, see Eq. (62), preserves this distribution.
In what follows, we focus on the study of dense soliton
gases that are in equilibrium and have wave fields that
are statistically homogeneous in space. This poses two
problems: (i) how to achieve a high spatial density of soli-
tons and (ii) how to construct multi-soliton wave fields,
which are statistically homogeneous over a wide region
in the physical space for random soliton phases.

As has been observed empirically in [26, 45], if soli-
ton positions are distributed within the interval xDM

n ∈
[−L0/2, L0/2] and L0 approaches zero, then the charac-
teristic size of the corresponding N -SS in the physical
space shrinks to some finite non-zero limit and the soli-
ton spatial density reaches its maximum value. However,
for L0 = 0 the N -SS becomes symmetric, ψ(x) = ψ(−x).
To avoid this artificial symmetry, one can use sufficiently
small intervals L0 ' 1, so that the symmetry is not ob-
served and the characteristic size of the N -SS remains
close to the size in the limiting case L0 = 0.

In [45], a method has been developed for the con-
struction of statistically homogeneous soliton gas wave
fields, which starts from the computation of N -SS wave
fields using rather arbitrary soliton positions from a
small interval xDM

n ∈ [−L0/2, L0/2], L0 ' 1. Then,
these wave fields are put into a sufficiently large box
x ∈ [−Lp/2, Lp/2] where they are small near the edges,

|ψ(±Lp)| . 10−16 max |ψ(x)|,
so that one can treat this box as a periodic one and simu-
late the time evolution of the constructed solutions inside
it using the direct numerical simulation of the fNLS equa-
tion. If soliton velocities are random, then after some

time the wave fields spread over the box Lp and the sys-
tem arrives to a statistically steady state, in which its ba-
sic statistical functions no longer depend on time. Then
this state is used as a model of statistically homogeneous
soliton gas of spatial density N/Lp in an infinite space;
in [45], it has been confirmed that for large enough num-
ber of solitons N and box size Lp the results depend on
them only in the combination N/Lp. Note that such “pe-
riodization” of solitons requires the periodic box Lp to be
significantly larger than the characteristic size of the ini-
tial N -SS, decreasing the maximum soliton density that
can be achieved with the described method.

In terms of the finite band theory, the periodic evo-
lution in time replaces N -SS by N -band periodic solu-
tions having exponentially narrow bands compared to the
gaps, as the characteristic soliton width is much smaller
than the box size Lp. This allows one to neglect the dif-
ference between the two types of solutions, similarly as
it is done in Section III A, where, vice versa, the soliton
gas is considered as a limit of finite-band solutions.

Figure 5 illustrates the “periodization” method on the
example of a single 128-SS generated from solitons hav-
ing uniformly distributed positions xDM

n ∈ [−L0/2, L0/2],
L0 = 2, and phases θDM

n ∈ [0, 2π), equal amplitudesAn =
π/3.2 ≈ 1 and Gaussian-distributed velocities with zero
mean and standard deviation V0 = 2, Vn ∼ N (0, V 2

0 ).
The initial 128-SS has characteristic size in the physical
space δX ' 280, and in average the wave field is greater
at the center than closer to the edges of the solution, see
Fig. 5(a). Then, this solution is placed into the periodic
box x ∈ [−Lp/2, Lp/2], Lp = 128π, and the evolution is
simulated until the final time t = 200, when the wave field
in average becomes fairly uniform, see Fig. 5(b). As has
been verified in [45], the soliton eigenvalues Λn calculated
at the final simulation time with the Fourier collocation
method [92] almost coincide with the eigenvalues λn of
the initial 128-SS with the relative differences between
the two |λn − Λn|/|λn| of 10−9 order.

The described above “periodization” method can be
applied only when the soliton velocities are distributed
over some finite interval of values. In [26], it has been
observed that for the special case of bound-state soli-
ton gas, i.e., when all solitons have the same velocity
(which one can set to zero for simplicity), a certain dis-
tribution of soliton eigenvalues (i.e., amplitudes) leads
to a statistically homogeneous multi-soliton wave fields
in a wide region of the physical space for sufficiently
small soliton positions |xDM

n | . 1 and random soliton
phases; see Fig. 5(c). The figure shows 128-SS con-
structed from solitons having zero velocity Vn = 0 and
uniformly distributed positions and phases over the in-
tervals xDM

n ∈ [−L0/2, L0/2], L0 = 2, and θDM
n ∈ [0, 2π).

The amplitudes are distributed according to the Bohr-
Sommerfeld quantization rule, which is deduced from the
solution of the direct scattering problem for the rectan-
gular box potential; see Sec. VI B for detail. The result-
ing wave field turns out to be statistically homogeneous
〈|ψ(x)|2〉 ≈ 1 over more than 70% of its characteristic
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FIG. 5. (Adapted from [45] and [26]) (a,c) Wave fields of
128-SS constructed from solitons having uniformly distributed
positions xDM

n ∈ [−L0/2, L0/2], L0 = 2, and phases θDM
n ∈

[0, 2π): (a) solitons have equal amplitudes An = π/3.2 ≈ 1
and Gaussian-distributed velocities with zero mean and stan-
dard deviation V0 = 2, Vn ∼ N (0, V 2

0 ), and (c) solitons have
amplitudes distributed according to the Bohr-Sommerfeld
quantization rule for a rectangular box, see Eq. (68) below,
and zero velocities Vn = 0. (b) The wave field from panel
(a) after placing it into the periodic box x ∈ [−Lp/2, Lp/2],
Lp = 128π, and simulating the time evolution within the
fNLS equation up to the final time t = 200. Right insets
in panels (a,c) and the inset in panel (b) show zoom of the
wave fields. Left insets in panels (a,c) demonstrate soliton
eigenvalues (note the swapped notations between the axes).

size in the physical space for random soliton phases [26].
Cutting out the remaining 30% at the edges where the
wave field is not statistically homogeneous, one can use
this 70% part as a model of statistically homogeneous
bound-state soliton gas. As discussed in Sec. VI B, this
soliton gas accurately models the long-time statistically
stationary state of the noise-induced modulational insta-
bility of the plane wave solution.

We believe that there are other distributions of soli-
ton amplitudes leading to the statistically homogeneous
multi-soliton wave fields in a wide region of the physical
space for sufficiently small soliton positions |xDM

n | . 1
and random soliton phases. The general question of
constructing multi-soliton bound-state wave fields with
a given profile 〈|ψ(x)|2〉 = P (x) in the physical space
and a given set of amplitudes An by using random soli-
ton phases and a specific distribution of soliton positions
represents a challenging problem for future studies.

C. Direct scattering transform analysis

In this subsection, we discuss the direct scattering
transform (DST) analysis, which allows one to study the
nonlinear composition of numerically or experimentally
observed wave fields. Focusing only on the discrete spec-
trum (soliton eigenvalues and norming constants), we as-
sume that the wave field in question is given in a simula-
tion box x ∈ [−L/2, L/2] and outside this box it equals
zero. If the actual boundary conditions are different, then
one can assume that the box L is large enough com-
pared to the characteristic sizes of nonlinear structures,
so that the difference in the boundary conditions and the
resulting edge effects can be neglected. Note that in this
formulation the scattering coefficients a(λ) and b(λ) are
analytic functions in the upper half of the λ-plane, that
is essential for the algorithms discussed below.

In what follows, we describe the DST procedure pre-
sented in the recent study [81]. This procedure, based on
the standard DST methods [92–94] supplemented by the
latest studies [78, 79, 95] for the accurate calculation of
the norming constants, contains several steps which are
discussed below.

First, if there is a discontinuity of the wave field at
x = ±L/2, then it is smoothed using a smoothing window
of the same size as the characteristic soliton width. It is
assumed that the number of solitons inside the box L is
large and that these discontinuities, together with their
smoothing, do not introduce significant inaccuracies in
the results.

Second, an approximate location of the soliton eigen-
values is found using the standard Fourier collocation
method [92]. Being fast and fairly accurate, this method
is based on the Fourier decomposition of the wave field,
which artificially shifts the continuous spectrum eigenval-
ues to the upper half of the λ-plane due to the implied
periodization. Also, it does not distinguish between the
eigenvalues of discrete and continuous spectra, leading to
the problem of identifying low-amplitude solitons.

Third, to cope this this problem, the wave field is
considered in two larger boxes x ∈ [−3L/4, 3L/4] and
x ∈ [−L,L] by filling with zeros ψ = 0 the intervals
where the wave field is not defined. Then, the Fourier
collocation method is executed in both boxes and only
the eigenvalues coinciding in both calculations are se-
lected as belonging to the discrete spectrum. While the
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latter provides a good approximation of the soliton eigen-
values, i.e., zeros of the coefficient a(λ), this approxi-
mation is still insufficient for the accurate calculation of
the norming constants, which requires knowledge of roots
a(λn) = 0 to hundreds of digits [78]. That is why the cal-
culated eigenvalues are then used as seeding values for a
high-accuracy root-finding procedure.

