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1. Introduction

We consider the discrete Schrödinger equation

−∆ψ(x) + v(x)ψ(x) = Eψ(x), x ∈ Z
d, d ≥ 1. (1)

We assume that ∆ is the discrete Laplacian defined by

∆ψ (x) =
∑

|x′−x|=1

ψ (x′) , x, x′ ∈ Z
d, (2)

v is a scalar potential such that

supp v ⊂ D, (3)

where D is bounded in Z
d, and

E ∈ S := [−2d, 2d] \S0, (4)

where

S0 := {±4n when d is even,

± 2(2n+ 1) when d is odd, n ∈ Z and 2n ≤ d}. (5)

The discrete Schrödinger equation (1) appears in the TB (tight-binding) model of the

electrons in crystals, as in many cases the electrons of a crystal are strongly attached to

the atoms [1, 2] involving a very weak hopping interaction with the neighboring atoms

due to quantum tunnelling. The TB model is also closely related to LCAO (linear

combination of atomic orbitals) [3]. Moreover, for example when d = 1 and d = 2, it

has played a crucial role in uncovering significant phenomena associated with electrons

in crystals [4, 5, 6]. At a different length scale, in the domain of electrical engineering,

lattice structures of LC circuits involve similar difference equations where they play

an important role in network synthesis and filter design [7]; lately such equations also

appear in the lumped circuit models for electromagnetic metamaterials [8]. The same

equation also appears, for d = 1, 2, in case of of time harmonic lattice waves [9, 10] and

reveals structure in simple cases also for d = 3. In particular, the case d = 2 corresponds

to a discrete analogue of anti-plane shear waves in elastic continuum. Examples of

forward analysis of such equations, in the case d = 2, with an exact solution of scattering

of time harmonic lattice waves by atomically sharp crack tips and rigid constraints, can

be found in [11, 12, 13, 14, 15, 16, 17, 18]. The physical literature concerning the discrete

Schrödinger equation also includes, in particular, [19].

The discrete Schrödinger equation was studied by [20], [21], [22] and [23] from pure

mathematical viewpoint.

Let

Γ(E) = {k : k ∈ T d, φ (k) = E}, E ∈ [−2d, 2d] . (6)
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Here T d = R
d/2πZd and

φ (k) = 2

d
∑

i=1

cos ki. (7)

One can fix the orientation of Γ(E) with the choice of the (non-normalized) normal

vector

n := ∇φ (k) . (8)

For Eq. (1) we consider the scattering solutions

ψ+(x, k) = ψ+
0 + ψ+

sc, (9)

where

ψ+
0 (x, k) = eik·x, k ∈ Γ(E), x ∈ Z

d, (10)

and ψ+
sc(x, k) is the outgoing solution for the non-homogenous equation

−∆ψsc − Eψsc + vψsc = −vψ+
0 , (11)

obtained using the limiting absorption principle; see [22]. Strictly speaking, to consider

ψ+ we also assume that v is real-valued or that energy E is not singular for the case of

complex v.

Remark 1.1 For positive E, it is convenient to consider Γ(E) to be symmetric with

respect to the origin in R
d. For negative E, it may be convenient to consider Γ(E) to

be symmetric with respect to the point in R
d, where all coordinates are equal to π.

If

2d− 4 < |E| < 2d, (12)

then the surface Γ(E) is strictly convex with non-zero principal curvatures, and there

is a unique point

γ = γ (ω,E) ∈ Γ(E), ω ∈ Sd−1, (13)

where the normal n, defined by (8), to the surface Γ(E) is parallel to and has the same

direction as ω.

