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Abstract Bayesian posterior distributions arising in modern applications are often
computationally intractable due to the large computational cost of evaluating the data
likelihood. Examples include inverse problems in partial differential equation models
arising in climate modeling and in subsurface fluid flow. To alleviate the problem
of expensive likelihood evaluation, a natural approach is to use Gaussian process
regression to build a surrogate model for the likelihood, resulting in an approximate
posterior distribution that is amenable to computations in practice. This paper serves
as an introduction to Gaussian process regression, in particular in the context of
building surrogate models for inverse problems; we also present new insights into
a suitable choice of training points, motivated by the use of Gaussian processes
in approximate Bayesian inversion. We show that the error between the true and
approximate posterior distribution can be bounded by the error between the true and
approximate likelihood, measured in the 𝐿2-norm weighted by the true posterior;
furthermore we show that minimizing the error between the true and approximate
likelihood in this norm suggests choosing the training points in the Gaussian process
surrogate model based on the true posterior.
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1 Introduction

Parameters in mathematical models in science and engineering are often not fully
known and have to be estimated from observed data. Accurate reconstruction of the
parameters, as well as an estimate of the uncertainty in the reconstruction, are crucial
for reliable predictions and risk assessments. The recent explosion of available data,
driven by the increase in large-scale scientific experiments and the development of
sensor technology, means that there is a pressing need to develop new algorithms for
the seamless integration of observed data with sophisticated mathematical models.

The complexity of models involved in modern applications, such as those based
on partial differential equations, result in a huge computational cost and render many
methods for solving inverse problems practically infeasible. A widespread solution
to this problem is to approximate the model by a computationally cheaper surrogate
model to obtain an approximate likelihood that is much faster to compute, feasible to
use for simulations in practice and ideally is accurate where it needs to be accurate
for solution of the parameter learning problem of interest [19, 25, 4, 24, 11, 42].

This paper discusses the use of surrogate models in the Bayesian approach to
inverse problems, in which we find the posterior distribution of the unknown param-
eters conditioned on the observed data. A particular focus is on random surrogate
models and Gaussian process regression. We provide new results that show that the
context of the surrogate model, i.e. the Bayesian posterior distribution, should be
taken into account when designing the surrogate model, by choosing training points
in the area of parameter space where the posterior places significant mass. This
poses a somewhat circular problem, since the reason we are using Gaussian process
regression is to be able to compute the posterior. However, various computational
approaches have been suggested to circumvent this problem in practice, including
a sequential design strategy that only requires access to the approximate posterior
[40], and the updating of training points while exploring the posterior with sampling
methods such as Markov chain Monte Carlo [12, 6].

The structure of the remainder of the paper is the following. In section 2, we in-
troduce Bayesian posterior distributions in inverse problems, discuss computational
approximations using surrogate models, and prove new error bounds between the
true and approximate posterior distributions in a norm weighted by the posterior.
The main novel results are Theorems 1 and 2. In section 3, we introduce Gaussian
process regression as surrogate models, and prove new results on the accuracy of
Gaussian process regression and suitable choices of training points in the context of
inverse problems. The main new results are Corollary 1, Corollary 2 and Theorem 3.
Section 4 gives some simple numerical examples illustrating the theoretical findings.

2 Bayesian Inverse Problems and Their Approximation

In this section, we set up the Bayesian inverse problem and describe its approximation
using random surrogate models. In subsection 2.1 we introduce the framework for
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Bayesian inversion, and discuss MCMC methods for them. Subsection 2.2 contains
two large-scale examples that motivate the need for surrogate modeling. In subsection
2.3 we explain surrogate modeling in detail leading, in subsection 2.4, to error
estimates summarizing the effect of errors in the surrogate model on the solution of
the Bayesian inverse problem.

2.1 Bayesian Inverse Problems

We are interested in solving the inverse problem of determining an unknown param-
eter 𝑢 ∈ 𝑈 from noisy, indirect data 𝑦 ∈ R𝑑𝑦 given by

𝑦 = G(𝑢) + 𝜂, (1)

for some observation operator G : 𝑈 → R𝑑𝑦 . For ease of presentation we assume
the noise 𝜂 is a realization of the R𝑑𝑦 -valued Gaussian random variable N(0, Γ), for
a known positive definite covariance matrix Γ, but other distributions on 𝜂 can be
dealt with similarly [23].

We adopt a Bayesian statistical perspective, in which the pair (𝑢, 𝑦) is treated
as a random variable (𝑢 in finite dimensions) or a random process (𝑢 in infinite
dimensions). The aim is to find the distribution of the conditional random variable
𝑢 |𝑦. This approach leads to a well-posed problem in the sense of Hadamard: there
exists a unique conditional distribution 𝑢 |𝑦 that depends continuously on 𝑦 [41, 20].

In the absence of data, we assume 𝑢 is distributed according to a prior measure
𝜇0. Equation (1) then defines the conditional distribution of 𝑦 |𝑢, assuming that 𝜂 is
independent of 𝑢. Suitable choices of prior measure will depend on the application.
We are then interested in the posterior distribution 𝜇𝑦 on the conditioned random
variable 𝑢 |𝑦, which can be characterized as follows through Bayes’ Theorem. This
delivers the the Radon-Nikodym derivative of the posterior with respect to the prior
distribution (see e.g. [41]).

Proposition 1 Suppose𝑈 is a separable Banach space, G : 𝑈 → R𝑑𝑦 is continuous
and 𝜇0 (𝑈) = 1. Then the posterior distribution 𝜇𝑦 on the conditioned random
variable 𝑢 |𝑦 is absolutely continuous with respect to 𝜇0 and given by Bayes’ Theorem:

𝑑𝜇𝑦

𝑑𝜇0
(𝑢) = 1

𝑍
exp

(
−Φ(𝑢)

)
,

where

Φ(𝑢) = 1
2
∥𝑦 − G(𝑢)∥2

Γ , and 𝑍 = E𝜇0

(
exp

(
−Φ(𝑢)

) )
.

In the preceding we adopt the notational convention ∥ · ∥𝐴 = ∥𝐴− 1
2 · ∥2 as in [41],

where ∥ · ∥2 is the Euclidean norm and 𝐴 is any symmetric positive matrix. In a
finite-dimensional setting, where 𝑢 ∈ 𝑈 ⊆ R𝑑𝑢 and we are inferring a finite number
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of unknown parameters, Bayes’ Theorem can be written in terms of the probability
density function (pdf) of the prior and posterior, denoted by 𝜋0 and 𝜋𝑦 , respectively
[17]. This takes the form

𝜋𝑦 (𝑢) = 1
𝑍

exp
(
−Φ(𝑢)

)
𝜋0 (𝑢),

with Φ and 𝑍 as defined in Proposition 1.
The term exp

(
− Φ(𝑢)

)
is referred to as the data likelihood, and comes from

the distribution of 𝑦 |𝑢. In other words, it characterizes how likely it is to observe
the data 𝑦 given a particular choice of the parameter 𝑢. Since 𝑦 = G(𝑢) + 𝜂 and
𝜂 ∼ N(0, Γ), we have 𝑦 |𝑢 ∼ N(G(𝑢), Γ), and the pdf of 𝑦 |𝑢 is hence proportional
to exp

(
− Φ(𝑢)

)
. The normalization constant 𝑍 ensures that the posterior 𝜇𝑦 is a

probability distribution, with 𝜇𝑦 (𝑈) = 1. By Bayes’ Theorem, 𝑍 = 𝑍 (𝑦) is the
marginal pdf of the data 𝑦, and hence characterizes how likely it is to observe the
data 𝑦 given the observational model G. 𝑍 is therefore often referred to as the
model evidence. The analytical value of 𝑍 is usually not known, and computing 𝑍
numerically is notoriously difficult (see e.g. [47]).

In applications, the goal is usually to compute a quantity of interest related to the
posterior distribution 𝜇𝑦 . This could for example be an expected value E𝜇𝑦 [𝑔(𝑢)],
where 𝑔 : 𝑈 → 𝑈 is chosen as the identity for the conditional mean E[𝑢 |𝑦] = E𝜇𝑦 [𝑢]
or 𝑔 : 𝑈 → {0, 1} is chosen as the indicator function I𝑢∈𝐴 for computing event
probabilities P[𝑢 |𝑦 ∈ 𝐴] = E𝜇𝑦 [I𝑢∈𝐴]. The method of choice for sampling from
the posterior distribution, enabling the computation of expected values and other
quantities of interest, is often Markov chain Monte Carlo (MCMC) [14, 27, 35, 9,
13, 10]. A prototypical example is the Metropolis-Hastings algorithm, which consists
of the following steps for sampling from a target density 𝜋 on a finite-dimensional
parameter space𝑈 ⊆ R𝑑𝑢 :

1. Choose 𝑢 (1) with 𝜋(𝑢 (1) ) > 0.
2. At state 𝑢 (𝑖) , sample a proposal 𝑢′ from density 𝑞(𝑢′ | 𝑢 (𝑖) ).
3. Accept sample 𝑢′ with probability

𝛼(𝑢′ | 𝑢 (𝑖) ) = min
(
1,

𝜋(𝑢′) 𝑞(𝑢 (𝑖) | 𝑢′)
𝜋(𝑢 (𝑖) ) 𝑞(𝑢′ | 𝑢 (𝑖) )

)
,

i.e. 𝑢 (𝑖+1) = 𝑢′ with probability 𝛼(𝑢′ | 𝑢 (𝑖) ); otherwise stay at 𝑢 (𝑖+1) = 𝑢 (𝑖) .
Steps 2 and 3 are repeated until the required number of samples have been

generated. In the context of inverse problems and Bayesian posterior distributions,
we note in particular that knowledge of the normalization constant of the target
density 𝜋 is not required, since this cancels in the ratio in 𝛼. The crucial ingredient in
the algorithm is the proposal density 𝑞 in step 2, and a wide range of options exists,
from simple random walks to methods using (higher-order) derivatives of the target
and the geometry of the parameter space (see e.g. [35, 10, 13]). There is a rich theory
underpinning the Metropolis-Hastings algorithm, and in particular, it is guaranteed
under mild assumptions that the distribution of 𝑢 (𝑖) converges to the target density
𝜋 as 𝑖 → ∞ (see e.g. [35]).
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MCMC methods typically require repeated evaluation of the data likelihood. In the
Metropolis-Hastings algorithm above; this can be seen in step 3, where exp

(
−Φ(𝑢′)

)
needs to be computed for every proposal 𝑢′. This quickly becomes infeasible in
modern applications where the computation of the likelihood is very costly. This
includes for example inverse problems in geophysics (subsurface flow model) and
climate (general circulation model), where G involves the solution of one or more
coupled partial differential equations (PDEs). Two such examples are given in the
next subsection.

2.2 Examples of Large-Scale Complex Bayesian Inverse Problems

Subsurface Flow Model

A simple model for stationary subsurface fluid flow is given by

−∇ · (𝑘 (𝑥)∇𝑝(𝑥)) = 𝑔(𝑥), 𝑥 ∈ 𝐷, (2)

where 𝑘 represents the permeability (or hydraulic conductivity) of the subsurface,
𝑝 denotes the pressure head of the fluid, 𝑔 incorporates any sources or sinks, and
suitable boundary conditions are imposed on the computational domain 𝐷 [46, 36].
This model comes from a combination of Darcy’s law for single-phase fluid flow in
a porous medium, 𝑞(𝑥) = −𝑘 (𝑥)∇𝑝(𝑥), and conservation of mass, ∇ · 𝑞 = 𝑔.