The fourth and the final step of the described DST
procedure consists in application of the standard second-
order Boffetta–Osborne method [93] on a fine interpo-
lated grid using high-precision arithmetic operations, as
suggested in [78, 79]. The Boffetta–Osborne method is
based on the calculation of the so-called extended 4 × 4
scattering matrix S, which translates the solution of the
Zakharov–Shabat system Φ together with its derivative
Φ′ = ∂Φ/∂λ from x = −L to x = L,(

Φ(L)
Φ′(L)

)
=

(
Σ 0
Σ′ Σ

)
︸ ︷︷ ︸

S

(
Φ(−L)
Φ′(−L)

)
. (65)

Here Σ(λ) is 2×2 matrix, such that Φ(L) = Σ(λ)Φ(−L),
and the scattering coefficients are connected with the el-
ements of matrix S as

a(λ) = S11e
2iλL, b(λ) = S21,

a′(λ) = [S31 + iL(S11 + S33)] e2iλL. (66)

Note that instead of the standard second-order Boffetta–
Osborne method one can use the higher-order methods
obtained with the Magnus expansion; see [79, 95] for de-
tail. A fine spatial grid and the high-precision arith-
metic operations are necessary to (i) neglect the round-
off errors when calculating the wave function Φ of the
Zakharov–Shabat system, (ii) avoid the anomalous er-
rors in computation of the norming constants, and (iii)
suppress the numerical instability of the wave scattering
through a large potential, see [78, 79] for detail. Also
note that when avoiding the anomalous errors, one can
supplement the DST procedure with the bidirectional al-
gorithm and its improvements, see [96], to decrease the
necessary number of digits in the high-precision opera-
tions.

The Boffetta–Osborne method allows one to find the
scattering coefficients a(λ) and b(λ) for any value of λ by
the direct numerical integration of the Zakharov–Shabat
system on the interval [−L/2, L/2] with boundary condi-
tions (53). Note that a(λ) and b(λ) are analytic functions
in the upper-half of the λ-plane, as the potential ψ(x) has
a compact support. Then, with the help of the Newton
method, one can find roots a(λn) = 0 with the neces-
sary precision by using the eigenvalues obtained by the
Fourier collocation method as seeding values. Finally,
the norming constants are calculated according to their
definition (55) using the extended scattering matrix S,
see Eq. (66), to find the derivative a′(λ).

Figure 6 illustrates the performance of this DST pro-
cedure on the example of a periodic wave field that was
“grown” from small statistically homogeneous in space

x

-200 -150 -100 -50 0 50 100 150 200

|ψ|

0

1

2

3

4
(a)

|ψ|
|ψ

s
|

x

-15 -10 -5 0 5 10 15

|ψ|

-2

0

2

(b)

|ψ|
|ψ

s
|

arg ψ
arg ψ

s

V

-1 0 1

A

0

1

2

3

(c)

x
DM

-200 0 200

θDM

0

π

2π
(d)

FIG. 6. (Adapted from [81]) Numerical DST analysis of a
periodic wave field that was “grown” from small statistically
homogeneous in space noise within the fNLS equation, supple-
mented by a small linear pumping term, until the intensity,
averaged over the simulation box, reached unity, |ψ|2 = 1;
see [81] for details. Panel (a) shows the absolute values of the
“grown up” wave field |ψ| (solid blue) and the multi-soliton
solution |ψs| (dashed red); ψs is constructed using the soli-
ton parameters obtained in the DST procedure. Panel (b)
represents zoom of panel (a), also demonstrating the com-
plex phases of the “grown up” wave field (solid green) and
the multi-soliton solution (dashed black). The dots in pan-
els (c) and (d) illustrate soliton amplitudes An, velocities Vn,
positions xDM

n and phases θDM
n .

noise within the fNLS equation, supplemented by a small
linear pumping term, until the intensity, averaged over
the simulation box, reached unity, |ψ|2 = 1; see [81] for
details. The solid blue and green lines in Fig. 6(a,b) show
the amplitude |ψ| and complex phase argψ of the “grown
up” wave field, while the dots in Fig. 6(c,d) demonstrate
the calculated soliton amplitudes An, velocities Vn, posi-
tions xDM

n and phases θDM
n . Using these soliton param-

eters, one can construct the corresponding exact multi-
soliton solution as discussed in the previous subsection;
it turns out that this solution approximates the original
wave field very well, as illustrated by the dashed red and
black lines in Fig. 6(a,b).

Note that the average intensity of the multi-soliton so-
lution ψs in Fig. 6 equals 99% of that of the original
“grown up” wave field ψ. Also, most of the solitons of
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this solution have zero velocities, forming a bound state.
In [81], such a situation is observed if the initial noise am-
plitude and the pumping coefficient are small enough. If
this is not the case, then the “grown up” wave fields with
intensity of unity order |ψ|2 ∼ 1 also represent solitons-
dominated states, which are not bound as these solitons
have different velocities. Moreover, as shown in the pa-
per, during the growth stage the solitonic part of the wave
field becomes the dominant one very early when the aver-
age intensity is still small, |ψ|2 ' 0.1, and the dispersion
effects are leading in the dynamics. These observations
indicate that the soliton gas model can be applicable even
to weakly nonlinear cases, so that a soliton gas can be a
very common object in nature.

V. EXPERIMENTS

From the experimental point of view, a few attempts
to generate and to observe soliton gases have been made
in some optical fiber experiments performed at the end
of the 1990’s [37, 97, 98]. The soliton gas was gener-
ated by the synchronous injection of laser pulses inside
a passive ring cavity. No direct observation but only av-
eraged measurements of the Fourier power spectrum and
of the second-order autocorrelation function characteriz-
ing the optical soliton gas have been reported in these
pioneering experiments. Moreover, the dynamics of the
ring resonator was so complex that many features rang-
ing from purely temporal chaos to spatio-temporal chaos
or turbulence were observed in this fiber system [98].

Analysing ocean waves recordings, Costa et al. have
reported the observation of random wavepackets in shal-
low water waves in 2014 [19]. The wavepackets have
been analyzed using numerical tools of nonlinear spec-
tral analysis [99] and interpreted as being composed of
random solitons that might be associated with KdV soli-
ton gas. One year later, large ensembles of interacting
and colliding solitons have been observed in a laboratory
environment [100]. The experimental system was a wa-
ter cylinder deposited on a heated channel and levitating
on its own generated vapor film owing to the Leidenfrost
effect. Multiple soliton propagation was observed at the
surface of the water cylinder and the Fourier analysis
that was made in an attempt to characterize the multi-
ple coherent structures revealed a “soliton turbulence-like
spectrum”. Note also that a striking transition between
weak turbulence and solitonic regimes has been evidenced
in the hydrodynamic experiments reported in ref. [101].
In these experiments, water waves have been generated
by exciting horizontally a water container by using an
oscillating table. The weak turbulence regime observed
at low forcing and/or large depth was shown to abruptly
evolve into a solitonic regime at larger forcing and/or
small depth. Remarkably, these results establish a pos-
sible link between the field of integrable turbulence and
the field of wave turbulence.

In the recent laboratory experiments reported in ref.

[102], Redor et al. have taken advantage of the process
of fission of a sinusoidal wave train to generate a bidi-
rectional shallow water soliton gas in a 34-m long flume.
The space-time observations have revealed complex dy-
namics where large numbers of colliding solitons retained
their profile adiabatically, though their amplitude was
slowly decaying because of some unavoidable damping.
The Fourier analysis of the observed nonlinear wave field
has clearly revealed the interplay between multiple soli-
tons and dispersive radiation. Further analysis making
use of the periodic scattering transform have been imple-
mented in ref. [103] to discriminate linear wave motion
states from integrable turbulence and soliton gas. More-
over the statistical properties of the soliton gas have been
given in terms of probability density distribution, skew-
ness, and kurtosis [103].

The experiments reported in ref. [16, 102, 103] have
been made in the presence of an unavoidable slow damp-
ing but it has been shown that a stationary state typified
by the interplay among random bidirectional solitons can
be achieved because of the continuous energy input by the
wavemaker. In these shallow water experiments, a route
to integrable turbulence has been discovered through the
disorganization of wave motion that is induced by the
wave maker [103]. This route has been shown to depend
on the nonlinearity of the waves but also on the ampli-
tude amplification and reduction due to the wavemaker
feedback on the wave field [103].

Using an approach fully based on the IST method while
also relying on the concept of DOS, a soliton gas has
been generated in hydrodynamic experiments performed
in the deep-water regime where wave propagation is de-
scribed at leading order by the 1D fNLS equation [17].
The experiment has been performed in a wave flume be-
ing 148 m long, 5 m wide, and 3 m deep. Unidirectional
waves have been generated at one end of the tank with
a computer assisted flap-type wave maker and the flume
is equipped with an absorbing device strongly reducing
wave reflection at the opposite end. In these experiments
the space-time evolution of the generated wave packet is
measured with 20 gauges uniformly distributed along the
tank.

