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Abstract

This work is concerned with the use of Gaussian surrogate models
for Bayesian inverse problems associated with linear partial differential
equations. A particular focus is on the regime where only a small amount
of training data is available. In this regime the type of Gaussian prior used
is of critical importance with respect to how well the surrogate model will
perform in terms of Bayesian inversion. We extend the framework of
Raissi et. al. (2017) to construct PDE-informed Gaussian priors that
we then use to construct different approximate posteriors. A number
of different numerical experiments illustrate the superiority of the PDE-
informed Gaussian priors over more traditional priors.

1 Introduction

Combining complex mathematical models with observational data is an ex-
tremely challenging yet ubiquitous problem in the field of modern applied math-
ematics and data science. Inverse problems, where one is interested in learning
inputs to a mathematical model such as physical parameters and initial condi-
tions given partial and noisy observation of model outputs, are hence of frequent
interest. Adopting a Bayesian approach [15, 32], we incorporate our prior knowl-
edge on the inputs into a probability distribution, the prior distribution, and
obtain a more accurate representation of the model inputs in the posterior dis-
tribution, which results from conditioning the prior distribution on the observed
data.

The posterior distribution contains all the necessary information about the
characteristics of our inputs. However, in most cases the posterior is unfortu-
nately intractable and one needs to resort to sampling methods such as Markov
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chain Monte Carlo (MCMC) [26, 3] to explore it. A major challenge in the ap-
plication of MCMC methods to problems of practical interest is the large com-
putational cost associated with numerically solving the mathematical model for
a given set of the input parameters. Since the generation of each sample by an
MCMC method requires a solve of the governing equations, and often millions of
samples are required in practical applications, this process can quickly become
very costly.

One way to deal with the challenge of full Bayesian inference for complex
models is the use of surrogate models, also known as emulators, meta-models
or reduced order models. In particular, instead of using the complex (and
computationally expensive) model, one uses a simpler and computationally more
efficient model to approximate the solution of the governing equations, which in
turn is used to approximate the data likelihood. Within the statistics literature,
the most commonly used type of surrogate model is a Gaussian process emulator
[24, 30, 28, 16, 22, 14], but other types of surrogate models can also be used
including projection-based methods [5], generalised Polynomial Chaos [35, 19],
sparse grid collocation [1, 18] and adaptive subspace methods [9, 10].

In this paper, we focus on the use of Gaussian process surrogate models for
approximating the posterior distribution in inverse problems, where the forward
model relates to the solution of a linear partial differential equation (PDE). In
particular, we consider two different ways of using the surrogate model, by em-
ulating either the parameter-to-observation map or the negative log-likelihood.
Convergence properties of the corresponding posterior approximations, as the
number of design points N used to construct the surrogate model goes to infin-
ity, have recently been studied in [31, 34, 13]. These results put the methodology
on a firm theoretical footing, and show that the error in the approximate pos-
terior distribution can be bounded by the corresponding error in the surrogate
model. Furthermore, the error in the approximate posteriors tends to zero as
N tends to infinity. However, when the forward model of interest is given by a
complex model such as a PDE, one normally operates in a regime where only
a very limited number of design points N can be used due to constraints on
computational cost. This setting is less understood and is the setting of main
interest in this paper.

With a small number of design points, different modelling choices made in
the derivation of the approximate posterior can have a large effect on its accu-
racy. In particular, the choice of Gaussian prior distribution in the emulator
is crucial, as it heavily influences its accuracy. Intuitively, we want to make
the prior distribution as informative as possible, by incorporating known infor-
mation about the underlying forward model. For example, an informed prior
specially tailored to solving the forward problem in linear PDEs can be found
in [23]. For incorporating more general constraints, we refer the reader to the
recent review [33]. Other modelling choices that require careful consideration
are whether we build a surrogate model for the parameter-to-observation map
or the log-likelihood directly, and whether we use the full distribution of the
emulator or only the mean (see e.g [31, 17]).

The focus of this paper is on computational aspects of the use of Gaussian
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process surrogate models in PDE inverse problems, with particular emphasis
on the setting where the number of design points is limited by computational
constraints. The main contributions of this paper are the following:

1. We extend the PDE-informed Gaussian process priors from [23] to enable
their use in inverse problems, which requires a Gaussian process prior
as a function of both the spatial variable of the PDE and the unknown
parameter(s).

2. By showing that the required gradients can be computed explicitly, we
establish that gradient-based MCMC samplers such as the Metropolis-
adjusted Langevin algorithm (MALA) can be used to efficiently sample
from the approximate posterior distributions.

3. Using a range of numerical examples, we demonstrate the isolated effects
of various modelling choices made, and thus offer valuable insights and
guidance for practitioners. This includes choices on posterior approxima-
tion in the inverse problem (e.g. emulating the parameter-to-observation
map or the log-likelihood) and on prior distributions for the Gaussian
process emulator (e.g. black-box or PDE-constrained).

The rest of the paper is organised as follows. In Section 2 we set up notation
with respect to the inverse problems of interest, as well as discuss the different
kinds of posterior approximations that result from using Gaussian surrogate
models for the data-likelihood. We then proceed in Section 3 to present our
main methodology, discussing how can one blend better-informed Gaussian sur-
rogate models with inverse problems as well as presenting the MCMC algorithm
that we use. A number of different numerical experiments that illustrate the
computational benefits of our approach are then presented in Section 4, while
finally Section 5 provides a summary and discussion of the main results.

2 Preliminaries

We now give more details about the type of inverse problems that we consider
in this paper as well as discuss different aspects of Gaussian emulators and the
corresponding type of approximate posteriors that we consider in this work.
At the end of this section, we summarise in Table 1 all the different notations
introduced in this section.

2.1 PDE Inverse problems

Consider the linear PDE

Lθu(x) = f(x), x ∈ D, (1a)

Bu(x) = g(x), x ∈ ∂D, (1b)

posed on a computational domain D ⊆ Rdx , where Lθ denotes a linear differen-
tial operator depending on parameters θ ∈ T ⊆ Rdθ and the linear operator B
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incorporates boundary conditions. The inverse problem of interest in this paper
is to infer the parameters θ from the noisy data y ∈ Rdy given by

y = GX(θ) + η, (2)

where X = {x1, · · · ,xdy} ⊂ D are the spatial points where we observe the solu-
tion u of our PDE, GX : T → Rdy is the parameter-to-observation map defined

by GX(θ) = {u(xj ;θ)}
dy

j=1, and η ∼ N (0,Γη) is an additive Gaussian noise term

with covariance matrix Γη = σ2
ηIdy . Note that the assumption of Gaussianity

and diagonal noise covariance is done for simplicity, but these assumptions can
be relaxed [17]. Likewise, the methodology generalises straightforwardly to gen-
eral bounded linear observation operators applied to the PDE solution u.

To solve the inverse problem we will adopt a Bayesian approach [32]. That
is, prior to observing the data y, θ is assumed to be distributed according to
a prior density π0(θ), and we are interested in the updated posterior density
π(θ|y). From (2) we have y|θ ∼ N (GX(θ),Γη), so the likelihood is

L(y|θ) ∝ exp

(
−1

2
∥GX(θ)− y∥2Γη

)
:= exp (−Φ(θ,y)), (3)

where the function Φ : T × Rdy → R is called the negative log-likelihood or
potential and ∥z∥Γη = zTΓ−1

η z denotes the norm weighted by Γ−1
η . Then by

Bayes’ formula we have
π(θ|y) ∝ L(y|θ)π0(θ). (4)

The posterior distribution π(θ|y) is in general intractable, and we need to resort
to sampling methods such as MCMC to extract information from it. However,
generating a sample typically involves evaluating the likelihood and hence the
solution of the PDE (1), which can be prohibitively costly. This motivates the
use of surrogate models to emulate the PDE solution, which in turn is used to
approximate the posterior and hence accelerate the sampling process.

2.2 Gaussian processes

Gaussian process regression (GPR) is a flexible non-parametric model for Bayesian
inference [24]. In particular our starting point for approximating an arbitrary
function g : T → Rd, for some d ∈ N, in the absence of any observations is the
following Gaussian process prior

g0(θ) ∼ GP(m(θ),K(θ,θ′)), (5)

where m : T → Rd is a mean function and K(θ,θ′) : T × T → Rd×d is the
matrix-valued covariance function which represents the covariance between the
different entries of g evaluated at θ and θ′. When emulating the forward map
the function g corresponds to the PDE solution evaluated at dy different spatial
points, and hence d = dy. In contrast when emulating directly the log-likelihood
d = 1. Furthermore, the matrix K(θ,θ′) is often assumed to take the form

K(θ,θ′) = k(θ,θ′)Id (6)
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for some scalar-valued covariance function k(θ,θ′) : T × T → R, implying that
the entries of g are independent. As we will see later better emulators can be
constructed by relaxing this independence assumption.