A typical inverse problem in this context is to reconstruct the permeability 𝑘

given noisy measurements of the pressure head 𝑦 = {𝑝(𝑥𝑖) + 𝜂𝑖}
𝑑𝑦

𝑖=1 or the Darcy
flux 𝑦 = {𝑘 (𝑥𝑖)∇𝑝(𝑥𝑖) + 𝜂𝑖}

𝑑𝑦

𝑖=1 at fixed locations 𝑥𝑖 ∈ 𝐷. Although we in general
wish to reconstruct the function 𝑘 ∈ 𝐿2 (𝐷), we often choose a parametrization of 𝑘
in computations. The inverse problem then becomes that of learning the coefficients
𝑢 ∈ R𝑑𝑢 in the parametrization. For example, we can choose a piecewise constant
model

𝑘 (𝑥; 𝑢) =
𝑑𝑢∑︁
𝑗=1
𝑢 𝑗 I𝑥∈𝐷 𝑗

(𝑥),

where 𝐷 𝑗 is a partitioning of the domain 𝐷 representing layers of different types of
rock, and 𝑢 𝑗 is the value of the permeability 𝑘 in the layer 𝐷 𝑗 . Since the permeability
is always positive, and can vary over orders of magnitude between different types of
rock, the prior distribution 𝜇0 on 𝑢 = {𝑢 𝑗 }𝑑𝑢𝑗=1 should reflect these properties, and
log-normal distributions are often used.

Evaluation of the parameter-to-observation map G : R𝑑𝑢
>0 → R𝑑𝑦 , defined by

G(𝑢) = {𝑝(𝑥𝑖; 𝑢)}
𝑑𝑦

𝑖=1 or G(𝑢) = {𝑘 (𝑥𝑖; 𝑢)∇𝑝(𝑥𝑖; 𝑢)}
𝑑𝑦

𝑖=1, requires the solution of the
PDE (2) with a different coefficient 𝑘 for every 𝑢 and is thus typically very costly.
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General Circulation Model

General Circulation Models (GCMs) typically comprise discretization of a system
of three space-dimensional time-dependent PDEs, with spatial dimensions repre-
senting Earth’s longitude, latitude and vertical dimensions. Unknown parameters
appear in sub-grid scale models which attempt to capture unresolvable physics on
the scale of clouds. These parameters can in principle be learned from data in the
form of time-averaged satellite measurements of the Earth’s atmosphere. Uncertainty
quantification, and hence the Bayesian approach, is crucial as estimation (and reduc-
tion) of uncertainty in climate models is a central goal of modern climate modeling
research [38]. In this paper we will consider a specific GCM from [31]. The con-
servation laws, which are discretized to form the computational model, include two
equations which take the form

Moisture Conservation:
𝜕𝑞

𝜕𝑡
+ 𝑣 · ∇𝑞 = −𝑞 − 𝑞ref (𝑇 ; 𝜃)

𝜏𝑞 (𝑞, 𝑇 ; 𝜃)

Energy Conservation:
𝜕𝑇

𝜕𝑡
+ 𝑣 · ∇𝑇 =

𝑇 − 𝑇ref (𝑞, 𝑇 ; 𝜃)
𝜏𝑇 (𝑞, 𝑇 ; 𝜃) + · · · ,

coupled to further conservation laws for mass and momentum. The model includes
two unknown parameters: 𝜃𝑅𝐻 , the reference relative humidity; and 𝜃𝜏 a relaxation
timescale; the functional forms of 𝑞ref, 𝑇ref, 𝜏𝑞 and 𝜏𝑇 are known. The unknown
parameter is 𝜃 = (𝜃𝑅𝐻 , 𝜃𝜏). The inverse problem is to learn about 𝜃, and uncer-
tainty in 𝜃, from climate statistics; the paper [12] employs 30-day averages of the
free-tropospheric relative humidity, of the precipitation rate, and of a measure of the
frequency of extreme precipitation. The parameter-to-data map thus requires simu-
lation of the discretized conservation laws. This leads to O(102) noisy and indirect
observations from which to learn about the 2 unknowns. Similar, related inverse
problems may be found in [15][subsection 5.10], in which the number of unknown
parameters is 4.

2.3 Surrogate Models

To make computations feasible in practice, it is common to approximate the log-
likelihood Φ, or the forward model G, by a surrogate model, also known as an
emulator, meta-model or reduced order model. A wide range of suitable surrogate
models exist, see e.g. [42, 23] and the references therein. Recently, a particular focus
has been on the use of random surrogate models. These have been shown to lead to
better approximations of the posterior distribution when the error in the surrogate
model is large compared to the noise in the observations [8, 2], and to improve the
statistical efficiency of MCMC methods [11]. Examples of random surrogate models
are methods from the field of probabilistic numerics [8, 22], randomized projection
methods [21, 29], and Gaussian process emulators [19, 42].



GP Regression in Inverse Problems 7

Given a random surrogate model for the log-likelihood Φ or the forward model G,
there are then different ways of using this to approximate the posterior distribution
𝜇𝑦 . We will henceforth fix our notation to using a surrogate model for Φ, since using
a surrogate model for G can be translated into a surrogate model for Φ using the
specific form of the likelihood. Let us denote the random surrogate model by Φ𝑁 ,
where 𝑁 denotes a discretization parameter such as the number of training points
in a Gaussian process emulator or the number of grid points used in a probabilistic
PDE solver. Using the mean E[Φ𝑁 ] of the surrogate model to approximate Φ, we
obtain the mean-based approximation

𝑑𝜇
𝑦,𝑁
mean
𝑑𝜇0

(𝑢) = 1
𝑍mean
𝑁

exp
(
− E[Φ𝑁 (𝑢)]

)
, (3)

𝑍mean
𝑁 = E𝜇0

(
exp

(
− E[Φ𝑁 (𝑢)]

) )
.

Alternatively, we can use the random surrogate Φ𝑁 directly to approximate Φ,
and take the expected value of the resulting random approximation of the likelihood.
This gives the marginal approximation

𝑑𝜇
𝑦,𝑁

marginal

𝑑𝜇0
(𝑢) = 1

𝑍
marginal
𝑁

E
(

exp
(
−Φ𝑁 (𝑢)

) )
, (4)

𝑍
marginal
𝑁

= E𝜇0

(
E
(

exp
(
−Φ𝑁 (𝑢)

) ))
.

Intuitively, the marginal approximation introduces additional uncertainty in the
approximate posterior distribution, coming from the randomness of the surrogate
model. One interpretation of the randomness of our surrogate model is that since
we have used a finite amount of information/resources in the construction, there is
still some uncertainty (or error) associated to it. Including this uncertainty in the
approximate posterior distribution then allows us to take into account the error in the
surrogate model when inferring the parameter 𝑢. In practical applications, where the
accuracy of the surrogate model might be limited due to computational resources,
the uncertainty (or error) in the surrogate model can be large (or comparable) to the
uncertainty present in the observations 𝑦, and it is crucial to take this into account
to avoid over-confident and biased predictions [8, 2].

In special cases, it can be shown analytically that the marginal approximation
results in a form of variance inflation in the likelihood. One such instance is when
the forward model G is approximated by a Gaussian process G𝑁 ∼ GP(𝑚G

𝑁
, 𝐾𝑁 )

with mean𝑚G
𝑁

and covariance kernel 𝐾𝑁 (see section 3 for more details). The mean-
based approximation assumes the observational model 𝑦 = 𝑚G

𝑁
(𝑢) + 𝜂, whereas the

marginal approximation uses

𝑦 = G𝑁 (𝑢) + 𝜂 = 𝑚
G
𝑁
(𝑢) + 𝜉 (𝑢) + 𝜂,
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with 𝜉 (𝑢) ∼ N(0, 𝐾𝑁 (𝑢, 𝑢)). The resulting approximate likelihoods are proportional
to

1√︁
det (Γ)

exp

(
−
||𝑦 − 𝑚G

𝑁
(𝑢) | |2

Γ

2

)
for the mean-based approximation, and

1√︁
det (Γ + 𝐾𝑁 (𝑢, 𝑢))

exp ©­«−
||𝑦 − 𝑚G

𝑁
(𝑢) | |2(Γ+𝐾𝑁 (𝑢,𝑢) )

2
ª®¬

for the marginal approximation, see e.g. [5, 7, 2]. The difference between the two
likelihoods hence depends on the relationship between Γ, the uncertainty in the
observations 𝑦, and 𝐾𝑁 , the uncertainty in the surrogate model Φ𝑁 . If 𝐾𝑁 is small
compared to Γ, the two approximate posteriors will be similar.

The approximate posterior distributions can also be motivated from a decision
theoretic point of view [40, 16]. Suppose 𝑈 is a compact subset of R𝑑𝑢 , and we ap-
proximate the negative log-likelihood Φ by a Gaussian process Φ𝑁 ∼ GP(𝑚Φ

𝑁
, 𝑘𝑁 ).

Then the (un-normalized) marginal approximation minimizes the expected 𝐿2-loss:

E
(

exp
(
−Φ𝑁 (𝑢)

) )
𝜋0 (𝑢) = arg min

𝑓 ∈𝐿2 (𝑈)
E

∫
𝑈

(
exp

(
−Φ𝑁 (𝑢)

)
𝜋0 (𝑢) − 𝑓 (𝑢)

)2 d𝑢.

The (un-normalized) mean-based approximation instead minimizes the expected
𝐿1-loss:

exp
(
− 𝑚Φ

𝑁 (𝑢)
)
𝜋0 (𝑢) = arg min

𝑓 ∈𝐿1 (𝑈)
E

∫
𝑈

��exp
(
−Φ𝑁 (𝑢)

)
𝜋0 (𝑢) − 𝑓 (𝑢)

�� d𝑢.
Remark 1 (Alternative approximate posteriors) In addition to the approximations
described above, we can also consider the sample-based approximation

𝑑𝜇
𝑦,𝑁

sample

𝑑𝜇0
(𝑢) = 1

𝑍
sample
𝑁

exp
(
−Φ𝑁 (𝑢)

)
,

𝑍
sample
𝑁

= E𝜇0

(
exp

(
−Φ𝑁 (𝑢)

) )
,

which results in a random approximation of the posterior [42, 23]. If there is consid-
erable uncertainty in the random surrogate model Φ𝑁 , the posterior approximations
corresponding to different samples of Φ𝑁 may look very dissimilar.