In this case ψ+
sc has the asymptotic expansion

ψ+(x, k) = eik·x +
e+iµ(ω,E)|x|

|x|
d−1

2

f+ (k, ω) +O

(

1

|x|
d+1

2

)

as |x| −→ ∞, ω =
x

|x| , (14)

where

µ (ω,E) = γ(ω,E) · ω, (15)
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and the coefficient f+ (k, ω) is smooth and the remainder can be estimated uniformly in

ω [20, 21, 22]. The coefficient f+ is the scattering amplitude for (1). In many respects,

expansion (14) is similar to the related expansion for the case of continuous Schrödinger

equation, where

Γ(E) = Sd−1√
E

= {k ∈ R
d : |k| =

√
E}, µ(ω,E) =

√
E > 0; (16)

see, for example, [24]. For both discrete and continuous cases, the remainder

O(|x|−(d+1)/2) ≡ 0 for d = 1.

In quantum mechanics, according to the Born principle, the complex values of wave

functions ψ+ and scattering amplitude f+ do not have direct physical interpretations,

whereas the absolute values of these functions admit probabilistic interpretation and

can be measured directly in physical experiments. For example, in the problem of

electronic transport through interfaces, naturally described in terms of transmission and

reflection, following the Landauer-Büttiker approach [25, 26], the scattering amplitudes

(the probability amplitude) decide the conductance in the linear response regime; see,

for example, [27, 28, 29, 30] for an application to transport in waveguides where the

forward problem of discrete Schrödinger equation has been solved exactly.

In the present work, we give explicit asymptotic formulas for finding complex f+ from

|ψ+|2 measured on Z
d \ D, under assumption (12). In many respects these formulas

are similar to the formulas in [31, 32, 33] given for the case of continuous Schrödinger

equation. In particular, for equation (1), these formulas can be used in the framework of

phaseless inverse scattering from |ψ+|2, using results on inverse scattering from f+ with

phase information. For equation (1), some results on inverse scattering from f+, in fact,

are given in [19, 21, 23, 34, 35]. In connection with inverse scattering for continuous

Schrödinger equation, see, for example, the review article [24] and references therein.

The present article can be considered as the first work on phaseless inverse scattering for

the discrete Schrödinger equation (1). In connection with phaseless inverse scattering

for the continuous Schrödinger equation and other continuous equations of wave

propagation, see, for example, [36, 37, 38, 39, 40, 41, 42, 32, 24, 43, 44] and references

therein.

The main results of the present article are given in Section 2 and proved in Sections 3

and 4.

2. Main Results

Let us define

a(x, k) = |x|
d−1

2 (|ψ+ (x, k) |2 − 1), x ∈ Z
d \ {0}, k ∈ Γ(E), (17)

where ψ+ (x, k) is defined as in (9) in introduction.
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In particular, we consider a(x, k) at two measurement points

x = Int(sω) and y = x+ ζ, s > 0, ω ∈ Sd−1, ζ ∈ Z
d \ {0}, (18)

where

Int(ξ) =
d
∑

i=1

sgn(ξi) ⌊|ξi|⌋ ei, ξ ∈ R
d, (19)

and ⌊·⌋ denotes the floor function while ei are unit basis vectors in Z
d or in R

d.

In dimension d ≥ 2, we have, in particular, the following theorem.

Theorem 2.1 Suppose that assumptions (3) and (12) are satisfied, d ≥ 2, and

definitions (13), (15) hold. Then we have the following formulas:

f+(k, ω) =
1

D

(

(ei(k·y−µ(ω,E)|y|)a(x, k)− ei(k·x−µ(ω,E)|x|)a(y, k)) +O(|x|−σ)
)

as s→ +∞, (20)

D = 2i sin (k · ζ + µ(ω,E)(|x| − |y|)),
σ = 1/2 for d = 2, σ = 1 for d ≥ 3,

where k ∈ Γ(E), ω ∈ Sd−1, a(x, k) is defined by (17), and x, y, ζ, s are as in (18).

We consider (20) assuming that D 6= 0. In addition, we use the following formula:

D = 2i sin ((k − µ(ω,E)x̂) · ζ +O(|x|−1))

= 2i sin ((k − µ(ω,E)ω) · ζ +O(s−1)) as s→ +∞, (21)

uniformly in ω for fixed ζ , where x̂ = x/|x|.