The mean function and the covariance function fully characterise our Gaus-
sian prior. A typical choice for m is to set it to zero, while common choices
for the covariance function k(θ,θ′) include the squared exponential covariance
function

k(θ,θ′) = σ2 exp

(
−
∥∥θ − θ′∥∥2

2l2

)
,

and the Matérn covariance functions

k(θ,θ′) =
σ2

Γ(ν)2ν−1

(
√
2ν

∥∥θ − θ′∥∥
l

)ν

Bν

(
√
2ν

∥∥θ − θ′∥∥
l

)
.

For both kernels, the hyperparameter σ2 > 0 governs the magnitude of the
covariance and the hyperparameter l > 0 governs the length-scale at which the
entries of g0(θ) and g0(θ

′) are correlated. For the Matérn covariance function
the smoothness of the entries of g0 depends on the positive hyper-parameter ν,
while in the limit ν → ∞ we obtain the squared exponential covariance function
which gives rise to infinitely differentiable sample paths for g0.

Now suppose that we are given data in the form of N distinct design points
Θ = {θi}Ni=1 ∈ Rdθ×N with corresponding function values

g(Θ) := [g(θ1); · · · ;g(θN )] ∈ R(dy×N)×1.

Since we have assumed that the multi-output function g0 is a Gaussian process,
the matrix vector

[g0(θ
1); · · · ;g0(θ

N );g0(θ̃)] ∈ R(dy×(N+1))×1

for any test point θ̃ follows a multivariate Gaussian distribution. The condi-
tional distribution of g0(θ̃) given the set of values g(Θ) is then again Gaussian
with mean and covariance given by the standard formulas for the conditioning
of Gaussian random variables [24]. In particular, if we denote with gN the
Gaussian process (5) conditioned on the values g(Θ) we have

gN (θ) ∼ GP(mg
N (θ),KN (θ,θ′)) (7)

where the predictive mean vector mg
N and the predictive covariance matrix

KN (θ,θ′) are given by

mg
N (θ) = m(θ) +K(θ,Θ)K(Θ,Θ)−1 (g(Θ)−m(Θ)) (8)

KN (θ,θ′) = K(θ,θ′)−K(θ,Θ)K(Θ,Θ)−1K(θ′,Θ)T , (9)

withm(Θ) = [m(θ1); · · · ;m(θN )] ∈ R(dy×N)×1,K(θ,Θ) = [K(θ,θ1), . . . ,K(θ,θN )] ∈
Rdy×(dy×N) and

5



K(Θ,Θ) =

K(θ1,θ1) . . . K(θ1,θN )
...

...

K(θN ,θ1) . . . K(θN ,θN )

 ∈ R(dy×N)×(dy×N)

To avoid ambiguity in the notation, we use regular font for scalar values, bold
font for vector values, and capital font for matrices (details in Table 1).

2.3 Gaussian emulators and approximate posteriors

We now discuss two different approaches for constructing a Gaussian emulator
and using it for approximating the posterior of interest. The first approach
constructs an emulator for the forward map GX , while the second approach is
based on constructing an emulator directly for the log-likelihood.

2.3.1 Emulating the forward map

Given the data set GX(Θ), we can now proceed with building our Gaussian
process emulation for the forward map GX . One then needs to decide how to
incorporate the emulation for the construction of an approximate posterior. In
particular, depending on what type of information we plan to utilize, different
approximations will be obtained. If we use its predictive mean mGX

N as a point
estimator of the forward map GX , we obtain

πN,GX
mean (θ|y) ∝ exp

(
−1

2
∥mGX

N (θ)− y∥2Γη

)
π0(θ). (10)

Alternatively, we can try to exploit the full information given by the Gaussian
process by incorporating its variance in the posterior approximation. A natural
way to do this is to consider the following approximation1:

πN,GX

marginal(θ|y) ∝ E
(
exp

(
−1

2
∥GN

X (θ)− y∥2Γη

)
π0(θ)

)

∝

exp
(
− 1

2∥m
GX

N (θ)− y∥2(KN (θ,θ)+Γη)

)
√
(2π)dy det (KN (θ,θ) + Γη)

π0(θ), (11)

Comparing (11) with (10), the likelihood function in the marginal approxi-
mation is Gaussian with additional uncertainty KN (θ,θ) from the emulator
included into its covariance matrix. Hence, for a fixed parameter θ, the like-
lihood function in (11) will be less concentrated due to the variance inflation.
When the magnitude of KN (θ,θ) is small compared to that of Γη, the marginal
approximation will be similar to the mean-based approximation.

1The derivation of (11) results from the fact that the convolution of two Gaussian measures
is Gaussian. A detailed derivation can be found in Appendix for completeness, the formula
was also derived in [7, 6].
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2.3.2 Emulating the log-likelihood

Another way of building the emulator is to model the potential function Φ
directly. We can convert the data set GX(Θ) into a data set of negative log-
likelihood Φ(Θ) = {Φ(θi,y)}Ni=1. Again, if we only include the mean of the
Gaussian process emulator the posterior approximation becomes

πN,Φ
mean(θ|y) ∝ exp

(
−mΦ

N (θ)
)
π0(θ), (12)

while, in a similar fashion to the forward map emulation, we can take into
account the covariance of our emulator to obtain the approximate posterior

πN,Φ
marginal(θ|y) ∝ E

(
(exp

(
−ΦN (θ)

)
)π0(θ)

)
∝ exp

(
−mΦ

N (θ) +
1

2
kN (θ,θ)

)
π0(θ). (13)

The derivation of (13) is similar to that of (11). Note that in this case, the
following relationship holds between the two approximate posteriors

πN,Φ
marginal(θ|y) ∝ πN,Φ

mean(θ|y) exp
(
1

2
kN (θ,θ)

)
,

which again illustrates a form of variance inflation for the marginal posterior
approximation.

In summary, we have two methods for approximating posteriors: the mean-
based approximation and the marginal approximation; and we have two types of
emulators: the forward map emulator and the potential function emulator; thus
by combination we have four types of approximations in total. The convergence
properties of all these approximate posteriors where the subject of study in
[31, 34, 13], where it was proved under suitable assumptions that all of them
converge to the true posterior as N → ∞. However, in the case of small N , the
difference between the approximate posteriors could be large and which one we
choose is important. Furthermore, the type of Gaussian process emulator used
plays an even bigger role in this case, and one would like to use a Gaussian prior
that is as informative as possible. We discuss how to do this in the next section.

3 Methodology

Having described the different types of posterior approximations we will con-
sider, in this section we discuss different modelling approaches for the prior
distribution used in our Gaussian emulators. In doing this it is important to
note that the function that we are interested to emulate, in this case the forward
map GX(θ), depends not only on the parameters θ of our PDE, but also on the
location of the spatial observations. Thus in terms of modelling, one would like
to take this into account and build spatial correlation explicitly into the prior
covariance. This can be done in two different ways, the first by prescribing some
explicit form of spatial correlation, and the second by using the fact that we
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Symbol Description
θ Unknown parameter in PDE
T Space of unknown parameter
y Discrete observation of PDE solution

dθ, dy, dx Dimension of vector space
η, Γη, σ

2
η Gaussian noise η with zero mean and co-

variance matrix Γη = σ2
ηIdy

X = {x1,x2, · · · ,xdy} Set of spatial points corresponding to the
observation y

GX GX : T → Rdy parameter-to-observation
map

π(θ|y) Posterior
L(y|θ) Likelihood
π0(θ) Prior
Φ(θ,y) Negative log-likelihood (or potential)
σ2, l Hyper-parameters in Gaussian covariance

function (variance σ2 and length-scale l)
GP(m(θ),K(θ,θ′)) Gaussian process with mean function

m(θ) and matrix-valued covariance func-
tion K(θ,θ′)

k(θ,θ′) Scalar-valued covariance function
GX(Θ) Training data set of function values at Θ =

{θi}Ni=1 ∈ Rdθ×N

GN
X (θ) Gaussian process conditioned on data

GX(Θ)

mGX

N (θ), KN (θ,θ′) Predictive mean and predictive covariance
of GN

X (θ)
Lθ
x Differential operator of PDE with parame-

ter θ
u, f PDE solution u and sourcing term f

πN,GX
mean , π

N,GX ,s
mean , πN,GX ,PDE

mean Mean-based posterior with baseline, spa-
tially correlated and PDE-constrained em-
ulator

πN,GX

marginal, π
N,GX ,s
marginal, π

N,GX ,PDE
marginal Marginal posterior with baseline, spatially

correlated and PDE-constrained emulator
Φ(Θ) Training data set of potential function val-

ues at Θ
ΦN (θ) Gaussian process conditioned on data Φ(Θ)

mΦ
N (θ), kN (θ,θ′) Predictive mean and covariance of ΦN

πN,Φ
mean, π

N,Φ
marginal Mean-based and marginal posterior with

emulation of potential function
kp(θ,θ

′), ks(x,x
′) Scalar-valued covariance function for pa-

rameter and spatial coordinate
Kp(θ,θ

′), Ks(x,x
′) Matrix-valued covariance function for pa-

rameter and spatial coordinate

Table 1: The list of symbols and notations used in this paper.
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know that our forward map is associated with the solution of a linear PDE. We
do this in Section 3.1. It is important to note that in both cases it is possible to
calculate the gradients with respect to the parameters θ in a closed form, which
can then be used to sample from the approximate posterior distributions using
gradient-based MCMC methods such as MALA. We discuss this in more detail
in Section 3.2.