An alternative marginal approximation can be defined by taking the expected
value of the normalized random likelihood defined above,

𝑑𝜇
𝑦,𝑁

marginal′

𝑑𝜇0
(𝑢) = E

(
1

𝑍
sample
𝑁

exp
(
−Φ𝑁 (𝑢)

))
.
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However, this approximation is not easily amenable to sampling methods such as
(pseudo-marginal) MCMC, since the computation of 𝑍sample

𝑁
is intractable. ■

2.4 Error in the Surrogate-accelerated Posterior Distribution

To justify the use of the approximate posterior distributions 𝜇𝑦,𝑁mean and 𝜇𝑦,𝑁marginal in
practice, we want to show that they converge to the true posterior 𝜇𝑦 as 𝑁 → ∞. We
will measure the error in the Hellinger distance

𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁 ) = ©­«1
2

∫
𝑈

(√︂
𝑑𝜇𝑦

𝑑𝜈
−

√︂
𝑑𝜇𝑦,𝑁

𝑑𝜈

)2

𝑑𝜈
ª®¬

1/2

,

where 𝜈 is any measure such that 𝜇𝑦 and 𝜇𝑦,𝑁 are both absolutely continuous
with respect to 𝜈 (and the value of the distance is independent of the choice of 𝜈.)
In [23, 42, 43] bounds were obtained on 𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁mean) and 𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁marginal) in

terms of ∥Φ − E[Φ𝑁 ] ∥𝐿𝑝
𝜇0 (𝑈) and




E[|Φ −Φ𝑁 |𝑞1
]1/𝑞1





𝐿
𝑞2
𝜇0 (𝑈)

, respectively, for 𝑝,

𝑞1 and 𝑞2 depending on the regularity of the problem. These results suggest that
choosing Φ𝑁 to be a good approximation to Φ in all regions where the prior 𝜇0
places significant mass is sufficient for accurate surrogate modeling in the context of
Bayesian inference. However we would expect that, in fact, Φ𝑁 only needs to be a
good approximation to Φ in regions where the posterior 𝜇𝑦 places significant mass.
This is captured in the following results, which follow by analyzing the Hellinger
distance with the choice 𝜈 = 𝜇𝑦 .

Theorem 1 (Convergence of mean-based approximation)
Suppose that there exist scalars 𝐶1, 𝐶2 ≥ 0, independent of 𝑁 , such that for the

Hölder-conjugate exponent pair (𝑝1, 𝑝
′
1), we have1

(i) ∥exp ((Φ − E[Φ𝑁 ]))∥𝐿𝑝1
𝜇𝑦

(𝑈) ≤ 𝐶1 (𝑝1);
(ii) 𝐶−1

2 ≤ 𝑍mean
𝑁

≤ 𝐶2.

Then there exists a constant 𝐶Thm1 = 𝐶Thm1 (𝐶1, 𝐶2, 𝑍), independent of 𝑁 , such that

𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁mean) ≤ 𝐶Thm1 ∥Φ − E[Φ𝑁 ] ∥
𝐿

2𝑝′1
𝜇𝑦

(𝑈)
.

Theorem 2 (Convergence of marginal approximation)
Suppose that there exist scalars 𝐶1, 𝐶2 ≥ 0, independent of 𝑁 , such that, for the

Hölder-conjugate exponent pairs (𝑝1, 𝑝
′
1) and (𝑝2, 𝑝

′
2), we have1

1 For 𝑝1 = ∞, assumption (i) requires bounding the standard 𝐿∞ (𝑈)-norm, due to the correspond-
ing Hölder inequality

∫
𝑈
𝑓 𝑔𝜇𝑦 (d𝑢) ≤ sup𝑢∈𝑈 | 𝑓 (𝑢) |

∫
𝑈

|𝑔 |𝜇𝑦 (d𝑢) = ∥ 𝑓 ∥𝐿∞ (𝑈) ∥𝑔∥𝐿1
𝜇𝑦

(𝑈) .
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(i)



E[ (exp (Φ −Φ𝑁 )) 𝑝2

]1/𝑝2




𝐿

2𝑝1
𝜇𝑦

(𝑈)
≤ 𝐶1 (𝑝1, 𝑝2)

(ii) 𝐶−1
2 ≤ 𝑍

marginal
𝑁

≤ 𝐶2.

Then there exists a constant𝐶Thm2 = 𝐶Thm2 (𝐶1, 𝐶2, 𝑍), independent of 𝑁 , such that

𝑑Hell

(
𝜇, 𝜇

𝑦,𝑁

marginal
)
≤ 𝐶Thm2




E[ (Φ −Φ𝑁 ) 𝑝
′
2
]1/𝑝′2





𝐿

2𝑝′1
𝜇𝑦

(𝑈)
.

Note that these results hold in the general setting where the parameter space 𝑈
is a Banach space, and do not require 𝑈 to be finite-dimensional. The proofs of
these results are similar to those in [42, 23], and can be found in the appendix. The
assumptions in the above theorems are generally applicable to any random surrogate
model Φ𝑁 , and in fact also to general distributions on the noise 𝜂. They need to
be checked on a case-by-case basis. This is done for Gaussian noise and surrogate
models based on Gaussian process regression in section 3.

Assumption (𝑖) in Theorems 1 and 2 is related to integrability properties of
our surrogate model Φ𝑁 . The exponent 𝑝1, present in both theorems, is related to
the decay rate of the tails in 𝑢. The exponent 𝑝2, related to the decay rate of the
tails of the distribution of Φ𝑁 , is only needed in Theorem 2, since the mean-based
approximation 𝜇𝑦,𝑁mean does not make use of the randomness in Φ𝑁 . Assumption (𝑖𝑖)
in Theorems 1 and 2 ensures that the normalization constants 𝑍mean

𝑁
and 𝑍marginal

𝑁
,

and hence the approximate posteriors, are well-defined.

3 Gaussian Process Regression

We now want to use Gaussian process regression to build a surrogate model for the
data likelihood. Gaussian process regression (a.k.a Gaussian process emulation, or
kriging) is a way of building an approximation to a function 𝑓 , based on a finite
number of evaluations of 𝑓 at a chosen set of training points (a.k.a. design points).

We will here consider emulation of either the parameter-to-observation map
G : 𝑈 → R𝑑𝑦 or the negative log-likelihood Φ : 𝑈 → R. We will for simplicity
focus on the emulation of scalar valued functions, and assume that an emulator of G
in the case 𝑑𝑦 > 1 is constructed by emulating each entry independently. However,
we remark here that in practice including correlation between different entries in G
can significantly improve the quality of the approximate posterior [2].

In subsection 3.1 we set-up the framework of Gaussian process regression, fol-
lowed in subsection 3.2 by discussion of the use of this regression technique in the
context of surrogate modeling. Subsection 3.3 returns to the two examples from
subsection 2.2, in order to illustrate the potential for reduction in computational cost
achieved by the surrogate model 𝑓𝑁 compared to the original model 𝑓 . Subsection
3.4 is devoted to estimates of the error in the approximate posterior in terms of the
error in a GP surrogate model used to approximate the likelihood contribution to the
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posterior. In subsection 3.5 error estimates for Gaussian process regression, which
may be used in the analysis of the previous subsection, are provided.

3.1 Set-up

Let 𝑈 ⊆ R𝑑𝑢 be finite-dimensional, and let 𝑓 : 𝑈 → R be an arbitrary function.
Gaussian process regression is a Bayesian procedure, and the starting point is to put
a Gaussian process prior on the function 𝑓 . In other words, we model 𝑓 as a sample
of the Gaussian process

𝑓0 ∼ GP(𝑚(𝑢), 𝑘 (𝑢, 𝑢′)), (7)

with 𝑚 : 𝑈 → R a chosen mean function, giving E[ 𝑓0 (𝑢)] = 𝑚(𝑢), and
𝑘 : 𝑈 × 𝑈 → R a chosen symmetric, positive-definite covariance kernel, giving
Cov( 𝑓0 (𝑢), 𝑓0 (𝑢′)) = 𝑘 (𝑢, 𝑢′). This means that for any set of points {�̃�𝑚}𝑀

𝑚=1 ⊆ 𝑈,
the vector [ 𝑓0 (�̃�1); . . . ; 𝑓0 (�̃�𝑀 )] ∈ R𝑀 follows a multivariate Gaussian distribution,
with mean [𝑚(�̃�1); . . . ;𝑚(�̃�𝑀 )] ∈ R𝑀 and covariance matrix 𝐾 ∈ R𝑀×𝑀 with
entries 𝐾𝑖, 𝑗 = 𝑘 (�̃�𝑖 , �̃� 𝑗 ).

Typical choices of the mean function𝑚 include the zero function and polynomials
[33]. A family of covariance functions 𝑘 frequently used in applications are the
Matèrn covariance functions [26], given by

𝑘𝜈,𝜆,𝜎2
𝑘
(𝑢, 𝑢′) = 𝜎2

𝑘

1
Γ(𝜈)2𝜈−1

(
∥𝑢 − 𝑢′∥2

𝜆

)𝜈
𝐵𝜈

(
∥𝑢 − 𝑢′∥2

𝜆

)
, (8)

where Γ denotes the Gamma function, 𝐵𝜈 denotes the modified Bessel function of
the second kind and 𝜈, 𝜆 and 𝜎2

𝑘
are positive parameters. The parameter 𝜆 is referred

to as the correlation length, and governs the length scale at which 𝑓0 (𝑢) and 𝑓0 (𝑢′)
are correlated. The parameter 𝜎2

𝑘
is the marginal variance 𝜎2

𝑘
= 𝑘𝜈,𝜆,𝜎2

𝑘
(𝑢, 𝑢) =

V[ 𝑓0 (𝑢)], and governs the typical magnitude of 𝑓0 (𝑢). Finally, the parameter 𝜈 is
referred to as the smoothness parameter, and governs the regularity of sample paths
of 𝑓0 as a function of 𝑢. Sample paths of 𝑓0 are in the Sobolev space 𝐻𝜈−𝜖 (𝑈) almost
surely, for any 𝜖 > 0, see e.g. [18].

In the limit 𝜈 → ∞, we obtain the Gaussian covariance function

𝑘∞,𝜆,𝜎2
𝑘
(𝑢, 𝑢′) = 𝜎2

𝑘 exp

(
−
∥𝑢 − 𝑢′∥2

2
2𝜆2

)
,

also known as the squared exponential or radial basis function (RBF) covariance
function. The formula for the Matèrn covariance function furthermore simplifies
when 𝜈 is a half integer, and popular choices include
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𝑘 1
2 ,𝜆,𝜎

2
𝑘
(𝑢, 𝑢′) = 𝜎2

𝑘 exp
(
− ∥𝑢 − 𝑢′∥2

𝜆

)
,

𝑘 3
2 ,𝜆,𝜎

2
𝑘
(𝑢, 𝑢′) = 𝜎2

𝑘

(
1 +

√
3
∥𝑢 − 𝑢′∥2

𝜆

)
exp

(
−
√

3
∥𝑢 − 𝑢′∥2

𝜆

)
.

The choice 𝜈 = 1
2 gives the exponential covariance function, also known as the

Laplace covariance function; in the setting of one-dimensional input variable 𝑢 it is
the covariance function of the Ornstein-Uhlenbeck process.

Figure 1 shows 5 independent sample paths of the Gaussian process 𝑓0 with
𝑚 = 0 and 4 different choices of the parameters in the Matérn covariance function.
We also show the mean E[ 𝑓 (𝑢)] = 𝑚(𝑢) = 0 as the solid black line, and the marginal
standard deviation

√︁
𝑘 (𝑢, 𝑢) = 𝜎 = 1 as the light grey interval around the mean. The

two plots in the top row show 𝜈 = 1
2 , leading to sample paths that are continuous but

not differentiable, and the two plots in the bottom row show 𝜈 = ∞, in which case the
sample paths are infinitely smooth. The left column shows a long correlation length
𝜆, leading to mostly large scale variations, whereas the right column shows a shorter
correlation length, resulting in more small scale fluctuations.