The experiment reported in ref. [17] starts from the
numerical generation or synthesis of a soliton gas by using
the methodology described in Sec. IV. An ensemble of
128 solitons having spectral parameters being distributed
in a rectangular region of the spectral IST plane has been
numerically generated. The solitons have the modulus of
their norming constants being equal to unity while their
phases are randomly distributed between −π and +π. In
the experiment, the generated soliton gas has the form
of a random wave field spreading over ∼ 1200 s, see Fig.
7. It represents a dense soliton gas in where solitons are
not isolated and not well separated like in a rarefied gas.

In the experiments reported in ref. [17], a large number
of discrete eigenvalues were distributed with some den-
sity within a limited region of the complex plane. This
justifies the introduction of a statistical description of
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FIG. 7. Gas of 128 solitons propagating in a 140-m long 1D water tank [17]. (a) Water elevation (red line) and modulus of the
wave envelope measured at Z=6 m, close to the wave maker. (b) DOS of the soliton gas measured at Z=120 m. (c) Discrete
IST spectrum measured at Z = 6 m. (d) Discrete IST spectrum measured at Z=120 m. (e) Space-time evolution of modulus
of the wave envelope recorded by the 20 gauges regularly spaced along the tank. Reproduced with permissions from [17]

the spectral (IST) data. This represents a key point for
the analysis of the observed wave field in the framework
of the SG theory. In ref. [17], the DOS of a homoge-
neous soliton gas has been measured for the first time
in experiments, which provides an essential first step to-
wards experimental verification of the kinetic theory of
nonequilibrium SGs. Nonlinear spectral analysis of the
generated hydrodynamic soliton gas reveals that the den-
sity of states slowly changes under the influence of per-
turbative higher-order effects that break the integrability
of the wave dynamics.

VI. APPLICATIONS OF SOLITON GASES

Since the first paper of Zakharov [27], a peculiar in-
terest has been ascribed to SG as a fundamental math-
ematical and physical concept. Importantly, it has been
recently shown that SG theory can provide a powerful
framework to describe theoretically the complex statistics
underlying some well-known and fundamental nonlinear
dispersive waves phenomena. It is indeed natural to ex-
pect that SG theory can be used to describe some specific
regimes of integrable systems (integrable turbulence, see
Sec. VI A) [7, 12, 13, 15, 41, 104, 105]. In particular, by
using numerical simulations, it has been shown in 2019
that the long-term statistical properties of the so-called
spontaneous modulation instability coincides with those
of a specifically-designed SG(see Sec.VI B) [26]. Very re-
cently, the general relationship between the DOS of a SG
and the kurtosis (second-order moment) of the waves has
been derived (see Sec.VIII B). This approach provides the
first theoretical description of the long-term evolution of
the noise-induced modulation instability and paves the

way of the description of integrable turbulence by using
SG theory.

A. Integrable turbulence

Wave turbulence can be generally defined as the en-
semble of all the complex phenomena emerging in random
nonlinear waves systems. The phrase wave turbulence
theory is often used in a more restrictive sense and is then
defined as the statistical mechanics of weakly nonlinear
and dispersive waves [1, 106]. The standard wave turbu-
lence theory applies to non integrable waves systems in
which the Physics at long-time is dominated by resonant
interactions [107]. A general feature of wave turbulence
is the exchange of energy among all the scales induced by
the nonlinearity. If there is a source of energy for some
given spatial scales (for example the large scales) and if
other scales (for example small scales) are damped by
dissipation, wave turbulence theory predicts the possible
existence of the so-called Kolmogorov-Zakharov cascade.
This corresponds to an out-of-equilibirum phenomenon
characterized by a constant flux of energy between large
and small scales [1, 106, 107]. On the other hand, in the
absence of energy source and of losses, if the wave sys-
tem is Hamiltonian, nonlinear random waves may reach a
thermodynamical equilibrium state (characterized by the
equipartition of energy and the Rayleigh-Jeans distribu-
tion) [1, 106–109]. Note that, in common wave systems,
both the Kolmogorov-Zakharov and the Rayleigh-Jeans
are characterized by power-lawed spectra.

The Physics of integrable waves systems is of pro-
foundly different nature because of the infinite number
of constants of motion and of the absence of resonances.
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In particular, nonlinear random integrable waves
cannot reach the thermodynamical Rayleigh-Jeans
equilibrium [107, 110]. For this reason, Zakharov has
introduced a new field of research, the integrable turbu-
lence (IT), that is defined as the statistical description of
integrable systems [4]. Since this seminal paper in 2009,
integrable turbulence has received a growing interest
both from the theoretical[4, 7–9, 26, 41, 52, 104, 111–117]
and experimental [10, 12, 13, 15, 105, 114, 118] points of
view.

In practice, integrable turbulence corresponds to the
propagation of random waves in systems described by
integrable equations such as the 1D NLS, the KdV or
the Sine-Gordon equations. In this Sec. VI, we focus on
recent results on the 1DNLS integrable turbulence. The
one dimensional focusing NLS equation provides a bridge
between nonlinear optics and hydrodynamics[118, 119].
The 1D focusing NLS equation describes at leading order
deep-water wave trains or optical fiber in anomalous
dispersion regime and it plays a central role in the study
of rogue waves [120–124]. The relevent of approach to
study nonlinear random waves is a statistical description,
including probability density functions (PDF) of wave
amplitude ψ or of intensity |ψ|2 and moments such as
the kurtosis κ4 = 〈|ψ|4〉/〈|ψ|2〉2. The last years, the
statistical properties of integrable turbulence has been
widely studied by using numerical simulation of the NLS
equations. Preserving integrability in long-term simula-
tions is a delicate and challenging task, but to the best
of the knowledge, integrable turbulence is characterized
by stationary statistical properties of the field for long
time t. This existence of a stationary statistical states in
the long-time evolution of the waves system is the most
fundamental known feature of integrable turbulence.

Integrable turbulence phenomena can be classified by
considering the statistical properties of the initial condi-
tions. Two classes of initial conditions have been exten-
sively investigated : (i) the plane wave perturbed by a
small random noise and, (ii) partially coherent waves.

The homogeneous solution of the 1D focusing NLS
equation (the plane wave or condensate) is unstable in the
presence of long wave perturbation. When the pertur-
bation is a random process, this dynamical mechanism,
known as the “noise-induced” or spontaneous modulation
instability (MI) [7, 10, 125], represents a prominent ex-
ample of the integrable turbulence phenomena. Surpris-
ingly, the long-term statistical state is characterized by
a Gaussian local statistics of the field ψ i.e. by a kurto-
sis κ4 = 2 [7] while the other statistical properties such
as the Fourier spectra or two-points correlations are not
trivial [10]. These statistical quantities have been quan-
titatively measured in experiments but up to very recent
studies, no theoretical description was available. In the
Sec. VI B, we show that the soliton gas concept provides
a powerful theoretical tool to predict quantitatively the
statistical properties of the long term evolution of the

spontanesous modulation instability.
Partially coherent waves are random waves character-

ized by a finite typical spatial scale (or identically a fi-
nite typical spectral width). Partially coherent waves
made of numerous statistically independent modes rep-
resent the standard ansatz for initial conditions in the
wave turbulence theory [106, 107] and exhibit Gaus-
sian statistics. Such initial conditions have been ex-
tensively investigated in numerical simulations of de-
focusing and of focusing NLS equation and in experi-
ments [9, 12, 13, 15, 105, 118, 126]. Starting with par-
tially coherent waves initial conditions, the statistics de-
viates from Gaussian statistics as the time evolves and
eventually reaches a heavy or a low tailed PDF in the fo-
cusing and defocusing regime respectively [9]. The devi-
ation from Gaussianity in the stationary statistical state
increases together with the strength of the nonlinearity
and, importantly, in the focusing regime, the strongest
deviation is characterized by a kurtosis k4 = 4 [127].
Note that the higher is the kurtosis, the higher is the
rate of emergence of extreme events (rogue waves).

The evolution of partially coherent waves in (non inte-
grable) weakly nonlinear dispersive systems corresponds
to the fundamental question of wave thermalization
that has been widely investigated in wave turbulence
theory. The evolution of the statistical properties of
partially coherent waves in the framework of 1D NLS
integrable turbulence can be described by using a non
conventional wave turbulence theory approach [110, 128].
This theoretical approach predicts the deviation from
Gaussianity for a weak nonlinearity but is not valid
in the high nonlinearity regime. In particular, up
to now, the maximum value of the kurtosis k4 = 4
was not understood. In Sec VIII B, we summarize an
extremely recent theoretical study which provides a
demonstration of the maximum value of the kurtosis in
the strongly nonlinear regime by using soliton gas theory.

It is important to note that soliton gas is a peculiar
case of integrable turbulence. Indeed, in the framework
of IST with zero boundary conditions, integrable turbu-
lence can always be described by the combination of the
discrete and of the continuous spectra. Our conjecture
is that the high nonlinearity limit of integrable turbu-
lence can always be described by purely solitonic solu-
tions (soliton gas). We show in the Sec. VI B and impor-
tant example illustrating this conjecture.