3.1 Correlated and PDE-informed priors

We now discuss two different approaches to incorporate spatial correlation in
our prior covariance function for the forward map GX(θ). Even though this
is a function from the parameter space T to the observation space Rdy , for
introducing more complicated spatial correlation it is useful to think first about
the PDE solution u(θ,x) as a function from T ×D to R. We introduce the prior
covariance function k((θ,x), (θ′,x′)) for u(θ,x), and choose a separable model

k((θ,x), (θ′,x′)) = kp(θ,θ
′)ks(x,x

′), (14)

where kp and ks are the covariance functions for the parameters θ and the spatial
points x respectively. Separable kernels are a common modeling assumption in
Gaussian processes. The resulting covariance function will have a high value
only if the kernels for both variables have a high value.

Using the fact that the forward map GX relates to the point-wise evaluation
of the function u(θ,x) for x ∈ X, and assuming zero mean, we then have the
Gaussian prior

GX(θ) ∼ GP(0,K(θ,θ′)), (15)

with
K(θ,θ′) = kp(θ,θ

′)Ks(X,X),

where Ks is the covariance matrix with entries (Ks(X,X))i,j = ks(xi,xj),
xi,xj ∈ X. This prior can then be updated to a posterior by conditioning
on data GX(Θ) as in Section 2.2, which gives

GX(θ)|GX(Θ) ∼ GP(mGX

N (θ),KN (θ,θ′)), (16)

with

mGX

N (θ) = Kuu(θ,Θ)Kuu(Θ,Θ)−1GX(Θ),

KN (θ,θ′) = K(θ,θ′)−Kuu(θ,Θ)Kuu(Θ,Θ)−1K(θ′,Θ),

and

Kuu(Θ,Θ) = {kp(θi,θj)Ks(X,X)} ∈ RNdy×Ndy , similarly Kuu(θ,Θ) ∈ Rdy×Ndy .

The second way of introducing spatial correlation is to explicitly take into
account that the forward map is related to a PDE solution. Given the PDE
system

Lθu(x) = f(x), x ∈ D,

Bu(x) = g(x), x ∈ ∂D,
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as in Section 2, we can build a joint prior between u, f and g. In particular, if
we take fixed points x,xf ∈ D and xb ∈ ∂D we have that u(θ,x)
g(θ,xb)
f(θ,xf )

 ∼ GP

0, kp(θ,θ
′)

 ks(x,x) Bks(x,xb) Lθ′
ks(x,xf )

Bks(xb,x) BBks(xb,xb) BLθ′
ks(xb,xf )

Lθks(xf ,xb) LθBks(xf ,xb) LθLθ′
ks(xf ,xf )

 ,

(17)
where the above is a Gaussian process as a function of θ, and we have used
known properties of linear operators applied to Gaussian processes (see e.g.
[20]) in the derivation. The idea of a joint prior between u and f was also used
in [23, 29], with the crucial difference that u and f were considered as functions
of the spatial variable x only. In the context of inverse problems and emulators
as considered in this work, we instead explicitly model the dependency of u on
θ, which requires an extension of the methodology.

Now as in the spatially correlated case, we can use the formula (17) to obtain
a (joint) prior for GX(θ). More precisely, we have GX(θ)

g(θ, Xg)
f(θ, Xf )

 ∼ GP
(
0,K(θ,θ′)

)
, (18)

where

K(θ,θ′) = kp(θ,θ
′)

 Ks(X,X) BKs(X,Xg) Lθ′
Ks(X,Xf )

BKs(Xg, X) BBKs(Xg, Xg) BLθ′
Ks(Xg, Xf )

LθKs(Xf , X) LθBKs(Xf , Xg) LθLθ′
Ks(Xf , Xf )


and Xg ⊂ ∂D and Xf ⊂ D are collections of dg and df points at which g and f
have been evaluated, respectively. Note that the marginal prior placed on GX

is the same as in (15).
We can then condition the joint Gaussian process prior (18) as in Section

2.2 on observations g(Θ), where now

g =

 GX(·)
g(·, Xg)
f(·, Xf )

 : T → Rdy+dg+df .

After a re-ordering of the observations g(Θ), this results in the conditional
distribution

g(θ)|g(Θ) ∼ GP
(
mg

N (θ),KN (θ,θ′)
)
,

where

mg
N (θ) = K̃(θ,Θ)K̃(Θ,Θ)−1g(Θ),

Kg
N (θ,θ′) = K(θ,θ′)− K̃(θ,Θ)K̃(Θ,Θ)−1K̃(θ′,Θ)T,
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with K(θ,θ′) = kp(θ,θ
′)Ks(X,X) as before and

K̃(θ,Θ) =

Kuu(θ,Θ) Kug(θ,Θ) Kuf (θ,Θ)
KT

ug(θ,Θ) Kgg(θ,Θ) Kgf (θ,Θ)
KT

uf (θ,Θ) KT
gf (θ,Θ) Kff (θ,Θ)

 ∈ R(dy+df+dg)×N(dy+df+dg),

K̃(Θ,Θ) =

Kuu(Θ,Θ) Kug(Θ,Θ) Kuf (Θ,Θ)
KT

ug(Θ,Θ) Kgg(Θ,Θ) Kgf (Θ,Θ)
KT

uf (Θ,Θ) KT
gf (Θ,Θ) Kff (Θ,Θ)

 ∈ RN(dy+df+dg)×N(dy+df+dg),

g(Θ) =

 GX(Θ)
g(Θ, Xg)
f(Θ, Xf )

 ∈ RN(dy+df+dg),

and

Kuu(Θ,Θ) = {kp(θi,θj)Ks(X,X)} ∈ RNdy×Ndy , similarly Kuu(θ,Θ) ∈ Rdy×Ndy ,

Kug(Θ,Θ) = {kp(θi,θj)BKs(X,Xg)} ∈ RNdy×Ndg , similarly Kug(θ,Θ) ∈ Rdy×Ndg ,

Kuf (Θ,Θ) = {kp(θi,θj)Lθj

Ks(X,Xf )} ∈ RNdy×Ndf , similarly Kuf (θ,Θ) ∈ Rdy×Ndf ,

Kgg(Θ,Θ) = {kp(θi,θj)BBKs(Xg, Xg)} ∈ RNdg×Ndg , similarly Kgg(θ,Θ) ∈ Rdg×Ndg ,

Kgf (Θ,Θ) = {kp(θi,θj)BLθj

Ks(Xg, Xf )} ∈ RNdg×Ndf , similarly Kgf (θ,Θ) ∈ Rdg×Ndf ,

Kff (Θ,Θ) = {kp(θi,θj)Lθi

Lθj

Ks(Xf , Xf )} ∈ RNdf×Ndf , similarly Kff (θ,Θ) ∈ Rdf×Ndf ,

g(Θ, Xg) = {g(θi, Xg)} ∈ RNdg ,

f(Θ, Xf ) = {f(θi, Xf )} ∈ RNdf .

The marginal posterior distribution on GX(θ) can then be extracted from the
above joint posterior by taking the first dy rows of mg

N and the first dy rows
and columns of Kg

N , which gives

GX(θ)|GX(Θ), g(Θ, Xg), f(Θ, Xf ) ∼ GP(mGX

N,Xf ,Xg
(θ),KN,Xf ,Xg

(θ,θ′)), (19)

where

mGX

N,Xf ,Xg
(θ) =

[
Kuu(θ,Θ) Kug(θ,Θ) Kuf (θ,Θ)

]
K̃(Θ,Θ)−1g(Θ),

KN,Xf ,Xg (θ,θ
′) = K(θ,θ′)−

[
Kuu(θ,Θ) Kug(θ,Θ) Kuf (θ,Θ)

]
K̃(Θ,Θ)−1

Kuu(θ
′,Θ)

Kug(θ
′,Θ)

Kuf (θ
′,Θ)

 .