Now suppose we are given data in the form of a set of distinct training points
𝐷𝑁 := {𝑢𝑛}𝑁

𝑛=1 ⊆ 𝑈, together with corresponding function values

𝑓 (𝐷𝑁 ) := [ 𝑓 (𝑢1); . . . ; 𝑓 (𝑢𝑁 )] ∈ R𝑁 . (9)

Since 𝑓0 is a Gaussian process, the vector [ 𝑓0 (𝑢1); . . . ; 𝑓0 (𝑢𝑁 ); 𝑓0 (�̃�1); . . . , 𝑓0 (�̃�𝑀 )] ∈
R𝑁+𝑀 , for any set of test points {�̃�𝑚}𝑀

𝑚=1 ⊆ 𝑈, follows a multivariate Gaussian
distribution. The conditional distribution of 𝑓0 (�̃�1), . . . , 𝑓0 (�̃�𝑀 ), given the values
𝑓0 (𝑢1) = 𝑓 (𝑢1), . . . , 𝑓0 (𝑢𝑁 ) = 𝑓 (𝑢𝑁 ), is then again Gaussian, with mean and co-
variance given by the standard formulas for the conditioning of Gaussian random
variables [33]. Conditioning the Gaussian process (7) on the known values 𝑓 (𝐷𝑁 ),
we hence obtain another Gaussian process 𝑓𝑁 , known as the predictive process. We
have

𝑓𝑁 ∼ GP(𝑚 𝑓

𝑁
(𝑢), 𝑘𝑁 (𝑢, 𝑢′)), (10)

where the predictive mean 𝑚 𝑓

𝑁
: 𝑈 → R and predictive covariance 𝑘𝑁 : 𝑈 ×𝑈 → R

are known explicitly, and depend on the modeling choices made in (7). We will from
now on focus on the popular choice 𝑚 ≡ 0; the case of a non-zero mean is discussed
in Remark 2. When 𝑚 ≡ 0, we have

𝑚
𝑓

𝑁
(𝑢) = 𝑘 (𝑢, 𝐷𝑁 )𝑇𝐾 (𝐷𝑁 , 𝐷𝑁 )−1 𝑓 (𝐷𝑁 ), (11)

𝑘𝑁 (𝑢, 𝑢′) = 𝑘 (𝑢, 𝑢′) − 𝑘 (𝑢, 𝐷𝑁 )𝑇𝐾 (𝐷𝑁 , 𝐷𝑁 )−1𝑘 (𝑢′, 𝐷𝑁 ), (12)

where 𝑘 (𝑢, 𝐷𝑁 ) = [𝑘 (𝑢, 𝑢1); . . . ; 𝑘 (𝑢, 𝑢𝑁 )] ∈ R𝑁 and 𝐾 (𝐷𝑁 , 𝐷𝑁 ) ∈ R𝑁×𝑁 is the
matrix with 𝑖 𝑗 th entry equal to 𝑘 (𝑢𝑖 , 𝑢 𝑗 ) [33].

Figure 2 is similar to Figure 1, and shows samples from the predictive process
𝑓𝑁 (with 𝑁 = 3) for different choices of hyper-parameters in the Matèrn covariance
kernel. We also show the updated meanE[ 𝑓𝑁 (𝑢)] = 𝑚 𝑓

𝑁
(𝑢) and the updated marginal
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Fig. 1: Sample paths of the Gaussian process 𝑓0 with Matérn covariance function
𝑘𝜈,𝜆,𝜎2

𝑘
. Top left: {𝜈, 𝜆, 𝜎2

𝑘
} = { 1

2 , 1, 1}. Top right: {𝜈, 𝜆, 𝜎2
𝑘
} = { 1

2 , 0.1, 1}. Bottom
left: {𝜈, 𝜆, 𝜎2

𝑘
} = {∞, 1, 1}. Bottom right: {𝜈, 𝜆, 𝜎2

𝑘
} = {∞, 0.1, 1}.

standard deviation
√︁
𝑘𝑁 (𝑢, 𝑢). We see that the choice of hyper-parameters can have

a significant influence on the behaviour of the predictive process. Good values of
hyper-parameters are often not known a priori, and have to be estimated from the
observed values 𝑓 (𝐷𝑁 ) in (9) (see e.g. [33] and the references therein). This is done
for 𝜆 and 𝜎2 in Figure 2 using scikit-learn [32].

From (11), we note that 𝑚 𝑓

𝑁
interpolates the function 𝑓 at the training points 𝐷𝑁 ,

since the vector 𝑘 (𝑢𝑛, 𝐷𝑁 ) is the 𝑛th row of the matrix 𝐾 (𝐷𝑁 , 𝐷𝑁 ). In other words,
we have 𝑚 𝑓

𝑁
(𝑢𝑛) = 𝑓 (𝑢𝑛), for all 𝑛 = 1, . . . , 𝑁 . For the predictive covariance 𝑘𝑁 ,

we note that 𝑘𝑁 (𝑢, 𝑢) < 𝑘 (𝑢, 𝑢) for all 𝑢 ∈ 𝑈, since 𝐾 (𝐷𝑁 , 𝐷𝑁 ) is positive-definite
by assumption. Furthermore, we also note that 𝑘𝑁 (𝑢𝑛, 𝑢𝑛) = 0, for 𝑛 = 1, . . . , 𝑁 ,
since 𝑘 (𝑢𝑛, 𝐷𝑁 )𝑇 𝐾 (𝐷𝑁 , 𝐷𝑁 )−1 𝑘 (𝑢𝑛, 𝐷𝑁 ) = 𝑘 (𝑢𝑛, 𝑢𝑛).

Remark 2 (Prior with non-zero mean) If in (7) we use a non-zero mean 𝑚(·), the
formula for the predictive mean 𝑚 𝑓

𝑁
changes to

𝑚
𝑓 ,𝑚

𝑁
(𝑢) = 𝑚(𝑢) + 𝑘 (𝑢, 𝐷𝑁 )𝑇𝐾 (𝐷𝑁 , 𝐷𝑁 )−1 ( 𝑓 (𝐷𝑁 ) − 𝑚(𝐷𝑁 )),
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Fig. 2: Sample paths of the Gaussian process 𝑓3 with Matérn covariance func-
tion 𝑘𝜈,𝜆,𝜎2

𝑘
, for 𝑓 (𝑥) = sin (𝑥 − 2.5)2. Left: {𝜈, 𝜆, 𝜎2

𝑘
} = { 1

2 , 0.1, 0.632} Right:
{𝜈, 𝜆, 𝜎2

𝑘
} = {∞, 0.1, 0.632}.

where 𝑚(𝐷𝑁 ) := [𝑚(𝑢1); . . . ;𝑚(𝑢𝑁 )] ∈ R𝑁 . The predictive covariance 𝑘𝑁 (𝑢, 𝑢′)
is as in (11). As in the case 𝑚 ≡ 0, we have 𝑚 𝑓

𝑁
(𝑢𝑛) = 𝑓 (𝑢𝑛), for 𝑛 = 1, . . . , 𝑁 ,

and 𝑚 𝑓

𝑁
is an interpolant of 𝑓 . Under suitable assumptions on 𝑚, any error bounds

derived in the case 𝑚 ≡ 0 can be transferred to the general case, see e.g [43]. ■

Remark 3 (Noisy function values) If instead of exact function values as in (9), we
observe noisy function values

𝑑 := [ 𝑓 (𝑢1) + 𝜀1; . . . ; 𝑓 (𝑢𝑁 ) + 𝜀𝑁 ] ∈ R𝑁 ,

with 𝜀𝑖 ∼ N(0, 𝜎2) i.i.d., then the formulas for the predictive process 𝑓𝑁 presented
above hold with 𝐾 (𝐷𝑁 , 𝐷𝑁 ) replaced by 𝐾 (𝐷𝑁 , 𝐷𝑁 ) + 𝜎2I. ■

3.2 Gaussian Process Regression as Surrogate Model

There are two main use cases for Gaussian process regression: (i) the true function 𝑓
generating the input-output pairs {𝑢𝑛, 𝑓 (𝑢𝑛)}𝑁

𝑛=1 is unknown, or (ii) the function 𝑓

generating {𝑢𝑛, 𝑓 (𝑢𝑛)}𝑁
𝑛=1 is known, but computationally very expensive to evaluate.

In scenario (i), we wish to learn what the function 𝑓 is from the observed input-
output pairs. This is often based on real data, and so the assumption that the observed
function values contain noise is common. In the case of (ii), we wish to construct
a surrogate model (a.k.a. reduced model, meta-model or emulator) that is cheaper
to evaluate than the original 𝑓 . This is often based on data {𝑢𝑛, 𝑓 (𝑢𝑛)}𝑁

𝑛=1 obtained
from simulating a mathematical model on a computer, and so assuming no noise in
the function values may be more appropriate.
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To construct a surrogate model for 𝑓 , we simulate 𝑁 model runs at inputs {𝑢𝑛}𝑁
𝑛=1

to obtain outputs { 𝑓 (𝑢𝑛)}𝑁
𝑛=1, and then follow the Bayesian procedure outlined in the

previous section to obtain the predictive process 𝑓𝑁 ∼ GP(𝑚 𝑓

𝑁
(𝑢), 𝑘𝑁 (𝑢, 𝑢′)). As

such, it is similar to many other surrogate models based on model runs or snapshots.
The Gaussian process 𝑓𝑁 is a random surrogate model for 𝑓 . The uncertainty in

𝑓𝑁 , encoded in the predictive variance 𝑘𝑁 , is a model for the remaining uncertainty
about 𝑓 after observing the finite amount of information {𝑢𝑛, 𝑓 (𝑢𝑛)}𝑁

𝑛=1, or in other
words a model for the error between 𝑓 and 𝑚 𝑓

𝑁
, based on the assumption that 𝑓 is a

sample of the Gaussian process prior (7). At the training points 𝐷𝑁 , where we have
observed 𝑓 , there is no uncertainty about what value 𝑓 takes and there is no error in
𝑚
𝑓

𝑁
(i.e. 𝑘𝑁 (𝑢𝑛, 𝑢𝑛) = 0 and 𝑚 𝑓

𝑁
(𝑢𝑛) = 𝑓 (𝑢𝑛), cf Figure 2). Away from the training

points, where we do not know the value of 𝑓 , there is still some uncertainty/error
(i.e. 𝑘𝑁 (𝑢, 𝑢) > 0 and 𝑚 𝑓

𝑁
(𝑢) ≠ 𝑓 (𝑢) in general).

It remains to see that 𝑓𝑁 is indeed a surrogate model in the sense that it is
much cheaper to evaluate than the original model 𝑓 . To this end, note that in the
approximate posteriors in section 2.3, we typically need to evaluate the predictive
mean 𝑚 𝑓

𝑁
and the predictive variance 𝑘𝑁 . As can be seen from (11), the predictive

mean 𝑚 𝑓

𝑁
is a linear combination of kernel evaluations:

𝑚
𝑓

𝑁
(𝑢) =

𝑁∑︁
𝑛=1

𝛼𝑛𝑘 (𝑢, 𝑢𝑛), 𝛼 = 𝐾 (𝐷𝑁 , 𝐷𝑁 )−1 𝑓 (𝐷𝑁 ) ∈ R𝑁 .