B. Spontaneous Modulation Instability

The MI appears in many physical systems, such as
deep water waves [6], Bose-Einsteine condensates [129]
or nonlinear optical waves [130]. If the plane wave is
perturbed by an initially small sinusoidal perturbation,
the nonlinear stage of MI is described by homoclinic
solutions of the 1D focusing NLS equation – the
Akhmediev Breathers [131–134]. As reminded above,
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in the case of random initial perturbation, single-point
statistics evolves toward a stationary Gaussian dis-
tribution (and κ4 = 〈|ψ|4〉/〈|ψ|2〉2 = 2.) despite the
presence of highly nonlinear breather-like structures
[7, 41, 104]. The long-time (stationary) statistics is
also typified by a quasi-periodic structure of the au-
tocorrelation function g(2) of the wave field intensity [10].

In this section, we review numerical simulations that
proves that the nonlinear stage of the spontaneous
MI in the focusing regime of the Eq. 6 (σ = +1) can
be quantitatively described by a specifically-designed
soliton gas [26].

Without loss of generality, we consider the plane wave
solution of Eq.6 – the condensate – of unit amplitude
ψc(t, x) = exp{it}. In the classical formulation of the
spontaneous MI problem, the initial condition reads [7,
135]:

ψ(t = 0, x) = 1 + η(x) , (67)

where η is a small noise, 〈|η|2〉 � 1, with zero average,
〈η〉 = 0. The destabilization of the condensate with
respect to long-wave perturbations was widely inves-
tigated, both numerically by using periodic boundary
conditions in a box of large size [7, 10, 123, 125], and
experimentally [10, 14, 18]. The typical spatio-temporal
dynamics of the spontaneous MI can be seen in Fig. 8.a.

FIG. 8. Numerical simulations of the one dimen-
sional focusing NLS equation : Space-Time diagrams
of |ψ(x, t)|2 (a) Noise-induced Modulational Instability of a
plane wave (periodic boundary conditions). (b) Dynamics of
the random phase bound N -SS (only the central part of the
N -SS having a total width L0 ' 400 is plotted).
Reproduced with permission from [26]

In order to demonstrate that the statistical properties
of the spontaneous MI coincide at long-time with the
ones of SG, the first step used in [26] is to modify the
boundary conditions. The idea is that if one fixes the
time at which the nonlinear stage of MI is characterized
(typically t > 30 in Fig. 8.a), the plane wave with peri-
odic boundary condition can be replaced by a box with

ZBC. The width of the box has to be sufficiently large to
avoid any influence of the edges in the central part of the
box at the considered time t.

By using the same idea, one expects that any homoge-
neous SG can be locally modeled by a N-SS (with zero
boundary conditions). Moreover, in order to model the
long-time dynamics of a stochastic field, it is natural to
assume random norming constants phases because the
phase rotations −2iλ2

nt for large t introduce an effective
randomization. Note that somehow, this random phases
of the norming constant are similar to the so-called “ran-
dom phase approximation” (i.e. random phases of the
Fourier components) in wave turbulence theory [1, 106].

Finally, the last step is to determine the DOS. of the
SG underlying the dynamics of the field. Here, the an-
swer is rather simple because the discrete spectrum of a
real-valued rectangular box of unit amplitude and width
L0 is known. In the limit L0 � 1, the discrete spectrum
of the semi-classical Zakharov-Shabat scattering problem
is given by the Bohr-Sommerfeld quantization rule, see
e.g. [5, 59] and also [136]:

λn = i βn = i

√
1−

[
π(n− 1

2 )

L0

]2

, n = 1, 2, . . . , N,

(68)
where N = int[L0/π] (the density of the gas, i.e. the
number of solitons per unit length is thus 1/π). The
continuus limit of Eq. (68) with N → ∞, βn → β gives
the normalized distribution ϕ(β) of the IST eigenvalues:

ϕ(β) =
1

N

dn

dβ
=

β√
1− β2

(69)

which appears to be the so-called Weyl distribution. Fi-
nally, here, the DOS is simply:

f(β) =
1

L0

dn

dβ
=

1

π
ϕ(β). (70)

This is nothing but the 1D focusing NLS bound state
soliton gas DOS (48) obtained in Section III D as the so-
lution of the NDRs (41) in the limit σ → 0 assuming
the spectral support Γ+ = [0, i]. In [26] a large number
of realizations of N-SSs that fulfil the required eigenval-
ues distribution given by the Eq. 69 have been computed
with random phase for the norming constants by using
the procedure described in Sec.IV B. This realizations en-
semble models a bound SG in the limit N large (N = 128
in [26]). As the N-SS are bound states (Re λn = 0), the
expected dynamics of the wave field is identical to the
dynamics observed in the nonlinear stage of the sponta-
neous MI. Indeed, the zero-velocity of the solitons pre-
vent any dilution of the gas during the evolution.

The Fig. 8 displays the comparison between two
NLS equation simulations made with different initial
conditions: Fig. 8.a corresponds to the dynamics of the
plane wave (initially pertubed with noise) while Fig. 8.b
corresponds to the dynamics of one realization of the
N -SS. The features characterizing the spatio-temporal
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dynamics of the long-time evolution of the plane wave
(typically for time t > 20) seams very similar to the
one of the N -SS. As expected, the specifically-designed
N -SS apparently is a very good model of the nonlinear
stage of the spontaneous MI.

More importantly, the statistical properties of SG co-
incide in a quantitative manner with those of the asymp-
totic stage of MI. For example, the long-term evolu-
tion of the noise-induced MI is characterized by station-
ary values the potential Hnl and kinetic Hl energy [7],
〈Hl〉 = 0.5 and 〈Hnl〉 = −1 where the total energy
(Hamiltonian) H, which is one of the infinite constants
of motion of the 1D-fNLS equation [5] reads

H = Hl +Hnl, Hl =
1

2

1

L

∫ L/2

−L/2
|ψx|2 dx,

Hnl = −1

2

1

L

∫ L/2

−L/2
|ψ|4 dx. (71)

The Fig. 9 shows the comparison between three other
statistical of both the long-time evolution of the spon-
taneous MI and of the ensemble of N -SS. The Fig. 9.a
displays the wave-action spectrum,

Sk ∝ 〈|ψk|2〉, ψk =
1

L

∫ L/2

−L/2
ψ e−ikx dx. (72)

The Fig. 9.b displays the probability density function
(PDF) P(I) of the field intensity I = |ψ|2 which is known
to follow the exponential distribution in the asymptotic
statistics of the unstable condensate [7, 10]. Finally,
the Fig. 9.c displays the autocorrelation of the intensity
g(2)(x) :

g(2)(x) =

〈
I(y, t)I(y − x, t)

〉〈
I(y, t)

〉2 (73)

which represents the second-order degree of coherence.
Remarkably, all these statistical quantities computed

in the asymptotic state of the MI coincide with excellent
accuracy with those of the considered SG. In addition,
further studies revealed that extreme amplitude waves
emerging in the asymptotic state of the MI and the
soliton gas have identical dynamical and statistical
characteristics [77]. Note that this agreement is weakly
depend on the exact eigenvalues chosen for the N -SS
because the key ingredient are the statistical distribution
of the eigenvalues and the use of random phases for the
norming constants (in other words, similar statistical
results have been obtained in the case of soliton eigen-
values randomly distributed according to the probability
function (69) [26].

What are the main conclusions of this numerical
study? First, the asymptotic state of the spontaneous
MI can be modeled as a specific SG – the bound state
soliton condensate. This SG can be constructed with ex-
act N -SSs of the one dimensional focusing NLS equation
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FIG. 9. Comparison of ensemble averaged statistical charac-
teristics of the asymptotic state of the MI development and of
random phase 128-SSs. (a) Wave action spectrum Sk. (b) The
PDF P(I). (c) Autocorrelation function of intensity (second

order degree of coherence) g(2)(x). Reproduced with permis-
sion from [26].

by using large values of N and the Weyl’s distribution
of IST eigenvalues coinciding with the one predicted for
the box potential in the semi-classical limit [59]. More-
over, the long-term statistical state of MI corresponds to
a full stochastization of the phases of the norming con-
stants i.e. the solitons’ phases. Finally, note that for
other distributions of eigenvalues tried by the authors,
the statistical properties of the SG do not coincide with
the ones of the MI and/or are strongly non homogeneous
in space [26].

These results open a promising direction in the theory
of integrable turbulence by establishing a link between
the MI and SGs dynamics. It is important to note that
this quantitative link is possible in the case of MI be-
cause for a “semi-classical” box, the contribution of the
“non-soliton” part of the field, i.e. of the continuous IST
spectrum, decays exponentially with L0 and so can be
neglected [5]. As a consequence, this modeling of inte-
grable turbulence by using SG can be a priori general-
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ized to a broad class of IT problems when the (random)
wave field is strongly nonlinear, so that the impact of
the non-solitonic content can be neglected in the asymp-
totic state (t → ∞). For such a case, the general strat-
egy to study the asymptotic state should be to build N -
soliton solutions with the distribution ϕ(λ) of IST eigen-
values characterizing the field and random phases of the
norming constants (see Sec.VIII B). We review in Sec-
tion VIII B new results showing that this approach pro-
vides a a framework allowing to compute theoretically
the observed value of κ = 2 for the long term evolution
in the spontaneous MI phenomenon [10] and κ = 4 for
the semiclassical limit of partially coherent waves [127].