Compared to the spatially correlated posterior in (16), note that in (19) we
are updating our prior on GX(θ) using the observations g(Θ, Xg) and f(Θ, Xf )
as well as GX(Θ). Since the g and f are assumed known, these additional
observations are cheap to obtain. It is also possible to extend the methodology
to condition on training data g(Θg, Xg) and f(Θf , Xf ), for point sets Θg and Θf

different to Θ, and this has been found to be beneficial in some of the numerical
experiments (see Section 4).
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Note that when emulating the potential Φ instead of the forward map GX ,
we are emulating a scalar-valued function. Since Φ is a non-linear function of
GX , it is not possible to extend the ideas of spatial correlation presented in
this section to emulating Φ, and in particular, it is not possible to construct a
PDE-informed emulator in the same way.

3.1.1 Computational implementation

We now have three different approaches for emulating the forward map and
defining the correlation between its components. We will refer to these as the in-
dependent, spatially correlated, and PDE-constrained model, respectively. Each
of them can be combined with the mean-based or the marginal approximation
of the posterior. We note here that for the computational implementation of
the spatially correlated model, the introduction of the correlation matrix does
not change the predictive mean of the Gaussian process, it only affects the pre-
dictive covariance (see Theorem 1 below). Since the spatial correlation matrix
is independent of θ, the covariance matrix between two sets of parameters Θ1

and Θ2 can be computed by the Kronecker product, that is,

K(Θ1,Θ2)︸ ︷︷ ︸
N1dy×N2dy

= Kp(Θ1,Θ2)︸ ︷︷ ︸
(N1×N2)

⊗Ks(X,X)︸ ︷︷ ︸
(dy×dy)

. (20)

Hence, assuming a spatial correlation of the type (14) only affects approximate
posteriors that take into account the uncertainty of the emulator.

Theorem 1. Consider two Gaussian processes g0(θ) ∼ GP(m(θ), kp(θ,θ
′)Idy)

and g0,s(θ) ∼ GP(m(θ), kp(θ,θ
′)Ks(X,X)), where Ks(X,X) is the covari-

ance matrix on the set of spatial points X = {xi}
dy

i=1 and kp(θ,θ
′) is scalar-

valued. Conditioning both Gaussian processes on a set of training points g(Θ) =
{g(θi)}Ni=1, denote the corresponding conditional Gaussian processes by gN (θ) ∼
GP(mg

N (θ),KN (θ,θ′)) and gN
s (θ) ∼ GP(mg

N,s(θ),KN,s(θ,θ
′)), respectively.

Then we have,

mg
N,s(θ) = mg

N (θ),

KN (θ,θ′) = kN,p(θ,θ
′)Idy , and KN,s(θ,θ

′) = kN,p(θ,θ
′)Ks(X,X),

where kN,p(θ,θ
′) is scalar-valued.

Proof. We now prove the expression for the predictive mean. Let kp(θ,Θ) :=

[kp(θ,θ
1); . . . ; kp(θ,θ

N )] ∈ R1×dy , and denote by Kp(Θ,Θ) ∈ Rdy×dy the ma-
trix with entries (Kp(Θ,Θ))i,j = kp(θ

i,θj). Then by (8) we have

mg
N,s(θ)

= m(θ) + (kp(θ,Θ)⊗Ks(X,X))
T
(Kp(Θ,Θ)⊗Ks(X,X))

−1
(g(Θ)−m(Θ)) ,

where ⊗ denotes the Kronecker product. Using properties of products and
inverses of Kronecker products and the fact that Ks(X,X) is symmetric positive

12



definite, we then have

mg
N,s(θ)

= m(θ) +
(
kp(θ,Θ)T ⊗Ks(X,X)T

) (
Kp(Θ,Θ)−1 ⊗Ks(X,X)−1

)
(g(Θ)−m(Θ))

= m(θ) +
(
kp(θ,Θ)TKp(Θ,Θ)−1 ⊗Ks(X,X)TKs(X,X)−1

)
(g(Θ)−m(Θ))

= m(θ) +
(
kp(θ,Θ)TKp(Θ,Θ)−1 ⊗ Idy

)
(g(Θ)−m(Θ))

= mg
N (θ).

The relationship between KN,s(θ,θ
′) and KN (θ,θ′) can be shown in a similar

way, using (9).

For the PDE-constrained model, since the covariance functions related to f
are obtained by applying the differential operator, the spatially correlated ma-
trix in the joint prior (17) also depends explicitly on the parameters θ. There-
fore, its covariance matrix cannot be written in a Kronecker product structure as
in (20) and Theorem 1 does not apply. Thus, incorporating the PDE constraints
into the model also affects the predictive mean and hence the mean-based pos-
terior is also changed.

3.2 MCMC algorithms

To extract information from the posterior, MCMC algorithms are powerful and
popular tools [26, 3]. In this work, we will consider the Metropolis-Adjusted
Langevin Algorithm (MALA) [27], which is a type of MCMC algorithm that
uses gradient information to accelerate the convergence of the sampling chain.
Central to the idea of MALA, and any gradient-based sampling method in fact,
is the overdamped Langevin stochastic differential equation (SDE):

dθ = ∇ log π(θ|y)dt+
√
2dW, (21)

where W is a standard dθ-dimensional Brownian motion. Under mild conditions
on the posterior π [26], (21) is ergodic and has π as its stationary distribution,
so that the probability density function of θ(t) tends to π as t → ∞.

In practice, the dynamics (21) is discretised with a simple Euler-Maruyama
method with a time step γ.

θn+1 = θn + γ∇ log π(θ|y) +
√

2γξn, (22)

with ξn ∼ N (0, 1). Assuming that the dynamics of (22) remain ergodic the
corresponding numerical invariant measure would not necessarily coincide with
the posterior. To alleviate this bias, one needs to incorporate an accept-reject
mechanism. This gives rise to MALA as descibed in Algorithm 1.

An advantage of using the Gaussian process emulator in the posterior is
that, assuming the prior is differentiable, ∇ log πN (θ|y) can be computed ana-
lytically for the mean-based and marginal approximations introduced in Section

13



Algorithm 1 Metropolis-Adjusted Langevin Algorithm

Require: initial value θ0, number of samples N , time-step γ, posterior π(θ|y)
while n < N do

1. Generate ξn ∼ N (0, 1).

2. Generate a candidate

θ′ = θn + γ∇ log π(θn|y) +
√

2γξn.

3. Compute the acceptance rate

αn := max

(
1,

π(θ′|y)q(θn|θ′)

π(θn|y)q(θ′|θn)

)
,

where q(θ|θ̃) ∝ exp
(
− 1

4γ ∥θ − θ̃ − γ∇ log π(θ̃|y)∥2
)
.

4. Generate r ∼ U [0, 1]. If r > αn, set θn+1 = θ′; otherwise θn+1 = θn.

end while

2.3, which enables us to easily implement the MALA algorithm. Note that in
contrast since the true posterior involves (analytical or numerical) solution u to
the PDE (1a)-(1b), it is usually impossible to compute these gradients analyti-
cally. The following Lemma gives us the gradient of the different approximate
posteriors

Lemma 2. Given a Gaussian process GN
X ∼ GP(mGX

N (θ),KN (θ,θ)) emulating
the forward map GX with data GX(Θ), then the gradient of the mean-based
approximation of the posterior

∇ log(πN,GX
mean (θ|y)) = − 1

σ2
η

∇mGX

N (θ)T (mGX

N (θ)− y) +∇ log π0(θ),

and the gradient of the marginal approximation of the posterior

∇ log(πN,GX

marginal(θ|y)) =−∇mGX

N (θ)T (KN (θ,θ) + Γη)
−1(mGX

N (θ)− y)

− 1

2
(mGX

N (θ)− y)T∇
(
(KN (θ,θ) + Γη)

−1
)
(mGX

N (θ)− y)

− 1

2

(
Tr
(
(KN (θ,θ) + Γη)

−1
)
∇(KN (θ,θ))

)
+∇ log π0(θ),

where

∇
(
(KN (θ,θ) + Γη)

−1
)
= −(KN (θ,θ)+Γη)

−1∇ (KN (θ,θ)) (KN (θ,θ)+Γη)
−1,

and
∇KN (θ,θ) = 2∇K(θ,Θ)K(Θ,Θ)−1K(Θ,θ)

14



4 Numerical experiments

We now discuss a number of different numerical experiments related to inverse
problems for the PDE (1a)-(1b) in various set-ups in terms of the number of
spatial and parameter dimensions as well as for different types of forward models.
In cases where the PDE solution is not available in closed form, we use the finite
element software Firedrake [25] to obtain the ”true” solution. Furthermore,
in all our numerical experiments we replace the uniform prior by a smooth
approximation given by the λ−Moreau-Yoshida envelope [2] with λ = 10−3. To
further clarify the notation we use in our numerical experiment, we introduce
part of them again in the following table (see Table 2).