To evaluate 𝑚 𝑓

𝑁
(𝑢) at an unobserved input 𝑢 ∈ 𝑈 \ 𝐷𝑁 , we hence only need to

evaluate the sum on the RHS of the expression above. Firstly, we note that the
number of summands 𝑁 is typically small. This corresponds to the number of times
we need to run our original model 𝑓 , and in many practical applications, this will
be limited by computational resources. Secondly, we note that the computation of
the coefficients 𝛼 can, in general, be somewhat costly, since it involves finding the
Cholesky factorization (or similar) of 𝐾 (𝐷𝑁 , 𝐷𝑁 ) which incurs computational cost
O(𝑁3); however, as noted previously, 𝑁 is typically small in the applications of
surrogate modeling that we consider in this paper. Furthermore, the coefficients 𝛼
only need to be computed once, rather than for every 𝑢. Thirdly, we note that the
evaluation of the kernel 𝑘 (𝑢, 𝑢𝑛) is cheap, since this typically involves the evaluation
of standard functions such as polynomials and exponentials. Similar arguments apply
to evaluations of the predictive variance 𝑘𝑁 (𝑢, 𝑢).

3.3 Examples of Gaussian Process Regression as Surrogate Model

We return to the two examples introduced in subsection 2.2 in order to illustrate the
potential speedups afforded by use of Gaussian process surrogate modeling.
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Computational Timings in Subsurface Flow Example

Consider the subsurface flow example from subsection 2.2. The table below gives
representative computational timings comparing cost of the evaluation of the solu-
tion of the PDE, 𝑓 (𝑢), with the two primary costs incurred in the Gaussian process
surrogate modeling, namely the determination of the coefficients of the kernel repre-
sentation of the mean, 𝛼, and evaluation of the mean 𝑚 𝑓

𝑁
. Further details, and more

extensive numerical experiments, may be found in [2]. The numerical solution of
the PDE for a given parameter 𝑢, representing the true model 𝑓 , is implemented in
Firedrake [34].

Set-up Computing 𝑓 (𝑢) Computing 𝑚 𝑓

𝑁
(𝑢) Computing 𝛼

𝑑𝑢 = 2, 𝑑𝑦 = 10, 𝐷 = (0, 1) , 𝑁 = 10 2.6 × 10−1s 3.6 × 10−5s 3.2 × 10−3s
𝑑𝑢 = 2, 𝑑𝑦 = 10, 𝐷 = (0, 1) , 𝑁 = 20 2.6 × 10−1s 4.0 × 10−5s 1.2 × 10−2s
𝑑𝑢 = 10, 𝑑𝑦 = 10, 𝐷 = (0, 1) , 𝑁 = 10 2.6 × 10−1s 5.6 × 10−5s 3.2 × 10−3s

Computational Motivation for GCM Example

In the paper [12] Gaussian process regression is used to accelerate Bayesian infer-
ence for parameters appearing in an idealized general circulation model (GCM) used
in climate modeling and described in subsection 2.2. Evaluation of the parameter-
to-data map is computationally expensive and use of Gaussian process surrogates, as
overviewed in this paper, can be used to accelerate the computations. In particular the
number of unknown parameters in the example considered in [12] is 2, the number
of observations is on the order of O(102), whilst the number of variables in the com-
putational model is on the order of O(105); by using Gaussian process surrogates,
which sidestep the need to work in space of dimension O(105), computational costs
can be significantly reduced. The natural measure of computational cost is the num-
ber of evaluations of the GCM required to perform MCMC to obtain solution of the
Bayesian inverse problem. Without emulation this is O(105); with Gaussian process
emulation it is possible to achieve the same accuracy in solution of the Bayesian
inverse problem with O(102) evaluations of the forward model [12]. These evalua-
tions arise from providing training data for the Gaussian process and in particular
from the use of the ensemble Kalman based calibrate-emulate-sample approach to
the design of this training data [6]. The wish to put the calibrate-emulate-sample
methodology on firm theoretical foundations motivates our work in this paper on
the optimal choice of design points for Gaussian process surrogate modeling in the
context of Bayesian inverse problems.
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3.4 Error in GP-accelerated Posterior Distribution

Suppose now that we use Gaussian process regression as our surrogate model in the
approximate posterior distributions (3) and (4). An application of Theorems 1 and
2 gives the following error bounds. We denote by 𝐻𝑘 (𝑈) the reproducing kernel
Hilbert space (RKHS) (see e.g. [44]) of the prior covariance kernel 𝑘 in (7).

Corollary 1 Suppose 𝑈 ⊆ R𝑑𝑢 , Φ ∈ 𝐻𝑘 (𝑈), and the random surrogate model
is constructed by applying Gaussian process regression to Φ, resulting in Φ𝑁 ∼
GP(𝑚Φ

𝑁
(𝑢), 𝑘𝑁 (𝑢, 𝑢′)). Then there exist constants 𝐶Cor1, 𝐶

′
Cor1 > 0, independent of

𝑁 , such that

𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁mean) ≤ 𝐶Cor1


Φ − 𝑚Φ

𝑁




𝐿2
𝜇𝑦

(𝑈) ,

and, under the additional assumptions that 𝑈 is bounded with Lipschitz boundary
and sup𝑢∈𝑈 𝑘𝑁 (𝑢, 𝑢) → 0 as 𝑁 → ∞,

𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁marginal) ≤ 𝐶
′
Cor1

(

Φ − 𝑚Φ
𝑁




𝐿2
𝜇𝑦

(𝑈) +



𝑘1/2
𝑁

(·, ·)




𝐿2
𝜇𝑦

(𝑈)

)
.

Corollary 2 Suppose 𝑈 ⊆ R𝑑𝑢 , G 𝑗 ∈ 𝐻𝑘 (𝑈) for 𝑗 = 1, . . . , 𝑑𝑦 , and the ran-
dom surrogate model is constructed by applying Gaussian process regression
component-wise to G, resulting in G 𝑗

𝑁
∼ GP(𝑚G 𝑗

𝑁
(𝑢), 𝑘𝑁 (𝑢, 𝑢′)) and Φ𝑁 (𝑢) =

1
2 ∥𝑦 − G𝑁 (𝑢)∥2

Γ. Then there exist constants 𝐶Cor2, 𝐶
′
Cor2 > 0, independent of 𝑁 ,

such that

𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁mean) ≤ 𝐶Cor2

𝑑𝑦∑︁
𝑗=1




G 𝑗 − 𝑚G 𝑗

𝑁





𝐿2
𝜇𝑦

(𝑈)
,

and, under the additional assumptions that 𝑈 is bounded with Lipschitz boundary
and sup𝑢∈𝑈 𝑘𝑁 (𝑢, 𝑢) → 0 as 𝑁 → ∞,

𝑑Hell (𝜇𝑦 , 𝜇𝑦,𝑁marginal) ≤ 𝐶
′
Cor2

©­«
𝑑𝑦∑︁
𝑗=1




G 𝑗 − 𝑚G 𝑗

𝑁





𝐿2
𝜇𝑦

(𝑈)
+




𝑘1/2
𝑁

(·, ·)




𝐿2
𝜇𝑦

(𝑈)
ª®¬ .

Proofs of the above results are similar to those in [42] developed using the 𝐿2-
norm weighted by the prior measure 𝜇0, 𝐿2

𝜇0 (𝑈). The proofs are outlined in the
appendix. However, in contrast to [42], for the new results derived here, all error
measures are computed in the 𝐿2-norm weighted by the true posterior measure 𝜇𝑦 ,
𝐿2
𝜇𝑦 (𝑈). This enables us to deduce that the behaviour of the random surrogate model

Φ𝑁 in parts of the parameter space to which 𝜇𝑦 does not attach significant mass does
not have a big influence on the accuracy of the approximate posterior distributions.

For the mean-based approximation (3) the results show that we only need to
control the error in the predictive means𝑚Φ

𝑁
and𝑚G 𝑗

𝑁
, respectively. For the marginal

approximations (4), we also need to control the predictive variance 𝑘𝑁 .
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3.5 Error Bounds for GP Regression in Weighted Spaces

We now study the behaviour of the predictive mean 𝑚 𝑓

𝑁
and predictive variance 𝑘𝑁

as 𝑁 → ∞, for a general function 𝑓 : 𝑈 → R that we wish to emulate. Using a
representer theorem ([33, 39]), the predictive mean𝑚 𝑓

𝑁
defined in (11) can be shown

to be the minimum norm interpolant in the RKHS 𝐻𝑘 (𝑈) of the prior covariance
kernel 𝑘:

𝑚
𝑓

𝑁
= arg min

𝑔∈𝐻𝑘 (𝑈) s.t.
𝑔 (𝑢(𝑛) )= 𝑓 (𝑢(𝑛) ) , 1≤𝑛≤𝑁

∥𝑔∥𝐻𝑘 (𝑈) . (13)

For the Matèrn kernels defined in (8), it is known that the RKHS is equal to the
Sobolev space 𝐻𝜈+𝑑𝑢/2 (𝑈) as a vector space, with equivalent norms [44]. So there
exist constants 𝐶low (𝑈), 𝐶up (𝑈) > 0 such that for all 𝑔 ∈ 𝐻𝑘 (𝑈), we have

𝐶low (𝑈)∥𝑔∥𝐻𝜈+𝑑𝑢/2 (𝑈) ≤ ∥𝑔∥𝐻𝑘 (𝑈) ≤ 𝐶up (𝑈)∥𝑔∥𝐻𝜈+𝑑𝑢/2 (𝑈) . (14)

Given the training points 𝐷𝑁 we introduce the mapping 𝑚 ( ·)
𝑁

: 𝐻𝑘 (𝑈) → 𝐻𝑘 (𝑈),
which is built on the definition of the predictive mean 𝑚

𝑓

𝑁
given in (11). With

𝑔(𝐷𝑁 ) := [𝑔(𝑢1); . . . ; 𝑔(𝑢𝑁 )] ∈ R𝑁 as in (9), we let

𝑔(𝑢) ↦→ 𝑚
𝑔

𝑁
(𝑢) = 𝑘 (𝑢, 𝐷𝑁 )𝑇𝐾 (𝐷𝑁 , 𝐷𝑁 )−1𝑔(𝐷𝑁 ). (15)

The predictive variance 𝑘𝑁 satisfies the equality in Proposition 2, which follows,
allowing us to transfer convergence results on 𝑚 𝑓

𝑁
to convergence results on 𝑘𝑁

[37, 42].

Proposition 2 Suppose 𝑘𝑁 and 𝑚 ( ·)
𝑁

are given by (12) and (15), respectively. Then
for any 𝑢 ∈ 𝑈 we have

𝑘𝑁 (𝑢, 𝑢)
1
2 = sup

𝑔∈𝐻𝑘 (𝑈) s.t.
∥𝑔∥𝐻𝑘 (𝑈)=1

|𝑔(𝑢) − 𝑚𝑔
𝑁
(𝑢) |.

For any bounded set �̃� ⊆ 𝑈, we define the fill distance ℎ𝐷𝑁 ,�̃�
as

ℎ𝐷𝑁 ,�̃�
:= sup

𝑢∈�̃�
inf

𝑢𝑛∈𝐷𝑁∩�̃�
∥𝑢 − 𝑢𝑛∥2.