VII. GENERALIZED HYDRODYNAMICS

A. The perspective of emergent hydrodynamics

As mentioned, it is very natural to understand the the-
ory of soliton gases within a kinetic perspective, as the
fundamental objects – the soliton DOS or phase-space
density f(η;x, t) introduced in Section II, its the kinetic
equation, Section II C 2, and the equation of state for the
effective velocity s(η;x, t), Eq. (17) – have a clear kinetic
interpretation in terms of soliton propagation and scat-
tering. This interpretation is mathematically accurate at
low densities, but at high densities, although compelling,
it remains nebulous. The kinetic viewpoint is in fact an
a-posteriori interpretation: as reviewed in Section III, the
soliton gas theory may be derived from an appropriate
thermodynamic limit of finite-gap (quasi-periodic) solu-
tions and its Whitham modulations.

Independently from the soliton gas theory, a frame-
work for the emergent large-scale behaviours of quantum
many-body integrable systems out of equilibrium was
more recently developed, dubbed “generalised hydrody-
namics” (GHD) [53, 54]. In this context, the problem is
to determine the dynamics of quantum systems, such as
the Lieb-Liniger gas [137] and Heisenberg quantum spin
chain [138], out of equilibrium. One seeks, for instance,
the full space-time profile of expectation values of local
observables, from an initial state that present variations
on large scales; or the full space-time profile of their cor-
relation functions. As it was realised [139], it turns out
that the main objects of GHD – the phase-space densities
denoted in this context ρp(η;x, t), the kinetic equation
reffered to as the “GHD equation”, and the equation of
state for the effective velocity denoted veff(η;x, t) – have
exactly the same structure as in soliton gases. The spec-
tral parameter η is identified with the quasi momentum
of the thermodynamic Bethe ansatz (TBA), and quite
surprisingly the two-body scattering shift is simply iden-
tified with the semiclassical shift of quantum wavepack-
ets, or the “kernel” of the TBA equations. The TBA
[137, 140–143] is a framework first developed at the be-
ginning of the 1960’s to construct the thermodynamics
of Bethe-ansatz integrable systems.

However, by contrast to the theory of soliton gases,
in GHD a different viewpoint is emphasised. Certainly,
a kinetic perspective can be taken, as was done in one
of the co-founding papers of GHD [54]: “Bethe quasi-
particles” are the kinetic objects, and the effective ve-
locity veff(η) had in fact been proposed earlier [144] as
their emergent propagation velocity within finite-density
states. However, in the quantum context it is more dif-
ficult to establish the validity of this perspective, even
at low densities. Further, a quantum modulation theory
has not yet been developed. Instead, the currently preva-
lent viewpoint, emphasised in the other co-found paper
of GHD [53], is that of the emergence of hydrodynamics
at large spacetime scales. This physical idea implies that
the structure of GHD is in fact that of Euler equations,
instead of a kinetic theory, only generalised to infinitely-
many conservation laws.

Euler hydrodynamics is the idea that locally, within
each “mesoscopic” region of space and time (sometimes
referred to as “fluid cell”), the system’s state looks as
if it had relaxed. A mesoscopic spacetime region cov-
ers a length that is large as compared to the microscopic
scales (the inter-particle scales and interaction distances)
but small as compared to macroscopic scales (the length
scales at which averages of local observables show vari-
ations); and a time that is likewise large compared to
microscopic, and small compared to macroscopic, times.
According to conventional physical wisdom, a state that
has “relaxed” is spacetime stationary and takes the Gibbs
form. Thus, in Euler hydrodynamics, one assumes that
at every point in space-time, the state looks like it is
in Gibbs form. The Gibbs form arises from an entropy
maximisation principle, so these are “maximal entropy
states”, and we may therefore talk about “local entropy
maximisation”. The local maximal entropy states de-
pends on space-time, and upon imposing all the available
local conservation laws, this gives the Euler equations for
the system.

It has been worked out in the past 20 years (see the
reviews [145, 146]) that the so-called Generalised Gibbs
Ensembles (GGE), with density matrix

GGE: ρ ∝ e−
∑

i βiQi (74)

where Qi =
∫
dx qi(x, t), with dQi

dt = 0, are extensive con-
served quantities, correctly describe relaxation in many-
body integrable models. In the infinite-volume limit, in-
finitely many conserved quantities Qi must be considered
(under some convergence condition). The emergent hy-
drodynamic perspective then simply states that the local
MES are GGEs, so the local relaxation process is

〈o(x, t)〉initial state → 〈o〉GGE(x,t) (75)

for “any” local observable o(x, t). Here GGE(x, t) is
described by “Lagrange parameters” βi(x, t) which de-
pend on space-time. In the hydrodynamic approxi-
mation, the GGEs only depend slowly on space and
time, and one then imposes the local conservation laws
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∂tqi(x, t) +∂xji(x, t) = 0 for GGE-average local densities
qi(x, t) and their currents ji(x, t), in order to obtain the
long-wavelength, slow dynamics,

∂

∂t
〈qi〉GGE(x,t) +

∂

∂x
〈ji〉GGE(x,t) = 0. (76)

In principle, barring subtleties associated to hyperbolic
systems of equations (see for instance [147]), these are
enough equations to have a well-posed initial value prob-
lem. The crucial ingredient in (76) is the “thermody-
namic equations of state”: the way the average cur-
rents 〈ji〉GGE are related to the average densities 〈qi〉GGE.
Once this is known explicitly, the hydrodynamic equation
(76) is written explicitly.

Thus, the usual ideas of hydrodynamics are simply ex-
tended to the principle of “generalised thermalisation”
for many-body integrability; this is the hydrodynamic
basis for GHD, justifying its name.

B. The thermodynamic Bethe ansatz

In the hydrodynamic perspective, no kinetic theory is
invoked. This perspective emphasises not the kinetic in-
terpretation of the equations, but rather their thermody-
namic and hydrodynamic interpretations. But how does
one deal with infinitely-many conservation laws, and a
large space of maximal entropy states? And how does a
formulation that looks like a kinetic theory emerge?

This is thanks to the structure of the TBA. In order
to describe it, take the integrable model of Bose parti-
cles interacting with a delta-function potential, the re-
pulsive Lieb-Liniger gas [137] (see the review [148] where
its GHD is explained),

H = −
N∑
n=1

1

2

∂2

∂x2
n

+

N∑
n<m=1

cδ(xn − xm), c > 0. (77)

The fully symmetric N -particle Bethe ansatz eigenfunc-
tions, parametrised by Bethe roots ηn’s, take the form

Ψ({x}) ∝
∑

P:permutations

∏
n<m

sgn (xP(n) − xP(m)) exp
[

i
∑
n

ηnxP(n) +
i

4

∑
n6=m

φ(ηn− ηm) sgn (xP(n)−xP(m))
]
.

(78)

The quantity φ(ηn − ηm) = 2 Arctan ηn−ηm
c is the two-

body quantum scattering phase shift occurring when a
particle of Bethe root ηn scatters with one of Bethe root
ηm. Conserved quantities (including the Hamiltonian)
take a simple form on these eigenfunctions:

QiΨ({x}) =

N∑
n=1

hi(ηn)Ψ({x}) (79)

where the functions hi(η) are the “one-particle eigen-
value”. These include the total number of particle Q0

(with q0(x) =
∑
n δ(x − xn) and h0(η) = 1), the mo-

mentum Q1 (with q1(x) = 1
2

∑
n−i{∂xn

, δ(x − xn)} and

h1(η) = η), and the energy Q2 = H (with h2(η) = η2/2).
In fact, local conserved charges – those admitting a local
density qi(x, t) – have hi(η) ∝ ηi for all i ∈ N. In a sys-
tem of finite length L, the values of ηn’s are quantised
as is usual in quantum mechanics; however the quantisa-
tion condition is nontrivial: these are the Bethe ansatz
equations, involving φ(η) (see for instance [148]).

The TBA is based on the basic statistical mechanics
principle of the equivalence of the microcanonical and
macrocanonical ensembles, but generalised to all con-
served charges, or equivalently all Bethe roots. Thus, the
sum over eigenstates involved in a GGE concentrates on a
fixed distribution of Bethe roots ρp(η), and one evaluates
GGE averages of conserved densities by using this distri-
bution, 〈qi〉GGE =

∫
dη ρp(η)hi(η), as follows from (79).