Symbol Description
GX(Θ) Training data set: point-wise evaluation of the PDE solution

u(θ,x) for x ∈ X = {xi}
dy

i=1, θ ∈ Θ = {θi}Ni=1

g(Θg, Xg) Additional training data for boundary condition: point-wise

evaluation of the function g(θ,x) for x ∈ Xg = {xi}
dg

i=1,

θ ∈ Θ = {θi}Ng

i=1

f(Θf , Xf ) Additional training data for the source function: point-wise

evaluation of the function f(θ,x) for x ∈ X = {xi}
df

i=1,

θ ∈ Θ = {θi}Nf

i=1

N̄ In practice, we use Ng = Nf = N̄

Table 2: Symbols and notations used in numerical experiments.

4.1 Examples in one spatial dimension

4.1.1 Constant diffusion coefficient

We consider the following PDE in one spatial dimension

− d

dx

(
eθ

du(x)

dx

)
= 1, x ∈ (0, 1), θ ∈ [−1, 1], (23)

u(0) = 0, u(1) = 0.

In this case the dimension of the parameter space is dθ = 1, and the solution is
available in closed form. More precisely, we have

u(x) =
(x− x2)

2eθ
.

Given this explicit solution and the low dimension of the parameter space, it is
possible to calculate the true and approximate posteriors without having to re-
sort to Markov Chain Monte Carlo sampling. We now generate our observations
y according to equation (2) for the value of θ† = 0.314 for a varying number
of spatial points dy (equally spaced in [0, 1]) and for noise level σ2

η = 10−5. As
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we can see in Figure 1 as we increase dy the true posterior π(θ|y) tends to get

more and more concentrated around the value of θ† which is consistent with
what the theory would predict by a Bernstein-von-Mises theorem (see e.g. [12]
for related results).

−1.0 −0.5 0.0 0.5 1.0
θ

0

5

10

15

20

25

30

π(
θ|
y)

dy=1
dy=5
dy=9

Figure 1: True posterior with different dy

We now turn our attention to the different approximate posteriors discussed
in Section 2.3 obtained for different Gaussian priors (independent, spatially
correlated, and PDE-constrained).

Baseline model: In the case of the simplest emulator with independent en-
tries, we illustrate in Figure 2, how the mean-based posterior πN,GX

mean (θ|y) and

the marginal posterior πN,GX

marginal(θ|y) behave as a function of the number of
training points N (here dy = 5). The location of the training points is chosen
from the Halton sequence [21]. Now, when comparing Figure 2(a) and 2(b)
we see that the marginal posterior is more spread than the mean-based poste-
rior. This is due to the variance inflation associated with the marginal posterior
which reflects better the uncertainty of the emulator. For example, in the case
N = 1 the mean-based posterior has negligible posterior probability mass near
θ†, while due to the variance inflation this is not the case for the marginal-based
posterior. Furthermore, in Figure 2(c) we plot the Hellinger distance between
the approximate posteriors and the true posterior as a function of the number
of training points N . As we can see the error for the marginal-based posterior
is smaller than the error for the mean-based posterior for small N while the two
errors behave in the same way as N increases. This can be further understood
by Figure 2(d) where we plot the average variance of our emulator for different
values of N and see that the value of N for which the error between the two
posteriors is equal corresponds to the value of N for which the average variance
of the emulator is of the same order as the variance of the observational noise
σ2
η.

Spatially correlated model: As discussed in Section 3.1 the introduction
of spatial correlation doesn’t change the predictive mean of the Gaussian pro-
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Figure 2: (2a) Baseline model mean-based posterior with different N . (2b)
Baseline model marginal posterior with different N . (2c) Hellinger distance
between approximated posteriors and true posteriors when N increases. (2d)
Average predictive variance of the Gaussian process emulator as N increases.
GX is the discretised solution u in (23).
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cesses. We hence now compare in Figure 3 the two different marginal posteri-
ors πN,GX

marginal, π
N,GX ,s
marginal, where the latter includes spatial correlation. We again

choose dy = 5. In particular, as we can see in Figure 3(a) (here N = 2), in-
troducing spatial correlation seems to improve the accuracy of the approximate
posterior and place more mass near θ†. The fact that the spatially correlated
model has an increased variance at N = 2 (see Figure 3c) leads to similar behav-

ior as in Figure 2 with πN,GX ,s
marginal being more spread than πN,GX

marginal. Furthermore,
as we can see in Figure 3(b) as we increase the number of training points for our

Gaussian process the Hellinger distance between the true posterior and πN,GX ,s
marginal

is smaller than the one of the baseline model.

PDE-constrained model: We now compare the behaviour of the PDE-
constrained model with the other two models, both for mean-based approximate
posterior, as well as for marginal posterior (again here dy = 5). In particular,

as we can see in Figures 4(a) and 4(b) for N = 2, πN,GX ,PDE
mean and πN,GX ,PDE

marginal

are indistinguishable from the true posterior when using N̄ = 10, df = 5 show-
ing much better approximation properties than the other two models. This
is consistent with what we observe in terms of Hellinger distance, since both
πN,GX ,PDE
mean and πN,GX ,PDE

marginal have similar errors over a different range of values
for Nf . It is also worth noting that when comparing with the Hellinger distance
from Figures Figures 2(c) and 3(c) we see that the PDE-based model achieves
the same order of error with only using half of the training points (N = 2 instead
of N = 4). Furthermore, as we can see in Figure 4(d) the average variance of the
PDE-constrained emulator converges to zero very fast as the number of extra
training points for f increases, implying that at least in this simple example
adding the PDE knowledge leads to an extremely good approximation of the
forward map.

4.1.2 Two dimensional piece-wise constant diffusion coefficient

We now consider a slightly more general problem than (23). In particular, we
consider the same elliptic equation as in (23) but use a 2-dimensional piece-wise
constant diffusion coefficient. In particular, we now have the following equation

− d

dx
(exp(κ(x,θ))

d

dx
u(x)) = 4x, x ∈ (0, 1), θ ∈ [−1, 1], (24)

u(0) = 0,

u(1) = 2,
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Figure 3: (3a) Baseline and spatially correlated model marginal posterior for
N = 2. (3b) Hellinger distance between approximated posteriors and true
posterior as N increases. (3c) Average predictive variance of the Gaussian
process emulator as N increases. GX is the discretised solution u in (23).
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Figure 4: Comparison of different models when N = 2, for PDE model df = 5.
(4a) Mean-based posteriors (4b) Marginal posteriors (4c) Hellinger distance be-
tween approximated posteriors and true posterior as df increases. (4d) Average
predictive variance of emulator as df increases. GX is the discretised solution u
in (23).
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where κ is defined as piece-wise constant over four equally spaced intervals.
More precisely, we consider

κ(x,θ) =



0, for x ∈ [0, 1
4 )

θ1, for x ∈ [ 14 ,
1
2 )

θ2, for x ∈ [ 12 ,
3
4 )

1 for x ∈ [ 34 , 1]

(25)

Unlike equation (23), it is not possible to obtain an analytic solution for (24) so
we use instead Firedrake to obtain its solution.

For the PDE constrained model, we first test the effectiveness of additional
training data g(Θg, Xg) and f(Θf , Xf ). We let the size of point set Θg and
Θg to be the same and denoted by N̄ . In Figure 5, we test the impact of df
and N̄ to the accuracy of the PDE constrained emulator. We use fixed same
hyperparameters for all the models and dg = 2. We see that as df increases the
accuracy of emulators gradually increases. While for N̄ , we see that a certain
amount of additional point can improve the accuracy, but including more points
cannot make further improvement.

Throughout this numerical experiment, we take the prior of the parameters
to be the uniform distribution on [−1, 1]2, and we generate our data y according
to equation (2) for the value θ† = [0.098, 0.430] for dy = 6 (equally spaced points
in [0,1]) and for noise level σ2

η = 10−4. For the baseline and spatially correlated
model, we have used N = 4 training points (chosen to be the first 4 points in the
Halton sequence), while additionally for the PDE-constrained model, we have
used N̄ = 10 (chosen to be the following 10 points in the Halton sequence) and
df = 20. For the covariance kernels, we choose kp to be the squared exponential
kernel and ks to be the Matèrn kernel with ν = 5

2 .
Unlike (23) we now do not perform exact integration but use the MALA al-

gorithm to obtain our samples. In particular, for all our approximate posteriors
we have used 106 samples. In addition, since in this case, we do not have an
analytic expression for the solution, we do not have direct access to the true
posterior. We circumvent this problem by considering the results obtained by a
mean-based approximation with the baseline model for N = 102 training points
as the ground truth.