The fill distance is the maximum distance any point in �̃� can be from a training
point 𝑢𝑛 ∈ 𝐷𝑁 ∩ �̃�, and we require a space-filling set of training points 𝐷𝑁 (in �̃�)
to ensure that the fill distance goes to zero as 𝑁 → ∞. The following result follows
from standard results in scattered data approximation [44, 28, 1].

Proposition 3 Suppose �̃� ⊆ 𝑈 is a Lipschitz domain that satisfies an interior cone
condition with angle 𝜃, and �̃� is contained in the cube 𝐵(𝑢𝑐, 𝑅𝑐) = {𝑢 ∈ R𝑑𝑢 :
∥𝑢 − 𝑢𝑐 ∥∞ ≤ 𝑅𝑐}, for some 𝑢𝑐 ∈ R𝑑𝑢 and 0 < 𝑅𝑐 < ∞. Suppose further that the
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RKHS 𝐻𝑘 (�̃�) is isomorphic to the Sobolev space 𝐻𝜏 (�̃�) and 𝑓 ∈ 𝐻𝜏 (�̃�). Then
there exist constants 𝐶Prop3, 𝐶

′
Prop3 > 0, independent of 𝑓 , 𝐷𝑁 and 𝑁 , such that

∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (�̃�) ≤ 𝐶Prop3 (𝜃)ℎ𝜏−𝛽

𝐷𝑁 ,�̃�
∥ 𝑓 ∥𝐻𝜏 (𝑈) , for any 𝛽 ≤ 𝜏,

for all sets 𝐷𝑁 with ℎ𝐷𝑁 ,�̃�
≤ ℎ0 (�̃�) = 𝐶′

Prop3𝑅𝑐.

Proposition 3 allows us to bound the error 𝑓 − 𝑚 𝑓

𝑁
locally in a subdomain �̃�, in

the sense that ∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (�̃�) can be bounded in terms of the local fill distance

ℎ𝐷𝑁 ,�̃�
. The proof is given in the appendix.

The behaviour of the fill distance ℎ𝐷𝑁 ,�̃�
in terms of 𝑁 can be characterized

explicitly for many point sets 𝐷𝑁 , see e.g. [43, 45] and the references therein. The
fastest possible decay as 𝑁 → ∞ is ℎ𝐷𝑁 ,�̃�

= O(𝑁− 1
𝑑𝑢 ), which is obtained for

example by uniform tensor grids. As seen in Proposition 4 below, the fill distance of
randomly sampled point sets also decays at (almost) the optimal rate.

Proposition 4 Suppose

(i) �̃� ⊆ R𝑑𝑢 is a bounded Lipschitz domain that satisfies an interior cone condition,
and �̃� is contained in the cube 𝐵(𝑢𝑐, 𝑅𝑐) = {𝑢 ∈ R𝑑𝑢 : ∥𝑢 − 𝑢𝑐 ∥∞ ≤ 𝑅𝑐}, for
some 𝑢𝑐 ∈ R𝑑𝑢 and 0 < 𝑅𝑐 < ∞,

(ii) 𝑔 : [0,∞) → [0,∞) is continuous, monotonically increasing, and satisfies 𝑔(0) =
0 and lim𝑥↓0 𝑔(𝑥) exp(𝑥−3𝑑𝑢 ) = ∞,

(iii) training points �̃�𝑁 ⊆ �̃� are sampled i.i.d. from a measure 𝜈 with density 𝜌
satisfying 𝜌(𝑢) ≥ 𝜌min > 0 for all 𝑢 ∈ �̃�.

Then there exists constants 𝐶Prop4, 𝐶
′
Prop4 > 0 and 0 < 𝐶′′

Prop4 ≤ 1, independent of
𝑁 , 𝑢𝑐 and 𝑅𝑐, such that for any 𝜀 > 0, we have

E𝜈 [𝑔(ℎ�̃�𝑁 ,�̃�
)] ≤ 𝐶Prop4 𝑅𝑐 𝑔(𝑁− 1

𝑑𝑢
+𝜀),

P𝜈 [ℎ�̃�𝑁 ,�̃�
> ℎ] ≤ 𝐶′

Prop4

(
ℎ

𝑅𝑐

)−𝑑𝑢 (
1 − 𝐶′′

Prop4

(
ℎ

𝑅𝑐

)𝑑𝑢 )𝑁
, for any 0 ≤ ℎ ≤ 𝑅𝑐 .

The proof of Proposition 4 in the special case �̃� ⊆ [0, 1]𝑑𝑢 can be found in [30].
The general case follows from a simple transformation 𝑢 ↦→ 𝑅𝑐𝑢 +𝑢𝑐. The constants
𝐶Prop4 and 𝐶′′

Prop4 deteriorate, to ∞ and 0 respectively, as 𝜌min → 0. The results of
Proposition 4 further extend to the setting where the training points are not sampled
i.i.d. from 𝜈, but are instead generated from a uniformly ergodic Markov chain with
𝜈 as its stationary distribution [30].

Motivated by the results in Corollaries 1 and 2, we now study the quantitites
E𝜈

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐿2

𝜇𝑦
(𝑈)

]
and E𝜈

[
∥𝑘1/2
𝑁

(·, ·)∥𝐿2
𝜇𝑦

(𝑈)

]
, where the design points 𝐷𝑁

are assumed to be sampled from 𝜈. We are particularly interested in the interplay
between the sampling measure 𝜈 (with density 𝜌) and the posterior 𝜇𝑦 (with density
𝜋𝑦). Intuitively, we would expect 𝜈 ≈ 𝜇𝑦 , since Gaussian process regression will be
more accurate in regions with a higher density of training points.
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Theorem 3 Suppose 𝑈 is a bounded Lipschitz domain, 𝐻𝑘 (𝑈) is isomorphic to the
Sobolev space 𝐻𝜏 (𝑈), and 𝑓 ∈ 𝐻𝜏 (𝑈). Further suppose that for all 𝑁 ∈ N,

(i) 𝑈𝑁 ⊆ R𝑑𝑢 is compact and𝑈𝑁 ⊆
{
𝑢 ∈ R𝑑𝑢 : 𝜋𝑦 (𝑢) ≤ 𝐶2

1𝑁
− 2𝜏

𝑑𝑢

}
,

(ii) the training points 𝐷𝑁 are sampled i.i.d. from a measure 𝜈𝑁 with density 𝜌𝑁
satisfying 𝜌𝑁 (𝑢) ≥ 𝜌min > 0 for all 𝑢 ∈ 𝑈 \𝑈𝑁 , and 𝜌𝑁 (𝑢) = 0 otherwise,

(iii) 𝑈 \𝑈𝑁 is a Lipschitz domain that satisfies an interior cone condition with angle 𝜃,
and𝑈 \𝑈𝑁 is contained in the cube 𝐵(𝑢𝑐, 𝑅𝑁𝑐 ) = {𝑢 ∈ R𝑑𝑢 : ∥𝑢 − 𝑢𝑐 ∥∞ ≤ 𝑅𝑁𝑐 },
for some 𝑢𝑐 ∈ R𝑑𝑢 and 0 < 𝑅𝑁𝑐 < 𝐶2 log 𝑁 .

Then there exists a constant 𝐶Thm3 > 0, independent of 𝑓 and 𝑁 , such that for all
0 ≤ 𝛽 ≤ 𝜏 and 𝜀 > 0 we have

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈)

]
≤ 𝐶Thm3 𝑁

− 𝜏−𝛽
𝑑𝑢

+𝜀 ∥ 𝑓 ∥𝐻𝜏 (𝑈) .

Furthermore, for any partitioning 𝑈 \ 𝑈𝑁 ⊆ ∪𝑟
𝑖=1𝐵𝑖 , where each 𝐵𝑖 is a bounded

Lipschitz domain that satisfies an interior cone condition with angle 𝜃′, there exists
a constant 𝐶′

Thm3 such that for all 0 ≤ 𝛽 ≤ 𝜏 we have

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈) I{ℎ𝐷𝑁 ,𝐵𝑖

≤ ℎ0 (𝐵𝑖 ) ,1≤𝑖≤𝑛}

]
≤ 𝐶′

Thm3

((
sup
𝑢∈𝑈𝑁

𝜋𝑦 (𝑢)
) 1

2

+
𝑟∑︁
𝑖=1

(
sup
𝑢∈𝐵𝑖

𝜋𝑦 (𝑢)
) 1

2

E𝜈𝑁

[
ℎ
𝜏−𝛽
𝐷𝑁 ,𝐵𝑖

] )
.

The choice 𝛽 = 0 in Theorem 3 gives a bound on ∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐿2

𝜇𝑦
(𝑈) , whereas

𝛽 = 𝑑𝑢/2 + 𝛿, for any 𝛿 > 0, gives a bound on ∥𝑘1/2
𝑁

(·, ·)∥𝐿2
𝜇𝑦

(𝑈) via Proposition 2
and the Sobolev embedding theorem as in [42]. The assumption that 𝑈 is bounded
is required only since we need 𝜌min > 0 in assumption (𝑖𝑖). The assumption that
𝑅𝑁𝑐 ≤ 𝐶2 log 𝑁 in (𝑖𝑖𝑖) can be dropped since𝑈 is bounded and hence 𝑅𝑁𝑐 is uniformly
bounded in 𝑁 . However, 𝑅𝑁𝑐 does appear as a factor in𝐶Thm3 and so different choices
of 𝑅𝑁𝑐 could lead to pre-asymptotic effects slowing down convergence. In assumption
(𝑖𝑖𝑖) we assume that the angle 𝜃 is independent of 𝑁 , which ensures that the constant
𝐶Prop3 (𝜃) in Proposition 3 is also independent of 𝑁 .

The results in Theorem 3 give us insight into the interplay between the choice
of training points 𝐷𝑁 and the posterior 𝜇𝑦 . We introduce the set 𝑈𝑁 as the part
of the parameter space 𝑈 which does not carry significant posterior mass. We then
place training points only in𝑈 \𝑈𝑁 , according to a sampling measure 𝜈𝑁 . The first
claim shows that even by ignoring the set𝑈𝑁 , and placing training points only where
the posterior density is sufficiently large, we still obtain (almost) the optimal rate of
convergence in 𝑁 . Optimality here refers to the fastest obtainable rate 𝑁−1/𝑑𝑢 of the
fill distance in 𝑑𝑢 dimensions, as well as the fastest obtainable rate 𝑁−𝜏/𝑑𝑢 for the
approximation of 𝑓 ∈ 𝐻𝜏 (𝑈) in 𝐿2 (𝑈) by 𝑁 function values (see e.g. [43] and the
references therein). The first claim holds for any choice of sampling measure 𝜈𝑁 on
𝑈 \𝑈𝑁 , but in general we expect 𝐶Thm3 to deteriorate as 𝜌min gets close to zero.
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The second claim shows that the sampling measure 𝜈𝑁 should be chosen such that
the local fill distance ℎ𝐷𝑁 ,𝐵𝑖

is small where the posterior mass sup𝑢∈𝐵𝑖
𝜋𝑦 (𝑢) is large.

In other words, we want to put training points in the regions with highest posterior
density. We also note that the bound in the second claim suggests oversampling in
the tails of the posterior density 𝜋𝑦 , since the fill distance should be balanced with
the square-root of 𝜋𝑦 . This might be related to the fact that extrapolation is generally
much harder than interpolation.