The TBA gives an explicit map from βi’s to ρp(η). This
map is obtained by minimising a free energy functional
that encodes the constraints on quasi-momenta arising
from the Bethe ansatz equations. The result may be
written in the suggestive form

ε(η) =
∑
i

βihi(η)−
∫
dη′

2π
ϕ(η − η′) log

(
1 + e−ε(η

′)
)
,

ρp(η) = −2π
∂

∂β0
log
(

1 + e−ε(η)
)

(80)

involving the pseudoenergy ε(η), defined as the solution
of the above non-linear integral equation, and the differ-
ential scattering phase, defined by

ϕ(η) =
dφ(η)

dη
=

2c

η2 + c2
. (81)

In this sense, the phase-space density ρp(η;x, t) does
not arise as a density for particle-like dynamical objects
forming a gas, but rather as a way of characterising all
averages of local conserved densities in the x, t-dependent
GGE that arises from the Euler hydrodynamic principle,

〈qi〉GGE(x,t) =

∫
dη ρp(η;x, t)hi(η). (82)

Many-body integrable systems admit an infinite-
dimensional space of conserved quantities Qi, and the
spectral parameter is just seen as a continuous parametri-
sation of this space (interpreted as a particular choice of
a “scattering basis”, see e.g. the discussion in [149]).

As mentioned above, the crucial ingredient is the re-
lation between GGE averages of currents and densities.
Historically, this was in fact the main stumbling block in
developing the hydrodynamics of integrable systems.

Average currents in GGE were first evaluated[53] using
the TBA and crossing symmetry of relativistic quantum
field theory; they were later derived directly from the
Bethe ansatz and other quantum integrability techniques
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[150, 151], and then from “self-conserved” currents [152,
153], using the symmetry of current-charge correlations
[53, 154, 155]; see the reviews [156, 157]. The result is
striking: it takes the form

〈ji〉GGE(x,t) =

∫
dη veff(η;x, t)ρp(η;x, t)hi(θ) (83)

where the effective velocity, here obtained, we recall, via
Bethe ansatz calculations, satisfies the classical-looking
collision rate ansatz (17), with G(η, η′) = −ϕ(η−η′) and
s0(η) = η

veff(η) = η+

∫
dµϕ(η−µ)ρp(µ)(veff(µ)−veff(η)). (84)

Its x, t dependence veff(η)→ veff(η;x, t) comes from the
(x, t)-dependent GGE ρp(η)→ ρp(η;x, t). Note how the
differential scattering phase ϕ(η − η′), Eq. (81), arises:
this is exactly the semiclassical scattering shift of Bethe
ansatz wave packets. One then obtains, from (76) and
assuming some completeness of the space of functions
hi(θ), the GHD equation

∂

∂t
ρp(η;x, t) +

∂

∂x

(
veff(η; , x, t)ρp(η;x, t)

)
= 0. (85)

This is, in this perspective, a Euler hydrodynamic equa-
tion, even though it looks like a kinetic equation.

We finally note that each value of the spectral pa-
rameter η corresponds to a hydrodynamic normal mode
– a “sound mode” or the like – for the emergent
Euler-scale equation, and veff(η;x, t) are the associ-
ated hydrodynamic velocities tangent to their charac-
teristics. Riemann invariants can be explicitly con-
structed; indeed ε(η;x, t), or any function of it, satis-
fies the diagonalised Euler-scale equation, ∂tε(η;x, t) +
veff(η;x, t)∂xε(η;x, t) = 0, and so does the “cumulative
density” or height field

∫ x
−∞ dx′ ρp(η;x′, t); likewise, for

linear perturbations on top of a homogeneous stationary
background, ρp(η) + δρp(η;x, t), we have ∂tδρp(η;x, t) +
veff(η)∂xδρp(η;x, t) = 0.

C. Universality of Euler hydrodynamics

Note that, curiously, one obtains, using the above de-
scription, a re-interpretation of the Liouville equation of
phase-space conservation in classical mechanics. Tradi-
tionally it is understood in kinetic theory as a “collision-
less” Boltzmann equation. Now take, for instance, the
Tonks-Girardeau limit c → ∞, where the Lieb-Liniger
model becomes a model of non-integracting fermions,
with ϕ(η) = 0. The resulting GHD equation is the Li-
ouville equation. But here, it is seen as a hydrodynamic
equation, for a continuum of sound modes emerging at
large scales in this system of non-interacting particles!
The same hold for any system of non-interacting parti-
cles, quantum or classical.

This latter observation leads us to emphasise an im-
portant concept: the hydrodynamic perspective has the
advantage that it is indifferent to the precise nature of
the underlying many-body system. It has a large amount
of universality.

This universality arises at two levels. First, the general
structure of hydrodynamics at the Euler scale is always
the same, no matter the underlying many-body system,
under fairly general conditions (local interactions, and
perhaps microscopic reversibility). The important point
in establishing the Euler-scale hydrodynamic theory of a
given many-body system is to characterise its full man-
ifold of maximal entropy states. One expects that the
“extensive conserved quantities”, widely studied in quan-
tum many-body systems [158], span the tangent spaces
to this manifold, and according to Euler hydrodynam-
ics, their densities are the emergent dynamical degrees of
freedom onto which the microscopic dynamics projects at
large scales; at the linearised level, this phenomenon has
been rigorously established in quantum spin chains [159]
and lattices [160]. Once the space of extensive conserved
quantities is understood, the hydrodynamic principles –
local relaxation and the conservation laws – are com-
pletely general, and do not require any strong dynamical
assumptions such as chaos, or any particular structures
for the underlying microscopic theory.

Second, within the family of many-body integrable
models, the description of Section VII B is also com-
pletely universal. The microscopic system may be quan-
tum or classical, composed of continuous fields, parti-
cles, solitons, spins, etc. – the same structure emerges
for its Euler-scale hydrodynamics. The model-dependent
aspects are the phase space S of possible values of the
spectral parameter η (it is R>0 in the KdV soliton gas,
R in the repulsive LL model, C in the soliton gas of fo-
cusing NLS, etc.), and the basic dynamical quantities,
including the two-body shift G(η, µ) (it is − 2c

(η−µ)2+c2 in

the repulsive LL model, 1
η log

∣∣ η+µ
η−µ

∣∣ in the KdV soliton

gas, etc.), as well as a “bare” velocity s0(η) entering as
the source term in the equations of state, Eqs. (17), (16),
(84) (η in the LL model, 4η2 in the KdV soliton gas,
etc.). Thus, in fact GHD is not only a theory for many-
body quantum integrable systems, but also for classical
systems, including soliton gases. The full equivalence be-
tween TBA quantities and those of soliton gases is given
in [56].

This universality of the hydrodynamic description of
integrable models has its source in an important aspect of
many-body integrability, that of factorised, elastic scat-
tering. Factorised scattering for solitons was reviewed
in Section II A, see Eq. (5). It is also made apparent
in the LL Bethe ansatz wave function (78): the struc-
ture in the exponential implies that the phase of a full
many-particle scattering is the sum of two-body scatter-
ing phases. If we put the LL model in a finite segment
and let the particles expand in the vacuum, then ηn’s are
the values of asymptotic momenta that will be seen at
long times in this time-of-flight “gedenkenexperiment”.
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In general, for both quantum and classical models, the
spectral space is nothing else than the set of possible ob-
jects that emerge at long times (solitons, particles, bound
states, waves, etc.), and a basic dynamical analysis will
give the bare velocities and two-body scattering shifts for
such objects. It turns out that TBA form of the thermo-
dynamics then emerges quite generally solely from this
scattering picture; in classical systems this was first ob-
served [161] in the Toda model – thus the TBA does not
require the Bethe ansatz! In a fluid, a mesoscopic cell can
be “observed” by taking it out of the fluid and making
a time-of-flight experiment on it, in order to determine
the distribution of spectral parameters that characterise
it. The manifold of GGEs is a manifold of distributions
on the spectral space. In particular, the soliton gas is
simply the case where we restrict the manifold of GGEs
to be distributions of solitons only; and this restriction
is stable under the Euler hydrodynamic evolution. This
explains the general structure of GHD.

In fact, the scattering picture has far-reaching ram-
ifications. One of them is the geometric viewpoint on
GHD, whereby the GHD equations are seen as arising
from a change of coordinates – or a change of metric –
from the free-particle Liouville equations [55, 162]. The
change of metric is state-dependent (much like in Ein-
stein’s gravity!), and represents the map to the freely-
propagating asymptotic coordinates. This leads to an
integral-equation solution [162], a “solution by charac-
teristics” akin to the hodograph transform.

VIII. OPEN QUESTIONS

Over the last few years, various fundamental ques-
tions inspired by the exciting theoretical and experimen-
tal challenges have emerged in the growing fields of SGs
and of GHD. We summarize here some of the most im-
portant of these open questions.

A. Spectral theory and rigorous asymptotics

The spectral theory of soliton gas outlined in Sec-
ton III is based on the thermodynamic limit of finite-gap
potentials and their Whitham modulation equations.
At the core of this theory is the special distribution
(scaling) of finite-gap spectra ensuring appropriate
balance of terms in the nonlinear dispersion relations.
Can this thermodynamic spectral scaling be obtained
as a long-time asymptotics in some class of initial-value
problems for integrable equations? One possible scenario
to be explored was proposed in [163] where one considers
a chain of topological bifurcations of local invariant tori
parametrized by slowly evolving finite-gap spectra that
emerge in the zero-dispersion (semi-classical) limit of
the fNLS equation. This scenario resembles the classical
Landau-Hopf transition to turbulence (see e.g. [164])
realized in the framework of an integrable dispersive

system.