As we can see in Figures 6(a)-(c) all the mean-based posteriors are failing to
put significant posterior mass near the true parameter value θ†. The situation
improves when the uncertainty of the emulator is taken into account as we
can see for the marginal-based posteriors. Out of the three different models,
the PDE-constrained one seems to be performing best since it is placing the
most posterior mass around the true value θ†. This is further illustrated in
Figure 7 where we plot the θ1 and θ2 marginals for all the mean-based posterior
approximations πN,GX

mean , π
N,GX ,s
mean , πN,GX ,PDE

mean and the marginal-based posterior

approximations πN,GX

marginal, πN,GX ,s
marginal, πN,GX ,PDE

marginal . Note that the marginal plot
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Figure 5: Error between the predictive mean of PDE constrained emulators and
the ground truth at observation points (θ = θ†) for different (a) df (N̄ = 10)
(b) N̄ (df = 20)
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Figure 6: Contour plots of the approximate mean-based and inflated-based
posteriors. (a) baseline model (b) spatially correlated (c) PDE-constrained.
” + ” denotes θ†. GX is the discretised solution u in (24).
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Figure 7: Comparison of different models’ marginal distribution when N = 4,
for PDE model df = 20 and N̄ = 20. (a) Mean-based approximation θ1. (b)
Mean-based approximation θ2. (c) Marginal approximation θ1. (d) Marginal
approximation θ2. GX is the discretised solution u in (24) with diffusion coeffi-
cient (25).

could be misleading the overall performance of the approximations, for example
in Figure 7b the baseline model seems to be better than the PDE-constrained
model, but from the Figure 6 we know that is not true. When we increase df
from 20 to 50, the accuracy of approximation improves. We see that in Figure
8, the marginal plot of the mean-based approximate

4.1.3 Integral observation operator

We now investigate the proposed method with a different form of observation
operator. In terms of the PDE problem, we study again (24). However, instead

of point-wise observations GX(θ) = {u(xj ;θ)}
dy

j=1 as in (2), we observe local

averages GX(θ) = {
∫ bj
aj

u(x;θ)dx}dy

j=1 for non-overlapping intervals [aj , bj ⊂
[0, 1].

For the inverse problem setting, we have θ† = [0.098, 0.430] which is the
same as before, dy = 16 (equally spaced sub-intervals of [0, 1]) and σ2

η = 10−6.
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Figure 8: Comparison of different models’ marginal distribution when N = 4,
for PDE model df = 50 and N̄ = 20. (a) Mean-based approximation θ1. (b)
Mean-based approximation θ2. (c) Marginal approximation θ1. (d) Marginal
approximation θ2. GX is the discretised solution u in (24) with diffusion coeffi-
cient (25).

We again do not conduct precise integration as in (23), but use MALA algorithm
to obtain our samples. We utilize 106 samples for all our approximate posterior.
We treat the sampling results obtained by a mean-based approximation with
the baseline model for N = 102 training points as the ground truth. In Figure
9, we plot again the θ1 and θ2 marginals for all the mean-based posterior ap-
proximations and the marginal posterior approximations. The result is similar
to the previous example that the PDE-constrained model performs better than
the other two models.

4.1.4 Parametric expansion for the diffusion coefficient

In this example, we study again (24), but this time instead of working with a
piecewise constant diffusion coefficient we assume that the diffusion coefficient
satisfies the following parametric expansion

κ(θ, x) = exp

(
2∑

n=1

√
anθnbn(x)

)
(26)

where an = 8
ω2

n+16 and bn(x) = An(sin(ωnx) +
ωn

4 cos(ωnx)), ωn is the nth

solution of the equation tan(ωn) =
8ωn

ω2
n−16 and An is a normalisation constant

which makes ∥bn∥ = 1.
In terms of the inverse problem setting, we are using the same parameters

as before (θ† = [0.098, 0.430], dy = 6, noise level σ2
η = 10−4). The number of

training points for all the emulators has been set to N = 4 (chosen using the
Halton sequence), while in the case of the PDE-constrained emulator we have
used N̄ = 10 and df = 8. Furthermore, throughout this numerical experiment,
we take the prior of the parameters to be the uniform distribution on [−1, 1]2.
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Figure 9: Comparison of different models’ marginal distribution when N = 4,
for PDE model N̄ = 10 and df = 50. (a) Mean-based approximation θ1. (b)
Mean-based approximation θ2. (c) Marginal approximation θ1. (d) Marginal
approximation θ2. GX is the integrals of solution u in (24) with diffusion coef-
ficient (25).
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Figure 10: Comparison of different models’ marginal distribution when N = 4,
for PDE model N̄ = 10 and df = 8. (a) Mean-based approximation for the θ1
marginal. (b) Mean-based approximation for the θ2 marginal. (c) Marginal ap-
proximation of the θ1 marginal. (d) Marginal approximation of the θ2 marginal.
GX is the discretised solution u in (24) with diffusion coefficient (26) and dθ = 2.

For the choices of kernels, we use the squared exponential kernel for both kp
and ks.

As in the previous experiments, we produce 106 samples of the posteriors
using MALA, and use the results obtained by a mean-based approximation with
the baseline model forN = 102 training points as the ground truth. We now plot
in Figure 10 the θ1 and θ2 marginals for the different Gaussian emulators both in
the case of mean-based and marginal posterior approximations. In particular, as
we can see in Figure 10(a)-(b) for the mean-based posterior approximations, the
baseline and spatially correlated model fail to capture the true posterior while
this is not the case for the PDE-constrained model since the agreement with
the true posterior is excellent. When looking at the marginal approximations
in Figure 10(c)-(d) we can see that the marginals for the baseline and spatially
correlated model move closer towards the true value θ† and exhibit variance
inflation. This is, however, not the case for the PDE-constrained model since
again it is in excellent agreement with the true posterior.
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4.1.5 Ten-dimensional parametric expansion diffusion coefficient

We will now increase the dimension of the diffusion coefficient from dθ = 2 to
dθ = 10 in (26), to test the proposed method in a relatively high dimensional
space. In particular, we divide the interval [0, 1] into 12 sub-intervals of equal
length and fix the value of κ to be 0 and 1 at the 2 ends, respectively. The
values of on the remaining ten intervals are our unknown θ. With regard to the
inverse problem setting, we set

θ† = [0.098, 0.430, 0.206, 0.090,−0.153, 0.292,−0.125, 0.784, 0.927,−0.233]

and we increase the number of observation points to dy = 20. The level of noise
is same as before (σ2

η = 10−4). The number of training points for all emulators

is again set to be N = 4, and for the PDE-constrained emulator we use N̄ = 50,
df = 25 and dg = 2. For the choices of kernels, we use the squared exponential
kernel for both kp and ks.

We now use the MALA algorithm to obtain 107 samples of the approximate
posteriors. In this relatively high-dimensional setting, we need longer chains
for the sampling algorithm to converge. Meanwhile, computation of a suitable
”ground truth” is prohibitively expensive, so we only compare the sampling
result with the true parameter θ†. The number of training points N = 4 is
far from enough for the baseline Gaussian process model to give an accurate
prediction. From the Figure 11a, we can see that the mean-based posterior
approximation with the baseline model can only give a reasonable approximation
for the first few variables, for the rest of the variables the approximation could
not put any density around the true value. Adding spatial correlation into the
model helps the approximation move toward the true value (Figure 11b), but
it still cannot correctly approximate the posterior for the last few variables.
The performance of the PDE-constrained model is much better than the other
models, it is placing the posterior mass around the true value for all variables.

4.2 Two spatial dimensions

4.2.1 Two-dimensional piece-wise constant diffusion coefficient

In this example, we increase the spatial dimension from dx = 1 to dx = 2 and
use a 2 dimensional piece-wise constant as the diffusion coefficient. The values
of the diffusion coefficient are set in a similar way to the previous example,
depending only on the first dimension of x:

κ(x,θ) =



0, for x1 ∈ [0, 1
4 ),

θ1, for x1 ∈ [ 14 ,
1
2 ),

θ2, for x1 ∈ [ 12 ,
3
4 ),

1, for x1 ∈ [ 34 , 1].

(27)
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Figure 11: Comparison of different models’ marginal distribution when N = 4,
for PDE model N̄ = 50 and df = 25. (a) Mean-based approximation (b)
Marginal approximation. GX is the discretised solution u in (24) with diffusion
coefficient (26) and dθ = 10.
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The boundary conditions are a mixture of Neumann and Dirichlet conditions,
given by

∂x1u(x1, 0) = ∂x1u(x1, 1) = 0, for x1 ∈ [0, 1],

u(0, x2) = 1, u(1, x2) = 0, for x2 ∈ [0, 1].

These boundary conditions define a flow cell, with no flux at the top and bottom
boundary (x2 = 0, 1) and flow from left to right induced by the higher value of
u at x1 = 0.