Finally, we remark that the above observations agree with previous studies on the
subject. In [40], the authors develop a sequential strategy for optimally choosing the
training points 𝐷𝑁 , in the context of the marginal approximation (4). In practice this
results in the training points being placed in regions of high posterior density. Simi-
larly, the choice of design points attained by the calibrate-emulate-sample approach
in [6, 12], gives training points in regions of high posterior density for the solution
of the Bayesian inverse problem in the GCM example from subsection 2.2. The
results in this paper are the first to provide a theoretical justification for this choice
of training points in terms of accuracy of the approximate posterior distributions.

The related problem of optimal choice of training points 𝐷𝑁 in Bayesian quadra-
ture, i.e. when we are interested in bounding the error����∫

𝑈

𝑓 (𝑢)𝜋(𝑢)d𝑢 −
∫
𝑈

𝑚
𝑓

𝑁
(𝑢)𝜋(𝑢)d𝑢

���� ,
for some target measure 𝜋, is studied numerically in [3]. They observe that choosing
the design points 𝐷𝑁 according to a slightly inflated version of 𝜋, i.e. oversampling
in the tails of 𝜋, seems to give the smallest error.

4 Numerical Examples

We finish this work with two simple illustrative examples. In the first example, our
function is 𝑓 (𝑢) = 𝑢, and our posterior measure is 𝜇 ∼ N(1, 1). We then take our
design measure to be 𝜈 ∼ N(1, 𝜎2). We are interested in analyzing the following
error quantity

𝑒(𝑁, 𝜈) =
∫ ∞

−∞
E𝜈 |𝑚 𝑓

𝑁
(𝑢) − 𝑓 (𝑢) |2𝜇(𝑑𝑢) (16)

both as a function of the value of the variance 𝜎2 of the design measure 𝜈 as
well as the number of points 𝑁 used in the Gaussian process regression. In all
our calculations we have used 103 realizations for the design points in order to
approximate the expectation in (16). Note that this example does not fulfill all
assumptions of Theorem 3, since𝑈 is unbounded and there is no a-priori truncation
of the parameter space by discarding 𝑈𝑁 , but the behaviour is still as predicted by
that theorem.

As we can in Figure 3, the results agree with the Theorem 3. In particular,
as expected we observe that as the number of design points 𝑁 increases 𝑒(𝑁, 𝜈)
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decreases, and at the same rate for different choices of 𝜎. Furthermore, perhaps
more interestingly we observe that as we increase the variance of the design measure
the error overall decreases until it reaches a minimum value nearby the value of the
variance of the true posterior and then slowly increases.

Fig. 3: 𝑒(𝑁, 𝜈) as a function of 𝜎 and 𝑁 for the case of Gaussian posterior 𝜇 and
design measure 𝜈, with Gaussian covariance kernel 𝑘 .

In the second numerical experiment we now repeat the first experiment, again
with 𝑓 (𝑢) = 𝑢, but now with the true posterior measure 𝜇 ∼ 𝑈 [−1, 1] and the design
measure 𝜈 ∼ 𝑈 [−𝜖, 𝜖]. As we can see in Figure 4 the results are similar to the
Gaussian case studied before with the error reducing as a function of 𝑁 for a fixed
value of 𝜖 .

Fig. 4: 𝑒(𝑁, 𝜈) as a function of 𝜖 and 𝑁 for the case of uniform posterior 𝜇 and
design measure 𝜈, with Gaussian covariance kernel 𝑘 .
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Appendix: Proofs of Results

Proof (of Theorem 1) First, note that the mean-based posterior approximation 𝜇𝑦,𝑁mean
is absolutely continuous with respect to the true posterior 𝜇𝑦 , since exp

(
−E[Φ𝑁 (𝑢)]

)
and exp

(
−Φ(𝑢)

)
are both positive and 𝜇0 is a probability measure:

𝜇𝑦 (𝐴) =
∫
𝐴

exp
(
−Φ(𝑢)

)
𝜇0 (d𝑢) = 0 ⇒ 𝜇

𝑦,𝑁
mean (𝐴) =

∫
𝐴

exp
(
−E[Φ𝑁 (𝑢)]

)
𝜇0 (d𝑢) = 0.

For the same reasons, the prior 𝜇0 is absolutely continuous with respect to the true
posterior 𝜇𝑦 . We then have the Radon-Nikodym derivative

𝑑𝜇
𝑦,𝑁
mean
𝑑𝜇𝑦

(𝑢) = 𝑑𝜇
𝑦,𝑁
mean
𝑑𝜇0

(𝑢) 𝑑𝜇0
𝑑𝜇𝑦

(𝑢) = 𝑑𝜇
𝑦,𝑁
mean
𝑑𝜇0

(𝑢)
(
𝑑𝜇𝑦

𝑑𝜇0
(𝑢)

)−1
=

1
𝑍mean
𝑁

exp
(
− E[Φ𝑁 (𝑢)]

)
1
𝑍

exp
(
−Φ(𝑢)

) .

Using the definition of the Hellinger distance with 𝜈 = 𝜇𝑦 and the inequality(
1 − 𝑎𝑏

𝑐𝑑

)2
=

1
𝑐2𝑑2 (𝑐𝑑−𝑎𝑏)

2 =
1

𝑐2𝑑2 (𝑐𝑑−𝑐𝑏+𝑐𝑏−𝑎𝑏)
2 ≤ 2

𝑐2𝑑2

(
(𝑐𝑑 − 𝑐𝑏)2 + (𝑐𝑏 − 𝑎𝑏)2

)
,

for real numbers 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, we then have

2 𝑑2
Hell (𝜇𝑦 , 𝜇

𝑦,𝑁
mean) =

∫
𝑈

©­­«1 −

√√√ 1
𝑍mean
𝑁

exp
(
− E[Φ𝑁 (𝑢)]

)
1
𝑍

exp
(
−Φ(𝑢)

) ª®®¬
2

𝜇𝑦 (d𝑢)

≤ 2
∫
𝑈

(
1 − exp

(
1
2
(Φ(𝑢) − E[Φ𝑁 (𝑢)])

))2
𝜇𝑦 (d𝑢) +

2 𝑍
(
𝑍−1/2 − (𝑍mean

𝑁 )−1/2
)2 ∫

𝑈

exp
(
(Φ(𝑢) − E[Φ𝑁 (𝑢)])

)
𝜇𝑦 (d𝑢)

=: 𝐼 + 𝐼 𝐼 .

Using the local Lipschitz continuity of the exponential function, Hölder’s in-
equality with conjugate exponents (𝑝1, 𝑝

′
1), the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) for

𝑎, 𝑏 ∈ R, the triangle equality in 𝐿 𝑝1
𝜇𝑦 , and Jensen’s inequality for 𝑥 → 𝑥2, we have
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𝐼 ≤ 1
2

∫
𝑈

(
1 + exp

(
1
2
(Φ(𝑢) − E[Φ𝑁 (𝑢)])

))2
(Φ(𝑢) − E[Φ𝑁 (𝑢)])2 𝜇𝑦 (d𝑢)

≤ 1
2






(1 + exp
(

1
2
(Φ − E[Φ𝑁 ])

))2






𝐿
𝑝1
𝜇𝑦



(Φ − E[Φ𝑁 ])2


𝐿
𝑝′1
𝜇𝑦

≤ (1 + 𝐶1 (𝑝1)) ∥Φ − E[Φ𝑁 ] ∥2

𝐿
2𝑝′1
𝜇𝑦

For 𝐼 𝐼, using the inequality (𝑎−1/2−𝑏−1/2)2 ≤ (𝑎−𝑏)2 max{𝑎−3, 𝑏−3}, for 𝑎, 𝑏 > 0,
we have

𝐼 𝐼 ≤ 2 𝑍 max(𝑍−3, (𝑍mean
𝑁 )−3)

(
𝑍 − (𝑍mean

𝑁 )
)2

∫
𝑈

exp
(
(Φ(𝑢) − E[Φ𝑁 (𝑢)])

)
𝜇𝑦 (d𝑢).

Then, as in the bound for 𝐼 and using Jensen’s inequality for 𝑥 → 𝑥2, we have

(
𝑍 − (𝑍mean

𝑁 )
)2

=

(∫
𝑈

exp
(
−Φ(𝑢)

)
− exp

(
− E[Φ𝑁 (𝑢)])

)
𝜇0 (d𝑢)

)2

=

(∫
𝑈

(
1 − exp

(
1
2
(Φ(𝑢) − E[Φ𝑁 (𝑢)])

))
𝜇𝑦 (d𝑢)

)2

≤ (1 + 𝐶1 (𝑝1)) ∥Φ − E[Φ𝑁 ] ∥2

𝐿
2𝑝′1
𝜇𝑦

and so

𝐼 𝐼 ≤ 2𝑍 max
{
𝑍−3, 𝐶3

2
}
(1 + 𝐶1 (𝑝1)) 𝐶1 (1) ∥Φ − E[Φ𝑁 ] ∥2

𝐿
2𝑝′1
𝜇𝑦

.

This completes the proof, with

𝐶Thm1 =

√︄
(1 + 𝐶1 (𝑝1))

(
1
2
+ 𝑍 max

{
𝑍−3, 𝐶3

2
}
𝐶1 (1)

)
.

Proof (of Theorem 2) Similar to the proof of Theorem 1, we compute

𝑑𝜇
𝑦,𝑁

marginal

𝑑𝜇𝑦
(𝑢) =

1
𝑍

marginal
𝑁

E
(

exp
(
−Φ𝑁 (𝑢)

) )
1
𝑍

exp
(
−Φ(𝑢)

) ,

and using the definition of the Hellinger distance with 𝜈 = 𝜇𝑦 , we have
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2 𝑑2
Hell (𝜇𝑦 , 𝜇

𝑦,𝑁

marginal) = =

∫
𝑈
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exp
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exp
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2 𝑍
(
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𝑁
)−1/2
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𝑈

E
[

exp
(
Φ(𝑢) −Φ𝑁 (𝑢)

) ]
𝜇𝑦 (d𝑢)

=: 𝐼 + 𝐼 𝐼 .

Using the inequality (𝑎 − 𝑏)2 =

(
𝑎2−𝑏2

𝑎+𝑏

)2
≤ (𝑎2−𝑏2 )2

𝑎2+𝑏2 , for 𝑎, 𝑏 ∈ R, together with
Hölder’s inequality with conjugate exponents 𝑞1 and 𝑞′1, we obtain

𝐼 ≤ 2



(1 − E

[
exp

(
Φ −Φ𝑁

) ] )2




𝐿
𝑞′1
𝜇𝑦




(1 + E
[

exp
(
Φ −Φ𝑁

) ] )−1




𝐿
𝑞1
𝜇𝑦

.