A related major open question is a rigorous math-
ematical justification of the spectral kinetic theory.
The derivation of the kinetic equation via the ther-
modynamic limit of finite-gap modulation theory is
formal in the sense that the question of the asymptotic
validity of the kinetic equation in the framework of
the original nonlinear dispersive PDE remains open. It
would be highly desirable to have a rigorous asymptotic
derivation of the kinetic equation for KdV, NLS and
other integrable models. An important step in this
direction has been recently made in ref. [51] where it
was shown that kinetic equation for soliton gas describes
the leading order asymptotic behaviour of a special
class of “deterministic” soliton gases for the modified
KdV equation constructed as an infinite-soliton limit
of N -soliton solutions by invoking the theory of the
so-called primitive potentials [52] (see also [50]). At the
spectral level, the characterization of the gases studied
in [51] coincides with that of soliton condensates [34]
so the extension of the rigorous asymptotic theory to
more general classes of inherently random soliton gases
remains an outstanding problem.

Finally we mention that the spectral theory of soliton
gas can be applied to any integrable dispersive PDE sup-
porting finite-gap solutions associated with hyperelliptic
Riemann surfaces. One can expect new interesting be-
haviours in integrable models qualitatively different from
the already considered examples of the KdV and fNLS
equations. These include the sine-Gordon equation (kink
gas), the Camassa-Holm equation (peakon gas) and oth-
ers. The theory of two-dimensional soliton gases (e.g. for
the Kadomtsev-Petviashvili or Davey-Stewartson equa-
tions) is another completely uncharted territory yet to
be explored.

B. Thermodynamics and Statistics

The statistical description of random waves in inte-
grable systems represents a fundamental application of
the SG theory. We have reviewed several important re-
cent steps achieved in this challenging direction of re-
search. Generalized Hydrodynamics provides a frame-
work to establish a thermodynamic description of soliton
gases. However, up to now, there is no existing compar-
ison between SGs experiments and GHD theoretical re-
sults. On the other hand, the possible correspondence be-
tween SGs and natural phenomena stimulates the study
of statistical properties of SGs (for example numerical
simulations show that the so-called spontaneous modu-
lation instability is with high accuracy by a specifically-
designed SG, see Sec. VI B).

Very recently, some of the authors of this paper and
their collaborators have derived a general formula for the
kurtosis for an homogeneous SG. Derived in the frame-
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work of SG theory, the kurtosis is then expressed as a
function of the DOS:

κ =

〈
|ψ|4

〉
〈|ψ|2〉2

=
Im(λ2s(λ)− 4

3λ
3)

2 Im(λ)2
, (86)

where the averaging procedure is h(λ) =
∫
h(λ)f(λ)dλ

and f(λ) is the DOS of the homogeneous SG (f dos not
depends on x and t). Applying the Eq. 86 to the Weyl’s
bound state SG corresponding to the long-term evolu-
tion of the spontaneous MI (see Sec.VI B), it is easy to
show that k4 = 2. This corresponds to the value of k4

for the exponential distribution of |ψ|2 empirically found
in numerical simulations and experiments devoted to the
spontaneous MI [7, 10, 13]. Note that this result is con-
sistent with the virial theorem (Hnl = 2Hl) known in
the context of zero boundary conditions in NLS [165].
Beyond the MI problem, it is possible to compute the
DOS of any soliton gas generated by the propagation
of a semiclassical field (if Hnl � Hl initially). Using
this approach, one can also show that the correspond-
ing value of the kurtosis is k4 = 4 in the case of par-
tially coherent waves. Remarkably, this corresponds to
the largest value found recently in numerical simulation
in the case of the strongly nonlinear regime of partially
coherent waves [127].

These recent results pave the way to a general sta-
tistical description of nonlinear random waves naturally
found in various physical systems. However, it is impor-
tant to note that the evaluation of the kurtosis is only
the first step toward a general statistical theory. Among
the various open questions, one finds the formal evalua-
tion of the probability density functions (of the field or
its amplitude for example) and of correlation functions
(such as the g(2), see Eq. 73).

The spectral power density (Fourier spectrum)

〈|ψ̃(k, t)〉|2 is a key measurable variable of turbulence,
allowing for example to characterize Kolmogorov
cascade. Moreover the spectrum can be easily and
directly measured in optical experiments devoted to the
observation of SG. The analysis and the understanding
of Fourier spectra of SGs thus represents an important
direction of research. The natural framework of the
the soliton gas theory is the IST and the relationship
between the IST spectrum and the Fourier spectrum is
highly nontrivial from the mathematical point of view.

It is important to emphasize again that, the SG
theory provides a promising framework to describe
and understand the statistics of wave systems close to
integrability. The spontaneous modulation instability in
the focusing regime of the one dimensional focusing NLS
equation is the first example of physical phenomenon
quantitatively described by a SG (see Sec.VI B) and
[26]). One natural question is the possible link between
natural phenomena and breather gases. In particular, as
Akhmediev breather is the exact solution associated with
the sinusoidal perturbation of a plane wave, one might

expect that the spontaneous modulation instability can
also be described by a breather gas.

The general description of integrable turbulence (ran-
dom waves in integrable systems) is still an open ques-
tion. Any random waves in integrable systems can be
decomposed into radiative waves and solitons, the for-
mer being associated to the continuous spectrum and the
latter being associated to the discrete spectrum in the
framework of IST (see Sec. II A). SGs thus correspond to
the peculiar case of integrable turbulence having no con-
tinuous spectrum. The study of nonlinear random waves
phenomena by using a SG description is based on the
conjecture that continuous spectrum can be neglected in
the strongly nonlinear regime. One can naturally ask :
what happens for example with partially coherent wave
for weaker nonlinearity ?

The general description of integrable turbulence thus
requires the development of a statistical theory involv-
ing both discrete and continuous spectrum. In prin-
ciple, the general case can be described in the frame-
work of the finite gap theory (see Sec. III). On the other
hand, by taking into account the non resonant interac-
tions, a non standard wave kinetic theory (developed in
the basis of Fourier components) describes the statistical
behavior and the Fourier spectrum of integrable turbu-
lence [107, 110, 128]. One of the fundamental and inter-
esting open question is the IST formulation in the weakly
nonlinear regime when the wave system is dominated by
radiation components (continuous spectrum). Investiga-
tions of this question may build a bridge between finite
gap theory and wave turbulence theory.

C. Experimental challenges

Experiments devoted to the study of SGs can be
classified by waves generation techniques and by data
analysis types. While solitons can simply be generated
one by one in diluted SGs, the experimental realization
of dense SG is highly non trivial. One possible approach
is the use of dynamical phenomenon such as the soliton
fission [102] in which the DOS is not controlled. Another
strategy has been recently demonstrated in order to
achieve a controlled generation of dense SG [17]: by
using the numerical procedure described in IV B, N-
solitons solution with random parameters are computed
and then used to build the experimental SG.

It is important to note that, up to now, the proce-
dure based on the N-solitons allows the generation of
homogeneous dense SG having an arbitrary DOS f(λ).
The generation of a non-homogeneous dense SG with a
space-dependant DOS f(λ, x) is an open problem. In the
context of the focusing NLSE, this extremely challenging
task will require a deep theoretical understanding of
the link between the positions of the solitons and the
amplitude of the norming constants in the N-soliton
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solution with N � 1. Solving this problem would be a
fundamental milestone in the study of SG. Indeed, the
most intriguing and complex phenomena are expected
to emerge in the context of non-homogeneous SG whose
non-equilibrium, macroscopic dynamics are described
by the non trivial continuity equation (18). The experi-
mental test of this continuity equation requires first the
generation of non-trivial DOS f(x, λ).

On the other hand, the study of non-homogeneous SG
will also require the development of new tools for the
data analysis. The measurement of a space-dependant
DOS is not trivial; one will have first to define the local
DOS of a measurable field. One of the difficulties is
the scale separation: in the theory, the DOS evolves
spatially very slowly and the number of solitons in
one fluid cell dx tends to infinity. In experiments, the
number of solitons is limited and thus, the measure-
ment of the local DOS is a complex and challenging task.

The experimental test of the GHD is another open
exciting challenge. This includes for example the mea-
surement of space-time correlation in soliton gases, the
measurement of GGEs, . . .

D. Breakdown of integrability

In the “real-world” experiments, integrable equations
such as the 1DNLS or KdV, only describe the systems
at leading order; This means that in any experiments, at
long time (or long propagation distance), high order ef-
fects break integrability and play a role in the dynamics
and in the statistics of the wave field. Integrability can
be broken by linear effects (losses or high order dispersion
for example) or non linear (stimulated Raman scattering
in optical fiber for example). These effects induce non
elastic collisions of solitons (for example, two interacting
solitons do not recover their initial amplitudes and ve-
locities over large time). The study of the influence of
high order effects on SG is of fundamental and practical
importance. This includes also the influence of external
forces on solitons (induced for example by some poten-
tial).