Again, we take the prior of the parameters to be the uniform distribution
on [−1, 1]2, approximated by the λ−Moreau-Yoshida envelope with λ = 10−3.
For the observation, we generate our data y according to equation (2) for the
value θ† = [0.098, 0.430] for dy = 6 (chosen to be the first 6 points in the
Halton sequence) and for noise level σ2

η = 10−5. In addition, for the baseline
and spatially correlated model, we have used N = 4 training points (chosen to
be the first 4 points in the Halton sequence), while additionally for the PDE-
constrained model, we have used N̄ = 30, df = 30 and dg = 8, corresponding
to 2 equally spaced points on each boundary. For the covariance kernels, we let
kp be the squared exponential kernel and ks be the Matèrn kernel with ν = 5

2 .
We plot the mean-based approximate posteriors marginals in Figure 12a

and 12b. We can see that in this case, the PDE-constrained model significantly
improves the approximation accuracy, which is different from the previous piece-
wise constant diffusion coefficient example in 1 spatial dimension. In Figures
12c and 12d, we compare the marginal approximation for the three models. We
see that the PDE-constrained model performs better than the other two models.

4.3 Emulating the negative log-likelihood function

As discussed in Section 2.3.2, we can emulate the negative log-likelihood (also
called potential function) directly with Gaussian process regression. Since em-
ulation of log-likelihood simplifies the structure of the problem, we are not able
to incorporate spatial correlation or PDE constraints into the emulator. We
have mean-based approximation (12) and marginal approximation (13). We
test their performance using previous examples: problem (24) with diffusion
coefficient (25) with dx = 1 and dx = 2. All parameters are kept the same as
in Section 4.1.2 and Section 4.2. Due to its simplified structure, the value of dx
makes no difference for the emulator since the only information taken by the
emulator is the training data Φ(Θ).

In Figure 13, we compare the mean-based approximation with emulation of
the log-likelihood Φ and the observation operator GX using baseline model. We
see that the results are very different in both examples. For the dx = 1 example,
emulating log-likelihood function performs better than emulation of observation
with baseline model, the approximated posterior is closer to the true posterior.
For the dx = 2 case, its performance is much worse. Hence, emulating the
log-likelihood with a small amount of data could be less reliable compared to
emulating observation. If we increase the number of training data to N = 10
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Figure 12: Comparison of different models’ marginal distribution when N = 4,
for PDE model N̄ = 30 and df = 30. (a) Mean-based approximation for the θ1
marginal. (b) Mean-based approximation for the θ2 marginal. (c) Marginal
approximation for the θ1 marginal. (d) Marginal approximation for the θ2
marginal. GX is the discretised solution u with dx = 2 and diffusion coeffi-
cient (27).
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Figure 13: Comparison of emulating log-likelihood function and emulating ob-
servations when N = 4. Both approximation are mean-based approximation.
GX is the negative log-likelihood function in: (a) problem (24) with diffusion
coefficient (25) with dx = 1; (b) problem (24) with diffusion coefficient (25) with
dx = 2.

for the dx = 2 case, we can see the improvement of accuracy (Figure 14), but it
is still worse than emulating observation with baseline model.

Similarly, marginal approximations of the posterior with emulation of the
log-likelihood appear to also be less reliable when the amount of training data
is small, see Figure 15. Including more training point can again improve the per-
formance. The main advantage of emulating the log-likelihood function directly
is its computational cost, which is much smaller than emulating in observation
space. Detailed computational times are listed in the following section.

4.4 Computational timings

In this section, we discuss computational timings. We focus on the computa-
tional gains resulting from using Gaussian process emulators instead of the PDE
solution in the posterior (see Table 3) and the relative costs of sampling from
the various approximate posteriors (see Tables 4, 5 and 6).

Table 3 below gives average computational timings comparing the evaluation
of the solution of the PDE using Firedrake with using the Gaussian process
surrogate model. For the baseline surrogate model, the two primary costs are
(i) computing the coefficients α = K(Θ,Θ)−1GX(Θ), which is an offline cost and

only needs to be done once, and (ii) computing the predictive mean mf
N (θ) =

K(θ,Θ)α, which is the online cost and needs to be done for every new test point

θ. We see that evaluating mf
N (θ) is orders of magnitude faster than evaluating

GX(θ).
In Tables 4, 5 and 6, we compare average computational timings of drawing

one sample from the approximate posterior with different models. In Table 4,
we see that the mean-based approximation with the PDE-informed prior is more
expensive than the one with the baseline prior, by a factor of 2-4 depending on
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Figure 14: Accuracy of emulator is improved when N increases (N = 10). GX

is the negative log-likelihood function in problem (24) with diffusion coefficient
(25) with dx = 2 and mean-based approximation.
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Figure 15: (a) Marginal approximation with N = 4 (b) Marginal approximation
with N = 10. GX is the negative log-likelihood function in problem (24) with
diffusion coefficient (25) with dx = 1.
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Set-up GX(θ) mGX

N (θ) α

dθ = 2, dy = 6, D = (0, 1), N = 4 3.2× 10−1s 1.0× 10−4s 2.5× 10−4s
dθ = 2, dy = 6, D = (0, 1), N = 20 3.2× 10−1s 1.3× 10−4s 6.8× 10−4s
dθ = 10, dy = 18, D = (0, 1), N = 4 3.2× 10−1s 1.6× 10−4s 4.5× 10−4s
dθ = 2, dy = 6, D = (0, 1)2, N = 4 7.6× 100s 1.0× 10−4s 5.3× 10−4s

Table 3: Timings of PDE solution vs baseline Gaussian process emulator

the setting. This is to be expected, since the PDE-informed posterior mean
mGX

N,Xf ,Xg
involves matrices of larger dimensions than the baseline posterior

mean mGX

N .
Table 5 investigates the different marginal approximations. Compared to

the mean-based approximations in Table 3, we see that the marginal approxi-
mations are more expensive by a factor of around 2 for the baseline model and
around 3-10 for the PDE-constrained model. Within the different marginal ap-
proximations, the spatially correlated model is not much more expensive than
the baseline model. Depending on the setting, the PDE-constrained model is
2-30 times more expensive.

In Table 6, we can see that emulating the log-likelihood significantly re-
duces the cost of sampling from the mean-based and marginal approximations,
by around a factor of 20 compared to the baseline model for emulating the
observations.

Set-up πN,GX
mean πN,GX ,PDE

mean

dθ = 2, dy = 6, D = (0, 1), N = 4 8.5× 10−4s 1.2× 10−3s (N̄ = 10, df = 20)
dθ = 2, dy = 6, D = (0, 1), N = 20 9.3× 10−4s 1.4× 10−3s (N̄ = 10, df = 20)
dθ = 10, dy = 18, D = (0, 1), N = 4 2.6× 10−3s 1.2× 10−2s (N̄ = 50, df = 25)
dθ = 2, dy = 6, D = (0, 1)2, N = 4 8.5× 10−4s 1.6× 10−3s (N̄ = 30, df = 30)

Table 4: Timings of different mean-based approximations (baseline and PDE-
constrained)

Set-up πN,GX

marginal πN,GX ,s
marginal πN,GX ,PDE

marginal

dθ = 2, dy = 6, D = (0, 1), N = 4 1.7× 10−3s 2.2× 10−3s 3.2× 10−3s
dθ = 2, dy = 6, D = (0, 1), N = 20 2.0× 10−3s 2.6× 10−3s 5.6× 10−3s
dθ = 10, dy = 18, D = (0, 1), N = 4 3.4× 10−3s 3.6× 10−3s 1.1× 10−1s
dθ = 2, dy = 6, D = (0, 1)2, N = 4 1.7× 10−3s 2.2× 10−3s 4.8× 10−2s

Table 5: Timings of different marginal approximations (baseline, spatially cor-
related and PDE-constrained); N and df are as in Table 4
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Set-up πN,Φ
mean πN,GX ,Φ

marginal

dθ = 2, dy = 6, D = (0, 1), N = 4 3.4× 10−5s 5.8× 10−5s
dθ = 2, dy = 6, D = (0, 1)2, N = 4 3.4× 10−5s 5.8× 10−5s

Table 6: Timings of mean-based and marginal approximation when emulating
the log-likelihood

5 Conclusions, discussion and actionable advice

Bayesian inverse problems in PDEs pose significant computational challenges.
Application of state-of-the-art sampling methods, including MCMC methods, is
typically computationally infeasible due to the large computational cost of sim-
ulating the underlying mathematical model for a given value of the unknown
parameters. A solution to alleviate this problem is to use a surrogate model to
approximate the PDE solution in Bayesian posterior distribution. In this work
we considered the use of Gaussian process surrogate models, which are fre-
quently used in engineering and geo-statistics applications and offer the benefit
of built-in uncertainty quantification in the variance of the emulator.

The focus of this work was on practical aspects of using Gaussian process
emulators in this context, providing efficient MCMC methods and studying the
effect various modelling choices in the derivation of the approximate posterior
on its accuracy and computational efficiency. We now summarise the main
conclusions of our investigation.

1. Emulating log-likelihood vs emulating observations. We can con-
struct an emulator for the negative log-likelihood Φ or the parameter-to-
observation map GX in the likelihood (3).