For fixed k and ζ , in view of formula (21), formula (20) can be used for finding f+ under

the condition that ω ∈ Sd−1 \ Ek,ζ with

Ek,ζ = {ω ∈ Sd−1 : (k − µ(ω,E)ω) · ζ = 0 (mod π)}. (22)

In addition,

Meas Ek,ζ = 0 in Sd−1, (23)

at least under assumption (12).

Theorem 2.1 and formulas (21) and (23) are proved in Section 3.

Remark 2.2 In many respects, Theorem 2.1 is similar to Theorem 3.1 in [32] given for

the continuous case. However, in Theorem 2.1, the direction ŷ is typically different from

x̂ in view of definitions (18), although, asymptotically these directions become equal to

ω, as s→ +∞. We recall that ŷ = x̂ in Theorem 3.1 in [32].

Remark 2.3 Formulas (20)–(23) can be also considered for the continuous case,

assuming (16) and assuming that ζ ∈ R
d \ {0} in (18). These formulas are new for

the continuous case if ζ̂ 6= x̂.
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Note that, for d = 1,

Γ(E) = {− arccos
E

2
, arccos

E

2
}, µ(E) = arccos

E

2
, (24)

where arccos(κ) ∈ [0, π] for κ ∈ [−1, 1]. In this case, we consider Γ(E) to be symmetric

with respect to the origin in R even for negative E inspite of Remark 1.1.

In dimension d = 1, we have, in particular, the following propositions.

Proposition 2.4 Suppose that assumption (3) holds, |E| < 2, d = 1, and k =

arccos(E/2). Let x, y ∈ (Z \ D) ∩ R
−, x 6= y mod (π/(2k)). Then

s21 := f+(k,−1)

=
1

D

(

e2ikya(x, k)− e2ikxa(y, k) + |s21|2(e2ikx − e2iky)
)

, (25)

D = 2i sin(2k(y − x)).

Proposition 2.5 Suppose that assumption (3) holds, |E| < 2, d = 1, and k =

arccos(E/2). Let x1, x2, x3 ∈ (Z \ D) ∩ R
−, and xi 6= xj mod (π/k). Then

s21 =
1

D

(

(e2ikx3 − e2ikx1)(a(x2, k)− a(x1, k))

+ (e2ikx1 − e2ikx2)(a(x3, k)− a(x1, k))
)

, (26)

D = 16i(sin(k(x2 − x3)) sin(k(x2 − x1)) sin(k(x1 − x3))).

In these propositions, a(x, k) is defined by (17) for d = 1.

Propositions 2.4 and 2.5 are proved in Section 4.

Formulas similar to (25), (26) can be also given for s12 := f+(k, 1), where k =

− arccos(E/2).

Remark 2.6 In fact, propositions 2.4 and 2.5 are completely similar to theorems 2.1

and 2.2 in the arXiv preprint of [33] given for the continuous case.

Remark 2.7 A natural open question concerns finding analogues of Theorem 2.1 in the

case when the condition (12) is not fulfilled, i.e. when |E| < 2d− 4. The generalization

of asymptotic formula (14), in this case, is given in [22] and involves several scattered

waves with different scattering amplitudes. We expect that, for approximately finding

these scattering amplitudes, |ψ+(x, k)|2 should be measured at several points x and not

just two points as in Theorem 2.1.

Remark 2.8 To our knowledge, open question also includes establishing the full

Atkinson-type expansion for function ψ+(x, k) even under conditions (3), (12).

Proceeding from this full expansion, one could develop Theorem 2.1 in multi-points’

style as, for example, in [45].
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Remark 2.9 Open questions also include extending Theorem 2.1 and formulas (21),

(23) to the case of Schrödinger operators on more complicated lattices, for example, as

in [46].