In various systems, the high order effects can be con-
sidered as small perturbations of the integrable system.
As a consequence, IST spectra can be seen as slow vary-
ing quantities that evolve adiabatically. The IST pertur-
bation theory of nearly integrable systems is well elabo-
rated for simple wave field patterns, such as single and
two-soliton pulses [166]; meanwhile, the collective multi-
soliton dynamics under the influence of weak external
forces now is treated only with numerical simulations
[81, 167]. Building a theory of SG including perturba-
tive effects is an open and fundamental problem. GHD
is a promising framework to investigate perturbative ef-
fects (see Sec. VIII E).

E. Lessons from GHD: correlations, external
forces, diffusion, integrability breaking

Communities working on soliton gases, and on quan-
tum and classical many-body systems and statistical me-
chanics, have been mostly disconnected until recently.
Certainly, making a better connection between the ideas
that have arisen in both communities would be fruitful.

For instance, the metric transform from the Liouville
equation to the GHD equation [162] is nothing else but
a generalisation of the transformation from free particles
to hard rods, used extensively in addressing the hard rod
gas [168, 169]. In this transformation, each quasipar-
ticle is given a precise location, and occupies a certain
momentum-dependent space that, if taken away, reduces
the quasiparticles’ dynamics to that of free particles. A
similar transformation exists in the box-ball system (a
certain cellular automaton) [170], where it allows one to
identify the precise position of each soliton within a dense
soliton gas. Can something like this be achieved in KdV
or NLS soliton gases?

Further, the hydrodynamic viewpoint on GHD has
been extremely powerful. It has allowed for the extension
of known structures of hydrodynamics to the realm of in-
tegrability. Taking and developing the full hydrodynamic
perspective in soliton gases should lead to interesting new
result, and this is still at its infancy. Here we briefly men-
tion four directions: correlation functions, the inclusion
of external forcing, the diffusive and higher-order correc-
tions, and the inclusion of small integrability-breaking
effects via Boltzmann-like equations.

Correlation functions in space-time are natural ob-
jects to be studied by hydrodynamics. The basic idea
is that the propagation of hydrodynamic modes gives
the leading large-scale correlations between local ob-
servables. Technically, one studies the linearised Euler
equation for small variations δ〈qi〉 on top of a homoge-
neous, stationary state. This gives the following form for
the Fourier transform of connected correlation functions
Sij(k, t) =

∫
dx eikx〈qi(x, t)qj(0, 0)〉c in that state:

Sij(k, t) ∼
(

exp
[
iktA

]
C
)
ij
, Aij =

∂〈ji〉
∂〈qj〉

,

Cij = −∂〈qi〉
∂βj

(k → 0, t→∞, kt fixed). (87)

The flux Jacobian A and static covariance C can be writ-
ten in terms of TBA quantities, giving rather explicitly
[171, 172]

Sij(k, t) ∼
∫
dη ρp(η)fstat(ε(η))

∂ε(η)

∂βi

∂ε(η)

∂βj
eiktveff (η)

(88)
where fstat(ε) encodes the statistics of the fundamental
particles (the asymptotic objects), e.g. fstat(ε) = 1

1+e−ε

in the LL model, and fstat(ε) = 1 in the KdV soliton gas
[56]. This formula was verified numerically in various
integrable models; see the review [149] and more recent
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results in the KdV soliton gas [56] and the Toda model
[173]. In soliton gases, the formula would still need to be
understood from the IST perspective.

One can go much further and obtain two-point cor-
relation functions not just of conserved densities, but
also of currents, and in fact of arbitrary observables, by
the use of hydrodynamic projections [159, 172]; as well
as, quite surprisingly, two-point correlation functions in
non-stationary backgrounds [172, 174]. Going beyond,
based on similar ideas, the Euler-scale large-deviation
theory of integrated currents and other extensive quan-
tities [175, 176], and non-linear response functions [177],
have been obtained. More generally, the ballistic macro-
scopic fluctuation theory [178], which has in particular
been applied to GHD, gives a complete framework where
many-point correlation functions and Euler-scale large-
deviation theory can be evaluated, predicting novel long-
range spatial correlations in moving fluids [179]. All these
results apply, in principle, to soliton gases as well – but,
in this context, numerical verifications and a full theoret-
ical underpinning are still lacking.

Generalised external forces may be written as external
fields coupled to conserved densities. These change the
Hamiltonian to H + V where V =

∑
i

∫
dxVi(x)qi(x).

Although generically V breaks the integrability of H,
with Vi(x) slowly varying in space, Euler hydrodynamic
equations with generalised force terms remain valid for
all original conservation laws – indeed, for conventional
gases, Euler equations can be written within external
force fields, even when such fields break momentum con-
servation. Within GHD, the corresponding force terms
have been obtained [180], with (85) modified to

∂

∂t
ρp(η;x, t) +

∂

∂x

(
veff(η; , x, t)ρp(η;x, t)

)
+

∂

∂η

(
aeff(η; , x, t)ρp(η;x, t)

)
= 0. (89)

Quite surprisingly, the effective acceleration aeff(η; , x, t)
satisfies a “collision rate ansatz” as (84) but with the bare
velocity η replaced by the bare acceleration a(η;x) =
−∑i V

′
i (x)hi(η). It is this GHD equation, for the LL

model and with a simple external force field, was verified
experimentally in cold atomic gases restrained to one di-
mension of space [181–183], see the review [148]. This is
the simplest situation of externally changing parameters:
the more general situation was worked out [184], includ-
ing time dependence, and varying the coupling strength
c → c(x, t) in (77), something which is crucial for com-
parison with some experiments. External force fields and
slowly-varying couplings also naturally occur in many sit-
uations where soliton gases emerge. The theory from
GHD is in principle fully applicable to soliton gases; how-
ever, again up to now, the application to soliton gases
and the IST perspective on such GHD results are still
completely missing.

Hydrodynamics is a derivative expansion, and as such,
one may wonder about the higher-derivative corrections.

At second derivative, this is the diffusive correction, such
as the viscosity term in Navier-Stokes equations. Again,
an exact expression of the diffusive matrix – or diffusive
operator on spectral space – has been evaluated in GHD
[154, 185, 186], with convincing comparisons against nu-
merical results, see the review [149]. The form obtained
is

∂

∂t
ρp(η;x, t) +

∂

∂x

(
veff(η; , x, t)ρp(η;x, t)

)
=

1

2

∂

∂x

(∫
dη′Dη,η′ [ρp(·;x, t)] ∂

∂x
ρp(η′;x, t)

)
. (90)

The diffusion kernel Dη,η′ [ρp] is evaluated from the Kubo
formula involving space-time integrated current two-
point functions, using form factor methods of quantum
integrability [154, 157]. The general formula, applica-
ble to quantum and classical models alike, is conjectured
by comparison with the diffusion kernel obtained in the
1980’s for the classical hard rod gas [187]. Again, the gen-
eral formula involves the statistical factor f(ε). The com-
bination of diffusion with external forces has also been
evaluated [188]. The third-order, dispersive correction
was proposed recently [189], although much work is still
needed to fully establish it.

Is there diffusion in soliton gases? If so, is it correctly
described by the GHD formula? Further, can we eval-
uate the exact 3rd-order, dispersion term? A natural
conjecture concerns the condensate limit; in the GHD
of quantum integrable models, the condensate limit had
been studied earlier, and is known as zero-entropy GHD
[190]. The connection between soliton-gas condensate
limit and zero-entropy GHD was partially made in [34].
Do dispersive terms of GHD / soliton gases reproduce,
in the zero-entropy / condensate limit, dispersive terms
of the fundamental dynamical equations (e.g. the KdV
equation)?

Finally, the effects of small perturbations that break in-
tegrability has been studied. The development is still in
its infancy, with various approaches and different physical
situations proposed, see the review [191]. The perspec-
tive taken in GHD is different from that taken in soliton
gases, and it would be fruitful to make a better connec-
tion. One important point that has been emphasised[192]
generalises the viewpoint discussed above, whereby the
Liouville equation – the kinetic equation for free parti-
cles – is seen as a Euler-scale hydrodynamic equation. It
is possible to modify the Euler-scale hydrodynamic equa-
tion to account for terms that break the conservation laws
on which it is based. There are general Kubo-like formu-
las this modification, and when applied to GHD, these
give terms that can be written, at least in quantum mod-
els, in a form-factor expansion. Specialised to the GHD
of free particles, these terms are nothing else but Botlz-
mann collision terms from the Boltzmann equation; form
factors of interacting integrable models generalise Boltz-
mann collision terms. Is there a parallel notion of form
factors that can be used to evaluate Boltzmann collision
terms in soliton gases? Thus, again, we obtain a different
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viewpoint: the Boltzmann equation, a kinetic equation,
is re-interpreted as a hydrodynamic equation, with terms
that break the infinitely-many conservation laws admit-
ted by free particles. This re-interpretation has, poten-
tially, far-reaching consequences, which still need to be
addressed.
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[11] François Copie, Stéphane Randoux, and Pierre
Suret, “The physics of the one-dimensional nonlinear
schrödinger equation in fiber optics: rogue waves, mod-
ulation instability and self-focusing phenomena,” Re-
views in Physics , 100037 (2020).

[12] Pierre Suret, Rebecca El Koussaifi, Alexey Tikan,
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