We estimate the second factor on the right-hand side above as in the proof of [23,
Theorem 3.1]:


(1 + E

[
exp

(
Φ −Φ𝑁

) ] )−1




𝐿
𝑞1
𝜇𝑦

≤ min

{
∥1∥

𝐿
𝑞1
𝜇𝑦
,




E[ exp
(
Φ −Φ𝑁

) ]−1




𝐿
𝑞1
𝜇𝑦

}
= 1

This holds for any 𝑞1 ∈ [1,∞], and so we can choose 𝑞1 = ∞ and 𝑞′1 = 1.
For the first factor, the linearity of expectation, local Lipschitz continuity of

the exponential function, Hölder’s inequality with conjugate exponents 𝑝2, 𝑝
′
2 with

respect to E and 𝑝1, 𝑝
′
1 with respect to 𝜇𝑦 , the inequality |𝑎 + 𝑏 |𝑝2 ≤ 2𝑝2−1 ( |𝑎 |𝑝2 +

|𝑏 |𝑝2 ) and the triangle inequality in 𝐿2𝑝1
𝜇𝑦 give

𝐼 ≤ 2



(1 − E
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(
Φ −Φ𝑁

) ] )2
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≤ 2
∫
𝑈

(
E
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] )2
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2
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2
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For 𝐼 𝐼, using the inequality (𝑎−1/2−𝑏−1/2)2 ≤ (𝑎−𝑏)2 max{𝑎−3, 𝑏−3}, for 𝑎, 𝑏 > 0,
we have

𝐼 𝐼 ≤ 2 𝑍 max(𝑍−3, (𝑍marginal
𝑁

)−3)
(
𝑍 − (𝑍marginal

𝑁
)
)2 ∫

𝑈

E
[

exp
(
Φ(𝑢) −Φ𝑁 (𝑢)

) ]
𝜇𝑦 (d𝑢).
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Then, as in the bound for 𝐼 and using Jensen’s inequality for 𝑥 → 𝑥2, we have(
𝑍 − (𝑍marginal

𝑁
)
)2

=

(∫
𝑈

exp
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− E
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and so
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2
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This completes the proof, with

𝐶Thm2 =

√︃
2𝑝2−1 (1 + 𝐶1 (𝑝1, 𝑝2))

(
1 + 𝑍 max

{
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2
}
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)
.

Proof (of Corollary 1) We check the assumptions in Theorems 1 and 2. For as-
sumption (𝑖𝑖), we can follow the proof of Lemmas 4.1 and 4.7 in [42], respectively.
Note that instead of assuming that sup𝑢∈𝑈

��Φ(𝑢) − 𝑚Φ
𝑁
(𝑢)

�� converges to 0 as 𝑁 tends
to infinity and sup𝑢∈𝑈 ∥G(𝑢)∥ ≤ 𝐶G < ∞, we can directly bound sup𝑢∈𝑈 𝑚Φ

𝑁
(𝑢)

independently of 𝑁 using the definition of the RKHS 𝐻𝑘 (𝑈) of the kernel 𝑘 , the
Cauchy-Schwarz inequality and the minimum norm interpolant property (13):

sup
𝑢∈𝑈

��𝑚Φ
𝑁 (𝑢)

�� = sup
𝑢∈𝑈

��⟨𝑚Φ
𝑁 (·), 𝑘 (·, 𝑢)⟩𝐻𝑘 (𝑈)

�� ≤ ∥Φ∥𝐻𝑘 (𝑈) sup
𝑢∈𝑈

√︁
𝑘 (𝑢, 𝑢).

We can then bound 𝑍mean
𝑁

as in the proof of [42, Lemma 4.1], and 𝑍marginal
𝑁

as in the
proof of [42, Lemma 4.7]. For assumption (i) in Theorem 1, this then immediately
follows with 𝑝1 = ∞, since as above

∥exp ((Φ − E[Φ𝑁 ]))∥𝐿∞ (𝑈) ≤ exp
(
∥Φ∥𝐻𝑘 (𝑈) (1 + sup

𝑢∈𝑈

√︁
𝑘 (𝑢, 𝑢))

)
.

For assumption (i) in Theorem 2, we similarly have that for 𝑝1 = ∞, the quantity

sup
𝑢∈𝑈
E
[
(exp (Φ(𝑢) −Φ𝑁 (𝑢))) 𝑝2

]1/𝑝2 ≤ E
[

exp
(
𝑝2 sup

𝑢∈𝑈
(Φ(𝑢) +Φ𝑁 (𝑢))

) ]1/𝑝2

can be bounded for any 𝑝2 < ∞. The choice 𝑝2 = 2 then gives the desired result. □

Proof (of Corollary 2) This is very similar to the proof of Corollary 1, with the
same modification to bound sup𝑢∈𝑈

��𝑚G 𝑗

𝑁
(𝑢)

�� independently of 𝑁 . □

Proof (of Proposition 3) It follows from [1, Theorem 3.2] that
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∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (�̃�) ≤ 𝐶 (𝜃)ℎ

𝜏−𝛽
𝐷𝑁 ,�̃�

∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝜏 (�̃�) ,

for any 𝛽 ≤ 𝜏 and for all sets 𝐷𝑁 with ℎ𝐷𝑁 ,�̃�
≤ ℎ0 (�̃�) = 𝐶′

Prop3𝑅𝑐. Using �̃� ⊆ 𝑈,
the triangle inequality in 𝐻𝜏 (𝑈), the norm equivalence between 𝐻𝑘 (𝑈) and 𝐻𝜏 (𝑈)
from (14), and ∥𝑚 𝑓

𝑁
∥𝐻𝑘 (𝑈) ≤ ∥ 𝑓 ∥𝐻𝑘 (𝑈) from (13) then gives

∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝜏 (�̃�) ≤ ∥ 𝑓 ∥𝐻𝜏 (𝑈) + ∥𝑚 𝑓

𝑁
∥𝐻𝜏 (𝑈)

≤
(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
∥ 𝑓 ∥𝐻𝜏 (𝑈) .

This finishes the proof, with 𝐶Prop3 (𝜃) = 𝐶 (𝜃)
(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
. □

Proof (of Theorem 3) Step 1: We split the error as

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈)

]
≤ E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈\𝑈𝑁 )

]
+E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈𝑁 )

]
.

Step 2: For E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈𝑁 )

]
, we have by assumption (𝑖) and 𝛽 ≤ 𝜏 that

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈𝑁 )

]
≤

(
sup
𝑢∈𝑈𝑁

𝜋𝑦 (𝑢)
) 1

2

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈𝑁 )

]
≤ 𝐶1𝑁

− 𝜏
𝑑𝑢 E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝜏 (𝑈𝑁 )

]
≤ 𝐶1

(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
𝑁

− 𝜏
𝑑𝑢 ∥ 𝑓 ∥𝐻𝜏 (𝑈) ,

where we have bounded ∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝜏 (𝑈𝑁 ) as in the proof of Proposition 3.

Step 3: For E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈\𝑈𝑁 )

]
, the linearity of expectation gives

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 )

]
= E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 ) I{ℎ𝐷𝑁 ,𝑈\𝑈𝑁

≤ℎ0 (𝑈\𝑈𝑁 ) }
]

+ E𝜈𝑁
[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 ) I{ℎ𝐷𝑁 ,𝑈\𝑈𝑁

>ℎ0 (𝑈\𝑈𝑁 ) }
]
.

For the first term, an application of Propositions 3 and 4, and Hölder’s inequality
with conjugate exponents 𝑝 = ∞ and 𝑞 = 1, gives

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 ) I{ℎ𝐷𝑁 ,𝑈\𝑈𝑁

≤ ℎ0 (𝑈\𝑈𝑁 ) }
]

≤ 𝐶Prop3 (𝜃) E𝜈𝑁
[
ℎ
𝜏−𝛽
𝐷𝑁 ,𝑈\𝑈𝑁

]
sup
𝐷𝑁

∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝜏 (𝑈\𝑈𝑁 )

≤ 𝐶Prop3 (𝜃) 𝐶Prop4 𝐶2

(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
𝑁

− 𝜏−𝛽
𝑑𝑢

+𝜀 ∥ 𝑓 ∥𝐻𝜏 (𝑈) ,

for any 𝜀 > 0, where we have bounded ∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝜏 (𝑈\𝑈𝑁 ) as in step 2.
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For the second term, we use Hölder’s inequality with conjugate exponents 𝑝 = ∞
and 𝑞 = 1 to obtain

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 ) I{ℎ𝐷𝑁 ,𝑈\𝑈𝑁 ) > ℎ0 (𝑈\𝑈𝑁 ) ) }

]
≤ sup
𝐷𝑁

∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 )P𝜈𝑁

[
ℎ𝐷𝑁 ,𝑈\𝑈𝑁

> ℎ0 (𝑈 \𝑈𝑁 )
]
.

The second factor can be bounded by Proposition 4. For the first factor, we again use
the bound on ∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 ) ) as in step 2. Adding the two terms, we have

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 )

]
≤

(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
∥ 𝑓 ∥𝐻𝜏 (𝑈)(

𝐶Prop3 (𝜃) 𝐶Prop4 𝐶2 𝑁
− 𝜏−𝛽

𝑑𝑢
+𝜀 + 𝐶′

Prop4 (𝐶′
Prop3)

−𝑑𝑢
(
1 − 𝐶′′

Prop4 (𝐶
′
Prop3)

𝑑𝑢

)𝑁 )
.

Since the geometrically decaying term is bounded by the algebraically converging
term for 𝑁 sufficiently large, and both terms are monotonically decreasing in 𝑁 , it
follows that

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝑈\𝑈𝑁 )

]
≤ 𝐶𝑁− 𝜏−𝛽

𝑑𝑢
+𝜀 ∥ 𝑓 ∥𝐻𝜏 (𝑈) ,

with 𝐶 =
(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
max{𝐶Prop3 (𝜃)𝐶Prop4 𝐶2, 𝐶

′
Prop4 (𝐶′

Prop3)
−𝑑𝑢 }.

This proves the first claim, with 𝐶Thm3 = 𝐶 + 𝐶1
(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
.

Step 5: For the second claim, we split E𝜈𝑁
[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽
𝜇 (𝑈\𝑈𝑁 )

]
further over the

subdomains𝑈 \𝑈𝑁 ⊆ {𝐵𝑖}𝑟𝑖=1 ⊆ 𝑈 to obtain

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥
𝐻

𝛽

𝜇𝑦
(𝑈\𝑈𝑁 ) I{ℎ𝐷𝑁 ,𝐵𝑖

≤ ℎ0 (𝐵𝑖 ) ,1≤𝑖≤𝑛}

]
≤

𝑟∑︁
𝑖=1

(
sup
𝑢∈𝐵𝑖

𝜋𝑦 (𝑢)
) 1

2

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝐵𝑖 ) I{ℎ𝐷𝑁 ,𝐵𝑖

≤ ℎ0 (𝐵𝑖 )
]
.

Then, as in step 3, we have

E𝜈𝑁

[
∥ 𝑓 − 𝑚 𝑓

𝑁
∥𝐻𝛽 (𝐵𝑖 ) I{ℎ�̃�𝑁 ,𝐵𝑖

≤ ℎ0 (𝐵𝑖 ) }
]

≤ 𝐶Prop3 (𝜃′) E𝜈𝑁
[
ℎ𝐷𝑁 ,𝐵𝑖

] 𝜏−𝛽 (
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
∥ 𝑓 ∥𝐻𝜏 (𝑈) .

This finishes the proof of the second claim, with

𝐶′
Thm3 =

(
1 + 𝐶low (𝑈)−1𝐶up (𝑈)

)
∥ 𝑓 ∥𝐻𝜏 (𝑈)

(
1 + 𝑟𝐶Prop3 (𝜃′)

)
.