• Computational efficiency. The log-likelihood Φ is always scalar-
valued, independent of the number of observations dy, which makes
the computation of the approximate likelihood for a given value of
the parameters θ much cheaper than the approximate likelihood with
emulated GX . The relative cost will depend on dy.

• Accuracy. When only limited training data is provided, emulating
GX appears more reliable than emulating Φ, even with the baseline
model. The major advantage of emulating GX is that it allows us to
include correlation between different observations, i.e. between the
different entries of GX . This substantially increases the accuracy of
the approximate posteriors, in particular if we use the PDE structure
to define the correlations (see point 3 below).

2. Mean-based vs marginal posterior approximations. We can use
only the mean of the Gaussian process emulator to define the approximate
posterior as in (10) and (12), or we can make use of its full distribution
to define the marginal approximate posteriors as in (11) and (13).
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• Computational efficiency. The mean-based approximations are faster
to sample from using MALA. This is due to simpler structure of
the gradient required for the proposals. The difference in compu-
tational time depends on the prior chosen, and is greater for the
PDE-constrained model.

• Accuracy. The marginal approximations correspond to a form of
variance inflation in the approximate posterior (see Section 2.3), rep-
resenting our incomplete knowledge about the PDE solution. They
thus combat over-confident predictions. In our experiments, we con-
firm that they typically allocate larger mass to regions around the
true parameter value than the mean-based approximations.

3. Spatial correlation and PDE-constrained priors.

• Computational efficiency. Introducing the spatially correlated model
only affects the marginal approximation, and sampling from the marginal
approximate posterior with the spatially correlated model is slightly
slower than with baseline model. The PDE-constrained model signif-
icantly increases the computational times for both the mean-based
and marginal approximations, by how much highly depends on the
size of additional training data.

• Accuracy. Introducing spatial correlation improves the accuracy of
the marginal approximation compared to the baseline model. The
most accurate results are obtained with the PDE-constrained priors,
which are problem specific and more informative. A benefit of the
spatially correlated model is that it does not rely on the underlying
PDE being linear, and easily extends to non-linear settings.

In summary, the marginal posterior approximations and spatially correlated/
PDE-constrained prior distributions provide mechanisms of increasing the ac-
curacy of the inference and avoiding over-confident biased predictions, without
the need to increase N . This is particularly useful in practical applications,
where the number of model runs N available to train the surrogate model may
be very small due to constraints in time and/or cost. This does result in higher
computational cost compared to mean-based approximations based on black-
box priors, but may still be the preferable option if obtaining another training
point is impossible or computationally very costly.

Variance inflation, as exhibited in the marginal posterior approximations
considered in this work, is a known tool to improve Bayesian inference in com-
plex models, see e.g. [8, 6, 11]. Conceptually, it is also related to including model
discrepancy [16, 4]. However, the approach to variance inflation presented in
this work has several advantages. Firstly, the variance inflation being equal to
the predictive variance of the emulator means that the amount of variance infla-
tion included depends on the location θ in the parameter space. We introduce
more uncertainty in parts of the parameter space where we have less training
points and the emulator is possibly less accurate. Secondly, the amount of vari-
ance inflation can be tuned in a principled way using standard techniques for
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hyper-parameter estimation in Gaussian process emulators. There is no need to
choose a model for the variance inflation separately to choosing the emulator,
since this is determined automatically as part of the emulator.

We did not discuss optimal experimental design in this work, i.e. how we
should optimally choose the locations Θ of the training data. In practice this
will also have a large influence on the accuracy of the approximate posteriors,
especially for small N . In the context of inverse problems as considered here,
one usually wants to place the training points in regions of parameter space
where the (approximate) posterior places significant mass (see e.g. [13] and the
references therein). For a fair comparison between all scenarios, and to eliminate
the interplay between optimal experimental design and other modelling choices,
we have chosen the training points as a space-filling design in our experiments.
We expect the same conclusions to hold with optimally placed points.
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A Derivation of the analytical formula of the
marginal approximation

In order to simplify the notation here, we let mθ = mGX

N (θ), Kθ = KN (θ,θ)
and Γη = σ−2

η Idy . First, we assume GN
X (θ) = mθ + ξ, where ξ ∼ N (0,Kθ), so

by the definition of expectation we have

E
(
exp

(
−1

2
∥GN

X (θ)− y∥Γeta

)
π0(θ)

)
=

1√
(2π)dy det (Kθ)

∫
Rdy

exp

(
−
∥mθ + ξ − y∥2Γη

2

)
exp

(
−
∥ξ∥2Kθ

2

)
dξ,

then rewrite and simplify the formula

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − (y −mθ)∥2Γη

+ ∥ξ∥2Kθ

))
dξ

we let ȳ = y −mθ, then

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − ȳ∥2Γη

+ ∥ξ∥2Kθ

))
dξ

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
(ξ − ȳ)TΓ−1

η (ξ − ȳ) + ξTK−1
θ ξ

))
dξ

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
ξT (Γ−1

η +K−1
θ )ξ − 2ȳTΓ−1

η ξ + ȳTΓ−1
η ȳ

))
dξ

Since Γη and Kθ are symmetric matrices, we have

ȳTΓ−1
η ξ = ȳT ((Kθ + Γη)

−1Kθ)(K
−1
θ (Kθ + Γη))Γ

−1
η ξ

= (Kθ(Kθ + Γη)
−1ȳ)TK−1

θ (Kθ + Γη)Γ
−1
η ξ

= ỹTC−1ξ,

where C = Kθ(Kθ +Γη)
−1Γη and ỹ = CΓ−1

η ȳ. Substituting it into the formula
above, we have

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
ξTC−1ξ − 2ỹTC−1ξ + ȳTΓ−1

η ȳ
))

dξ
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Then we can complete the square

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − ỹ∥2C − ỹTC−1ỹ + ȳTΓ−1

η ȳ
))

dξ

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − ỹ∥2C − (CΓ−1

η ȳ)TC−1(CΓ−1
η ȳ) + ȳTΓ−1

η ȳ
))

dξ

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − ỹ∥2C − ȳTΓ−1

η Kθ(Kθ + Γη)
−1ȳ) + ȳTΓ−1

η ȳ
))

dξ

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − ỹ∥2C − ȳT (Γ−1

η Kθ(Kθ + Γη)
−1 − Γ−1

η )ȳ)
))

dξ

=
1√

(2π)dy det (Kθ)

∫
Rdy

exp

(
−1

2

(
∥ξ − ỹ∥2C + ȳT (Kθ + Γη)

−1ȳ
))

dξ

=
1√

(2π)dy det (Kθ)
exp

(
−1

2
∥ȳ∥2(Kθ+Γη)

)∫
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(
−1

2

(
∥ξ − ỹ∥2C
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dξ

=

√
det (C)√
det (Kθ)

exp

(
−1

2
∥ȳ∥2(Kθ+Γη)

)∫
Rdy

1√
(2π)dy det (C)

exp

(
−1

2

(
∥ξ − ỹ∥2C

))
dξ

∝ 1√
(2π)dy det(Kθ + Γη)

exp

(
−1

2
∥y −mθ∥2(Kθ+Γη)

)

Hence, we obtain the explicit form of the marginal approximation.

B Derivation of the gradient of the approximate
log-posteriors

Proof.

∇ log πN,GX
mean (θ|y) = ∇ log

(
exp

(
− 1

2σ2
η

∥mGX

N (θ)− y∥2
))

= − 1

2σ2
η

∇
(
∥mGX

N (θ)− y∥2
)

= − 1

σ2
η

(
∇mGX

N (θ)
)T (

mGX

N (θ)− y
)

= − 1

σ2
η

(
∇K(θ,Θ)K(Θ,Θ)−1y

)T (
mGX

N (θ)− y
)
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∇ log πN,GX

marginal(θ|y)

= ∇ log

exp
(
− 1

2∥m
GX

N (θ)− y∥2(KN (θ,θ)+Γη)

)
√
(2π)dy det (KN (θ,θ) + Γη)


= −1

2
∇
(
∥mGX

N (θ)− y∥2(KN (θ,θ)+Γη)

)
− 1

2
∇ log ((2π)n det (KN (θ,θ) + Γη))

= −(∇K(θ,Θ)K(Θ,Θ)−1y)T (KN (θ,θ) + Γη)
−1(mGX

N (θ)− y)

− 1

2
(mGX

N (θ)− y)T∇
(
(KN (θ,θ) + Γη)

−1
)
(mGX

N (θ)− y)

− 1

2

(
Tr
(
(KN (θ,θ) + Γη)

−1
)
∇(KN (θ,θ))

)
,

where

∇
(
(KN (θ,θ) + Γη)

−1
)
= −(KN (θ,θ)+Γη)

−1∇ (KN (θ,θ)) (KN (θ,θ)+Γη)
−1,

and
∇KN (θ,θ) = 2∇K(θ,Θ)K(Θ,Θ)−1K(Θ,θ)
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