3. Proofs of Theorem 2.1 and formulas (21) and (23)

Due to (14), we have

|ψ+|2 = 1 + e−ik·xe
+iµ(ω,E)|x|

|x|
d−1

2

f+ + e+ik·xe
−iµ(ω,E)|x|

|x|
d−1

2

f+

+
1

|x|d−1
f+f+ +O

(

1

|x|
d+1

2

)

as |x| → ∞. (27)

Using (17) and (27), we obtain

e−ik·xe+iµ(ω,E)|x|f+ (k, ω) + e+ik·xe−iµ(ω,E)|x|f+ (k, ω) = a(x, k) +O(|x|−σ)

as |x| → ∞, (28)

e−ik·ye+iµ(ω,E)|y|f+ (k, ω) + e+ik·ye−iµ(ω,E)|y|f+ (k, ω) = a(y, k) +O(|y|−σ)

as |y| → ∞, (29)

where x and y are defined by (18) and σ is as in (20). We consider (28) and (29) as a

linear system for finding f+ and f+, approximately, in terms of a(x, k) and a(y, k). As

a result, we get (20), where D is the determinant of the 2× 2 coefficient matrix.

In order to obtain formula (21), we use the definitions (18), the definition of D in (20),

and the formulas

|y| = |x+ ζ | =
√

|x|2 + 2x · ζ + |ζ |2

= |x|+ x̂ · ζ +O(|x|−1) as |x| → ∞, (30)

x̂ = ω +O(s−1) as s→ +∞. (31)

Under assumption (12), formula (23) follows from the statements:

(i) The function α(ω) := (k − µ(ω,E)ω) · ζ is real-analytic in ω ∈ Sd−1 for fixed k and

ζ .

(ii) α(ω) is not identically constant.

(iii) Meas E = 0 in Sd−1 if E is the set of zeroes of a non-zero real-analytic function u

on Sd−1.

Statement (i) follows from definition of µ by (15) and the real-analyticity of γ in formula

(13). The latter analyticity of γ follows from analyticity, strict convexity, and non-zero

principal curvatures of Γ(E). Alternatively, one can use explicit formulas, relating ω

and γ, mentioned in the Proof of Lemma 3 in [22] (where γ is denoted as k and E is

denoted as λ).

Statement (ii) follows from the property that µ(ω,E)ω · ζ is not identically constant, for

example, it is not identically zero but the set of its zeroes is non-empty in Sd−1. The

latter property follows from the observation that µ(ω,E) has no zeroes in view of strict
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convexity of Γ(E), whereas ω · ζ is not identically zero on Sd−1 but the set of its zeros

is non-empty.

Statements of type statement (iii) are well-known in analysis; see, for example, [47] and

references therein.

Actually, formula (22) follows from statement (iii) used for u = α−nπ for several integer

n.

4. Proofs of Propositions 2.4 and 2.5

Due to (14), with O
(

|x|−
d+1

2

)

≡ 0 for d = 1, we have

s21e
−2ikx + s21e

2ikx + |s21|2 = a(x, k). (32)

To prove Proposition 2.4, we use (32) and also (32) with x replaced by y, i.e.,

s21e
−2iky + s21e

2iky + |s21|2 = a(y, k). (33)

As a result we consider (32) and (33) as a linear system for finding s21 and s21 from

a(x, k)− |s21|2 and a(y, k)− |s21|2. Solving this system, we get formula (25).

To prove Proposition 2.5, we consider formula (32) with x = x1, x2, x3. Subtracting

equality (32) for x = x1 from equality (32) for x = x2 and from equality (32) for x = x3,

we obtain the system

s21(e
−2ikx2 − e−2ikx1) + s21(e

2ikx2 − e2ikx1) = a(x2, k)− a(x1, k), (34)

s21(e
−2ikx3 − e−2ikx1) + s21(e

2ikx3 − e2ikx1) = a(x3, k)− a(x1, k), (35)

for finding s21 and s21. One can see that

D = 2i
(

sin(2k(x3 − x2)) + sin(2k(x2 − x1)) + sin(2k(x1 − x3))
)

, (36)

where D is the determinant of the system (34), (35). This determinant can be also

re-written in the form of D in (26); see (3.7) in the arXiv preprint of [33]. Solving (34),

(35) we get formula (26). Due to our assumption that xi 6= xj mod (π/k), we have that

D 6= 0 in (26).
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